The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/common/fs/ufs/ufs_vfsops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or http://www.opensolaris.org/os/licensing.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
   23  * Use is subject to license terms.
   24  */
   25 
   26 /*      Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T     */
   27 /*        All Rights Reserved   */
   28 
   29 /*
   30  * University Copyright- Copyright (c) 1982, 1986, 1988
   31  * The Regents of the University of California
   32  * All Rights Reserved
   33  *
   34  * University Acknowledgment- Portions of this document are derived from
   35  * software developed by the University of California, Berkeley, and its
   36  * contributors.
   37  */
   38 
   39 #include <sys/types.h>
   40 #include <sys/t_lock.h>
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/bitmap.h>
   44 #include <sys/sysmacros.h>
   45 #include <sys/kmem.h>
   46 #include <sys/signal.h>
   47 #include <sys/user.h>
   48 #include <sys/proc.h>
   49 #include <sys/disp.h>
   50 #include <sys/buf.h>
   51 #include <sys/pathname.h>
   52 #include <sys/vfs.h>
   53 #include <sys/vfs_opreg.h>
   54 #include <sys/vnode.h>
   55 #include <sys/file.h>
   56 #include <sys/atomic.h>
   57 #include <sys/uio.h>
   58 #include <sys/dkio.h>
   59 #include <sys/cred.h>
   60 #include <sys/conf.h>
   61 #include <sys/dnlc.h>
   62 #include <sys/kstat.h>
   63 #include <sys/acl.h>
   64 #include <sys/fs/ufs_fsdir.h>
   65 #include <sys/fs/ufs_fs.h>
   66 #include <sys/fs/ufs_inode.h>
   67 #include <sys/fs/ufs_mount.h>
   68 #include <sys/fs/ufs_acl.h>
   69 #include <sys/fs/ufs_panic.h>
   70 #include <sys/fs/ufs_bio.h>
   71 #include <sys/fs/ufs_quota.h>
   72 #include <sys/fs/ufs_log.h>
   73 #undef NFS
   74 #include <sys/statvfs.h>
   75 #include <sys/mount.h>
   76 #include <sys/mntent.h>
   77 #include <sys/swap.h>
   78 #include <sys/errno.h>
   79 #include <sys/debug.h>
   80 #include "fs/fs_subr.h"
   81 #include <sys/cmn_err.h>
   82 #include <sys/dnlc.h>
   83 #include <sys/fssnap_if.h>
   84 #include <sys/sunddi.h>
   85 #include <sys/bootconf.h>
   86 #include <sys/policy.h>
   87 #include <sys/zone.h>
   88 
   89 /*
   90  * This is the loadable module wrapper.
   91  */
   92 #include <sys/modctl.h>
   93 
   94 int                     ufsfstype;
   95 vfsops_t                *ufs_vfsops;
   96 static int              ufsinit(int, char *);
   97 static int              mountfs();
   98 extern int              highbit();
   99 extern struct instats   ins;
  100 extern struct vnode *common_specvp(struct vnode *vp);
  101 extern vfs_t            EIO_vfs;
  102 
  103 struct  dquot *dquot, *dquotNDQUOT;
  104 
  105 /*
  106  * Cylinder group summary information handling tunable.
  107  * This defines when these deltas get logged.
  108  * If the number of cylinders in the file system is over the
  109  * tunable then we log csum updates. Otherwise the updates are only
  110  * done for performance on unmount. After a panic they can be
  111  * quickly constructed during mounting. See ufs_construct_si()
  112  * called from ufs_getsummaryinfo().
  113  *
  114  * This performance feature can of course be disabled by setting
  115  * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff.
  116  */
  117 #define UFS_LOG_NCG_DEFAULT 10000
  118 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT;
  119 
  120 /*
  121  * ufs_clean_root indicates whether the root fs went down cleanly
  122  */
  123 static int ufs_clean_root = 0;
  124 
  125 /*
  126  * UFS Mount options table
  127  */
  128 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
  129 static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
  130 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL };
  131 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL };
  132 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL };
  133 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL };
  134 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL };
  135 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL };
  136 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
  137 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
  138 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL };
  139 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL };
  140 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL };
  141 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL };
  142 
  143 static mntopt_t mntopts[] = {
  144 /*
  145  *      option name             cancel option   default arg     flags
  146  *              ufs arg flag
  147  */
  148         { MNTOPT_INTR,          intr_cancel,    NULL,           MO_DEFAULT,
  149                 (void *)0 },
  150         { MNTOPT_NOINTR,        nointr_cancel,  NULL,           0,
  151                 (void *)UFSMNT_NOINTR },
  152         { MNTOPT_SYNCDIR,       NULL,           NULL,           0,
  153                 (void *)UFSMNT_SYNCDIR },
  154         { MNTOPT_FORCEDIRECTIO, forcedirectio_cancel, NULL,     0,
  155                 (void *)UFSMNT_FORCEDIRECTIO },
  156         { MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0,
  157                 (void *)UFSMNT_NOFORCEDIRECTIO },
  158         { MNTOPT_NOSETSEC,      NULL,           NULL,           0,
  159                 (void *)UFSMNT_NOSETSEC },
  160         { MNTOPT_LARGEFILES,    largefiles_cancel, NULL,        MO_DEFAULT,
  161                 (void *)UFSMNT_LARGEFILES },
  162         { MNTOPT_NOLARGEFILES,  nolargefiles_cancel, NULL,      0,
  163                 (void *)0 },
  164         { MNTOPT_LOGGING,       logging_cancel, NULL,           MO_TAG,
  165                 (void *)UFSMNT_LOGGING },
  166         { MNTOPT_NOLOGGING,     nologging_cancel, NULL,
  167                 MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 },
  168         { MNTOPT_QUOTA,         quota_cancel, NULL,             MO_IGNORE,
  169                 (void *)0 },
  170         { MNTOPT_NOQUOTA,       noquota_cancel, NULL,
  171                 MO_NODISPLAY|MO_DEFAULT, (void *)0 },
  172         { MNTOPT_GLOBAL,        NULL,           NULL,           0,
  173                 (void *)0 },
  174         { MNTOPT_XATTR, xattr_cancel,           NULL,           MO_DEFAULT,
  175                 (void *)0 },
  176         { MNTOPT_NOXATTR,       noxattr_cancel,         NULL,           0,
  177                 (void *)0 },
  178         { MNTOPT_NOATIME,       NULL,           NULL,           0,
  179                 (void *)UFSMNT_NOATIME },
  180         { MNTOPT_DFRATIME,      dfratime_cancel, NULL,          0,
  181                 (void *)0 },
  182         { MNTOPT_NODFRATIME,    nodfratime_cancel, NULL,
  183                 MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME },
  184         { MNTOPT_ONERROR,       NULL,           UFSMNT_ONERROR_PANIC_STR,
  185                 MO_DEFAULT|MO_HASVALUE, (void *)0 },
  186 };
  187 
  188 static mntopts_t ufs_mntopts = {
  189         sizeof (mntopts) / sizeof (mntopt_t),
  190         mntopts
  191 };
  192 
  193 static vfsdef_t vfw = {
  194         VFSDEF_VERSION,
  195         "ufs",
  196         ufsinit,
  197         VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_CANLOFI,
  198         &ufs_mntopts
  199 };
  200 
  201 /*
  202  * Module linkage information for the kernel.
  203  */
  204 extern struct mod_ops mod_fsops;
  205 
  206 static struct modlfs modlfs = {
  207         &mod_fsops, "filesystem for ufs", &vfw
  208 };
  209 
  210 static struct modlinkage modlinkage = {
  211         MODREV_1, (void *)&modlfs, NULL
  212 };
  213 
  214 /*
  215  * An attempt has been made to make this module unloadable.  In order to
  216  * test it, we need a system in which the root fs is NOT ufs.  THIS HAS NOT
  217  * BEEN DONE
  218  */
  219 
  220 extern kstat_t *ufs_inode_kstat;
  221 extern uint_t ufs_lockfs_key;
  222 extern void ufs_lockfs_tsd_destructor(void *);
  223 extern uint_t bypass_snapshot_throttle_key;
  224 
  225 int
  226 _init(void)
  227 {
  228         /*
  229          * Create an index into the per thread array so that any thread doing
  230          * VOP will have a lockfs mark on it.
  231          */
  232         tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor);
  233         tsd_create(&bypass_snapshot_throttle_key, NULL);
  234         return (mod_install(&modlinkage));
  235 }
  236 
  237 int
  238 _fini(void)
  239 {
  240         return (EBUSY);
  241 }
  242 
  243 int
  244 _info(struct modinfo *modinfop)
  245 {
  246         return (mod_info(&modlinkage, modinfop));
  247 }
  248 
  249 extern struct vnode *makespecvp(dev_t dev, vtype_t type);
  250 
  251 extern kmutex_t ufs_scan_lock;
  252 
  253 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *,
  254                 struct cred *, int, void *, int);
  255 
  256 
  257 static int
  258 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap,
  259         struct cred *cr)
  260 
  261 {
  262         char *data = uap->dataptr;
  263         int datalen = uap->datalen;
  264         dev_t dev;
  265         struct vnode *lvp = NULL;
  266         struct vnode *svp = NULL;
  267         struct pathname dpn;
  268         int error;
  269         enum whymountroot why = ROOT_INIT;
  270         struct ufs_args args;
  271         int oflag, aflag;
  272         int fromspace = (uap->flags & MS_SYSSPACE) ?
  273             UIO_SYSSPACE : UIO_USERSPACE;
  274 
  275         if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
  276                 return (error);
  277 
  278         if (mvp->v_type != VDIR)
  279                 return (ENOTDIR);
  280 
  281         mutex_enter(&mvp->v_lock);
  282         if ((uap->flags & MS_REMOUNT) == 0 &&
  283             (uap->flags & MS_OVERLAY) == 0 &&
  284             (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
  285                 mutex_exit(&mvp->v_lock);
  286                 return (EBUSY);
  287         }
  288         mutex_exit(&mvp->v_lock);
  289 
  290         /*
  291          * Get arguments
  292          */
  293         bzero(&args, sizeof (args));
  294         if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) {
  295                 int copy_result = 0;
  296 
  297                 if (datalen > sizeof (args))
  298                         return (EINVAL);
  299                 if (uap->flags & MS_SYSSPACE)
  300                         bcopy(data, &args, datalen);
  301                 else
  302                         copy_result = copyin(data, &args, datalen);
  303                 if (copy_result)
  304                         return (EFAULT);
  305                 datalen = sizeof (struct ufs_args);
  306         } else {
  307                 datalen = 0;
  308         }
  309 
  310         if ((vfsp->vfs_flag & VFS_RDONLY) != 0 ||
  311             (uap->flags & MS_RDONLY) != 0) {
  312                 oflag = FREAD;
  313                 aflag = VREAD;
  314         } else {
  315                 oflag = FREAD | FWRITE;
  316                 aflag = VREAD | VWRITE;
  317         }
  318 
  319         /*
  320          * Read in the mount point pathname
  321          * (so we can record the directory the file system was last mounted on).
  322          */
  323         if (error = pn_get(uap->dir, fromspace, &dpn))
  324                 return (error);
  325 
  326         /*
  327          * Resolve path name of special file being mounted.
  328          */
  329         if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &svp)) {
  330                 pn_free(&dpn);
  331                 return (error);
  332         }
  333 
  334         error = vfs_get_lofi(vfsp, &lvp);
  335 
  336         if (error > 0) {
  337                 VN_RELE(svp);
  338                 pn_free(&dpn);
  339                 return (error);
  340         } else if (error == 0) {
  341                 dev = lvp->v_rdev;
  342 
  343                 if (getmajor(dev) >= devcnt) {
  344                         error = ENXIO;
  345                         goto out;
  346                 }
  347         } else {
  348                 dev = svp->v_rdev;
  349 
  350                 if (svp->v_type != VBLK) {
  351                         VN_RELE(svp);
  352                         pn_free(&dpn);
  353                         return (ENOTBLK);
  354                 }
  355 
  356                 if (getmajor(dev) >= devcnt) {
  357                         error = ENXIO;
  358                         goto out;
  359                 }
  360 
  361                 /*
  362                  * In SunCluster, requests to a global device are
  363                  * satisfied by a local device. We substitute the global
  364                  * pxfs node with a local spec node here.
  365                  */
  366                 if (IS_PXFSVP(svp)) {
  367                         ASSERT(lvp == NULL);
  368                         VN_RELE(svp);
  369                         svp = makespecvp(dev, VBLK);
  370                 }
  371 
  372                 if ((error = secpolicy_spec_open(cr, svp, oflag)) != 0) {
  373                         VN_RELE(svp);
  374                         pn_free(&dpn);
  375                         return (error);
  376                 }
  377         }
  378 
  379         if (uap->flags & MS_REMOUNT)
  380                 why = ROOT_REMOUNT;
  381 
  382         /*
  383          * Open device/file mounted on.  We need this to check whether
  384          * the caller has sufficient rights to access the resource in
  385          * question.  When bio is fixed for vnodes this can all be vnode
  386          * operations.
  387          */
  388         if ((error = VOP_ACCESS(svp, aflag, 0, cr, NULL)) != 0)
  389                 goto out;
  390 
  391         /*
  392          * Ensure that this device isn't already mounted or in progress on a
  393          * mount unless this is a REMOUNT request or we are told to suppress
  394          * mount checks. Global mounts require special handling.
  395          */
  396         if ((uap->flags & MS_NOCHECK) == 0) {
  397                 if ((uap->flags & MS_GLOBAL) == 0 &&
  398                     vfs_devmounting(dev, vfsp)) {
  399                         error = EBUSY;
  400                         goto out;
  401                 }
  402                 if (vfs_devismounted(dev)) {
  403                         if ((uap->flags & MS_REMOUNT) == 0) {
  404                                 error = EBUSY;
  405                                 goto out;
  406                         }
  407                 }
  408         }
  409 
  410         /*
  411          * If the device is a tape, mount it read only
  412          */
  413         if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) {
  414                 vfsp->vfs_flag |= VFS_RDONLY;
  415                 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
  416         }
  417         if (uap->flags & MS_RDONLY)
  418                 vfsp->vfs_flag |= VFS_RDONLY;
  419 
  420         /*
  421          * Mount the filesystem, free the device vnode on error.
  422          */
  423         error = mountfs(vfsp, why, lvp != NULL ? lvp : svp,
  424             dpn.pn_path, cr, 0, &args, datalen);
  425 
  426         if (error == 0) {
  427                 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
  428 
  429                 /*
  430                  * If lofi, drop our reference to the original file.
  431                  */
  432                 if (lvp != NULL)
  433                         VN_RELE(svp);
  434         }
  435 
  436 out:
  437         pn_free(&dpn);
  438 
  439         if (error) {
  440                 if (lvp != NULL)
  441                         VN_RELE(lvp);
  442                 if (svp != NULL)
  443                         VN_RELE(svp);
  444         }
  445         return (error);
  446 }
  447 
  448 /*
  449  * Mount root file system.
  450  * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to
  451  * remount the root file system, and ROOT_UNMOUNT if called to
  452  * unmount the root (e.g., as part of a system shutdown).
  453  *
  454  * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP
  455  * operation, goes along with auto-configuration.  A mechanism should be
  456  * provided by which machine-INdependent code in the kernel can say "get me the
  457  * right root file system" and "get me the right initial swap area", and have
  458  * that done in what may well be a machine-dependent fashion.
  459  * Unfortunately, it is also file-system-type dependent (NFS gets it via
  460  * bootparams calls, UFS gets it from various and sundry machine-dependent
  461  * mechanisms, as SPECFS does for swap).
  462  */
  463 static int
  464 ufs_mountroot(struct vfs *vfsp, enum whymountroot why)
  465 {
  466         struct fs *fsp;
  467         int error;
  468         static int ufsrootdone = 0;
  469         dev_t rootdev;
  470         struct vnode *vp;
  471         struct vnode *devvp = 0;
  472         int ovflags;
  473         int doclkset;
  474         ufsvfs_t *ufsvfsp;
  475 
  476         if (why == ROOT_INIT) {
  477                 if (ufsrootdone++)
  478                         return (EBUSY);
  479                 rootdev = getrootdev();
  480                 if (rootdev == (dev_t)NODEV)
  481                         return (ENODEV);
  482                 vfsp->vfs_dev = rootdev;
  483                 vfsp->vfs_flag |= VFS_RDONLY;
  484         } else if (why == ROOT_REMOUNT) {
  485                 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
  486                 (void) dnlc_purge_vfsp(vfsp, 0);
  487                 vp = common_specvp(vp);
  488                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL,
  489                     CRED(), NULL);
  490                 (void) bfinval(vfsp->vfs_dev, 0);
  491                 fsp = getfs(vfsp);
  492 
  493                 ovflags = vfsp->vfs_flag;
  494                 vfsp->vfs_flag &= ~VFS_RDONLY;
  495                 vfsp->vfs_flag |= VFS_REMOUNT;
  496                 rootdev = vfsp->vfs_dev;
  497         } else if (why == ROOT_UNMOUNT) {
  498                 if (vfs_lock(vfsp) == 0) {
  499                         (void) ufs_flush(vfsp);
  500                         /*
  501                          * Mark the log as fully rolled
  502                          */
  503                         ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
  504                         fsp = ufsvfsp->vfs_fs;
  505                         if (TRANS_ISTRANS(ufsvfsp) &&
  506                             !TRANS_ISERROR(ufsvfsp) &&
  507                             (fsp->fs_rolled == FS_NEED_ROLL)) {
  508                                 ml_unit_t *ul = ufsvfsp->vfs_log;
  509 
  510                                 error = ufs_putsummaryinfo(ul->un_dev,
  511                                     ufsvfsp, fsp);
  512                                 if (error == 0) {
  513                                         fsp->fs_rolled = FS_ALL_ROLLED;
  514                                         UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
  515                                 }
  516                         }
  517                         vfs_unlock(vfsp);
  518                 } else {
  519                         ufs_update(0);
  520                 }
  521 
  522                 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
  523                 (void) VOP_CLOSE(vp, FREAD|FWRITE, 1,
  524                     (offset_t)0, CRED(), NULL);
  525                 return (0);
  526         }
  527         error = vfs_lock(vfsp);
  528         if (error)
  529                 return (error);
  530 
  531         devvp = makespecvp(rootdev, VBLK);
  532 
  533         /* If RO media, don't call clkset() (see below) */
  534         doclkset = 1;
  535         if (why == ROOT_INIT) {
  536                 error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED(), NULL);
  537                 if (error == 0) {
  538                         (void) VOP_CLOSE(devvp, FREAD|FWRITE, 1,
  539                             (offset_t)0, CRED(), NULL);
  540                 } else {
  541                         doclkset = 0;
  542                 }
  543         }
  544 
  545         error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0);
  546         /*
  547          * XXX - assumes root device is not indirect, because we don't set
  548          * rootvp.  Is rootvp used for anything?  If so, make another arg
  549          * to mountfs.
  550          */
  551         if (error) {
  552                 vfs_unlock(vfsp);
  553                 if (why == ROOT_REMOUNT)
  554                         vfsp->vfs_flag = ovflags;
  555                 if (rootvp) {
  556                         VN_RELE(rootvp);
  557                         rootvp = (struct vnode *)0;
  558                 }
  559                 VN_RELE(devvp);
  560                 return (error);
  561         }
  562         if (why == ROOT_INIT)
  563                 vfs_add((struct vnode *)0, vfsp,
  564                     (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
  565         vfs_unlock(vfsp);
  566         fsp = getfs(vfsp);
  567         clkset(doclkset ? fsp->fs_time : -1);
  568         ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
  569         if (ufsvfsp->vfs_log) {
  570                 vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
  571         }
  572         return (0);
  573 }
  574 
  575 static int
  576 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len)
  577 {
  578         struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
  579         struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
  580         struct buf *bp = ufsvfsp->vfs_bufp;
  581         struct fs *fsp = (struct fs *)bp->b_un.b_addr;
  582         struct fs *fspt;
  583         struct buf *tpt = 0;
  584         int error = 0;
  585         int flags = 0;
  586 
  587         if (args_len == sizeof (struct ufs_args) && raw_argsp)
  588                 flags = ((struct ufs_args *)raw_argsp)->flags;
  589 
  590         /* cannot remount to RDONLY */
  591         if (vfsp->vfs_flag & VFS_RDONLY)
  592                 return (ENOTSUP);
  593 
  594         /* whoops, wrong dev */
  595         if (vfsp->vfs_dev != dev)
  596                 return (EINVAL);
  597 
  598         /*
  599          * synchronize w/ufs ioctls
  600          */
  601         mutex_enter(&ulp->ul_lock);
  602         atomic_add_long(&ufs_quiesce_pend, 1);
  603 
  604         /*
  605          * reset options
  606          */
  607         ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
  608         ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
  609         ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
  610         ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
  611         if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
  612                 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
  613         else    /* dfratime, default behavior */
  614                 ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
  615         if (flags & UFSMNT_FORCEDIRECTIO)
  616                 ufsvfsp->vfs_forcedirectio = 1;
  617         else    /* default is no direct I/O */
  618                 ufsvfsp->vfs_forcedirectio = 0;
  619         ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
  620 
  621         /*
  622          * set largefiles flag in ufsvfs equal to the
  623          * value passed in by the mount command. If
  624          * it is "nolargefiles", and the flag is set
  625          * in the superblock, the mount fails.
  626          */
  627         if (!(flags & UFSMNT_LARGEFILES)) {  /* "nolargefiles" */
  628                 if (fsp->fs_flags & FSLARGEFILES) {
  629                         error = EFBIG;
  630                         goto remounterr;
  631                 }
  632                 ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES;
  633         } else  /* "largefiles" */
  634                 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
  635         /*
  636          * read/write to read/write; all done
  637          */
  638         if (fsp->fs_ronly == 0)
  639                 goto remounterr;
  640 
  641         /*
  642          * fix-on-panic assumes RO->RW remount implies system-critical fs
  643          * if it is shortly after boot; so, don't attempt to lock and fix
  644          * (unless the user explicitly asked for another action on error)
  645          * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC
  646          */
  647 #define BOOT_TIME_LIMIT (180*hz)
  648         if (!(flags & UFSMNT_ONERROR_FLGMASK) &&
  649             ddi_get_lbolt() < BOOT_TIME_LIMIT) {
  650                 cmn_err(CE_WARN, "%s is required to be mounted onerror=%s",
  651                     ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR);
  652                 flags |= UFSMNT_ONERROR_PANIC;
  653         }
  654 
  655         if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
  656                 goto remounterr;
  657 
  658         /*
  659          * quiesce the file system
  660          */
  661         error = ufs_quiesce(ulp);
  662         if (error)
  663                 goto remounterr;
  664 
  665         tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE);
  666         if (tpt->b_flags & B_ERROR) {
  667                 error = EIO;
  668                 goto remounterr;
  669         }
  670         fspt = (struct fs *)tpt->b_un.b_addr;
  671         if (((fspt->fs_magic != FS_MAGIC) &&
  672             (fspt->fs_magic != MTB_UFS_MAGIC)) ||
  673             (fspt->fs_magic == FS_MAGIC &&
  674             (fspt->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
  675             fspt->fs_version != UFS_VERSION_MIN)) ||
  676             (fspt->fs_magic == MTB_UFS_MAGIC &&
  677             (fspt->fs_version > MTB_UFS_VERSION_1 ||
  678             fspt->fs_version < MTB_UFS_VERSION_MIN)) ||
  679             fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG ||
  680             fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) {
  681                 tpt->b_flags |= B_STALE | B_AGE;
  682                 error = EINVAL;
  683                 goto remounterr;
  684         }
  685 
  686         if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) {
  687                 ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL;
  688                 logmap_start_roll(ufsvfsp->vfs_log);
  689         }
  690 
  691         if (TRANS_ISERROR(ufsvfsp))
  692                 goto remounterr;
  693         TRANS_DOMATAMAP(ufsvfsp);
  694 
  695         if ((fspt->fs_state + fspt->fs_time == FSOKAY) &&
  696             fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) {
  697                 ufsvfsp->vfs_log = NULL;
  698                 ufsvfsp->vfs_domatamap = 0;
  699                 error = ENOSPC;
  700                 goto remounterr;
  701         }
  702 
  703         if (fspt->fs_state + fspt->fs_time == FSOKAY &&
  704             (fspt->fs_clean == FSCLEAN ||
  705             fspt->fs_clean == FSSTABLE ||
  706             fspt->fs_clean == FSLOG)) {
  707 
  708                 /*
  709                  * Ensure that ufs_getsummaryinfo doesn't reconstruct
  710                  * the summary info.
  711                  */
  712                 error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt);
  713                 if (error)
  714                         goto remounterr;
  715 
  716                 /* preserve mount name */
  717                 (void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN);
  718                 /* free the old cg space */
  719                 kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize);
  720                 /* switch in the new superblock */
  721                 fspt->fs_rolled = FS_NEED_ROLL;
  722                 bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize);
  723 
  724                 fsp->fs_clean = FSSTABLE;
  725         } /* superblock updated in memory */
  726         tpt->b_flags |= B_STALE | B_AGE;
  727         brelse(tpt);
  728         tpt = 0;
  729 
  730         if (fsp->fs_clean != FSSTABLE) {
  731                 error = ENOSPC;
  732                 goto remounterr;
  733         }
  734 
  735 
  736         if (TRANS_ISTRANS(ufsvfsp)) {
  737                 fsp->fs_clean = FSLOG;
  738                 ufsvfsp->vfs_dio = 0;
  739         } else
  740                 if (ufsvfsp->vfs_dio)
  741                         fsp->fs_clean = FSSUSPEND;
  742 
  743         TRANS_MATA_MOUNT(ufsvfsp);
  744 
  745         fsp->fs_fmod = 0;
  746         fsp->fs_ronly = 0;
  747 
  748         atomic_add_long(&ufs_quiesce_pend, -1);
  749         cv_broadcast(&ulp->ul_cv);
  750         mutex_exit(&ulp->ul_lock);
  751 
  752         if (TRANS_ISTRANS(ufsvfsp)) {
  753 
  754                 /*
  755                  * start the delete thread
  756                  */
  757                 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
  758 
  759                 /*
  760                  * start the reclaim thread
  761                  */
  762                 if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
  763                         fsp->fs_reclaim &= ~FS_RECLAIM;
  764                         fsp->fs_reclaim |=  FS_RECLAIMING;
  765                         ufs_thread_start(&ufsvfsp->vfs_reclaim,
  766                             ufs_thread_reclaim, vfsp);
  767                 }
  768         }
  769 
  770         TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
  771 
  772         return (0);
  773 
  774 remounterr:
  775         if (tpt)
  776                 brelse(tpt);
  777         atomic_add_long(&ufs_quiesce_pend, -1);
  778         cv_broadcast(&ulp->ul_cv);
  779         mutex_exit(&ulp->ul_lock);
  780         return (error);
  781 }
  782 
  783 /*
  784  * If the device maxtransfer size is not available, we use ufs_maxmaxphys
  785  * along with the system value for maxphys to determine the value for
  786  * maxtransfer.
  787  */
  788 int ufs_maxmaxphys = (1024 * 1024);
  789 
  790 #include <sys/ddi.h>            /* for delay(9f) */
  791 
  792 int ufs_mount_error_delay = 20; /* default to 20ms */
  793 int ufs_mount_timeout = 60000;  /* default to 1 minute */
  794 
  795 static int
  796 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp,
  797         char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len)
  798 {
  799         dev_t dev = devvp->v_rdev;
  800         struct fs *fsp;
  801         struct ufsvfs *ufsvfsp = 0;
  802         struct buf *bp = 0;
  803         struct buf *tp = 0;
  804         struct dk_cinfo ci;
  805         int error = 0;
  806         size_t len;
  807         int needclose = 0;
  808         int needtrans = 0;
  809         struct inode *rip;
  810         struct vnode *rvp = NULL;
  811         int flags = 0;
  812         kmutex_t *ihm;
  813         int elapsed;
  814         int status;
  815         extern  int     maxphys;
  816 
  817         if (args_len == sizeof (struct ufs_args) && raw_argsp)
  818                 flags = ((struct ufs_args *)raw_argsp)->flags;
  819 
  820         ASSERT(vfs_lock_held(vfsp));
  821 
  822         if (why == ROOT_INIT) {
  823                 /*
  824                  * Open block device mounted on.
  825                  * When bio is fixed for vnodes this can all be vnode
  826                  * operations.
  827                  */
  828                 error = VOP_OPEN(&devvp,
  829                     (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE,
  830                     cr, NULL);
  831                 if (error)
  832                         goto out;
  833                 needclose = 1;
  834 
  835                 /*
  836                  * Refuse to go any further if this
  837                  * device is being used for swapping.
  838                  */
  839                 if (IS_SWAPVP(devvp)) {
  840                         error = EBUSY;
  841                         goto out;
  842                 }
  843         }
  844 
  845         /*
  846          * check for dev already mounted on
  847          */
  848         if (vfsp->vfs_flag & VFS_REMOUNT) {
  849                 error = remountfs(vfsp, dev, raw_argsp, args_len);
  850                 if (error == 0)
  851                         VN_RELE(devvp);
  852                 return (error);
  853         }
  854 
  855         ASSERT(devvp != 0);
  856 
  857         /*
  858          * Flush back any dirty pages on the block device to
  859          * try and keep the buffer cache in sync with the page
  860          * cache if someone is trying to use block devices when
  861          * they really should be using the raw device.
  862          */
  863         (void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0,
  864             (size_t)0, B_INVAL, cr, NULL);
  865 
  866         /*
  867          * read in superblock
  868          */
  869         ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP);
  870         tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
  871         if (tp->b_flags & B_ERROR)
  872                 goto out;
  873         fsp = (struct fs *)tp->b_un.b_addr;
  874 
  875         if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) {
  876                 cmn_err(CE_NOTE,
  877                     "mount: not a UFS magic number (0x%x)", fsp->fs_magic);
  878                 error = EINVAL;
  879                 goto out;
  880         }
  881 
  882         if ((fsp->fs_magic == FS_MAGIC) &&
  883             (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
  884             fsp->fs_version != UFS_VERSION_MIN)) {
  885                 cmn_err(CE_NOTE,
  886                     "mount: unrecognized version of UFS on-disk format: %d",
  887                     fsp->fs_version);
  888                 error = EINVAL;
  889                 goto out;
  890         }
  891 
  892         if ((fsp->fs_magic == MTB_UFS_MAGIC) &&
  893             (fsp->fs_version > MTB_UFS_VERSION_1 ||
  894             fsp->fs_version < MTB_UFS_VERSION_MIN)) {
  895                 cmn_err(CE_NOTE,
  896                     "mount: unrecognized version of UFS on-disk format: %d",
  897                     fsp->fs_version);
  898                 error = EINVAL;
  899                 goto out;
  900         }
  901 
  902 #ifndef _LP64
  903         if (fsp->fs_magic == MTB_UFS_MAGIC) {
  904                 /*
  905                  * Find the size of the device in sectors.  If the
  906                  * the size in sectors is greater than INT_MAX, it's
  907                  * a multi-terabyte file system, which can't be
  908                  * mounted by a 32-bit kernel.  We can't use the
  909                  * fsbtodb() macro in the next line because the macro
  910                  * casts the intermediate values to daddr_t, which is
  911                  * a 32-bit quantity in a 32-bit kernel.  Here we
  912                  * really do need the intermediate values to be held
  913                  * in 64-bit quantities because we're checking for
  914                  * overflow of a 32-bit field.
  915                  */
  916                 if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb)
  917                     > INT_MAX) {
  918                         cmn_err(CE_NOTE,
  919                             "mount: multi-terabyte UFS cannot be"
  920                             " mounted by a 32-bit kernel");
  921                         error = EINVAL;
  922                         goto out;
  923                 }
  924 
  925         }
  926 #endif
  927 
  928         if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
  929             fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) {
  930                 error = EINVAL; /* also needs translation */
  931                 goto out;
  932         }
  933 
  934         /*
  935          * Allocate VFS private data.
  936          */
  937         vfsp->vfs_bcount = 0;
  938         vfsp->vfs_data = (caddr_t)ufsvfsp;
  939         vfsp->vfs_fstype = ufsfstype;
  940         vfsp->vfs_dev = dev;
  941         vfsp->vfs_flag |= VFS_NOTRUNC;
  942         vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype);
  943         ufsvfsp->vfs_devvp = devvp;
  944 
  945         /*
  946          * Cross-link with vfs and add to instance list.
  947          */
  948         ufsvfsp->vfs_vfs = vfsp;
  949         ufs_vfs_add(ufsvfsp);
  950 
  951         ufsvfsp->vfs_dev = dev;
  952         ufsvfsp->vfs_bufp = tp;
  953 
  954         ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize;
  955         ufsvfsp->vfs_minfrags =
  956             (int)((int64_t)fsp->fs_dsize * fsp->fs_minfree / 100);
  957         /*
  958          * if mount allows largefiles, indicate so in ufsvfs
  959          */
  960         if (flags & UFSMNT_LARGEFILES)
  961                 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
  962         /*
  963          * Initialize threads
  964          */
  965         ufs_delete_init(ufsvfsp, 1);
  966         ufs_thread_init(&ufsvfsp->vfs_reclaim, 0);
  967 
  968         /*
  969          * Chicken and egg problem. The superblock may have deltas
  970          * in the log.  So after the log is scanned we reread the
  971          * superblock. We guarantee that the fields needed to
  972          * scan the log will not be in the log.
  973          */
  974         if (fsp->fs_logbno && fsp->fs_clean == FSLOG &&
  975             (fsp->fs_state + fsp->fs_time == FSOKAY)) {
  976                 error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY));
  977                 if (error) {
  978                         /*
  979                          * Allow a ro mount to continue even if the
  980                          * log cannot be processed - yet.
  981                          */
  982                         if (!(vfsp->vfs_flag & VFS_RDONLY)) {
  983                                 cmn_err(CE_WARN, "Error accessing ufs "
  984                                     "log for %s; Please run fsck(1M)", path);
  985                                 goto out;
  986                         }
  987                 }
  988                 tp->b_flags |= (B_AGE | B_STALE);
  989                 brelse(tp);
  990                 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
  991                 fsp = (struct fs *)tp->b_un.b_addr;
  992                 ufsvfsp->vfs_bufp = tp;
  993                 if (tp->b_flags & B_ERROR)
  994                         goto out;
  995         }
  996 
  997         /*
  998          * Set logging mounted flag used by lockfs
  999          */
 1000         ufsvfsp->vfs_validfs = UT_MOUNTED;
 1001 
 1002         /*
 1003          * Copy the super block into a buffer in its native size.
 1004          * Use ngeteblk to allocate the buffer
 1005          */
 1006         bp = ngeteblk(fsp->fs_bsize);
 1007         ufsvfsp->vfs_bufp = bp;
 1008         bp->b_edev = dev;
 1009         bp->b_dev = cmpdev(dev);
 1010         bp->b_blkno = SBLOCK;
 1011         bp->b_bcount = fsp->fs_sbsize;
 1012         bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize);
 1013         tp->b_flags |= B_STALE | B_AGE;
 1014         brelse(tp);
 1015         tp = 0;
 1016 
 1017         fsp = (struct fs *)bp->b_un.b_addr;
 1018         /*
 1019          * Mount fails if superblock flag indicates presence of large
 1020          * files and filesystem is attempted to be mounted 'nolargefiles'.
 1021          * The exception is for a read only mount of root, which we
 1022          * always want to succeed, so fsck can fix potential problems.
 1023          * The assumption is that we will remount root at some point,
 1024          * and the remount will enforce the mount option.
 1025          */
 1026         if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) &&
 1027             (fsp->fs_flags & FSLARGEFILES) &&
 1028             !(flags & UFSMNT_LARGEFILES)) {
 1029                 error = EFBIG;
 1030                 goto out;
 1031         }
 1032 
 1033         if (vfsp->vfs_flag & VFS_RDONLY) {
 1034                 fsp->fs_ronly = 1;
 1035                 fsp->fs_fmod = 0;
 1036                 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
 1037                     ((fsp->fs_clean == FSCLEAN) ||
 1038                     (fsp->fs_clean == FSSTABLE) ||
 1039                     (fsp->fs_clean == FSLOG))) {
 1040                         if (isroot) {
 1041                                 if (fsp->fs_clean == FSLOG) {
 1042                                         if (fsp->fs_rolled == FS_ALL_ROLLED) {
 1043                                                 ufs_clean_root = 1;
 1044                                         }
 1045                                 } else {
 1046                                         ufs_clean_root = 1;
 1047                                 }
 1048                         }
 1049                         fsp->fs_clean = FSSTABLE;
 1050                 } else {
 1051                         fsp->fs_clean = FSBAD;
 1052                 }
 1053         } else {
 1054 
 1055                 fsp->fs_fmod = 0;
 1056                 fsp->fs_ronly = 0;
 1057 
 1058                 TRANS_DOMATAMAP(ufsvfsp);
 1059 
 1060                 if ((TRANS_ISERROR(ufsvfsp)) ||
 1061                     (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
 1062                     fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) {
 1063                         ufsvfsp->vfs_log = NULL;
 1064                         ufsvfsp->vfs_domatamap = 0;
 1065                         error = ENOSPC;
 1066                         goto out;
 1067                 }
 1068 
 1069                 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
 1070                     (fsp->fs_clean == FSCLEAN ||
 1071                     fsp->fs_clean == FSSTABLE ||
 1072                     fsp->fs_clean == FSLOG))
 1073                         fsp->fs_clean = FSSTABLE;
 1074                 else {
 1075                         if (isroot) {
 1076                                 /*
 1077                                  * allow root partition to be mounted even
 1078                                  * when fs_state is not ok
 1079                                  * will be fixed later by a remount root
 1080                                  */
 1081                                 fsp->fs_clean = FSBAD;
 1082                                 ufsvfsp->vfs_log = NULL;
 1083                                 ufsvfsp->vfs_domatamap = 0;
 1084                         } else {
 1085                                 error = ENOSPC;
 1086                                 goto out;
 1087                         }
 1088                 }
 1089 
 1090                 if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp))
 1091                         fsp->fs_clean = FSLOG;
 1092         }
 1093         TRANS_MATA_MOUNT(ufsvfsp);
 1094         needtrans = 1;
 1095 
 1096         vfsp->vfs_bsize = fsp->fs_bsize;
 1097 
 1098         /*
 1099          * Read in summary info
 1100          */
 1101         if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp))
 1102                 goto out;
 1103 
 1104         /*
 1105          * lastwhinetime is set to zero rather than lbolt, so that after
 1106          * mounting if the filesystem is found to be full, then immediately the
 1107          * "file system message" will be logged.
 1108          */
 1109         ufsvfsp->vfs_lastwhinetime = 0L;
 1110 
 1111 
 1112         mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL);
 1113         (void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len);
 1114         bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len);
 1115 
 1116         /*
 1117          * Sanity checks for old file systems
 1118          */
 1119         if (fsp->fs_postblformat == FS_42POSTBLFMT)
 1120                 ufsvfsp->vfs_nrpos = 8;
 1121         else
 1122                 ufsvfsp->vfs_nrpos = fsp->fs_nrpos;
 1123 
 1124         /*
 1125          * Initialize lockfs structure to support file system locking
 1126          */
 1127         bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs,
 1128             sizeof (struct lockfs));
 1129         ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK;
 1130         mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL,
 1131             MUTEX_DEFAULT, NULL);
 1132         cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL);
 1133 
 1134         /*
 1135          * We don't need to grab vfs_dqrwlock for this ufs_iget() call.
 1136          * We are in the process of mounting the file system so there
 1137          * is no need to grab the quota lock. If a quota applies to the
 1138          * root inode, then it will be updated when quotas are enabled.
 1139          *
 1140          * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock))
 1141          * in getinoquota() that we want to keep so grab it anyway.
 1142          */
 1143         rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
 1144 
 1145         error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr);
 1146 
 1147         rw_exit(&ufsvfsp->vfs_dqrwlock);
 1148 
 1149         if (error)
 1150                 goto out;
 1151 
 1152         /*
 1153          * make sure root inode is a directory.  Returning ENOTDIR might
 1154          * be confused with the mount point not being a directory, so
 1155          * we use EIO instead.
 1156          */
 1157         if ((rip->i_mode & IFMT) != IFDIR) {
 1158                 /*
 1159                  * Mark this inode as subject for cleanup
 1160                  * to avoid stray inodes in the cache.
 1161                  */
 1162                 rvp = ITOV(rip);
 1163                 error = EIO;
 1164                 goto out;
 1165         }
 1166 
 1167         rvp = ITOV(rip);
 1168         mutex_enter(&rvp->v_lock);
 1169         rvp->v_flag |= VROOT;
 1170         mutex_exit(&rvp->v_lock);
 1171         ufsvfsp->vfs_root = rvp;
 1172         /* The buffer for the root inode does not contain a valid b_vp */
 1173         (void) bfinval(dev, 0);
 1174 
 1175         /* options */
 1176         ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
 1177         ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
 1178         ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
 1179         ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
 1180         if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
 1181                 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
 1182         else    /* dfratime, default behavior */
 1183                 ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
 1184         if (flags & UFSMNT_FORCEDIRECTIO)
 1185                 ufsvfsp->vfs_forcedirectio = 1;
 1186         else if (flags & UFSMNT_NOFORCEDIRECTIO)
 1187                 ufsvfsp->vfs_forcedirectio = 0;
 1188         ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
 1189 
 1190         ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1;
 1191         ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset);
 1192         ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig;
 1193 
 1194         if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci,
 1195             FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) {
 1196                 ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE;
 1197         } else {
 1198                 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
 1199         }
 1200 
 1201         if (ufsvfsp->vfs_iotransz <= 0) {
 1202                 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
 1203         }
 1204 
 1205         /*
 1206          * When logging, used to reserve log space for writes and truncs
 1207          */
 1208         ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg;
 1209 
 1210         /*
 1211          * Determine whether to log cylinder group summary info.
 1212          */
 1213         ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log);
 1214 
 1215         if (TRANS_ISTRANS(ufsvfsp)) {
 1216                 /*
 1217                  * start the delete thread
 1218                  */
 1219                 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
 1220 
 1221                 /*
 1222                  * start reclaim thread if the filesystem was not mounted
 1223                  * read only.
 1224                  */
 1225                 if (!fsp->fs_ronly && (fsp->fs_reclaim &
 1226                     (FS_RECLAIM|FS_RECLAIMING))) {
 1227                         fsp->fs_reclaim &= ~FS_RECLAIM;
 1228                         fsp->fs_reclaim |=  FS_RECLAIMING;
 1229                         ufs_thread_start(&ufsvfsp->vfs_reclaim,
 1230                             ufs_thread_reclaim, vfsp);
 1231                 }
 1232 
 1233                 /* Mark the fs as unrolled */
 1234                 fsp->fs_rolled = FS_NEED_ROLL;
 1235         } else if (!fsp->fs_ronly && (fsp->fs_reclaim &
 1236             (FS_RECLAIM|FS_RECLAIMING))) {
 1237                 /*
 1238                  * If a file system that is mounted nologging, after
 1239                  * having previously been mounted logging, becomes
 1240                  * unmounted whilst the reclaim thread is in the throes
 1241                  * of reclaiming open/deleted inodes, a subsequent mount
 1242                  * of such a file system with logging disabled could lead
 1243                  * to inodes becoming lost.  So, start reclaim now, even
 1244                  * though logging was disabled for the previous mount, to
 1245                  * tidy things up.
 1246                  */
 1247                 fsp->fs_reclaim &= ~FS_RECLAIM;
 1248                 fsp->fs_reclaim |=  FS_RECLAIMING;
 1249                 ufs_thread_start(&ufsvfsp->vfs_reclaim,
 1250                     ufs_thread_reclaim, vfsp);
 1251         }
 1252 
 1253         if (!fsp->fs_ronly) {
 1254                 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
 1255                 if (error = geterror(ufsvfsp->vfs_bufp))
 1256                         goto out;
 1257         }
 1258 
 1259         /* fix-on-panic initialization */
 1260         if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK))
 1261                 flags |= UFSMNT_ONERROR_PANIC;  /* XXX ..._RDONLY */
 1262 
 1263         if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
 1264                 goto out;
 1265 
 1266         if (why == ROOT_INIT && isroot)
 1267                 rootvp = devvp;
 1268 
 1269         return (0);
 1270 out:
 1271         if (error == 0)
 1272                 error = EIO;
 1273         if (rvp) {
 1274                 /* the following sequence is similar to ufs_unmount() */
 1275 
 1276                 /*
 1277                  * There's a problem that ufs_iget() puts inodes into
 1278                  * the inode cache before it returns them.  If someone
 1279                  * traverses that cache and gets a reference to our
 1280                  * inode, there's a chance they'll still be using it
 1281                  * after we've destroyed it.  This is a hard race to
 1282                  * hit, but it's happened (putting in a medium delay
 1283                  * here, and a large delay in ufs_scan_inodes() for
 1284                  * inodes on the device we're bailing out on, makes
 1285                  * the race easy to demonstrate).  The symptom is some
 1286                  * other part of UFS faulting on bad inode contents,
 1287                  * or when grabbing one of the locks inside the inode,
 1288                  * etc.  The usual victim is ufs_scan_inodes() or
 1289                  * someone called by it.
 1290                  */
 1291 
 1292                 /*
 1293                  * First, isolate it so that no new references can be
 1294                  * gotten via the inode cache.
 1295                  */
 1296                 ihm = &ih_lock[INOHASH(UFSROOTINO)];
 1297                 mutex_enter(ihm);
 1298                 remque(rip);
 1299                 mutex_exit(ihm);
 1300 
 1301                 /*
 1302                  * Now wait for all outstanding references except our
 1303                  * own to drain.  This could, in theory, take forever,
 1304                  * so don't wait *too* long.  If we time out, mark
 1305                  * it stale and leak it, so we don't hit the problem
 1306                  * described above.
 1307                  *
 1308                  * Note that v_count is an int, which means we can read
 1309                  * it in one operation.  Thus, there's no need to lock
 1310                  * around our tests.
 1311                  */
 1312                 elapsed = 0;
 1313                 while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) {
 1314                         delay(ufs_mount_error_delay * drv_usectohz(1000));
 1315                         elapsed += ufs_mount_error_delay;
 1316                 }
 1317 
 1318                 if (rvp->v_count > 1) {
 1319                         mutex_enter(&rip->i_tlock);
 1320                         rip->i_flag |= ISTALE;
 1321                         mutex_exit(&rip->i_tlock);
 1322                         cmn_err(CE_WARN,
 1323                             "Timed out while cleaning up after "
 1324                             "failed mount of %s", path);
 1325                 } else {
 1326 
 1327                         /*
 1328                          * Now we're the only one with a handle left, so tear
 1329                          * it down the rest of the way.
 1330                          */
 1331                         if (ufs_rmidle(rip))
 1332                                 VN_RELE(rvp);
 1333                         ufs_si_del(rip);
 1334                         rip->i_ufsvfs = NULL;
 1335                         rvp->v_vfsp = NULL;
 1336                         rvp->v_type = VBAD;
 1337                         VN_RELE(rvp);
 1338                 }
 1339         }
 1340         if (needtrans) {
 1341                 TRANS_MATA_UMOUNT(ufsvfsp);
 1342         }
 1343         if (ufsvfsp) {
 1344                 ufs_vfs_remove(ufsvfsp);
 1345                 ufs_thread_exit(&ufsvfsp->vfs_delete);
 1346                 ufs_thread_exit(&ufsvfsp->vfs_reclaim);
 1347                 mutex_destroy(&ufsvfsp->vfs_lock);
 1348                 if (ufsvfsp->vfs_log) {
 1349                         lufs_unsnarf(ufsvfsp);
 1350                 }
 1351                 kmem_free(ufsvfsp, sizeof (struct ufsvfs));
 1352         }
 1353         if (bp) {
 1354                 bp->b_flags |= (B_STALE|B_AGE);
 1355                 brelse(bp);
 1356         }
 1357         if (tp) {
 1358                 tp->b_flags |= (B_STALE|B_AGE);
 1359                 brelse(tp);
 1360         }
 1361         if (needclose) {
 1362                 (void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ?
 1363                     FREAD : FREAD|FWRITE, 1, (offset_t)0, cr, NULL);
 1364                 bflush(dev);
 1365                 (void) bfinval(dev, 1);
 1366         }
 1367         return (error);
 1368 }
 1369 
 1370 /*
 1371  * vfs operations
 1372  */
 1373 static int
 1374 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr)
 1375 {
 1376         dev_t           dev             = vfsp->vfs_dev;
 1377         struct ufsvfs   *ufsvfsp        = (struct ufsvfs *)vfsp->vfs_data;
 1378         struct fs       *fs             = ufsvfsp->vfs_fs;
 1379         struct ulockfs  *ulp            = &ufsvfsp->vfs_ulockfs;
 1380         struct vnode    *bvp, *vp;
 1381         struct buf      *bp;
 1382         struct inode    *ip, *inext, *rip;
 1383         union ihead     *ih;
 1384         int             error, flag, i;
 1385         struct lockfs   lockfs;
 1386         int             poll_events = POLLPRI;
 1387         extern struct pollhead ufs_pollhd;
 1388         refstr_t        *mountpoint;
 1389 
 1390         ASSERT(vfs_lock_held(vfsp));
 1391 
 1392         if (secpolicy_fs_unmount(cr, vfsp) != 0)
 1393                 return (EPERM);
 1394         /*
 1395          * Forced unmount is now supported through the
 1396          * lockfs protocol.
 1397          */
 1398         if (fflag & MS_FORCE) {
 1399                 /*
 1400                  * Mark the filesystem as being unmounted now in
 1401                  * case of a forcible umount before we take any
 1402                  * locks inside UFS to prevent racing with a VFS_VGET()
 1403                  * request. Throw these VFS_VGET() requests away for
 1404                  * the duration of the forcible umount so they won't
 1405                  * use stale or even freed data later on when we're done.
 1406                  * It may happen that the VFS has had a additional hold
 1407                  * placed on it by someone other than UFS and thus will
 1408                  * not get freed immediately once we're done with the
 1409                  * umount by dounmount() - use VFS_UNMOUNTED to inform
 1410                  * users of this still-alive VFS that its corresponding
 1411                  * filesystem being gone so they can detect that and error
 1412                  * out.
 1413                  */
 1414                 vfsp->vfs_flag |= VFS_UNMOUNTED;
 1415 
 1416                 ufs_thread_suspend(&ufsvfsp->vfs_delete);
 1417                 mutex_enter(&ulp->ul_lock);
 1418                 /*
 1419                  * If file system is already hard locked,
 1420                  * unmount the file system, otherwise
 1421                  * hard lock it before unmounting.
 1422                  */
 1423                 if (!ULOCKFS_IS_HLOCK(ulp)) {
 1424                         atomic_add_long(&ufs_quiesce_pend, 1);
 1425                         lockfs.lf_lock = LOCKFS_HLOCK;
 1426                         lockfs.lf_flags = 0;
 1427                         lockfs.lf_key = ulp->ul_lockfs.lf_key + 1;
 1428                         lockfs.lf_comlen = 0;
 1429                         lockfs.lf_comment = NULL;
 1430                         ufs_freeze(ulp, &lockfs);
 1431                         ULOCKFS_SET_BUSY(ulp);
 1432                         LOCKFS_SET_BUSY(&ulp->ul_lockfs);
 1433                         (void) ufs_quiesce(ulp);
 1434                         (void) ufs_flush(vfsp);
 1435                         (void) ufs_thaw(vfsp, ufsvfsp, ulp);
 1436                         atomic_add_long(&ufs_quiesce_pend, -1);
 1437                         ULOCKFS_CLR_BUSY(ulp);
 1438                         LOCKFS_CLR_BUSY(&ulp->ul_lockfs);
 1439                         poll_events |= POLLERR;
 1440                         pollwakeup(&ufs_pollhd, poll_events);
 1441                 }
 1442                 ufs_thread_continue(&ufsvfsp->vfs_delete);
 1443                 mutex_exit(&ulp->ul_lock);
 1444         }
 1445 
 1446         /* let all types of writes go through */
 1447         ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
 1448 
 1449         /* coordinate with global hlock thread */
 1450         if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) {
 1451                 /*
 1452                  * last possibility for a forced umount to fail hence clear
 1453                  * VFS_UNMOUNTED if appropriate.
 1454                  */
 1455                 if (fflag & MS_FORCE)
 1456                         vfsp->vfs_flag &= ~VFS_UNMOUNTED;
 1457                 return (EAGAIN);
 1458         }
 1459 
 1460         ufsvfsp->vfs_validfs = UT_UNMOUNTED;
 1461 
 1462         /* kill the reclaim thread */
 1463         ufs_thread_exit(&ufsvfsp->vfs_reclaim);
 1464 
 1465         /* suspend the delete thread */
 1466         ufs_thread_suspend(&ufsvfsp->vfs_delete);
 1467 
 1468         /*
 1469          * drain the delete and idle queues
 1470          */
 1471         ufs_delete_drain(vfsp, -1, 1);
 1472         ufs_idle_drain(vfsp);
 1473 
 1474         /*
 1475          * use the lockfs protocol to prevent new ops from starting
 1476          * a forcible umount can not fail beyond this point as
 1477          * we hard-locked the filesystem and drained all current consumers
 1478          * before.
 1479          */
 1480         mutex_enter(&ulp->ul_lock);
 1481 
 1482         /*
 1483          * if the file system is busy; return EBUSY
 1484          */
 1485         if (ulp->ul_vnops_cnt || ulp->ul_falloc_cnt || ULOCKFS_IS_SLOCK(ulp)) {
 1486                 error = EBUSY;
 1487                 goto out;
 1488         }
 1489 
 1490         /*
 1491          * if this is not a forced unmount (!hard/error locked), then
 1492          * get rid of every inode except the root and quota inodes
 1493          * also, commit any outstanding transactions
 1494          */
 1495         if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp))
 1496                 if (error = ufs_flush(vfsp))
 1497                         goto out;
 1498 
 1499         /*
 1500          * ignore inodes in the cache if fs is hard locked or error locked
 1501          */
 1502         rip = VTOI(ufsvfsp->vfs_root);
 1503         if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) {
 1504                 /*
 1505                  * Otherwise, only the quota and root inodes are in the cache.
 1506                  *
 1507                  * Avoid racing with ufs_update() and ufs_sync().
 1508                  */
 1509                 mutex_enter(&ufs_scan_lock);
 1510 
 1511                 for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
 1512                         mutex_enter(&ih_lock[i]);
 1513                         for (ip = ih->ih_chain[0];
 1514                             ip != (struct inode *)ih;
 1515                             ip = ip->i_forw) {
 1516                                 if (ip->i_ufsvfs != ufsvfsp)
 1517                                         continue;
 1518                                 if (ip == ufsvfsp->vfs_qinod)
 1519                                         continue;
 1520                                 if (ip == rip && ITOV(ip)->v_count == 1)
 1521                                         continue;
 1522                                 mutex_exit(&ih_lock[i]);
 1523                                 mutex_exit(&ufs_scan_lock);
 1524                                 error = EBUSY;
 1525                                 goto out;
 1526                         }
 1527                         mutex_exit(&ih_lock[i]);
 1528                 }
 1529                 mutex_exit(&ufs_scan_lock);
 1530         }
 1531 
 1532         /*
 1533          * if a snapshot exists and this is a forced unmount, then delete
 1534          * the snapshot.  Otherwise return EBUSY.  This will insure the
 1535          * snapshot always belongs to a valid file system.
 1536          */
 1537         if (ufsvfsp->vfs_snapshot) {
 1538                 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
 1539                         (void) fssnap_delete(&ufsvfsp->vfs_snapshot);
 1540                 } else {
 1541                         error = EBUSY;
 1542                         goto out;
 1543                 }
 1544         }
 1545 
 1546         /*
 1547          * Close the quota file and invalidate anything left in the quota
 1548          * cache for this file system.  Pass kcred to allow all quota
 1549          * manipulations.
 1550          */
 1551         (void) closedq(ufsvfsp, kcred);
 1552         invalidatedq(ufsvfsp);
 1553         /*
 1554          * drain the delete and idle queues
 1555          */
 1556         ufs_delete_drain(vfsp, -1, 0);
 1557         ufs_idle_drain(vfsp);
 1558 
 1559         /*
 1560          * discard the inodes for this fs (including root, shadow, and quota)
 1561          */
 1562         for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
 1563                 mutex_enter(&ih_lock[i]);
 1564                 for (inext = 0, ip = ih->ih_chain[0];
 1565                     ip != (struct inode *)ih;
 1566                     ip = inext) {
 1567                         inext = ip->i_forw;
 1568                         if (ip->i_ufsvfs != ufsvfsp)
 1569                                 continue;
 1570 
 1571                         /*
 1572                          * We've found the inode in the cache and as we
 1573                          * hold the hash mutex the inode can not
 1574                          * disappear from underneath us.
 1575                          * We also know it must have at least a vnode
 1576                          * reference count of 1.
 1577                          * We perform an additional VN_HOLD so the VN_RELE
 1578                          * in case we take the inode off the idle queue
 1579                          * can not be the last one.
 1580                          * It is safe to grab the writer contents lock here
 1581                          * to prevent a race with ufs_iinactive() putting
 1582                          * inodes into the idle queue while we operate on
 1583                          * this inode.
 1584                          */
 1585                         rw_enter(&ip->i_contents, RW_WRITER);
 1586 
 1587                         vp = ITOV(ip);
 1588                         VN_HOLD(vp)
 1589                         remque(ip);
 1590                         if (ufs_rmidle(ip))
 1591                                 VN_RELE(vp);
 1592                         ufs_si_del(ip);
 1593                         /*
 1594                          * rip->i_ufsvfsp is needed by bflush()
 1595                          */
 1596                         if (ip != rip)
 1597                                 ip->i_ufsvfs = NULL;
 1598                         /*
 1599                          * Set vnode's vfsops to dummy ops, which return
 1600                          * EIO. This is needed to forced unmounts to work
 1601                          * with lofs/nfs properly.
 1602                          */
 1603                         if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp))
 1604                                 vp->v_vfsp = &EIO_vfs;
 1605                         else
 1606                                 vp->v_vfsp = NULL;
 1607                         vp->v_type = VBAD;
 1608 
 1609                         rw_exit(&ip->i_contents);
 1610 
 1611                         VN_RELE(vp);
 1612                 }
 1613                 mutex_exit(&ih_lock[i]);
 1614         }
 1615         ufs_si_cache_flush(dev);
 1616 
 1617         /*
 1618          * kill the delete thread and drain the idle queue
 1619          */
 1620         ufs_thread_exit(&ufsvfsp->vfs_delete);
 1621         ufs_idle_drain(vfsp);
 1622 
 1623         bp = ufsvfsp->vfs_bufp;
 1624         bvp = ufsvfsp->vfs_devvp;
 1625         flag = !fs->fs_ronly;
 1626         if (flag) {
 1627                 bflush(dev);
 1628                 if (fs->fs_clean != FSBAD) {
 1629                         if (fs->fs_clean == FSSTABLE)
 1630                                 fs->fs_clean = FSCLEAN;
 1631                         fs->fs_reclaim &= ~FS_RECLAIM;
 1632                 }
 1633                 if (TRANS_ISTRANS(ufsvfsp) &&
 1634                     !TRANS_ISERROR(ufsvfsp) &&
 1635                     !ULOCKFS_IS_HLOCK(ulp) &&
 1636                     (fs->fs_rolled == FS_NEED_ROLL)) {
 1637                         /*
 1638                          * ufs_flush() above has flushed the last Moby.
 1639                          * This is needed to ensure the following superblock
 1640                          * update really is the last metadata update
 1641                          */
 1642                         error = ufs_putsummaryinfo(dev, ufsvfsp, fs);
 1643                         if (error == 0) {
 1644                                 fs->fs_rolled = FS_ALL_ROLLED;
 1645                         }
 1646                 }
 1647                 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT);
 1648                 /*
 1649                  * push this last transaction
 1650                  */
 1651                 curthread->t_flag |= T_DONTBLOCK;
 1652                 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE,
 1653                     error);
 1654                 if (!error)
 1655                         TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT,
 1656                             TOP_COMMIT_SIZE);
 1657                 curthread->t_flag &= ~T_DONTBLOCK;
 1658         }
 1659 
 1660         TRANS_MATA_UMOUNT(ufsvfsp);
 1661         lufs_unsnarf(ufsvfsp);          /* Release the in-memory structs */
 1662         ufsfx_unmount(ufsvfsp);         /* fix-on-panic bookkeeping */
 1663         kmem_free(fs->fs_u.fs_csp, fs->fs_cssize);
 1664 
 1665         bp->b_flags |= B_STALE|B_AGE;
 1666         ufsvfsp->vfs_bufp = NULL;       /* don't point at freed buf */
 1667         brelse(bp);                     /* free the superblock buf */
 1668 
 1669         (void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0,
 1670             B_INVAL, cr, NULL);
 1671         (void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr, NULL);
 1672         bflush(dev);
 1673         (void) bfinval(dev, 1);
 1674         VN_RELE(bvp);
 1675 
 1676         /*
 1677          * It is now safe to NULL out the ufsvfs pointer and discard
 1678          * the root inode.
 1679          */
 1680         rip->i_ufsvfs = NULL;
 1681         VN_RELE(ITOV(rip));
 1682 
 1683         /* free up lockfs comment structure, if any */
 1684         if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment)
 1685                 kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen);
 1686 
 1687         /*
 1688          * Remove from instance list.
 1689          */
 1690         ufs_vfs_remove(ufsvfsp);
 1691 
 1692         /*
 1693          * For a forcible unmount, threads may be asleep in
 1694          * ufs_lockfs_begin/ufs_check_lockfs.  These threads will need
 1695          * the ufsvfs structure so we don't free it, yet.  ufs_update
 1696          * will free it up after awhile.
 1697          */
 1698         if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
 1699                 extern kmutex_t         ufsvfs_mutex;
 1700                 extern struct ufsvfs    *ufsvfslist;
 1701 
 1702                 mutex_enter(&ufsvfs_mutex);
 1703                 ufsvfsp->vfs_dontblock = 1;
 1704                 ufsvfsp->vfs_next = ufsvfslist;
 1705                 ufsvfslist = ufsvfsp;
 1706                 mutex_exit(&ufsvfs_mutex);
 1707                 /* wakeup any suspended threads */
 1708                 cv_broadcast(&ulp->ul_cv);
 1709                 mutex_exit(&ulp->ul_lock);
 1710         } else {
 1711                 mutex_destroy(&ufsvfsp->vfs_lock);
 1712                 kmem_free(ufsvfsp, sizeof (struct ufsvfs));
 1713         }
 1714 
 1715         /*
 1716          * Now mark the filesystem as unmounted since we're done with it.
 1717          */
 1718         vfsp->vfs_flag |= VFS_UNMOUNTED;
 1719 
 1720         return (0);
 1721 out:
 1722         /* open the fs to new ops */
 1723         cv_broadcast(&ulp->ul_cv);
 1724         mutex_exit(&ulp->ul_lock);
 1725 
 1726         if (TRANS_ISTRANS(ufsvfsp)) {
 1727                 /* allow the delete thread to continue */
 1728                 ufs_thread_continue(&ufsvfsp->vfs_delete);
 1729                 /* restart the reclaim thread */
 1730                 ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim,
 1731                     vfsp);
 1732                 /* coordinate with global hlock thread */
 1733                 ufsvfsp->vfs_validfs = UT_MOUNTED;
 1734                 /* check for trans errors during umount */
 1735                 ufs_trans_onerror();
 1736 
 1737                 /*
 1738                  * if we have a separate /usr it will never unmount
 1739                  * when halting. In order to not re-read all the
 1740                  * cylinder group summary info on mounting after
 1741                  * reboot the logging of summary info is re-enabled
 1742                  * and the super block written out.
 1743                  */
 1744                 mountpoint = vfs_getmntpoint(vfsp);
 1745                 if ((fs->fs_si == FS_SI_OK) &&
 1746                     (strcmp("/usr", refstr_value(mountpoint)) == 0)) {
 1747                         ufsvfsp->vfs_nolog_si = 0;
 1748                         UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
 1749                 }
 1750                 refstr_rele(mountpoint);
 1751         }
 1752 
 1753         return (error);
 1754 }
 1755 
 1756 static int
 1757 ufs_root(struct vfs *vfsp, struct vnode **vpp)
 1758 {
 1759         struct ufsvfs *ufsvfsp;
 1760         struct vnode *vp;
 1761 
 1762         if (!vfsp)
 1763                 return (EIO);
 1764 
 1765         ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
 1766         if (!ufsvfsp || !ufsvfsp->vfs_root)
 1767                 return (EIO);   /* forced unmount */
 1768 
 1769         vp = ufsvfsp->vfs_root;
 1770         VN_HOLD(vp);
 1771         *vpp = vp;
 1772         return (0);
 1773 }
 1774 
 1775 /*
 1776  * Get file system statistics.
 1777  */
 1778 static int
 1779 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp)
 1780 {
 1781         struct fs *fsp;
 1782         struct ufsvfs *ufsvfsp;
 1783         int blk, i;
 1784         long max_avail, used;
 1785         dev32_t d32;
 1786 
 1787         if (vfsp->vfs_flag & VFS_UNMOUNTED)
 1788                 return (EIO);
 1789 
 1790         ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
 1791         fsp = ufsvfsp->vfs_fs;
 1792         if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC))
 1793                 return (EINVAL);
 1794         if (fsp->fs_magic == FS_MAGIC &&
 1795             (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
 1796             fsp->fs_version != UFS_VERSION_MIN))
 1797                 return (EINVAL);
 1798         if (fsp->fs_magic == MTB_UFS_MAGIC &&
 1799             (fsp->fs_version > MTB_UFS_VERSION_1 ||
 1800             fsp->fs_version < MTB_UFS_VERSION_MIN))
 1801                 return (EINVAL);
 1802 
 1803         /*
 1804          * get the basic numbers
 1805          */
 1806         (void) bzero(sp, sizeof (*sp));
 1807 
 1808         sp->f_bsize = fsp->fs_bsize;
 1809         sp->f_frsize = fsp->fs_fsize;
 1810         sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize;
 1811         sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag +
 1812             fsp->fs_cstotal.cs_nffree;
 1813 
 1814         sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg;
 1815         sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree;
 1816 
 1817         /*
 1818          * Adjust the numbers based on things waiting to be deleted.
 1819          * modifies f_bfree and f_ffree.  Afterwards, everything we
 1820          * come up with will be self-consistent.  By definition, this
 1821          * is a point-in-time snapshot, so the fact that the delete
 1822          * thread's probably already invalidated the results is not a
 1823          * problem.  Note that if the delete thread is ever extended to
 1824          * non-logging ufs, this adjustment must always be made.
 1825          */
 1826         if (TRANS_ISTRANS(ufsvfsp))
 1827                 ufs_delete_adjust_stats(ufsvfsp, sp);
 1828 
 1829         /*
 1830          * avail = MAX(max_avail - used, 0)
 1831          */
 1832         max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags;
 1833 
 1834         used = (fsp->fs_dsize - sp->f_bfree);
 1835 
 1836         if (max_avail > used)
 1837                 sp->f_bavail = (fsblkcnt64_t)max_avail - used;
 1838         else
 1839                 sp->f_bavail = (fsblkcnt64_t)0;
 1840 
 1841         sp->f_favail = sp->f_ffree;
 1842         (void) cmpldev(&d32, vfsp->vfs_dev);
 1843         sp->f_fsid = d32;
 1844         (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
 1845         sp->f_flag = vf_to_stf(vfsp->vfs_flag);
 1846 
 1847         /* keep coordinated with ufs_l_pathconf() */
 1848         sp->f_namemax = MAXNAMLEN;
 1849 
 1850         if (fsp->fs_cpc == 0) {
 1851                 bzero(sp->f_fstr, 14);
 1852                 return (0);
 1853         }
 1854         blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp);
 1855         for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */
 1856                 /* void */;
 1857         i -= fsp->fs_frag;
 1858         blk = i / fsp->fs_frag;
 1859         bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14);
 1860         return (0);
 1861 }
 1862 
 1863 /*
 1864  * Flush any pending I/O to file system vfsp.
 1865  * The ufs_update() routine will only flush *all* ufs files.
 1866  * If vfsp is non-NULL, only sync this ufs (in preparation
 1867  * for a umount).
 1868  */
 1869 /*ARGSUSED*/
 1870 static int
 1871 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr)
 1872 {
 1873         struct ufsvfs *ufsvfsp;
 1874         struct fs *fs;
 1875         int cheap = flag & SYNC_ATTR;
 1876         int error;
 1877 
 1878         /*
 1879          * SYNC_CLOSE means we're rebooting.  Toss everything
 1880          * on the idle queue so we don't have to slog through
 1881          * a bunch of uninteresting inodes over and over again.
 1882          */
 1883         if (flag & SYNC_CLOSE)
 1884                 ufs_idle_drain(NULL);
 1885 
 1886         if (vfsp == NULL) {
 1887                 ufs_update(flag);
 1888                 return (0);
 1889         }
 1890 
 1891         /* Flush a single ufs */
 1892         if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0)
 1893                 return (0);
 1894 
 1895         ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
 1896         if (!ufsvfsp)
 1897                 return (EIO);
 1898         fs = ufsvfsp->vfs_fs;
 1899         mutex_enter(&ufsvfsp->vfs_lock);
 1900 
 1901         if (ufsvfsp->vfs_dio &&
 1902             fs->fs_ronly == 0 &&
 1903             fs->fs_clean != FSBAD &&
 1904             fs->fs_clean != FSLOG) {
 1905                 /* turn off fast-io on unmount, so no fsck needed (4029401) */
 1906                 ufsvfsp->vfs_dio = 0;
 1907                 fs->fs_clean = FSACTIVE;
 1908                 fs->fs_fmod = 1;
 1909         }
 1910 
 1911         /* Write back modified superblock */
 1912         if (fs->fs_fmod == 0) {
 1913                 mutex_exit(&ufsvfsp->vfs_lock);
 1914         } else {
 1915                 if (fs->fs_ronly != 0) {
 1916                         mutex_exit(&ufsvfsp->vfs_lock);
 1917                         vfs_unlock(vfsp);
 1918                         return (ufs_fault(ufsvfsp->vfs_root,
 1919                             "fs = %s update: ro fs mod\n", fs->fs_fsmnt));
 1920                 }
 1921                 fs->fs_fmod = 0;
 1922                 mutex_exit(&ufsvfsp->vfs_lock);
 1923 
 1924                 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE);
 1925         }
 1926         vfs_unlock(vfsp);
 1927 
 1928         /*
 1929          * Avoid racing with ufs_update() and ufs_unmount().
 1930          *
 1931          */
 1932         mutex_enter(&ufs_scan_lock);
 1933 
 1934         (void) ufs_scan_inodes(1, ufs_sync_inode,
 1935             (void *)(uintptr_t)cheap, ufsvfsp);
 1936 
 1937         mutex_exit(&ufs_scan_lock);
 1938 
 1939         bflush((dev_t)vfsp->vfs_dev);
 1940 
 1941         /*
 1942          * commit any outstanding async transactions
 1943          */
 1944         curthread->t_flag |= T_DONTBLOCK;
 1945         TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
 1946         if (!error) {
 1947                 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
 1948                     TOP_COMMIT_SIZE);
 1949         }
 1950         curthread->t_flag &= ~T_DONTBLOCK;
 1951 
 1952         return (0);
 1953 }
 1954 
 1955 
 1956 void
 1957 sbupdate(struct vfs *vfsp)
 1958 {
 1959         struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
 1960         struct fs *fs = ufsvfsp->vfs_fs;
 1961         struct buf *bp;
 1962         int blks;
 1963         caddr_t space;
 1964         int i;
 1965         size_t size;
 1966 
 1967         /*
 1968          * for ulockfs processing, limit the superblock writes
 1969          */
 1970         if ((ufsvfsp->vfs_ulockfs.ul_sbowner) &&
 1971             (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) {
 1972                 /* process later */
 1973                 fs->fs_fmod = 1;
 1974                 return;
 1975         }
 1976         ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs));
 1977 
 1978         if (TRANS_ISTRANS(ufsvfsp)) {
 1979                 mutex_enter(&ufsvfsp->vfs_lock);
 1980                 ufs_sbwrite(ufsvfsp);
 1981                 mutex_exit(&ufsvfsp->vfs_lock);
 1982                 return;
 1983         }
 1984 
 1985         blks = howmany(fs->fs_cssize, fs->fs_fsize);
 1986         space = (caddr_t)fs->fs_u.fs_csp;
 1987         for (i = 0; i < blks; i += fs->fs_frag) {
 1988                 size = fs->fs_bsize;
 1989                 if (i + fs->fs_frag > blks)
 1990                         size = (blks - i) * fs->fs_fsize;
 1991                 bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev,
 1992                     (daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)),
 1993                     fs->fs_bsize);
 1994                 bcopy(space, bp->b_un.b_addr, size);
 1995                 space += size;
 1996                 bp->b_bcount = size;
 1997                 UFS_BRWRITE(ufsvfsp, bp);
 1998         }
 1999         mutex_enter(&ufsvfsp->vfs_lock);
 2000         ufs_sbwrite(ufsvfsp);
 2001         mutex_exit(&ufsvfsp->vfs_lock);
 2002 }
 2003 
 2004 int ufs_vget_idle_count = 2;    /* Number of inodes to idle each time */
 2005 static int
 2006 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
 2007 {
 2008         int error = 0;
 2009         struct ufid *ufid;
 2010         struct inode *ip;
 2011         struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
 2012         struct ulockfs *ulp;
 2013 
 2014         /*
 2015          * Check for unmounted filesystem.
 2016          */
 2017         if (vfsp->vfs_flag & VFS_UNMOUNTED) {
 2018                 error = EIO;
 2019                 goto errout;
 2020         }
 2021 
 2022         /*
 2023          * Keep the idle queue from getting too long by
 2024          * idling an inode before attempting to allocate another.
 2025          *    This operation must be performed before entering
 2026          *    lockfs or a transaction.
 2027          */
 2028         if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
 2029                 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
 2030                         ins.in_vidles.value.ul += ufs_vget_idle_count;
 2031                         ufs_idle_some(ufs_vget_idle_count);
 2032                 }
 2033 
 2034         ufid = (struct ufid *)fidp;
 2035 
 2036         if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK))
 2037                 goto errout;
 2038 
 2039         rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
 2040 
 2041         error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED());
 2042 
 2043         rw_exit(&ufsvfsp->vfs_dqrwlock);
 2044 
 2045         ufs_lockfs_end(ulp);
 2046 
 2047         if (error)
 2048                 goto errout;
 2049 
 2050         /*
 2051          * Check if the inode has been deleted or freed or is in transient state
 2052          * since the last VFS_VGET() request for it, release it and don't return
 2053          * it to the caller, presumably NFS, as it's no longer valid.
 2054          */
 2055         if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 ||
 2056             (ip->i_nlink <= 0)) {
 2057                 VN_RELE(ITOV(ip));
 2058                 error = EINVAL;
 2059                 goto errout;
 2060         }
 2061 
 2062         *vpp = ITOV(ip);
 2063         return (0);
 2064 
 2065 errout:
 2066         *vpp = NULL;
 2067         return (error);
 2068 }
 2069 
 2070 static int
 2071 ufsinit(int fstype, char *name)
 2072 {
 2073         static const fs_operation_def_t ufs_vfsops_template[] = {
 2074                 VFSNAME_MOUNT,          { .vfs_mount = ufs_mount },
 2075                 VFSNAME_UNMOUNT,        { .vfs_unmount = ufs_unmount },
 2076                 VFSNAME_ROOT,           { .vfs_root = ufs_root },
 2077                 VFSNAME_STATVFS,        { .vfs_statvfs = ufs_statvfs },
 2078                 VFSNAME_SYNC,           { .vfs_sync = ufs_sync },
 2079                 VFSNAME_VGET,           { .vfs_vget = ufs_vget },
 2080                 VFSNAME_MOUNTROOT,      { .vfs_mountroot = ufs_mountroot },
 2081                 NULL,                   NULL
 2082         };
 2083         int error;
 2084 
 2085         ufsfstype = fstype;
 2086 
 2087         error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops);
 2088         if (error != 0) {
 2089                 cmn_err(CE_WARN, "ufsinit: bad vfs ops template");
 2090                 return (error);
 2091         }
 2092 
 2093         error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops);
 2094         if (error != 0) {
 2095                 (void) vfs_freevfsops_by_type(fstype);
 2096                 cmn_err(CE_WARN, "ufsinit: bad vnode ops template");
 2097                 return (error);
 2098         }
 2099 
 2100         ufs_iinit();
 2101         return (0);
 2102 }
 2103 
 2104 #ifdef __sparc
 2105 
 2106 /*
 2107  * Mounting a mirrored SVM volume is only supported on ufs,
 2108  * this is special-case boot code to support that configuration.
 2109  * At this point, we have booted and mounted root on a
 2110  * single component of the mirror.  Complete the boot
 2111  * by configuring SVM and converting the root to the
 2112  * dev_t of the mirrored root device.  This dev_t conversion
 2113  * only works because the underlying device doesn't change.
 2114  */
 2115 int
 2116 ufs_remountroot(struct vfs *vfsp)
 2117 {
 2118         struct ufsvfs *ufsvfsp;
 2119         struct ulockfs *ulp;
 2120         dev_t new_rootdev;
 2121         dev_t old_rootdev;
 2122         struct vnode *old_rootvp;
 2123         struct vnode *new_rootvp;
 2124         int error, sberror = 0;
 2125         struct inode    *ip;
 2126         union ihead     *ih;
 2127         struct buf      *bp;
 2128         int i;
 2129 
 2130         old_rootdev = rootdev;
 2131         old_rootvp = rootvp;
 2132 
 2133         new_rootdev = getrootdev();
 2134         if (new_rootdev == (dev_t)NODEV) {
 2135                 return (ENODEV);
 2136         }
 2137 
 2138         new_rootvp = makespecvp(new_rootdev, VBLK);
 2139 
 2140         error = VOP_OPEN(&new_rootvp,
 2141             (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED(), NULL);
 2142         if (error) {
 2143                 cmn_err(CE_CONT,
 2144                     "Cannot open mirrored root device, error %d\n", error);
 2145                 return (error);
 2146         }
 2147 
 2148         if (vfs_lock(vfsp) != 0) {
 2149                 return (EBUSY);
 2150         }
 2151 
 2152         ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
 2153         ulp = &ufsvfsp->vfs_ulockfs;
 2154 
 2155         mutex_enter(&ulp->ul_lock);
 2156         atomic_add_long(&ufs_quiesce_pend, 1);
 2157 
 2158         (void) ufs_quiesce(ulp);
 2159         (void) ufs_flush(vfsp);
 2160 
 2161         /*
 2162          * Convert root vfs to new dev_t, including vfs hash
 2163          * table and fs id.
 2164          */
 2165         vfs_root_redev(vfsp, new_rootdev, ufsfstype);
 2166 
 2167         ufsvfsp->vfs_devvp = new_rootvp;
 2168         ufsvfsp->vfs_dev = new_rootdev;
 2169 
 2170         bp = ufsvfsp->vfs_bufp;
 2171         bp->b_edev = new_rootdev;
 2172         bp->b_dev = cmpdev(new_rootdev);
 2173 
 2174         /*
 2175          * The buffer for the root inode does not contain a valid b_vp
 2176          */
 2177         (void) bfinval(new_rootdev, 0);
 2178 
 2179         /*
 2180          * Here we hand-craft inodes with old root device
 2181          * references to refer to the new device instead.
 2182          */
 2183         mutex_enter(&ufs_scan_lock);
 2184 
 2185         for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
 2186                 mutex_enter(&ih_lock[i]);
 2187                 for (ip = ih->ih_chain[0];
 2188                     ip != (struct inode *)ih;
 2189                     ip = ip->i_forw) {
 2190                         if (ip->i_ufsvfs != ufsvfsp)
 2191                                 continue;
 2192                         if (ip == ufsvfsp->vfs_qinod)
 2193                                 continue;
 2194                         if (ip->i_dev == old_rootdev) {
 2195                                 ip->i_dev = new_rootdev;
 2196                         }
 2197 
 2198                         if (ip->i_devvp == old_rootvp) {
 2199                                 ip->i_devvp = new_rootvp;
 2200                         }
 2201                 }
 2202                 mutex_exit(&ih_lock[i]);
 2203         }
 2204 
 2205         mutex_exit(&ufs_scan_lock);
 2206 
 2207         /*
 2208          * Make Sure logging structures are using the new device
 2209          * if logging is enabled.  Also start any logging thread that
 2210          * needs to write to the device and couldn't earlier.
 2211          */
 2212         if (ufsvfsp->vfs_log) {
 2213                 buf_t           *bp, *tbp;
 2214                 ml_unit_t       *ul = ufsvfsp->vfs_log;
 2215                 struct fs       *fsp = ufsvfsp->vfs_fs;
 2216 
 2217                 /*
 2218                  * Update the main logging structure.
 2219                  */
 2220                 ul->un_dev = new_rootdev;
 2221 
 2222                 /*
 2223                  * Get a new bp for the on disk structures.
 2224                  */
 2225                 bp = ul->un_bp;
 2226                 tbp = ngeteblk(dbtob(LS_SECTORS));
 2227                 tbp->b_edev = new_rootdev;
 2228                 tbp->b_dev = cmpdev(new_rootdev);
 2229                 tbp->b_blkno = bp->b_blkno;
 2230                 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE);
 2231                 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE);
 2232                 bp->b_flags |= (B_STALE | B_AGE);
 2233                 brelse(bp);
 2234                 ul->un_bp = tbp;
 2235 
 2236                 /*
 2237                  * Allocate new circular buffers.
 2238                  */
 2239                 alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE);
 2240                 alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul));
 2241 
 2242                 /*
 2243                  * Clear the noroll bit which indicates that logging
 2244                  * can't roll the log yet and start the logmap roll thread
 2245                  * unless the filesystem is still read-only in which case
 2246                  * remountfs() will do it when going to read-write.
 2247                  */
 2248                 ASSERT(ul->un_flags & LDL_NOROLL);
 2249 
 2250                 if (!fsp->fs_ronly) {
 2251                         ul->un_flags &= ~LDL_NOROLL;
 2252                         logmap_start_roll(ul);
 2253                 }
 2254 
 2255                 /*
 2256                  * Start the reclaim thread if needed.
 2257                  */
 2258                 if (!fsp->fs_ronly && (fsp->fs_reclaim &
 2259                     (FS_RECLAIM|FS_RECLAIMING))) {
 2260                         fsp->fs_reclaim &= ~FS_RECLAIM;
 2261                         fsp->fs_reclaim |= FS_RECLAIMING;
 2262                         ufs_thread_start(&ufsvfsp->vfs_reclaim,
 2263                             ufs_thread_reclaim, vfsp);
 2264                         TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE);
 2265                         if (sberror = geterror(ufsvfsp->vfs_bufp)) {
 2266                                 refstr_t        *mntpt;
 2267                                 mntpt = vfs_getmntpoint(vfsp);
 2268                                 cmn_err(CE_WARN,
 2269                                     "Remountroot failed to update Reclaim"
 2270                                     "state for filesystem %s "
 2271                                     "Error writing SuperBlock %d",
 2272                                     refstr_value(mntpt), error);
 2273                                 refstr_rele(mntpt);
 2274                         }
 2275                 }
 2276         }
 2277 
 2278         rootdev = new_rootdev;
 2279         rootvp = new_rootvp;
 2280 
 2281         atomic_add_long(&ufs_quiesce_pend, -1);
 2282         cv_broadcast(&ulp->ul_cv);
 2283         mutex_exit(&ulp->ul_lock);
 2284 
 2285         vfs_unlock(vfsp);
 2286 
 2287         error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED(), NULL);
 2288         if (error) {
 2289                 cmn_err(CE_CONT,
 2290                     "close of root device component failed, error %d\n",
 2291                     error);
 2292         }
 2293         VN_RELE(old_rootvp);
 2294 
 2295         return (sberror ? sberror : error);
 2296 }
 2297 
 2298 #endif  /* __sparc */

Cache object: c83bfd5a35b18c3370ad421a9f71a14b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.