The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/compat/linuxkpi/common/src/linux_compat.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2010 Isilon Systems, Inc.
    3  * Copyright (c) 2010 iX Systems, Inc.
    4  * Copyright (c) 2010 Panasas, Inc.
    5  * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice unmodified, this list of conditions, and the following
   13  *    disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_stack.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/malloc.h>
   38 #include <sys/kernel.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/proc.h>
   41 #include <sys/sglist.h>
   42 #include <sys/sleepqueue.h>
   43 #include <sys/refcount.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/bus.h>
   47 #include <sys/eventhandler.h>
   48 #include <sys/fcntl.h>
   49 #include <sys/file.h>
   50 #include <sys/filio.h>
   51 #include <sys/rwlock.h>
   52 #include <sys/mman.h>
   53 #include <sys/stack.h>
   54 #include <sys/sysent.h>
   55 #include <sys/time.h>
   56 #include <sys/user.h>
   57 
   58 #include <vm/vm.h>
   59 #include <vm/pmap.h>
   60 #include <vm/vm_object.h>
   61 #include <vm/vm_page.h>
   62 #include <vm/vm_pager.h>
   63 
   64 #include <machine/stdarg.h>
   65 
   66 #if defined(__i386__) || defined(__amd64__)
   67 #include <machine/md_var.h>
   68 #endif
   69 
   70 #include <linux/kobject.h>
   71 #include <linux/cpu.h>
   72 #include <linux/device.h>
   73 #include <linux/slab.h>
   74 #include <linux/module.h>
   75 #include <linux/moduleparam.h>
   76 #include <linux/cdev.h>
   77 #include <linux/file.h>
   78 #include <linux/sysfs.h>
   79 #include <linux/mm.h>
   80 #include <linux/io.h>
   81 #include <linux/vmalloc.h>
   82 #include <linux/netdevice.h>
   83 #include <linux/timer.h>
   84 #include <linux/interrupt.h>
   85 #include <linux/uaccess.h>
   86 #include <linux/list.h>
   87 #include <linux/kthread.h>
   88 #include <linux/kernel.h>
   89 #include <linux/compat.h>
   90 #include <linux/io-mapping.h>
   91 #include <linux/poll.h>
   92 #include <linux/smp.h>
   93 #include <linux/wait_bit.h>
   94 #include <linux/rcupdate.h>
   95 #include <linux/interval_tree.h>
   96 #include <linux/interval_tree_generic.h>
   97 
   98 #if defined(__i386__) || defined(__amd64__)
   99 #include <asm/smp.h>
  100 #include <asm/processor.h>
  101 #endif
  102 
  103 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  104     "LinuxKPI parameters");
  105 
  106 int linuxkpi_debug;
  107 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
  108     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
  109 
  110 int linuxkpi_warn_dump_stack = 0;
  111 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
  112     &linuxkpi_warn_dump_stack, 0,
  113     "Set to enable stack traces from WARN_ON(). Clear to disable.");
  114 
  115 static struct timeval lkpi_net_lastlog;
  116 static int lkpi_net_curpps;
  117 static int lkpi_net_maxpps = 99;
  118 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
  119     &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
  120 
  121 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
  122 
  123 #include <linux/rbtree.h>
  124 /* Undo Linux compat changes. */
  125 #undef RB_ROOT
  126 #undef file
  127 #undef cdev
  128 #define RB_ROOT(head)   (head)->rbh_root
  129 
  130 static void linux_destroy_dev(struct linux_cdev *);
  131 static void linux_cdev_deref(struct linux_cdev *ldev);
  132 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
  133 
  134 cpumask_t cpu_online_mask;
  135 static cpumask_t static_single_cpu_mask[MAXCPU];
  136 struct kobject linux_class_root;
  137 struct device linux_root_device;
  138 struct class linux_class_misc;
  139 struct list_head pci_drivers;
  140 struct list_head pci_devices;
  141 spinlock_t pci_lock;
  142 
  143 unsigned long linux_timer_hz_mask;
  144 
  145 wait_queue_head_t linux_bit_waitq;
  146 wait_queue_head_t linux_var_waitq;
  147 
  148 int
  149 panic_cmp(struct rb_node *one, struct rb_node *two)
  150 {
  151         panic("no cmp");
  152 }
  153 
  154 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
  155 
  156 #define START(node)     ((node)->start)
  157 #define LAST(node)      ((node)->last)
  158 
  159 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
  160     LAST,, lkpi_interval_tree)
  161 
  162 struct kobject *
  163 kobject_create(void)
  164 {
  165         struct kobject *kobj;
  166 
  167         kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
  168         if (kobj == NULL)
  169                 return (NULL);
  170         kobject_init(kobj, &linux_kfree_type);
  171 
  172         return (kobj);
  173 }
  174 
  175 
  176 int
  177 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
  178 {
  179         va_list tmp_va;
  180         int len;
  181         char *old;
  182         char *name;
  183         char dummy;
  184 
  185         old = kobj->name;
  186 
  187         if (old && fmt == NULL)
  188                 return (0);
  189 
  190         /* compute length of string */
  191         va_copy(tmp_va, args);
  192         len = vsnprintf(&dummy, 0, fmt, tmp_va);
  193         va_end(tmp_va);
  194 
  195         /* account for zero termination */
  196         len++;
  197 
  198         /* check for error */
  199         if (len < 1)
  200                 return (-EINVAL);
  201 
  202         /* allocate memory for string */
  203         name = kzalloc(len, GFP_KERNEL);
  204         if (name == NULL)
  205                 return (-ENOMEM);
  206         vsnprintf(name, len, fmt, args);
  207         kobj->name = name;
  208 
  209         /* free old string */
  210         kfree(old);
  211 
  212         /* filter new string */
  213         for (; *name != '\0'; name++)
  214                 if (*name == '/')
  215                         *name = '!';
  216         return (0);
  217 }
  218 
  219 int
  220 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
  221 {
  222         va_list args;
  223         int error;
  224 
  225         va_start(args, fmt);
  226         error = kobject_set_name_vargs(kobj, fmt, args);
  227         va_end(args);
  228 
  229         return (error);
  230 }
  231 
  232 static int
  233 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
  234 {
  235         const struct kobj_type *t;
  236         int error;
  237 
  238         kobj->parent = parent;
  239         error = sysfs_create_dir(kobj);
  240         if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
  241                 struct attribute **attr;
  242                 t = kobj->ktype;
  243 
  244                 for (attr = t->default_attrs; *attr != NULL; attr++) {
  245                         error = sysfs_create_file(kobj, *attr);
  246                         if (error)
  247                                 break;
  248                 }
  249                 if (error)
  250                         sysfs_remove_dir(kobj);
  251         }
  252         return (error);
  253 }
  254 
  255 int
  256 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
  257 {
  258         va_list args;
  259         int error;
  260 
  261         va_start(args, fmt);
  262         error = kobject_set_name_vargs(kobj, fmt, args);
  263         va_end(args);
  264         if (error)
  265                 return (error);
  266 
  267         return kobject_add_complete(kobj, parent);
  268 }
  269 
  270 void
  271 linux_kobject_release(struct kref *kref)
  272 {
  273         struct kobject *kobj;
  274         char *name;
  275 
  276         kobj = container_of(kref, struct kobject, kref);
  277         sysfs_remove_dir(kobj);
  278         name = kobj->name;
  279         if (kobj->ktype && kobj->ktype->release)
  280                 kobj->ktype->release(kobj);
  281         kfree(name);
  282 }
  283 
  284 static void
  285 linux_kobject_kfree(struct kobject *kobj)
  286 {
  287         kfree(kobj);
  288 }
  289 
  290 static void
  291 linux_kobject_kfree_name(struct kobject *kobj)
  292 {
  293         if (kobj) {
  294                 kfree(kobj->name);
  295         }
  296 }
  297 
  298 const struct kobj_type linux_kfree_type = {
  299         .release = linux_kobject_kfree
  300 };
  301 
  302 static ssize_t
  303 lkpi_kobj_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
  304 {
  305         struct kobj_attribute *ka =
  306             container_of(attr, struct kobj_attribute, attr);
  307 
  308         if (ka->show == NULL)
  309                 return (-EIO);
  310 
  311         return (ka->show(kobj, ka, buf));
  312 }
  313 
  314 static ssize_t
  315 lkpi_kobj_attr_store(struct kobject *kobj, struct attribute *attr,
  316     const char *buf, size_t count)
  317 {
  318         struct kobj_attribute *ka =
  319             container_of(attr, struct kobj_attribute, attr);
  320 
  321         if (ka->store == NULL)
  322                 return (-EIO);
  323 
  324         return (ka->store(kobj, ka, buf, count));
  325 }
  326 
  327 const struct sysfs_ops kobj_sysfs_ops = {
  328         .show   = lkpi_kobj_attr_show,
  329         .store  = lkpi_kobj_attr_store,
  330 };
  331 
  332 static void
  333 linux_device_release(struct device *dev)
  334 {
  335         pr_debug("linux_device_release: %s\n", dev_name(dev));
  336         kfree(dev);
  337 }
  338 
  339 static ssize_t
  340 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
  341 {
  342         struct class_attribute *dattr;
  343         ssize_t error;
  344 
  345         dattr = container_of(attr, struct class_attribute, attr);
  346         error = -EIO;
  347         if (dattr->show)
  348                 error = dattr->show(container_of(kobj, struct class, kobj),
  349                     dattr, buf);
  350         return (error);
  351 }
  352 
  353 static ssize_t
  354 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
  355     size_t count)
  356 {
  357         struct class_attribute *dattr;
  358         ssize_t error;
  359 
  360         dattr = container_of(attr, struct class_attribute, attr);
  361         error = -EIO;
  362         if (dattr->store)
  363                 error = dattr->store(container_of(kobj, struct class, kobj),
  364                     dattr, buf, count);
  365         return (error);
  366 }
  367 
  368 static void
  369 linux_class_release(struct kobject *kobj)
  370 {
  371         struct class *class;
  372 
  373         class = container_of(kobj, struct class, kobj);
  374         if (class->class_release)
  375                 class->class_release(class);
  376 }
  377 
  378 static const struct sysfs_ops linux_class_sysfs = {
  379         .show  = linux_class_show,
  380         .store = linux_class_store,
  381 };
  382 
  383 const struct kobj_type linux_class_ktype = {
  384         .release = linux_class_release,
  385         .sysfs_ops = &linux_class_sysfs
  386 };
  387 
  388 static void
  389 linux_dev_release(struct kobject *kobj)
  390 {
  391         struct device *dev;
  392 
  393         dev = container_of(kobj, struct device, kobj);
  394         /* This is the precedence defined by linux. */
  395         if (dev->release)
  396                 dev->release(dev);
  397         else if (dev->class && dev->class->dev_release)
  398                 dev->class->dev_release(dev);
  399 }
  400 
  401 static ssize_t
  402 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
  403 {
  404         struct device_attribute *dattr;
  405         ssize_t error;
  406 
  407         dattr = container_of(attr, struct device_attribute, attr);
  408         error = -EIO;
  409         if (dattr->show)
  410                 error = dattr->show(container_of(kobj, struct device, kobj),
  411                     dattr, buf);
  412         return (error);
  413 }
  414 
  415 static ssize_t
  416 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
  417     size_t count)
  418 {
  419         struct device_attribute *dattr;
  420         ssize_t error;
  421 
  422         dattr = container_of(attr, struct device_attribute, attr);
  423         error = -EIO;
  424         if (dattr->store)
  425                 error = dattr->store(container_of(kobj, struct device, kobj),
  426                     dattr, buf, count);
  427         return (error);
  428 }
  429 
  430 static const struct sysfs_ops linux_dev_sysfs = {
  431         .show  = linux_dev_show,
  432         .store = linux_dev_store,
  433 };
  434 
  435 const struct kobj_type linux_dev_ktype = {
  436         .release = linux_dev_release,
  437         .sysfs_ops = &linux_dev_sysfs
  438 };
  439 
  440 struct device *
  441 device_create(struct class *class, struct device *parent, dev_t devt,
  442     void *drvdata, const char *fmt, ...)
  443 {
  444         struct device *dev;
  445         va_list args;
  446 
  447         dev = kzalloc(sizeof(*dev), M_WAITOK);
  448         dev->parent = parent;
  449         dev->class = class;
  450         dev->devt = devt;
  451         dev->driver_data = drvdata;
  452         dev->release = linux_device_release;
  453         va_start(args, fmt);
  454         kobject_set_name_vargs(&dev->kobj, fmt, args);
  455         va_end(args);
  456         device_register(dev);
  457 
  458         return (dev);
  459 }
  460 
  461 struct device *
  462 device_create_groups_vargs(struct class *class, struct device *parent,
  463     dev_t devt, void *drvdata, const struct attribute_group **groups,
  464     const char *fmt, va_list args)
  465 {
  466         struct device *dev = NULL;
  467         int retval = -ENODEV;
  468 
  469         if (class == NULL || IS_ERR(class))
  470                 goto error;
  471 
  472         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  473         if (!dev) {
  474                 retval = -ENOMEM;
  475                 goto error;
  476         }
  477 
  478         dev->devt = devt;
  479         dev->class = class;
  480         dev->parent = parent;
  481         dev->groups = groups;
  482         dev->release = device_create_release;
  483         /* device_initialize() needs the class and parent to be set */
  484         device_initialize(dev);
  485         dev_set_drvdata(dev, drvdata);
  486 
  487         retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
  488         if (retval)
  489                 goto error;
  490 
  491         retval = device_add(dev);
  492         if (retval)
  493                 goto error;
  494 
  495         return dev;
  496 
  497 error:
  498         put_device(dev);
  499         return ERR_PTR(retval);
  500 }
  501 
  502 struct class *
  503 class_create(struct module *owner, const char *name)
  504 {
  505         struct class *class;
  506         int error;
  507 
  508         class = kzalloc(sizeof(*class), M_WAITOK);
  509         class->owner = owner;
  510         class->name = name;
  511         class->class_release = linux_class_kfree;
  512         error = class_register(class);
  513         if (error) {
  514                 kfree(class);
  515                 return (NULL);
  516         }
  517 
  518         return (class);
  519 }
  520 
  521 int
  522 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
  523     struct kobject *parent, const char *fmt, ...)
  524 {
  525         va_list args;
  526         int error;
  527 
  528         kobject_init(kobj, ktype);
  529         kobj->ktype = ktype;
  530         kobj->parent = parent;
  531         kobj->name = NULL;
  532 
  533         va_start(args, fmt);
  534         error = kobject_set_name_vargs(kobj, fmt, args);
  535         va_end(args);
  536         if (error)
  537                 return (error);
  538         return kobject_add_complete(kobj, parent);
  539 }
  540 
  541 static void
  542 linux_kq_lock(void *arg)
  543 {
  544         spinlock_t *s = arg;
  545 
  546         spin_lock(s);
  547 }
  548 static void
  549 linux_kq_unlock(void *arg)
  550 {
  551         spinlock_t *s = arg;
  552 
  553         spin_unlock(s);
  554 }
  555 
  556 static void
  557 linux_kq_assert_lock(void *arg, int what)
  558 {
  559 #ifdef INVARIANTS
  560         spinlock_t *s = arg;
  561 
  562         if (what == LA_LOCKED)
  563                 mtx_assert(&s->m, MA_OWNED);
  564         else
  565                 mtx_assert(&s->m, MA_NOTOWNED);
  566 #endif
  567 }
  568 
  569 static void
  570 linux_file_kqfilter_poll(struct linux_file *, int);
  571 
  572 struct linux_file *
  573 linux_file_alloc(void)
  574 {
  575         struct linux_file *filp;
  576 
  577         filp = kzalloc(sizeof(*filp), GFP_KERNEL);
  578 
  579         /* set initial refcount */
  580         filp->f_count = 1;
  581 
  582         /* setup fields needed by kqueue support */
  583         spin_lock_init(&filp->f_kqlock);
  584         knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
  585             linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
  586 
  587         return (filp);
  588 }
  589 
  590 void
  591 linux_file_free(struct linux_file *filp)
  592 {
  593         if (filp->_file == NULL) {
  594                 if (filp->f_op != NULL && filp->f_op->release != NULL)
  595                         filp->f_op->release(filp->f_vnode, filp);
  596                 if (filp->f_shmem != NULL)
  597                         vm_object_deallocate(filp->f_shmem);
  598                 kfree_rcu(filp, rcu);
  599         } else {
  600                 /*
  601                  * The close method of the character device or file
  602                  * will free the linux_file structure:
  603                  */
  604                 _fdrop(filp->_file, curthread);
  605         }
  606 }
  607 
  608 struct linux_cdev *
  609 cdev_alloc(void)
  610 {
  611         struct linux_cdev *cdev;
  612 
  613         cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
  614         kobject_init(&cdev->kobj, &linux_cdev_ktype);
  615         cdev->refs = 1;
  616         return (cdev);
  617 }
  618 
  619 static int
  620 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
  621     vm_page_t *mres)
  622 {
  623         struct vm_area_struct *vmap;
  624 
  625         vmap = linux_cdev_handle_find(vm_obj->handle);
  626 
  627         MPASS(vmap != NULL);
  628         MPASS(vmap->vm_private_data == vm_obj->handle);
  629 
  630         if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
  631                 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
  632                 vm_page_t page;
  633 
  634                 if (((*mres)->flags & PG_FICTITIOUS) != 0) {
  635                         /*
  636                          * If the passed in result page is a fake
  637                          * page, update it with the new physical
  638                          * address.
  639                          */
  640                         page = *mres;
  641                         vm_page_updatefake(page, paddr, vm_obj->memattr);
  642                 } else {
  643                         /*
  644                          * Replace the passed in "mres" page with our
  645                          * own fake page and free up the all of the
  646                          * original pages.
  647                          */
  648                         VM_OBJECT_WUNLOCK(vm_obj);
  649                         page = vm_page_getfake(paddr, vm_obj->memattr);
  650                         VM_OBJECT_WLOCK(vm_obj);
  651 
  652                         vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
  653                         *mres = page;
  654                 }
  655                 vm_page_valid(page);
  656                 return (VM_PAGER_OK);
  657         }
  658         return (VM_PAGER_FAIL);
  659 }
  660 
  661 static int
  662 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
  663     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
  664 {
  665         struct vm_area_struct *vmap;
  666         int err;
  667 
  668         /* get VM area structure */
  669         vmap = linux_cdev_handle_find(vm_obj->handle);
  670         MPASS(vmap != NULL);
  671         MPASS(vmap->vm_private_data == vm_obj->handle);
  672 
  673         VM_OBJECT_WUNLOCK(vm_obj);
  674 
  675         linux_set_current(curthread);
  676 
  677         down_write(&vmap->vm_mm->mmap_sem);
  678         if (unlikely(vmap->vm_ops == NULL)) {
  679                 err = VM_FAULT_SIGBUS;
  680         } else {
  681                 struct vm_fault vmf;
  682 
  683                 /* fill out VM fault structure */
  684                 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
  685                 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
  686                 vmf.pgoff = 0;
  687                 vmf.page = NULL;
  688                 vmf.vma = vmap;
  689 
  690                 vmap->vm_pfn_count = 0;
  691                 vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
  692                 vmap->vm_obj = vm_obj;
  693 
  694                 err = vmap->vm_ops->fault(&vmf);
  695 
  696                 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
  697                         kern_yield(PRI_USER);
  698                         err = vmap->vm_ops->fault(&vmf);
  699                 }
  700         }
  701 
  702         /* translate return code */
  703         switch (err) {
  704         case VM_FAULT_OOM:
  705                 err = VM_PAGER_AGAIN;
  706                 break;
  707         case VM_FAULT_SIGBUS:
  708                 err = VM_PAGER_BAD;
  709                 break;
  710         case VM_FAULT_NOPAGE:
  711                 /*
  712                  * By contract the fault handler will return having
  713                  * busied all the pages itself. If pidx is already
  714                  * found in the object, it will simply xbusy the first
  715                  * page and return with vm_pfn_count set to 1.
  716                  */
  717                 *first = vmap->vm_pfn_first;
  718                 *last = *first + vmap->vm_pfn_count - 1;
  719                 err = VM_PAGER_OK;
  720                 break;
  721         default:
  722                 err = VM_PAGER_ERROR;
  723                 break;
  724         }
  725         up_write(&vmap->vm_mm->mmap_sem);
  726         VM_OBJECT_WLOCK(vm_obj);
  727         return (err);
  728 }
  729 
  730 static struct rwlock linux_vma_lock;
  731 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
  732     TAILQ_HEAD_INITIALIZER(linux_vma_head);
  733 
  734 static void
  735 linux_cdev_handle_free(struct vm_area_struct *vmap)
  736 {
  737         /* Drop reference on vm_file */
  738         if (vmap->vm_file != NULL)
  739                 fput(vmap->vm_file);
  740 
  741         /* Drop reference on mm_struct */
  742         mmput(vmap->vm_mm);
  743 
  744         kfree(vmap);
  745 }
  746 
  747 static void
  748 linux_cdev_handle_remove(struct vm_area_struct *vmap)
  749 {
  750         rw_wlock(&linux_vma_lock);
  751         TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
  752         rw_wunlock(&linux_vma_lock);
  753 }
  754 
  755 static struct vm_area_struct *
  756 linux_cdev_handle_find(void *handle)
  757 {
  758         struct vm_area_struct *vmap;
  759 
  760         rw_rlock(&linux_vma_lock);
  761         TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
  762                 if (vmap->vm_private_data == handle)
  763                         break;
  764         }
  765         rw_runlock(&linux_vma_lock);
  766         return (vmap);
  767 }
  768 
  769 static int
  770 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
  771                       vm_ooffset_t foff, struct ucred *cred, u_short *color)
  772 {
  773 
  774         MPASS(linux_cdev_handle_find(handle) != NULL);
  775         *color = 0;
  776         return (0);
  777 }
  778 
  779 static void
  780 linux_cdev_pager_dtor(void *handle)
  781 {
  782         const struct vm_operations_struct *vm_ops;
  783         struct vm_area_struct *vmap;
  784 
  785         vmap = linux_cdev_handle_find(handle);
  786         MPASS(vmap != NULL);
  787 
  788         /*
  789          * Remove handle before calling close operation to prevent
  790          * other threads from reusing the handle pointer.
  791          */
  792         linux_cdev_handle_remove(vmap);
  793 
  794         down_write(&vmap->vm_mm->mmap_sem);
  795         vm_ops = vmap->vm_ops;
  796         if (likely(vm_ops != NULL))
  797                 vm_ops->close(vmap);
  798         up_write(&vmap->vm_mm->mmap_sem);
  799 
  800         linux_cdev_handle_free(vmap);
  801 }
  802 
  803 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
  804   {
  805         /* OBJT_MGTDEVICE */
  806         .cdev_pg_populate       = linux_cdev_pager_populate,
  807         .cdev_pg_ctor   = linux_cdev_pager_ctor,
  808         .cdev_pg_dtor   = linux_cdev_pager_dtor
  809   },
  810   {
  811         /* OBJT_DEVICE */
  812         .cdev_pg_fault  = linux_cdev_pager_fault,
  813         .cdev_pg_ctor   = linux_cdev_pager_ctor,
  814         .cdev_pg_dtor   = linux_cdev_pager_dtor
  815   },
  816 };
  817 
  818 int
  819 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  820     unsigned long size)
  821 {
  822         vm_object_t obj;
  823         vm_page_t m;
  824 
  825         obj = vma->vm_obj;
  826         if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
  827                 return (-ENOTSUP);
  828         VM_OBJECT_RLOCK(obj);
  829         for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
  830             m != NULL && m->pindex < OFF_TO_IDX(address + size);
  831             m = TAILQ_NEXT(m, listq))
  832                 pmap_remove_all(m);
  833         VM_OBJECT_RUNLOCK(obj);
  834         return (0);
  835 }
  836 
  837 void
  838 vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
  839 {
  840         struct linux_file *tmp;
  841 
  842         /* Changing an anonymous vma with this is illegal */
  843         get_file(file);
  844         tmp = vma->vm_file;
  845         vma->vm_file = file;
  846         fput(tmp);
  847 }
  848 
  849 static struct file_operations dummy_ldev_ops = {
  850         /* XXXKIB */
  851 };
  852 
  853 static struct linux_cdev dummy_ldev = {
  854         .ops = &dummy_ldev_ops,
  855 };
  856 
  857 #define LDEV_SI_DTR     0x0001
  858 #define LDEV_SI_REF     0x0002
  859 
  860 static void
  861 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
  862     struct linux_cdev **dev)
  863 {
  864         struct linux_cdev *ldev;
  865         u_int siref;
  866 
  867         ldev = filp->f_cdev;
  868         *fop = filp->f_op;
  869         if (ldev != NULL) {
  870                 if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
  871                         refcount_acquire(&ldev->refs);
  872                 } else {
  873                         for (siref = ldev->siref;;) {
  874                                 if ((siref & LDEV_SI_DTR) != 0) {
  875                                         ldev = &dummy_ldev;
  876                                         *fop = ldev->ops;
  877                                         siref = ldev->siref;
  878                                         MPASS((ldev->siref & LDEV_SI_DTR) == 0);
  879                                 } else if (atomic_fcmpset_int(&ldev->siref,
  880                                     &siref, siref + LDEV_SI_REF)) {
  881                                         break;
  882                                 }
  883                         }
  884                 }
  885         }
  886         *dev = ldev;
  887 }
  888 
  889 static void
  890 linux_drop_fop(struct linux_cdev *ldev)
  891 {
  892 
  893         if (ldev == NULL)
  894                 return;
  895         if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
  896                 linux_cdev_deref(ldev);
  897         } else {
  898                 MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
  899                 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
  900                 atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
  901         }
  902 }
  903 
  904 #define OPW(fp,td,code) ({                      \
  905         struct file *__fpop;                    \
  906         __typeof(code) __retval;                \
  907                                                 \
  908         __fpop = (td)->td_fpop;                 \
  909         (td)->td_fpop = (fp);                   \
  910         __retval = (code);                      \
  911         (td)->td_fpop = __fpop;                 \
  912         __retval;                               \
  913 })
  914 
  915 static int
  916 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
  917     struct file *file)
  918 {
  919         struct linux_cdev *ldev;
  920         struct linux_file *filp;
  921         const struct file_operations *fop;
  922         int error;
  923 
  924         ldev = dev->si_drv1;
  925 
  926         filp = linux_file_alloc();
  927         filp->f_dentry = &filp->f_dentry_store;
  928         filp->f_op = ldev->ops;
  929         filp->f_mode = file->f_flag;
  930         filp->f_flags = file->f_flag;
  931         filp->f_vnode = file->f_vnode;
  932         filp->_file = file;
  933         refcount_acquire(&ldev->refs);
  934         filp->f_cdev = ldev;
  935 
  936         linux_set_current(td);
  937         linux_get_fop(filp, &fop, &ldev);
  938 
  939         if (fop->open != NULL) {
  940                 error = -fop->open(file->f_vnode, filp);
  941                 if (error != 0) {
  942                         linux_drop_fop(ldev);
  943                         linux_cdev_deref(filp->f_cdev);
  944                         kfree(filp);
  945                         return (error);
  946                 }
  947         }
  948 
  949         /* hold on to the vnode - used for fstat() */
  950         vhold(filp->f_vnode);
  951 
  952         /* release the file from devfs */
  953         finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
  954         linux_drop_fop(ldev);
  955         return (ENXIO);
  956 }
  957 
  958 #define LINUX_IOCTL_MIN_PTR 0x10000UL
  959 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
  960 
  961 static inline int
  962 linux_remap_address(void **uaddr, size_t len)
  963 {
  964         uintptr_t uaddr_val = (uintptr_t)(*uaddr);
  965 
  966         if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
  967             uaddr_val < LINUX_IOCTL_MAX_PTR)) {
  968                 struct task_struct *pts = current;
  969                 if (pts == NULL) {
  970                         *uaddr = NULL;
  971                         return (1);
  972                 }
  973 
  974                 /* compute data offset */
  975                 uaddr_val -= LINUX_IOCTL_MIN_PTR;
  976 
  977                 /* check that length is within bounds */
  978                 if ((len > IOCPARM_MAX) ||
  979                     (uaddr_val + len) > pts->bsd_ioctl_len) {
  980                         *uaddr = NULL;
  981                         return (1);
  982                 }
  983 
  984                 /* re-add kernel buffer address */
  985                 uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
  986 
  987                 /* update address location */
  988                 *uaddr = (void *)uaddr_val;
  989                 return (1);
  990         }
  991         return (0);
  992 }
  993 
  994 int
  995 linux_copyin(const void *uaddr, void *kaddr, size_t len)
  996 {
  997         if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
  998                 if (uaddr == NULL)
  999                         return (-EFAULT);
 1000                 memcpy(kaddr, uaddr, len);
 1001                 return (0);
 1002         }
 1003         return (-copyin(uaddr, kaddr, len));
 1004 }
 1005 
 1006 int
 1007 linux_copyout(const void *kaddr, void *uaddr, size_t len)
 1008 {
 1009         if (linux_remap_address(&uaddr, len)) {
 1010                 if (uaddr == NULL)
 1011                         return (-EFAULT);
 1012                 memcpy(uaddr, kaddr, len);
 1013                 return (0);
 1014         }
 1015         return (-copyout(kaddr, uaddr, len));
 1016 }
 1017 
 1018 size_t
 1019 linux_clear_user(void *_uaddr, size_t _len)
 1020 {
 1021         uint8_t *uaddr = _uaddr;
 1022         size_t len = _len;
 1023 
 1024         /* make sure uaddr is aligned before going into the fast loop */
 1025         while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
 1026                 if (subyte(uaddr, 0))
 1027                         return (_len);
 1028                 uaddr++;
 1029                 len--;
 1030         }
 1031 
 1032         /* zero 8 bytes at a time */
 1033         while (len > 7) {
 1034 #ifdef __LP64__
 1035                 if (suword64(uaddr, 0))
 1036                         return (_len);
 1037 #else
 1038                 if (suword32(uaddr, 0))
 1039                         return (_len);
 1040                 if (suword32(uaddr + 4, 0))
 1041                         return (_len);
 1042 #endif
 1043                 uaddr += 8;
 1044                 len -= 8;
 1045         }
 1046 
 1047         /* zero fill end, if any */
 1048         while (len > 0) {
 1049                 if (subyte(uaddr, 0))
 1050                         return (_len);
 1051                 uaddr++;
 1052                 len--;
 1053         }
 1054         return (0);
 1055 }
 1056 
 1057 int
 1058 linux_access_ok(const void *uaddr, size_t len)
 1059 {
 1060         uintptr_t saddr;
 1061         uintptr_t eaddr;
 1062 
 1063         /* get start and end address */
 1064         saddr = (uintptr_t)uaddr;
 1065         eaddr = (uintptr_t)uaddr + len;
 1066 
 1067         /* verify addresses are valid for userspace */
 1068         return ((saddr == eaddr) ||
 1069             (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
 1070 }
 1071 
 1072 /*
 1073  * This function should return either EINTR or ERESTART depending on
 1074  * the signal type sent to this thread:
 1075  */
 1076 static int
 1077 linux_get_error(struct task_struct *task, int error)
 1078 {
 1079         /* check for signal type interrupt code */
 1080         if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
 1081                 error = -linux_schedule_get_interrupt_value(task);
 1082                 if (error == 0)
 1083                         error = EINTR;
 1084         }
 1085         return (error);
 1086 }
 1087 
 1088 static int
 1089 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
 1090     const struct file_operations *fop, u_long cmd, caddr_t data,
 1091     struct thread *td)
 1092 {
 1093         struct task_struct *task = current;
 1094         unsigned size;
 1095         int error;
 1096 
 1097         size = IOCPARM_LEN(cmd);
 1098         /* refer to logic in sys_ioctl() */
 1099         if (size > 0) {
 1100                 /*
 1101                  * Setup hint for linux_copyin() and linux_copyout().
 1102                  *
 1103                  * Background: Linux code expects a user-space address
 1104                  * while FreeBSD supplies a kernel-space address.
 1105                  */
 1106                 task->bsd_ioctl_data = data;
 1107                 task->bsd_ioctl_len = size;
 1108                 data = (void *)LINUX_IOCTL_MIN_PTR;
 1109         } else {
 1110                 /* fetch user-space pointer */
 1111                 data = *(void **)data;
 1112         }
 1113 #ifdef COMPAT_FREEBSD32
 1114         if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
 1115                 /* try the compat IOCTL handler first */
 1116                 if (fop->compat_ioctl != NULL) {
 1117                         error = -OPW(fp, td, fop->compat_ioctl(filp,
 1118                             cmd, (u_long)data));
 1119                 } else {
 1120                         error = ENOTTY;
 1121                 }
 1122 
 1123                 /* fallback to the regular IOCTL handler, if any */
 1124                 if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
 1125                         error = -OPW(fp, td, fop->unlocked_ioctl(filp,
 1126                             cmd, (u_long)data));
 1127                 }
 1128         } else
 1129 #endif
 1130         {
 1131                 if (fop->unlocked_ioctl != NULL) {
 1132                         error = -OPW(fp, td, fop->unlocked_ioctl(filp,
 1133                             cmd, (u_long)data));
 1134                 } else {
 1135                         error = ENOTTY;
 1136                 }
 1137         }
 1138         if (size > 0) {
 1139                 task->bsd_ioctl_data = NULL;
 1140                 task->bsd_ioctl_len = 0;
 1141         }
 1142 
 1143         if (error == EWOULDBLOCK) {
 1144                 /* update kqfilter status, if any */
 1145                 linux_file_kqfilter_poll(filp,
 1146                     LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
 1147         } else {
 1148                 error = linux_get_error(task, error);
 1149         }
 1150         return (error);
 1151 }
 1152 
 1153 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
 1154 
 1155 /*
 1156  * This function atomically updates the poll wakeup state and returns
 1157  * the previous state at the time of update.
 1158  */
 1159 static uint8_t
 1160 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
 1161 {
 1162         int c, old;
 1163 
 1164         c = v->counter;
 1165 
 1166         while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
 1167                 c = old;
 1168 
 1169         return (c);
 1170 }
 1171 
 1172 static int
 1173 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
 1174 {
 1175         static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
 1176                 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
 1177                 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
 1178                 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
 1179                 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
 1180         };
 1181         struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
 1182 
 1183         switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
 1184         case LINUX_FWQ_STATE_QUEUED:
 1185                 linux_poll_wakeup(filp);
 1186                 return (1);
 1187         default:
 1188                 return (0);
 1189         }
 1190 }
 1191 
 1192 void
 1193 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
 1194 {
 1195         static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
 1196                 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
 1197                 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
 1198                 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
 1199                 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
 1200         };
 1201 
 1202         /* check if we are called inside the select system call */
 1203         if (p == LINUX_POLL_TABLE_NORMAL)
 1204                 selrecord(curthread, &filp->f_selinfo);
 1205 
 1206         switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
 1207         case LINUX_FWQ_STATE_INIT:
 1208                 /* NOTE: file handles can only belong to one wait-queue */
 1209                 filp->f_wait_queue.wqh = wqh;
 1210                 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
 1211                 add_wait_queue(wqh, &filp->f_wait_queue.wq);
 1212                 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
 1213                 break;
 1214         default:
 1215                 break;
 1216         }
 1217 }
 1218 
 1219 static void
 1220 linux_poll_wait_dequeue(struct linux_file *filp)
 1221 {
 1222         static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
 1223                 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,  /* NOP */
 1224                 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
 1225                 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
 1226                 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
 1227         };
 1228 
 1229         seldrain(&filp->f_selinfo);
 1230 
 1231         switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
 1232         case LINUX_FWQ_STATE_NOT_READY:
 1233         case LINUX_FWQ_STATE_QUEUED:
 1234         case LINUX_FWQ_STATE_READY:
 1235                 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
 1236                 break;
 1237         default:
 1238                 break;
 1239         }
 1240 }
 1241 
 1242 void
 1243 linux_poll_wakeup(struct linux_file *filp)
 1244 {
 1245         /* this function should be NULL-safe */
 1246         if (filp == NULL)
 1247                 return;
 1248 
 1249         selwakeup(&filp->f_selinfo);
 1250 
 1251         spin_lock(&filp->f_kqlock);
 1252         filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
 1253             LINUX_KQ_FLAG_NEED_WRITE;
 1254 
 1255         /* make sure the "knote" gets woken up */
 1256         KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
 1257         spin_unlock(&filp->f_kqlock);
 1258 }
 1259 
 1260 static void
 1261 linux_file_kqfilter_detach(struct knote *kn)
 1262 {
 1263         struct linux_file *filp = kn->kn_hook;
 1264 
 1265         spin_lock(&filp->f_kqlock);
 1266         knlist_remove(&filp->f_selinfo.si_note, kn, 1);
 1267         spin_unlock(&filp->f_kqlock);
 1268 }
 1269 
 1270 static int
 1271 linux_file_kqfilter_read_event(struct knote *kn, long hint)
 1272 {
 1273         struct linux_file *filp = kn->kn_hook;
 1274 
 1275         mtx_assert(&filp->f_kqlock.m, MA_OWNED);
 1276 
 1277         return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
 1278 }
 1279 
 1280 static int
 1281 linux_file_kqfilter_write_event(struct knote *kn, long hint)
 1282 {
 1283         struct linux_file *filp = kn->kn_hook;
 1284 
 1285         mtx_assert(&filp->f_kqlock.m, MA_OWNED);
 1286 
 1287         return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
 1288 }
 1289 
 1290 static struct filterops linux_dev_kqfiltops_read = {
 1291         .f_isfd = 1,
 1292         .f_detach = linux_file_kqfilter_detach,
 1293         .f_event = linux_file_kqfilter_read_event,
 1294 };
 1295 
 1296 static struct filterops linux_dev_kqfiltops_write = {
 1297         .f_isfd = 1,
 1298         .f_detach = linux_file_kqfilter_detach,
 1299         .f_event = linux_file_kqfilter_write_event,
 1300 };
 1301 
 1302 static void
 1303 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
 1304 {
 1305         struct thread *td;
 1306         const struct file_operations *fop;
 1307         struct linux_cdev *ldev;
 1308         int temp;
 1309 
 1310         if ((filp->f_kqflags & kqflags) == 0)
 1311                 return;
 1312 
 1313         td = curthread;
 1314 
 1315         linux_get_fop(filp, &fop, &ldev);
 1316         /* get the latest polling state */
 1317         temp = OPW(filp->_file, td, fop->poll(filp, NULL));
 1318         linux_drop_fop(ldev);
 1319 
 1320         spin_lock(&filp->f_kqlock);
 1321         /* clear kqflags */
 1322         filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
 1323             LINUX_KQ_FLAG_NEED_WRITE);
 1324         /* update kqflags */
 1325         if ((temp & (POLLIN | POLLOUT)) != 0) {
 1326                 if ((temp & POLLIN) != 0)
 1327                         filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
 1328                 if ((temp & POLLOUT) != 0)
 1329                         filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
 1330 
 1331                 /* make sure the "knote" gets woken up */
 1332                 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
 1333         }
 1334         spin_unlock(&filp->f_kqlock);
 1335 }
 1336 
 1337 static int
 1338 linux_file_kqfilter(struct file *file, struct knote *kn)
 1339 {
 1340         struct linux_file *filp;
 1341         struct thread *td;
 1342         int error;
 1343 
 1344         td = curthread;
 1345         filp = (struct linux_file *)file->f_data;
 1346         filp->f_flags = file->f_flag;
 1347         if (filp->f_op->poll == NULL)
 1348                 return (EINVAL);
 1349 
 1350         spin_lock(&filp->f_kqlock);
 1351         switch (kn->kn_filter) {
 1352         case EVFILT_READ:
 1353                 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
 1354                 kn->kn_fop = &linux_dev_kqfiltops_read;
 1355                 kn->kn_hook = filp;
 1356                 knlist_add(&filp->f_selinfo.si_note, kn, 1);
 1357                 error = 0;
 1358                 break;
 1359         case EVFILT_WRITE:
 1360                 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
 1361                 kn->kn_fop = &linux_dev_kqfiltops_write;
 1362                 kn->kn_hook = filp;
 1363                 knlist_add(&filp->f_selinfo.si_note, kn, 1);
 1364                 error = 0;
 1365                 break;
 1366         default:
 1367                 error = EINVAL;
 1368                 break;
 1369         }
 1370         spin_unlock(&filp->f_kqlock);
 1371 
 1372         if (error == 0) {
 1373                 linux_set_current(td);
 1374 
 1375                 /* update kqfilter status, if any */
 1376                 linux_file_kqfilter_poll(filp,
 1377                     LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
 1378         }
 1379         return (error);
 1380 }
 1381 
 1382 static int
 1383 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
 1384     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
 1385     int nprot, bool is_shared, struct thread *td)
 1386 {
 1387         struct task_struct *task;
 1388         struct vm_area_struct *vmap;
 1389         struct mm_struct *mm;
 1390         struct linux_file *filp;
 1391         vm_memattr_t attr;
 1392         int error;
 1393 
 1394         filp = (struct linux_file *)fp->f_data;
 1395         filp->f_flags = fp->f_flag;
 1396 
 1397         if (fop->mmap == NULL)
 1398                 return (EOPNOTSUPP);
 1399 
 1400         linux_set_current(td);
 1401 
 1402         /*
 1403          * The same VM object might be shared by multiple processes
 1404          * and the mm_struct is usually freed when a process exits.
 1405          *
 1406          * The atomic reference below makes sure the mm_struct is
 1407          * available as long as the vmap is in the linux_vma_head.
 1408          */
 1409         task = current;
 1410         mm = task->mm;
 1411         if (atomic_inc_not_zero(&mm->mm_users) == 0)
 1412                 return (EINVAL);
 1413 
 1414         vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
 1415         vmap->vm_start = 0;
 1416         vmap->vm_end = size;
 1417         vmap->vm_pgoff = *offset / PAGE_SIZE;
 1418         vmap->vm_pfn = 0;
 1419         vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
 1420         if (is_shared)
 1421                 vmap->vm_flags |= VM_SHARED;
 1422         vmap->vm_ops = NULL;
 1423         vmap->vm_file = get_file(filp);
 1424         vmap->vm_mm = mm;
 1425 
 1426         if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
 1427                 error = linux_get_error(task, EINTR);
 1428         } else {
 1429                 error = -OPW(fp, td, fop->mmap(filp, vmap));
 1430                 error = linux_get_error(task, error);
 1431                 up_write(&vmap->vm_mm->mmap_sem);
 1432         }
 1433 
 1434         if (error != 0) {
 1435                 linux_cdev_handle_free(vmap);
 1436                 return (error);
 1437         }
 1438 
 1439         attr = pgprot2cachemode(vmap->vm_page_prot);
 1440 
 1441         if (vmap->vm_ops != NULL) {
 1442                 struct vm_area_struct *ptr;
 1443                 void *vm_private_data;
 1444                 bool vm_no_fault;
 1445 
 1446                 if (vmap->vm_ops->open == NULL ||
 1447                     vmap->vm_ops->close == NULL ||
 1448                     vmap->vm_private_data == NULL) {
 1449                         /* free allocated VM area struct */
 1450                         linux_cdev_handle_free(vmap);
 1451                         return (EINVAL);
 1452                 }
 1453 
 1454                 vm_private_data = vmap->vm_private_data;
 1455 
 1456                 rw_wlock(&linux_vma_lock);
 1457                 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
 1458                         if (ptr->vm_private_data == vm_private_data)
 1459                                 break;
 1460                 }
 1461                 /* check if there is an existing VM area struct */
 1462                 if (ptr != NULL) {
 1463                         /* check if the VM area structure is invalid */
 1464                         if (ptr->vm_ops == NULL ||
 1465                             ptr->vm_ops->open == NULL ||
 1466                             ptr->vm_ops->close == NULL) {
 1467                                 error = ESTALE;
 1468                                 vm_no_fault = 1;
 1469                         } else {
 1470                                 error = EEXIST;
 1471                                 vm_no_fault = (ptr->vm_ops->fault == NULL);
 1472                         }
 1473                 } else {
 1474                         /* insert VM area structure into list */
 1475                         TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
 1476                         error = 0;
 1477                         vm_no_fault = (vmap->vm_ops->fault == NULL);
 1478                 }
 1479                 rw_wunlock(&linux_vma_lock);
 1480 
 1481                 if (error != 0) {
 1482                         /* free allocated VM area struct */
 1483                         linux_cdev_handle_free(vmap);
 1484                         /* check for stale VM area struct */
 1485                         if (error != EEXIST)
 1486                                 return (error);
 1487                 }
 1488 
 1489                 /* check if there is no fault handler */
 1490                 if (vm_no_fault) {
 1491                         *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
 1492                             &linux_cdev_pager_ops[1], size, nprot, *offset,
 1493                             td->td_ucred);
 1494                 } else {
 1495                         *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
 1496                             &linux_cdev_pager_ops[0], size, nprot, *offset,
 1497                             td->td_ucred);
 1498                 }
 1499 
 1500                 /* check if allocating the VM object failed */
 1501                 if (*object == NULL) {
 1502                         if (error == 0) {
 1503                                 /* remove VM area struct from list */
 1504                                 linux_cdev_handle_remove(vmap);
 1505                                 /* free allocated VM area struct */
 1506                                 linux_cdev_handle_free(vmap);
 1507                         }
 1508                         return (EINVAL);
 1509                 }
 1510         } else {
 1511                 struct sglist *sg;
 1512 
 1513                 sg = sglist_alloc(1, M_WAITOK);
 1514                 sglist_append_phys(sg,
 1515                     (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
 1516 
 1517                 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
 1518                     nprot, 0, td->td_ucred);
 1519 
 1520                 linux_cdev_handle_free(vmap);
 1521 
 1522                 if (*object == NULL) {
 1523                         sglist_free(sg);
 1524                         return (EINVAL);
 1525                 }
 1526         }
 1527 
 1528         if (attr != VM_MEMATTR_DEFAULT) {
 1529                 VM_OBJECT_WLOCK(*object);
 1530                 vm_object_set_memattr(*object, attr);
 1531                 VM_OBJECT_WUNLOCK(*object);
 1532         }
 1533         *offset = 0;
 1534         return (0);
 1535 }
 1536 
 1537 struct cdevsw linuxcdevsw = {
 1538         .d_version = D_VERSION,
 1539         .d_fdopen = linux_dev_fdopen,
 1540         .d_name = "lkpidev",
 1541 };
 1542 
 1543 static int
 1544 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
 1545     int flags, struct thread *td)
 1546 {
 1547         struct linux_file *filp;
 1548         const struct file_operations *fop;
 1549         struct linux_cdev *ldev;
 1550         ssize_t bytes;
 1551         int error;
 1552 
 1553         error = 0;
 1554         filp = (struct linux_file *)file->f_data;
 1555         filp->f_flags = file->f_flag;
 1556         /* XXX no support for I/O vectors currently */
 1557         if (uio->uio_iovcnt != 1)
 1558                 return (EOPNOTSUPP);
 1559         if (uio->uio_resid > DEVFS_IOSIZE_MAX)
 1560                 return (EINVAL);
 1561         linux_set_current(td);
 1562         linux_get_fop(filp, &fop, &ldev);
 1563         if (fop->read != NULL) {
 1564                 bytes = OPW(file, td, fop->read(filp,
 1565                     uio->uio_iov->iov_base,
 1566                     uio->uio_iov->iov_len, &uio->uio_offset));
 1567                 if (bytes >= 0) {
 1568                         uio->uio_iov->iov_base =
 1569                             ((uint8_t *)uio->uio_iov->iov_base) + bytes;
 1570                         uio->uio_iov->iov_len -= bytes;
 1571                         uio->uio_resid -= bytes;
 1572                 } else {
 1573                         error = linux_get_error(current, -bytes);
 1574                 }
 1575         } else
 1576                 error = ENXIO;
 1577 
 1578         /* update kqfilter status, if any */
 1579         linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
 1580         linux_drop_fop(ldev);
 1581 
 1582         return (error);
 1583 }
 1584 
 1585 static int
 1586 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
 1587     int flags, struct thread *td)
 1588 {
 1589         struct linux_file *filp;
 1590         const struct file_operations *fop;
 1591         struct linux_cdev *ldev;
 1592         ssize_t bytes;
 1593         int error;
 1594 
 1595         filp = (struct linux_file *)file->f_data;
 1596         filp->f_flags = file->f_flag;
 1597         /* XXX no support for I/O vectors currently */
 1598         if (uio->uio_iovcnt != 1)
 1599                 return (EOPNOTSUPP);
 1600         if (uio->uio_resid > DEVFS_IOSIZE_MAX)
 1601                 return (EINVAL);
 1602         linux_set_current(td);
 1603         linux_get_fop(filp, &fop, &ldev);
 1604         if (fop->write != NULL) {
 1605                 bytes = OPW(file, td, fop->write(filp,
 1606                     uio->uio_iov->iov_base,
 1607                     uio->uio_iov->iov_len, &uio->uio_offset));
 1608                 if (bytes >= 0) {
 1609                         uio->uio_iov->iov_base =
 1610                             ((uint8_t *)uio->uio_iov->iov_base) + bytes;
 1611                         uio->uio_iov->iov_len -= bytes;
 1612                         uio->uio_resid -= bytes;
 1613                         error = 0;
 1614                 } else {
 1615                         error = linux_get_error(current, -bytes);
 1616                 }
 1617         } else
 1618                 error = ENXIO;
 1619 
 1620         /* update kqfilter status, if any */
 1621         linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
 1622 
 1623         linux_drop_fop(ldev);
 1624 
 1625         return (error);
 1626 }
 1627 
 1628 static int
 1629 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
 1630     struct thread *td)
 1631 {
 1632         struct linux_file *filp;
 1633         const struct file_operations *fop;
 1634         struct linux_cdev *ldev;
 1635         int revents;
 1636 
 1637         filp = (struct linux_file *)file->f_data;
 1638         filp->f_flags = file->f_flag;
 1639         linux_set_current(td);
 1640         linux_get_fop(filp, &fop, &ldev);
 1641         if (fop->poll != NULL) {
 1642                 revents = OPW(file, td, fop->poll(filp,
 1643                     LINUX_POLL_TABLE_NORMAL)) & events;
 1644         } else {
 1645                 revents = 0;
 1646         }
 1647         linux_drop_fop(ldev);
 1648         return (revents);
 1649 }
 1650 
 1651 static int
 1652 linux_file_close(struct file *file, struct thread *td)
 1653 {
 1654         struct linux_file *filp;
 1655         int (*release)(struct inode *, struct linux_file *);
 1656         const struct file_operations *fop;
 1657         struct linux_cdev *ldev;
 1658         int error;
 1659 
 1660         filp = (struct linux_file *)file->f_data;
 1661 
 1662         KASSERT(file_count(filp) == 0,
 1663             ("File refcount(%d) is not zero", file_count(filp)));
 1664 
 1665         if (td == NULL)
 1666                 td = curthread;
 1667 
 1668         error = 0;
 1669         filp->f_flags = file->f_flag;
 1670         linux_set_current(td);
 1671         linux_poll_wait_dequeue(filp);
 1672         linux_get_fop(filp, &fop, &ldev);
 1673         /*
 1674          * Always use the real release function, if any, to avoid
 1675          * leaking device resources:
 1676          */
 1677         release = filp->f_op->release;
 1678         if (release != NULL)
 1679                 error = -OPW(file, td, release(filp->f_vnode, filp));
 1680         funsetown(&filp->f_sigio);
 1681         if (filp->f_vnode != NULL)
 1682                 vdrop(filp->f_vnode);
 1683         linux_drop_fop(ldev);
 1684         ldev = filp->f_cdev;
 1685         if (ldev != NULL)
 1686                 linux_cdev_deref(ldev);
 1687         linux_synchronize_rcu(RCU_TYPE_REGULAR);
 1688         kfree(filp);
 1689 
 1690         return (error);
 1691 }
 1692 
 1693 static int
 1694 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
 1695     struct thread *td)
 1696 {
 1697         struct linux_file *filp;
 1698         const struct file_operations *fop;
 1699         struct linux_cdev *ldev;
 1700         struct fiodgname_arg *fgn;
 1701         const char *p;
 1702         int error, i;
 1703 
 1704         error = 0;
 1705         filp = (struct linux_file *)fp->f_data;
 1706         filp->f_flags = fp->f_flag;
 1707         linux_get_fop(filp, &fop, &ldev);
 1708 
 1709         linux_set_current(td);
 1710         switch (cmd) {
 1711         case FIONBIO:
 1712                 break;
 1713         case FIOASYNC:
 1714                 if (fop->fasync == NULL)
 1715                         break;
 1716                 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
 1717                 break;
 1718         case FIOSETOWN:
 1719                 error = fsetown(*(int *)data, &filp->f_sigio);
 1720                 if (error == 0) {
 1721                         if (fop->fasync == NULL)
 1722                                 break;
 1723                         error = -OPW(fp, td, fop->fasync(0, filp,
 1724                             fp->f_flag & FASYNC));
 1725                 }
 1726                 break;
 1727         case FIOGETOWN:
 1728                 *(int *)data = fgetown(&filp->f_sigio);
 1729                 break;
 1730         case FIODGNAME:
 1731 #ifdef  COMPAT_FREEBSD32
 1732         case FIODGNAME_32:
 1733 #endif
 1734                 if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
 1735                         error = ENXIO;
 1736                         break;
 1737                 }
 1738                 fgn = data;
 1739                 p = devtoname(filp->f_cdev->cdev);
 1740                 i = strlen(p) + 1;
 1741                 if (i > fgn->len) {
 1742                         error = EINVAL;
 1743                         break;
 1744                 }
 1745                 error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
 1746                 break;
 1747         default:
 1748                 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
 1749                 break;
 1750         }
 1751         linux_drop_fop(ldev);
 1752         return (error);
 1753 }
 1754 
 1755 static int
 1756 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
 1757     vm_prot_t maxprot, int flags, struct file *fp,
 1758     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
 1759 {
 1760         /*
 1761          * Character devices do not provide private mappings
 1762          * of any kind:
 1763          */
 1764         if ((maxprot & VM_PROT_WRITE) == 0 &&
 1765             (prot & VM_PROT_WRITE) != 0)
 1766                 return (EACCES);
 1767         if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
 1768                 return (EINVAL);
 1769 
 1770         return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
 1771             (int)prot, (flags & MAP_SHARED) ? true : false, td));
 1772 }
 1773 
 1774 static int
 1775 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
 1776     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
 1777     struct thread *td)
 1778 {
 1779         struct linux_file *filp;
 1780         const struct file_operations *fop;
 1781         struct linux_cdev *ldev;
 1782         struct mount *mp;
 1783         struct vnode *vp;
 1784         vm_object_t object;
 1785         vm_prot_t maxprot;
 1786         int error;
 1787 
 1788         filp = (struct linux_file *)fp->f_data;
 1789 
 1790         vp = filp->f_vnode;
 1791         if (vp == NULL)
 1792                 return (EOPNOTSUPP);
 1793 
 1794         /*
 1795          * Ensure that file and memory protections are
 1796          * compatible.
 1797          */
 1798         mp = vp->v_mount;
 1799         if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 1800                 maxprot = VM_PROT_NONE;
 1801                 if ((prot & VM_PROT_EXECUTE) != 0)
 1802                         return (EACCES);
 1803         } else
 1804                 maxprot = VM_PROT_EXECUTE;
 1805         if ((fp->f_flag & FREAD) != 0)
 1806                 maxprot |= VM_PROT_READ;
 1807         else if ((prot & VM_PROT_READ) != 0)
 1808                 return (EACCES);
 1809 
 1810         /*
 1811          * If we are sharing potential changes via MAP_SHARED and we
 1812          * are trying to get write permission although we opened it
 1813          * without asking for it, bail out.
 1814          *
 1815          * Note that most character devices always share mappings.
 1816          *
 1817          * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
 1818          * requests rather than doing it here.
 1819          */
 1820         if ((flags & MAP_SHARED) != 0) {
 1821                 if ((fp->f_flag & FWRITE) != 0)
 1822                         maxprot |= VM_PROT_WRITE;
 1823                 else if ((prot & VM_PROT_WRITE) != 0)
 1824                         return (EACCES);
 1825         }
 1826         maxprot &= cap_maxprot;
 1827 
 1828         linux_get_fop(filp, &fop, &ldev);
 1829         error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
 1830             &foff, fop, &object);
 1831         if (error != 0)
 1832                 goto out;
 1833 
 1834         error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 1835             foff, FALSE, td);
 1836         if (error != 0)
 1837                 vm_object_deallocate(object);
 1838 out:
 1839         linux_drop_fop(ldev);
 1840         return (error);
 1841 }
 1842 
 1843 static int
 1844 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
 1845 {
 1846         struct linux_file *filp;
 1847         struct vnode *vp;
 1848         int error;
 1849 
 1850         filp = (struct linux_file *)fp->f_data;
 1851         if (filp->f_vnode == NULL)
 1852                 return (EOPNOTSUPP);
 1853 
 1854         vp = filp->f_vnode;
 1855 
 1856         vn_lock(vp, LK_SHARED | LK_RETRY);
 1857         error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
 1858         VOP_UNLOCK(vp);
 1859 
 1860         return (error);
 1861 }
 1862 
 1863 static int
 1864 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
 1865     struct filedesc *fdp)
 1866 {
 1867         struct linux_file *filp;
 1868         struct vnode *vp;
 1869         int error;
 1870 
 1871         filp = fp->f_data;
 1872         vp = filp->f_vnode;
 1873         if (vp == NULL) {
 1874                 error = 0;
 1875                 kif->kf_type = KF_TYPE_DEV;
 1876         } else {
 1877                 vref(vp);
 1878                 FILEDESC_SUNLOCK(fdp);
 1879                 error = vn_fill_kinfo_vnode(vp, kif);
 1880                 vrele(vp);
 1881                 kif->kf_type = KF_TYPE_VNODE;
 1882                 FILEDESC_SLOCK(fdp);
 1883         }
 1884         return (error);
 1885 }
 1886 
 1887 unsigned int
 1888 linux_iminor(struct inode *inode)
 1889 {
 1890         struct linux_cdev *ldev;
 1891 
 1892         if (inode == NULL || inode->v_rdev == NULL ||
 1893             inode->v_rdev->si_devsw != &linuxcdevsw)
 1894                 return (-1U);
 1895         ldev = inode->v_rdev->si_drv1;
 1896         if (ldev == NULL)
 1897                 return (-1U);
 1898 
 1899         return (minor(ldev->dev));
 1900 }
 1901 
 1902 struct fileops linuxfileops = {
 1903         .fo_read = linux_file_read,
 1904         .fo_write = linux_file_write,
 1905         .fo_truncate = invfo_truncate,
 1906         .fo_kqfilter = linux_file_kqfilter,
 1907         .fo_stat = linux_file_stat,
 1908         .fo_fill_kinfo = linux_file_fill_kinfo,
 1909         .fo_poll = linux_file_poll,
 1910         .fo_close = linux_file_close,
 1911         .fo_ioctl = linux_file_ioctl,
 1912         .fo_mmap = linux_file_mmap,
 1913         .fo_chmod = invfo_chmod,
 1914         .fo_chown = invfo_chown,
 1915         .fo_sendfile = invfo_sendfile,
 1916         .fo_flags = DFLAG_PASSABLE,
 1917 };
 1918 
 1919 /*
 1920  * Hash of vmmap addresses.  This is infrequently accessed and does not
 1921  * need to be particularly large.  This is done because we must store the
 1922  * caller's idea of the map size to properly unmap.
 1923  */
 1924 struct vmmap {
 1925         LIST_ENTRY(vmmap)       vm_next;
 1926         void                    *vm_addr;
 1927         unsigned long           vm_size;
 1928 };
 1929 
 1930 struct vmmaphd {
 1931         struct vmmap *lh_first;
 1932 };
 1933 #define VMMAP_HASH_SIZE 64
 1934 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1)
 1935 #define VM_HASH(addr)   ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
 1936 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
 1937 static struct mtx vmmaplock;
 1938 
 1939 static void
 1940 vmmap_add(void *addr, unsigned long size)
 1941 {
 1942         struct vmmap *vmmap;
 1943 
 1944         vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
 1945         mtx_lock(&vmmaplock);
 1946         vmmap->vm_size = size;
 1947         vmmap->vm_addr = addr;
 1948         LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
 1949         mtx_unlock(&vmmaplock);
 1950 }
 1951 
 1952 static struct vmmap *
 1953 vmmap_remove(void *addr)
 1954 {
 1955         struct vmmap *vmmap;
 1956 
 1957         mtx_lock(&vmmaplock);
 1958         LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
 1959                 if (vmmap->vm_addr == addr)
 1960                         break;
 1961         if (vmmap)
 1962                 LIST_REMOVE(vmmap, vm_next);
 1963         mtx_unlock(&vmmaplock);
 1964 
 1965         return (vmmap);
 1966 }
 1967 
 1968 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
 1969 void *
 1970 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
 1971 {
 1972         void *addr;
 1973 
 1974         addr = pmap_mapdev_attr(phys_addr, size, attr);
 1975         if (addr == NULL)
 1976                 return (NULL);
 1977         vmmap_add(addr, size);
 1978 
 1979         return (addr);
 1980 }
 1981 #endif
 1982 
 1983 void
 1984 iounmap(void *addr)
 1985 {
 1986         struct vmmap *vmmap;
 1987 
 1988         vmmap = vmmap_remove(addr);
 1989         if (vmmap == NULL)
 1990                 return;
 1991 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
 1992         pmap_unmapdev(addr, vmmap->vm_size);
 1993 #endif
 1994         kfree(vmmap);
 1995 }
 1996 
 1997 void *
 1998 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
 1999 {
 2000         vm_offset_t off;
 2001         size_t size;
 2002 
 2003         size = count * PAGE_SIZE;
 2004         off = kva_alloc(size);
 2005         if (off == 0)
 2006                 return (NULL);
 2007         vmmap_add((void *)off, size);
 2008         pmap_qenter(off, pages, count);
 2009 
 2010         return ((void *)off);
 2011 }
 2012 
 2013 void
 2014 vunmap(void *addr)
 2015 {
 2016         struct vmmap *vmmap;
 2017 
 2018         vmmap = vmmap_remove(addr);
 2019         if (vmmap == NULL)
 2020                 return;
 2021         pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
 2022         kva_free((vm_offset_t)addr, vmmap->vm_size);
 2023         kfree(vmmap);
 2024 }
 2025 
 2026 static char *
 2027 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
 2028 {
 2029         unsigned int len;
 2030         char *p;
 2031         va_list aq;
 2032 
 2033         va_copy(aq, ap);
 2034         len = vsnprintf(NULL, 0, fmt, aq);
 2035         va_end(aq);
 2036 
 2037         if (dev != NULL)
 2038                 p = devm_kmalloc(dev, len + 1, gfp);
 2039         else
 2040                 p = kmalloc(len + 1, gfp);
 2041         if (p != NULL)
 2042                 vsnprintf(p, len + 1, fmt, ap);
 2043 
 2044         return (p);
 2045 }
 2046 
 2047 char *
 2048 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
 2049 {
 2050 
 2051         return (devm_kvasprintf(NULL, gfp, fmt, ap));
 2052 }
 2053 
 2054 char *
 2055 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
 2056 {
 2057         va_list ap;
 2058         char *p;
 2059 
 2060         va_start(ap, fmt);
 2061         p = devm_kvasprintf(dev, gfp, fmt, ap);
 2062         va_end(ap);
 2063 
 2064         return (p);
 2065 }
 2066 
 2067 char *
 2068 kasprintf(gfp_t gfp, const char *fmt, ...)
 2069 {
 2070         va_list ap;
 2071         char *p;
 2072 
 2073         va_start(ap, fmt);
 2074         p = kvasprintf(gfp, fmt, ap);
 2075         va_end(ap);
 2076 
 2077         return (p);
 2078 }
 2079 
 2080 static void
 2081 linux_timer_callback_wrapper(void *context)
 2082 {
 2083         struct timer_list *timer;
 2084 
 2085         timer = context;
 2086 
 2087         if (linux_set_current_flags(curthread, M_NOWAIT)) {
 2088                 /* try again later */
 2089                 callout_reset(&timer->callout, 1,
 2090                     &linux_timer_callback_wrapper, timer);
 2091                 return;
 2092         }
 2093 
 2094         timer->function(timer->data);
 2095 }
 2096 
 2097 int
 2098 mod_timer(struct timer_list *timer, int expires)
 2099 {
 2100         int ret;
 2101 
 2102         timer->expires = expires;
 2103         ret = callout_reset(&timer->callout,
 2104             linux_timer_jiffies_until(expires),
 2105             &linux_timer_callback_wrapper, timer);
 2106 
 2107         MPASS(ret == 0 || ret == 1);
 2108 
 2109         return (ret == 1);
 2110 }
 2111 
 2112 void
 2113 add_timer(struct timer_list *timer)
 2114 {
 2115 
 2116         callout_reset(&timer->callout,
 2117             linux_timer_jiffies_until(timer->expires),
 2118             &linux_timer_callback_wrapper, timer);
 2119 }
 2120 
 2121 void
 2122 add_timer_on(struct timer_list *timer, int cpu)
 2123 {
 2124 
 2125         callout_reset_on(&timer->callout,
 2126             linux_timer_jiffies_until(timer->expires),
 2127             &linux_timer_callback_wrapper, timer, cpu);
 2128 }
 2129 
 2130 int
 2131 del_timer(struct timer_list *timer)
 2132 {
 2133 
 2134         if (callout_stop(&(timer)->callout) == -1)
 2135                 return (0);
 2136         return (1);
 2137 }
 2138 
 2139 int
 2140 del_timer_sync(struct timer_list *timer)
 2141 {
 2142 
 2143         if (callout_drain(&(timer)->callout) == -1)
 2144                 return (0);
 2145         return (1);
 2146 }
 2147 
 2148 /* greatest common divisor, Euclid equation */
 2149 static uint64_t
 2150 lkpi_gcd_64(uint64_t a, uint64_t b)
 2151 {
 2152         uint64_t an;
 2153         uint64_t bn;
 2154 
 2155         while (b != 0) {
 2156                 an = b;
 2157                 bn = a % b;
 2158                 a = an;
 2159                 b = bn;
 2160         }
 2161         return (a);
 2162 }
 2163 
 2164 uint64_t lkpi_nsec2hz_rem;
 2165 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
 2166 uint64_t lkpi_nsec2hz_max;
 2167 
 2168 uint64_t lkpi_usec2hz_rem;
 2169 uint64_t lkpi_usec2hz_div = 1000000ULL;
 2170 uint64_t lkpi_usec2hz_max;
 2171 
 2172 uint64_t lkpi_msec2hz_rem;
 2173 uint64_t lkpi_msec2hz_div = 1000ULL;
 2174 uint64_t lkpi_msec2hz_max;
 2175 
 2176 static void
 2177 linux_timer_init(void *arg)
 2178 {
 2179         uint64_t gcd;
 2180 
 2181         /*
 2182          * Compute an internal HZ value which can divide 2**32 to
 2183          * avoid timer rounding problems when the tick value wraps
 2184          * around 2**32:
 2185          */
 2186         linux_timer_hz_mask = 1;
 2187         while (linux_timer_hz_mask < (unsigned long)hz)
 2188                 linux_timer_hz_mask *= 2;
 2189         linux_timer_hz_mask--;
 2190 
 2191         /* compute some internal constants */
 2192 
 2193         lkpi_nsec2hz_rem = hz;
 2194         lkpi_usec2hz_rem = hz;
 2195         lkpi_msec2hz_rem = hz;
 2196 
 2197         gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
 2198         lkpi_nsec2hz_rem /= gcd;
 2199         lkpi_nsec2hz_div /= gcd;
 2200         lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
 2201 
 2202         gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
 2203         lkpi_usec2hz_rem /= gcd;
 2204         lkpi_usec2hz_div /= gcd;
 2205         lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
 2206 
 2207         gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
 2208         lkpi_msec2hz_rem /= gcd;
 2209         lkpi_msec2hz_div /= gcd;
 2210         lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
 2211 }
 2212 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
 2213 
 2214 void
 2215 linux_complete_common(struct completion *c, int all)
 2216 {
 2217         int wakeup_swapper;
 2218 
 2219         sleepq_lock(c);
 2220         if (all) {
 2221                 c->done = UINT_MAX;
 2222                 wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
 2223         } else {
 2224                 if (c->done != UINT_MAX)
 2225                         c->done++;
 2226                 wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
 2227         }
 2228         sleepq_release(c);
 2229         if (wakeup_swapper)
 2230                 kick_proc0();
 2231 }
 2232 
 2233 /*
 2234  * Indefinite wait for done != 0 with or without signals.
 2235  */
 2236 int
 2237 linux_wait_for_common(struct completion *c, int flags)
 2238 {
 2239         struct task_struct *task;
 2240         int error;
 2241 
 2242         if (SCHEDULER_STOPPED())
 2243                 return (0);
 2244 
 2245         task = current;
 2246 
 2247         if (flags != 0)
 2248                 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
 2249         else
 2250                 flags = SLEEPQ_SLEEP;
 2251         error = 0;
 2252         for (;;) {
 2253                 sleepq_lock(c);
 2254                 if (c->done)
 2255                         break;
 2256                 sleepq_add(c, NULL, "completion", flags, 0);
 2257                 if (flags & SLEEPQ_INTERRUPTIBLE) {
 2258                         DROP_GIANT();
 2259                         error = -sleepq_wait_sig(c, 0);
 2260                         PICKUP_GIANT();
 2261                         if (error != 0) {
 2262                                 linux_schedule_save_interrupt_value(task, error);
 2263                                 error = -ERESTARTSYS;
 2264                                 goto intr;
 2265                         }
 2266                 } else {
 2267                         DROP_GIANT();
 2268                         sleepq_wait(c, 0);
 2269                         PICKUP_GIANT();
 2270                 }
 2271         }
 2272         if (c->done != UINT_MAX)
 2273                 c->done--;
 2274         sleepq_release(c);
 2275 
 2276 intr:
 2277         return (error);
 2278 }
 2279 
 2280 /*
 2281  * Time limited wait for done != 0 with or without signals.
 2282  */
 2283 int
 2284 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
 2285 {
 2286         struct task_struct *task;
 2287         int end = jiffies + timeout;
 2288         int error;
 2289 
 2290         if (SCHEDULER_STOPPED())
 2291                 return (0);
 2292 
 2293         task = current;
 2294 
 2295         if (flags != 0)
 2296                 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
 2297         else
 2298                 flags = SLEEPQ_SLEEP;
 2299 
 2300         for (;;) {
 2301                 sleepq_lock(c);
 2302                 if (c->done)
 2303                         break;
 2304                 sleepq_add(c, NULL, "completion", flags, 0);
 2305                 sleepq_set_timeout(c, linux_timer_jiffies_until(end));
 2306 
 2307                 DROP_GIANT();
 2308                 if (flags & SLEEPQ_INTERRUPTIBLE)
 2309                         error = -sleepq_timedwait_sig(c, 0);
 2310                 else
 2311                         error = -sleepq_timedwait(c, 0);
 2312                 PICKUP_GIANT();
 2313 
 2314                 if (error != 0) {
 2315                         /* check for timeout */
 2316                         if (error == -EWOULDBLOCK) {
 2317                                 error = 0;      /* timeout */
 2318                         } else {
 2319                                 /* signal happened */
 2320                                 linux_schedule_save_interrupt_value(task, error);
 2321                                 error = -ERESTARTSYS;
 2322                         }
 2323                         goto done;
 2324                 }
 2325         }
 2326         if (c->done != UINT_MAX)
 2327                 c->done--;
 2328         sleepq_release(c);
 2329 
 2330         /* return how many jiffies are left */
 2331         error = linux_timer_jiffies_until(end);
 2332 done:
 2333         return (error);
 2334 }
 2335 
 2336 int
 2337 linux_try_wait_for_completion(struct completion *c)
 2338 {
 2339         int isdone;
 2340 
 2341         sleepq_lock(c);
 2342         isdone = (c->done != 0);
 2343         if (c->done != 0 && c->done != UINT_MAX)
 2344                 c->done--;
 2345         sleepq_release(c);
 2346         return (isdone);
 2347 }
 2348 
 2349 int
 2350 linux_completion_done(struct completion *c)
 2351 {
 2352         int isdone;
 2353 
 2354         sleepq_lock(c);
 2355         isdone = (c->done != 0);
 2356         sleepq_release(c);
 2357         return (isdone);
 2358 }
 2359 
 2360 static void
 2361 linux_cdev_deref(struct linux_cdev *ldev)
 2362 {
 2363         if (refcount_release(&ldev->refs) &&
 2364             ldev->kobj.ktype == &linux_cdev_ktype)
 2365                 kfree(ldev);
 2366 }
 2367 
 2368 static void
 2369 linux_cdev_release(struct kobject *kobj)
 2370 {
 2371         struct linux_cdev *cdev;
 2372         struct kobject *parent;
 2373 
 2374         cdev = container_of(kobj, struct linux_cdev, kobj);
 2375         parent = kobj->parent;
 2376         linux_destroy_dev(cdev);
 2377         linux_cdev_deref(cdev);
 2378         kobject_put(parent);
 2379 }
 2380 
 2381 static void
 2382 linux_cdev_static_release(struct kobject *kobj)
 2383 {
 2384         struct cdev *cdev;
 2385         struct linux_cdev *ldev;
 2386 
 2387         ldev = container_of(kobj, struct linux_cdev, kobj);
 2388         cdev = ldev->cdev;
 2389         if (cdev != NULL) {
 2390                 destroy_dev(cdev);
 2391                 ldev->cdev = NULL;
 2392         }
 2393         kobject_put(kobj->parent);
 2394 }
 2395 
 2396 int
 2397 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
 2398 {
 2399         int ret;
 2400 
 2401         if (dev->devt != 0) {
 2402                 /* Set parent kernel object. */
 2403                 ldev->kobj.parent = &dev->kobj;
 2404 
 2405                 /*
 2406                  * Unlike Linux we require the kobject of the
 2407                  * character device structure to have a valid name
 2408                  * before calling this function:
 2409                  */
 2410                 if (ldev->kobj.name == NULL)
 2411                         return (-EINVAL);
 2412 
 2413                 ret = cdev_add(ldev, dev->devt, 1);
 2414                 if (ret)
 2415                         return (ret);
 2416         }
 2417         ret = device_add(dev);
 2418         if (ret != 0 && dev->devt != 0)
 2419                 cdev_del(ldev);
 2420         return (ret);
 2421 }
 2422 
 2423 void
 2424 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
 2425 {
 2426         device_del(dev);
 2427 
 2428         if (dev->devt != 0)
 2429                 cdev_del(ldev);
 2430 }
 2431 
 2432 static void
 2433 linux_destroy_dev(struct linux_cdev *ldev)
 2434 {
 2435 
 2436         if (ldev->cdev == NULL)
 2437                 return;
 2438 
 2439         MPASS((ldev->siref & LDEV_SI_DTR) == 0);
 2440         MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
 2441 
 2442         atomic_set_int(&ldev->siref, LDEV_SI_DTR);
 2443         while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
 2444                 pause("ldevdtr", hz / 4);
 2445 
 2446         destroy_dev(ldev->cdev);
 2447         ldev->cdev = NULL;
 2448 }
 2449 
 2450 const struct kobj_type linux_cdev_ktype = {
 2451         .release = linux_cdev_release,
 2452 };
 2453 
 2454 const struct kobj_type linux_cdev_static_ktype = {
 2455         .release = linux_cdev_static_release,
 2456 };
 2457 
 2458 static void
 2459 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
 2460 {
 2461         struct notifier_block *nb;
 2462         struct netdev_notifier_info ni;
 2463 
 2464         nb = arg;
 2465         ni.ifp = ifp;
 2466         ni.dev = (struct net_device *)ifp;
 2467         if (linkstate == LINK_STATE_UP)
 2468                 nb->notifier_call(nb, NETDEV_UP, &ni);
 2469         else
 2470                 nb->notifier_call(nb, NETDEV_DOWN, &ni);
 2471 }
 2472 
 2473 static void
 2474 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
 2475 {
 2476         struct notifier_block *nb;
 2477         struct netdev_notifier_info ni;
 2478 
 2479         nb = arg;
 2480         ni.ifp = ifp;
 2481         ni.dev = (struct net_device *)ifp;
 2482         nb->notifier_call(nb, NETDEV_REGISTER, &ni);
 2483 }
 2484 
 2485 static void
 2486 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
 2487 {
 2488         struct notifier_block *nb;
 2489         struct netdev_notifier_info ni;
 2490 
 2491         nb = arg;
 2492         ni.ifp = ifp;
 2493         ni.dev = (struct net_device *)ifp;
 2494         nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
 2495 }
 2496 
 2497 static void
 2498 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
 2499 {
 2500         struct notifier_block *nb;
 2501         struct netdev_notifier_info ni;
 2502 
 2503         nb = arg;
 2504         ni.ifp = ifp;
 2505         ni.dev = (struct net_device *)ifp;
 2506         nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
 2507 }
 2508 
 2509 static void
 2510 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
 2511 {
 2512         struct notifier_block *nb;
 2513         struct netdev_notifier_info ni;
 2514 
 2515         nb = arg;
 2516         ni.ifp = ifp;
 2517         ni.dev = (struct net_device *)ifp;
 2518         nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
 2519 }
 2520 
 2521 int
 2522 register_netdevice_notifier(struct notifier_block *nb)
 2523 {
 2524 
 2525         nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
 2526             ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
 2527         nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
 2528             ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
 2529         nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
 2530             ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
 2531         nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
 2532             iflladdr_event, linux_handle_iflladdr_event, nb, 0);
 2533 
 2534         return (0);
 2535 }
 2536 
 2537 int
 2538 register_inetaddr_notifier(struct notifier_block *nb)
 2539 {
 2540 
 2541         nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
 2542             ifaddr_event, linux_handle_ifaddr_event, nb, 0);
 2543         return (0);
 2544 }
 2545 
 2546 int
 2547 unregister_netdevice_notifier(struct notifier_block *nb)
 2548 {
 2549 
 2550         EVENTHANDLER_DEREGISTER(ifnet_link_event,
 2551             nb->tags[NETDEV_UP]);
 2552         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
 2553             nb->tags[NETDEV_REGISTER]);
 2554         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
 2555             nb->tags[NETDEV_UNREGISTER]);
 2556         EVENTHANDLER_DEREGISTER(iflladdr_event,
 2557             nb->tags[NETDEV_CHANGEADDR]);
 2558 
 2559         return (0);
 2560 }
 2561 
 2562 int
 2563 unregister_inetaddr_notifier(struct notifier_block *nb)
 2564 {
 2565 
 2566         EVENTHANDLER_DEREGISTER(ifaddr_event,
 2567             nb->tags[NETDEV_CHANGEIFADDR]);
 2568 
 2569         return (0);
 2570 }
 2571 
 2572 struct list_sort_thunk {
 2573         int (*cmp)(void *, struct list_head *, struct list_head *);
 2574         void *priv;
 2575 };
 2576 
 2577 static inline int
 2578 linux_le_cmp(const void *d1, const void *d2, void *priv)
 2579 {
 2580         struct list_head *le1, *le2;
 2581         struct list_sort_thunk *thunk;
 2582 
 2583         thunk = priv;
 2584         le1 = *(__DECONST(struct list_head **, d1));
 2585         le2 = *(__DECONST(struct list_head **, d2));
 2586         return ((thunk->cmp)(thunk->priv, le1, le2));
 2587 }
 2588 
 2589 void
 2590 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
 2591     struct list_head *a, struct list_head *b))
 2592 {
 2593         struct list_sort_thunk thunk;
 2594         struct list_head **ar, *le;
 2595         size_t count, i;
 2596 
 2597         count = 0;
 2598         list_for_each(le, head)
 2599                 count++;
 2600         ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
 2601         i = 0;
 2602         list_for_each(le, head)
 2603                 ar[i++] = le;
 2604         thunk.cmp = cmp;
 2605         thunk.priv = priv;
 2606         qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
 2607         INIT_LIST_HEAD(head);
 2608         for (i = 0; i < count; i++)
 2609                 list_add_tail(ar[i], head);
 2610         free(ar, M_KMALLOC);
 2611 }
 2612 
 2613 #if defined(__i386__) || defined(__amd64__)
 2614 int
 2615 linux_wbinvd_on_all_cpus(void)
 2616 {
 2617 
 2618         pmap_invalidate_cache();
 2619         return (0);
 2620 }
 2621 #endif
 2622 
 2623 int
 2624 linux_on_each_cpu(void callback(void *), void *data)
 2625 {
 2626 
 2627         smp_rendezvous(smp_no_rendezvous_barrier, callback,
 2628             smp_no_rendezvous_barrier, data);
 2629         return (0);
 2630 }
 2631 
 2632 int
 2633 linux_in_atomic(void)
 2634 {
 2635 
 2636         return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
 2637 }
 2638 
 2639 struct linux_cdev *
 2640 linux_find_cdev(const char *name, unsigned major, unsigned minor)
 2641 {
 2642         dev_t dev = MKDEV(major, minor);
 2643         struct cdev *cdev;
 2644 
 2645         dev_lock();
 2646         LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
 2647                 struct linux_cdev *ldev = cdev->si_drv1;
 2648                 if (ldev->dev == dev &&
 2649                     strcmp(kobject_name(&ldev->kobj), name) == 0) {
 2650                         break;
 2651                 }
 2652         }
 2653         dev_unlock();
 2654 
 2655         return (cdev != NULL ? cdev->si_drv1 : NULL);
 2656 }
 2657 
 2658 int
 2659 __register_chrdev(unsigned int major, unsigned int baseminor,
 2660     unsigned int count, const char *name,
 2661     const struct file_operations *fops)
 2662 {
 2663         struct linux_cdev *cdev;
 2664         int ret = 0;
 2665         int i;
 2666 
 2667         for (i = baseminor; i < baseminor + count; i++) {
 2668                 cdev = cdev_alloc();
 2669                 cdev->ops = fops;
 2670                 kobject_set_name(&cdev->kobj, name);
 2671 
 2672                 ret = cdev_add(cdev, makedev(major, i), 1);
 2673                 if (ret != 0)
 2674                         break;
 2675         }
 2676         return (ret);
 2677 }
 2678 
 2679 int
 2680 __register_chrdev_p(unsigned int major, unsigned int baseminor,
 2681     unsigned int count, const char *name,
 2682     const struct file_operations *fops, uid_t uid,
 2683     gid_t gid, int mode)
 2684 {
 2685         struct linux_cdev *cdev;
 2686         int ret = 0;
 2687         int i;
 2688 
 2689         for (i = baseminor; i < baseminor + count; i++) {
 2690                 cdev = cdev_alloc();
 2691                 cdev->ops = fops;
 2692                 kobject_set_name(&cdev->kobj, name);
 2693 
 2694                 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
 2695                 if (ret != 0)
 2696                         break;
 2697         }
 2698         return (ret);
 2699 }
 2700 
 2701 void
 2702 __unregister_chrdev(unsigned int major, unsigned int baseminor,
 2703     unsigned int count, const char *name)
 2704 {
 2705         struct linux_cdev *cdevp;
 2706         int i;
 2707 
 2708         for (i = baseminor; i < baseminor + count; i++) {
 2709                 cdevp = linux_find_cdev(name, major, i);
 2710                 if (cdevp != NULL)
 2711                         cdev_del(cdevp);
 2712         }
 2713 }
 2714 
 2715 void
 2716 linux_dump_stack(void)
 2717 {
 2718 #ifdef STACK
 2719         struct stack st;
 2720 
 2721         stack_save(&st);
 2722         stack_print(&st);
 2723 #endif
 2724 }
 2725 
 2726 int
 2727 linuxkpi_net_ratelimit(void)
 2728 {
 2729 
 2730         return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
 2731            lkpi_net_maxpps));
 2732 }
 2733 
 2734 struct io_mapping *
 2735 io_mapping_create_wc(resource_size_t base, unsigned long size)
 2736 {
 2737         struct io_mapping *mapping;
 2738 
 2739         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
 2740         if (mapping == NULL)
 2741                 return (NULL);
 2742         return (io_mapping_init_wc(mapping, base, size));
 2743 }
 2744 
 2745 #if defined(__i386__) || defined(__amd64__)
 2746 bool linux_cpu_has_clflush;
 2747 struct cpuinfo_x86 boot_cpu_data;
 2748 #endif
 2749 
 2750 cpumask_t *
 2751 lkpi_get_static_single_cpu_mask(int cpuid)
 2752 {
 2753 
 2754         KASSERT((cpuid >= 0 && cpuid < MAXCPU), ("%s: invalid cpuid %d\n",
 2755             __func__, cpuid));
 2756 
 2757         return (&static_single_cpu_mask[cpuid]);
 2758 }
 2759 
 2760 static void
 2761 linux_compat_init(void *arg)
 2762 {
 2763         struct sysctl_oid *rootoid;
 2764         int i;
 2765 
 2766 #if defined(__i386__) || defined(__amd64__)
 2767         linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
 2768         boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
 2769         boot_cpu_data.x86_max_cores = mp_ncpus;
 2770         boot_cpu_data.x86 = ((cpu_id & 0xf0000) >> 12) | ((cpu_id & 0xf0) >> 4);
 2771 #endif
 2772         rw_init(&linux_vma_lock, "lkpi-vma-lock");
 2773 
 2774         rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
 2775             OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
 2776         kobject_init(&linux_class_root, &linux_class_ktype);
 2777         kobject_set_name(&linux_class_root, "class");
 2778         linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
 2779             OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
 2780         kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
 2781         kobject_set_name(&linux_root_device.kobj, "device");
 2782         linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
 2783             SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
 2784             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
 2785         linux_root_device.bsddev = root_bus;
 2786         linux_class_misc.name = "misc";
 2787         class_register(&linux_class_misc);
 2788         INIT_LIST_HEAD(&pci_drivers);
 2789         INIT_LIST_HEAD(&pci_devices);
 2790         spin_lock_init(&pci_lock);
 2791         mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
 2792         for (i = 0; i < VMMAP_HASH_SIZE; i++)
 2793                 LIST_INIT(&vmmaphead[i]);
 2794         init_waitqueue_head(&linux_bit_waitq);
 2795         init_waitqueue_head(&linux_var_waitq);
 2796 
 2797         CPU_COPY(&all_cpus, &cpu_online_mask);
 2798         /*
 2799          * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
 2800          * CPUs are indexed from 0..(MAXCPU-1).  The entry for cpuid 0 will only
 2801          * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
 2802          * This is used by cpumask_of() (and possibly others in the future) for,
 2803          * e.g., drivers to pass hints to irq_set_affinity_hint().
 2804          */
 2805         for (i = 0; i < MAXCPU; i++)
 2806                 CPU_SET(i, &static_single_cpu_mask[i]);
 2807 }
 2808 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
 2809 
 2810 static void
 2811 linux_compat_uninit(void *arg)
 2812 {
 2813         linux_kobject_kfree_name(&linux_class_root);
 2814         linux_kobject_kfree_name(&linux_root_device.kobj);
 2815         linux_kobject_kfree_name(&linux_class_misc.kobj);
 2816 
 2817         mtx_destroy(&vmmaplock);
 2818         spin_lock_destroy(&pci_lock);
 2819         rw_destroy(&linux_vma_lock);
 2820 }
 2821 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
 2822 
 2823 /*
 2824  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
 2825  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
 2826  * used. Assert these types have the same size, else some parts of the
 2827  * LinuxKPI may not work like expected:
 2828  */
 2829 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));

Cache object: 6edf31dd206787e019d632aebc7de5c5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.