The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/compat/ndis/subr_hal.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003
    3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include <sys/param.h>
   37 #include <sys/types.h>
   38 #include <sys/errno.h>
   39 
   40 #include <sys/callout.h>
   41 #include <sys/kernel.h>
   42 #include <sys/lock.h>
   43 #include <sys/mutex.h>
   44 #include <sys/proc.h>
   45 #include <sys/sched.h>
   46 #include <sys/module.h>
   47 
   48 #include <sys/systm.h>
   49 #include <machine/bus.h>
   50 
   51 #include <sys/bus.h>
   52 #include <sys/rman.h>
   53 
   54 #include <compat/ndis/pe_var.h>
   55 #include <compat/ndis/resource_var.h>
   56 #include <compat/ndis/cfg_var.h>
   57 #include <compat/ndis/ntoskrnl_var.h>
   58 #include <compat/ndis/hal_var.h>
   59 
   60 static void KeStallExecutionProcessor(uint32_t);
   61 static void WRITE_PORT_BUFFER_ULONG(uint32_t *,
   62         uint32_t *, uint32_t);
   63 static void WRITE_PORT_BUFFER_USHORT(uint16_t *,
   64         uint16_t *, uint32_t);
   65 static void WRITE_PORT_BUFFER_UCHAR(uint8_t *,
   66         uint8_t *, uint32_t);
   67 static void WRITE_PORT_ULONG(uint32_t *, uint32_t);
   68 static void WRITE_PORT_USHORT(uint16_t *, uint16_t);
   69 static void WRITE_PORT_UCHAR(uint8_t *, uint8_t);
   70 static uint32_t READ_PORT_ULONG(uint32_t *);
   71 static uint16_t READ_PORT_USHORT(uint16_t *);
   72 static uint8_t READ_PORT_UCHAR(uint8_t *);
   73 static void READ_PORT_BUFFER_ULONG(uint32_t *,
   74         uint32_t *, uint32_t);
   75 static void READ_PORT_BUFFER_USHORT(uint16_t *,
   76         uint16_t *, uint32_t);
   77 static void READ_PORT_BUFFER_UCHAR(uint8_t *,
   78         uint8_t *, uint32_t);
   79 static uint64_t KeQueryPerformanceCounter(uint64_t *);
   80 static void _KeLowerIrql(uint8_t);
   81 static uint8_t KeRaiseIrqlToDpcLevel(void);
   82 static void dummy (void);
   83 
   84 #define NDIS_MAXCPUS 64
   85 static struct mtx disp_lock[NDIS_MAXCPUS];
   86 
   87 int
   88 hal_libinit()
   89 {
   90         image_patch_table       *patch;
   91         int                     i;
   92 
   93         for (i = 0; i < NDIS_MAXCPUS; i++)
   94                 mtx_init(&disp_lock[i], "HAL preemption lock",
   95                     "HAL lock", MTX_RECURSE|MTX_DEF);
   96 
   97         patch = hal_functbl;
   98         while (patch->ipt_func != NULL) {
   99                 windrv_wrap((funcptr)patch->ipt_func,
  100                     (funcptr *)&patch->ipt_wrap,
  101                     patch->ipt_argcnt, patch->ipt_ftype);
  102                 patch++;
  103         }
  104 
  105         return (0);
  106 }
  107 
  108 int
  109 hal_libfini()
  110 {
  111         image_patch_table       *patch;
  112         int                     i;
  113 
  114         for (i = 0; i < NDIS_MAXCPUS; i++)
  115                 mtx_destroy(&disp_lock[i]);
  116 
  117         patch = hal_functbl;
  118         while (patch->ipt_func != NULL) {
  119                 windrv_unwrap(patch->ipt_wrap);
  120                 patch++;
  121         }
  122 
  123         return (0);
  124 }
  125 
  126 static void
  127 KeStallExecutionProcessor(usecs)
  128         uint32_t                usecs;
  129 {
  130         DELAY(usecs);
  131 }
  132 
  133 static void
  134 WRITE_PORT_ULONG(port, val)
  135         uint32_t                *port;
  136         uint32_t                val;
  137 {
  138         bus_space_write_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
  139 }
  140 
  141 static void
  142 WRITE_PORT_USHORT(uint16_t *port, uint16_t val)
  143 {
  144         bus_space_write_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
  145 }
  146 
  147 static void
  148 WRITE_PORT_UCHAR(uint8_t *port, uint8_t val)
  149 {
  150         bus_space_write_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
  151 }
  152 
  153 static void
  154 WRITE_PORT_BUFFER_ULONG(port, val, cnt)
  155         uint32_t                *port;
  156         uint32_t                *val;
  157         uint32_t                cnt;
  158 {
  159         bus_space_write_multi_4(NDIS_BUS_SPACE_IO, 0x0,
  160             (bus_size_t)port, val, cnt);
  161 }
  162 
  163 static void
  164 WRITE_PORT_BUFFER_USHORT(port, val, cnt)
  165         uint16_t                *port;
  166         uint16_t                *val;
  167         uint32_t                cnt;
  168 {
  169         bus_space_write_multi_2(NDIS_BUS_SPACE_IO, 0x0,
  170             (bus_size_t)port, val, cnt);
  171 }
  172 
  173 static void
  174 WRITE_PORT_BUFFER_UCHAR(port, val, cnt)
  175         uint8_t                 *port;
  176         uint8_t                 *val;
  177         uint32_t                cnt;
  178 {
  179         bus_space_write_multi_1(NDIS_BUS_SPACE_IO, 0x0,
  180             (bus_size_t)port, val, cnt);
  181 }
  182 
  183 static uint16_t
  184 READ_PORT_USHORT(port)
  185         uint16_t                *port;
  186 {
  187         return (bus_space_read_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
  188 }
  189 
  190 static uint32_t
  191 READ_PORT_ULONG(port)
  192         uint32_t                *port;
  193 {
  194         return (bus_space_read_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
  195 }
  196 
  197 static uint8_t
  198 READ_PORT_UCHAR(port)
  199         uint8_t                 *port;
  200 {
  201         return (bus_space_read_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
  202 }
  203 
  204 static void
  205 READ_PORT_BUFFER_ULONG(port, val, cnt)
  206         uint32_t                *port;
  207         uint32_t                *val;
  208         uint32_t                cnt;
  209 {
  210         bus_space_read_multi_4(NDIS_BUS_SPACE_IO, 0x0,
  211             (bus_size_t)port, val, cnt);
  212 }
  213 
  214 static void
  215 READ_PORT_BUFFER_USHORT(port, val, cnt)
  216         uint16_t                *port;
  217         uint16_t                *val;
  218         uint32_t                cnt;
  219 {
  220         bus_space_read_multi_2(NDIS_BUS_SPACE_IO, 0x0,
  221             (bus_size_t)port, val, cnt);
  222 }
  223 
  224 static void
  225 READ_PORT_BUFFER_UCHAR(port, val, cnt)
  226         uint8_t                 *port;
  227         uint8_t                 *val;
  228         uint32_t                cnt;
  229 {
  230         bus_space_read_multi_1(NDIS_BUS_SPACE_IO, 0x0,
  231             (bus_size_t)port, val, cnt);
  232 }
  233 
  234 /*
  235  * The spinlock implementation in Windows differs from that of FreeBSD.
  236  * The basic operation of spinlocks involves two steps: 1) spin in a
  237  * tight loop while trying to acquire a lock, 2) after obtaining the
  238  * lock, disable preemption. (Note that on uniprocessor systems, you're
  239  * allowed to skip the first step and just lock out pre-emption, since
  240  * it's not possible for you to be in contention with another running
  241  * thread.) Later, you release the lock then re-enable preemption.
  242  * The difference between Windows and FreeBSD lies in how preemption
  243  * is disabled. In FreeBSD, it's done using critical_enter(), which on
  244  * the x86 arch translates to a cli instruction. This masks off all
  245  * interrupts, and effectively stops the scheduler from ever running
  246  * so _nothing_ can execute except the current thread. In Windows,
  247  * preemption is disabled by raising the processor IRQL to DISPATCH_LEVEL.
  248  * This stops other threads from running, but does _not_ block device
  249  * interrupts. This means ISRs can still run, and they can make other
  250  * threads runable, but those other threads won't be able to execute
  251  * until the current thread lowers the IRQL to something less than
  252  * DISPATCH_LEVEL.
  253  *
  254  * There's another commonly used IRQL in Windows, which is APC_LEVEL.
  255  * An APC is an Asynchronous Procedure Call, which differs from a DPC
  256  * (Defered Procedure Call) in that a DPC is queued up to run in
  257  * another thread, while an APC runs in the thread that scheduled
  258  * it (similar to a signal handler in a UNIX process). We don't
  259  * actually support the notion of APCs in FreeBSD, so for now, the
  260  * only IRQLs we're interested in are DISPATCH_LEVEL and PASSIVE_LEVEL.
  261  *
  262  * To simulate DISPATCH_LEVEL, we raise the current thread's priority
  263  * to PI_REALTIME, which is the highest we can give it. This should,
  264  * if I understand things correctly, prevent anything except for an
  265  * interrupt thread from preempting us. PASSIVE_LEVEL is basically
  266  * everything else.
  267  *
  268  * Be aware that, at least on the x86 arch, the Windows spinlock
  269  * functions are divided up in peculiar ways. The actual spinlock
  270  * functions are KfAcquireSpinLock() and KfReleaseSpinLock(), and
  271  * they live in HAL.dll. Meanwhile, KeInitializeSpinLock(),
  272  * KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
  273  * live in ntoskrnl.exe. Most Windows source code will call
  274  * KeAcquireSpinLock() and KeReleaseSpinLock(), but these are just
  275  * macros that call KfAcquireSpinLock() and KfReleaseSpinLock().
  276  * KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
  277  * perform the lock aquisition/release functions without doing the
  278  * IRQL manipulation, and are used when one is already running at
  279  * DISPATCH_LEVEL. Make sense? Good.
  280  *
  281  * According to the Microsoft documentation, any thread that calls
  282  * KeAcquireSpinLock() must be running at IRQL <= DISPATCH_LEVEL. If
  283  * we detect someone trying to acquire a spinlock from DEVICE_LEVEL
  284  * or HIGH_LEVEL, we panic.
  285  *
  286  * Alternate sleep-lock-based spinlock implementation
  287  * --------------------------------------------------
  288  *
  289  * The earlier spinlock implementation was arguably a bit of a hack
  290  * and presented several problems. It was basically designed to provide
  291  * the functionality of spinlocks without incurring the wrath of
  292  * WITNESS. We could get away with using both our spinlock implementation
  293  * and FreeBSD sleep locks at the same time, but if WITNESS knew what
  294  * we were really up to, it would have spanked us rather severely.
  295  *
  296  * There's another method we can use based entirely on sleep locks.
  297  * First, it's important to realize that everything we're locking
  298  * resides inside Project Evil itself: any critical data being locked
  299  * by drivers belongs to the drivers, and should not be referenced
  300  * by any other OS code outside of the NDISulator. The priority-based
  301  * locking scheme has system-wide effects, just like real spinlocks
  302  * (blocking preemption affects the whole CPU), but since we keep all
  303  * our critical data private, we can use a simpler mechanism that
  304  * affects only code/threads directly related to Project Evil.
  305  *
  306  * The idea is to create a sleep lock mutex for each CPU in the system.
  307  * When a CPU running in the NDISulator wants to acquire a spinlock, it
  308  * does the following:
  309  * - Pin ourselves to the current CPU
  310  * - Acquire the mutex for the current CPU
  311  * - Spin on the spinlock variable using atomic test and set, just like
  312  *   a real spinlock.
  313  * - Once we have the lock, we execute our critical code
  314  *
  315  * To give up the lock, we do:
  316  * - Clear the spinlock variable with an atomic op
  317  * - Release the per-CPU mutex
  318  * - Unpin ourselves from the current CPU.
  319  *
  320  * On a uniprocessor system, this means all threads that access protected
  321  * data are serialized through the per-CPU mutex. After one thread
  322  * acquires the 'spinlock,' any other thread that uses a spinlock on the
  323  * current CPU will block on the per-CPU mutex, which has the same general
  324  * effect of blocking pre-emption, but _only_ for those threads that are
  325  * running NDISulator code.
  326  *
  327  * On a multiprocessor system, threads on different CPUs all block on
  328  * their respective per-CPU mutex, and the atomic test/set operation
  329  * on the spinlock variable provides inter-CPU synchronization, though
  330  * only for threads running NDISulator code.
  331  *
  332  * This method solves an important problem. In Windows, you're allowed
  333  * to do an ExAllocatePoolWithTag() with a spinlock held, provided you
  334  * allocate from NonPagedPool. This implies an atomic heap allocation
  335  * that will not cause the current thread to sleep. (You can't sleep
  336  * while holding real spinlock: clowns will eat you.) But in FreeBSD,
  337  * malloc(9) _always_ triggers the acquisition of a sleep lock, even
  338  * when you use M_NOWAIT. This is not a problem for FreeBSD native
  339  * code: you're allowed to sleep in things like interrupt threads. But
  340  * it is a problem with the old priority-based spinlock implementation:
  341  * even though we get away with it most of the time, we really can't
  342  * do a malloc(9) after doing a KeAcquireSpinLock() or KeRaiseIrql().
  343  * With the new implementation, it's not a problem: you're allowed to
  344  * acquire more than one sleep lock (as long as you avoid lock order
  345  * reversals).
  346  *
  347  * The one drawback to this approach is that now we have a lot of
  348  * contention on one per-CPU mutex within the NDISulator code. Whether
  349  * or not this is preferable to the expected Windows spinlock behavior
  350  * of blocking pre-emption is debatable.
  351  */
  352 
  353 uint8_t
  354 KfAcquireSpinLock(lock)
  355         kspin_lock              *lock;
  356 {
  357         uint8_t                 oldirql;
  358 
  359         KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
  360         KeAcquireSpinLockAtDpcLevel(lock);
  361 
  362         return (oldirql);
  363 }
  364 
  365 void
  366 KfReleaseSpinLock(kspin_lock *lock, uint8_t newirql)
  367 {
  368         KeReleaseSpinLockFromDpcLevel(lock);
  369         KeLowerIrql(newirql);
  370 }
  371 
  372 uint8_t
  373 KeGetCurrentIrql()
  374 {
  375         if (mtx_owned(&disp_lock[curthread->td_oncpu]))
  376                 return (DISPATCH_LEVEL);
  377         return (PASSIVE_LEVEL);
  378 }
  379 
  380 static uint64_t
  381 KeQueryPerformanceCounter(freq)
  382         uint64_t                *freq;
  383 {
  384         if (freq != NULL)
  385                 *freq = hz;
  386 
  387         return ((uint64_t)ticks);
  388 }
  389 
  390 uint8_t
  391 KfRaiseIrql(uint8_t irql)
  392 {
  393         uint8_t                 oldirql;
  394 
  395         sched_pin();
  396         oldirql = KeGetCurrentIrql();
  397 
  398         /* I am so going to hell for this. */
  399         if (oldirql > irql)
  400                 panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
  401 
  402         if (oldirql != DISPATCH_LEVEL) 
  403                 mtx_lock(&disp_lock[curthread->td_oncpu]);
  404         else
  405                 sched_unpin();  
  406 
  407 /*printf("RAISE IRQL: %d %d\n", irql, oldirql);*/
  408 
  409         return (oldirql);
  410 }
  411 
  412 void
  413 KfLowerIrql(uint8_t oldirql)
  414 {
  415         if (oldirql == DISPATCH_LEVEL)
  416                 return;
  417 
  418         if (KeGetCurrentIrql() != DISPATCH_LEVEL)
  419                 panic("IRQL_NOT_GREATER_THAN");
  420 
  421         mtx_unlock(&disp_lock[curthread->td_oncpu]);
  422         sched_unpin();
  423 }
  424 
  425 static uint8_t
  426 KeRaiseIrqlToDpcLevel(void)
  427 {
  428         uint8_t                 irql;
  429 
  430         KeRaiseIrql(DISPATCH_LEVEL, &irql);
  431         return (irql);
  432 }
  433 
  434 static void
  435 _KeLowerIrql(uint8_t oldirql)
  436 {
  437         KeLowerIrql(oldirql);
  438 }
  439 
  440 static void dummy()
  441 {
  442         printf("hal dummy called...\n");
  443 }
  444 
  445 image_patch_table hal_functbl[] = {
  446         IMPORT_SFUNC(KeStallExecutionProcessor, 1),
  447         IMPORT_SFUNC(WRITE_PORT_ULONG, 2),
  448         IMPORT_SFUNC(WRITE_PORT_USHORT, 2),
  449         IMPORT_SFUNC(WRITE_PORT_UCHAR, 2),
  450         IMPORT_SFUNC(WRITE_PORT_BUFFER_ULONG, 3),
  451         IMPORT_SFUNC(WRITE_PORT_BUFFER_USHORT, 3),
  452         IMPORT_SFUNC(WRITE_PORT_BUFFER_UCHAR, 3),
  453         IMPORT_SFUNC(READ_PORT_ULONG, 1),
  454         IMPORT_SFUNC(READ_PORT_USHORT, 1),
  455         IMPORT_SFUNC(READ_PORT_UCHAR, 1),
  456         IMPORT_SFUNC(READ_PORT_BUFFER_ULONG, 3),
  457         IMPORT_SFUNC(READ_PORT_BUFFER_USHORT, 3),
  458         IMPORT_SFUNC(READ_PORT_BUFFER_UCHAR, 3),
  459         IMPORT_FFUNC(KfAcquireSpinLock, 1),
  460         IMPORT_FFUNC(KfReleaseSpinLock, 1),
  461         IMPORT_SFUNC(KeGetCurrentIrql, 0),
  462         IMPORT_SFUNC(KeQueryPerformanceCounter, 1),
  463         IMPORT_FFUNC(KfLowerIrql, 1),
  464         IMPORT_FFUNC(KfRaiseIrql, 1),
  465         IMPORT_SFUNC(KeRaiseIrqlToDpcLevel, 0),
  466 #undef KeLowerIrql
  467         IMPORT_SFUNC_MAP(KeLowerIrql, _KeLowerIrql, 1),
  468 
  469         /*
  470          * This last entry is a catch-all for any function we haven't
  471          * implemented yet. The PE import list patching routine will
  472          * use it for any function that doesn't have an explicit match
  473          * in this table.
  474          */
  475 
  476         { NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
  477 
  478         /* End of list. */
  479 
  480         { NULL, NULL, NULL }
  481 };

Cache object: 1dcf33a5146804b0357543eb81f20fdb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.