The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/compat/ndis/subr_hal.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 2003
    5  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Bill Paul.
   18  * 4. Neither the name of the author nor the names of any co-contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   32  * THE POSSIBILITY OF SUCH DAMAGE.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include <sys/param.h>
   39 #include <sys/types.h>
   40 #include <sys/errno.h>
   41 
   42 #include <sys/callout.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/proc.h>
   47 #include <sys/sched.h>
   48 #include <sys/module.h>
   49 
   50 #include <sys/systm.h>
   51 #include <machine/bus.h>
   52 
   53 #include <sys/bus.h>
   54 #include <sys/rman.h>
   55 
   56 #include <compat/ndis/pe_var.h>
   57 #include <compat/ndis/resource_var.h>
   58 #include <compat/ndis/cfg_var.h>
   59 #include <compat/ndis/ntoskrnl_var.h>
   60 #include <compat/ndis/hal_var.h>
   61 
   62 static void KeStallExecutionProcessor(uint32_t);
   63 static void WRITE_PORT_BUFFER_ULONG(uint32_t *,
   64         uint32_t *, uint32_t);
   65 static void WRITE_PORT_BUFFER_USHORT(uint16_t *,
   66         uint16_t *, uint32_t);
   67 static void WRITE_PORT_BUFFER_UCHAR(uint8_t *,
   68         uint8_t *, uint32_t);
   69 static void WRITE_PORT_ULONG(uint32_t *, uint32_t);
   70 static void WRITE_PORT_USHORT(uint16_t *, uint16_t);
   71 static void WRITE_PORT_UCHAR(uint8_t *, uint8_t);
   72 static uint32_t READ_PORT_ULONG(uint32_t *);
   73 static uint16_t READ_PORT_USHORT(uint16_t *);
   74 static uint8_t READ_PORT_UCHAR(uint8_t *);
   75 static void READ_PORT_BUFFER_ULONG(uint32_t *,
   76         uint32_t *, uint32_t);
   77 static void READ_PORT_BUFFER_USHORT(uint16_t *,
   78         uint16_t *, uint32_t);
   79 static void READ_PORT_BUFFER_UCHAR(uint8_t *,
   80         uint8_t *, uint32_t);
   81 static uint64_t KeQueryPerformanceCounter(uint64_t *);
   82 static void _KeLowerIrql(uint8_t);
   83 static uint8_t KeRaiseIrqlToDpcLevel(void);
   84 static void dummy (void);
   85 
   86 #define NDIS_MAXCPUS 64
   87 static struct mtx disp_lock[NDIS_MAXCPUS];
   88 
   89 int
   90 hal_libinit()
   91 {
   92         image_patch_table       *patch;
   93         int                     i;
   94 
   95         for (i = 0; i < NDIS_MAXCPUS; i++)
   96                 mtx_init(&disp_lock[i], "HAL preemption lock",
   97                     "HAL lock", MTX_RECURSE|MTX_DEF);
   98 
   99         patch = hal_functbl;
  100         while (patch->ipt_func != NULL) {
  101                 windrv_wrap((funcptr)patch->ipt_func,
  102                     (funcptr *)&patch->ipt_wrap,
  103                     patch->ipt_argcnt, patch->ipt_ftype);
  104                 patch++;
  105         }
  106 
  107         return (0);
  108 }
  109 
  110 int
  111 hal_libfini()
  112 {
  113         image_patch_table       *patch;
  114         int                     i;
  115 
  116         for (i = 0; i < NDIS_MAXCPUS; i++)
  117                 mtx_destroy(&disp_lock[i]);
  118 
  119         patch = hal_functbl;
  120         while (patch->ipt_func != NULL) {
  121                 windrv_unwrap(patch->ipt_wrap);
  122                 patch++;
  123         }
  124 
  125         return (0);
  126 }
  127 
  128 static void
  129 KeStallExecutionProcessor(usecs)
  130         uint32_t                usecs;
  131 {
  132         DELAY(usecs);
  133 }
  134 
  135 static void
  136 WRITE_PORT_ULONG(port, val)
  137         uint32_t                *port;
  138         uint32_t                val;
  139 {
  140         bus_space_write_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
  141 }
  142 
  143 static void
  144 WRITE_PORT_USHORT(uint16_t *port, uint16_t val)
  145 {
  146         bus_space_write_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
  147 }
  148 
  149 static void
  150 WRITE_PORT_UCHAR(uint8_t *port, uint8_t val)
  151 {
  152         bus_space_write_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
  153 }
  154 
  155 static void
  156 WRITE_PORT_BUFFER_ULONG(port, val, cnt)
  157         uint32_t                *port;
  158         uint32_t                *val;
  159         uint32_t                cnt;
  160 {
  161         bus_space_write_multi_4(NDIS_BUS_SPACE_IO, 0x0,
  162             (bus_size_t)port, val, cnt);
  163 }
  164 
  165 static void
  166 WRITE_PORT_BUFFER_USHORT(port, val, cnt)
  167         uint16_t                *port;
  168         uint16_t                *val;
  169         uint32_t                cnt;
  170 {
  171         bus_space_write_multi_2(NDIS_BUS_SPACE_IO, 0x0,
  172             (bus_size_t)port, val, cnt);
  173 }
  174 
  175 static void
  176 WRITE_PORT_BUFFER_UCHAR(port, val, cnt)
  177         uint8_t                 *port;
  178         uint8_t                 *val;
  179         uint32_t                cnt;
  180 {
  181         bus_space_write_multi_1(NDIS_BUS_SPACE_IO, 0x0,
  182             (bus_size_t)port, val, cnt);
  183 }
  184 
  185 static uint16_t
  186 READ_PORT_USHORT(port)
  187         uint16_t                *port;
  188 {
  189         return (bus_space_read_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
  190 }
  191 
  192 static uint32_t
  193 READ_PORT_ULONG(port)
  194         uint32_t                *port;
  195 {
  196         return (bus_space_read_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
  197 }
  198 
  199 static uint8_t
  200 READ_PORT_UCHAR(port)
  201         uint8_t                 *port;
  202 {
  203         return (bus_space_read_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
  204 }
  205 
  206 static void
  207 READ_PORT_BUFFER_ULONG(port, val, cnt)
  208         uint32_t                *port;
  209         uint32_t                *val;
  210         uint32_t                cnt;
  211 {
  212         bus_space_read_multi_4(NDIS_BUS_SPACE_IO, 0x0,
  213             (bus_size_t)port, val, cnt);
  214 }
  215 
  216 static void
  217 READ_PORT_BUFFER_USHORT(port, val, cnt)
  218         uint16_t                *port;
  219         uint16_t                *val;
  220         uint32_t                cnt;
  221 {
  222         bus_space_read_multi_2(NDIS_BUS_SPACE_IO, 0x0,
  223             (bus_size_t)port, val, cnt);
  224 }
  225 
  226 static void
  227 READ_PORT_BUFFER_UCHAR(port, val, cnt)
  228         uint8_t                 *port;
  229         uint8_t                 *val;
  230         uint32_t                cnt;
  231 {
  232         bus_space_read_multi_1(NDIS_BUS_SPACE_IO, 0x0,
  233             (bus_size_t)port, val, cnt);
  234 }
  235 
  236 /*
  237  * The spinlock implementation in Windows differs from that of FreeBSD.
  238  * The basic operation of spinlocks involves two steps: 1) spin in a
  239  * tight loop while trying to acquire a lock, 2) after obtaining the
  240  * lock, disable preemption. (Note that on uniprocessor systems, you're
  241  * allowed to skip the first step and just lock out pre-emption, since
  242  * it's not possible for you to be in contention with another running
  243  * thread.) Later, you release the lock then re-enable preemption.
  244  * The difference between Windows and FreeBSD lies in how preemption
  245  * is disabled. In FreeBSD, it's done using critical_enter(), which on
  246  * the x86 arch translates to a cli instruction. This masks off all
  247  * interrupts, and effectively stops the scheduler from ever running
  248  * so _nothing_ can execute except the current thread. In Windows,
  249  * preemption is disabled by raising the processor IRQL to DISPATCH_LEVEL.
  250  * This stops other threads from running, but does _not_ block device
  251  * interrupts. This means ISRs can still run, and they can make other
  252  * threads runable, but those other threads won't be able to execute
  253  * until the current thread lowers the IRQL to something less than
  254  * DISPATCH_LEVEL.
  255  *
  256  * There's another commonly used IRQL in Windows, which is APC_LEVEL.
  257  * An APC is an Asynchronous Procedure Call, which differs from a DPC
  258  * (Defered Procedure Call) in that a DPC is queued up to run in
  259  * another thread, while an APC runs in the thread that scheduled
  260  * it (similar to a signal handler in a UNIX process). We don't
  261  * actually support the notion of APCs in FreeBSD, so for now, the
  262  * only IRQLs we're interested in are DISPATCH_LEVEL and PASSIVE_LEVEL.
  263  *
  264  * To simulate DISPATCH_LEVEL, we raise the current thread's priority
  265  * to PI_REALTIME, which is the highest we can give it. This should,
  266  * if I understand things correctly, prevent anything except for an
  267  * interrupt thread from preempting us. PASSIVE_LEVEL is basically
  268  * everything else.
  269  *
  270  * Be aware that, at least on the x86 arch, the Windows spinlock
  271  * functions are divided up in peculiar ways. The actual spinlock
  272  * functions are KfAcquireSpinLock() and KfReleaseSpinLock(), and
  273  * they live in HAL.dll. Meanwhile, KeInitializeSpinLock(),
  274  * KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
  275  * live in ntoskrnl.exe. Most Windows source code will call
  276  * KeAcquireSpinLock() and KeReleaseSpinLock(), but these are just
  277  * macros that call KfAcquireSpinLock() and KfReleaseSpinLock().
  278  * KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
  279  * perform the lock acquisition/release functions without doing the
  280  * IRQL manipulation, and are used when one is already running at
  281  * DISPATCH_LEVEL. Make sense? Good.
  282  *
  283  * According to the Microsoft documentation, any thread that calls
  284  * KeAcquireSpinLock() must be running at IRQL <= DISPATCH_LEVEL. If
  285  * we detect someone trying to acquire a spinlock from DEVICE_LEVEL
  286  * or HIGH_LEVEL, we panic.
  287  *
  288  * Alternate sleep-lock-based spinlock implementation
  289  * --------------------------------------------------
  290  *
  291  * The earlier spinlock implementation was arguably a bit of a hack
  292  * and presented several problems. It was basically designed to provide
  293  * the functionality of spinlocks without incurring the wrath of
  294  * WITNESS. We could get away with using both our spinlock implementation
  295  * and FreeBSD sleep locks at the same time, but if WITNESS knew what
  296  * we were really up to, it would have spanked us rather severely.
  297  *
  298  * There's another method we can use based entirely on sleep locks.
  299  * First, it's important to realize that everything we're locking
  300  * resides inside Project Evil itself: any critical data being locked
  301  * by drivers belongs to the drivers, and should not be referenced
  302  * by any other OS code outside of the NDISulator. The priority-based
  303  * locking scheme has system-wide effects, just like real spinlocks
  304  * (blocking preemption affects the whole CPU), but since we keep all
  305  * our critical data private, we can use a simpler mechanism that
  306  * affects only code/threads directly related to Project Evil.
  307  *
  308  * The idea is to create a sleep lock mutex for each CPU in the system.
  309  * When a CPU running in the NDISulator wants to acquire a spinlock, it
  310  * does the following:
  311  * - Pin ourselves to the current CPU
  312  * - Acquire the mutex for the current CPU
  313  * - Spin on the spinlock variable using atomic test and set, just like
  314  *   a real spinlock.
  315  * - Once we have the lock, we execute our critical code
  316  *
  317  * To give up the lock, we do:
  318  * - Clear the spinlock variable with an atomic op
  319  * - Release the per-CPU mutex
  320  * - Unpin ourselves from the current CPU.
  321  *
  322  * On a uniprocessor system, this means all threads that access protected
  323  * data are serialized through the per-CPU mutex. After one thread
  324  * acquires the 'spinlock,' any other thread that uses a spinlock on the
  325  * current CPU will block on the per-CPU mutex, which has the same general
  326  * effect of blocking pre-emption, but _only_ for those threads that are
  327  * running NDISulator code.
  328  *
  329  * On a multiprocessor system, threads on different CPUs all block on
  330  * their respective per-CPU mutex, and the atomic test/set operation
  331  * on the spinlock variable provides inter-CPU synchronization, though
  332  * only for threads running NDISulator code.
  333  *
  334  * This method solves an important problem. In Windows, you're allowed
  335  * to do an ExAllocatePoolWithTag() with a spinlock held, provided you
  336  * allocate from NonPagedPool. This implies an atomic heap allocation
  337  * that will not cause the current thread to sleep. (You can't sleep
  338  * while holding real spinlock: clowns will eat you.) But in FreeBSD,
  339  * malloc(9) _always_ triggers the acquisition of a sleep lock, even
  340  * when you use M_NOWAIT. This is not a problem for FreeBSD native
  341  * code: you're allowed to sleep in things like interrupt threads. But
  342  * it is a problem with the old priority-based spinlock implementation:
  343  * even though we get away with it most of the time, we really can't
  344  * do a malloc(9) after doing a KeAcquireSpinLock() or KeRaiseIrql().
  345  * With the new implementation, it's not a problem: you're allowed to
  346  * acquire more than one sleep lock (as long as you avoid lock order
  347  * reversals).
  348  *
  349  * The one drawback to this approach is that now we have a lot of
  350  * contention on one per-CPU mutex within the NDISulator code. Whether
  351  * or not this is preferable to the expected Windows spinlock behavior
  352  * of blocking pre-emption is debatable.
  353  */
  354 
  355 uint8_t
  356 KfAcquireSpinLock(lock)
  357         kspin_lock              *lock;
  358 {
  359         uint8_t                 oldirql;
  360 
  361         KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
  362         KeAcquireSpinLockAtDpcLevel(lock);
  363 
  364         return (oldirql);
  365 }
  366 
  367 void
  368 KfReleaseSpinLock(kspin_lock *lock, uint8_t newirql)
  369 {
  370         KeReleaseSpinLockFromDpcLevel(lock);
  371         KeLowerIrql(newirql);
  372 }
  373 
  374 uint8_t
  375 KeGetCurrentIrql()
  376 {
  377         if (mtx_owned(&disp_lock[curthread->td_oncpu]))
  378                 return (DISPATCH_LEVEL);
  379         return (PASSIVE_LEVEL);
  380 }
  381 
  382 static uint64_t
  383 KeQueryPerformanceCounter(freq)
  384         uint64_t                *freq;
  385 {
  386         if (freq != NULL)
  387                 *freq = hz;
  388 
  389         return ((uint64_t)ticks);
  390 }
  391 
  392 uint8_t
  393 KfRaiseIrql(uint8_t irql)
  394 {
  395         uint8_t                 oldirql;
  396 
  397         sched_pin();
  398         oldirql = KeGetCurrentIrql();
  399 
  400         /* I am so going to hell for this. */
  401         if (oldirql > irql)
  402                 panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
  403 
  404         if (oldirql != DISPATCH_LEVEL) 
  405                 mtx_lock(&disp_lock[curthread->td_oncpu]);
  406         else
  407                 sched_unpin();  
  408 
  409 /*printf("RAISE IRQL: %d %d\n", irql, oldirql);*/
  410 
  411         return (oldirql);
  412 }
  413 
  414 void
  415 KfLowerIrql(uint8_t oldirql)
  416 {
  417         if (oldirql == DISPATCH_LEVEL)
  418                 return;
  419 
  420         if (KeGetCurrentIrql() != DISPATCH_LEVEL)
  421                 panic("IRQL_NOT_GREATER_THAN");
  422 
  423         mtx_unlock(&disp_lock[curthread->td_oncpu]);
  424         sched_unpin();
  425 }
  426 
  427 static uint8_t
  428 KeRaiseIrqlToDpcLevel(void)
  429 {
  430         uint8_t                 irql;
  431 
  432         KeRaiseIrql(DISPATCH_LEVEL, &irql);
  433         return (irql);
  434 }
  435 
  436 static void
  437 _KeLowerIrql(uint8_t oldirql)
  438 {
  439         KeLowerIrql(oldirql);
  440 }
  441 
  442 static void dummy()
  443 {
  444         printf("hal dummy called...\n");
  445 }
  446 
  447 image_patch_table hal_functbl[] = {
  448         IMPORT_SFUNC(KeStallExecutionProcessor, 1),
  449         IMPORT_SFUNC(WRITE_PORT_ULONG, 2),
  450         IMPORT_SFUNC(WRITE_PORT_USHORT, 2),
  451         IMPORT_SFUNC(WRITE_PORT_UCHAR, 2),
  452         IMPORT_SFUNC(WRITE_PORT_BUFFER_ULONG, 3),
  453         IMPORT_SFUNC(WRITE_PORT_BUFFER_USHORT, 3),
  454         IMPORT_SFUNC(WRITE_PORT_BUFFER_UCHAR, 3),
  455         IMPORT_SFUNC(READ_PORT_ULONG, 1),
  456         IMPORT_SFUNC(READ_PORT_USHORT, 1),
  457         IMPORT_SFUNC(READ_PORT_UCHAR, 1),
  458         IMPORT_SFUNC(READ_PORT_BUFFER_ULONG, 3),
  459         IMPORT_SFUNC(READ_PORT_BUFFER_USHORT, 3),
  460         IMPORT_SFUNC(READ_PORT_BUFFER_UCHAR, 3),
  461         IMPORT_FFUNC(KfAcquireSpinLock, 1),
  462         IMPORT_FFUNC(KfReleaseSpinLock, 1),
  463         IMPORT_SFUNC(KeGetCurrentIrql, 0),
  464         IMPORT_SFUNC(KeQueryPerformanceCounter, 1),
  465         IMPORT_FFUNC(KfLowerIrql, 1),
  466         IMPORT_FFUNC(KfRaiseIrql, 1),
  467         IMPORT_SFUNC(KeRaiseIrqlToDpcLevel, 0),
  468 #undef KeLowerIrql
  469         IMPORT_SFUNC_MAP(KeLowerIrql, _KeLowerIrql, 1),
  470 
  471         /*
  472          * This last entry is a catch-all for any function we haven't
  473          * implemented yet. The PE import list patching routine will
  474          * use it for any function that doesn't have an explicit match
  475          * in this table.
  476          */
  477 
  478         { NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
  479 
  480         /* End of list. */
  481         { NULL, NULL, NULL }
  482 };

Cache object: b44d621e6fdbb03ab4fb5135d17fa550


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.