1 /*-
2 * Copyright (c) 2020 Mellanox Technologies, Ltd.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <linux/xarray.h>
31
32 #include <vm/vm_pageout.h>
33
34 /*
35 * This function removes the element at the given index and returns
36 * the pointer to the removed element, if any.
37 */
38 void *
39 __xa_erase(struct xarray *xa, uint32_t index)
40 {
41 XA_ASSERT_LOCKED(xa);
42
43 return (radix_tree_delete(&xa->root, index));
44 }
45
46 void *
47 xa_erase(struct xarray *xa, uint32_t index)
48 {
49 void *retval;
50
51 xa_lock(xa);
52 retval = __xa_erase(xa, index);
53 xa_unlock(xa);
54
55 return (retval);
56 }
57
58 /*
59 * This function returns the element pointer at the given index. A
60 * value of NULL is returned if the element does not exist.
61 */
62 void *
63 xa_load(struct xarray *xa, uint32_t index)
64 {
65 void *retval;
66
67 xa_lock(xa);
68 retval = radix_tree_lookup(&xa->root, index);
69 xa_unlock(xa);
70
71 return (retval);
72 }
73
74 /*
75 * This is an internal function used to sleep until more memory
76 * becomes available.
77 */
78 static void
79 xa_vm_wait_locked(struct xarray *xa)
80 {
81 xa_unlock(xa);
82 vm_wait(NULL);
83 xa_lock(xa);
84 }
85
86 /*
87 * This function iterates the xarray until it finds a free slot where
88 * it can insert the element pointer to by "ptr". It starts at the
89 * index pointed to by "pindex" and updates this value at return. The
90 * "mask" argument defines the maximum index allowed, inclusivly, and
91 * must be a power of two minus one value. The "gfp" argument
92 * basically tells if we can wait for more memory to become available
93 * or not. This function returns zero upon success or a negative error
94 * code on failure. A typical error code is -ENOMEM which means either
95 * the xarray is full, or there was not enough internal memory
96 * available to complete the radix tree insertion.
97 */
98 int
99 __xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp)
100 {
101 int retval;
102
103 XA_ASSERT_LOCKED(xa);
104
105 /* mask should allow to allocate at least one item */
106 MPASS(mask > ((xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0));
107
108 /* mask can be any power of two value minus one */
109 MPASS((mask & (mask + 1)) == 0);
110
111 *pindex = (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0;
112 retry:
113 retval = radix_tree_insert(&xa->root, *pindex, ptr);
114
115 switch (retval) {
116 case -EEXIST:
117 if (likely(*pindex != mask)) {
118 (*pindex)++;
119 goto retry;
120 }
121 retval = -ENOMEM;
122 break;
123 case -ENOMEM:
124 if (likely(gfp & M_WAITOK)) {
125 xa_vm_wait_locked(xa);
126 goto retry;
127 }
128 break;
129 default:
130 break;
131 }
132 return (retval);
133 }
134
135 int
136 xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp)
137 {
138 int retval;
139
140 xa_lock(xa);
141 retval = __xa_alloc(xa, pindex, ptr, mask, gfp);
142 xa_unlock(xa);
143
144 return (retval);
145 }
146
147 /*
148 * This function works the same like the "xa_alloc" function, except
149 * it wraps the next index value to zero when there are no entries
150 * left at the end of the xarray searching for a free slot from the
151 * beginning of the array. If the xarray is full -ENOMEM is returned.
152 */
153 int
154 __xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask,
155 uint32_t *pnext_index, gfp_t gfp)
156 {
157 int retval;
158 int timeout = 1;
159
160 XA_ASSERT_LOCKED(xa);
161
162 /* mask should allow to allocate at least one item */
163 MPASS(mask > ((xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0));
164
165 /* mask can be any power of two value minus one */
166 MPASS((mask & (mask + 1)) == 0);
167
168 *pnext_index = (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0;
169 retry:
170 retval = radix_tree_insert(&xa->root, *pnext_index, ptr);
171
172 switch (retval) {
173 case -EEXIST:
174 if (unlikely(*pnext_index == mask) && !timeout--) {
175 retval = -ENOMEM;
176 break;
177 }
178 (*pnext_index)++;
179 (*pnext_index) &= mask;
180 if (*pnext_index == 0 && (xa->flags & XA_FLAGS_ALLOC1) != 0)
181 (*pnext_index)++;
182 goto retry;
183 case -ENOMEM:
184 if (likely(gfp & M_WAITOK)) {
185 xa_vm_wait_locked(xa);
186 goto retry;
187 }
188 break;
189 default:
190 break;
191 }
192 *pindex = *pnext_index;
193
194 return (retval);
195 }
196
197 int
198 xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask,
199 uint32_t *pnext_index, gfp_t gfp)
200 {
201 int retval;
202
203 xa_lock(xa);
204 retval = __xa_alloc_cyclic(xa, pindex, ptr, mask, pnext_index, gfp);
205 xa_unlock(xa);
206
207 return (retval);
208 }
209
210 /*
211 * This function tries to insert an element at the given index. The
212 * "gfp" argument basically decides of this function can sleep or not
213 * trying to allocate internal memory for its radix tree. The
214 * function returns an error code upon failure. Typical error codes
215 * are element exists (-EEXIST) or out of memory (-ENOMEM).
216 */
217 int
218 __xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
219 {
220 int retval;
221
222 XA_ASSERT_LOCKED(xa);
223 retry:
224 retval = radix_tree_insert(&xa->root, index, ptr);
225
226 switch (retval) {
227 case -ENOMEM:
228 if (likely(gfp & M_WAITOK)) {
229 xa_vm_wait_locked(xa);
230 goto retry;
231 }
232 break;
233 default:
234 break;
235 }
236 return (retval);
237 }
238
239 int
240 xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
241 {
242 int retval;
243
244 xa_lock(xa);
245 retval = __xa_insert(xa, index, ptr, gfp);
246 xa_unlock(xa);
247
248 return (retval);
249 }
250
251 /*
252 * This function updates the element at the given index and returns a
253 * pointer to the old element. The "gfp" argument basically decides of
254 * this function can sleep or not trying to allocate internal memory
255 * for its radix tree. The function returns an XA_ERROR() pointer code
256 * upon failure. Code using this function must always check if the
257 * return value is an XA_ERROR() code before using the returned value.
258 */
259 void *
260 __xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
261 {
262 int retval;
263
264 XA_ASSERT_LOCKED(xa);
265 retry:
266 retval = radix_tree_store(&xa->root, index, &ptr);
267
268 switch (retval) {
269 case 0:
270 break;
271 case -ENOMEM:
272 if (likely(gfp & M_WAITOK)) {
273 xa_vm_wait_locked(xa);
274 goto retry;
275 }
276 ptr = XA_ERROR(retval);
277 break;
278 default:
279 ptr = XA_ERROR(retval);
280 break;
281 }
282 return (ptr);
283 }
284
285 void *
286 xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
287 {
288 void *retval;
289
290 xa_lock(xa);
291 retval = __xa_store(xa, index, ptr, gfp);
292 xa_unlock(xa);
293
294 return (retval);
295 }
296
297 /*
298 * This function initialize an xarray structure.
299 */
300 void
301 xa_init_flags(struct xarray *xa, uint32_t flags)
302 {
303 memset(xa, 0, sizeof(*xa));
304
305 mtx_init(&xa->mtx, "lkpi-xarray", NULL, MTX_DEF | MTX_RECURSE);
306 xa->root.gfp_mask = GFP_NOWAIT;
307 xa->flags = flags;
308 }
309
310 /*
311 * This function destroys an xarray structure and all its internal
312 * memory and locks.
313 */
314 void
315 xa_destroy(struct xarray *xa)
316 {
317 struct radix_tree_iter iter;
318 void **ppslot;
319
320 radix_tree_for_each_slot(ppslot, &xa->root, &iter, 0)
321 radix_tree_iter_delete(&xa->root, &iter, ppslot);
322 mtx_destroy(&xa->mtx);
323 }
324
325 /*
326 * This function checks if an xarray is empty or not.
327 * It returns true if empty, else false.
328 */
329 bool
330 __xa_empty(struct xarray *xa)
331 {
332 struct radix_tree_iter iter = {};
333 void **temp;
334
335 XA_ASSERT_LOCKED(xa);
336
337 return (!radix_tree_iter_find(&xa->root, &iter, &temp));
338 }
339
340 bool
341 xa_empty(struct xarray *xa)
342 {
343 bool retval;
344
345 xa_lock(xa);
346 retval = __xa_empty(xa);
347 xa_unlock(xa);
348
349 return (retval);
350 }
351
352 /*
353 * This function returns the next valid xarray entry based on the
354 * index given by "pindex". The valued pointed to by "pindex" is
355 * updated before return.
356 */
357 void *
358 __xa_next(struct xarray *xa, unsigned long *pindex, bool not_first)
359 {
360 struct radix_tree_iter iter = { .index = *pindex };
361 void **ppslot;
362 void *retval;
363 bool found;
364
365 XA_ASSERT_LOCKED(xa);
366
367 if (not_first) {
368 /* advance to next index, if any */
369 iter.index++;
370 if (iter.index == 0)
371 return (NULL);
372 }
373
374 found = radix_tree_iter_find(&xa->root, &iter, &ppslot);
375 if (likely(found)) {
376 retval = *ppslot;
377 *pindex = iter.index;
378 } else {
379 retval = NULL;
380 }
381 return (retval);
382 }
383
384 void *
385 xa_next(struct xarray *xa, unsigned long *pindex, bool not_first)
386 {
387 void *retval;
388
389 xa_lock(xa);
390 retval = __xa_next(xa, pindex, not_first);
391 xa_unlock(xa);
392
393 return (retval);
394 }
Cache object: 1ce010d76c25258000fef63859e0d0fc
|