1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35
36 #define __ELF_WORD_SIZE 32
37
38 #ifdef COMPAT_FREEBSD11
39 #define _WANT_FREEBSD11_KEVENT
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h> /* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */
72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timex.h>
86 #include <sys/unistd.h>
87 #include <sys/ucontext.h>
88 #include <sys/vnode.h>
89 #include <sys/wait.h>
90 #include <sys/ipc.h>
91 #include <sys/msg.h>
92 #include <sys/sem.h>
93 #include <sys/shm.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97
98 #ifdef INET
99 #include <netinet/in.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_extern.h>
108
109 #include <machine/cpu.h>
110 #include <machine/elf.h>
111 #ifdef __amd64__
112 #include <machine/md_var.h>
113 #endif
114
115 #include <security/audit/audit.h>
116
117 #include <compat/freebsd32/freebsd32_util.h>
118 #include <compat/freebsd32/freebsd32.h>
119 #include <compat/freebsd32/freebsd32_ipc.h>
120 #include <compat/freebsd32/freebsd32_misc.h>
121 #include <compat/freebsd32/freebsd32_signal.h>
122 #include <compat/freebsd32/freebsd32_proto.h>
123
124 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
125
126 struct ptrace_io_desc32 {
127 int piod_op;
128 uint32_t piod_offs;
129 uint32_t piod_addr;
130 uint32_t piod_len;
131 };
132
133 struct ptrace_vm_entry32 {
134 int pve_entry;
135 int pve_timestamp;
136 uint32_t pve_start;
137 uint32_t pve_end;
138 uint32_t pve_offset;
139 u_int pve_prot;
140 u_int pve_pathlen;
141 int32_t pve_fileid;
142 u_int pve_fsid;
143 uint32_t pve_path;
144 };
145
146 #ifdef __amd64__
147 CTASSERT(sizeof(struct timeval32) == 8);
148 CTASSERT(sizeof(struct timespec32) == 8);
149 CTASSERT(sizeof(struct itimerval32) == 16);
150 CTASSERT(sizeof(struct bintime32) == 12);
151 #endif
152 CTASSERT(sizeof(struct statfs32) == 256);
153 #ifdef __amd64__
154 CTASSERT(sizeof(struct rusage32) == 72);
155 #endif
156 CTASSERT(sizeof(struct sigaltstack32) == 12);
157 #ifdef __amd64__
158 CTASSERT(sizeof(struct kevent32) == 56);
159 #else
160 CTASSERT(sizeof(struct kevent32) == 64);
161 #endif
162 CTASSERT(sizeof(struct iovec32) == 8);
163 CTASSERT(sizeof(struct msghdr32) == 28);
164 #ifdef __amd64__
165 CTASSERT(sizeof(struct stat32) == 208);
166 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
167 #endif
168 CTASSERT(sizeof(struct sigaction32) == 24);
169
170 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
171 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
172 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
173 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
174
175 void
176 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
177 {
178
179 TV_CP(*s, *s32, ru_utime);
180 TV_CP(*s, *s32, ru_stime);
181 CP(*s, *s32, ru_maxrss);
182 CP(*s, *s32, ru_ixrss);
183 CP(*s, *s32, ru_idrss);
184 CP(*s, *s32, ru_isrss);
185 CP(*s, *s32, ru_minflt);
186 CP(*s, *s32, ru_majflt);
187 CP(*s, *s32, ru_nswap);
188 CP(*s, *s32, ru_inblock);
189 CP(*s, *s32, ru_oublock);
190 CP(*s, *s32, ru_msgsnd);
191 CP(*s, *s32, ru_msgrcv);
192 CP(*s, *s32, ru_nsignals);
193 CP(*s, *s32, ru_nvcsw);
194 CP(*s, *s32, ru_nivcsw);
195 }
196
197 int
198 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
199 {
200 int error, status;
201 struct rusage32 ru32;
202 struct rusage ru, *rup;
203
204 if (uap->rusage != NULL)
205 rup = &ru;
206 else
207 rup = NULL;
208 error = kern_wait(td, uap->pid, &status, uap->options, rup);
209 if (error)
210 return (error);
211 if (uap->status != NULL)
212 error = copyout(&status, uap->status, sizeof(status));
213 if (uap->rusage != NULL && error == 0) {
214 freebsd32_rusage_out(&ru, &ru32);
215 error = copyout(&ru32, uap->rusage, sizeof(ru32));
216 }
217 return (error);
218 }
219
220 int
221 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
222 {
223 struct wrusage32 wru32;
224 struct __wrusage wru, *wrup;
225 struct siginfo32 si32;
226 struct __siginfo si, *sip;
227 int error, status;
228
229 if (uap->wrusage != NULL)
230 wrup = &wru;
231 else
232 wrup = NULL;
233 if (uap->info != NULL) {
234 sip = &si;
235 bzero(sip, sizeof(*sip));
236 } else
237 sip = NULL;
238 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
239 &status, uap->options, wrup, sip);
240 if (error != 0)
241 return (error);
242 if (uap->status != NULL)
243 error = copyout(&status, uap->status, sizeof(status));
244 if (uap->wrusage != NULL && error == 0) {
245 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
246 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
247 error = copyout(&wru32, uap->wrusage, sizeof(wru32));
248 }
249 if (uap->info != NULL && error == 0) {
250 siginfo_to_siginfo32 (&si, &si32);
251 error = copyout(&si32, uap->info, sizeof(si32));
252 }
253 return (error);
254 }
255
256 #ifdef COMPAT_FREEBSD4
257 static void
258 copy_statfs(struct statfs *in, struct statfs32 *out)
259 {
260
261 statfs_scale_blocks(in, INT32_MAX);
262 bzero(out, sizeof(*out));
263 CP(*in, *out, f_bsize);
264 out->f_iosize = MIN(in->f_iosize, INT32_MAX);
265 CP(*in, *out, f_blocks);
266 CP(*in, *out, f_bfree);
267 CP(*in, *out, f_bavail);
268 out->f_files = MIN(in->f_files, INT32_MAX);
269 out->f_ffree = MIN(in->f_ffree, INT32_MAX);
270 CP(*in, *out, f_fsid);
271 CP(*in, *out, f_owner);
272 CP(*in, *out, f_type);
273 CP(*in, *out, f_flags);
274 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
275 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
276 strlcpy(out->f_fstypename,
277 in->f_fstypename, MFSNAMELEN);
278 strlcpy(out->f_mntonname,
279 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
280 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
281 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
282 strlcpy(out->f_mntfromname,
283 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
284 }
285 #endif
286
287 #ifdef COMPAT_FREEBSD4
288 int
289 freebsd4_freebsd32_getfsstat(struct thread *td,
290 struct freebsd4_freebsd32_getfsstat_args *uap)
291 {
292 struct statfs *buf, *sp;
293 struct statfs32 stat32;
294 size_t count, size, copycount;
295 int error;
296
297 count = uap->bufsize / sizeof(struct statfs32);
298 size = count * sizeof(struct statfs);
299 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
300 if (size > 0) {
301 sp = buf;
302 copycount = count;
303 while (copycount > 0 && error == 0) {
304 copy_statfs(sp, &stat32);
305 error = copyout(&stat32, uap->buf, sizeof(stat32));
306 sp++;
307 uap->buf++;
308 copycount--;
309 }
310 free(buf, M_STATFS);
311 }
312 if (error == 0)
313 td->td_retval[0] = count;
314 return (error);
315 }
316 #endif
317
318 #ifdef COMPAT_FREEBSD10
319 int
320 freebsd10_freebsd32_pipe(struct thread *td,
321 struct freebsd10_freebsd32_pipe_args *uap) {
322 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
323 }
324 #endif
325
326 int
327 freebsd32_sigaltstack(struct thread *td,
328 struct freebsd32_sigaltstack_args *uap)
329 {
330 struct sigaltstack32 s32;
331 struct sigaltstack ss, oss, *ssp;
332 int error;
333
334 if (uap->ss != NULL) {
335 error = copyin(uap->ss, &s32, sizeof(s32));
336 if (error)
337 return (error);
338 PTRIN_CP(s32, ss, ss_sp);
339 CP(s32, ss, ss_size);
340 CP(s32, ss, ss_flags);
341 ssp = &ss;
342 } else
343 ssp = NULL;
344 error = kern_sigaltstack(td, ssp, &oss);
345 if (error == 0 && uap->oss != NULL) {
346 PTROUT_CP(oss, s32, ss_sp);
347 CP(oss, s32, ss_size);
348 CP(oss, s32, ss_flags);
349 error = copyout(&s32, uap->oss, sizeof(s32));
350 }
351 return (error);
352 }
353
354 /*
355 * Custom version of exec_copyin_args() so that we can translate
356 * the pointers.
357 */
358 int
359 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
360 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
361 {
362 char *argp, *envp;
363 u_int32_t *p32, arg;
364 int error;
365
366 bzero(args, sizeof(*args));
367 if (argv == NULL)
368 return (EFAULT);
369
370 /*
371 * Allocate demand-paged memory for the file name, argument, and
372 * environment strings.
373 */
374 error = exec_alloc_args(args);
375 if (error != 0)
376 return (error);
377
378 /*
379 * Copy the file name.
380 */
381 error = exec_args_add_fname(args, fname, segflg);
382 if (error != 0)
383 goto err_exit;
384
385 /*
386 * extract arguments first
387 */
388 p32 = argv;
389 for (;;) {
390 error = copyin(p32++, &arg, sizeof(arg));
391 if (error)
392 goto err_exit;
393 if (arg == 0)
394 break;
395 argp = PTRIN(arg);
396 error = exec_args_add_arg(args, argp, UIO_USERSPACE);
397 if (error != 0)
398 goto err_exit;
399 }
400
401 /*
402 * extract environment strings
403 */
404 if (envv) {
405 p32 = envv;
406 for (;;) {
407 error = copyin(p32++, &arg, sizeof(arg));
408 if (error)
409 goto err_exit;
410 if (arg == 0)
411 break;
412 envp = PTRIN(arg);
413 error = exec_args_add_env(args, envp, UIO_USERSPACE);
414 if (error != 0)
415 goto err_exit;
416 }
417 }
418
419 return (0);
420
421 err_exit:
422 exec_free_args(args);
423 return (error);
424 }
425
426 int
427 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
428 {
429 struct image_args eargs;
430 struct vmspace *oldvmspace;
431 int error;
432
433 error = pre_execve(td, &oldvmspace);
434 if (error != 0)
435 return (error);
436 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
437 uap->argv, uap->envv);
438 if (error == 0)
439 error = kern_execve(td, &eargs, NULL, oldvmspace);
440 post_execve(td, error, oldvmspace);
441 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
442 return (error);
443 }
444
445 int
446 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
447 {
448 struct image_args eargs;
449 struct vmspace *oldvmspace;
450 int error;
451
452 error = pre_execve(td, &oldvmspace);
453 if (error != 0)
454 return (error);
455 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
456 uap->argv, uap->envv);
457 if (error == 0) {
458 eargs.fd = uap->fd;
459 error = kern_execve(td, &eargs, NULL, oldvmspace);
460 }
461 post_execve(td, error, oldvmspace);
462 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
463 return (error);
464 }
465
466 int
467 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
468 {
469
470 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
471 uap->mode, PAIR32TO64(dev_t, uap->dev)));
472 }
473
474 int
475 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
476 {
477 int prot;
478
479 prot = uap->prot;
480 #if defined(__amd64__)
481 if (i386_read_exec && (prot & PROT_READ) != 0)
482 prot |= PROT_EXEC;
483 #endif
484 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
485 prot));
486 }
487
488 int
489 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
490 {
491 int prot;
492
493 prot = uap->prot;
494 #if defined(__amd64__)
495 if (i386_read_exec && (prot & PROT_READ))
496 prot |= PROT_EXEC;
497 #endif
498
499 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
500 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
501 }
502
503 #ifdef COMPAT_FREEBSD6
504 int
505 freebsd6_freebsd32_mmap(struct thread *td,
506 struct freebsd6_freebsd32_mmap_args *uap)
507 {
508 int prot;
509
510 prot = uap->prot;
511 #if defined(__amd64__)
512 if (i386_read_exec && (prot & PROT_READ))
513 prot |= PROT_EXEC;
514 #endif
515
516 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
517 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
518 }
519 #endif
520
521 int
522 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
523 {
524 struct itimerval itv, oitv, *itvp;
525 struct itimerval32 i32;
526 int error;
527
528 if (uap->itv != NULL) {
529 error = copyin(uap->itv, &i32, sizeof(i32));
530 if (error)
531 return (error);
532 TV_CP(i32, itv, it_interval);
533 TV_CP(i32, itv, it_value);
534 itvp = &itv;
535 } else
536 itvp = NULL;
537 error = kern_setitimer(td, uap->which, itvp, &oitv);
538 if (error || uap->oitv == NULL)
539 return (error);
540 TV_CP(oitv, i32, it_interval);
541 TV_CP(oitv, i32, it_value);
542 return (copyout(&i32, uap->oitv, sizeof(i32)));
543 }
544
545 int
546 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
547 {
548 struct itimerval itv;
549 struct itimerval32 i32;
550 int error;
551
552 error = kern_getitimer(td, uap->which, &itv);
553 if (error || uap->itv == NULL)
554 return (error);
555 TV_CP(itv, i32, it_interval);
556 TV_CP(itv, i32, it_value);
557 return (copyout(&i32, uap->itv, sizeof(i32)));
558 }
559
560 int
561 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
562 {
563 struct timeval32 tv32;
564 struct timeval tv, *tvp;
565 int error;
566
567 if (uap->tv != NULL) {
568 error = copyin(uap->tv, &tv32, sizeof(tv32));
569 if (error)
570 return (error);
571 CP(tv32, tv, tv_sec);
572 CP(tv32, tv, tv_usec);
573 tvp = &tv;
574 } else
575 tvp = NULL;
576 /*
577 * XXX Do pointers need PTRIN()?
578 */
579 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
580 sizeof(int32_t) * 8));
581 }
582
583 int
584 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
585 {
586 struct timespec32 ts32;
587 struct timespec ts;
588 struct timeval tv, *tvp;
589 sigset_t set, *uset;
590 int error;
591
592 if (uap->ts != NULL) {
593 error = copyin(uap->ts, &ts32, sizeof(ts32));
594 if (error != 0)
595 return (error);
596 CP(ts32, ts, tv_sec);
597 CP(ts32, ts, tv_nsec);
598 TIMESPEC_TO_TIMEVAL(&tv, &ts);
599 tvp = &tv;
600 } else
601 tvp = NULL;
602 if (uap->sm != NULL) {
603 error = copyin(uap->sm, &set, sizeof(set));
604 if (error != 0)
605 return (error);
606 uset = &set;
607 } else
608 uset = NULL;
609 /*
610 * XXX Do pointers need PTRIN()?
611 */
612 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
613 uset, sizeof(int32_t) * 8);
614 return (error);
615 }
616
617 /*
618 * Copy 'count' items into the destination list pointed to by uap->eventlist.
619 */
620 static int
621 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
622 {
623 struct freebsd32_kevent_args *uap;
624 struct kevent32 ks32[KQ_NEVENTS];
625 uint64_t e;
626 int i, j, error;
627
628 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
629 uap = (struct freebsd32_kevent_args *)arg;
630
631 for (i = 0; i < count; i++) {
632 CP(kevp[i], ks32[i], ident);
633 CP(kevp[i], ks32[i], filter);
634 CP(kevp[i], ks32[i], flags);
635 CP(kevp[i], ks32[i], fflags);
636 #if BYTE_ORDER == LITTLE_ENDIAN
637 ks32[i].data1 = kevp[i].data;
638 ks32[i].data2 = kevp[i].data >> 32;
639 #else
640 ks32[i].data1 = kevp[i].data >> 32;
641 ks32[i].data2 = kevp[i].data;
642 #endif
643 PTROUT_CP(kevp[i], ks32[i], udata);
644 for (j = 0; j < nitems(kevp->ext); j++) {
645 e = kevp[i].ext[j];
646 #if BYTE_ORDER == LITTLE_ENDIAN
647 ks32[i].ext64[2 * j] = e;
648 ks32[i].ext64[2 * j + 1] = e >> 32;
649 #else
650 ks32[i].ext64[2 * j] = e >> 32;
651 ks32[i].ext64[2 * j + 1] = e;
652 #endif
653 }
654 }
655 error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
656 if (error == 0)
657 uap->eventlist += count;
658 return (error);
659 }
660
661 /*
662 * Copy 'count' items from the list pointed to by uap->changelist.
663 */
664 static int
665 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
666 {
667 struct freebsd32_kevent_args *uap;
668 struct kevent32 ks32[KQ_NEVENTS];
669 uint64_t e;
670 int i, j, error;
671
672 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
673 uap = (struct freebsd32_kevent_args *)arg;
674
675 error = copyin(uap->changelist, ks32, count * sizeof *ks32);
676 if (error)
677 goto done;
678 uap->changelist += count;
679
680 for (i = 0; i < count; i++) {
681 CP(ks32[i], kevp[i], ident);
682 CP(ks32[i], kevp[i], filter);
683 CP(ks32[i], kevp[i], flags);
684 CP(ks32[i], kevp[i], fflags);
685 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
686 PTRIN_CP(ks32[i], kevp[i], udata);
687 for (j = 0; j < nitems(kevp->ext); j++) {
688 #if BYTE_ORDER == LITTLE_ENDIAN
689 e = ks32[i].ext64[2 * j + 1];
690 e <<= 32;
691 e += ks32[i].ext64[2 * j];
692 #else
693 e = ks32[i].ext64[2 * j];
694 e <<= 32;
695 e += ks32[i].ext64[2 * j + 1];
696 #endif
697 kevp[i].ext[j] = e;
698 }
699 }
700 done:
701 return (error);
702 }
703
704 int
705 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
706 {
707 struct timespec32 ts32;
708 struct timespec ts, *tsp;
709 struct kevent_copyops k_ops = {
710 .arg = uap,
711 .k_copyout = freebsd32_kevent_copyout,
712 .k_copyin = freebsd32_kevent_copyin,
713 };
714 #ifdef KTRACE
715 struct kevent32 *eventlist = uap->eventlist;
716 #endif
717 int error;
718
719 if (uap->timeout) {
720 error = copyin(uap->timeout, &ts32, sizeof(ts32));
721 if (error)
722 return (error);
723 CP(ts32, ts, tv_sec);
724 CP(ts32, ts, tv_nsec);
725 tsp = &ts;
726 } else
727 tsp = NULL;
728 #ifdef KTRACE
729 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
730 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
731 uap->nchanges, sizeof(struct kevent32));
732 #endif
733 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
734 &k_ops, tsp);
735 #ifdef KTRACE
736 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
737 ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
738 td->td_retval[0], sizeof(struct kevent32));
739 #endif
740 return (error);
741 }
742
743 #ifdef COMPAT_FREEBSD11
744 static int
745 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
746 {
747 struct freebsd11_freebsd32_kevent_args *uap;
748 struct kevent32_freebsd11 ks32[KQ_NEVENTS];
749 int i, error;
750
751 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
752 uap = (struct freebsd11_freebsd32_kevent_args *)arg;
753
754 for (i = 0; i < count; i++) {
755 CP(kevp[i], ks32[i], ident);
756 CP(kevp[i], ks32[i], filter);
757 CP(kevp[i], ks32[i], flags);
758 CP(kevp[i], ks32[i], fflags);
759 CP(kevp[i], ks32[i], data);
760 PTROUT_CP(kevp[i], ks32[i], udata);
761 }
762 error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
763 if (error == 0)
764 uap->eventlist += count;
765 return (error);
766 }
767
768 /*
769 * Copy 'count' items from the list pointed to by uap->changelist.
770 */
771 static int
772 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
773 {
774 struct freebsd11_freebsd32_kevent_args *uap;
775 struct kevent32_freebsd11 ks32[KQ_NEVENTS];
776 int i, j, error;
777
778 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
779 uap = (struct freebsd11_freebsd32_kevent_args *)arg;
780
781 error = copyin(uap->changelist, ks32, count * sizeof *ks32);
782 if (error)
783 goto done;
784 uap->changelist += count;
785
786 for (i = 0; i < count; i++) {
787 CP(ks32[i], kevp[i], ident);
788 CP(ks32[i], kevp[i], filter);
789 CP(ks32[i], kevp[i], flags);
790 CP(ks32[i], kevp[i], fflags);
791 CP(ks32[i], kevp[i], data);
792 PTRIN_CP(ks32[i], kevp[i], udata);
793 for (j = 0; j < nitems(kevp->ext); j++)
794 kevp[i].ext[j] = 0;
795 }
796 done:
797 return (error);
798 }
799
800 int
801 freebsd11_freebsd32_kevent(struct thread *td,
802 struct freebsd11_freebsd32_kevent_args *uap)
803 {
804 struct timespec32 ts32;
805 struct timespec ts, *tsp;
806 struct kevent_copyops k_ops = {
807 .arg = uap,
808 .k_copyout = freebsd32_kevent11_copyout,
809 .k_copyin = freebsd32_kevent11_copyin,
810 };
811 #ifdef KTRACE
812 struct kevent32_freebsd11 *eventlist = uap->eventlist;
813 #endif
814 int error;
815
816 if (uap->timeout) {
817 error = copyin(uap->timeout, &ts32, sizeof(ts32));
818 if (error)
819 return (error);
820 CP(ts32, ts, tv_sec);
821 CP(ts32, ts, tv_nsec);
822 tsp = &ts;
823 } else
824 tsp = NULL;
825 #ifdef KTRACE
826 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
827 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
828 uap->changelist, uap->nchanges,
829 sizeof(struct kevent32_freebsd11));
830 #endif
831 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
832 &k_ops, tsp);
833 #ifdef KTRACE
834 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
835 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
836 eventlist, td->td_retval[0],
837 sizeof(struct kevent32_freebsd11));
838 #endif
839 return (error);
840 }
841 #endif
842
843 int
844 freebsd32_gettimeofday(struct thread *td,
845 struct freebsd32_gettimeofday_args *uap)
846 {
847 struct timeval atv;
848 struct timeval32 atv32;
849 struct timezone rtz;
850 int error = 0;
851
852 if (uap->tp) {
853 microtime(&atv);
854 CP(atv, atv32, tv_sec);
855 CP(atv, atv32, tv_usec);
856 error = copyout(&atv32, uap->tp, sizeof (atv32));
857 }
858 if (error == 0 && uap->tzp != NULL) {
859 rtz.tz_minuteswest = 0;
860 rtz.tz_dsttime = 0;
861 error = copyout(&rtz, uap->tzp, sizeof (rtz));
862 }
863 return (error);
864 }
865
866 int
867 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
868 {
869 struct rusage32 s32;
870 struct rusage s;
871 int error;
872
873 error = kern_getrusage(td, uap->who, &s);
874 if (error == 0) {
875 freebsd32_rusage_out(&s, &s32);
876 error = copyout(&s32, uap->rusage, sizeof(s32));
877 }
878 return (error);
879 }
880
881 static void
882 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
883 struct ptrace_lwpinfo32 *pl32)
884 {
885
886 bzero(pl32, sizeof(*pl32));
887 pl32->pl_lwpid = pl->pl_lwpid;
888 pl32->pl_event = pl->pl_event;
889 pl32->pl_flags = pl->pl_flags;
890 pl32->pl_sigmask = pl->pl_sigmask;
891 pl32->pl_siglist = pl->pl_siglist;
892 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
893 strcpy(pl32->pl_tdname, pl->pl_tdname);
894 pl32->pl_child_pid = pl->pl_child_pid;
895 pl32->pl_syscall_code = pl->pl_syscall_code;
896 pl32->pl_syscall_narg = pl->pl_syscall_narg;
897 }
898
899 static void
900 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
901 struct ptrace_sc_ret32 *psr32)
902 {
903
904 bzero(psr32, sizeof(*psr32));
905 psr32->sr_retval[0] = psr->sr_retval[0];
906 psr32->sr_retval[1] = psr->sr_retval[1];
907 psr32->sr_error = psr->sr_error;
908 }
909
910 int
911 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
912 {
913 union {
914 struct ptrace_io_desc piod;
915 struct ptrace_lwpinfo pl;
916 struct ptrace_vm_entry pve;
917 struct ptrace_coredump pc;
918 struct ptrace_sc_remote sr;
919 struct dbreg32 dbreg;
920 struct fpreg32 fpreg;
921 struct reg32 reg;
922 struct iovec vec;
923 register_t args[nitems(td->td_sa.args)];
924 struct ptrace_sc_ret psr;
925 int ptevents;
926 } r;
927 union {
928 struct ptrace_io_desc32 piod;
929 struct ptrace_lwpinfo32 pl;
930 struct ptrace_vm_entry32 pve;
931 struct ptrace_coredump32 pc;
932 struct ptrace_sc_remote32 sr;
933 uint32_t args[nitems(td->td_sa.args)];
934 struct ptrace_sc_ret32 psr;
935 struct iovec32 vec;
936 } r32;
937 register_t pscr_args[nitems(td->td_sa.args)];
938 u_int pscr_args32[nitems(td->td_sa.args)];
939 void *addr;
940 int data, error, i;
941
942 if (!allow_ptrace)
943 return (ENOSYS);
944 error = 0;
945
946 AUDIT_ARG_PID(uap->pid);
947 AUDIT_ARG_CMD(uap->req);
948 AUDIT_ARG_VALUE(uap->data);
949 addr = &r;
950 data = uap->data;
951 switch (uap->req) {
952 case PT_GET_EVENT_MASK:
953 case PT_GET_SC_ARGS:
954 case PT_GET_SC_RET:
955 break;
956 case PT_LWPINFO:
957 if (uap->data > sizeof(r32.pl))
958 return (EINVAL);
959
960 /*
961 * Pass size of native structure in 'data'. Truncate
962 * if necessary to avoid siginfo.
963 */
964 data = sizeof(r.pl);
965 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
966 sizeof(struct siginfo32))
967 data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
968 break;
969 case PT_GETREGS:
970 bzero(&r.reg, sizeof(r.reg));
971 break;
972 case PT_GETFPREGS:
973 bzero(&r.fpreg, sizeof(r.fpreg));
974 break;
975 case PT_GETDBREGS:
976 bzero(&r.dbreg, sizeof(r.dbreg));
977 break;
978 case PT_SETREGS:
979 error = copyin(uap->addr, &r.reg, sizeof(r.reg));
980 break;
981 case PT_SETFPREGS:
982 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
983 break;
984 case PT_SETDBREGS:
985 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
986 break;
987 case PT_GETREGSET:
988 case PT_SETREGSET:
989 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec));
990 if (error != 0)
991 break;
992
993 r.vec.iov_len = r32.vec.iov_len;
994 r.vec.iov_base = PTRIN(r32.vec.iov_base);
995 break;
996 case PT_SET_EVENT_MASK:
997 if (uap->data != sizeof(r.ptevents))
998 error = EINVAL;
999 else
1000 error = copyin(uap->addr, &r.ptevents, uap->data);
1001 break;
1002 case PT_IO:
1003 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1004 if (error)
1005 break;
1006 CP(r32.piod, r.piod, piod_op);
1007 PTRIN_CP(r32.piod, r.piod, piod_offs);
1008 PTRIN_CP(r32.piod, r.piod, piod_addr);
1009 CP(r32.piod, r.piod, piod_len);
1010 break;
1011 case PT_VM_ENTRY:
1012 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1013 if (error)
1014 break;
1015
1016 CP(r32.pve, r.pve, pve_entry);
1017 CP(r32.pve, r.pve, pve_timestamp);
1018 CP(r32.pve, r.pve, pve_start);
1019 CP(r32.pve, r.pve, pve_end);
1020 CP(r32.pve, r.pve, pve_offset);
1021 CP(r32.pve, r.pve, pve_prot);
1022 CP(r32.pve, r.pve, pve_pathlen);
1023 CP(r32.pve, r.pve, pve_fileid);
1024 CP(r32.pve, r.pve, pve_fsid);
1025 PTRIN_CP(r32.pve, r.pve, pve_path);
1026 break;
1027 case PT_COREDUMP:
1028 if (uap->data != sizeof(r32.pc))
1029 error = EINVAL;
1030 else
1031 error = copyin(uap->addr, &r32.pc, uap->data);
1032 CP(r32.pc, r.pc, pc_fd);
1033 CP(r32.pc, r.pc, pc_flags);
1034 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1035 data = sizeof(r.pc);
1036 break;
1037 case PT_SC_REMOTE:
1038 if (uap->data != sizeof(r32.sr)) {
1039 error = EINVAL;
1040 break;
1041 }
1042 error = copyin(uap->addr, &r32.sr, uap->data);
1043 if (error != 0)
1044 break;
1045 CP(r32.sr, r.sr, pscr_syscall);
1046 CP(r32.sr, r.sr, pscr_nargs);
1047 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) {
1048 error = EINVAL;
1049 break;
1050 }
1051 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32,
1052 sizeof(u_int) * r32.sr.pscr_nargs);
1053 if (error != 0)
1054 break;
1055 for (i = 0; i < r32.sr.pscr_nargs; i++)
1056 pscr_args[i] = pscr_args32[i];
1057 r.sr.pscr_args = pscr_args;
1058 break;
1059 default:
1060 addr = uap->addr;
1061 break;
1062 }
1063 if (error)
1064 return (error);
1065
1066 error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1067 if (error)
1068 return (error);
1069
1070 switch (uap->req) {
1071 case PT_VM_ENTRY:
1072 CP(r.pve, r32.pve, pve_entry);
1073 CP(r.pve, r32.pve, pve_timestamp);
1074 CP(r.pve, r32.pve, pve_start);
1075 CP(r.pve, r32.pve, pve_end);
1076 CP(r.pve, r32.pve, pve_offset);
1077 CP(r.pve, r32.pve, pve_prot);
1078 CP(r.pve, r32.pve, pve_pathlen);
1079 CP(r.pve, r32.pve, pve_fileid);
1080 CP(r.pve, r32.pve, pve_fsid);
1081 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1082 break;
1083 case PT_IO:
1084 CP(r.piod, r32.piod, piod_len);
1085 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1086 break;
1087 case PT_GETREGS:
1088 error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1089 break;
1090 case PT_GETFPREGS:
1091 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1092 break;
1093 case PT_GETDBREGS:
1094 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1095 break;
1096 case PT_GETREGSET:
1097 r32.vec.iov_len = r.vec.iov_len;
1098 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec));
1099 break;
1100 case PT_GET_EVENT_MASK:
1101 /* NB: The size in uap->data is validated in kern_ptrace(). */
1102 error = copyout(&r.ptevents, uap->addr, uap->data);
1103 break;
1104 case PT_LWPINFO:
1105 ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1106 error = copyout(&r32.pl, uap->addr, uap->data);
1107 break;
1108 case PT_GET_SC_ARGS:
1109 for (i = 0; i < nitems(r.args); i++)
1110 r32.args[i] = (uint32_t)r.args[i];
1111 error = copyout(r32.args, uap->addr, MIN(uap->data,
1112 sizeof(r32.args)));
1113 break;
1114 case PT_GET_SC_RET:
1115 ptrace_sc_ret_to32(&r.psr, &r32.psr);
1116 error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1117 sizeof(r32.psr)));
1118 break;
1119 case PT_SC_REMOTE:
1120 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret);
1121 error = copyout(&r32.sr.pscr_ret, uap->addr +
1122 offsetof(struct ptrace_sc_remote32, pscr_ret),
1123 sizeof(r32.psr));
1124 break;
1125 }
1126
1127 return (error);
1128 }
1129
1130 int
1131 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1132 {
1133 struct iovec32 iov32;
1134 struct iovec *iov;
1135 struct uio *uio;
1136 u_int iovlen;
1137 int error, i;
1138
1139 *uiop = NULL;
1140 if (iovcnt > UIO_MAXIOV)
1141 return (EINVAL);
1142 iovlen = iovcnt * sizeof(struct iovec);
1143 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1144 iov = (struct iovec *)(uio + 1);
1145 for (i = 0; i < iovcnt; i++) {
1146 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1147 if (error) {
1148 free(uio, M_IOV);
1149 return (error);
1150 }
1151 iov[i].iov_base = PTRIN(iov32.iov_base);
1152 iov[i].iov_len = iov32.iov_len;
1153 }
1154 uio->uio_iov = iov;
1155 uio->uio_iovcnt = iovcnt;
1156 uio->uio_segflg = UIO_USERSPACE;
1157 uio->uio_offset = -1;
1158 uio->uio_resid = 0;
1159 for (i = 0; i < iovcnt; i++) {
1160 if (iov->iov_len > INT_MAX - uio->uio_resid) {
1161 free(uio, M_IOV);
1162 return (EINVAL);
1163 }
1164 uio->uio_resid += iov->iov_len;
1165 iov++;
1166 }
1167 *uiop = uio;
1168 return (0);
1169 }
1170
1171 int
1172 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1173 {
1174 struct uio *auio;
1175 int error;
1176
1177 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1178 if (error)
1179 return (error);
1180 error = kern_readv(td, uap->fd, auio);
1181 free(auio, M_IOV);
1182 return (error);
1183 }
1184
1185 int
1186 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1187 {
1188 struct uio *auio;
1189 int error;
1190
1191 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1192 if (error)
1193 return (error);
1194 error = kern_writev(td, uap->fd, auio);
1195 free(auio, M_IOV);
1196 return (error);
1197 }
1198
1199 int
1200 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1201 {
1202 struct uio *auio;
1203 int error;
1204
1205 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1206 if (error)
1207 return (error);
1208 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1209 free(auio, M_IOV);
1210 return (error);
1211 }
1212
1213 int
1214 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1215 {
1216 struct uio *auio;
1217 int error;
1218
1219 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1220 if (error)
1221 return (error);
1222 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1223 free(auio, M_IOV);
1224 return (error);
1225 }
1226
1227 int
1228 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1229 int error)
1230 {
1231 struct iovec32 iov32;
1232 struct iovec *iov;
1233 u_int iovlen;
1234 int i;
1235
1236 *iovp = NULL;
1237 if (iovcnt > UIO_MAXIOV)
1238 return (error);
1239 iovlen = iovcnt * sizeof(struct iovec);
1240 iov = malloc(iovlen, M_IOV, M_WAITOK);
1241 for (i = 0; i < iovcnt; i++) {
1242 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1243 if (error) {
1244 free(iov, M_IOV);
1245 return (error);
1246 }
1247 iov[i].iov_base = PTRIN(iov32.iov_base);
1248 iov[i].iov_len = iov32.iov_len;
1249 }
1250 *iovp = iov;
1251 return (0);
1252 }
1253
1254 static int
1255 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1256 {
1257 struct msghdr32 m32;
1258 int error;
1259
1260 error = copyin(msg32, &m32, sizeof(m32));
1261 if (error)
1262 return (error);
1263 msg->msg_name = PTRIN(m32.msg_name);
1264 msg->msg_namelen = m32.msg_namelen;
1265 msg->msg_iov = PTRIN(m32.msg_iov);
1266 msg->msg_iovlen = m32.msg_iovlen;
1267 msg->msg_control = PTRIN(m32.msg_control);
1268 msg->msg_controllen = m32.msg_controllen;
1269 msg->msg_flags = m32.msg_flags;
1270 return (0);
1271 }
1272
1273 static int
1274 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1275 {
1276 struct msghdr32 m32;
1277 int error;
1278
1279 m32.msg_name = PTROUT(msg->msg_name);
1280 m32.msg_namelen = msg->msg_namelen;
1281 m32.msg_iov = PTROUT(msg->msg_iov);
1282 m32.msg_iovlen = msg->msg_iovlen;
1283 m32.msg_control = PTROUT(msg->msg_control);
1284 m32.msg_controllen = msg->msg_controllen;
1285 m32.msg_flags = msg->msg_flags;
1286 error = copyout(&m32, msg32, sizeof(m32));
1287 return (error);
1288 }
1289
1290 #ifndef __mips__
1291 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1)
1292 #else
1293 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1)
1294 #endif
1295 #define FREEBSD32_ALIGN(p) \
1296 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1297 #define FREEBSD32_CMSG_SPACE(l) \
1298 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1299
1300 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \
1301 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1302
1303 static size_t
1304 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1305 {
1306 size_t copylen;
1307 union {
1308 struct timespec32 ts;
1309 struct timeval32 tv;
1310 struct bintime32 bt;
1311 } tmp32;
1312
1313 union {
1314 struct timespec ts;
1315 struct timeval tv;
1316 struct bintime bt;
1317 } *in;
1318
1319 in = data;
1320 copylen = 0;
1321 switch (cm->cmsg_level) {
1322 case SOL_SOCKET:
1323 switch (cm->cmsg_type) {
1324 case SCM_TIMESTAMP:
1325 TV_CP(*in, tmp32, tv);
1326 copylen = sizeof(tmp32.tv);
1327 break;
1328
1329 case SCM_BINTIME:
1330 BT_CP(*in, tmp32, bt);
1331 copylen = sizeof(tmp32.bt);
1332 break;
1333
1334 case SCM_REALTIME:
1335 case SCM_MONOTONIC:
1336 TS_CP(*in, tmp32, ts);
1337 copylen = sizeof(tmp32.ts);
1338 break;
1339
1340 default:
1341 break;
1342 }
1343
1344 default:
1345 break;
1346 }
1347
1348 if (copylen == 0)
1349 return (datalen);
1350
1351 KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1352
1353 bcopy(&tmp32, data, copylen);
1354 return (copylen);
1355 }
1356
1357 static int
1358 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1359 {
1360 struct cmsghdr *cm;
1361 void *data;
1362 socklen_t clen, datalen, datalen_out, oldclen;
1363 int error;
1364 caddr_t ctlbuf;
1365 int len, maxlen, copylen;
1366 struct mbuf *m;
1367 error = 0;
1368
1369 len = msg->msg_controllen;
1370 maxlen = msg->msg_controllen;
1371 msg->msg_controllen = 0;
1372
1373 ctlbuf = msg->msg_control;
1374 for (m = control; m != NULL && len > 0; m = m->m_next) {
1375 cm = mtod(m, struct cmsghdr *);
1376 clen = m->m_len;
1377 while (cm != NULL) {
1378 if (sizeof(struct cmsghdr) > clen ||
1379 cm->cmsg_len > clen) {
1380 error = EINVAL;
1381 break;
1382 }
1383
1384 data = CMSG_DATA(cm);
1385 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1386 datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1387
1388 /*
1389 * Copy out the message header. Preserve the native
1390 * message size in case we need to inspect the message
1391 * contents later.
1392 */
1393 copylen = sizeof(struct cmsghdr);
1394 if (len < copylen) {
1395 msg->msg_flags |= MSG_CTRUNC;
1396 m_dispose_extcontrolm(m);
1397 goto exit;
1398 }
1399 oldclen = cm->cmsg_len;
1400 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1401 datalen_out;
1402 error = copyout(cm, ctlbuf, copylen);
1403 cm->cmsg_len = oldclen;
1404 if (error != 0)
1405 goto exit;
1406
1407 ctlbuf += FREEBSD32_ALIGN(copylen);
1408 len -= FREEBSD32_ALIGN(copylen);
1409
1410 copylen = datalen_out;
1411 if (len < copylen) {
1412 msg->msg_flags |= MSG_CTRUNC;
1413 m_dispose_extcontrolm(m);
1414 break;
1415 }
1416
1417 /* Copy out the message data. */
1418 error = copyout(data, ctlbuf, copylen);
1419 if (error)
1420 goto exit;
1421
1422 ctlbuf += FREEBSD32_ALIGN(copylen);
1423 len -= FREEBSD32_ALIGN(copylen);
1424
1425 if (CMSG_SPACE(datalen) < clen) {
1426 clen -= CMSG_SPACE(datalen);
1427 cm = (struct cmsghdr *)
1428 ((caddr_t)cm + CMSG_SPACE(datalen));
1429 } else {
1430 clen = 0;
1431 cm = NULL;
1432 }
1433
1434 msg->msg_controllen +=
1435 FREEBSD32_CMSG_SPACE(datalen_out);
1436 }
1437 }
1438 if (len == 0 && m != NULL) {
1439 msg->msg_flags |= MSG_CTRUNC;
1440 m_dispose_extcontrolm(m);
1441 }
1442
1443 exit:
1444 return (error);
1445 }
1446
1447 int
1448 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1449 {
1450 struct msghdr msg;
1451 struct iovec *uiov, *iov;
1452 struct mbuf *control = NULL;
1453 struct mbuf **controlp;
1454 int error;
1455
1456 error = freebsd32_copyinmsghdr(uap->msg, &msg);
1457 if (error)
1458 return (error);
1459 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1460 EMSGSIZE);
1461 if (error)
1462 return (error);
1463 msg.msg_flags = uap->flags;
1464 uiov = msg.msg_iov;
1465 msg.msg_iov = iov;
1466
1467 controlp = (msg.msg_control != NULL) ? &control : NULL;
1468 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1469 if (error == 0) {
1470 msg.msg_iov = uiov;
1471
1472 if (control != NULL)
1473 error = freebsd32_copy_msg_out(&msg, control);
1474 else
1475 msg.msg_controllen = 0;
1476
1477 if (error == 0)
1478 error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1479 }
1480 free(iov, M_IOV);
1481
1482 if (control != NULL) {
1483 if (error != 0)
1484 m_dispose_extcontrolm(control);
1485 m_freem(control);
1486 }
1487
1488 return (error);
1489 }
1490
1491 /*
1492 * Copy-in the array of control messages constructed using alignment
1493 * and padding suitable for a 32-bit environment and construct an
1494 * mbuf using alignment and padding suitable for a 64-bit kernel.
1495 * The alignment and padding are defined indirectly by CMSG_DATA(),
1496 * CMSG_SPACE() and CMSG_LEN().
1497 */
1498 static int
1499 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1500 {
1501 struct cmsghdr *cm;
1502 struct mbuf *m;
1503 void *in, *in1, *md;
1504 u_int msglen, outlen;
1505 int error;
1506
1507 if (buflen > MCLBYTES)
1508 return (EINVAL);
1509
1510 in = malloc(buflen, M_TEMP, M_WAITOK);
1511 error = copyin(buf, in, buflen);
1512 if (error != 0)
1513 goto out;
1514
1515 /*
1516 * Make a pass over the input buffer to determine the amount of space
1517 * required for 64 bit-aligned copies of the control messages.
1518 */
1519 in1 = in;
1520 outlen = 0;
1521 while (buflen > 0) {
1522 if (buflen < sizeof(*cm)) {
1523 error = EINVAL;
1524 break;
1525 }
1526 cm = (struct cmsghdr *)in1;
1527 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1528 error = EINVAL;
1529 break;
1530 }
1531 msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1532 if (msglen > buflen || msglen < cm->cmsg_len) {
1533 error = EINVAL;
1534 break;
1535 }
1536 buflen -= msglen;
1537
1538 in1 = (char *)in1 + msglen;
1539 outlen += CMSG_ALIGN(sizeof(*cm)) +
1540 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1541 }
1542 if (error == 0 && outlen > MCLBYTES) {
1543 /*
1544 * XXXMJ This implies that the upper limit on 32-bit aligned
1545 * control messages is less than MCLBYTES, and so we are not
1546 * perfectly compatible. However, there is no platform
1547 * guarantee that mbuf clusters larger than MCLBYTES can be
1548 * allocated.
1549 */
1550 error = EINVAL;
1551 }
1552 if (error != 0)
1553 goto out;
1554
1555 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1556 m->m_len = outlen;
1557 md = mtod(m, void *);
1558
1559 /*
1560 * Make a second pass over input messages, copying them into the output
1561 * buffer.
1562 */
1563 in1 = in;
1564 while (outlen > 0) {
1565 /* Copy the message header and align the length field. */
1566 cm = md;
1567 memcpy(cm, in1, sizeof(*cm));
1568 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1569 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1570
1571 /* Copy the message body. */
1572 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1573 md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1574 memcpy(md, in1, msglen);
1575 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1576 md = (char *)md + CMSG_ALIGN(msglen);
1577 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1578 ("outlen %u underflow, msglen %u", outlen, msglen));
1579 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1580 }
1581
1582 *mp = m;
1583 out:
1584 free(in, M_TEMP);
1585 return (error);
1586 }
1587
1588 int
1589 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1590 {
1591 struct msghdr msg;
1592 struct iovec *iov;
1593 struct mbuf *control = NULL;
1594 struct sockaddr *to = NULL;
1595 int error;
1596
1597 error = freebsd32_copyinmsghdr(uap->msg, &msg);
1598 if (error)
1599 return (error);
1600 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1601 EMSGSIZE);
1602 if (error)
1603 return (error);
1604 msg.msg_iov = iov;
1605 if (msg.msg_name != NULL) {
1606 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1607 if (error) {
1608 to = NULL;
1609 goto out;
1610 }
1611 msg.msg_name = to;
1612 }
1613
1614 if (msg.msg_control) {
1615 if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1616 error = EINVAL;
1617 goto out;
1618 }
1619
1620 error = freebsd32_copyin_control(&control, msg.msg_control,
1621 msg.msg_controllen);
1622 if (error)
1623 goto out;
1624
1625 msg.msg_control = NULL;
1626 msg.msg_controllen = 0;
1627 }
1628
1629 error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1630 UIO_USERSPACE);
1631
1632 out:
1633 free(iov, M_IOV);
1634 if (to)
1635 free(to, M_SONAME);
1636 return (error);
1637 }
1638
1639 int
1640 freebsd32_recvfrom(struct thread *td,
1641 struct freebsd32_recvfrom_args *uap)
1642 {
1643 struct msghdr msg;
1644 struct iovec aiov;
1645 int error;
1646
1647 if (uap->fromlenaddr) {
1648 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1649 sizeof(msg.msg_namelen));
1650 if (error)
1651 return (error);
1652 } else {
1653 msg.msg_namelen = 0;
1654 }
1655
1656 msg.msg_name = PTRIN(uap->from);
1657 msg.msg_iov = &aiov;
1658 msg.msg_iovlen = 1;
1659 aiov.iov_base = PTRIN(uap->buf);
1660 aiov.iov_len = uap->len;
1661 msg.msg_control = NULL;
1662 msg.msg_flags = uap->flags;
1663 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1664 if (error == 0 && uap->fromlenaddr)
1665 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1666 sizeof (msg.msg_namelen));
1667 return (error);
1668 }
1669
1670 int
1671 freebsd32_settimeofday(struct thread *td,
1672 struct freebsd32_settimeofday_args *uap)
1673 {
1674 struct timeval32 tv32;
1675 struct timeval tv, *tvp;
1676 struct timezone tz, *tzp;
1677 int error;
1678
1679 if (uap->tv) {
1680 error = copyin(uap->tv, &tv32, sizeof(tv32));
1681 if (error)
1682 return (error);
1683 CP(tv32, tv, tv_sec);
1684 CP(tv32, tv, tv_usec);
1685 tvp = &tv;
1686 } else
1687 tvp = NULL;
1688 if (uap->tzp) {
1689 error = copyin(uap->tzp, &tz, sizeof(tz));
1690 if (error)
1691 return (error);
1692 tzp = &tz;
1693 } else
1694 tzp = NULL;
1695 return (kern_settimeofday(td, tvp, tzp));
1696 }
1697
1698 int
1699 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1700 {
1701 struct timeval32 s32[2];
1702 struct timeval s[2], *sp;
1703 int error;
1704
1705 if (uap->tptr != NULL) {
1706 error = copyin(uap->tptr, s32, sizeof(s32));
1707 if (error)
1708 return (error);
1709 CP(s32[0], s[0], tv_sec);
1710 CP(s32[0], s[0], tv_usec);
1711 CP(s32[1], s[1], tv_sec);
1712 CP(s32[1], s[1], tv_usec);
1713 sp = s;
1714 } else
1715 sp = NULL;
1716 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1717 sp, UIO_SYSSPACE));
1718 }
1719
1720 int
1721 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1722 {
1723 struct timeval32 s32[2];
1724 struct timeval s[2], *sp;
1725 int error;
1726
1727 if (uap->tptr != NULL) {
1728 error = copyin(uap->tptr, s32, sizeof(s32));
1729 if (error)
1730 return (error);
1731 CP(s32[0], s[0], tv_sec);
1732 CP(s32[0], s[0], tv_usec);
1733 CP(s32[1], s[1], tv_sec);
1734 CP(s32[1], s[1], tv_usec);
1735 sp = s;
1736 } else
1737 sp = NULL;
1738 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1739 }
1740
1741 int
1742 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1743 {
1744 struct timeval32 s32[2];
1745 struct timeval s[2], *sp;
1746 int error;
1747
1748 if (uap->tptr != NULL) {
1749 error = copyin(uap->tptr, s32, sizeof(s32));
1750 if (error)
1751 return (error);
1752 CP(s32[0], s[0], tv_sec);
1753 CP(s32[0], s[0], tv_usec);
1754 CP(s32[1], s[1], tv_sec);
1755 CP(s32[1], s[1], tv_usec);
1756 sp = s;
1757 } else
1758 sp = NULL;
1759 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1760 }
1761
1762 int
1763 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1764 {
1765 struct timeval32 s32[2];
1766 struct timeval s[2], *sp;
1767 int error;
1768
1769 if (uap->times != NULL) {
1770 error = copyin(uap->times, s32, sizeof(s32));
1771 if (error)
1772 return (error);
1773 CP(s32[0], s[0], tv_sec);
1774 CP(s32[0], s[0], tv_usec);
1775 CP(s32[1], s[1], tv_sec);
1776 CP(s32[1], s[1], tv_usec);
1777 sp = s;
1778 } else
1779 sp = NULL;
1780 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1781 sp, UIO_SYSSPACE));
1782 }
1783
1784 int
1785 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1786 {
1787 struct timespec32 ts32[2];
1788 struct timespec ts[2], *tsp;
1789 int error;
1790
1791 if (uap->times != NULL) {
1792 error = copyin(uap->times, ts32, sizeof(ts32));
1793 if (error)
1794 return (error);
1795 CP(ts32[0], ts[0], tv_sec);
1796 CP(ts32[0], ts[0], tv_nsec);
1797 CP(ts32[1], ts[1], tv_sec);
1798 CP(ts32[1], ts[1], tv_nsec);
1799 tsp = ts;
1800 } else
1801 tsp = NULL;
1802 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1803 }
1804
1805 int
1806 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1807 {
1808 struct timespec32 ts32[2];
1809 struct timespec ts[2], *tsp;
1810 int error;
1811
1812 if (uap->times != NULL) {
1813 error = copyin(uap->times, ts32, sizeof(ts32));
1814 if (error)
1815 return (error);
1816 CP(ts32[0], ts[0], tv_sec);
1817 CP(ts32[0], ts[0], tv_nsec);
1818 CP(ts32[1], ts[1], tv_sec);
1819 CP(ts32[1], ts[1], tv_nsec);
1820 tsp = ts;
1821 } else
1822 tsp = NULL;
1823 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1824 tsp, UIO_SYSSPACE, uap->flag));
1825 }
1826
1827 int
1828 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1829 {
1830 struct timeval32 tv32;
1831 struct timeval delta, olddelta, *deltap;
1832 int error;
1833
1834 if (uap->delta) {
1835 error = copyin(uap->delta, &tv32, sizeof(tv32));
1836 if (error)
1837 return (error);
1838 CP(tv32, delta, tv_sec);
1839 CP(tv32, delta, tv_usec);
1840 deltap = δ
1841 } else
1842 deltap = NULL;
1843 error = kern_adjtime(td, deltap, &olddelta);
1844 if (uap->olddelta && error == 0) {
1845 CP(olddelta, tv32, tv_sec);
1846 CP(olddelta, tv32, tv_usec);
1847 error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1848 }
1849 return (error);
1850 }
1851
1852 #ifdef COMPAT_FREEBSD4
1853 int
1854 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1855 {
1856 struct statfs32 s32;
1857 struct statfs *sp;
1858 int error;
1859
1860 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1861 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1862 if (error == 0) {
1863 copy_statfs(sp, &s32);
1864 error = copyout(&s32, uap->buf, sizeof(s32));
1865 }
1866 free(sp, M_STATFS);
1867 return (error);
1868 }
1869 #endif
1870
1871 #ifdef COMPAT_FREEBSD4
1872 int
1873 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1874 {
1875 struct statfs32 s32;
1876 struct statfs *sp;
1877 int error;
1878
1879 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1880 error = kern_fstatfs(td, uap->fd, sp);
1881 if (error == 0) {
1882 copy_statfs(sp, &s32);
1883 error = copyout(&s32, uap->buf, sizeof(s32));
1884 }
1885 free(sp, M_STATFS);
1886 return (error);
1887 }
1888 #endif
1889
1890 #ifdef COMPAT_FREEBSD4
1891 int
1892 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1893 {
1894 struct statfs32 s32;
1895 struct statfs *sp;
1896 fhandle_t fh;
1897 int error;
1898
1899 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1900 return (error);
1901 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1902 error = kern_fhstatfs(td, fh, sp);
1903 if (error == 0) {
1904 copy_statfs(sp, &s32);
1905 error = copyout(&s32, uap->buf, sizeof(s32));
1906 }
1907 free(sp, M_STATFS);
1908 return (error);
1909 }
1910 #endif
1911
1912 int
1913 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1914 {
1915
1916 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1917 PAIR32TO64(off_t, uap->offset)));
1918 }
1919
1920 int
1921 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1922 {
1923
1924 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1925 PAIR32TO64(off_t, uap->offset)));
1926 }
1927
1928 #ifdef COMPAT_43
1929 int
1930 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1931 {
1932
1933 return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1934 }
1935 #endif
1936
1937 int
1938 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1939 {
1940 int error;
1941 off_t pos;
1942
1943 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1944 uap->whence);
1945 /* Expand the quad return into two parts for eax and edx */
1946 pos = td->td_uretoff.tdu_off;
1947 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
1948 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
1949 return error;
1950 }
1951
1952 int
1953 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1954 {
1955
1956 return (kern_truncate(td, uap->path, UIO_USERSPACE,
1957 PAIR32TO64(off_t, uap->length)));
1958 }
1959
1960 int
1961 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1962 {
1963
1964 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1965 }
1966
1967 #ifdef COMPAT_43
1968 int
1969 ofreebsd32_getdirentries(struct thread *td,
1970 struct ofreebsd32_getdirentries_args *uap)
1971 {
1972 struct ogetdirentries_args ap;
1973 int error;
1974 long loff;
1975 int32_t loff_cut;
1976
1977 ap.fd = uap->fd;
1978 ap.buf = uap->buf;
1979 ap.count = uap->count;
1980 ap.basep = NULL;
1981 error = kern_ogetdirentries(td, &ap, &loff);
1982 if (error == 0) {
1983 loff_cut = loff;
1984 error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1985 }
1986 return (error);
1987 }
1988 #endif
1989
1990 #if defined(COMPAT_FREEBSD11)
1991 int
1992 freebsd11_freebsd32_getdirentries(struct thread *td,
1993 struct freebsd11_freebsd32_getdirentries_args *uap)
1994 {
1995 long base;
1996 int32_t base32;
1997 int error;
1998
1999 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
2000 &base, NULL);
2001 if (error)
2002 return (error);
2003 if (uap->basep != NULL) {
2004 base32 = base;
2005 error = copyout(&base32, uap->basep, sizeof(int32_t));
2006 }
2007 return (error);
2008 }
2009
2010 int
2011 freebsd11_freebsd32_getdents(struct thread *td,
2012 struct freebsd11_freebsd32_getdents_args *uap)
2013 {
2014 struct freebsd11_freebsd32_getdirentries_args ap;
2015
2016 ap.fd = uap->fd;
2017 ap.buf = uap->buf;
2018 ap.count = uap->count;
2019 ap.basep = NULL;
2020 return (freebsd11_freebsd32_getdirentries(td, &ap));
2021 }
2022 #endif /* COMPAT_FREEBSD11 */
2023
2024 #ifdef COMPAT_FREEBSD6
2025 /* versions with the 'int pad' argument */
2026 int
2027 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2028 {
2029
2030 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2031 PAIR32TO64(off_t, uap->offset)));
2032 }
2033
2034 int
2035 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2036 {
2037
2038 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2039 PAIR32TO64(off_t, uap->offset)));
2040 }
2041
2042 int
2043 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2044 {
2045 int error;
2046 off_t pos;
2047
2048 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2049 uap->whence);
2050 /* Expand the quad return into two parts for eax and edx */
2051 pos = *(off_t *)(td->td_retval);
2052 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2053 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2054 return error;
2055 }
2056
2057 int
2058 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2059 {
2060
2061 return (kern_truncate(td, uap->path, UIO_USERSPACE,
2062 PAIR32TO64(off_t, uap->length)));
2063 }
2064
2065 int
2066 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2067 {
2068
2069 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2070 }
2071 #endif /* COMPAT_FREEBSD6 */
2072
2073 struct sf_hdtr32 {
2074 uint32_t headers;
2075 int hdr_cnt;
2076 uint32_t trailers;
2077 int trl_cnt;
2078 };
2079
2080 static int
2081 freebsd32_do_sendfile(struct thread *td,
2082 struct freebsd32_sendfile_args *uap, int compat)
2083 {
2084 struct sf_hdtr32 hdtr32;
2085 struct sf_hdtr hdtr;
2086 struct uio *hdr_uio, *trl_uio;
2087 struct file *fp;
2088 cap_rights_t rights;
2089 struct iovec32 *iov32;
2090 off_t offset, sbytes;
2091 int error;
2092
2093 offset = PAIR32TO64(off_t, uap->offset);
2094 if (offset < 0)
2095 return (EINVAL);
2096
2097 hdr_uio = trl_uio = NULL;
2098
2099 if (uap->hdtr != NULL) {
2100 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2101 if (error)
2102 goto out;
2103 PTRIN_CP(hdtr32, hdtr, headers);
2104 CP(hdtr32, hdtr, hdr_cnt);
2105 PTRIN_CP(hdtr32, hdtr, trailers);
2106 CP(hdtr32, hdtr, trl_cnt);
2107
2108 if (hdtr.headers != NULL) {
2109 iov32 = PTRIN(hdtr32.headers);
2110 error = freebsd32_copyinuio(iov32,
2111 hdtr32.hdr_cnt, &hdr_uio);
2112 if (error)
2113 goto out;
2114 #ifdef COMPAT_FREEBSD4
2115 /*
2116 * In FreeBSD < 5.0 the nbytes to send also included
2117 * the header. If compat is specified subtract the
2118 * header size from nbytes.
2119 */
2120 if (compat) {
2121 if (uap->nbytes > hdr_uio->uio_resid)
2122 uap->nbytes -= hdr_uio->uio_resid;
2123 else
2124 uap->nbytes = 0;
2125 }
2126 #endif
2127 }
2128 if (hdtr.trailers != NULL) {
2129 iov32 = PTRIN(hdtr32.trailers);
2130 error = freebsd32_copyinuio(iov32,
2131 hdtr32.trl_cnt, &trl_uio);
2132 if (error)
2133 goto out;
2134 }
2135 }
2136
2137 AUDIT_ARG_FD(uap->fd);
2138
2139 if ((error = fget_read(td, uap->fd,
2140 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2141 goto out;
2142
2143 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2144 uap->nbytes, &sbytes, uap->flags, td);
2145 fdrop(fp, td);
2146
2147 if (uap->sbytes != NULL)
2148 copyout(&sbytes, uap->sbytes, sizeof(off_t));
2149
2150 out:
2151 if (hdr_uio)
2152 free(hdr_uio, M_IOV);
2153 if (trl_uio)
2154 free(trl_uio, M_IOV);
2155 return (error);
2156 }
2157
2158 #ifdef COMPAT_FREEBSD4
2159 int
2160 freebsd4_freebsd32_sendfile(struct thread *td,
2161 struct freebsd4_freebsd32_sendfile_args *uap)
2162 {
2163 return (freebsd32_do_sendfile(td,
2164 (struct freebsd32_sendfile_args *)uap, 1));
2165 }
2166 #endif
2167
2168 int
2169 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2170 {
2171
2172 return (freebsd32_do_sendfile(td, uap, 0));
2173 }
2174
2175 static void
2176 copy_stat(struct stat *in, struct stat32 *out)
2177 {
2178
2179 #ifndef __amd64__
2180 /*
2181 * 32-bit architectures other than i386 have 64-bit time_t. This
2182 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2183 * and 4 bytes of padding. Zero the padding holes in struct stat32.
2184 */
2185 bzero(&out->st_atim, sizeof(out->st_atim));
2186 bzero(&out->st_mtim, sizeof(out->st_mtim));
2187 bzero(&out->st_ctim, sizeof(out->st_ctim));
2188 bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2189 #endif
2190 CP(*in, *out, st_dev);
2191 CP(*in, *out, st_ino);
2192 CP(*in, *out, st_mode);
2193 CP(*in, *out, st_nlink);
2194 CP(*in, *out, st_uid);
2195 CP(*in, *out, st_gid);
2196 CP(*in, *out, st_rdev);
2197 TS_CP(*in, *out, st_atim);
2198 TS_CP(*in, *out, st_mtim);
2199 TS_CP(*in, *out, st_ctim);
2200 CP(*in, *out, st_size);
2201 CP(*in, *out, st_blocks);
2202 CP(*in, *out, st_blksize);
2203 CP(*in, *out, st_flags);
2204 CP(*in, *out, st_gen);
2205 TS_CP(*in, *out, st_birthtim);
2206 out->st_padding0 = 0;
2207 out->st_padding1 = 0;
2208 #ifdef __STAT32_TIME_T_EXT
2209 out->st_atim_ext = 0;
2210 out->st_mtim_ext = 0;
2211 out->st_ctim_ext = 0;
2212 out->st_btim_ext = 0;
2213 #endif
2214 bzero(out->st_spare, sizeof(out->st_spare));
2215 }
2216
2217 #ifdef COMPAT_43
2218 static void
2219 copy_ostat(struct stat *in, struct ostat32 *out)
2220 {
2221
2222 bzero(out, sizeof(*out));
2223 CP(*in, *out, st_dev);
2224 CP(*in, *out, st_ino);
2225 CP(*in, *out, st_mode);
2226 CP(*in, *out, st_nlink);
2227 CP(*in, *out, st_uid);
2228 CP(*in, *out, st_gid);
2229 CP(*in, *out, st_rdev);
2230 out->st_size = MIN(in->st_size, INT32_MAX);
2231 TS_CP(*in, *out, st_atim);
2232 TS_CP(*in, *out, st_mtim);
2233 TS_CP(*in, *out, st_ctim);
2234 CP(*in, *out, st_blksize);
2235 CP(*in, *out, st_blocks);
2236 CP(*in, *out, st_flags);
2237 CP(*in, *out, st_gen);
2238 }
2239 #endif
2240
2241 #ifdef COMPAT_43
2242 int
2243 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2244 {
2245 struct stat sb;
2246 struct ostat32 sb32;
2247 int error;
2248
2249 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2250 &sb, NULL);
2251 if (error)
2252 return (error);
2253 copy_ostat(&sb, &sb32);
2254 error = copyout(&sb32, uap->ub, sizeof (sb32));
2255 return (error);
2256 }
2257 #endif
2258
2259 int
2260 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2261 {
2262 struct stat ub;
2263 struct stat32 ub32;
2264 int error;
2265
2266 error = kern_fstat(td, uap->fd, &ub);
2267 if (error)
2268 return (error);
2269 copy_stat(&ub, &ub32);
2270 error = copyout(&ub32, uap->ub, sizeof(ub32));
2271 return (error);
2272 }
2273
2274 #ifdef COMPAT_43
2275 int
2276 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2277 {
2278 struct stat ub;
2279 struct ostat32 ub32;
2280 int error;
2281
2282 error = kern_fstat(td, uap->fd, &ub);
2283 if (error)
2284 return (error);
2285 copy_ostat(&ub, &ub32);
2286 error = copyout(&ub32, uap->ub, sizeof(ub32));
2287 return (error);
2288 }
2289 #endif
2290
2291 int
2292 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2293 {
2294 struct stat ub;
2295 struct stat32 ub32;
2296 int error;
2297
2298 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2299 &ub, NULL);
2300 if (error)
2301 return (error);
2302 copy_stat(&ub, &ub32);
2303 error = copyout(&ub32, uap->buf, sizeof(ub32));
2304 return (error);
2305 }
2306
2307 #ifdef COMPAT_43
2308 int
2309 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2310 {
2311 struct stat sb;
2312 struct ostat32 sb32;
2313 int error;
2314
2315 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2316 UIO_USERSPACE, &sb, NULL);
2317 if (error)
2318 return (error);
2319 copy_ostat(&sb, &sb32);
2320 error = copyout(&sb32, uap->ub, sizeof (sb32));
2321 return (error);
2322 }
2323 #endif
2324
2325 int
2326 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2327 {
2328 struct stat sb;
2329 struct stat32 sb32;
2330 struct fhandle fh;
2331 int error;
2332
2333 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2334 if (error != 0)
2335 return (error);
2336 error = kern_fhstat(td, fh, &sb);
2337 if (error != 0)
2338 return (error);
2339 copy_stat(&sb, &sb32);
2340 error = copyout(&sb32, uap->sb, sizeof (sb32));
2341 return (error);
2342 }
2343
2344 #if defined(COMPAT_FREEBSD11)
2345 extern int ino64_trunc_error;
2346
2347 static int
2348 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2349 {
2350
2351 #ifndef __amd64__
2352 /*
2353 * 32-bit architectures other than i386 have 64-bit time_t. This
2354 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2355 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32.
2356 */
2357 bzero(&out->st_atim, sizeof(out->st_atim));
2358 bzero(&out->st_mtim, sizeof(out->st_mtim));
2359 bzero(&out->st_ctim, sizeof(out->st_ctim));
2360 bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2361 #endif
2362
2363 CP(*in, *out, st_ino);
2364 if (in->st_ino != out->st_ino) {
2365 switch (ino64_trunc_error) {
2366 default:
2367 case 0:
2368 break;
2369 case 1:
2370 return (EOVERFLOW);
2371 case 2:
2372 out->st_ino = UINT32_MAX;
2373 break;
2374 }
2375 }
2376 CP(*in, *out, st_nlink);
2377 if (in->st_nlink != out->st_nlink) {
2378 switch (ino64_trunc_error) {
2379 default:
2380 case 0:
2381 break;
2382 case 1:
2383 return (EOVERFLOW);
2384 case 2:
2385 out->st_nlink = UINT16_MAX;
2386 break;
2387 }
2388 }
2389 out->st_dev = in->st_dev;
2390 if (out->st_dev != in->st_dev) {
2391 switch (ino64_trunc_error) {
2392 default:
2393 break;
2394 case 1:
2395 return (EOVERFLOW);
2396 }
2397 }
2398 CP(*in, *out, st_mode);
2399 CP(*in, *out, st_uid);
2400 CP(*in, *out, st_gid);
2401 out->st_rdev = in->st_rdev;
2402 if (out->st_rdev != in->st_rdev) {
2403 switch (ino64_trunc_error) {
2404 default:
2405 break;
2406 case 1:
2407 return (EOVERFLOW);
2408 }
2409 }
2410 TS_CP(*in, *out, st_atim);
2411 TS_CP(*in, *out, st_mtim);
2412 TS_CP(*in, *out, st_ctim);
2413 CP(*in, *out, st_size);
2414 CP(*in, *out, st_blocks);
2415 CP(*in, *out, st_blksize);
2416 CP(*in, *out, st_flags);
2417 CP(*in, *out, st_gen);
2418 TS_CP(*in, *out, st_birthtim);
2419 out->st_lspare = 0;
2420 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2421 sizeof(*out) - offsetof(struct freebsd11_stat32,
2422 st_birthtim) - sizeof(out->st_birthtim));
2423 return (0);
2424 }
2425
2426 int
2427 freebsd11_freebsd32_stat(struct thread *td,
2428 struct freebsd11_freebsd32_stat_args *uap)
2429 {
2430 struct stat sb;
2431 struct freebsd11_stat32 sb32;
2432 int error;
2433
2434 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2435 &sb, NULL);
2436 if (error != 0)
2437 return (error);
2438 error = freebsd11_cvtstat32(&sb, &sb32);
2439 if (error == 0)
2440 error = copyout(&sb32, uap->ub, sizeof (sb32));
2441 return (error);
2442 }
2443
2444 int
2445 freebsd11_freebsd32_fstat(struct thread *td,
2446 struct freebsd11_freebsd32_fstat_args *uap)
2447 {
2448 struct stat sb;
2449 struct freebsd11_stat32 sb32;
2450 int error;
2451
2452 error = kern_fstat(td, uap->fd, &sb);
2453 if (error != 0)
2454 return (error);
2455 error = freebsd11_cvtstat32(&sb, &sb32);
2456 if (error == 0)
2457 error = copyout(&sb32, uap->ub, sizeof (sb32));
2458 return (error);
2459 }
2460
2461 int
2462 freebsd11_freebsd32_fstatat(struct thread *td,
2463 struct freebsd11_freebsd32_fstatat_args *uap)
2464 {
2465 struct stat sb;
2466 struct freebsd11_stat32 sb32;
2467 int error;
2468
2469 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2470 &sb, NULL);
2471 if (error != 0)
2472 return (error);
2473 error = freebsd11_cvtstat32(&sb, &sb32);
2474 if (error == 0)
2475 error = copyout(&sb32, uap->buf, sizeof (sb32));
2476 return (error);
2477 }
2478
2479 int
2480 freebsd11_freebsd32_lstat(struct thread *td,
2481 struct freebsd11_freebsd32_lstat_args *uap)
2482 {
2483 struct stat sb;
2484 struct freebsd11_stat32 sb32;
2485 int error;
2486
2487 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2488 UIO_USERSPACE, &sb, NULL);
2489 if (error != 0)
2490 return (error);
2491 error = freebsd11_cvtstat32(&sb, &sb32);
2492 if (error == 0)
2493 error = copyout(&sb32, uap->ub, sizeof (sb32));
2494 return (error);
2495 }
2496
2497 int
2498 freebsd11_freebsd32_fhstat(struct thread *td,
2499 struct freebsd11_freebsd32_fhstat_args *uap)
2500 {
2501 struct stat sb;
2502 struct freebsd11_stat32 sb32;
2503 struct fhandle fh;
2504 int error;
2505
2506 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2507 if (error != 0)
2508 return (error);
2509 error = kern_fhstat(td, fh, &sb);
2510 if (error != 0)
2511 return (error);
2512 error = freebsd11_cvtstat32(&sb, &sb32);
2513 if (error == 0)
2514 error = copyout(&sb32, uap->sb, sizeof (sb32));
2515 return (error);
2516 }
2517 #endif
2518
2519 int
2520 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2521 {
2522 int error, name[CTL_MAXNAME];
2523 size_t j, oldlen;
2524 uint32_t tmp;
2525
2526 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2527 return (EINVAL);
2528 error = copyin(uap->name, name, uap->namelen * sizeof(int));
2529 if (error)
2530 return (error);
2531 if (uap->oldlenp) {
2532 error = fueword32(uap->oldlenp, &tmp);
2533 oldlen = tmp;
2534 } else {
2535 oldlen = 0;
2536 }
2537 if (error != 0)
2538 return (EFAULT);
2539 error = userland_sysctl(td, name, uap->namelen,
2540 uap->old, &oldlen, 1,
2541 uap->new, uap->newlen, &j, SCTL_MASK32);
2542 if (error)
2543 return (error);
2544 if (uap->oldlenp)
2545 suword32(uap->oldlenp, j);
2546 return (0);
2547 }
2548
2549 int
2550 freebsd32___sysctlbyname(struct thread *td,
2551 struct freebsd32___sysctlbyname_args *uap)
2552 {
2553 size_t oldlen, rv;
2554 int error;
2555 uint32_t tmp;
2556
2557 if (uap->oldlenp != NULL) {
2558 error = fueword32(uap->oldlenp, &tmp);
2559 oldlen = tmp;
2560 } else {
2561 error = oldlen = 0;
2562 }
2563 if (error != 0)
2564 return (EFAULT);
2565 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2566 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2567 if (error != 0)
2568 return (error);
2569 if (uap->oldlenp != NULL)
2570 error = suword32(uap->oldlenp, rv);
2571
2572 return (error);
2573 }
2574
2575 int
2576 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2577 {
2578 uint32_t version;
2579 int error;
2580 struct jail j;
2581
2582 error = copyin(uap->jail, &version, sizeof(uint32_t));
2583 if (error)
2584 return (error);
2585
2586 switch (version) {
2587 case 0:
2588 {
2589 /* FreeBSD single IPv4 jails. */
2590 struct jail32_v0 j32_v0;
2591
2592 bzero(&j, sizeof(struct jail));
2593 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2594 if (error)
2595 return (error);
2596 CP(j32_v0, j, version);
2597 PTRIN_CP(j32_v0, j, path);
2598 PTRIN_CP(j32_v0, j, hostname);
2599 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */
2600 break;
2601 }
2602
2603 case 1:
2604 /*
2605 * Version 1 was used by multi-IPv4 jail implementations
2606 * that never made it into the official kernel.
2607 */
2608 return (EINVAL);
2609
2610 case 2: /* JAIL_API_VERSION */
2611 {
2612 /* FreeBSD multi-IPv4/IPv6,noIP jails. */
2613 struct jail32 j32;
2614
2615 error = copyin(uap->jail, &j32, sizeof(struct jail32));
2616 if (error)
2617 return (error);
2618 CP(j32, j, version);
2619 PTRIN_CP(j32, j, path);
2620 PTRIN_CP(j32, j, hostname);
2621 PTRIN_CP(j32, j, jailname);
2622 CP(j32, j, ip4s);
2623 CP(j32, j, ip6s);
2624 PTRIN_CP(j32, j, ip4);
2625 PTRIN_CP(j32, j, ip6);
2626 break;
2627 }
2628
2629 default:
2630 /* Sci-Fi jails are not supported, sorry. */
2631 return (EINVAL);
2632 }
2633 return (kern_jail(td, &j));
2634 }
2635
2636 int
2637 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2638 {
2639 struct uio *auio;
2640 int error;
2641
2642 /* Check that we have an even number of iovecs. */
2643 if (uap->iovcnt & 1)
2644 return (EINVAL);
2645
2646 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2647 if (error)
2648 return (error);
2649 error = kern_jail_set(td, auio, uap->flags);
2650 free(auio, M_IOV);
2651 return (error);
2652 }
2653
2654 int
2655 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2656 {
2657 struct iovec32 iov32;
2658 struct uio *auio;
2659 int error, i;
2660
2661 /* Check that we have an even number of iovecs. */
2662 if (uap->iovcnt & 1)
2663 return (EINVAL);
2664
2665 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2666 if (error)
2667 return (error);
2668 error = kern_jail_get(td, auio, uap->flags);
2669 if (error == 0)
2670 for (i = 0; i < uap->iovcnt; i++) {
2671 PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2672 CP(auio->uio_iov[i], iov32, iov_len);
2673 error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2674 if (error != 0)
2675 break;
2676 }
2677 free(auio, M_IOV);
2678 return (error);
2679 }
2680
2681 int
2682 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2683 {
2684 struct sigaction32 s32;
2685 struct sigaction sa, osa, *sap;
2686 int error;
2687
2688 if (uap->act) {
2689 error = copyin(uap->act, &s32, sizeof(s32));
2690 if (error)
2691 return (error);
2692 sa.sa_handler = PTRIN(s32.sa_u);
2693 CP(s32, sa, sa_flags);
2694 CP(s32, sa, sa_mask);
2695 sap = &sa;
2696 } else
2697 sap = NULL;
2698 error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2699 if (error == 0 && uap->oact != NULL) {
2700 s32.sa_u = PTROUT(osa.sa_handler);
2701 CP(osa, s32, sa_flags);
2702 CP(osa, s32, sa_mask);
2703 error = copyout(&s32, uap->oact, sizeof(s32));
2704 }
2705 return (error);
2706 }
2707
2708 #ifdef COMPAT_FREEBSD4
2709 int
2710 freebsd4_freebsd32_sigaction(struct thread *td,
2711 struct freebsd4_freebsd32_sigaction_args *uap)
2712 {
2713 struct sigaction32 s32;
2714 struct sigaction sa, osa, *sap;
2715 int error;
2716
2717 if (uap->act) {
2718 error = copyin(uap->act, &s32, sizeof(s32));
2719 if (error)
2720 return (error);
2721 sa.sa_handler = PTRIN(s32.sa_u);
2722 CP(s32, sa, sa_flags);
2723 CP(s32, sa, sa_mask);
2724 sap = &sa;
2725 } else
2726 sap = NULL;
2727 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2728 if (error == 0 && uap->oact != NULL) {
2729 s32.sa_u = PTROUT(osa.sa_handler);
2730 CP(osa, s32, sa_flags);
2731 CP(osa, s32, sa_mask);
2732 error = copyout(&s32, uap->oact, sizeof(s32));
2733 }
2734 return (error);
2735 }
2736 #endif
2737
2738 #ifdef COMPAT_43
2739 struct osigaction32 {
2740 u_int32_t sa_u;
2741 osigset_t sa_mask;
2742 int sa_flags;
2743 };
2744
2745 #define ONSIG 32
2746
2747 int
2748 ofreebsd32_sigaction(struct thread *td,
2749 struct ofreebsd32_sigaction_args *uap)
2750 {
2751 struct osigaction32 s32;
2752 struct sigaction sa, osa, *sap;
2753 int error;
2754
2755 if (uap->signum <= 0 || uap->signum >= ONSIG)
2756 return (EINVAL);
2757
2758 if (uap->nsa) {
2759 error = copyin(uap->nsa, &s32, sizeof(s32));
2760 if (error)
2761 return (error);
2762 sa.sa_handler = PTRIN(s32.sa_u);
2763 CP(s32, sa, sa_flags);
2764 OSIG2SIG(s32.sa_mask, sa.sa_mask);
2765 sap = &sa;
2766 } else
2767 sap = NULL;
2768 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2769 if (error == 0 && uap->osa != NULL) {
2770 s32.sa_u = PTROUT(osa.sa_handler);
2771 CP(osa, s32, sa_flags);
2772 SIG2OSIG(osa.sa_mask, s32.sa_mask);
2773 error = copyout(&s32, uap->osa, sizeof(s32));
2774 }
2775 return (error);
2776 }
2777
2778 int
2779 ofreebsd32_sigprocmask(struct thread *td,
2780 struct ofreebsd32_sigprocmask_args *uap)
2781 {
2782 sigset_t set, oset;
2783 int error;
2784
2785 OSIG2SIG(uap->mask, set);
2786 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2787 SIG2OSIG(oset, td->td_retval[0]);
2788 return (error);
2789 }
2790
2791 int
2792 ofreebsd32_sigpending(struct thread *td,
2793 struct ofreebsd32_sigpending_args *uap)
2794 {
2795 struct proc *p = td->td_proc;
2796 sigset_t siglist;
2797
2798 PROC_LOCK(p);
2799 siglist = p->p_siglist;
2800 SIGSETOR(siglist, td->td_siglist);
2801 PROC_UNLOCK(p);
2802 SIG2OSIG(siglist, td->td_retval[0]);
2803 return (0);
2804 }
2805
2806 struct sigvec32 {
2807 u_int32_t sv_handler;
2808 int sv_mask;
2809 int sv_flags;
2810 };
2811
2812 int
2813 ofreebsd32_sigvec(struct thread *td,
2814 struct ofreebsd32_sigvec_args *uap)
2815 {
2816 struct sigvec32 vec;
2817 struct sigaction sa, osa, *sap;
2818 int error;
2819
2820 if (uap->signum <= 0 || uap->signum >= ONSIG)
2821 return (EINVAL);
2822
2823 if (uap->nsv) {
2824 error = copyin(uap->nsv, &vec, sizeof(vec));
2825 if (error)
2826 return (error);
2827 sa.sa_handler = PTRIN(vec.sv_handler);
2828 OSIG2SIG(vec.sv_mask, sa.sa_mask);
2829 sa.sa_flags = vec.sv_flags;
2830 sa.sa_flags ^= SA_RESTART;
2831 sap = &sa;
2832 } else
2833 sap = NULL;
2834 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2835 if (error == 0 && uap->osv != NULL) {
2836 vec.sv_handler = PTROUT(osa.sa_handler);
2837 SIG2OSIG(osa.sa_mask, vec.sv_mask);
2838 vec.sv_flags = osa.sa_flags;
2839 vec.sv_flags &= ~SA_NOCLDWAIT;
2840 vec.sv_flags ^= SA_RESTART;
2841 error = copyout(&vec, uap->osv, sizeof(vec));
2842 }
2843 return (error);
2844 }
2845
2846 int
2847 ofreebsd32_sigblock(struct thread *td,
2848 struct ofreebsd32_sigblock_args *uap)
2849 {
2850 sigset_t set, oset;
2851
2852 OSIG2SIG(uap->mask, set);
2853 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2854 SIG2OSIG(oset, td->td_retval[0]);
2855 return (0);
2856 }
2857
2858 int
2859 ofreebsd32_sigsetmask(struct thread *td,
2860 struct ofreebsd32_sigsetmask_args *uap)
2861 {
2862 sigset_t set, oset;
2863
2864 OSIG2SIG(uap->mask, set);
2865 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2866 SIG2OSIG(oset, td->td_retval[0]);
2867 return (0);
2868 }
2869
2870 int
2871 ofreebsd32_sigsuspend(struct thread *td,
2872 struct ofreebsd32_sigsuspend_args *uap)
2873 {
2874 sigset_t mask;
2875
2876 OSIG2SIG(uap->mask, mask);
2877 return (kern_sigsuspend(td, mask));
2878 }
2879
2880 struct sigstack32 {
2881 u_int32_t ss_sp;
2882 int ss_onstack;
2883 };
2884
2885 int
2886 ofreebsd32_sigstack(struct thread *td,
2887 struct ofreebsd32_sigstack_args *uap)
2888 {
2889 struct sigstack32 s32;
2890 struct sigstack nss, oss;
2891 int error = 0, unss;
2892
2893 if (uap->nss != NULL) {
2894 error = copyin(uap->nss, &s32, sizeof(s32));
2895 if (error)
2896 return (error);
2897 nss.ss_sp = PTRIN(s32.ss_sp);
2898 CP(s32, nss, ss_onstack);
2899 unss = 1;
2900 } else {
2901 unss = 0;
2902 }
2903 oss.ss_sp = td->td_sigstk.ss_sp;
2904 oss.ss_onstack = sigonstack(cpu_getstack(td));
2905 if (unss) {
2906 td->td_sigstk.ss_sp = nss.ss_sp;
2907 td->td_sigstk.ss_size = 0;
2908 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2909 td->td_pflags |= TDP_ALTSTACK;
2910 }
2911 if (uap->oss != NULL) {
2912 s32.ss_sp = PTROUT(oss.ss_sp);
2913 CP(oss, s32, ss_onstack);
2914 error = copyout(&s32, uap->oss, sizeof(s32));
2915 }
2916 return (error);
2917 }
2918 #endif
2919
2920 int
2921 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2922 {
2923
2924 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2925 TIMER_RELTIME, uap->rqtp, uap->rmtp));
2926 }
2927
2928 int
2929 freebsd32_clock_nanosleep(struct thread *td,
2930 struct freebsd32_clock_nanosleep_args *uap)
2931 {
2932 int error;
2933
2934 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2935 uap->rqtp, uap->rmtp);
2936 return (kern_posix_error(td, error));
2937 }
2938
2939 static int
2940 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2941 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2942 {
2943 struct timespec32 rmt32, rqt32;
2944 struct timespec rmt, rqt;
2945 int error, error2;
2946
2947 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2948 if (error)
2949 return (error);
2950
2951 CP(rqt32, rqt, tv_sec);
2952 CP(rqt32, rqt, tv_nsec);
2953
2954 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2955 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2956 CP(rmt, rmt32, tv_sec);
2957 CP(rmt, rmt32, tv_nsec);
2958
2959 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2960 if (error2 != 0)
2961 error = error2;
2962 }
2963 return (error);
2964 }
2965
2966 int
2967 freebsd32_clock_gettime(struct thread *td,
2968 struct freebsd32_clock_gettime_args *uap)
2969 {
2970 struct timespec ats;
2971 struct timespec32 ats32;
2972 int error;
2973
2974 error = kern_clock_gettime(td, uap->clock_id, &ats);
2975 if (error == 0) {
2976 CP(ats, ats32, tv_sec);
2977 CP(ats, ats32, tv_nsec);
2978 error = copyout(&ats32, uap->tp, sizeof(ats32));
2979 }
2980 return (error);
2981 }
2982
2983 int
2984 freebsd32_clock_settime(struct thread *td,
2985 struct freebsd32_clock_settime_args *uap)
2986 {
2987 struct timespec ats;
2988 struct timespec32 ats32;
2989 int error;
2990
2991 error = copyin(uap->tp, &ats32, sizeof(ats32));
2992 if (error)
2993 return (error);
2994 CP(ats32, ats, tv_sec);
2995 CP(ats32, ats, tv_nsec);
2996
2997 return (kern_clock_settime(td, uap->clock_id, &ats));
2998 }
2999
3000 int
3001 freebsd32_clock_getres(struct thread *td,
3002 struct freebsd32_clock_getres_args *uap)
3003 {
3004 struct timespec ts;
3005 struct timespec32 ts32;
3006 int error;
3007
3008 if (uap->tp == NULL)
3009 return (0);
3010 error = kern_clock_getres(td, uap->clock_id, &ts);
3011 if (error == 0) {
3012 CP(ts, ts32, tv_sec);
3013 CP(ts, ts32, tv_nsec);
3014 error = copyout(&ts32, uap->tp, sizeof(ts32));
3015 }
3016 return (error);
3017 }
3018
3019 int freebsd32_ktimer_create(struct thread *td,
3020 struct freebsd32_ktimer_create_args *uap)
3021 {
3022 struct sigevent32 ev32;
3023 struct sigevent ev, *evp;
3024 int error, id;
3025
3026 if (uap->evp == NULL) {
3027 evp = NULL;
3028 } else {
3029 evp = &ev;
3030 error = copyin(uap->evp, &ev32, sizeof(ev32));
3031 if (error != 0)
3032 return (error);
3033 error = convert_sigevent32(&ev32, &ev);
3034 if (error != 0)
3035 return (error);
3036 }
3037 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
3038 if (error == 0) {
3039 error = copyout(&id, uap->timerid, sizeof(int));
3040 if (error != 0)
3041 kern_ktimer_delete(td, id);
3042 }
3043 return (error);
3044 }
3045
3046 int
3047 freebsd32_ktimer_settime(struct thread *td,
3048 struct freebsd32_ktimer_settime_args *uap)
3049 {
3050 struct itimerspec32 val32, oval32;
3051 struct itimerspec val, oval, *ovalp;
3052 int error;
3053
3054 error = copyin(uap->value, &val32, sizeof(val32));
3055 if (error != 0)
3056 return (error);
3057 ITS_CP(val32, val);
3058 ovalp = uap->ovalue != NULL ? &oval : NULL;
3059 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3060 if (error == 0 && uap->ovalue != NULL) {
3061 ITS_CP(oval, oval32);
3062 error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3063 }
3064 return (error);
3065 }
3066
3067 int
3068 freebsd32_ktimer_gettime(struct thread *td,
3069 struct freebsd32_ktimer_gettime_args *uap)
3070 {
3071 struct itimerspec32 val32;
3072 struct itimerspec val;
3073 int error;
3074
3075 error = kern_ktimer_gettime(td, uap->timerid, &val);
3076 if (error == 0) {
3077 ITS_CP(val, val32);
3078 error = copyout(&val32, uap->value, sizeof(val32));
3079 }
3080 return (error);
3081 }
3082
3083 int
3084 freebsd32_clock_getcpuclockid2(struct thread *td,
3085 struct freebsd32_clock_getcpuclockid2_args *uap)
3086 {
3087 clockid_t clk_id;
3088 int error;
3089
3090 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3091 uap->which, &clk_id);
3092 if (error == 0)
3093 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3094 return (error);
3095 }
3096
3097 int
3098 freebsd32_thr_new(struct thread *td,
3099 struct freebsd32_thr_new_args *uap)
3100 {
3101 struct thr_param32 param32;
3102 struct thr_param param;
3103 int error;
3104
3105 if (uap->param_size < 0 ||
3106 uap->param_size > sizeof(struct thr_param32))
3107 return (EINVAL);
3108 bzero(¶m, sizeof(struct thr_param));
3109 bzero(¶m32, sizeof(struct thr_param32));
3110 error = copyin(uap->param, ¶m32, uap->param_size);
3111 if (error != 0)
3112 return (error);
3113 param.start_func = PTRIN(param32.start_func);
3114 param.arg = PTRIN(param32.arg);
3115 param.stack_base = PTRIN(param32.stack_base);
3116 param.stack_size = param32.stack_size;
3117 param.tls_base = PTRIN(param32.tls_base);
3118 param.tls_size = param32.tls_size;
3119 param.child_tid = PTRIN(param32.child_tid);
3120 param.parent_tid = PTRIN(param32.parent_tid);
3121 param.flags = param32.flags;
3122 param.rtp = PTRIN(param32.rtp);
3123 param.spare[0] = PTRIN(param32.spare[0]);
3124 param.spare[1] = PTRIN(param32.spare[1]);
3125 param.spare[2] = PTRIN(param32.spare[2]);
3126
3127 return (kern_thr_new(td, ¶m));
3128 }
3129
3130 int
3131 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3132 {
3133 struct timespec32 ts32;
3134 struct timespec ts, *tsp;
3135 int error;
3136
3137 error = 0;
3138 tsp = NULL;
3139 if (uap->timeout != NULL) {
3140 error = copyin((const void *)uap->timeout, (void *)&ts32,
3141 sizeof(struct timespec32));
3142 if (error != 0)
3143 return (error);
3144 ts.tv_sec = ts32.tv_sec;
3145 ts.tv_nsec = ts32.tv_nsec;
3146 tsp = &ts;
3147 }
3148 return (kern_thr_suspend(td, tsp));
3149 }
3150
3151 void
3152 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3153 {
3154 bzero(dst, sizeof(*dst));
3155 dst->si_signo = src->si_signo;
3156 dst->si_errno = src->si_errno;
3157 dst->si_code = src->si_code;
3158 dst->si_pid = src->si_pid;
3159 dst->si_uid = src->si_uid;
3160 dst->si_status = src->si_status;
3161 dst->si_addr = (uintptr_t)src->si_addr;
3162 dst->si_value.sival_int = src->si_value.sival_int;
3163 dst->si_timerid = src->si_timerid;
3164 dst->si_overrun = src->si_overrun;
3165 }
3166
3167 #ifndef _FREEBSD32_SYSPROTO_H_
3168 struct freebsd32_sigqueue_args {
3169 pid_t pid;
3170 int signum;
3171 /* union sigval32 */ int value;
3172 };
3173 #endif
3174 int
3175 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3176 {
3177 union sigval sv;
3178
3179 /*
3180 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3181 * On 64-bit little-endian ABIs, the low bits are the same.
3182 * In 64-bit big-endian ABIs, sival_int overlaps with
3183 * sival_ptr's HIGH bits. We choose to support sival_int
3184 * rather than sival_ptr in this case as it seems to be
3185 * more common.
3186 */
3187 bzero(&sv, sizeof(sv));
3188 sv.sival_int = uap->value;
3189
3190 return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3191 }
3192
3193 int
3194 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3195 {
3196 struct timespec32 ts32;
3197 struct timespec ts;
3198 struct timespec *timeout;
3199 sigset_t set;
3200 ksiginfo_t ksi;
3201 struct siginfo32 si32;
3202 int error;
3203
3204 if (uap->timeout) {
3205 error = copyin(uap->timeout, &ts32, sizeof(ts32));
3206 if (error)
3207 return (error);
3208 ts.tv_sec = ts32.tv_sec;
3209 ts.tv_nsec = ts32.tv_nsec;
3210 timeout = &ts;
3211 } else
3212 timeout = NULL;
3213
3214 error = copyin(uap->set, &set, sizeof(set));
3215 if (error)
3216 return (error);
3217
3218 error = kern_sigtimedwait(td, set, &ksi, timeout);
3219 if (error)
3220 return (error);
3221
3222 if (uap->info) {
3223 siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3224 error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3225 }
3226
3227 if (error == 0)
3228 td->td_retval[0] = ksi.ksi_signo;
3229 return (error);
3230 }
3231
3232 /*
3233 * MPSAFE
3234 */
3235 int
3236 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3237 {
3238 ksiginfo_t ksi;
3239 struct siginfo32 si32;
3240 sigset_t set;
3241 int error;
3242
3243 error = copyin(uap->set, &set, sizeof(set));
3244 if (error)
3245 return (error);
3246
3247 error = kern_sigtimedwait(td, set, &ksi, NULL);
3248 if (error)
3249 return (error);
3250
3251 if (uap->info) {
3252 siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3253 error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3254 }
3255 if (error == 0)
3256 td->td_retval[0] = ksi.ksi_signo;
3257 return (error);
3258 }
3259
3260 int
3261 freebsd32_cpuset_setid(struct thread *td,
3262 struct freebsd32_cpuset_setid_args *uap)
3263 {
3264
3265 return (kern_cpuset_setid(td, uap->which,
3266 PAIR32TO64(id_t, uap->id), uap->setid));
3267 }
3268
3269 int
3270 freebsd32_cpuset_getid(struct thread *td,
3271 struct freebsd32_cpuset_getid_args *uap)
3272 {
3273
3274 return (kern_cpuset_getid(td, uap->level, uap->which,
3275 PAIR32TO64(id_t, uap->id), uap->setid));
3276 }
3277
3278 static int
3279 copyin32_set(const void *u, void *k, size_t size)
3280 {
3281 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3282 int rv;
3283 struct bitset *kb = k;
3284 int *p;
3285
3286 rv = copyin(u, k, size);
3287 if (rv != 0)
3288 return (rv);
3289
3290 p = (int *)kb->__bits;
3291 /* Loop through swapping words.
3292 * `size' is in bytes, we need bits. */
3293 for (int i = 0; i < __bitset_words(size * 8); i++) {
3294 int tmp = p[0];
3295 p[0] = p[1];
3296 p[1] = tmp;
3297 p += 2;
3298 }
3299 return (0);
3300 #else
3301 return (copyin(u, k, size));
3302 #endif
3303 }
3304
3305 static int
3306 copyout32_set(const void *k, void *u, size_t size)
3307 {
3308 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3309 const struct bitset *kb = k;
3310 struct bitset *ub = u;
3311 const int *kp = (const int *)kb->__bits;
3312 int *up = (int *)ub->__bits;
3313 int rv;
3314
3315 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) {
3316 /* `size' is in bytes, we need bits. */
3317 for (int i = 0; i < __bitset_words(size * 8); i++) {
3318 rv = suword32(up, kp[1]);
3319 if (rv == 0)
3320 rv = suword32(up + 1, kp[0]);
3321 if (rv != 0)
3322 return (EFAULT);
3323 }
3324 }
3325 return (0);
3326 #else
3327 return (copyout(k, u, size));
3328 #endif
3329 }
3330
3331 static const struct cpuset_copy_cb cpuset_copy32_cb = {
3332 .cpuset_copyin = copyin32_set,
3333 .cpuset_copyout = copyout32_set
3334 };
3335
3336 int
3337 freebsd32_cpuset_getaffinity(struct thread *td,
3338 struct freebsd32_cpuset_getaffinity_args *uap)
3339 {
3340
3341 return (user_cpuset_getaffinity(td, uap->level, uap->which,
3342 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3343 &cpuset_copy32_cb));
3344 }
3345
3346 int
3347 freebsd32_cpuset_setaffinity(struct thread *td,
3348 struct freebsd32_cpuset_setaffinity_args *uap)
3349 {
3350
3351 return (user_cpuset_setaffinity(td, uap->level, uap->which,
3352 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3353 &cpuset_copy32_cb));
3354 }
3355
3356 int
3357 freebsd32_cpuset_getdomain(struct thread *td,
3358 struct freebsd32_cpuset_getdomain_args *uap)
3359 {
3360
3361 return (kern_cpuset_getdomain(td, uap->level, uap->which,
3362 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3363 &cpuset_copy32_cb));
3364 }
3365
3366 int
3367 freebsd32_cpuset_setdomain(struct thread *td,
3368 struct freebsd32_cpuset_setdomain_args *uap)
3369 {
3370
3371 return (kern_cpuset_setdomain(td, uap->level, uap->which,
3372 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3373 &cpuset_copy32_cb));
3374 }
3375
3376 int
3377 freebsd32_nmount(struct thread *td,
3378 struct freebsd32_nmount_args /* {
3379 struct iovec *iovp;
3380 unsigned int iovcnt;
3381 int flags;
3382 } */ *uap)
3383 {
3384 struct uio *auio;
3385 uint64_t flags;
3386 int error;
3387
3388 /*
3389 * Mount flags are now 64-bits. On 32-bit archtectures only
3390 * 32-bits are passed in, but from here on everything handles
3391 * 64-bit flags correctly.
3392 */
3393 flags = uap->flags;
3394
3395 AUDIT_ARG_FFLAGS(flags);
3396
3397 /*
3398 * Filter out MNT_ROOTFS. We do not want clients of nmount() in
3399 * userspace to set this flag, but we must filter it out if we want
3400 * MNT_UPDATE on the root file system to work.
3401 * MNT_ROOTFS should only be set by the kernel when mounting its
3402 * root file system.
3403 */
3404 flags &= ~MNT_ROOTFS;
3405
3406 /*
3407 * check that we have an even number of iovec's
3408 * and that we have at least two options.
3409 */
3410 if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3411 return (EINVAL);
3412
3413 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3414 if (error)
3415 return (error);
3416 error = vfs_donmount(td, flags, auio);
3417
3418 free(auio, M_IOV);
3419 return error;
3420 }
3421
3422 #if 0
3423 int
3424 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3425 {
3426 struct yyy32 *p32, s32;
3427 struct yyy *p = NULL, s;
3428 struct xxx_arg ap;
3429 int error;
3430
3431 if (uap->zzz) {
3432 error = copyin(uap->zzz, &s32, sizeof(s32));
3433 if (error)
3434 return (error);
3435 /* translate in */
3436 p = &s;
3437 }
3438 error = kern_xxx(td, p);
3439 if (error)
3440 return (error);
3441 if (uap->zzz) {
3442 /* translate out */
3443 error = copyout(&s32, p32, sizeof(s32));
3444 }
3445 return (error);
3446 }
3447 #endif
3448
3449 int
3450 syscall32_module_handler(struct module *mod, int what, void *arg)
3451 {
3452
3453 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3454 }
3455
3456 int
3457 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3458 {
3459
3460 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3461 }
3462
3463 int
3464 syscall32_helper_unregister(struct syscall_helper_data *sd)
3465 {
3466
3467 return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3468 }
3469
3470 int
3471 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3472 {
3473 struct sysentvec *sysent;
3474 int argc, envc, i;
3475 u_int32_t *vectp;
3476 char *stringp;
3477 uintptr_t destp, ustringp;
3478 struct freebsd32_ps_strings *arginfo;
3479 char canary[sizeof(long) * 8];
3480 int32_t pagesizes32[MAXPAGESIZES];
3481 size_t execpath_len;
3482 int error, szsigcode;
3483
3484 sysent = imgp->sysent;
3485
3486 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc);
3487 imgp->ps_strings = arginfo;
3488 destp = (uintptr_t)arginfo;
3489
3490 /*
3491 * Install sigcode.
3492 */
3493 if (sysent->sv_sigcode_base == 0) {
3494 szsigcode = *sysent->sv_szsigcode;
3495 destp -= szsigcode;
3496 destp = rounddown2(destp, sizeof(uint32_t));
3497 error = copyout(sysent->sv_sigcode, (void *)destp,
3498 szsigcode);
3499 if (error != 0)
3500 return (error);
3501 }
3502
3503 /*
3504 * Copy the image path for the rtld.
3505 */
3506 if (imgp->execpath != NULL && imgp->auxargs != NULL) {
3507 execpath_len = strlen(imgp->execpath) + 1;
3508 destp -= execpath_len;
3509 imgp->execpathp = (void *)destp;
3510 error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3511 if (error != 0)
3512 return (error);
3513 }
3514
3515 /*
3516 * Prepare the canary for SSP.
3517 */
3518 arc4rand(canary, sizeof(canary), 0);
3519 destp -= sizeof(canary);
3520 imgp->canary = (void *)destp;
3521 error = copyout(canary, imgp->canary, sizeof(canary));
3522 if (error != 0)
3523 return (error);
3524 imgp->canarylen = sizeof(canary);
3525
3526 /*
3527 * Prepare the pagesizes array.
3528 */
3529 for (i = 0; i < MAXPAGESIZES; i++)
3530 pagesizes32[i] = (uint32_t)pagesizes[i];
3531 destp -= sizeof(pagesizes32);
3532 destp = rounddown2(destp, sizeof(uint32_t));
3533 imgp->pagesizes = (void *)destp;
3534 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3535 if (error != 0)
3536 return (error);
3537 imgp->pagesizeslen = sizeof(pagesizes32);
3538
3539 /*
3540 * Allocate room for the argument and environment strings.
3541 */
3542 destp -= ARG_MAX - imgp->args->stringspace;
3543 destp = rounddown2(destp, sizeof(uint32_t));
3544 ustringp = destp;
3545
3546 if (imgp->auxargs) {
3547 /*
3548 * Allocate room on the stack for the ELF auxargs
3549 * array. It has up to AT_COUNT entries.
3550 */
3551 destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3552 destp = rounddown2(destp, sizeof(uint32_t));
3553 }
3554
3555 vectp = (uint32_t *)destp;
3556
3557 /*
3558 * Allocate room for the argv[] and env vectors including the
3559 * terminating NULL pointers.
3560 */
3561 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3562
3563 /*
3564 * vectp also becomes our initial stack base
3565 */
3566 *stack_base = (uintptr_t)vectp;
3567
3568 stringp = imgp->args->begin_argv;
3569 argc = imgp->args->argc;
3570 envc = imgp->args->envc;
3571 /*
3572 * Copy out strings - arguments and environment.
3573 */
3574 error = copyout(stringp, (void *)ustringp,
3575 ARG_MAX - imgp->args->stringspace);
3576 if (error != 0)
3577 return (error);
3578
3579 /*
3580 * Fill in "ps_strings" struct for ps, w, etc.
3581 */
3582 imgp->argv = vectp;
3583 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3584 suword32(&arginfo->ps_nargvstr, argc) != 0)
3585 return (EFAULT);
3586
3587 /*
3588 * Fill in argument portion of vector table.
3589 */
3590 for (; argc > 0; --argc) {
3591 if (suword32(vectp++, ustringp) != 0)
3592 return (EFAULT);
3593 while (*stringp++ != 0)
3594 ustringp++;
3595 ustringp++;
3596 }
3597
3598 /* a null vector table pointer separates the argp's from the envp's */
3599 if (suword32(vectp++, 0) != 0)
3600 return (EFAULT);
3601
3602 imgp->envv = vectp;
3603 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3604 suword32(&arginfo->ps_nenvstr, envc) != 0)
3605 return (EFAULT);
3606
3607 /*
3608 * Fill in environment portion of vector table.
3609 */
3610 for (; envc > 0; --envc) {
3611 if (suword32(vectp++, ustringp) != 0)
3612 return (EFAULT);
3613 while (*stringp++ != 0)
3614 ustringp++;
3615 ustringp++;
3616 }
3617
3618 /* end of vector table is a null pointer */
3619 if (suword32(vectp, 0) != 0)
3620 return (EFAULT);
3621
3622 if (imgp->auxargs) {
3623 vectp++;
3624 error = imgp->sysent->sv_copyout_auxargs(imgp,
3625 (uintptr_t)vectp);
3626 if (error != 0)
3627 return (error);
3628 }
3629
3630 return (0);
3631 }
3632
3633 int
3634 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3635 {
3636 struct kld_file_stat *stat;
3637 struct kld32_file_stat *stat32;
3638 int error, version;
3639
3640 if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3641 != 0)
3642 return (error);
3643 if (version != sizeof(struct kld32_file_stat_1) &&
3644 version != sizeof(struct kld32_file_stat))
3645 return (EINVAL);
3646
3647 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3648 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3649 error = kern_kldstat(td, uap->fileid, stat);
3650 if (error == 0) {
3651 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3652 CP(*stat, *stat32, refs);
3653 CP(*stat, *stat32, id);
3654 PTROUT_CP(*stat, *stat32, address);
3655 CP(*stat, *stat32, size);
3656 bcopy(&stat->pathname[0], &stat32->pathname[0],
3657 sizeof(stat->pathname));
3658 stat32->version = version;
3659 error = copyout(stat32, uap->stat, version);
3660 }
3661 free(stat, M_TEMP);
3662 free(stat32, M_TEMP);
3663 return (error);
3664 }
3665
3666 int
3667 freebsd32_posix_fallocate(struct thread *td,
3668 struct freebsd32_posix_fallocate_args *uap)
3669 {
3670 int error;
3671
3672 error = kern_posix_fallocate(td, uap->fd,
3673 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3674 return (kern_posix_error(td, error));
3675 }
3676
3677 int
3678 freebsd32_posix_fadvise(struct thread *td,
3679 struct freebsd32_posix_fadvise_args *uap)
3680 {
3681 int error;
3682
3683 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3684 PAIR32TO64(off_t, uap->len), uap->advice);
3685 return (kern_posix_error(td, error));
3686 }
3687
3688 int
3689 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3690 {
3691
3692 CP(*sig32, *sig, sigev_notify);
3693 switch (sig->sigev_notify) {
3694 case SIGEV_NONE:
3695 break;
3696 case SIGEV_THREAD_ID:
3697 CP(*sig32, *sig, sigev_notify_thread_id);
3698 /* FALLTHROUGH */
3699 case SIGEV_SIGNAL:
3700 CP(*sig32, *sig, sigev_signo);
3701 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3702 break;
3703 case SIGEV_KEVENT:
3704 CP(*sig32, *sig, sigev_notify_kqueue);
3705 CP(*sig32, *sig, sigev_notify_kevent_flags);
3706 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3707 break;
3708 default:
3709 return (EINVAL);
3710 }
3711 return (0);
3712 }
3713
3714 int
3715 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3716 {
3717 void *data;
3718 union {
3719 struct procctl_reaper_status rs;
3720 struct procctl_reaper_pids rp;
3721 struct procctl_reaper_kill rk;
3722 } x;
3723 union {
3724 struct procctl_reaper_pids32 rp;
3725 } x32;
3726 int error, error1, flags, signum;
3727
3728 if (uap->com >= PROC_PROCCTL_MD_MIN)
3729 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3730 uap->com, PTRIN(uap->data)));
3731
3732 switch (uap->com) {
3733 case PROC_ASLR_CTL:
3734 case PROC_PROTMAX_CTL:
3735 case PROC_SPROTECT:
3736 case PROC_STACKGAP_CTL:
3737 case PROC_TRACE_CTL:
3738 case PROC_TRAPCAP_CTL:
3739 case PROC_NO_NEW_PRIVS_CTL:
3740 case PROC_WXMAP_CTL:
3741 error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3742 if (error != 0)
3743 return (error);
3744 data = &flags;
3745 break;
3746 case PROC_REAP_ACQUIRE:
3747 case PROC_REAP_RELEASE:
3748 if (uap->data != NULL)
3749 return (EINVAL);
3750 data = NULL;
3751 break;
3752 case PROC_REAP_STATUS:
3753 data = &x.rs;
3754 break;
3755 case PROC_REAP_GETPIDS:
3756 error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3757 if (error != 0)
3758 return (error);
3759 CP(x32.rp, x.rp, rp_count);
3760 PTRIN_CP(x32.rp, x.rp, rp_pids);
3761 data = &x.rp;
3762 break;
3763 case PROC_REAP_KILL:
3764 error = copyin(uap->data, &x.rk, sizeof(x.rk));
3765 if (error != 0)
3766 return (error);
3767 data = &x.rk;
3768 break;
3769 case PROC_ASLR_STATUS:
3770 case PROC_PROTMAX_STATUS:
3771 case PROC_STACKGAP_STATUS:
3772 case PROC_TRACE_STATUS:
3773 case PROC_TRAPCAP_STATUS:
3774 case PROC_NO_NEW_PRIVS_STATUS:
3775 case PROC_WXMAP_STATUS:
3776 data = &flags;
3777 break;
3778 case PROC_PDEATHSIG_CTL:
3779 error = copyin(uap->data, &signum, sizeof(signum));
3780 if (error != 0)
3781 return (error);
3782 data = &signum;
3783 break;
3784 case PROC_PDEATHSIG_STATUS:
3785 data = &signum;
3786 break;
3787 default:
3788 return (EINVAL);
3789 }
3790 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3791 uap->com, data);
3792 switch (uap->com) {
3793 case PROC_REAP_STATUS:
3794 if (error == 0)
3795 error = copyout(&x.rs, uap->data, sizeof(x.rs));
3796 break;
3797 case PROC_REAP_KILL:
3798 error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3799 if (error == 0)
3800 error = error1;
3801 break;
3802 case PROC_ASLR_STATUS:
3803 case PROC_PROTMAX_STATUS:
3804 case PROC_STACKGAP_STATUS:
3805 case PROC_TRACE_STATUS:
3806 case PROC_TRAPCAP_STATUS:
3807 case PROC_NO_NEW_PRIVS_STATUS:
3808 case PROC_WXMAP_STATUS:
3809 if (error == 0)
3810 error = copyout(&flags, uap->data, sizeof(flags));
3811 break;
3812 case PROC_PDEATHSIG_STATUS:
3813 if (error == 0)
3814 error = copyout(&signum, uap->data, sizeof(signum));
3815 break;
3816 }
3817 return (error);
3818 }
3819
3820 int
3821 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3822 {
3823 long tmp;
3824
3825 switch (uap->cmd) {
3826 /*
3827 * Do unsigned conversion for arg when operation
3828 * interprets it as flags or pointer.
3829 */
3830 case F_SETLK_REMOTE:
3831 case F_SETLKW:
3832 case F_SETLK:
3833 case F_GETLK:
3834 case F_SETFD:
3835 case F_SETFL:
3836 case F_OGETLK:
3837 case F_OSETLK:
3838 case F_OSETLKW:
3839 case F_KINFO:
3840 tmp = (unsigned int)(uap->arg);
3841 break;
3842 default:
3843 tmp = uap->arg;
3844 break;
3845 }
3846 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3847 }
3848
3849 int
3850 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3851 {
3852 struct timespec32 ts32;
3853 struct timespec ts, *tsp;
3854 sigset_t set, *ssp;
3855 int error;
3856
3857 if (uap->ts != NULL) {
3858 error = copyin(uap->ts, &ts32, sizeof(ts32));
3859 if (error != 0)
3860 return (error);
3861 CP(ts32, ts, tv_sec);
3862 CP(ts32, ts, tv_nsec);
3863 tsp = &ts;
3864 } else
3865 tsp = NULL;
3866 if (uap->set != NULL) {
3867 error = copyin(uap->set, &set, sizeof(set));
3868 if (error != 0)
3869 return (error);
3870 ssp = &set;
3871 } else
3872 ssp = NULL;
3873
3874 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3875 }
3876
3877 int
3878 freebsd32_sched_rr_get_interval(struct thread *td,
3879 struct freebsd32_sched_rr_get_interval_args *uap)
3880 {
3881 struct timespec ts;
3882 struct timespec32 ts32;
3883 int error;
3884
3885 error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3886 if (error == 0) {
3887 CP(ts, ts32, tv_sec);
3888 CP(ts, ts32, tv_nsec);
3889 error = copyout(&ts32, uap->interval, sizeof(ts32));
3890 }
3891 return (error);
3892 }
3893
3894 static void
3895 timex_to_32(struct timex32 *dst, struct timex *src)
3896 {
3897 CP(*src, *dst, modes);
3898 CP(*src, *dst, offset);
3899 CP(*src, *dst, freq);
3900 CP(*src, *dst, maxerror);
3901 CP(*src, *dst, esterror);
3902 CP(*src, *dst, status);
3903 CP(*src, *dst, constant);
3904 CP(*src, *dst, precision);
3905 CP(*src, *dst, tolerance);
3906 CP(*src, *dst, ppsfreq);
3907 CP(*src, *dst, jitter);
3908 CP(*src, *dst, shift);
3909 CP(*src, *dst, stabil);
3910 CP(*src, *dst, jitcnt);
3911 CP(*src, *dst, calcnt);
3912 CP(*src, *dst, errcnt);
3913 CP(*src, *dst, stbcnt);
3914 }
3915
3916 static void
3917 timex_from_32(struct timex *dst, struct timex32 *src)
3918 {
3919 CP(*src, *dst, modes);
3920 CP(*src, *dst, offset);
3921 CP(*src, *dst, freq);
3922 CP(*src, *dst, maxerror);
3923 CP(*src, *dst, esterror);
3924 CP(*src, *dst, status);
3925 CP(*src, *dst, constant);
3926 CP(*src, *dst, precision);
3927 CP(*src, *dst, tolerance);
3928 CP(*src, *dst, ppsfreq);
3929 CP(*src, *dst, jitter);
3930 CP(*src, *dst, shift);
3931 CP(*src, *dst, stabil);
3932 CP(*src, *dst, jitcnt);
3933 CP(*src, *dst, calcnt);
3934 CP(*src, *dst, errcnt);
3935 CP(*src, *dst, stbcnt);
3936 }
3937
3938 int
3939 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
3940 {
3941 struct timex tx;
3942 struct timex32 tx32;
3943 int error, retval;
3944
3945 error = copyin(uap->tp, &tx32, sizeof(tx32));
3946 if (error == 0) {
3947 timex_from_32(&tx, &tx32);
3948 error = kern_ntp_adjtime(td, &tx, &retval);
3949 if (error == 0) {
3950 timex_to_32(&tx32, &tx);
3951 error = copyout(&tx32, uap->tp, sizeof(tx32));
3952 if (error == 0)
3953 td->td_retval[0] = retval;
3954 }
3955 }
3956 return (error);
3957 }
Cache object: ab8625980f6f5a7adbc9f7af071218c5
|