1 /*-
2 * Copyright (c) 2003
3 * Bill Paul <wpaul@windriver.com>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD: releng/8.0/sys/compat/ndis/subr_hal.c 189719 2009-03-12 02:51:55Z weongyo $");
35
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/errno.h>
39
40 #include <sys/callout.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/module.h>
47
48 #include <sys/systm.h>
49 #include <machine/bus.h>
50
51 #include <sys/bus.h>
52 #include <sys/rman.h>
53
54 #include <compat/ndis/pe_var.h>
55 #include <compat/ndis/resource_var.h>
56 #include <compat/ndis/cfg_var.h>
57 #include <compat/ndis/ntoskrnl_var.h>
58 #include <compat/ndis/hal_var.h>
59
60 static void KeStallExecutionProcessor(uint32_t);
61 static void WRITE_PORT_BUFFER_ULONG(uint32_t *,
62 uint32_t *, uint32_t);
63 static void WRITE_PORT_BUFFER_USHORT(uint16_t *,
64 uint16_t *, uint32_t);
65 static void WRITE_PORT_BUFFER_UCHAR(uint8_t *,
66 uint8_t *, uint32_t);
67 static void WRITE_PORT_ULONG(uint32_t *, uint32_t);
68 static void WRITE_PORT_USHORT(uint16_t *, uint16_t);
69 static void WRITE_PORT_UCHAR(uint8_t *, uint8_t);
70 static uint32_t READ_PORT_ULONG(uint32_t *);
71 static uint16_t READ_PORT_USHORT(uint16_t *);
72 static uint8_t READ_PORT_UCHAR(uint8_t *);
73 static void READ_PORT_BUFFER_ULONG(uint32_t *,
74 uint32_t *, uint32_t);
75 static void READ_PORT_BUFFER_USHORT(uint16_t *,
76 uint16_t *, uint32_t);
77 static void READ_PORT_BUFFER_UCHAR(uint8_t *,
78 uint8_t *, uint32_t);
79 static uint64_t KeQueryPerformanceCounter(uint64_t *);
80 static void _KeLowerIrql(uint8_t);
81 static uint8_t KeRaiseIrqlToDpcLevel(void);
82 static void dummy (void);
83
84 #define NDIS_MAXCPUS 64
85 static struct mtx disp_lock[NDIS_MAXCPUS];
86
87 int
88 hal_libinit()
89 {
90 image_patch_table *patch;
91 int i;
92
93 for (i = 0; i < NDIS_MAXCPUS; i++)
94 mtx_init(&disp_lock[i], "HAL preemption lock",
95 "HAL lock", MTX_RECURSE|MTX_DEF);
96
97 patch = hal_functbl;
98 while (patch->ipt_func != NULL) {
99 windrv_wrap((funcptr)patch->ipt_func,
100 (funcptr *)&patch->ipt_wrap,
101 patch->ipt_argcnt, patch->ipt_ftype);
102 patch++;
103 }
104
105
106 return(0);
107 }
108
109 int
110 hal_libfini()
111 {
112 image_patch_table *patch;
113 int i;
114
115 for (i = 0; i < NDIS_MAXCPUS; i++)
116 mtx_destroy(&disp_lock[i]);
117
118 patch = hal_functbl;
119 while (patch->ipt_func != NULL) {
120 windrv_unwrap(patch->ipt_wrap);
121 patch++;
122 }
123
124 return(0);
125 }
126
127 static void
128 KeStallExecutionProcessor(usecs)
129 uint32_t usecs;
130 {
131 DELAY(usecs);
132 return;
133 }
134
135 static void
136 WRITE_PORT_ULONG(port, val)
137 uint32_t *port;
138 uint32_t val;
139 {
140 bus_space_write_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
141 return;
142 }
143
144 static void
145 WRITE_PORT_USHORT(uint16_t *port, uint16_t val)
146 {
147 bus_space_write_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
148 return;
149 }
150
151 static void
152 WRITE_PORT_UCHAR(uint8_t *port, uint8_t val)
153 {
154 bus_space_write_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port, val);
155 return;
156 }
157
158 static void
159 WRITE_PORT_BUFFER_ULONG(port, val, cnt)
160 uint32_t *port;
161 uint32_t *val;
162 uint32_t cnt;
163 {
164 bus_space_write_multi_4(NDIS_BUS_SPACE_IO, 0x0,
165 (bus_size_t)port, val, cnt);
166 return;
167 }
168
169 static void
170 WRITE_PORT_BUFFER_USHORT(port, val, cnt)
171 uint16_t *port;
172 uint16_t *val;
173 uint32_t cnt;
174 {
175 bus_space_write_multi_2(NDIS_BUS_SPACE_IO, 0x0,
176 (bus_size_t)port, val, cnt);
177 return;
178 }
179
180 static void
181 WRITE_PORT_BUFFER_UCHAR(port, val, cnt)
182 uint8_t *port;
183 uint8_t *val;
184 uint32_t cnt;
185 {
186 bus_space_write_multi_1(NDIS_BUS_SPACE_IO, 0x0,
187 (bus_size_t)port, val, cnt);
188 return;
189 }
190
191 static uint16_t
192 READ_PORT_USHORT(port)
193 uint16_t *port;
194 {
195 return(bus_space_read_2(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
196 }
197
198 static uint32_t
199 READ_PORT_ULONG(port)
200 uint32_t *port;
201 {
202 return(bus_space_read_4(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
203 }
204
205 static uint8_t
206 READ_PORT_UCHAR(port)
207 uint8_t *port;
208 {
209 return(bus_space_read_1(NDIS_BUS_SPACE_IO, 0x0, (bus_size_t)port));
210 }
211
212 static void
213 READ_PORT_BUFFER_ULONG(port, val, cnt)
214 uint32_t *port;
215 uint32_t *val;
216 uint32_t cnt;
217 {
218 bus_space_read_multi_4(NDIS_BUS_SPACE_IO, 0x0,
219 (bus_size_t)port, val, cnt);
220 return;
221 }
222
223 static void
224 READ_PORT_BUFFER_USHORT(port, val, cnt)
225 uint16_t *port;
226 uint16_t *val;
227 uint32_t cnt;
228 {
229 bus_space_read_multi_2(NDIS_BUS_SPACE_IO, 0x0,
230 (bus_size_t)port, val, cnt);
231 return;
232 }
233
234 static void
235 READ_PORT_BUFFER_UCHAR(port, val, cnt)
236 uint8_t *port;
237 uint8_t *val;
238 uint32_t cnt;
239 {
240 bus_space_read_multi_1(NDIS_BUS_SPACE_IO, 0x0,
241 (bus_size_t)port, val, cnt);
242 return;
243 }
244
245 /*
246 * The spinlock implementation in Windows differs from that of FreeBSD.
247 * The basic operation of spinlocks involves two steps: 1) spin in a
248 * tight loop while trying to acquire a lock, 2) after obtaining the
249 * lock, disable preemption. (Note that on uniprocessor systems, you're
250 * allowed to skip the first step and just lock out pre-emption, since
251 * it's not possible for you to be in contention with another running
252 * thread.) Later, you release the lock then re-enable preemption.
253 * The difference between Windows and FreeBSD lies in how preemption
254 * is disabled. In FreeBSD, it's done using critical_enter(), which on
255 * the x86 arch translates to a cli instruction. This masks off all
256 * interrupts, and effectively stops the scheduler from ever running
257 * so _nothing_ can execute except the current thread. In Windows,
258 * preemption is disabled by raising the processor IRQL to DISPATCH_LEVEL.
259 * This stops other threads from running, but does _not_ block device
260 * interrupts. This means ISRs can still run, and they can make other
261 * threads runable, but those other threads won't be able to execute
262 * until the current thread lowers the IRQL to something less than
263 * DISPATCH_LEVEL.
264 *
265 * There's another commonly used IRQL in Windows, which is APC_LEVEL.
266 * An APC is an Asynchronous Procedure Call, which differs from a DPC
267 * (Defered Procedure Call) in that a DPC is queued up to run in
268 * another thread, while an APC runs in the thread that scheduled
269 * it (similar to a signal handler in a UNIX process). We don't
270 * actually support the notion of APCs in FreeBSD, so for now, the
271 * only IRQLs we're interested in are DISPATCH_LEVEL and PASSIVE_LEVEL.
272 *
273 * To simulate DISPATCH_LEVEL, we raise the current thread's priority
274 * to PI_REALTIME, which is the highest we can give it. This should,
275 * if I understand things correctly, prevent anything except for an
276 * interrupt thread from preempting us. PASSIVE_LEVEL is basically
277 * everything else.
278 *
279 * Be aware that, at least on the x86 arch, the Windows spinlock
280 * functions are divided up in peculiar ways. The actual spinlock
281 * functions are KfAcquireSpinLock() and KfReleaseSpinLock(), and
282 * they live in HAL.dll. Meanwhile, KeInitializeSpinLock(),
283 * KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
284 * live in ntoskrnl.exe. Most Windows source code will call
285 * KeAcquireSpinLock() and KeReleaseSpinLock(), but these are just
286 * macros that call KfAcquireSpinLock() and KfReleaseSpinLock().
287 * KefAcquireSpinLockAtDpcLevel() and KefReleaseSpinLockFromDpcLevel()
288 * perform the lock aquisition/release functions without doing the
289 * IRQL manipulation, and are used when one is already running at
290 * DISPATCH_LEVEL. Make sense? Good.
291 *
292 * According to the Microsoft documentation, any thread that calls
293 * KeAcquireSpinLock() must be running at IRQL <= DISPATCH_LEVEL. If
294 * we detect someone trying to acquire a spinlock from DEVICE_LEVEL
295 * or HIGH_LEVEL, we panic.
296 *
297 * Alternate sleep-lock-based spinlock implementation
298 * --------------------------------------------------
299 *
300 * The earlier spinlock implementation was arguably a bit of a hack
301 * and presented several problems. It was basically designed to provide
302 * the functionality of spinlocks without incurring the wrath of
303 * WITNESS. We could get away with using both our spinlock implementation
304 * and FreeBSD sleep locks at the same time, but if WITNESS knew what
305 * we were really up to, it would have spanked us rather severely.
306 *
307 * There's another method we can use based entirely on sleep locks.
308 * First, it's important to realize that everything we're locking
309 * resides inside Project Evil itself: any critical data being locked
310 * by drivers belongs to the drivers, and should not be referenced
311 * by any other OS code outside of the NDISulator. The priority-based
312 * locking scheme has system-wide effects, just like real spinlocks
313 * (blocking preemption affects the whole CPU), but since we keep all
314 * our critical data private, we can use a simpler mechanism that
315 * affects only code/threads directly related to Project Evil.
316 *
317 * The idea is to create a sleep lock mutex for each CPU in the system.
318 * When a CPU running in the NDISulator wants to acquire a spinlock, it
319 * does the following:
320 * - Pin ourselves to the current CPU
321 * - Acquire the mutex for the current CPU
322 * - Spin on the spinlock variable using atomic test and set, just like
323 * a real spinlock.
324 * - Once we have the lock, we execute our critical code
325 *
326 * To give up the lock, we do:
327 * - Clear the spinlock variable with an atomic op
328 * - Release the per-CPU mutex
329 * - Unpin ourselves from the current CPU.
330 *
331 * On a uniprocessor system, this means all threads that access protected
332 * data are serialized through the per-CPU mutex. After one thread
333 * acquires the 'spinlock,' any other thread that uses a spinlock on the
334 * current CPU will block on the per-CPU mutex, which has the same general
335 * effect of blocking pre-emption, but _only_ for those threads that are
336 * running NDISulator code.
337 *
338 * On a multiprocessor system, threads on different CPUs all block on
339 * their respective per-CPU mutex, and the atomic test/set operation
340 * on the spinlock variable provides inter-CPU synchronization, though
341 * only for threads running NDISulator code.
342 *
343 * This method solves an important problem. In Windows, you're allowed
344 * to do an ExAllocatePoolWithTag() with a spinlock held, provided you
345 * allocate from NonPagedPool. This implies an atomic heap allocation
346 * that will not cause the current thread to sleep. (You can't sleep
347 * while holding real spinlock: clowns will eat you.) But in FreeBSD,
348 * malloc(9) _always_ triggers the acquisition of a sleep lock, even
349 * when you use M_NOWAIT. This is not a problem for FreeBSD native
350 * code: you're allowed to sleep in things like interrupt threads. But
351 * it is a problem with the old priority-based spinlock implementation:
352 * even though we get away with it most of the time, we really can't
353 * do a malloc(9) after doing a KeAcquireSpinLock() or KeRaiseIrql().
354 * With the new implementation, it's not a problem: you're allowed to
355 * acquire more than one sleep lock (as long as you avoid lock order
356 * reversals).
357 *
358 * The one drawback to this approach is that now we have a lot of
359 * contention on one per-CPU mutex within the NDISulator code. Whether
360 * or not this is preferable to the expected Windows spinlock behavior
361 * of blocking pre-emption is debatable.
362 */
363
364 uint8_t
365 KfAcquireSpinLock(lock)
366 kspin_lock *lock;
367 {
368 uint8_t oldirql;
369
370 KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
371 KeAcquireSpinLockAtDpcLevel(lock);
372
373 return(oldirql);
374 }
375
376 void
377 KfReleaseSpinLock(kspin_lock *lock, uint8_t newirql)
378 {
379 KeReleaseSpinLockFromDpcLevel(lock);
380 KeLowerIrql(newirql);
381
382 return;
383 }
384
385 uint8_t
386 KeGetCurrentIrql()
387 {
388 if (mtx_owned(&disp_lock[curthread->td_oncpu]))
389 return(DISPATCH_LEVEL);
390 return(PASSIVE_LEVEL);
391 }
392
393 static uint64_t
394 KeQueryPerformanceCounter(freq)
395 uint64_t *freq;
396 {
397 if (freq != NULL)
398 *freq = hz;
399
400 return((uint64_t)ticks);
401 }
402
403 uint8_t
404 KfRaiseIrql(uint8_t irql)
405 {
406 uint8_t oldirql;
407
408 oldirql = KeGetCurrentIrql();
409
410 /* I am so going to hell for this. */
411 if (oldirql > irql)
412 panic("IRQL_NOT_LESS_THAN");
413
414 if (oldirql != DISPATCH_LEVEL) {
415 sched_pin();
416 mtx_lock(&disp_lock[curthread->td_oncpu]);
417 }
418 /*printf("RAISE IRQL: %d %d\n", irql, oldirql);*/
419
420 return(oldirql);
421 }
422
423 void
424 KfLowerIrql(uint8_t oldirql)
425 {
426 if (oldirql == DISPATCH_LEVEL)
427 return;
428
429 if (KeGetCurrentIrql() != DISPATCH_LEVEL)
430 panic("IRQL_NOT_GREATER_THAN");
431
432 mtx_unlock(&disp_lock[curthread->td_oncpu]);
433 sched_unpin();
434
435 return;
436 }
437
438 static uint8_t
439 KeRaiseIrqlToDpcLevel(void)
440 {
441 uint8_t irql;
442
443 KeRaiseIrql(DISPATCH_LEVEL, &irql);
444 return(irql);
445 }
446
447 static void
448 _KeLowerIrql(uint8_t oldirql)
449 {
450 KeLowerIrql(oldirql);
451 return;
452 }
453
454 static void dummy()
455 {
456 printf ("hal dummy called...\n");
457 return;
458 }
459
460 image_patch_table hal_functbl[] = {
461 IMPORT_SFUNC(KeStallExecutionProcessor, 1),
462 IMPORT_SFUNC(WRITE_PORT_ULONG, 2),
463 IMPORT_SFUNC(WRITE_PORT_USHORT, 2),
464 IMPORT_SFUNC(WRITE_PORT_UCHAR, 2),
465 IMPORT_SFUNC(WRITE_PORT_BUFFER_ULONG, 3),
466 IMPORT_SFUNC(WRITE_PORT_BUFFER_USHORT, 3),
467 IMPORT_SFUNC(WRITE_PORT_BUFFER_UCHAR, 3),
468 IMPORT_SFUNC(READ_PORT_ULONG, 1),
469 IMPORT_SFUNC(READ_PORT_USHORT, 1),
470 IMPORT_SFUNC(READ_PORT_UCHAR, 1),
471 IMPORT_SFUNC(READ_PORT_BUFFER_ULONG, 3),
472 IMPORT_SFUNC(READ_PORT_BUFFER_USHORT, 3),
473 IMPORT_SFUNC(READ_PORT_BUFFER_UCHAR, 3),
474 IMPORT_FFUNC(KfAcquireSpinLock, 1),
475 IMPORT_FFUNC(KfReleaseSpinLock, 1),
476 IMPORT_SFUNC(KeGetCurrentIrql, 0),
477 IMPORT_SFUNC(KeQueryPerformanceCounter, 1),
478 IMPORT_FFUNC(KfLowerIrql, 1),
479 IMPORT_FFUNC(KfRaiseIrql, 1),
480 IMPORT_SFUNC(KeRaiseIrqlToDpcLevel, 0),
481 #undef KeLowerIrql
482 IMPORT_SFUNC_MAP(KeLowerIrql, _KeLowerIrql, 1),
483
484 /*
485 * This last entry is a catch-all for any function we haven't
486 * implemented yet. The PE import list patching routine will
487 * use it for any function that doesn't have an explicit match
488 * in this table.
489 */
490
491 { NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
492
493 /* End of list. */
494
495 { NULL, NULL, NULL }
496 };
Cache object: 9646127c58969a58028a1dd905ae19a3
|