The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/common/os/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or http://www.opensolaris.org/os/licensing.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
   22 /*        All Rights Reserved   */
   23 
   24 /*
   25  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
   26  */
   27 
   28 #include <sys/param.h>
   29 #include <sys/t_lock.h>
   30 #include <sys/types.h>
   31 #include <sys/tuneable.h>
   32 #include <sys/sysmacros.h>
   33 #include <sys/systm.h>
   34 #include <sys/cpuvar.h>
   35 #include <sys/lgrp.h>
   36 #include <sys/user.h>
   37 #include <sys/proc.h>
   38 #include <sys/callo.h>
   39 #include <sys/kmem.h>
   40 #include <sys/var.h>
   41 #include <sys/cmn_err.h>
   42 #include <sys/swap.h>
   43 #include <sys/vmsystm.h>
   44 #include <sys/class.h>
   45 #include <sys/time.h>
   46 #include <sys/debug.h>
   47 #include <sys/vtrace.h>
   48 #include <sys/spl.h>
   49 #include <sys/atomic.h>
   50 #include <sys/dumphdr.h>
   51 #include <sys/archsystm.h>
   52 #include <sys/fs/swapnode.h>
   53 #include <sys/panic.h>
   54 #include <sys/disp.h>
   55 #include <sys/msacct.h>
   56 #include <sys/mem_cage.h>
   57 
   58 #include <vm/page.h>
   59 #include <vm/anon.h>
   60 #include <vm/rm.h>
   61 #include <sys/cyclic.h>
   62 #include <sys/cpupart.h>
   63 #include <sys/rctl.h>
   64 #include <sys/task.h>
   65 #include <sys/sdt.h>
   66 #include <sys/ddi_timer.h>
   67 #include <sys/random.h>
   68 #include <sys/modctl.h>
   69 
   70 /*
   71  * for NTP support
   72  */
   73 #include <sys/timex.h>
   74 #include <sys/inttypes.h>
   75 
   76 #include <sys/sunddi.h>
   77 #include <sys/clock_impl.h>
   78 
   79 /*
   80  * clock() is called straight from the clock cyclic; see clock_init().
   81  *
   82  * Functions:
   83  *      reprime clock
   84  *      maintain date
   85  *      jab the scheduler
   86  */
   87 
   88 extern kcondvar_t       fsflush_cv;
   89 extern sysinfo_t        sysinfo;
   90 extern vminfo_t vminfo;
   91 extern int      idleswtch;      /* flag set while idle in pswtch() */
   92 extern hrtime_t volatile devinfo_freeze;
   93 
   94 /*
   95  * high-precision avenrun values.  These are needed to make the
   96  * regular avenrun values accurate.
   97  */
   98 static uint64_t hp_avenrun[3];
   99 int     avenrun[3];             /* FSCALED average run queue lengths */
  100 time_t  time;   /* time in seconds since 1970 - for compatibility only */
  101 
  102 static struct loadavg_s loadavg;
  103 /*
  104  * Phase/frequency-lock loop (PLL/FLL) definitions
  105  *
  106  * The following variables are read and set by the ntp_adjtime() system
  107  * call.
  108  *
  109  * time_state shows the state of the system clock, with values defined
  110  * in the timex.h header file.
  111  *
  112  * time_status shows the status of the system clock, with bits defined
  113  * in the timex.h header file.
  114  *
  115  * time_offset is used by the PLL/FLL to adjust the system time in small
  116  * increments.
  117  *
  118  * time_constant determines the bandwidth or "stiffness" of the PLL.
  119  *
  120  * time_tolerance determines maximum frequency error or tolerance of the
  121  * CPU clock oscillator and is a property of the architecture; however,
  122  * in principle it could change as result of the presence of external
  123  * discipline signals, for instance.
  124  *
  125  * time_precision is usually equal to the kernel tick variable; however,
  126  * in cases where a precision clock counter or external clock is
  127  * available, the resolution can be much less than this and depend on
  128  * whether the external clock is working or not.
  129  *
  130  * time_maxerror is initialized by a ntp_adjtime() call and increased by
  131  * the kernel once each second to reflect the maximum error bound
  132  * growth.
  133  *
  134  * time_esterror is set and read by the ntp_adjtime() call, but
  135  * otherwise not used by the kernel.
  136  */
  137 int32_t time_state = TIME_OK;   /* clock state */
  138 int32_t time_status = STA_UNSYNC;       /* clock status bits */
  139 int32_t time_offset = 0;                /* time offset (us) */
  140 int32_t time_constant = 0;              /* pll time constant */
  141 int32_t time_tolerance = MAXFREQ;       /* frequency tolerance (scaled ppm) */
  142 int32_t time_precision = 1;     /* clock precision (us) */
  143 int32_t time_maxerror = MAXPHASE;       /* maximum error (us) */
  144 int32_t time_esterror = MAXPHASE;       /* estimated error (us) */
  145 
  146 /*
  147  * The following variables establish the state of the PLL/FLL and the
  148  * residual time and frequency offset of the local clock. The scale
  149  * factors are defined in the timex.h header file.
  150  *
  151  * time_phase and time_freq are the phase increment and the frequency
  152  * increment, respectively, of the kernel time variable.
  153  *
  154  * time_freq is set via ntp_adjtime() from a value stored in a file when
  155  * the synchronization daemon is first started. Its value is retrieved
  156  * via ntp_adjtime() and written to the file about once per hour by the
  157  * daemon.
  158  *
  159  * time_adj is the adjustment added to the value of tick at each timer
  160  * interrupt and is recomputed from time_phase and time_freq at each
  161  * seconds rollover.
  162  *
  163  * time_reftime is the second's portion of the system time at the last
  164  * call to ntp_adjtime(). It is used to adjust the time_freq variable
  165  * and to increase the time_maxerror as the time since last update
  166  * increases.
  167  */
  168 int32_t time_phase = 0;         /* phase offset (scaled us) */
  169 int32_t time_freq = 0;          /* frequency offset (scaled ppm) */
  170 int32_t time_adj = 0;           /* tick adjust (scaled 1 / hz) */
  171 int32_t time_reftime = 0;               /* time at last adjustment (s) */
  172 
  173 /*
  174  * The scale factors of the following variables are defined in the
  175  * timex.h header file.
  176  *
  177  * pps_time contains the time at each calibration interval, as read by
  178  * microtime(). pps_count counts the seconds of the calibration
  179  * interval, the duration of which is nominally pps_shift in powers of
  180  * two.
  181  *
  182  * pps_offset is the time offset produced by the time median filter
  183  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
  184  * this filter.
  185  *
  186  * pps_freq is the frequency offset produced by the frequency median
  187  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
  188  * by this filter.
  189  *
  190  * pps_usec is latched from a high resolution counter or external clock
  191  * at pps_time. Here we want the hardware counter contents only, not the
  192  * contents plus the time_tv.usec as usual.
  193  *
  194  * pps_valid counts the number of seconds since the last PPS update. It
  195  * is used as a watchdog timer to disable the PPS discipline should the
  196  * PPS signal be lost.
  197  *
  198  * pps_glitch counts the number of seconds since the beginning of an
  199  * offset burst more than tick/2 from current nominal offset. It is used
  200  * mainly to suppress error bursts due to priority conflicts between the
  201  * PPS interrupt and timer interrupt.
  202  *
  203  * pps_intcnt counts the calibration intervals for use in the interval-
  204  * adaptation algorithm. It's just too complicated for words.
  205  */
  206 struct timeval pps_time;        /* kernel time at last interval */
  207 int32_t pps_tf[] = {0, 0, 0};   /* pps time offset median filter (us) */
  208 int32_t pps_offset = 0;         /* pps time offset (us) */
  209 int32_t pps_jitter = MAXTIME;   /* time dispersion (jitter) (us) */
  210 int32_t pps_ff[] = {0, 0, 0};   /* pps frequency offset median filter */
  211 int32_t pps_freq = 0;           /* frequency offset (scaled ppm) */
  212 int32_t pps_stabil = MAXFREQ;   /* frequency dispersion (scaled ppm) */
  213 int32_t pps_usec = 0;           /* microsec counter at last interval */
  214 int32_t pps_valid = PPS_VALID;  /* pps signal watchdog counter */
  215 int32_t pps_glitch = 0;         /* pps signal glitch counter */
  216 int32_t pps_count = 0;          /* calibration interval counter (s) */
  217 int32_t pps_shift = PPS_SHIFT;  /* interval duration (s) (shift) */
  218 int32_t pps_intcnt = 0;         /* intervals at current duration */
  219 
  220 /*
  221  * PPS signal quality monitors
  222  *
  223  * pps_jitcnt counts the seconds that have been discarded because the
  224  * jitter measured by the time median filter exceeds the limit MAXTIME
  225  * (100 us).
  226  *
  227  * pps_calcnt counts the frequency calibration intervals, which are
  228  * variable from 4 s to 256 s.
  229  *
  230  * pps_errcnt counts the calibration intervals which have been discarded
  231  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
  232  * calibration interval jitter exceeds two ticks.
  233  *
  234  * pps_stbcnt counts the calibration intervals that have been discarded
  235  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
  236  */
  237 int32_t pps_jitcnt = 0;         /* jitter limit exceeded */
  238 int32_t pps_calcnt = 0;         /* calibration intervals */
  239 int32_t pps_errcnt = 0;         /* calibration errors */
  240 int32_t pps_stbcnt = 0;         /* stability limit exceeded */
  241 
  242 kcondvar_t lbolt_cv;
  243 
  244 /*
  245  * Hybrid lbolt implementation:
  246  *
  247  * The service historically provided by the lbolt and lbolt64 variables has
  248  * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
  249  * original symbols removed from the system. The once clock driven variables are
  250  * now implemented in an event driven fashion, backed by gethrtime() coarsed to
  251  * the appropriate clock resolution. The default event driven implementation is
  252  * complemented by a cyclic driven one, active only during periods of intense
  253  * activity around the DDI lbolt routines, when a lbolt specific cyclic is
  254  * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
  255  * rely on the original low cost of consulting a memory position.
  256  *
  257  * The implementation uses the number of calls to these routines and the
  258  * frequency of these to determine when to transition from event to cyclic
  259  * driven and vice-versa. These values are kept on a per CPU basis for
  260  * scalability reasons and to prevent CPUs from constantly invalidating a single
  261  * cache line when modifying a global variable. The transition from event to
  262  * cyclic mode happens once the thresholds are crossed, and activity on any CPU
  263  * can cause such transition.
  264  *
  265  * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
  266  * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
  267  * lbolt_cyclic_driven() according to the current mode. When the thresholds
  268  * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
  269  * fire at a nsec_per_tick interval and increment an internal variable at
  270  * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
  271  * will simply return the value of such variable. lbolt_cyclic() will attempt
  272  * to shut itself off at each threshold interval (sampling period for calls
  273  * to the DDI lbolt routines), and return to the event driven mode, but will
  274  * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
  275  *
  276  * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
  277  * for the cyclic subsystem to be intialized.
  278  *
  279  */
  280 int64_t lbolt_bootstrap(void);
  281 int64_t lbolt_event_driven(void);
  282 int64_t lbolt_cyclic_driven(void);
  283 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
  284 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
  285 
  286 /*
  287  * lbolt's cyclic, installed by clock_init().
  288  */
  289 static void lbolt_cyclic(void);
  290 
  291 /*
  292  * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
  293  * from switching back to event driven, once it reaches cyclic mode.
  294  */
  295 static boolean_t lbolt_cyc_only = B_FALSE;
  296 
  297 /*
  298  * Cache aligned, per CPU structure with lbolt usage statistics.
  299  */
  300 static lbolt_cpu_t *lb_cpu;
  301 
  302 /*
  303  * Single, cache aligned, structure with all the information required by
  304  * the lbolt implementation.
  305  */
  306 lbolt_info_t *lb_info;
  307 
  308 
  309 int one_sec = 1; /* turned on once every second */
  310 static int fsflushcnt;  /* counter for t_fsflushr */
  311 int     dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */
  312 int     tod_needsync = 0;       /* need to sync tod chip with software time */
  313 static int tod_broken = 0;      /* clock chip doesn't work */
  314 time_t  boot_time = 0;          /* Boot time in seconds since 1970 */
  315 cyclic_id_t clock_cyclic;       /* clock()'s cyclic_id */
  316 cyclic_id_t deadman_cyclic;     /* deadman()'s cyclic_id */
  317 cyclic_id_t ddi_timer_cyclic;   /* cyclic_timer()'s cyclic_id */
  318 
  319 extern void     clock_tick_schedule(int);
  320 
  321 static int lgrp_ticks;          /* counter to schedule lgrp load calcs */
  322 
  323 /*
  324  * for tod fault detection
  325  */
  326 #define TOD_REF_FREQ            ((longlong_t)(NANOSEC))
  327 #define TOD_STALL_THRESHOLD     (TOD_REF_FREQ * 3 / 2)
  328 #define TOD_JUMP_THRESHOLD      (TOD_REF_FREQ / 2)
  329 #define TOD_FILTER_N            4
  330 #define TOD_FILTER_SETTLE       (4 * TOD_FILTER_N)
  331 static int tod_faulted = TOD_NOFAULT;
  332 
  333 static int tod_status_flag = 0;         /* used by tod_validate() */
  334 
  335 static hrtime_t prev_set_tick = 0;      /* gethrtime() prior to tod_set() */
  336 static time_t prev_set_tod = 0;         /* tv_sec value passed to tod_set() */
  337 
  338 /* patchable via /etc/system */
  339 int tod_validate_enable = 1;
  340 
  341 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
  342 int                     delay_from_interrupt_diagnose = 0;
  343 volatile uint32_t       delay_from_interrupt_msg = 20;
  344 
  345 /*
  346  * On non-SPARC systems, TOD validation must be deferred until gethrtime
  347  * returns non-zero values (after mach_clkinit's execution).
  348  * On SPARC systems, it must be deferred until after hrtime_base
  349  * and hres_last_tick are set (in the first invocation of hres_tick).
  350  * Since in both cases the prerequisites occur before the invocation of
  351  * tod_get() in clock(), the deferment is lifted there.
  352  */
  353 static boolean_t tod_validate_deferred = B_TRUE;
  354 
  355 /*
  356  * tod_fault_table[] must be aligned with
  357  * enum tod_fault_type in systm.h
  358  */
  359 static char *tod_fault_table[] = {
  360         "Reversed",                     /* TOD_REVERSED */
  361         "Stalled",                      /* TOD_STALLED */
  362         "Jumped",                       /* TOD_JUMPED */
  363         "Changed in Clock Rate",        /* TOD_RATECHANGED */
  364         "Is Read-Only"                  /* TOD_RDONLY */
  365         /*
  366          * no strings needed for TOD_NOFAULT
  367          */
  368 };
  369 
  370 /*
  371  * test hook for tod broken detection in tod_validate
  372  */
  373 int tod_unit_test = 0;
  374 time_t tod_test_injector;
  375 
  376 #define CLOCK_ADJ_HIST_SIZE     4
  377 
  378 static int      adj_hist_entry;
  379 
  380 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
  381 
  382 static void calcloadavg(int, uint64_t *);
  383 static int genloadavg(struct loadavg_s *);
  384 static void loadavg_update();
  385 
  386 void (*cmm_clock_callout)() = NULL;
  387 void (*cpucaps_clock_callout)() = NULL;
  388 
  389 extern clock_t clock_tick_proc_max;
  390 
  391 static int64_t deadman_counter = 0;
  392 
  393 static void
  394 clock(void)
  395 {
  396         kthread_t       *t;
  397         uint_t  nrunnable;
  398         uint_t  w_io;
  399         cpu_t   *cp;
  400         cpupart_t *cpupart;
  401         extern  void    set_freemem();
  402         void    (*funcp)();
  403         int32_t ltemp;
  404         int64_t lltemp;
  405         int s;
  406         int do_lgrp_load;
  407         int i;
  408         clock_t now = LBOLT_NO_ACCOUNT; /* current tick */
  409 
  410         if (panicstr)
  411                 return;
  412 
  413         /*
  414          * Make sure that 'freemem' do not drift too far from the truth
  415          */
  416         set_freemem();
  417 
  418 
  419         /*
  420          * Before the section which is repeated is executed, we do
  421          * the time delta processing which occurs every clock tick
  422          *
  423          * There is additional processing which happens every time
  424          * the nanosecond counter rolls over which is described
  425          * below - see the section which begins with : if (one_sec)
  426          *
  427          * This section marks the beginning of the precision-kernel
  428          * code fragment.
  429          *
  430          * First, compute the phase adjustment. If the low-order bits
  431          * (time_phase) of the update overflow, bump the higher order
  432          * bits (time_update).
  433          */
  434         time_phase += time_adj;
  435         if (time_phase <= -FINEUSEC) {
  436                 ltemp = -time_phase / SCALE_PHASE;
  437                 time_phase += ltemp * SCALE_PHASE;
  438                 s = hr_clock_lock();
  439                 timedelta -= ltemp * (NANOSEC/MICROSEC);
  440                 hr_clock_unlock(s);
  441         } else if (time_phase >= FINEUSEC) {
  442                 ltemp = time_phase / SCALE_PHASE;
  443                 time_phase -= ltemp * SCALE_PHASE;
  444                 s = hr_clock_lock();
  445                 timedelta += ltemp * (NANOSEC/MICROSEC);
  446                 hr_clock_unlock(s);
  447         }
  448 
  449         /*
  450          * End of precision-kernel code fragment which is processed
  451          * every timer interrupt.
  452          *
  453          * Continue with the interrupt processing as scheduled.
  454          */
  455         /*
  456          * Count the number of runnable threads and the number waiting
  457          * for some form of I/O to complete -- gets added to
  458          * sysinfo.waiting.  To know the state of the system, must add
  459          * wait counts from all CPUs.  Also add up the per-partition
  460          * statistics.
  461          */
  462         w_io = 0;
  463         nrunnable = 0;
  464 
  465         /*
  466          * keep track of when to update lgrp/part loads
  467          */
  468 
  469         do_lgrp_load = 0;
  470         if (lgrp_ticks++ >= hz / 10) {
  471                 lgrp_ticks = 0;
  472                 do_lgrp_load = 1;
  473         }
  474 
  475         if (one_sec) {
  476                 loadavg_update();
  477                 deadman_counter++;
  478         }
  479 
  480         /*
  481          * First count the threads waiting on kpreempt queues in each
  482          * CPU partition.
  483          */
  484 
  485         cpupart = cp_list_head;
  486         do {
  487                 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
  488 
  489                 cpupart->cp_updates++;
  490                 nrunnable += cpupart_nrunnable;
  491                 cpupart->cp_nrunnable_cum += cpupart_nrunnable;
  492                 if (one_sec) {
  493                         cpupart->cp_nrunning = 0;
  494                         cpupart->cp_nrunnable = cpupart_nrunnable;
  495                 }
  496         } while ((cpupart = cpupart->cp_next) != cp_list_head);
  497 
  498 
  499         /* Now count the per-CPU statistics. */
  500         cp = cpu_list;
  501         do {
  502                 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
  503 
  504                 nrunnable += cpu_nrunnable;
  505                 cpupart = cp->cpu_part;
  506                 cpupart->cp_nrunnable_cum += cpu_nrunnable;
  507                 if (one_sec) {
  508                         cpupart->cp_nrunnable += cpu_nrunnable;
  509                         /*
  510                          * Update user, system, and idle cpu times.
  511                          */
  512                         cpupart->cp_nrunning++;
  513                         /*
  514                          * w_io is used to update sysinfo.waiting during
  515                          * one_second processing below.  Only gather w_io
  516                          * information when we walk the list of cpus if we're
  517                          * going to perform one_second processing.
  518                          */
  519                         w_io += CPU_STATS(cp, sys.iowait);
  520                 }
  521 
  522                 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
  523                         int i, load, change;
  524                         hrtime_t intracct, intrused;
  525                         const hrtime_t maxnsec = 1000000000;
  526                         const int precision = 100;
  527 
  528                         /*
  529                          * Estimate interrupt load on this cpu each second.
  530                          * Computes cpu_intrload as %utilization (0-99).
  531                          */
  532 
  533                         /* add up interrupt time from all micro states */
  534                         for (intracct = 0, i = 0; i < NCMSTATES; i++)
  535                                 intracct += cp->cpu_intracct[i];
  536                         scalehrtime(&intracct);
  537 
  538                         /* compute nsec used in the past second */
  539                         intrused = intracct - cp->cpu_intrlast;
  540                         cp->cpu_intrlast = intracct;
  541 
  542                         /* limit the value for safety (and the first pass) */
  543                         if (intrused >= maxnsec)
  544                                 intrused = maxnsec - 1;
  545 
  546                         /* calculate %time in interrupt */
  547                         load = (precision * intrused) / maxnsec;
  548                         ASSERT(load >= 0 && load < precision);
  549                         change = cp->cpu_intrload - load;
  550 
  551                         /* jump to new max, or decay the old max */
  552                         if (change < 0)
  553                                 cp->cpu_intrload = load;
  554                         else if (change > 0)
  555                                 cp->cpu_intrload -= (change + 3) / 4;
  556 
  557                         DTRACE_PROBE3(cpu_intrload,
  558                             cpu_t *, cp,
  559                             hrtime_t, intracct,
  560                             hrtime_t, intrused);
  561                 }
  562 
  563                 if (do_lgrp_load &&
  564                     (cp->cpu_flags & CPU_EXISTS)) {
  565                         /*
  566                          * When updating the lgroup's load average,
  567                          * account for the thread running on the CPU.
  568                          * If the CPU is the current one, then we need
  569                          * to account for the underlying thread which
  570                          * got the clock interrupt not the thread that is
  571                          * handling the interrupt and caculating the load
  572                          * average
  573                          */
  574                         t = cp->cpu_thread;
  575                         if (CPU == cp)
  576                                 t = t->t_intr;
  577 
  578                         /*
  579                          * Account for the load average for this thread if
  580                          * it isn't the idle thread or it is on the interrupt
  581                          * stack and not the current CPU handling the clock
  582                          * interrupt
  583                          */
  584                         if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
  585                             CPU_ON_INTR(cp))) {
  586                                 if (t->t_lpl == cp->cpu_lpl) {
  587                                         /* local thread */
  588                                         cpu_nrunnable++;
  589                                 } else {
  590                                         /*
  591                                          * This is a remote thread, charge it
  592                                          * against its home lgroup.  Note that
  593                                          * we notice that a thread is remote
  594                                          * only if it's currently executing.
  595                                          * This is a reasonable approximation,
  596                                          * since queued remote threads are rare.
  597                                          * Note also that if we didn't charge
  598                                          * it to its home lgroup, remote
  599                                          * execution would often make a system
  600                                          * appear balanced even though it was
  601                                          * not, and thread placement/migration
  602                                          * would often not be done correctly.
  603                                          */
  604                                         lgrp_loadavg(t->t_lpl,
  605                                             LGRP_LOADAVG_IN_THREAD_MAX, 0);
  606                                 }
  607                         }
  608                         lgrp_loadavg(cp->cpu_lpl,
  609                             cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
  610                 }
  611         } while ((cp = cp->cpu_next) != cpu_list);
  612 
  613         clock_tick_schedule(one_sec);
  614 
  615         /*
  616          * Check for a callout that needs be called from the clock
  617          * thread to support the membership protocol in a clustered
  618          * system.  Copy the function pointer so that we can reset
  619          * this to NULL if needed.
  620          */
  621         if ((funcp = cmm_clock_callout) != NULL)
  622                 (*funcp)();
  623 
  624         if ((funcp = cpucaps_clock_callout) != NULL)
  625                 (*funcp)();
  626 
  627         /*
  628          * Wakeup the cageout thread waiters once per second.
  629          */
  630         if (one_sec)
  631                 kcage_tick();
  632 
  633         if (one_sec) {
  634 
  635                 int drift, absdrift;
  636                 timestruc_t tod;
  637                 int s;
  638 
  639                 /*
  640                  * Beginning of precision-kernel code fragment executed
  641                  * every second.
  642                  *
  643                  * On rollover of the second the phase adjustment to be
  644                  * used for the next second is calculated.  Also, the
  645                  * maximum error is increased by the tolerance.  If the
  646                  * PPS frequency discipline code is present, the phase is
  647                  * increased to compensate for the CPU clock oscillator
  648                  * frequency error.
  649                  *
  650                  * On a 32-bit machine and given parameters in the timex.h
  651                  * header file, the maximum phase adjustment is +-512 ms
  652                  * and maximum frequency offset is (a tad less than)
  653                  * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
  654                  */
  655                 time_maxerror += time_tolerance / SCALE_USEC;
  656 
  657                 /*
  658                  * Leap second processing. If in leap-insert state at
  659                  * the end of the day, the system clock is set back one
  660                  * second; if in leap-delete state, the system clock is
  661                  * set ahead one second. The microtime() routine or
  662                  * external clock driver will insure that reported time
  663                  * is always monotonic. The ugly divides should be
  664                  * replaced.
  665                  */
  666                 switch (time_state) {
  667 
  668                 case TIME_OK:
  669                         if (time_status & STA_INS)
  670                                 time_state = TIME_INS;
  671                         else if (time_status & STA_DEL)
  672                                 time_state = TIME_DEL;
  673                         break;
  674 
  675                 case TIME_INS:
  676                         if (hrestime.tv_sec % 86400 == 0) {
  677                                 s = hr_clock_lock();
  678                                 hrestime.tv_sec--;
  679                                 hr_clock_unlock(s);
  680                                 time_state = TIME_OOP;
  681                         }
  682                         break;
  683 
  684                 case TIME_DEL:
  685                         if ((hrestime.tv_sec + 1) % 86400 == 0) {
  686                                 s = hr_clock_lock();
  687                                 hrestime.tv_sec++;
  688                                 hr_clock_unlock(s);
  689                                 time_state = TIME_WAIT;
  690                         }
  691                         break;
  692 
  693                 case TIME_OOP:
  694                         time_state = TIME_WAIT;
  695                         break;
  696 
  697                 case TIME_WAIT:
  698                         if (!(time_status & (STA_INS | STA_DEL)))
  699                                 time_state = TIME_OK;
  700                 default:
  701                         break;
  702                 }
  703 
  704                 /*
  705                  * Compute the phase adjustment for the next second. In
  706                  * PLL mode, the offset is reduced by a fixed factor
  707                  * times the time constant. In FLL mode the offset is
  708                  * used directly. In either mode, the maximum phase
  709                  * adjustment for each second is clamped so as to spread
  710                  * the adjustment over not more than the number of
  711                  * seconds between updates.
  712                  */
  713                 if (time_offset == 0)
  714                         time_adj = 0;
  715                 else if (time_offset < 0) {
  716                         lltemp = -time_offset;
  717                         if (!(time_status & STA_FLL)) {
  718                                 if ((1 << time_constant) >= SCALE_KG)
  719                                         lltemp *= (1 << time_constant) /
  720                                             SCALE_KG;
  721                                 else
  722                                         lltemp = (lltemp / SCALE_KG) >>
  723                                             time_constant;
  724                         }
  725                         if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
  726                                 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
  727                         time_offset += lltemp;
  728                         time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
  729                 } else {
  730                         lltemp = time_offset;
  731                         if (!(time_status & STA_FLL)) {
  732                                 if ((1 << time_constant) >= SCALE_KG)
  733                                         lltemp *= (1 << time_constant) /
  734                                             SCALE_KG;
  735                                 else
  736                                         lltemp = (lltemp / SCALE_KG) >>
  737                                             time_constant;
  738                         }
  739                         if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
  740                                 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
  741                         time_offset -= lltemp;
  742                         time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
  743                 }
  744 
  745                 /*
  746                  * Compute the frequency estimate and additional phase
  747                  * adjustment due to frequency error for the next
  748                  * second. When the PPS signal is engaged, gnaw on the
  749                  * watchdog counter and update the frequency computed by
  750                  * the pll and the PPS signal.
  751                  */
  752                 pps_valid++;
  753                 if (pps_valid == PPS_VALID) {
  754                         pps_jitter = MAXTIME;
  755                         pps_stabil = MAXFREQ;
  756                         time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  757                             STA_PPSWANDER | STA_PPSERROR);
  758                 }
  759                 lltemp = time_freq + pps_freq;
  760 
  761                 if (lltemp)
  762                         time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
  763 
  764                 /*
  765                  * End of precision kernel-code fragment
  766                  *
  767                  * The section below should be modified if we are planning
  768                  * to use NTP for synchronization.
  769                  *
  770                  * Note: the clock synchronization code now assumes
  771                  * the following:
  772                  *   - if dosynctodr is 1, then compute the drift between
  773                  *      the tod chip and software time and adjust one or
  774                  *      the other depending on the circumstances
  775                  *
  776                  *   - if dosynctodr is 0, then the tod chip is independent
  777                  *      of the software clock and should not be adjusted,
  778                  *      but allowed to free run.  this allows NTP to sync.
  779                  *      hrestime without any interference from the tod chip.
  780                  */
  781 
  782                 tod_validate_deferred = B_FALSE;
  783                 mutex_enter(&tod_lock);
  784                 tod = tod_get();
  785                 drift = tod.tv_sec - hrestime.tv_sec;
  786                 absdrift = (drift >= 0) ? drift : -drift;
  787                 if (tod_needsync || absdrift > 1) {
  788                         int s;
  789                         if (absdrift > 2) {
  790                                 if (!tod_broken && tod_faulted == TOD_NOFAULT) {
  791                                         s = hr_clock_lock();
  792                                         hrestime = tod;
  793                                         membar_enter(); /* hrestime visible */
  794                                         timedelta = 0;
  795                                         timechanged++;
  796                                         tod_needsync = 0;
  797                                         hr_clock_unlock(s);
  798                                         callout_hrestime();
  799 
  800                                 }
  801                         } else {
  802                                 if (tod_needsync || !dosynctodr) {
  803                                         gethrestime(&tod);
  804                                         tod_set(tod);
  805                                         s = hr_clock_lock();
  806                                         if (timedelta == 0)
  807                                                 tod_needsync = 0;
  808                                         hr_clock_unlock(s);
  809                                 } else {
  810                                         /*
  811                                          * If the drift is 2 seconds on the
  812                                          * money, then the TOD is adjusting
  813                                          * the clock;  record that.
  814                                          */
  815                                         clock_adj_hist[adj_hist_entry++ %
  816                                             CLOCK_ADJ_HIST_SIZE] = now;
  817                                         s = hr_clock_lock();
  818                                         timedelta = (int64_t)drift*NANOSEC;
  819                                         hr_clock_unlock(s);
  820                                 }
  821                         }
  822                 }
  823                 one_sec = 0;
  824                 time = gethrestime_sec();  /* for crusty old kmem readers */
  825                 mutex_exit(&tod_lock);
  826 
  827                 /*
  828                  * Some drivers still depend on this... XXX
  829                  */
  830                 cv_broadcast(&lbolt_cv);
  831 
  832                 vminfo.freemem += freemem;
  833                 {
  834                         pgcnt_t maxswap, resv, free;
  835                         pgcnt_t avail =
  836                             MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
  837 
  838                         maxswap = k_anoninfo.ani_mem_resv +
  839                             k_anoninfo.ani_max +avail;
  840                         /* Update ani_free */
  841                         set_anoninfo();
  842                         free = k_anoninfo.ani_free + avail;
  843                         resv = k_anoninfo.ani_phys_resv +
  844                             k_anoninfo.ani_mem_resv;
  845 
  846                         vminfo.swap_resv += resv;
  847                         /* number of reserved and allocated pages */
  848 #ifdef  DEBUG
  849                         if (maxswap < free)
  850                                 cmn_err(CE_WARN, "clock: maxswap < free");
  851                         if (maxswap < resv)
  852                                 cmn_err(CE_WARN, "clock: maxswap < resv");
  853 #endif
  854                         vminfo.swap_alloc += maxswap - free;
  855                         vminfo.swap_avail += maxswap - resv;
  856                         vminfo.swap_free += free;
  857                 }
  858                 vminfo.updates++;
  859                 if (nrunnable) {
  860                         sysinfo.runque += nrunnable;
  861                         sysinfo.runocc++;
  862                 }
  863                 if (nswapped) {
  864                         sysinfo.swpque += nswapped;
  865                         sysinfo.swpocc++;
  866                 }
  867                 sysinfo.waiting += w_io;
  868                 sysinfo.updates++;
  869 
  870                 /*
  871                  * Wake up fsflush to write out DELWRI
  872                  * buffers, dirty pages and other cached
  873                  * administrative data, e.g. inodes.
  874                  */
  875                 if (--fsflushcnt <= 0) {
  876                         fsflushcnt = tune.t_fsflushr;
  877                         cv_signal(&fsflush_cv);
  878                 }
  879 
  880                 vmmeter();
  881                 calcloadavg(genloadavg(&loadavg), hp_avenrun);
  882                 for (i = 0; i < 3; i++)
  883                         /*
  884                          * At the moment avenrun[] can only hold 31
  885                          * bits of load average as it is a signed
  886                          * int in the API. We need to ensure that
  887                          * hp_avenrun[i] >> (16 - FSHIFT) will not be
  888                          * too large. If it is, we put the largest value
  889                          * that we can use into avenrun[i]. This is
  890                          * kludgey, but about all we can do until we
  891                          * avenrun[] is declared as an array of uint64[]
  892                          */
  893                         if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
  894                                 avenrun[i] = (int32_t)(hp_avenrun[i] >>
  895                                     (16 - FSHIFT));
  896                         else
  897                                 avenrun[i] = 0x7fffffff;
  898 
  899                 cpupart = cp_list_head;
  900                 do {
  901                         calcloadavg(genloadavg(&cpupart->cp_loadavg),
  902                             cpupart->cp_hp_avenrun);
  903                 } while ((cpupart = cpupart->cp_next) != cp_list_head);
  904 
  905                 /*
  906                  * Wake up the swapper thread if necessary.
  907                  */
  908                 if (runin ||
  909                     (runout && (avefree < desfree || wake_sched_sec))) {
  910                         t = &t0;
  911                         thread_lock(t);
  912                         if (t->t_state == TS_STOPPED) {
  913                                 runin = runout = 0;
  914                                 wake_sched_sec = 0;
  915                                 t->t_whystop = 0;
  916                                 t->t_whatstop = 0;
  917                                 t->t_schedflag &= ~TS_ALLSTART;
  918                                 THREAD_TRANSITION(t);
  919                                 setfrontdq(t);
  920                         }
  921                         thread_unlock(t);
  922                 }
  923         }
  924 
  925         /*
  926          * Wake up the swapper if any high priority swapped-out threads
  927          * became runable during the last tick.
  928          */
  929         if (wake_sched) {
  930                 t = &t0;
  931                 thread_lock(t);
  932                 if (t->t_state == TS_STOPPED) {
  933                         runin = runout = 0;
  934                         wake_sched = 0;
  935                         t->t_whystop = 0;
  936                         t->t_whatstop = 0;
  937                         t->t_schedflag &= ~TS_ALLSTART;
  938                         THREAD_TRANSITION(t);
  939                         setfrontdq(t);
  940                 }
  941                 thread_unlock(t);
  942         }
  943 }
  944 
  945 void
  946 clock_init(void)
  947 {
  948         cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr;
  949         cyc_time_t clk_when, lbolt_when;
  950         int i, sz;
  951         intptr_t buf;
  952 
  953         /*
  954          * Setup handler and timer for the clock cyclic.
  955          */
  956         clk_hdlr.cyh_func = (cyc_func_t)clock;
  957         clk_hdlr.cyh_level = CY_LOCK_LEVEL;
  958         clk_hdlr.cyh_arg = NULL;
  959 
  960         clk_when.cyt_when = 0;
  961         clk_when.cyt_interval = nsec_per_tick;
  962 
  963         /*
  964          * cyclic_timer is dedicated to the ddi interface, which
  965          * uses the same clock resolution as the system one.
  966          */
  967         timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer;
  968         timer_hdlr.cyh_level = CY_LOCK_LEVEL;
  969         timer_hdlr.cyh_arg = NULL;
  970 
  971         /*
  972          * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
  973          * interval to satisfy performance needs of the DDI lbolt consumers.
  974          * It is off by default.
  975          */
  976         lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
  977         lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
  978         lbolt_hdlr.cyh_arg = NULL;
  979 
  980         lbolt_when.cyt_interval = nsec_per_tick;
  981 
  982         /*
  983          * Allocate cache line aligned space for the per CPU lbolt data and
  984          * lbolt info structures, and initialize them with their default
  985          * values. Note that these structures are also cache line sized.
  986          */
  987         sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
  988         buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
  989         lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
  990 
  991         if (hz != HZ_DEFAULT)
  992                 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
  993                     hz/HZ_DEFAULT;
  994         else
  995                 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
  996 
  997         lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
  998 
  999         sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
 1000         buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
 1001         lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
 1002 
 1003         for (i = 0; i < max_ncpus; i++)
 1004                 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
 1005 
 1006         /*
 1007          * Install the softint used to switch between event and cyclic driven
 1008          * lbolt. We use a soft interrupt to make sure the context of the
 1009          * cyclic reprogram call is safe.
 1010          */
 1011         lbolt_softint_add();
 1012 
 1013         /*
 1014          * Since the hybrid lbolt implementation is based on a hardware counter
 1015          * that is reset at every hardware reboot and that we'd like to have
 1016          * the lbolt value starting at zero after both a hardware and a fast
 1017          * reboot, we calculate the number of clock ticks the system's been up
 1018          * and store it in the lbi_debug_time field of the lbolt info structure.
 1019          * The value of this field will be subtracted from lbolt before
 1020          * returning it.
 1021          */
 1022         lb_info->lbi_internal = lb_info->lbi_debug_time =
 1023             (gethrtime()/nsec_per_tick);
 1024 
 1025         /*
 1026          * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
 1027          * and lbolt_debug_{enter,return} use this value as an indication that
 1028          * the initializaion above hasn't been completed. Setting lbolt_hybrid
 1029          * to either lbolt_{cyclic,event}_driven here signals those code paths
 1030          * that the lbolt related structures can be used.
 1031          */
 1032         if (lbolt_cyc_only) {
 1033                 lbolt_when.cyt_when = 0;
 1034                 lbolt_hybrid = lbolt_cyclic_driven;
 1035         } else {
 1036                 lbolt_when.cyt_when = CY_INFINITY;
 1037                 lbolt_hybrid = lbolt_event_driven;
 1038         }
 1039 
 1040         /*
 1041          * Grab cpu_lock and install all three cyclics.
 1042          */
 1043         mutex_enter(&cpu_lock);
 1044 
 1045         clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
 1046         ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when);
 1047         lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
 1048 
 1049         mutex_exit(&cpu_lock);
 1050 }
 1051 
 1052 /*
 1053  * Called before calcloadavg to get 10-sec moving loadavg together
 1054  */
 1055 
 1056 static int
 1057 genloadavg(struct loadavg_s *avgs)
 1058 {
 1059         int avg;
 1060         int spos; /* starting position */
 1061         int cpos; /* moving current position */
 1062         int i;
 1063         int slen;
 1064         hrtime_t hr_avg;
 1065 
 1066         /* 10-second snapshot, calculate first positon */
 1067         if (avgs->lg_len == 0) {
 1068                 return (0);
 1069         }
 1070         slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
 1071 
 1072         spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
 1073             S_LOADAVG_SZ + (avgs->lg_cur - 1);
 1074         for (i = hr_avg = 0; i < slen; i++) {
 1075                 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
 1076                 hr_avg += avgs->lg_loads[cpos];
 1077         }
 1078 
 1079         hr_avg = hr_avg / slen;
 1080         avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
 1081 
 1082         return (avg);
 1083 }
 1084 
 1085 /*
 1086  * Run every second from clock () to update the loadavg count available to the
 1087  * system and cpu-partitions.
 1088  *
 1089  * This works by sampling the previous usr, sys, wait time elapsed,
 1090  * computing a delta, and adding that delta to the elapsed usr, sys,
 1091  * wait increase.
 1092  */
 1093 
 1094 static void
 1095 loadavg_update()
 1096 {
 1097         cpu_t *cp;
 1098         cpupart_t *cpupart;
 1099         hrtime_t cpu_total;
 1100         int prev;
 1101 
 1102         cp = cpu_list;
 1103         loadavg.lg_total = 0;
 1104 
 1105         /*
 1106          * first pass totals up per-cpu statistics for system and cpu
 1107          * partitions
 1108          */
 1109 
 1110         do {
 1111                 struct loadavg_s *lavg;
 1112 
 1113                 lavg = &cp->cpu_loadavg;
 1114 
 1115                 cpu_total = cp->cpu_acct[CMS_USER] +
 1116                     cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
 1117                 /* compute delta against last total */
 1118                 scalehrtime(&cpu_total);
 1119                 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
 1120                     S_LOADAVG_SZ + (lavg->lg_cur - 1);
 1121                 if (lavg->lg_loads[prev] <= 0) {
 1122                         lavg->lg_loads[lavg->lg_cur] = cpu_total;
 1123                         cpu_total = 0;
 1124                 } else {
 1125                         lavg->lg_loads[lavg->lg_cur] = cpu_total;
 1126                         cpu_total = cpu_total - lavg->lg_loads[prev];
 1127                         if (cpu_total < 0)
 1128                                 cpu_total = 0;
 1129                 }
 1130 
 1131                 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
 1132                 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
 1133                     lavg->lg_len + 1 : S_LOADAVG_SZ;
 1134 
 1135                 loadavg.lg_total += cpu_total;
 1136                 cp->cpu_part->cp_loadavg.lg_total += cpu_total;
 1137 
 1138         } while ((cp = cp->cpu_next) != cpu_list);
 1139 
 1140         loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
 1141         loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
 1142         loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
 1143             loadavg.lg_len + 1 : S_LOADAVG_SZ;
 1144         /*
 1145          * Second pass updates counts
 1146          */
 1147         cpupart = cp_list_head;
 1148 
 1149         do {
 1150                 struct loadavg_s *lavg;
 1151 
 1152                 lavg = &cpupart->cp_loadavg;
 1153                 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
 1154                 lavg->lg_total = 0;
 1155                 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
 1156                 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
 1157                     lavg->lg_len + 1 : S_LOADAVG_SZ;
 1158 
 1159         } while ((cpupart = cpupart->cp_next) != cp_list_head);
 1160 
 1161 }
 1162 
 1163 /*
 1164  * clock_update() - local clock update
 1165  *
 1166  * This routine is called by ntp_adjtime() to update the local clock
 1167  * phase and frequency. The implementation is of an
 1168  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
 1169  * routine computes new time and frequency offset estimates for each
 1170  * call.  The PPS signal itself determines the new time offset,
 1171  * instead of the calling argument.  Presumably, calls to
 1172  * ntp_adjtime() occur only when the caller believes the local clock
 1173  * is valid within some bound (+-128 ms with NTP). If the caller's
 1174  * time is far different than the PPS time, an argument will ensue,
 1175  * and it's not clear who will lose.
 1176  *
 1177  * For uncompensated quartz crystal oscillatores and nominal update
 1178  * intervals less than 1024 s, operation should be in phase-lock mode
 1179  * (STA_FLL = 0), where the loop is disciplined to phase. For update
 1180  * intervals greater than this, operation should be in frequency-lock
 1181  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
 1182  *
 1183  * Note: mutex(&tod_lock) is in effect.
 1184  */
 1185 void
 1186 clock_update(int offset)
 1187 {
 1188         int ltemp, mtemp, s;
 1189 
 1190         ASSERT(MUTEX_HELD(&tod_lock));
 1191 
 1192         if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
 1193                 return;
 1194         ltemp = offset;
 1195         if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
 1196                 ltemp = pps_offset;
 1197 
 1198         /*
 1199          * Scale the phase adjustment and clamp to the operating range.
 1200          */
 1201         if (ltemp > MAXPHASE)
 1202                 time_offset = MAXPHASE * SCALE_UPDATE;
 1203         else if (ltemp < -MAXPHASE)
 1204                 time_offset = -(MAXPHASE * SCALE_UPDATE);
 1205         else
 1206                 time_offset = ltemp * SCALE_UPDATE;
 1207 
 1208         /*
 1209          * Select whether the frequency is to be controlled and in which
 1210          * mode (PLL or FLL). Clamp to the operating range. Ugly
 1211          * multiply/divide should be replaced someday.
 1212          */
 1213         if (time_status & STA_FREQHOLD || time_reftime == 0)
 1214                 time_reftime = hrestime.tv_sec;
 1215 
 1216         mtemp = hrestime.tv_sec - time_reftime;
 1217         time_reftime = hrestime.tv_sec;
 1218 
 1219         if (time_status & STA_FLL) {
 1220                 if (mtemp >= MINSEC) {
 1221                         ltemp = ((time_offset / mtemp) * (SCALE_USEC /
 1222                             SCALE_UPDATE));
 1223                         if (ltemp)
 1224                                 time_freq += ltemp / SCALE_KH;
 1225                 }
 1226         } else {
 1227                 if (mtemp < MAXSEC) {
 1228                         ltemp *= mtemp;
 1229                         if (ltemp)
 1230                                 time_freq += (int)(((int64_t)ltemp *
 1231                                     SCALE_USEC) / SCALE_KF)
 1232                                     / (1 << (time_constant * 2));
 1233                 }
 1234         }
 1235         if (time_freq > time_tolerance)
 1236                 time_freq = time_tolerance;
 1237         else if (time_freq < -time_tolerance)
 1238                 time_freq = -time_tolerance;
 1239 
 1240         s = hr_clock_lock();
 1241         tod_needsync = 1;
 1242         hr_clock_unlock(s);
 1243 }
 1244 
 1245 /*
 1246  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
 1247  *
 1248  * This routine is called at each PPS interrupt in order to discipline
 1249  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
 1250  * and leaves it in a handy spot for the clock() routine. It
 1251  * integrates successive PPS phase differences and calculates the
 1252  * frequency offset. This is used in clock() to discipline the CPU
 1253  * clock oscillator so that intrinsic frequency error is cancelled out.
 1254  * The code requires the caller to capture the time and hardware counter
 1255  * value at the on-time PPS signal transition.
 1256  *
 1257  * Note that, on some Unix systems, this routine runs at an interrupt
 1258  * priority level higher than the timer interrupt routine clock().
 1259  * Therefore, the variables used are distinct from the clock()
 1260  * variables, except for certain exceptions: The PPS frequency pps_freq
 1261  * and phase pps_offset variables are determined by this routine and
 1262  * updated atomically. The time_tolerance variable can be considered a
 1263  * constant, since it is infrequently changed, and then only when the
 1264  * PPS signal is disabled. The watchdog counter pps_valid is updated
 1265  * once per second by clock() and is atomically cleared in this
 1266  * routine.
 1267  *
 1268  * tvp is the time of the last tick; usec is a microsecond count since the
 1269  * last tick.
 1270  *
 1271  * Note: In Solaris systems, the tick value is actually given by
 1272  *       usec_per_tick.  This is called from the serial driver cdintr(),
 1273  *       or equivalent, at a high PIL.  Because the kernel keeps a
 1274  *       highresolution time, the following code can accept either
 1275  *       the traditional argument pair, or the current highres timestamp
 1276  *       in tvp and zero in usec.
 1277  */
 1278 void
 1279 ddi_hardpps(struct timeval *tvp, int usec)
 1280 {
 1281         int u_usec, v_usec, bigtick;
 1282         time_t cal_sec;
 1283         int cal_usec;
 1284 
 1285         /*
 1286          * An occasional glitch can be produced when the PPS interrupt
 1287          * occurs in the clock() routine before the time variable is
 1288          * updated. Here the offset is discarded when the difference
 1289          * between it and the last one is greater than tick/2, but not
 1290          * if the interval since the first discard exceeds 30 s.
 1291          */
 1292         time_status |= STA_PPSSIGNAL;
 1293         time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 1294         pps_valid = 0;
 1295         u_usec = -tvp->tv_usec;
 1296         if (u_usec < -(MICROSEC/2))
 1297                 u_usec += MICROSEC;
 1298         v_usec = pps_offset - u_usec;
 1299         if (v_usec < 0)
 1300                 v_usec = -v_usec;
 1301         if (v_usec > (usec_per_tick >> 1)) {
 1302                 if (pps_glitch > MAXGLITCH) {
 1303                         pps_glitch = 0;
 1304                         pps_tf[2] = u_usec;
 1305                         pps_tf[1] = u_usec;
 1306                 } else {
 1307                         pps_glitch++;
 1308                         u_usec = pps_offset;
 1309                 }
 1310         } else
 1311                 pps_glitch = 0;
 1312 
 1313         /*
 1314          * A three-stage median filter is used to help deglitch the pps
 1315          * time. The median sample becomes the time offset estimate; the
 1316          * difference between the other two samples becomes the time
 1317          * dispersion (jitter) estimate.
 1318          */
 1319         pps_tf[2] = pps_tf[1];
 1320         pps_tf[1] = pps_tf[0];
 1321         pps_tf[0] = u_usec;
 1322         if (pps_tf[0] > pps_tf[1]) {
 1323                 if (pps_tf[1] > pps_tf[2]) {
 1324                         pps_offset = pps_tf[1];         /* 0 1 2 */
 1325                         v_usec = pps_tf[0] - pps_tf[2];
 1326                 } else if (pps_tf[2] > pps_tf[0]) {
 1327                         pps_offset = pps_tf[0];         /* 2 0 1 */
 1328                         v_usec = pps_tf[2] - pps_tf[1];
 1329                 } else {
 1330                         pps_offset = pps_tf[2];         /* 0 2 1 */
 1331                         v_usec = pps_tf[0] - pps_tf[1];
 1332                 }
 1333         } else {
 1334                 if (pps_tf[1] < pps_tf[2]) {
 1335                         pps_offset = pps_tf[1];         /* 2 1 0 */
 1336                         v_usec = pps_tf[2] - pps_tf[0];
 1337                 } else  if (pps_tf[2] < pps_tf[0]) {
 1338                         pps_offset = pps_tf[0];         /* 1 0 2 */
 1339                         v_usec = pps_tf[1] - pps_tf[2];
 1340                 } else {
 1341                         pps_offset = pps_tf[2];         /* 1 2 0 */
 1342                         v_usec = pps_tf[1] - pps_tf[0];
 1343                 }
 1344         }
 1345         if (v_usec > MAXTIME)
 1346                 pps_jitcnt++;
 1347         v_usec = (v_usec << PPS_AVG) - pps_jitter;
 1348         pps_jitter += v_usec / (1 << PPS_AVG);
 1349         if (pps_jitter > (MAXTIME >> 1))
 1350                 time_status |= STA_PPSJITTER;
 1351 
 1352         /*
 1353          * During the calibration interval adjust the starting time when
 1354          * the tick overflows. At the end of the interval compute the
 1355          * duration of the interval and the difference of the hardware
 1356          * counters at the beginning and end of the interval. This code
 1357          * is deliciously complicated by the fact valid differences may
 1358          * exceed the value of tick when using long calibration
 1359          * intervals and small ticks. Note that the counter can be
 1360          * greater than tick if caught at just the wrong instant, but
 1361          * the values returned and used here are correct.
 1362          */
 1363         bigtick = (int)usec_per_tick * SCALE_USEC;
 1364         pps_usec -= pps_freq;
 1365         if (pps_usec >= bigtick)
 1366                 pps_usec -= bigtick;
 1367         if (pps_usec < 0)
 1368                 pps_usec += bigtick;
 1369         pps_time.tv_sec++;
 1370         pps_count++;
 1371         if (pps_count < (1 << pps_shift))
 1372                 return;
 1373         pps_count = 0;
 1374         pps_calcnt++;
 1375         u_usec = usec * SCALE_USEC;
 1376         v_usec = pps_usec - u_usec;
 1377         if (v_usec >= bigtick >> 1)
 1378                 v_usec -= bigtick;
 1379         if (v_usec < -(bigtick >> 1))
 1380                 v_usec += bigtick;
 1381         if (v_usec < 0)
 1382                 v_usec = -(-v_usec >> pps_shift);
 1383         else
 1384                 v_usec = v_usec >> pps_shift;
 1385         pps_usec = u_usec;
 1386         cal_sec = tvp->tv_sec;
 1387         cal_usec = tvp->tv_usec;
 1388         cal_sec -= pps_time.tv_sec;
 1389         cal_usec -= pps_time.tv_usec;
 1390         if (cal_usec < 0) {
 1391                 cal_usec += MICROSEC;
 1392                 cal_sec--;
 1393         }
 1394         pps_time = *tvp;
 1395 
 1396         /*
 1397          * Check for lost interrupts, noise, excessive jitter and
 1398          * excessive frequency error. The number of timer ticks during
 1399          * the interval may vary +-1 tick. Add to this a margin of one
 1400          * tick for the PPS signal jitter and maximum frequency
 1401          * deviation. If the limits are exceeded, the calibration
 1402          * interval is reset to the minimum and we start over.
 1403          */
 1404         u_usec = (int)usec_per_tick << 1;
 1405         if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
 1406             (cal_sec == 0 && cal_usec < u_usec)) ||
 1407             v_usec > time_tolerance || v_usec < -time_tolerance) {
 1408                 pps_errcnt++;
 1409                 pps_shift = PPS_SHIFT;
 1410                 pps_intcnt = 0;
 1411                 time_status |= STA_PPSERROR;
 1412                 return;
 1413         }
 1414 
 1415         /*
 1416          * A three-stage median filter is used to help deglitch the pps
 1417          * frequency. The median sample becomes the frequency offset
 1418          * estimate; the difference between the other two samples
 1419          * becomes the frequency dispersion (stability) estimate.
 1420          */
 1421         pps_ff[2] = pps_ff[1];
 1422         pps_ff[1] = pps_ff[0];
 1423         pps_ff[0] = v_usec;
 1424         if (pps_ff[0] > pps_ff[1]) {
 1425                 if (pps_ff[1] > pps_ff[2]) {
 1426                         u_usec = pps_ff[1];             /* 0 1 2 */
 1427                         v_usec = pps_ff[0] - pps_ff[2];
 1428                 } else if (pps_ff[2] > pps_ff[0]) {
 1429                         u_usec = pps_ff[0];             /* 2 0 1 */
 1430                         v_usec = pps_ff[2] - pps_ff[1];
 1431                 } else {
 1432                         u_usec = pps_ff[2];             /* 0 2 1 */
 1433                         v_usec = pps_ff[0] - pps_ff[1];
 1434                 }
 1435         } else {
 1436                 if (pps_ff[1] < pps_ff[2]) {
 1437                         u_usec = pps_ff[1];             /* 2 1 0 */
 1438                         v_usec = pps_ff[2] - pps_ff[0];
 1439                 } else  if (pps_ff[2] < pps_ff[0]) {
 1440                         u_usec = pps_ff[0];             /* 1 0 2 */
 1441                         v_usec = pps_ff[1] - pps_ff[2];
 1442                 } else {
 1443                         u_usec = pps_ff[2];             /* 1 2 0 */
 1444                         v_usec = pps_ff[1] - pps_ff[0];
 1445                 }
 1446         }
 1447 
 1448         /*
 1449          * Here the frequency dispersion (stability) is updated. If it
 1450          * is less than one-fourth the maximum (MAXFREQ), the frequency
 1451          * offset is updated as well, but clamped to the tolerance. It
 1452          * will be processed later by the clock() routine.
 1453          */
 1454         v_usec = (v_usec >> 1) - pps_stabil;
 1455         if (v_usec < 0)
 1456                 pps_stabil -= -v_usec >> PPS_AVG;
 1457         else
 1458                 pps_stabil += v_usec >> PPS_AVG;
 1459         if (pps_stabil > MAXFREQ >> 2) {
 1460                 pps_stbcnt++;
 1461                 time_status |= STA_PPSWANDER;
 1462                 return;
 1463         }
 1464         if (time_status & STA_PPSFREQ) {
 1465                 if (u_usec < 0) {
 1466                         pps_freq -= -u_usec >> PPS_AVG;
 1467                         if (pps_freq < -time_tolerance)
 1468                                 pps_freq = -time_tolerance;
 1469                         u_usec = -u_usec;
 1470                 } else {
 1471                         pps_freq += u_usec >> PPS_AVG;
 1472                         if (pps_freq > time_tolerance)
 1473                                 pps_freq = time_tolerance;
 1474                 }
 1475         }
 1476 
 1477         /*
 1478          * Here the calibration interval is adjusted. If the maximum
 1479          * time difference is greater than tick / 4, reduce the interval
 1480          * by half. If this is not the case for four consecutive
 1481          * intervals, double the interval.
 1482          */
 1483         if (u_usec << pps_shift > bigtick >> 2) {
 1484                 pps_intcnt = 0;
 1485                 if (pps_shift > PPS_SHIFT)
 1486                         pps_shift--;
 1487         } else if (pps_intcnt >= 4) {
 1488                 pps_intcnt = 0;
 1489                 if (pps_shift < PPS_SHIFTMAX)
 1490                         pps_shift++;
 1491         } else
 1492                 pps_intcnt++;
 1493 
 1494         /*
 1495          * If recovering from kmdb, then make sure the tod chip gets resynced.
 1496          * If we took an early exit above, then we don't yet have a stable
 1497          * calibration signal to lock onto, so don't mark the tod for sync
 1498          * until we get all the way here.
 1499          */
 1500         {
 1501                 int s = hr_clock_lock();
 1502 
 1503                 tod_needsync = 1;
 1504                 hr_clock_unlock(s);
 1505         }
 1506 }
 1507 
 1508 /*
 1509  * Handle clock tick processing for a thread.
 1510  * Check for timer action, enforce CPU rlimit, do profiling etc.
 1511  */
 1512 void
 1513 clock_tick(kthread_t *t, int pending)
 1514 {
 1515         struct proc *pp;
 1516         klwp_id_t    lwp;
 1517         struct as *as;
 1518         clock_t ticks;
 1519         int     poke = 0;               /* notify another CPU */
 1520         int     user_mode;
 1521         size_t   rss;
 1522         int i, total_usec, usec;
 1523         rctl_qty_t secs;
 1524 
 1525         ASSERT(pending > 0);
 1526 
 1527         /* Must be operating on a lwp/thread */
 1528         if ((lwp = ttolwp(t)) == NULL) {
 1529                 panic("clock_tick: no lwp");
 1530                 /*NOTREACHED*/
 1531         }
 1532 
 1533         for (i = 0; i < pending; i++) {
 1534                 CL_TICK(t);     /* Class specific tick processing */
 1535                 DTRACE_SCHED1(tick, kthread_t *, t);
 1536         }
 1537 
 1538         pp = ttoproc(t);
 1539 
 1540         /* pp->p_lock makes sure that the thread does not exit */
 1541         ASSERT(MUTEX_HELD(&pp->p_lock));
 1542 
 1543         user_mode = (lwp->lwp_state == LWP_USER);
 1544 
 1545         ticks = (pp->p_utime + pp->p_stime) % hz;
 1546         /*
 1547          * Update process times. Should use high res clock and state
 1548          * changes instead of statistical sampling method. XXX
 1549          */
 1550         if (user_mode) {
 1551                 pp->p_utime += pending;
 1552         } else {
 1553                 pp->p_stime += pending;
 1554         }
 1555 
 1556         pp->p_ttime += pending;
 1557         as = pp->p_as;
 1558 
 1559         /*
 1560          * Update user profiling statistics. Get the pc from the
 1561          * lwp when the AST happens.
 1562          */
 1563         if (pp->p_prof.pr_scale) {
 1564                 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
 1565                 if (user_mode) {
 1566                         poke = 1;
 1567                         aston(t);
 1568                 }
 1569         }
 1570 
 1571         /*
 1572          * If CPU was in user state, process lwp-virtual time
 1573          * interval timer. The value passed to itimerdecr() has to be
 1574          * in microseconds and has to be less than one second. Hence
 1575          * this loop.
 1576          */
 1577         total_usec = usec_per_tick * pending;
 1578         while (total_usec > 0) {
 1579                 usec = MIN(total_usec, (MICROSEC - 1));
 1580                 if (user_mode &&
 1581                     timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
 1582                     itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
 1583                         poke = 1;
 1584                         sigtoproc(pp, t, SIGVTALRM);
 1585                 }
 1586                 total_usec -= usec;
 1587         }
 1588 
 1589         /*
 1590          * If CPU was in user state, process lwp-profile
 1591          * interval timer.
 1592          */
 1593         total_usec = usec_per_tick * pending;
 1594         while (total_usec > 0) {
 1595                 usec = MIN(total_usec, (MICROSEC - 1));
 1596                 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
 1597                     itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
 1598                         poke = 1;
 1599                         sigtoproc(pp, t, SIGPROF);
 1600                 }
 1601                 total_usec -= usec;
 1602         }
 1603 
 1604         /*
 1605          * Enforce CPU resource controls:
 1606          *   (a) process.max-cpu-time resource control
 1607          *
 1608          * Perform the check only if we have accumulated more a second.
 1609          */
 1610         if ((ticks + pending) >= hz) {
 1611                 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
 1612                     (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
 1613         }
 1614 
 1615         /*
 1616          *   (b) task.max-cpu-time resource control
 1617          *
 1618          * If we have accumulated enough ticks, increment the task CPU
 1619          * time usage and test for the resource limit. This minimizes the
 1620          * number of calls to the rct_test(). The task CPU time mutex
 1621          * is highly contentious as many processes can be sharing a task.
 1622          */
 1623         if (pp->p_ttime >= clock_tick_proc_max) {
 1624                 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
 1625                 pp->p_ttime = 0;
 1626                 if (secs) {
 1627                         (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
 1628                             pp, secs, RCA_UNSAFE_SIGINFO);
 1629                 }
 1630         }
 1631 
 1632         /*
 1633          * Update memory usage for the currently running process.
 1634          */
 1635         rss = rm_asrss(as);
 1636         PTOU(pp)->u_mem += rss;
 1637         if (rss > PTOU(pp)->u_mem_max)
 1638                 PTOU(pp)->u_mem_max = rss;
 1639 
 1640         /*
 1641          * Notify the CPU the thread is running on.
 1642          */
 1643         if (poke && t->t_cpu != CPU)
 1644                 poke_cpu(t->t_cpu->cpu_id);
 1645 }
 1646 
 1647 void
 1648 profil_tick(uintptr_t upc)
 1649 {
 1650         int ticks;
 1651         proc_t *p = ttoproc(curthread);
 1652         klwp_t *lwp = ttolwp(curthread);
 1653         struct prof *pr = &p->p_prof;
 1654 
 1655         do {
 1656                 ticks = lwp->lwp_oweupc;
 1657         } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
 1658 
 1659         mutex_enter(&p->p_pflock);
 1660         if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
 1661                 /*
 1662                  * Old-style profiling
 1663                  */
 1664                 uint16_t *slot = pr->pr_base;
 1665                 uint16_t old, new;
 1666                 if (pr->pr_scale != 2) {
 1667                         uintptr_t delta = upc - pr->pr_off;
 1668                         uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
 1669                             (((delta & 0xffff) * pr->pr_scale) >> 16);
 1670                         if (byteoff >= (uintptr_t)pr->pr_size) {
 1671                                 mutex_exit(&p->p_pflock);
 1672                                 return;
 1673                         }
 1674                         slot += byteoff / sizeof (uint16_t);
 1675                 }
 1676                 if (fuword16(slot, &old) < 0 ||
 1677                     (new = old + ticks) > SHRT_MAX ||
 1678                     suword16(slot, new) < 0) {
 1679                         pr->pr_scale = 0;
 1680                 }
 1681         } else if (pr->pr_scale == 1) {
 1682                 /*
 1683                  * PC Sampling
 1684                  */
 1685                 model_t model = lwp_getdatamodel(lwp);
 1686                 int result;
 1687 #ifdef __lint
 1688                 model = model;
 1689 #endif
 1690                 while (ticks-- > 0) {
 1691                         if (pr->pr_samples == pr->pr_size) {
 1692                                 /* buffer full, turn off sampling */
 1693                                 pr->pr_scale = 0;
 1694                                 break;
 1695                         }
 1696                         switch (SIZEOF_PTR(model)) {
 1697                         case sizeof (uint32_t):
 1698                                 result = suword32(pr->pr_base, (uint32_t)upc);
 1699                                 break;
 1700 #ifdef _LP64
 1701                         case sizeof (uint64_t):
 1702                                 result = suword64(pr->pr_base, (uint64_t)upc);
 1703                                 break;
 1704 #endif
 1705                         default:
 1706                                 cmn_err(CE_WARN, "profil_tick: unexpected "
 1707                                     "data model");
 1708                                 result = -1;
 1709                                 break;
 1710                         }
 1711                         if (result != 0) {
 1712                                 pr->pr_scale = 0;
 1713                                 break;
 1714                         }
 1715                         pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
 1716                         pr->pr_samples++;
 1717                 }
 1718         }
 1719         mutex_exit(&p->p_pflock);
 1720 }
 1721 
 1722 static void
 1723 delay_wakeup(void *arg)
 1724 {
 1725         kthread_t       *t = arg;
 1726 
 1727         mutex_enter(&t->t_delay_lock);
 1728         cv_signal(&t->t_delay_cv);
 1729         mutex_exit(&t->t_delay_lock);
 1730 }
 1731 
 1732 /*
 1733  * The delay(9F) man page indicates that it can only be called from user or
 1734  * kernel context - detect and diagnose bad calls. The following macro will
 1735  * produce a limited number of messages identifying bad callers.  This is done
 1736  * in a macro so that caller() is meaningful. When a bad caller is identified,
 1737  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
 1738  */
 1739 #define DELAY_CONTEXT_CHECK()   {                                       \
 1740         uint32_t        m;                                              \
 1741         char            *f;                                             \
 1742         ulong_t         off;                                            \
 1743                                                                         \
 1744         m = delay_from_interrupt_msg;                                   \
 1745         if (delay_from_interrupt_diagnose && servicing_interrupt() &&   \
 1746             !panicstr && !devinfo_freeze &&                             \
 1747             atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \
 1748                 f = modgetsymname((uintptr_t)caller(), &off);           \
 1749                 cmn_err(CE_WARN, "delay(9F) called from "               \
 1750                     "interrupt context: %s`%s",                         \
 1751                     mod_containing_pc(caller()), f ? f : "...");        \
 1752         }                                                               \
 1753 }
 1754 
 1755 /*
 1756  * delay_common: common delay code.
 1757  */
 1758 static void
 1759 delay_common(clock_t ticks)
 1760 {
 1761         kthread_t       *t = curthread;
 1762         clock_t         deadline;
 1763         clock_t         timeleft;
 1764         callout_id_t    id;
 1765 
 1766         /* If timeouts aren't running all we can do is spin. */
 1767         if (panicstr || devinfo_freeze) {
 1768                 /* Convert delay(9F) call into drv_usecwait(9F) call. */
 1769                 if (ticks > 0)
 1770                         drv_usecwait(TICK_TO_USEC(ticks));
 1771                 return;
 1772         }
 1773 
 1774         deadline = ddi_get_lbolt() + ticks;
 1775         while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
 1776                 mutex_enter(&t->t_delay_lock);
 1777                 id = timeout_default(delay_wakeup, t, timeleft);
 1778                 cv_wait(&t->t_delay_cv, &t->t_delay_lock);
 1779                 mutex_exit(&t->t_delay_lock);
 1780                 (void) untimeout_default(id, 0);
 1781         }
 1782 }
 1783 
 1784 /*
 1785  * Delay specified number of clock ticks.
 1786  */
 1787 void
 1788 delay(clock_t ticks)
 1789 {
 1790         DELAY_CONTEXT_CHECK();
 1791 
 1792         delay_common(ticks);
 1793 }
 1794 
 1795 /*
 1796  * Delay a random number of clock ticks between 1 and ticks.
 1797  */
 1798 void
 1799 delay_random(clock_t ticks)
 1800 {
 1801         int     r;
 1802 
 1803         DELAY_CONTEXT_CHECK();
 1804 
 1805         (void) random_get_pseudo_bytes((void *)&r, sizeof (r));
 1806         if (ticks == 0)
 1807                 ticks = 1;
 1808         ticks = (r % ticks) + 1;
 1809         delay_common(ticks);
 1810 }
 1811 
 1812 /*
 1813  * Like delay, but interruptible by a signal.
 1814  */
 1815 int
 1816 delay_sig(clock_t ticks)
 1817 {
 1818         kthread_t       *t = curthread;
 1819         clock_t         deadline;
 1820         clock_t         rc;
 1821 
 1822         /* If timeouts aren't running all we can do is spin. */
 1823         if (panicstr || devinfo_freeze) {
 1824                 if (ticks > 0)
 1825                         drv_usecwait(TICK_TO_USEC(ticks));
 1826                 return (0);
 1827         }
 1828 
 1829         deadline = ddi_get_lbolt() + ticks;
 1830         mutex_enter(&t->t_delay_lock);
 1831         do {
 1832                 rc = cv_timedwait_sig(&t->t_delay_cv,
 1833                     &t->t_delay_lock, deadline);
 1834                 /* loop until past deadline or signaled */
 1835         } while (rc > 0);
 1836         mutex_exit(&t->t_delay_lock);
 1837         if (rc == 0)
 1838                 return (EINTR);
 1839         return (0);
 1840 }
 1841 
 1842 
 1843 #define SECONDS_PER_DAY 86400
 1844 
 1845 /*
 1846  * Initialize the system time based on the TOD chip.  approx is used as
 1847  * an approximation of time (e.g. from the filesystem) in the event that
 1848  * the TOD chip has been cleared or is unresponsive.  An approx of -1
 1849  * means the filesystem doesn't keep time.
 1850  */
 1851 void
 1852 clkset(time_t approx)
 1853 {
 1854         timestruc_t ts;
 1855         int spl;
 1856         int set_clock = 0;
 1857 
 1858         mutex_enter(&tod_lock);
 1859         ts = tod_get();
 1860 
 1861         if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
 1862                 /*
 1863                  * If the TOD chip is reporting some time after 1971,
 1864                  * then it probably didn't lose power or become otherwise
 1865                  * cleared in the recent past;  check to assure that
 1866                  * the time coming from the filesystem isn't in the future
 1867                  * according to the TOD chip.
 1868                  */
 1869                 if (approx != -1 && approx > ts.tv_sec) {
 1870                         cmn_err(CE_WARN, "Last shutdown is later "
 1871                             "than time on time-of-day chip; check date.");
 1872                 }
 1873         } else {
 1874                 /*
 1875                  * If the TOD chip isn't giving correct time, set it to the
 1876                  * greater of i) approx and ii) 1987. That way if approx
 1877                  * is negative or is earlier than 1987, we set the clock
 1878                  * back to a time when Oliver North, ALF and Dire Straits
 1879                  * were all on the collective brain:  1987.
 1880                  */
 1881                 timestruc_t tmp;
 1882                 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
 1883                 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
 1884                 ts.tv_nsec = 0;
 1885 
 1886                 /*
 1887                  * Attempt to write the new time to the TOD chip.  Set spl high
 1888                  * to avoid getting preempted between the tod_set and tod_get.
 1889                  */
 1890                 spl = splhi();
 1891                 tod_set(ts);
 1892                 tmp = tod_get();
 1893                 splx(spl);
 1894 
 1895                 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
 1896                         tod_broken = 1;
 1897                         dosynctodr = 0;
 1898                         cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
 1899                 } else {
 1900                         cmn_err(CE_WARN, "Time-of-day chip had "
 1901                             "incorrect date; check and reset.");
 1902                 }
 1903                 set_clock = 1;
 1904         }
 1905 
 1906         if (!boot_time) {
 1907                 boot_time = ts.tv_sec;
 1908                 set_clock = 1;
 1909         }
 1910 
 1911         if (set_clock)
 1912                 set_hrestime(&ts);
 1913 
 1914         mutex_exit(&tod_lock);
 1915 }
 1916 
 1917 int     timechanged;    /* for testing if the system time has been reset */
 1918 
 1919 void
 1920 set_hrestime(timestruc_t *ts)
 1921 {
 1922         int spl = hr_clock_lock();
 1923         hrestime = *ts;
 1924         membar_enter(); /* hrestime must be visible before timechanged++ */
 1925         timedelta = 0;
 1926         timechanged++;
 1927         hr_clock_unlock(spl);
 1928         callout_hrestime();
 1929 }
 1930 
 1931 static uint_t deadman_seconds;
 1932 static uint32_t deadman_panics;
 1933 static int deadman_enabled = 0;
 1934 static int deadman_panic_timers = 1;
 1935 
 1936 static void
 1937 deadman(void)
 1938 {
 1939         if (panicstr) {
 1940                 /*
 1941                  * During panic, other CPUs besides the panic
 1942                  * master continue to handle cyclics and some other
 1943                  * interrupts.  The code below is intended to be
 1944                  * single threaded, so any CPU other than the master
 1945                  * must keep out.
 1946                  */
 1947                 if (CPU->cpu_id != panic_cpu.cpu_id)
 1948                         return;
 1949 
 1950                 if (!deadman_panic_timers)
 1951                         return; /* allow all timers to be manually disabled */
 1952 
 1953                 /*
 1954                  * If we are generating a crash dump or syncing filesystems and
 1955                  * the corresponding timer is set, decrement it and re-enter
 1956                  * the panic code to abort it and advance to the next state.
 1957                  * The panic states and triggers are explained in panic.c.
 1958                  */
 1959                 if (panic_dump) {
 1960                         if (dump_timeleft && (--dump_timeleft == 0)) {
 1961                                 panic("panic dump timeout");
 1962                                 /*NOTREACHED*/
 1963                         }
 1964                 } else if (panic_sync) {
 1965                         if (sync_timeleft && (--sync_timeleft == 0)) {
 1966                                 panic("panic sync timeout");
 1967                                 /*NOTREACHED*/
 1968                         }
 1969                 }
 1970 
 1971                 return;
 1972         }
 1973 
 1974         if (deadman_counter != CPU->cpu_deadman_counter) {
 1975                 CPU->cpu_deadman_counter = deadman_counter;
 1976                 CPU->cpu_deadman_countdown = deadman_seconds;
 1977                 return;
 1978         }
 1979 
 1980         if (--CPU->cpu_deadman_countdown > 0)
 1981                 return;
 1982 
 1983         /*
 1984          * Regardless of whether or not we actually bring the system down,
 1985          * bump the deadman_panics variable.
 1986          *
 1987          * N.B. deadman_panics is incremented once for each CPU that
 1988          * passes through here.  It's expected that all the CPUs will
 1989          * detect this condition within one second of each other, so
 1990          * when deadman_enabled is off, deadman_panics will
 1991          * typically be a multiple of the total number of CPUs in
 1992          * the system.
 1993          */
 1994         atomic_add_32(&deadman_panics, 1);
 1995 
 1996         if (!deadman_enabled) {
 1997                 CPU->cpu_deadman_countdown = deadman_seconds;
 1998                 return;
 1999         }
 2000 
 2001         /*
 2002          * If we're here, we want to bring the system down.
 2003          */
 2004         panic("deadman: timed out after %d seconds of clock "
 2005             "inactivity", deadman_seconds);
 2006         /*NOTREACHED*/
 2007 }
 2008 
 2009 /*ARGSUSED*/
 2010 static void
 2011 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
 2012 {
 2013         cpu->cpu_deadman_counter = 0;
 2014         cpu->cpu_deadman_countdown = deadman_seconds;
 2015 
 2016         hdlr->cyh_func = (cyc_func_t)deadman;
 2017         hdlr->cyh_level = CY_HIGH_LEVEL;
 2018         hdlr->cyh_arg = NULL;
 2019 
 2020         /*
 2021          * Stagger the CPUs so that they don't all run deadman() at
 2022          * the same time.  Simplest reason to do this is to make it
 2023          * more likely that only one CPU will panic in case of a
 2024          * timeout.  This is (strictly speaking) an aesthetic, not a
 2025          * technical consideration.
 2026          */
 2027         when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
 2028         when->cyt_interval = NANOSEC;
 2029 }
 2030 
 2031 
 2032 void
 2033 deadman_init(void)
 2034 {
 2035         cyc_omni_handler_t hdlr;
 2036 
 2037         if (deadman_seconds == 0)
 2038                 deadman_seconds = snoop_interval / MICROSEC;
 2039 
 2040         if (snooping)
 2041                 deadman_enabled = 1;
 2042 
 2043         hdlr.cyo_online = deadman_online;
 2044         hdlr.cyo_offline = NULL;
 2045         hdlr.cyo_arg = NULL;
 2046 
 2047         mutex_enter(&cpu_lock);
 2048         deadman_cyclic = cyclic_add_omni(&hdlr);
 2049         mutex_exit(&cpu_lock);
 2050 }
 2051 
 2052 /*
 2053  * tod_fault() is for updating tod validate mechanism state:
 2054  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
 2055  *     currently used for debugging only
 2056  * (2) The following four cases detected by tod validate mechanism:
 2057  *       TOD_REVERSED: current tod value is less than previous value.
 2058  *       TOD_STALLED: current tod value hasn't advanced.
 2059  *       TOD_JUMPED: current tod value advanced too far from previous value.
 2060  *       TOD_RATECHANGED: the ratio between average tod delta and
 2061  *       average tick delta has changed.
 2062  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
 2063  *     a virtual TOD provided by a hypervisor.
 2064  */
 2065 enum tod_fault_type
 2066 tod_fault(enum tod_fault_type ftype, int off)
 2067 {
 2068         ASSERT(MUTEX_HELD(&tod_lock));
 2069 
 2070         if (tod_faulted != ftype) {
 2071                 switch (ftype) {
 2072                 case TOD_NOFAULT:
 2073                         plat_tod_fault(TOD_NOFAULT);
 2074                         cmn_err(CE_NOTE, "Restarted tracking "
 2075                             "Time of Day clock.");
 2076                         tod_faulted = ftype;
 2077                         break;
 2078                 case TOD_REVERSED:
 2079                 case TOD_JUMPED:
 2080                         if (tod_faulted == TOD_NOFAULT) {
 2081                                 plat_tod_fault(ftype);
 2082                                 cmn_err(CE_WARN, "Time of Day clock error: "
 2083                                     "reason [%s by 0x%x]. -- "
 2084                                     " Stopped tracking Time Of Day clock.",
 2085                                     tod_fault_table[ftype], off);
 2086                                 tod_faulted = ftype;
 2087                         }
 2088                         break;
 2089                 case TOD_STALLED:
 2090                 case TOD_RATECHANGED:
 2091                         if (tod_faulted == TOD_NOFAULT) {
 2092                                 plat_tod_fault(ftype);
 2093                                 cmn_err(CE_WARN, "Time of Day clock error: "
 2094                                     "reason [%s]. -- "
 2095                                     " Stopped tracking Time Of Day clock.",
 2096                                     tod_fault_table[ftype]);
 2097                                 tod_faulted = ftype;
 2098                         }
 2099                         break;
 2100                 case TOD_RDONLY:
 2101                         if (tod_faulted == TOD_NOFAULT) {
 2102                                 plat_tod_fault(ftype);
 2103                                 cmn_err(CE_NOTE, "!Time of Day clock is "
 2104                                     "Read-Only; set of Date/Time will not "
 2105                                     "persist across reboot.");
 2106                                 tod_faulted = ftype;
 2107                         }
 2108                         break;
 2109                 default:
 2110                         break;
 2111                 }
 2112         }
 2113         return (tod_faulted);
 2114 }
 2115 
 2116 /*
 2117  * Two functions that allow tod_status_flag to be manipulated by functions
 2118  * external to this file.
 2119  */
 2120 
 2121 void
 2122 tod_status_set(int tod_flag)
 2123 {
 2124         tod_status_flag |= tod_flag;
 2125 }
 2126 
 2127 void
 2128 tod_status_clear(int tod_flag)
 2129 {
 2130         tod_status_flag &= ~tod_flag;
 2131 }
 2132 
 2133 /*
 2134  * Record a timestamp and the value passed to tod_set().  The next call to
 2135  * tod_validate() can use these values, prev_set_tick and prev_set_tod,
 2136  * when checking the timestruc_t returned by tod_get().  Ordinarily,
 2137  * tod_validate() will use prev_tick and prev_tod for this task but these
 2138  * become obsolete, and will be re-assigned with the prev_set_* values,
 2139  * in the case when the TOD is re-written.
 2140  */
 2141 void
 2142 tod_set_prev(timestruc_t ts)
 2143 {
 2144         if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
 2145             tod_validate_deferred) {
 2146                 return;
 2147         }
 2148         prev_set_tick = gethrtime();
 2149         /*
 2150          * A negative value will be set to zero in utc_to_tod() so we fake
 2151          * a zero here in such a case.  This would need to change if the
 2152          * behavior of utc_to_tod() changes.
 2153          */
 2154         prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
 2155 }
 2156 
 2157 /*
 2158  * tod_validate() is used for checking values returned by tod_get().
 2159  * Four error cases can be detected by this routine:
 2160  *   TOD_REVERSED: current tod value is less than previous.
 2161  *   TOD_STALLED: current tod value hasn't advanced.
 2162  *   TOD_JUMPED: current tod value advanced too far from previous value.
 2163  *   TOD_RATECHANGED: the ratio between average tod delta and
 2164  *   average tick delta has changed.
 2165  */
 2166 time_t
 2167 tod_validate(time_t tod)
 2168 {
 2169         time_t diff_tod;
 2170         hrtime_t diff_tick;
 2171 
 2172         long dtick;
 2173         int dtick_delta;
 2174 
 2175         int off = 0;
 2176         enum tod_fault_type tod_bad = TOD_NOFAULT;
 2177 
 2178         static int firsttime = 1;
 2179 
 2180         static time_t prev_tod = 0;
 2181         static hrtime_t prev_tick = 0;
 2182         static long dtick_avg = TOD_REF_FREQ;
 2183 
 2184         int cpr_resume_done = 0;
 2185         int dr_resume_done = 0;
 2186 
 2187         hrtime_t tick = gethrtime();
 2188 
 2189         ASSERT(MUTEX_HELD(&tod_lock));
 2190 
 2191         /*
 2192          * tod_validate_enable is patchable via /etc/system.
 2193          * If TOD is already faulted, or if TOD validation is deferred,
 2194          * there is nothing to do.
 2195          */
 2196         if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
 2197             tod_validate_deferred) {
 2198                 return (tod);
 2199         }
 2200 
 2201         /*
 2202          * If this is the first time through, we just need to save the tod
 2203          * we were called with and hrtime so we can use them next time to
 2204          * validate tod_get().
 2205          */
 2206         if (firsttime) {
 2207                 firsttime = 0;
 2208                 prev_tod = tod;
 2209                 prev_tick = tick;
 2210                 return (tod);
 2211         }
 2212 
 2213         /*
 2214          * Handle any flags that have been turned on by tod_status_set().
 2215          * In the case where a tod_set() is done and then a subsequent
 2216          * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
 2217          * true), we treat the TOD_GET_FAILED with precedence by switching
 2218          * off the flag, returning tod and leaving TOD_SET_DONE asserted
 2219          * until such time as tod_get() completes successfully.
 2220          */
 2221         if (tod_status_flag & TOD_GET_FAILED) {
 2222                 /*
 2223                  * tod_get() has encountered an issue, possibly transitory,
 2224                  * when reading TOD.  We'll just return the incoming tod
 2225                  * value (which is actually hrestime.tv_sec in this case)
 2226                  * and when we get a genuine tod, following a successful
 2227                  * tod_get(), we can validate using prev_tod and prev_tick.
 2228                  */
 2229                 tod_status_flag &= ~TOD_GET_FAILED;
 2230                 return (tod);
 2231         } else if (tod_status_flag & TOD_SET_DONE) {
 2232                 /*
 2233                  * TOD has been modified.  Just before the TOD was written,
 2234                  * tod_set_prev() saved tod and hrtime; we can now use
 2235                  * those values, prev_set_tod and prev_set_tick, to validate
 2236                  * the incoming tod that's just been read.
 2237                  */
 2238                 prev_tod = prev_set_tod;
 2239                 prev_tick = prev_set_tick;
 2240                 dtick_avg = TOD_REF_FREQ;
 2241                 tod_status_flag &= ~TOD_SET_DONE;
 2242                 /*
 2243                  * If a tod_set() preceded a cpr_suspend() without an
 2244                  * intervening tod_validate(), we need to ensure that a
 2245                  * TOD_JUMPED condition is ignored.
 2246                  * Note this isn't a concern in the case of DR as we've
 2247                  * just reassigned dtick_avg, above.
 2248                  */
 2249                 if (tod_status_flag & TOD_CPR_RESUME_DONE) {
 2250                         cpr_resume_done = 1;
 2251                         tod_status_flag &= ~TOD_CPR_RESUME_DONE;
 2252                 }
 2253         } else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
 2254                 /*
 2255                  * The system's coming back from a checkpoint resume.
 2256                  */
 2257                 cpr_resume_done = 1;
 2258                 tod_status_flag &= ~TOD_CPR_RESUME_DONE;
 2259                 /*
 2260                  * We need to handle the possibility of a CPR suspend
 2261                  * operation having been initiated whilst a DR event was
 2262                  * in-flight.
 2263                  */
 2264                 if (tod_status_flag & TOD_DR_RESUME_DONE) {
 2265                         dr_resume_done = 1;
 2266                         tod_status_flag &= ~TOD_DR_RESUME_DONE;
 2267                 }
 2268         } else if (tod_status_flag & TOD_DR_RESUME_DONE) {
 2269                 /*
 2270                  * A Dynamic Reconfiguration event has taken place.
 2271                  */
 2272                 dr_resume_done = 1;
 2273                 tod_status_flag &= ~TOD_DR_RESUME_DONE;
 2274         }
 2275 
 2276         /* test hook */
 2277         switch (tod_unit_test) {
 2278         case 1: /* for testing jumping tod */
 2279                 tod += tod_test_injector;
 2280                 tod_unit_test = 0;
 2281                 break;
 2282         case 2: /* for testing stuck tod bit */
 2283                 tod |= 1 << tod_test_injector;
 2284                 tod_unit_test = 0;
 2285                 break;
 2286         case 3: /* for testing stalled tod */
 2287                 tod = prev_tod;
 2288                 tod_unit_test = 0;
 2289                 break;
 2290         case 4: /* reset tod fault status */
 2291                 (void) tod_fault(TOD_NOFAULT, 0);
 2292                 tod_unit_test = 0;
 2293                 break;
 2294         default:
 2295                 break;
 2296         }
 2297 
 2298         diff_tod = tod - prev_tod;
 2299         diff_tick = tick - prev_tick;
 2300 
 2301         ASSERT(diff_tick >= 0);
 2302 
 2303         if (diff_tod < 0) {
 2304                 /* ERROR - tod reversed */
 2305                 tod_bad = TOD_REVERSED;
 2306                 off = (int)(prev_tod - tod);
 2307         } else if (diff_tod == 0) {
 2308                 /* tod did not advance */
 2309                 if (diff_tick > TOD_STALL_THRESHOLD) {
 2310                         /* ERROR - tod stalled */
 2311                         tod_bad = TOD_STALLED;
 2312                 } else {
 2313                         /*
 2314                          * Make sure we don't update prev_tick
 2315                          * so that diff_tick is calculated since
 2316                          * the first diff_tod == 0
 2317                          */
 2318                         return (tod);
 2319                 }
 2320         } else {
 2321                 /* calculate dtick */
 2322                 dtick = diff_tick / diff_tod;
 2323 
 2324                 /* update dtick averages */
 2325                 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
 2326 
 2327                 /*
 2328                  * Calculate dtick_delta as
 2329                  * variation from reference freq in quartiles
 2330                  */
 2331                 dtick_delta = (dtick_avg - TOD_REF_FREQ) /
 2332                     (TOD_REF_FREQ >> 2);
 2333 
 2334                 /*
 2335                  * Even with a perfectly functioning TOD device,
 2336                  * when the number of elapsed seconds is low the
 2337                  * algorithm can calculate a rate that is beyond
 2338                  * tolerance, causing an error.  The algorithm is
 2339                  * inaccurate when elapsed time is low (less than
 2340                  * 5 seconds).
 2341                  */
 2342                 if (diff_tod > 4) {
 2343                         if (dtick < TOD_JUMP_THRESHOLD) {
 2344                                 /*
 2345                                  * If we've just done a CPR resume, we detect
 2346                                  * a jump in the TOD but, actually, what's
 2347                                  * happened is that the TOD has been increasing
 2348                                  * whilst the system was suspended and the tick
 2349                                  * count hasn't kept up.  We consider the first
 2350                                  * occurrence of this after a resume as normal
 2351                                  * and ignore it; otherwise, in a non-resume
 2352                                  * case, we regard it as a TOD problem.
 2353                                  */
 2354                                 if (!cpr_resume_done) {
 2355                                         /* ERROR - tod jumped */
 2356                                         tod_bad = TOD_JUMPED;
 2357                                         off = (int)diff_tod;
 2358                                 }
 2359                         }
 2360                         if (dtick_delta) {
 2361                                 /*
 2362                                  * If we've just done a DR resume, dtick_avg
 2363                                  * can go a bit askew so we reset it and carry
 2364                                  * on; otherwise, the TOD is in error.
 2365                                  */
 2366                                 if (dr_resume_done) {
 2367                                         dtick_avg = TOD_REF_FREQ;
 2368                                 } else {
 2369                                         /* ERROR - change in clock rate */
 2370                                         tod_bad = TOD_RATECHANGED;
 2371                                 }
 2372                         }
 2373                 }
 2374         }
 2375 
 2376         if (tod_bad != TOD_NOFAULT) {
 2377                 (void) tod_fault(tod_bad, off);
 2378 
 2379                 /*
 2380                  * Disable dosynctodr since we are going to fault
 2381                  * the TOD chip anyway here
 2382                  */
 2383                 dosynctodr = 0;
 2384 
 2385                 /*
 2386                  * Set tod to the correct value from hrestime
 2387                  */
 2388                 tod = hrestime.tv_sec;
 2389         }
 2390 
 2391         prev_tod = tod;
 2392         prev_tick = tick;
 2393         return (tod);
 2394 }
 2395 
 2396 static void
 2397 calcloadavg(int nrun, uint64_t *hp_ave)
 2398 {
 2399         static int64_t f[3] = { 135, 27, 9 };
 2400         uint_t i;
 2401         int64_t q, r;
 2402 
 2403         /*
 2404          * Compute load average over the last 1, 5, and 15 minutes
 2405          * (60, 300, and 900 seconds).  The constants in f[3] are for
 2406          * exponential decay:
 2407          * (1 - exp(-1/60)) << 13 = 135,
 2408          * (1 - exp(-1/300)) << 13 = 27,
 2409          * (1 - exp(-1/900)) << 13 = 9.
 2410          */
 2411 
 2412         /*
 2413          * a little hoop-jumping to avoid integer overflow
 2414          */
 2415         for (i = 0; i < 3; i++) {
 2416                 q = (hp_ave[i]  >> 16) << 7;
 2417                 r = (hp_ave[i]  & 0xffff) << 7;
 2418                 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
 2419         }
 2420 }
 2421 
 2422 /*
 2423  * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
 2424  * calculate the value of lbolt according to the current mode. In the event
 2425  * driven mode (the default), lbolt is calculated by dividing the current hires
 2426  * time by the number of nanoseconds per clock tick. In the cyclic driven mode
 2427  * an internal variable is incremented at each firing of the lbolt cyclic
 2428  * and returned by lbolt_cyclic_driven().
 2429  *
 2430  * The system will transition from event to cyclic driven mode when the number
 2431  * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
 2432  * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
 2433  * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
 2434  * causing enough activity to cross the thresholds.
 2435  */
 2436 int64_t
 2437 lbolt_bootstrap(void)
 2438 {
 2439         return (0);
 2440 }
 2441 
 2442 /* ARGSUSED */
 2443 uint_t
 2444 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
 2445 {
 2446         hrtime_t ts, exp;
 2447         int ret;
 2448 
 2449         ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
 2450 
 2451         kpreempt_disable();
 2452 
 2453         ts = gethrtime();
 2454         lb_info->lbi_internal = (ts/nsec_per_tick);
 2455 
 2456         /*
 2457          * Align the next expiration to a clock tick boundary.
 2458          */
 2459         exp = ts + nsec_per_tick - 1;
 2460         exp = (exp/nsec_per_tick) * nsec_per_tick;
 2461 
 2462         ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
 2463         ASSERT(ret);
 2464 
 2465         lbolt_hybrid = lbolt_cyclic_driven;
 2466         lb_info->lbi_cyc_deactivate = B_FALSE;
 2467         lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
 2468 
 2469         kpreempt_enable();
 2470 
 2471         ret = atomic_dec_32_nv(&lb_info->lbi_token);
 2472         ASSERT(ret == 0);
 2473 
 2474         return (1);
 2475 }
 2476 
 2477 int64_t
 2478 lbolt_event_driven(void)
 2479 {
 2480         hrtime_t ts;
 2481         int64_t lb;
 2482         int ret, cpu = CPU->cpu_seqid;
 2483 
 2484         ts = gethrtime();
 2485         ASSERT(ts > 0);
 2486 
 2487         ASSERT(nsec_per_tick > 0);
 2488         lb = (ts/nsec_per_tick);
 2489 
 2490         /*
 2491          * Switch to cyclic mode if the number of calls to this routine
 2492          * has reached the threshold within the interval.
 2493          */
 2494         if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
 2495 
 2496                 if (--lb_cpu[cpu].lbc_counter == 0) {
 2497                         /*
 2498                          * Reached the threshold within the interval, reset
 2499                          * the usage statistics.
 2500                          */
 2501                         lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
 2502                         lb_cpu[cpu].lbc_cnt_start = lb;
 2503 
 2504                         /*
 2505                          * Make sure only one thread reprograms the
 2506                          * lbolt cyclic and changes the mode.
 2507                          */
 2508                         if (panicstr == NULL &&
 2509                             atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
 2510 
 2511                                 if (lbolt_hybrid == lbolt_cyclic_driven) {
 2512                                         ret = atomic_dec_32_nv(
 2513                                             &lb_info->lbi_token);
 2514                                         ASSERT(ret == 0);
 2515                                 } else {
 2516                                         lbolt_softint_post();
 2517                                 }
 2518                         }
 2519                 }
 2520         } else {
 2521                 /*
 2522                  * Exceeded the interval, reset the usage statistics.
 2523                  */
 2524                 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
 2525                 lb_cpu[cpu].lbc_cnt_start = lb;
 2526         }
 2527 
 2528         ASSERT(lb >= lb_info->lbi_debug_time);
 2529 
 2530         return (lb - lb_info->lbi_debug_time);
 2531 }
 2532 
 2533 int64_t
 2534 lbolt_cyclic_driven(void)
 2535 {
 2536         int64_t lb = lb_info->lbi_internal;
 2537         int cpu;
 2538 
 2539         /*
 2540          * If a CPU has already prevented the lbolt cyclic from deactivating
 2541          * itself, don't bother tracking the usage. Otherwise check if we're
 2542          * within the interval and how the per CPU counter is doing.
 2543          */
 2544         if (lb_info->lbi_cyc_deactivate) {
 2545                 cpu = CPU->cpu_seqid;
 2546                 if ((lb - lb_cpu[cpu].lbc_cnt_start) <
 2547                     lb_info->lbi_thresh_interval) {
 2548 
 2549                         if (lb_cpu[cpu].lbc_counter == 0)
 2550                                 /*
 2551                                  * Reached the threshold within the interval,
 2552                                  * prevent the lbolt cyclic from turning itself
 2553                                  * off.
 2554                                  */
 2555                                 lb_info->lbi_cyc_deactivate = B_FALSE;
 2556                         else
 2557                                 lb_cpu[cpu].lbc_counter--;
 2558                 } else {
 2559                         /*
 2560                          * Only reset the usage statistics when we have
 2561                          * exceeded the interval.
 2562                          */
 2563                         lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
 2564                         lb_cpu[cpu].lbc_cnt_start = lb;
 2565                 }
 2566         }
 2567 
 2568         ASSERT(lb >= lb_info->lbi_debug_time);
 2569 
 2570         return (lb - lb_info->lbi_debug_time);
 2571 }
 2572 
 2573 /*
 2574  * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
 2575  * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
 2576  * It is inactive by default, and will be activated when switching from event
 2577  * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
 2578  * by lbolt_cyclic_driven().
 2579  */
 2580 static void
 2581 lbolt_cyclic(void)
 2582 {
 2583         int ret;
 2584 
 2585         lb_info->lbi_internal++;
 2586 
 2587         if (!lbolt_cyc_only) {
 2588 
 2589                 if (lb_info->lbi_cyc_deactivate) {
 2590                         /*
 2591                          * Switching from cyclic to event driven mode.
 2592                          */
 2593                         if (panicstr == NULL &&
 2594                             atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
 2595 
 2596                                 if (lbolt_hybrid == lbolt_event_driven) {
 2597                                         ret = atomic_dec_32_nv(
 2598                                             &lb_info->lbi_token);
 2599                                         ASSERT(ret == 0);
 2600                                         return;
 2601                                 }
 2602 
 2603                                 kpreempt_disable();
 2604 
 2605                                 lbolt_hybrid = lbolt_event_driven;
 2606                                 ret = cyclic_reprogram(
 2607                                     lb_info->id.lbi_cyclic_id,
 2608                                     CY_INFINITY);
 2609                                 ASSERT(ret);
 2610 
 2611                                 kpreempt_enable();
 2612 
 2613                                 ret = atomic_dec_32_nv(&lb_info->lbi_token);
 2614                                 ASSERT(ret == 0);
 2615                         }
 2616                 }
 2617 
 2618                 /*
 2619                  * The lbolt cyclic should not try to deactivate itself before
 2620                  * the sampling period has elapsed.
 2621                  */
 2622                 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
 2623                     lb_info->lbi_thresh_interval) {
 2624                         lb_info->lbi_cyc_deactivate = B_TRUE;
 2625                         lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
 2626                 }
 2627         }
 2628 }
 2629 
 2630 /*
 2631  * Since the lbolt service was historically cyclic driven, it must be 'stopped'
 2632  * when the system drops into the kernel debugger. lbolt_debug_entry() is
 2633  * called by the KDI system claim callbacks to record a hires timestamp at
 2634  * debug enter time. lbolt_debug_return() is called by the sistem release
 2635  * callbacks to account for the time spent in the debugger. The value is then
 2636  * accumulated in the lb_info structure and used by lbolt_event_driven() and
 2637  * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
 2638  */
 2639 void
 2640 lbolt_debug_entry(void)
 2641 {
 2642         if (lbolt_hybrid != lbolt_bootstrap) {
 2643                 ASSERT(lb_info != NULL);
 2644                 lb_info->lbi_debug_ts = gethrtime();
 2645         }
 2646 }
 2647 
 2648 /*
 2649  * Calculate the time spent in the debugger and add it to the lbolt info
 2650  * structure. We also update the internal lbolt value in case we were in
 2651  * cyclic driven mode going in.
 2652  */
 2653 void
 2654 lbolt_debug_return(void)
 2655 {
 2656         hrtime_t ts;
 2657 
 2658         if (lbolt_hybrid != lbolt_bootstrap) {
 2659                 ASSERT(lb_info != NULL);
 2660                 ASSERT(nsec_per_tick > 0);
 2661 
 2662                 ts = gethrtime();
 2663                 lb_info->lbi_internal = (ts/nsec_per_tick);
 2664                 lb_info->lbi_debug_time +=
 2665                     ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
 2666 
 2667                 lb_info->lbi_debug_ts = 0;
 2668         }
 2669 }

Cache object: efc3b20281ac0d7895c2ec6f2970bdb5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.