The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/compat/ndis/subr_ntoskrnl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 2003
    5  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Bill Paul.
   18  * 4. Neither the name of the author nor the names of any co-contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   32  * THE POSSIBILITY OF SUCH DAMAGE.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include <sys/ctype.h>
   39 #include <sys/unistd.h>
   40 #include <sys/param.h>
   41 #include <sys/types.h>
   42 #include <sys/errno.h>
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 
   48 #include <sys/callout.h>
   49 #include <sys/kdb.h>
   50 #include <sys/kernel.h>
   51 #include <sys/proc.h>
   52 #include <sys/condvar.h>
   53 #include <sys/kthread.h>
   54 #include <sys/module.h>
   55 #include <sys/smp.h>
   56 #include <sys/sched.h>
   57 #include <sys/sysctl.h>
   58 
   59 #include <machine/atomic.h>
   60 #include <machine/bus.h>
   61 #include <machine/stdarg.h>
   62 #include <machine/resource.h>
   63 
   64 #include <sys/bus.h>
   65 #include <sys/rman.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/vm_param.h>
   69 #include <vm/pmap.h>
   70 #include <vm/uma.h>
   71 #include <vm/vm_kern.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_extern.h>
   74 
   75 #include <compat/ndis/pe_var.h>
   76 #include <compat/ndis/cfg_var.h>
   77 #include <compat/ndis/resource_var.h>
   78 #include <compat/ndis/ntoskrnl_var.h>
   79 #include <compat/ndis/hal_var.h>
   80 #include <compat/ndis/ndis_var.h>
   81 
   82 #ifdef NTOSKRNL_DEBUG_TIMERS
   83 static int sysctl_show_timers(SYSCTL_HANDLER_ARGS);
   84 
   85 SYSCTL_PROC(_debug, OID_AUTO, ntoskrnl_timers,
   86     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
   87     sysctl_show_timers, "I",
   88     "Show ntoskrnl timer stats");
   89 #endif
   90 
   91 struct kdpc_queue {
   92         list_entry              kq_disp;
   93         struct thread           *kq_td;
   94         int                     kq_cpu;
   95         int                     kq_exit;
   96         int                     kq_running;
   97         kspin_lock              kq_lock;
   98         nt_kevent               kq_proc;
   99         nt_kevent               kq_done;
  100 };
  101 
  102 typedef struct kdpc_queue kdpc_queue;
  103 
  104 struct wb_ext {
  105         struct cv               we_cv;
  106         struct thread           *we_td;
  107 };
  108 
  109 typedef struct wb_ext wb_ext;
  110 
  111 #define NTOSKRNL_TIMEOUTS       256
  112 #ifdef NTOSKRNL_DEBUG_TIMERS
  113 static uint64_t ntoskrnl_timer_fires;
  114 static uint64_t ntoskrnl_timer_sets;
  115 static uint64_t ntoskrnl_timer_reloads;
  116 static uint64_t ntoskrnl_timer_cancels;
  117 #endif
  118 
  119 struct callout_entry {
  120         struct callout          ce_callout;
  121         list_entry              ce_list;
  122 };
  123 
  124 typedef struct callout_entry callout_entry;
  125 
  126 static struct list_entry ntoskrnl_calllist;
  127 static struct mtx ntoskrnl_calllock;
  128 struct kuser_shared_data kuser_shared_data;
  129 
  130 static struct list_entry ntoskrnl_intlist;
  131 static kspin_lock ntoskrnl_intlock;
  132 
  133 static uint8_t RtlEqualUnicodeString(unicode_string *,
  134         unicode_string *, uint8_t);
  135 static void RtlCopyString(ansi_string *, const ansi_string *);
  136 static void RtlCopyUnicodeString(unicode_string *,
  137         unicode_string *);
  138 static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *,
  139          void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *);
  140 static irp *IoBuildAsynchronousFsdRequest(uint32_t,
  141         device_object *, void *, uint32_t, uint64_t *, io_status_block *);
  142 static irp *IoBuildDeviceIoControlRequest(uint32_t,
  143         device_object *, void *, uint32_t, void *, uint32_t,
  144         uint8_t, nt_kevent *, io_status_block *);
  145 static irp *IoAllocateIrp(uint8_t, uint8_t);
  146 static void IoReuseIrp(irp *, uint32_t);
  147 static void IoFreeIrp(irp *);
  148 static void IoInitializeIrp(irp *, uint16_t, uint8_t);
  149 static irp *IoMakeAssociatedIrp(irp *, uint8_t);
  150 static uint32_t KeWaitForMultipleObjects(uint32_t,
  151         nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
  152         int64_t *, wait_block *);
  153 static void ntoskrnl_waittest(nt_dispatch_header *, uint32_t);
  154 static void ntoskrnl_satisfy_wait(nt_dispatch_header *, struct thread *);
  155 static void ntoskrnl_satisfy_multiple_waits(wait_block *);
  156 static int ntoskrnl_is_signalled(nt_dispatch_header *, struct thread *);
  157 static void ntoskrnl_insert_timer(ktimer *, int);
  158 static void ntoskrnl_remove_timer(ktimer *);
  159 #ifdef NTOSKRNL_DEBUG_TIMERS
  160 static void ntoskrnl_show_timers(void);
  161 #endif
  162 static void ntoskrnl_timercall(void *);
  163 static void ntoskrnl_dpc_thread(void *);
  164 static void ntoskrnl_destroy_dpc_threads(void);
  165 static void ntoskrnl_destroy_workitem_threads(void);
  166 static void ntoskrnl_workitem_thread(void *);
  167 static void ntoskrnl_workitem(device_object *, void *);
  168 static void ntoskrnl_unicode_to_ascii(uint16_t *, char *, int);
  169 static void ntoskrnl_ascii_to_unicode(char *, uint16_t *, int);
  170 static uint8_t ntoskrnl_insert_dpc(list_entry *, kdpc *);
  171 static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t);
  172 static uint16_t READ_REGISTER_USHORT(uint16_t *);
  173 static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t);
  174 static uint32_t READ_REGISTER_ULONG(uint32_t *);
  175 static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t);
  176 static uint8_t READ_REGISTER_UCHAR(uint8_t *);
  177 static int64_t _allmul(int64_t, int64_t);
  178 static int64_t _alldiv(int64_t, int64_t);
  179 static int64_t _allrem(int64_t, int64_t);
  180 static int64_t _allshr(int64_t, uint8_t);
  181 static int64_t _allshl(int64_t, uint8_t);
  182 static uint64_t _aullmul(uint64_t, uint64_t);
  183 static uint64_t _aulldiv(uint64_t, uint64_t);
  184 static uint64_t _aullrem(uint64_t, uint64_t);
  185 static uint64_t _aullshr(uint64_t, uint8_t);
  186 static uint64_t _aullshl(uint64_t, uint8_t);
  187 static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
  188 static void InitializeSListHead(slist_header *);
  189 static slist_entry *ntoskrnl_popsl(slist_header *);
  190 static void ExFreePoolWithTag(void *, uint32_t);
  191 static void ExInitializePagedLookasideList(paged_lookaside_list *,
  192         lookaside_alloc_func *, lookaside_free_func *,
  193         uint32_t, size_t, uint32_t, uint16_t);
  194 static void ExDeletePagedLookasideList(paged_lookaside_list *);
  195 static void ExInitializeNPagedLookasideList(npaged_lookaside_list *,
  196         lookaside_alloc_func *, lookaside_free_func *,
  197         uint32_t, size_t, uint32_t, uint16_t);
  198 static void ExDeleteNPagedLookasideList(npaged_lookaside_list *);
  199 static slist_entry
  200         *ExInterlockedPushEntrySList(slist_header *,
  201         slist_entry *, kspin_lock *);
  202 static slist_entry
  203         *ExInterlockedPopEntrySList(slist_header *, kspin_lock *);
  204 static uint32_t InterlockedIncrement(volatile uint32_t *);
  205 static uint32_t InterlockedDecrement(volatile uint32_t *);
  206 static void ExInterlockedAddLargeStatistic(uint64_t *, uint32_t);
  207 static void *MmAllocateContiguousMemory(uint32_t, uint64_t);
  208 static void *MmAllocateContiguousMemorySpecifyCache(uint32_t,
  209         uint64_t, uint64_t, uint64_t, enum nt_caching_type);
  210 static void MmFreeContiguousMemory(void *);
  211 static void MmFreeContiguousMemorySpecifyCache(void *, uint32_t,
  212         enum nt_caching_type);
  213 static uint32_t MmSizeOfMdl(void *, size_t);
  214 static void *MmMapLockedPages(mdl *, uint8_t);
  215 static void *MmMapLockedPagesSpecifyCache(mdl *,
  216         uint8_t, uint32_t, void *, uint32_t, uint32_t);
  217 static void MmUnmapLockedPages(void *, mdl *);
  218 static device_t ntoskrnl_finddev(device_t, uint64_t, struct resource **);
  219 static void RtlZeroMemory(void *, size_t);
  220 static void RtlSecureZeroMemory(void *, size_t);
  221 static void RtlFillMemory(void *, size_t, uint8_t);
  222 static void RtlMoveMemory(void *, const void *, size_t);
  223 static ndis_status RtlCharToInteger(const char *, uint32_t, uint32_t *);
  224 static void RtlCopyMemory(void *, const void *, size_t);
  225 static size_t RtlCompareMemory(const void *, const void *, size_t);
  226 static ndis_status RtlUnicodeStringToInteger(unicode_string *,
  227         uint32_t, uint32_t *);
  228 static int atoi (const char *);
  229 static long atol (const char *);
  230 static int rand(void);
  231 static void srand(unsigned int);
  232 static void KeQuerySystemTime(uint64_t *);
  233 static uint32_t KeTickCount(void);
  234 static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t);
  235 static int32_t IoOpenDeviceRegistryKey(struct device_object *, uint32_t,
  236     uint32_t, void **);
  237 static void ntoskrnl_thrfunc(void *);
  238 static ndis_status PsCreateSystemThread(ndis_handle *,
  239         uint32_t, void *, ndis_handle, void *, void *, void *);
  240 static ndis_status PsTerminateSystemThread(ndis_status);
  241 static ndis_status IoGetDeviceObjectPointer(unicode_string *,
  242         uint32_t, void *, device_object *);
  243 static ndis_status IoGetDeviceProperty(device_object *, uint32_t,
  244         uint32_t, void *, uint32_t *);
  245 static void KeInitializeMutex(kmutant *, uint32_t);
  246 static uint32_t KeReleaseMutex(kmutant *, uint8_t);
  247 static uint32_t KeReadStateMutex(kmutant *);
  248 static ndis_status ObReferenceObjectByHandle(ndis_handle,
  249         uint32_t, void *, uint8_t, void **, void **);
  250 static void ObfDereferenceObject(void *);
  251 static uint32_t ZwClose(ndis_handle);
  252 static uint32_t WmiQueryTraceInformation(uint32_t, void *, uint32_t,
  253         uint32_t, void *);
  254 static uint32_t WmiTraceMessage(uint64_t, uint32_t, void *, uint16_t, ...);
  255 static uint32_t IoWMIRegistrationControl(device_object *, uint32_t);
  256 static void *ntoskrnl_memset(void *, int, size_t);
  257 static void *ntoskrnl_memmove(void *, void *, size_t);
  258 static void *ntoskrnl_memchr(void *, unsigned char, size_t);
  259 static char *ntoskrnl_strstr(char *, char *);
  260 static char *ntoskrnl_strncat(char *, char *, size_t);
  261 static int ntoskrnl_toupper(int);
  262 static int ntoskrnl_tolower(int);
  263 static funcptr ntoskrnl_findwrap(funcptr);
  264 static uint32_t DbgPrint(char *, ...);
  265 static void DbgBreakPoint(void);
  266 static void KeBugCheckEx(uint32_t, u_long, u_long, u_long, u_long);
  267 static int32_t KeDelayExecutionThread(uint8_t, uint8_t, int64_t *);
  268 static int32_t KeSetPriorityThread(struct thread *, int32_t);
  269 static void dummy(void);
  270 
  271 static struct mtx ntoskrnl_dispatchlock;
  272 static struct mtx ntoskrnl_interlock;
  273 static kspin_lock ntoskrnl_cancellock;
  274 static int ntoskrnl_kth = 0;
  275 static struct nt_objref_head ntoskrnl_reflist;
  276 static uma_zone_t mdl_zone;
  277 static uma_zone_t iw_zone;
  278 static struct kdpc_queue *kq_queues;
  279 static struct kdpc_queue *wq_queues;
  280 static int wq_idx = 0;
  281 
  282 int
  283 ntoskrnl_libinit()
  284 {
  285         image_patch_table       *patch;
  286         int                     error;
  287         struct proc             *p;
  288         kdpc_queue              *kq;
  289         callout_entry           *e;
  290         int                     i;
  291 
  292         mtx_init(&ntoskrnl_dispatchlock,
  293             "ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF|MTX_RECURSE);
  294         mtx_init(&ntoskrnl_interlock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
  295         KeInitializeSpinLock(&ntoskrnl_cancellock);
  296         KeInitializeSpinLock(&ntoskrnl_intlock);
  297         TAILQ_INIT(&ntoskrnl_reflist);
  298 
  299         InitializeListHead(&ntoskrnl_calllist);
  300         InitializeListHead(&ntoskrnl_intlist);
  301         mtx_init(&ntoskrnl_calllock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
  302 
  303         kq_queues = ExAllocatePoolWithTag(NonPagedPool,
  304 #ifdef NTOSKRNL_MULTIPLE_DPCS
  305             sizeof(kdpc_queue) * mp_ncpus, 0);
  306 #else
  307             sizeof(kdpc_queue), 0);
  308 #endif
  309 
  310         if (kq_queues == NULL)
  311                 return (ENOMEM);
  312 
  313         wq_queues = ExAllocatePoolWithTag(NonPagedPool,
  314             sizeof(kdpc_queue) * WORKITEM_THREADS, 0);
  315 
  316         if (wq_queues == NULL)
  317                 return (ENOMEM);
  318 
  319 #ifdef NTOSKRNL_MULTIPLE_DPCS
  320         bzero((char *)kq_queues, sizeof(kdpc_queue) * mp_ncpus);
  321 #else
  322         bzero((char *)kq_queues, sizeof(kdpc_queue));
  323 #endif
  324         bzero((char *)wq_queues, sizeof(kdpc_queue) * WORKITEM_THREADS);
  325 
  326         /*
  327          * Launch the DPC threads.
  328          */
  329 
  330 #ifdef NTOSKRNL_MULTIPLE_DPCS
  331         for (i = 0; i < mp_ncpus; i++) {
  332 #else
  333         for (i = 0; i < 1; i++) {
  334 #endif
  335                 kq = kq_queues + i;
  336                 kq->kq_cpu = i;
  337                 error = kproc_create(ntoskrnl_dpc_thread, kq, &p,
  338                     RFHIGHPID, NDIS_KSTACK_PAGES, "Windows DPC %d", i);
  339                 if (error)
  340                         panic("failed to launch DPC thread");
  341         }
  342 
  343         /*
  344          * Launch the workitem threads.
  345          */
  346 
  347         for (i = 0; i < WORKITEM_THREADS; i++) {
  348                 kq = wq_queues + i;
  349                 error = kproc_create(ntoskrnl_workitem_thread, kq, &p,
  350                     RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Workitem %d", i);
  351                 if (error)
  352                         panic("failed to launch workitem thread");
  353         }
  354 
  355         patch = ntoskrnl_functbl;
  356         while (patch->ipt_func != NULL) {
  357                 windrv_wrap((funcptr)patch->ipt_func,
  358                     (funcptr *)&patch->ipt_wrap,
  359                     patch->ipt_argcnt, patch->ipt_ftype);
  360                 patch++;
  361         }
  362 
  363         for (i = 0; i < NTOSKRNL_TIMEOUTS; i++) {
  364                 e = ExAllocatePoolWithTag(NonPagedPool,
  365                     sizeof(callout_entry), 0);
  366                 if (e == NULL)
  367                         panic("failed to allocate timeouts");
  368                 mtx_lock_spin(&ntoskrnl_calllock);
  369                 InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
  370                 mtx_unlock_spin(&ntoskrnl_calllock);
  371         }
  372 
  373         /*
  374          * MDLs are supposed to be variable size (they describe
  375          * buffers containing some number of pages, but we don't
  376          * know ahead of time how many pages that will be). But
  377          * always allocating them off the heap is very slow. As
  378          * a compromise, we create an MDL UMA zone big enough to
  379          * handle any buffer requiring up to 16 pages, and we
  380          * use those for any MDLs for buffers of 16 pages or less
  381          * in size. For buffers larger than that (which we assume
  382          * will be few and far between, we allocate the MDLs off
  383          * the heap.
  384          */
  385 
  386         mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE,
  387             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  388 
  389         iw_zone = uma_zcreate("Windows WorkItem", sizeof(io_workitem),
  390             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  391 
  392         return (0);
  393 }
  394 
  395 int
  396 ntoskrnl_libfini()
  397 {
  398         image_patch_table       *patch;
  399         callout_entry           *e;
  400         list_entry              *l;
  401 
  402         patch = ntoskrnl_functbl;
  403         while (patch->ipt_func != NULL) {
  404                 windrv_unwrap(patch->ipt_wrap);
  405                 patch++;
  406         }
  407 
  408         /* Stop the workitem queues. */
  409         ntoskrnl_destroy_workitem_threads();
  410         /* Stop the DPC queues. */
  411         ntoskrnl_destroy_dpc_threads();
  412 
  413         ExFreePool(kq_queues);
  414         ExFreePool(wq_queues);
  415 
  416         uma_zdestroy(mdl_zone);
  417         uma_zdestroy(iw_zone);
  418 
  419         mtx_lock_spin(&ntoskrnl_calllock);
  420         while(!IsListEmpty(&ntoskrnl_calllist)) {
  421                 l = RemoveHeadList(&ntoskrnl_calllist);
  422                 e = CONTAINING_RECORD(l, callout_entry, ce_list);
  423                 mtx_unlock_spin(&ntoskrnl_calllock);
  424                 ExFreePool(e);
  425                 mtx_lock_spin(&ntoskrnl_calllock);
  426         }
  427         mtx_unlock_spin(&ntoskrnl_calllock);
  428 
  429         mtx_destroy(&ntoskrnl_dispatchlock);
  430         mtx_destroy(&ntoskrnl_interlock);
  431         mtx_destroy(&ntoskrnl_calllock);
  432 
  433         return (0);
  434 }
  435 
  436 /*
  437  * We need to be able to reference this externally from the wrapper;
  438  * GCC only generates a local implementation of memset.
  439  */
  440 static void *
  441 ntoskrnl_memset(buf, ch, size)
  442         void                    *buf;
  443         int                     ch;
  444         size_t                  size;
  445 {
  446         return (memset(buf, ch, size));
  447 }
  448 
  449 static void *
  450 ntoskrnl_memmove(dst, src, size)
  451         void                    *src;
  452         void                    *dst;
  453         size_t                  size;
  454 {
  455         bcopy(src, dst, size);
  456         return (dst);
  457 }
  458 
  459 static void *
  460 ntoskrnl_memchr(void *buf, unsigned char ch, size_t len)
  461 {
  462         if (len != 0) {
  463                 unsigned char *p = buf;
  464 
  465                 do {
  466                         if (*p++ == ch)
  467                                 return (p - 1);
  468                 } while (--len != 0);
  469         }
  470         return (NULL);
  471 }
  472 
  473 static char *
  474 ntoskrnl_strstr(s, find)
  475         char *s, *find;
  476 {
  477         char c, sc;
  478         size_t len;
  479 
  480         if ((c = *find++) != 0) {
  481                 len = strlen(find);
  482                 do {
  483                         do {
  484                                 if ((sc = *s++) == 0)
  485                                         return (NULL);
  486                         } while (sc != c);
  487                 } while (strncmp(s, find, len) != 0);
  488                 s--;
  489         }
  490         return ((char *)s);
  491 }
  492 
  493 /* Taken from libc */
  494 static char *
  495 ntoskrnl_strncat(dst, src, n)
  496         char            *dst;
  497         char            *src;
  498         size_t          n;
  499 {
  500         if (n != 0) {
  501                 char *d = dst;
  502                 const char *s = src;
  503 
  504                 while (*d != 0)
  505                         d++;
  506                 do {
  507                         if ((*d = *s++) == 0)
  508                                 break;
  509                         d++;
  510                 } while (--n != 0);
  511                 *d = 0;
  512         }
  513         return (dst);
  514 }
  515 
  516 static int
  517 ntoskrnl_toupper(c)
  518         int                     c;
  519 {
  520         return (toupper(c));
  521 }
  522 
  523 static int
  524 ntoskrnl_tolower(c)
  525         int                     c;
  526 {
  527         return (tolower(c));
  528 }
  529 
  530 static uint8_t
  531 RtlEqualUnicodeString(unicode_string *str1, unicode_string *str2,
  532         uint8_t caseinsensitive)
  533 {
  534         int                     i;
  535 
  536         if (str1->us_len != str2->us_len)
  537                 return (FALSE);
  538 
  539         for (i = 0; i < str1->us_len; i++) {
  540                 if (caseinsensitive == TRUE) {
  541                         if (toupper((char)(str1->us_buf[i] & 0xFF)) !=
  542                             toupper((char)(str2->us_buf[i] & 0xFF)))
  543                                 return (FALSE);
  544                 } else {
  545                         if (str1->us_buf[i] != str2->us_buf[i])
  546                                 return (FALSE);
  547                 }
  548         }
  549 
  550         return (TRUE);
  551 }
  552 
  553 static void
  554 RtlCopyString(dst, src)
  555         ansi_string             *dst;
  556         const ansi_string       *src;
  557 {
  558         if (src != NULL && src->as_buf != NULL && dst->as_buf != NULL) {
  559                 dst->as_len = min(src->as_len, dst->as_maxlen);
  560                 memcpy(dst->as_buf, src->as_buf, dst->as_len);
  561                 if (dst->as_len < dst->as_maxlen)
  562                         dst->as_buf[dst->as_len] = 0;
  563         } else
  564                 dst->as_len = 0;
  565 }
  566 
  567 static void
  568 RtlCopyUnicodeString(dest, src)
  569         unicode_string          *dest;
  570         unicode_string          *src;
  571 {
  572 
  573         if (dest->us_maxlen >= src->us_len)
  574                 dest->us_len = src->us_len;
  575         else
  576                 dest->us_len = dest->us_maxlen;
  577         memcpy(dest->us_buf, src->us_buf, dest->us_len);
  578 }
  579 
  580 static void
  581 ntoskrnl_ascii_to_unicode(ascii, unicode, len)
  582         char                    *ascii;
  583         uint16_t                *unicode;
  584         int                     len;
  585 {
  586         int                     i;
  587         uint16_t                *ustr;
  588 
  589         ustr = unicode;
  590         for (i = 0; i < len; i++) {
  591                 *ustr = (uint16_t)ascii[i];
  592                 ustr++;
  593         }
  594 }
  595 
  596 static void
  597 ntoskrnl_unicode_to_ascii(unicode, ascii, len)
  598         uint16_t                *unicode;
  599         char                    *ascii;
  600         int                     len;
  601 {
  602         int                     i;
  603         uint8_t                 *astr;
  604 
  605         astr = ascii;
  606         for (i = 0; i < len / 2; i++) {
  607                 *astr = (uint8_t)unicode[i];
  608                 astr++;
  609         }
  610 }
  611 
  612 uint32_t
  613 RtlUnicodeStringToAnsiString(ansi_string *dest, unicode_string *src, uint8_t allocate)
  614 {
  615         if (dest == NULL || src == NULL)
  616                 return (STATUS_INVALID_PARAMETER);
  617 
  618         dest->as_len = src->us_len / 2;
  619         if (dest->as_maxlen < dest->as_len)
  620                 dest->as_len = dest->as_maxlen;
  621 
  622         if (allocate == TRUE) {
  623                 dest->as_buf = ExAllocatePoolWithTag(NonPagedPool,
  624                     (src->us_len / 2) + 1, 0);
  625                 if (dest->as_buf == NULL)
  626                         return (STATUS_INSUFFICIENT_RESOURCES);
  627                 dest->as_len = dest->as_maxlen = src->us_len / 2;
  628         } else {
  629                 dest->as_len = src->us_len / 2; /* XXX */
  630                 if (dest->as_maxlen < dest->as_len)
  631                         dest->as_len = dest->as_maxlen;
  632         }
  633 
  634         ntoskrnl_unicode_to_ascii(src->us_buf, dest->as_buf,
  635             dest->as_len * 2);
  636 
  637         return (STATUS_SUCCESS);
  638 }
  639 
  640 uint32_t
  641 RtlAnsiStringToUnicodeString(unicode_string *dest, ansi_string *src,
  642         uint8_t allocate)
  643 {
  644         if (dest == NULL || src == NULL)
  645                 return (STATUS_INVALID_PARAMETER);
  646 
  647         if (allocate == TRUE) {
  648                 dest->us_buf = ExAllocatePoolWithTag(NonPagedPool,
  649                     src->as_len * 2, 0);
  650                 if (dest->us_buf == NULL)
  651                         return (STATUS_INSUFFICIENT_RESOURCES);
  652                 dest->us_len = dest->us_maxlen = strlen(src->as_buf) * 2;
  653         } else {
  654                 dest->us_len = src->as_len * 2; /* XXX */
  655                 if (dest->us_maxlen < dest->us_len)
  656                         dest->us_len = dest->us_maxlen;
  657         }
  658 
  659         ntoskrnl_ascii_to_unicode(src->as_buf, dest->us_buf,
  660             dest->us_len / 2);
  661 
  662         return (STATUS_SUCCESS);
  663 }
  664 
  665 void *
  666 ExAllocatePoolWithTag(pooltype, len, tag)
  667         uint32_t                pooltype;
  668         size_t                  len;
  669         uint32_t                tag;
  670 {
  671         void                    *buf;
  672 
  673         buf = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
  674         if (buf == NULL)
  675                 return (NULL);
  676 
  677         return (buf);
  678 }
  679 
  680 static void
  681 ExFreePoolWithTag(buf, tag)
  682         void            *buf;
  683         uint32_t        tag;
  684 {
  685         ExFreePool(buf);
  686 }
  687 
  688 void
  689 ExFreePool(buf)
  690         void                    *buf;
  691 {
  692         free(buf, M_DEVBUF);
  693 }
  694 
  695 uint32_t
  696 IoAllocateDriverObjectExtension(drv, clid, extlen, ext)
  697         driver_object           *drv;
  698         void                    *clid;
  699         uint32_t                extlen;
  700         void                    **ext;
  701 {
  702         custom_extension        *ce;
  703 
  704         ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension)
  705             + extlen, 0);
  706 
  707         if (ce == NULL)
  708                 return (STATUS_INSUFFICIENT_RESOURCES);
  709 
  710         ce->ce_clid = clid;
  711         InsertTailList((&drv->dro_driverext->dre_usrext), (&ce->ce_list));
  712 
  713         *ext = (void *)(ce + 1);
  714 
  715         return (STATUS_SUCCESS);
  716 }
  717 
  718 void *
  719 IoGetDriverObjectExtension(drv, clid)
  720         driver_object           *drv;
  721         void                    *clid;
  722 {
  723         list_entry              *e;
  724         custom_extension        *ce;
  725 
  726         /*
  727          * Sanity check. Our dummy bus drivers don't have
  728          * any driver extensions.
  729          */
  730 
  731         if (drv->dro_driverext == NULL)
  732                 return (NULL);
  733 
  734         e = drv->dro_driverext->dre_usrext.nle_flink;
  735         while (e != &drv->dro_driverext->dre_usrext) {
  736                 ce = (custom_extension *)e;
  737                 if (ce->ce_clid == clid)
  738                         return ((void *)(ce + 1));
  739                 e = e->nle_flink;
  740         }
  741 
  742         return (NULL);
  743 }
  744 
  745 uint32_t
  746 IoCreateDevice(driver_object *drv, uint32_t devextlen, unicode_string *devname,
  747         uint32_t devtype, uint32_t devchars, uint8_t exclusive,
  748         device_object **newdev)
  749 {
  750         device_object           *dev;
  751 
  752         dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0);
  753         if (dev == NULL)
  754                 return (STATUS_INSUFFICIENT_RESOURCES);
  755 
  756         dev->do_type = devtype;
  757         dev->do_drvobj = drv;
  758         dev->do_currirp = NULL;
  759         dev->do_flags = 0;
  760 
  761         if (devextlen) {
  762                 dev->do_devext = ExAllocatePoolWithTag(NonPagedPool,
  763                     devextlen, 0);
  764 
  765                 if (dev->do_devext == NULL) {
  766                         ExFreePool(dev);
  767                         return (STATUS_INSUFFICIENT_RESOURCES);
  768                 }
  769 
  770                 bzero(dev->do_devext, devextlen);
  771         } else
  772                 dev->do_devext = NULL;
  773 
  774         dev->do_size = sizeof(device_object) + devextlen;
  775         dev->do_refcnt = 1;
  776         dev->do_attacheddev = NULL;
  777         dev->do_nextdev = NULL;
  778         dev->do_devtype = devtype;
  779         dev->do_stacksize = 1;
  780         dev->do_alignreq = 1;
  781         dev->do_characteristics = devchars;
  782         dev->do_iotimer = NULL;
  783         KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE);
  784 
  785         /*
  786          * Vpd is used for disk/tape devices,
  787          * but we don't support those. (Yet.)
  788          */
  789         dev->do_vpb = NULL;
  790 
  791         dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool,
  792             sizeof(devobj_extension), 0);
  793 
  794         if (dev->do_devobj_ext == NULL) {
  795                 if (dev->do_devext != NULL)
  796                         ExFreePool(dev->do_devext);
  797                 ExFreePool(dev);
  798                 return (STATUS_INSUFFICIENT_RESOURCES);
  799         }
  800 
  801         dev->do_devobj_ext->dve_type = 0;
  802         dev->do_devobj_ext->dve_size = sizeof(devobj_extension);
  803         dev->do_devobj_ext->dve_devobj = dev;
  804 
  805         /*
  806          * Attach this device to the driver object's list
  807          * of devices. Note: this is not the same as attaching
  808          * the device to the device stack. The driver's AddDevice
  809          * routine must explicitly call IoAddDeviceToDeviceStack()
  810          * to do that.
  811          */
  812 
  813         if (drv->dro_devobj == NULL) {
  814                 drv->dro_devobj = dev;
  815                 dev->do_nextdev = NULL;
  816         } else {
  817                 dev->do_nextdev = drv->dro_devobj;
  818                 drv->dro_devobj = dev;
  819         }
  820 
  821         *newdev = dev;
  822 
  823         return (STATUS_SUCCESS);
  824 }
  825 
  826 void
  827 IoDeleteDevice(dev)
  828         device_object           *dev;
  829 {
  830         device_object           *prev;
  831 
  832         if (dev == NULL)
  833                 return;
  834 
  835         if (dev->do_devobj_ext != NULL)
  836                 ExFreePool(dev->do_devobj_ext);
  837 
  838         if (dev->do_devext != NULL)
  839                 ExFreePool(dev->do_devext);
  840 
  841         /* Unlink the device from the driver's device list. */
  842 
  843         prev = dev->do_drvobj->dro_devobj;
  844         if (prev == dev)
  845                 dev->do_drvobj->dro_devobj = dev->do_nextdev;
  846         else {
  847                 while (prev->do_nextdev != dev)
  848                         prev = prev->do_nextdev;
  849                 prev->do_nextdev = dev->do_nextdev;
  850         }
  851 
  852         ExFreePool(dev);
  853 }
  854 
  855 device_object *
  856 IoGetAttachedDevice(dev)
  857         device_object           *dev;
  858 {
  859         device_object           *d;
  860 
  861         if (dev == NULL)
  862                 return (NULL);
  863 
  864         d = dev;
  865 
  866         while (d->do_attacheddev != NULL)
  867                 d = d->do_attacheddev;
  868 
  869         return (d);
  870 }
  871 
  872 static irp *
  873 IoBuildSynchronousFsdRequest(func, dobj, buf, len, off, event, status)
  874         uint32_t                func;
  875         device_object           *dobj;
  876         void                    *buf;
  877         uint32_t                len;
  878         uint64_t                *off;
  879         nt_kevent               *event;
  880         io_status_block         *status;
  881 {
  882         irp                     *ip;
  883 
  884         ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status);
  885         if (ip == NULL)
  886                 return (NULL);
  887         ip->irp_usrevent = event;
  888 
  889         return (ip);
  890 }
  891 
  892 static irp *
  893 IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status)
  894         uint32_t                func;
  895         device_object           *dobj;
  896         void                    *buf;
  897         uint32_t                len;
  898         uint64_t                *off;
  899         io_status_block         *status;
  900 {
  901         irp                     *ip;
  902         io_stack_location       *sl;
  903 
  904         ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
  905         if (ip == NULL)
  906                 return (NULL);
  907 
  908         ip->irp_usriostat = status;
  909         ip->irp_tail.irp_overlay.irp_thread = NULL;
  910 
  911         sl = IoGetNextIrpStackLocation(ip);
  912         sl->isl_major = func;
  913         sl->isl_minor = 0;
  914         sl->isl_flags = 0;
  915         sl->isl_ctl = 0;
  916         sl->isl_devobj = dobj;
  917         sl->isl_fileobj = NULL;
  918         sl->isl_completionfunc = NULL;
  919 
  920         ip->irp_userbuf = buf;
  921 
  922         if (dobj->do_flags & DO_BUFFERED_IO) {
  923                 ip->irp_assoc.irp_sysbuf =
  924                     ExAllocatePoolWithTag(NonPagedPool, len, 0);
  925                 if (ip->irp_assoc.irp_sysbuf == NULL) {
  926                         IoFreeIrp(ip);
  927                         return (NULL);
  928                 }
  929                 bcopy(buf, ip->irp_assoc.irp_sysbuf, len);
  930         }
  931 
  932         if (dobj->do_flags & DO_DIRECT_IO) {
  933                 ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip);
  934                 if (ip->irp_mdl == NULL) {
  935                         if (ip->irp_assoc.irp_sysbuf != NULL)
  936                                 ExFreePool(ip->irp_assoc.irp_sysbuf);
  937                         IoFreeIrp(ip);
  938                         return (NULL);
  939                 }
  940                 ip->irp_userbuf = NULL;
  941                 ip->irp_assoc.irp_sysbuf = NULL;
  942         }
  943 
  944         if (func == IRP_MJ_READ) {
  945                 sl->isl_parameters.isl_read.isl_len = len;
  946                 if (off != NULL)
  947                         sl->isl_parameters.isl_read.isl_byteoff = *off;
  948                 else
  949                         sl->isl_parameters.isl_read.isl_byteoff = 0;
  950         }
  951 
  952         if (func == IRP_MJ_WRITE) {
  953                 sl->isl_parameters.isl_write.isl_len = len;
  954                 if (off != NULL)
  955                         sl->isl_parameters.isl_write.isl_byteoff = *off;
  956                 else
  957                         sl->isl_parameters.isl_write.isl_byteoff = 0;
  958         }
  959 
  960         return (ip);
  961 }
  962 
  963 static irp *
  964 IoBuildDeviceIoControlRequest(uint32_t iocode, device_object *dobj, void *ibuf,
  965         uint32_t ilen, void *obuf, uint32_t olen, uint8_t isinternal,
  966         nt_kevent *event, io_status_block *status)
  967 {
  968         irp                     *ip;
  969         io_stack_location       *sl;
  970         uint32_t                buflen;
  971 
  972         ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
  973         if (ip == NULL)
  974                 return (NULL);
  975         ip->irp_usrevent = event;
  976         ip->irp_usriostat = status;
  977         ip->irp_tail.irp_overlay.irp_thread = NULL;
  978 
  979         sl = IoGetNextIrpStackLocation(ip);
  980         sl->isl_major = isinternal == TRUE ?
  981             IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL;
  982         sl->isl_minor = 0;
  983         sl->isl_flags = 0;
  984         sl->isl_ctl = 0;
  985         sl->isl_devobj = dobj;
  986         sl->isl_fileobj = NULL;
  987         sl->isl_completionfunc = NULL;
  988         sl->isl_parameters.isl_ioctl.isl_iocode = iocode;
  989         sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen;
  990         sl->isl_parameters.isl_ioctl.isl_obuflen = olen;
  991 
  992         switch(IO_METHOD(iocode)) {
  993         case METHOD_BUFFERED:
  994                 if (ilen > olen)
  995                         buflen = ilen;
  996                 else
  997                         buflen = olen;
  998                 if (buflen) {
  999                         ip->irp_assoc.irp_sysbuf =
 1000                             ExAllocatePoolWithTag(NonPagedPool, buflen, 0);
 1001                         if (ip->irp_assoc.irp_sysbuf == NULL) {
 1002                                 IoFreeIrp(ip);
 1003                                 return (NULL);
 1004                         }
 1005                 }
 1006                 if (ilen && ibuf != NULL) {
 1007                         bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
 1008                         bzero((char *)ip->irp_assoc.irp_sysbuf + ilen,
 1009                             buflen - ilen);
 1010                 } else
 1011                         bzero(ip->irp_assoc.irp_sysbuf, ilen);
 1012                 ip->irp_userbuf = obuf;
 1013                 break;
 1014         case METHOD_IN_DIRECT:
 1015         case METHOD_OUT_DIRECT:
 1016                 if (ilen && ibuf != NULL) {
 1017                         ip->irp_assoc.irp_sysbuf =
 1018                             ExAllocatePoolWithTag(NonPagedPool, ilen, 0);
 1019                         if (ip->irp_assoc.irp_sysbuf == NULL) {
 1020                                 IoFreeIrp(ip);
 1021                                 return (NULL);
 1022                         }
 1023                         bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
 1024                 }
 1025                 if (olen && obuf != NULL) {
 1026                         ip->irp_mdl = IoAllocateMdl(obuf, olen,
 1027                             FALSE, FALSE, ip);
 1028                         /*
 1029                          * Normally we would MmProbeAndLockPages()
 1030                          * here, but we don't have to in our
 1031                          * imlementation.
 1032                          */
 1033                 }
 1034                 break;
 1035         case METHOD_NEITHER:
 1036                 ip->irp_userbuf = obuf;
 1037                 sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf;
 1038                 break;
 1039         default:
 1040                 break;
 1041         }
 1042 
 1043         /*
 1044          * Ideally, we should associate this IRP with the calling
 1045          * thread here.
 1046          */
 1047 
 1048         return (ip);
 1049 }
 1050 
 1051 static irp *
 1052 IoAllocateIrp(uint8_t stsize, uint8_t chargequota)
 1053 {
 1054         irp                     *i;
 1055 
 1056         i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0);
 1057         if (i == NULL)
 1058                 return (NULL);
 1059 
 1060         IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize);
 1061 
 1062         return (i);
 1063 }
 1064 
 1065 static irp *
 1066 IoMakeAssociatedIrp(irp *ip, uint8_t stsize)
 1067 {
 1068         irp                     *associrp;
 1069 
 1070         associrp = IoAllocateIrp(stsize, FALSE);
 1071         if (associrp == NULL)
 1072                 return (NULL);
 1073 
 1074         mtx_lock(&ntoskrnl_dispatchlock);
 1075         associrp->irp_flags |= IRP_ASSOCIATED_IRP;
 1076         associrp->irp_tail.irp_overlay.irp_thread =
 1077             ip->irp_tail.irp_overlay.irp_thread;
 1078         associrp->irp_assoc.irp_master = ip;
 1079         mtx_unlock(&ntoskrnl_dispatchlock);
 1080 
 1081         return (associrp);
 1082 }
 1083 
 1084 static void
 1085 IoFreeIrp(ip)
 1086         irp                     *ip;
 1087 {
 1088         ExFreePool(ip);
 1089 }
 1090 
 1091 static void
 1092 IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize)
 1093 {
 1094         bzero((char *)io, IoSizeOfIrp(ssize));
 1095         io->irp_size = psize;
 1096         io->irp_stackcnt = ssize;
 1097         io->irp_currentstackloc = ssize;
 1098         InitializeListHead(&io->irp_thlist);
 1099         io->irp_tail.irp_overlay.irp_csl =
 1100             (io_stack_location *)(io + 1) + ssize;
 1101 }
 1102 
 1103 static void
 1104 IoReuseIrp(ip, status)
 1105         irp                     *ip;
 1106         uint32_t                status;
 1107 {
 1108         uint8_t                 allocflags;
 1109 
 1110         allocflags = ip->irp_allocflags;
 1111         IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt);
 1112         ip->irp_iostat.isb_status = status;
 1113         ip->irp_allocflags = allocflags;
 1114 }
 1115 
 1116 void
 1117 IoAcquireCancelSpinLock(uint8_t *irql)
 1118 {
 1119         KeAcquireSpinLock(&ntoskrnl_cancellock, irql);
 1120 }
 1121 
 1122 void
 1123 IoReleaseCancelSpinLock(uint8_t irql)
 1124 {
 1125         KeReleaseSpinLock(&ntoskrnl_cancellock, irql);
 1126 }
 1127 
 1128 uint8_t
 1129 IoCancelIrp(irp *ip)
 1130 {
 1131         cancel_func             cfunc;
 1132         uint8_t                 cancelirql;
 1133 
 1134         IoAcquireCancelSpinLock(&cancelirql);
 1135         cfunc = IoSetCancelRoutine(ip, NULL);
 1136         ip->irp_cancel = TRUE;
 1137         if (cfunc == NULL) {
 1138                 IoReleaseCancelSpinLock(cancelirql);
 1139                 return (FALSE);
 1140         }
 1141         ip->irp_cancelirql = cancelirql;
 1142         MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip);
 1143         return (uint8_t)IoSetCancelValue(ip, TRUE);
 1144 }
 1145 
 1146 uint32_t
 1147 IofCallDriver(dobj, ip)
 1148         device_object           *dobj;
 1149         irp                     *ip;
 1150 {
 1151         driver_object           *drvobj;
 1152         io_stack_location       *sl;
 1153         uint32_t                status;
 1154         driver_dispatch         disp;
 1155 
 1156         drvobj = dobj->do_drvobj;
 1157 
 1158         if (ip->irp_currentstackloc <= 0)
 1159                 panic("IoCallDriver(): out of stack locations");
 1160 
 1161         IoSetNextIrpStackLocation(ip);
 1162         sl = IoGetCurrentIrpStackLocation(ip);
 1163 
 1164         sl->isl_devobj = dobj;
 1165 
 1166         disp = drvobj->dro_dispatch[sl->isl_major];
 1167         status = MSCALL2(disp, dobj, ip);
 1168 
 1169         return (status);
 1170 }
 1171 
 1172 void
 1173 IofCompleteRequest(irp *ip, uint8_t prioboost)
 1174 {
 1175         uint32_t                status;
 1176         device_object           *dobj;
 1177         io_stack_location       *sl;
 1178         completion_func         cf;
 1179 
 1180         KASSERT(ip->irp_iostat.isb_status != STATUS_PENDING,
 1181             ("incorrect IRP(%p) status (STATUS_PENDING)", ip));
 1182 
 1183         sl = IoGetCurrentIrpStackLocation(ip);
 1184         IoSkipCurrentIrpStackLocation(ip);
 1185 
 1186         do {
 1187                 if (sl->isl_ctl & SL_PENDING_RETURNED)
 1188                         ip->irp_pendingreturned = TRUE;
 1189 
 1190                 if (ip->irp_currentstackloc != (ip->irp_stackcnt + 1))
 1191                         dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj;
 1192                 else
 1193                         dobj = NULL;
 1194 
 1195                 if (sl->isl_completionfunc != NULL &&
 1196                     ((ip->irp_iostat.isb_status == STATUS_SUCCESS &&
 1197                     sl->isl_ctl & SL_INVOKE_ON_SUCCESS) ||
 1198                     (ip->irp_iostat.isb_status != STATUS_SUCCESS &&
 1199                     sl->isl_ctl & SL_INVOKE_ON_ERROR) ||
 1200                     (ip->irp_cancel == TRUE &&
 1201                     sl->isl_ctl & SL_INVOKE_ON_CANCEL))) {
 1202                         cf = sl->isl_completionfunc;
 1203                         status = MSCALL3(cf, dobj, ip, sl->isl_completionctx);
 1204                         if (status == STATUS_MORE_PROCESSING_REQUIRED)
 1205                                 return;
 1206                 } else {
 1207                         if ((ip->irp_currentstackloc <= ip->irp_stackcnt) &&
 1208                             (ip->irp_pendingreturned == TRUE))
 1209                                 IoMarkIrpPending(ip);
 1210                 }
 1211 
 1212                 /* move to the next.  */
 1213                 IoSkipCurrentIrpStackLocation(ip);
 1214                 sl++;
 1215         } while (ip->irp_currentstackloc <= (ip->irp_stackcnt + 1));
 1216 
 1217         if (ip->irp_usriostat != NULL)
 1218                 *ip->irp_usriostat = ip->irp_iostat;
 1219         if (ip->irp_usrevent != NULL)
 1220                 KeSetEvent(ip->irp_usrevent, prioboost, FALSE);
 1221 
 1222         /* Handle any associated IRPs. */
 1223 
 1224         if (ip->irp_flags & IRP_ASSOCIATED_IRP) {
 1225                 uint32_t                masterirpcnt;
 1226                 irp                     *masterirp;
 1227                 mdl                     *m;
 1228 
 1229                 masterirp = ip->irp_assoc.irp_master;
 1230                 masterirpcnt =
 1231                     InterlockedDecrement(&masterirp->irp_assoc.irp_irpcnt);
 1232 
 1233                 while ((m = ip->irp_mdl) != NULL) {
 1234                         ip->irp_mdl = m->mdl_next;
 1235                         IoFreeMdl(m);
 1236                 }
 1237                 IoFreeIrp(ip);
 1238                 if (masterirpcnt == 0)
 1239                         IoCompleteRequest(masterirp, IO_NO_INCREMENT);
 1240                 return;
 1241         }
 1242 
 1243         /* With any luck, these conditions will never arise. */
 1244 
 1245         if (ip->irp_flags & IRP_PAGING_IO) {
 1246                 if (ip->irp_mdl != NULL)
 1247                         IoFreeMdl(ip->irp_mdl);
 1248                 IoFreeIrp(ip);
 1249         }
 1250 }
 1251 
 1252 void
 1253 ntoskrnl_intr(arg)
 1254         void                    *arg;
 1255 {
 1256         kinterrupt              *iobj;
 1257         uint8_t                 irql;
 1258         uint8_t                 claimed;
 1259         list_entry              *l;
 1260 
 1261         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1262         l = ntoskrnl_intlist.nle_flink;
 1263         while (l != &ntoskrnl_intlist) {
 1264                 iobj = CONTAINING_RECORD(l, kinterrupt, ki_list);
 1265                 claimed = MSCALL2(iobj->ki_svcfunc, iobj, iobj->ki_svcctx);
 1266                 if (claimed == TRUE)
 1267                         break;
 1268                 l = l->nle_flink;
 1269         }
 1270         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1271 }
 1272 
 1273 uint8_t
 1274 KeAcquireInterruptSpinLock(iobj)
 1275         kinterrupt              *iobj;
 1276 {
 1277         uint8_t                 irql;
 1278         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1279         return (irql);
 1280 }
 1281 
 1282 void
 1283 KeReleaseInterruptSpinLock(kinterrupt *iobj, uint8_t irql)
 1284 {
 1285         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1286 }
 1287 
 1288 uint8_t
 1289 KeSynchronizeExecution(iobj, syncfunc, syncctx)
 1290         kinterrupt              *iobj;
 1291         void                    *syncfunc;
 1292         void                    *syncctx;
 1293 {
 1294         uint8_t                 irql;
 1295 
 1296         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1297         MSCALL1(syncfunc, syncctx);
 1298         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1299 
 1300         return (TRUE);
 1301 }
 1302 
 1303 /*
 1304  * IoConnectInterrupt() is passed only the interrupt vector and
 1305  * irql that a device wants to use, but no device-specific tag
 1306  * of any kind. This conflicts rather badly with FreeBSD's
 1307  * bus_setup_intr(), which needs the device_t for the device
 1308  * requesting interrupt delivery. In order to bypass this
 1309  * inconsistency, we implement a second level of interrupt
 1310  * dispatching on top of bus_setup_intr(). All devices use
 1311  * ntoskrnl_intr() as their ISR, and any device requesting
 1312  * interrupts will be registered with ntoskrnl_intr()'s interrupt
 1313  * dispatch list. When an interrupt arrives, we walk the list
 1314  * and invoke all the registered ISRs. This effectively makes all
 1315  * interrupts shared, but it's the only way to duplicate the
 1316  * semantics of IoConnectInterrupt() and IoDisconnectInterrupt() properly.
 1317  */
 1318 
 1319 uint32_t
 1320 IoConnectInterrupt(kinterrupt **iobj, void *svcfunc, void *svcctx,
 1321         kspin_lock *lock, uint32_t vector, uint8_t irql, uint8_t syncirql,
 1322         uint8_t imode, uint8_t shared, uint32_t affinity, uint8_t savefloat)
 1323 {
 1324         uint8_t                 curirql;
 1325 
 1326         *iobj = ExAllocatePoolWithTag(NonPagedPool, sizeof(kinterrupt), 0);
 1327         if (*iobj == NULL)
 1328                 return (STATUS_INSUFFICIENT_RESOURCES);
 1329 
 1330         (*iobj)->ki_svcfunc = svcfunc;
 1331         (*iobj)->ki_svcctx = svcctx;
 1332 
 1333         if (lock == NULL) {
 1334                 KeInitializeSpinLock(&(*iobj)->ki_lock_priv);
 1335                 (*iobj)->ki_lock = &(*iobj)->ki_lock_priv;
 1336         } else
 1337                 (*iobj)->ki_lock = lock;
 1338 
 1339         KeAcquireSpinLock(&ntoskrnl_intlock, &curirql);
 1340         InsertHeadList((&ntoskrnl_intlist), (&(*iobj)->ki_list));
 1341         KeReleaseSpinLock(&ntoskrnl_intlock, curirql);
 1342 
 1343         return (STATUS_SUCCESS);
 1344 }
 1345 
 1346 void
 1347 IoDisconnectInterrupt(iobj)
 1348         kinterrupt              *iobj;
 1349 {
 1350         uint8_t                 irql;
 1351 
 1352         if (iobj == NULL)
 1353                 return;
 1354 
 1355         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1356         RemoveEntryList((&iobj->ki_list));
 1357         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1358 
 1359         ExFreePool(iobj);
 1360 }
 1361 
 1362 device_object *
 1363 IoAttachDeviceToDeviceStack(src, dst)
 1364         device_object           *src;
 1365         device_object           *dst;
 1366 {
 1367         device_object           *attached;
 1368 
 1369         mtx_lock(&ntoskrnl_dispatchlock);
 1370         attached = IoGetAttachedDevice(dst);
 1371         attached->do_attacheddev = src;
 1372         src->do_attacheddev = NULL;
 1373         src->do_stacksize = attached->do_stacksize + 1;
 1374         mtx_unlock(&ntoskrnl_dispatchlock);
 1375 
 1376         return (attached);
 1377 }
 1378 
 1379 void
 1380 IoDetachDevice(topdev)
 1381         device_object           *topdev;
 1382 {
 1383         device_object           *tail;
 1384 
 1385         mtx_lock(&ntoskrnl_dispatchlock);
 1386 
 1387         /* First, break the chain. */
 1388         tail = topdev->do_attacheddev;
 1389         if (tail == NULL) {
 1390                 mtx_unlock(&ntoskrnl_dispatchlock);
 1391                 return;
 1392         }
 1393         topdev->do_attacheddev = tail->do_attacheddev;
 1394         topdev->do_refcnt--;
 1395 
 1396         /* Now reduce the stacksize count for the takm_il objects. */
 1397 
 1398         tail = topdev->do_attacheddev;
 1399         while (tail != NULL) {
 1400                 tail->do_stacksize--;
 1401                 tail = tail->do_attacheddev;
 1402         }
 1403 
 1404         mtx_unlock(&ntoskrnl_dispatchlock);
 1405 }
 1406 
 1407 /*
 1408  * For the most part, an object is considered signalled if
 1409  * dh_sigstate == TRUE. The exception is for mutant objects
 1410  * (mutexes), where the logic works like this:
 1411  *
 1412  * - If the thread already owns the object and sigstate is
 1413  *   less than or equal to 0, then the object is considered
 1414  *   signalled (recursive acquisition).
 1415  * - If dh_sigstate == 1, the object is also considered
 1416  *   signalled.
 1417  */
 1418 
 1419 static int
 1420 ntoskrnl_is_signalled(obj, td)
 1421         nt_dispatch_header      *obj;
 1422         struct thread           *td;
 1423 {
 1424         kmutant                 *km;
 1425 
 1426         if (obj->dh_type == DISP_TYPE_MUTANT) {
 1427                 km = (kmutant *)obj;
 1428                 if ((obj->dh_sigstate <= 0 && km->km_ownerthread == td) ||
 1429                     obj->dh_sigstate == 1)
 1430                         return (TRUE);
 1431                 return (FALSE);
 1432         }
 1433 
 1434         if (obj->dh_sigstate > 0)
 1435                 return (TRUE);
 1436         return (FALSE);
 1437 }
 1438 
 1439 static void
 1440 ntoskrnl_satisfy_wait(obj, td)
 1441         nt_dispatch_header      *obj;
 1442         struct thread           *td;
 1443 {
 1444         kmutant                 *km;
 1445 
 1446         switch (obj->dh_type) {
 1447         case DISP_TYPE_MUTANT:
 1448                 km = (struct kmutant *)obj;
 1449                 obj->dh_sigstate--;
 1450                 /*
 1451                  * If sigstate reaches 0, the mutex is now
 1452                  * non-signalled (the new thread owns it).
 1453                  */
 1454                 if (obj->dh_sigstate == 0) {
 1455                         km->km_ownerthread = td;
 1456                         if (km->km_abandoned == TRUE)
 1457                                 km->km_abandoned = FALSE;
 1458                 }
 1459                 break;
 1460         /* Synchronization objects get reset to unsignalled. */
 1461         case DISP_TYPE_SYNCHRONIZATION_EVENT:
 1462         case DISP_TYPE_SYNCHRONIZATION_TIMER:
 1463                 obj->dh_sigstate = 0;
 1464                 break;
 1465         case DISP_TYPE_SEMAPHORE:
 1466                 obj->dh_sigstate--;
 1467                 break;
 1468         default:
 1469                 break;
 1470         }
 1471 }
 1472 
 1473 static void
 1474 ntoskrnl_satisfy_multiple_waits(wb)
 1475         wait_block              *wb;
 1476 {
 1477         wait_block              *cur;
 1478         struct thread           *td;
 1479 
 1480         cur = wb;
 1481         td = wb->wb_kthread;
 1482 
 1483         do {
 1484                 ntoskrnl_satisfy_wait(wb->wb_object, td);
 1485                 cur->wb_awakened = TRUE;
 1486                 cur = cur->wb_next;
 1487         } while (cur != wb);
 1488 }
 1489 
 1490 /* Always called with dispatcher lock held. */
 1491 static void
 1492 ntoskrnl_waittest(obj, increment)
 1493         nt_dispatch_header      *obj;
 1494         uint32_t                increment;
 1495 {
 1496         wait_block              *w, *next;
 1497         list_entry              *e;
 1498         struct thread           *td;
 1499         wb_ext                  *we;
 1500         int                     satisfied;
 1501 
 1502         /*
 1503          * Once an object has been signalled, we walk its list of
 1504          * wait blocks. If a wait block can be awakened, then satisfy
 1505          * waits as necessary and wake the thread.
 1506          *
 1507          * The rules work like this:
 1508          *
 1509          * If a wait block is marked as WAITTYPE_ANY, then
 1510          * we can satisfy the wait conditions on the current
 1511          * object and wake the thread right away. Satisfying
 1512          * the wait also has the effect of breaking us out
 1513          * of the search loop.
 1514          *
 1515          * If the object is marked as WAITTYLE_ALL, then the
 1516          * wait block will be part of a circularly linked
 1517          * list of wait blocks belonging to a waiting thread
 1518          * that's sleeping in KeWaitForMultipleObjects(). In
 1519          * order to wake the thread, all the objects in the
 1520          * wait list must be in the signalled state. If they
 1521          * are, we then satisfy all of them and wake the
 1522          * thread.
 1523          *
 1524          */
 1525 
 1526         e = obj->dh_waitlisthead.nle_flink;
 1527 
 1528         while (e != &obj->dh_waitlisthead && obj->dh_sigstate > 0) {
 1529                 w = CONTAINING_RECORD(e, wait_block, wb_waitlist);
 1530                 we = w->wb_ext;
 1531                 td = we->we_td;
 1532                 satisfied = FALSE;
 1533                 if (w->wb_waittype == WAITTYPE_ANY) {
 1534                         /*
 1535                          * Thread can be awakened if
 1536                          * any wait is satisfied.
 1537                          */
 1538                         ntoskrnl_satisfy_wait(obj, td);
 1539                         satisfied = TRUE;
 1540                         w->wb_awakened = TRUE;
 1541                 } else {
 1542                         /*
 1543                          * Thread can only be woken up
 1544                          * if all waits are satisfied.
 1545                          * If the thread is waiting on multiple
 1546                          * objects, they should all be linked
 1547                          * through the wb_next pointers in the
 1548                          * wait blocks.
 1549                          */
 1550                         satisfied = TRUE;
 1551                         next = w->wb_next;
 1552                         while (next != w) {
 1553                                 if (ntoskrnl_is_signalled(obj, td) == FALSE) {
 1554                                         satisfied = FALSE;
 1555                                         break;
 1556                                 }
 1557                                 next = next->wb_next;
 1558                         }
 1559                         ntoskrnl_satisfy_multiple_waits(w);
 1560                 }
 1561 
 1562                 if (satisfied == TRUE)
 1563                         cv_broadcastpri(&we->we_cv,
 1564                             (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
 1565                             w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
 1566 
 1567                 e = e->nle_flink;
 1568         }
 1569 }
 1570 
 1571 /*
 1572  * Return the number of 100 nanosecond intervals since
 1573  * January 1, 1601. (?!?!)
 1574  */
 1575 void
 1576 ntoskrnl_time(tval)
 1577         uint64_t                *tval;
 1578 {
 1579         struct timespec         ts;
 1580 
 1581         nanotime(&ts);
 1582         *tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
 1583             11644473600 * 10000000; /* 100ns ticks from 1601 to 1970 */
 1584 }
 1585 
 1586 static void
 1587 KeQuerySystemTime(current_time)
 1588         uint64_t                *current_time;
 1589 {
 1590         ntoskrnl_time(current_time);
 1591 }
 1592 
 1593 static uint32_t
 1594 KeTickCount(void)
 1595 {
 1596         struct timeval tv;
 1597         getmicrouptime(&tv);
 1598         return tvtohz(&tv);
 1599 }
 1600 
 1601 /*
 1602  * KeWaitForSingleObject() is a tricky beast, because it can be used
 1603  * with several different object types: semaphores, timers, events,
 1604  * mutexes and threads. Semaphores don't appear very often, but the
 1605  * other object types are quite common. KeWaitForSingleObject() is
 1606  * what's normally used to acquire a mutex, and it can be used to
 1607  * wait for a thread termination.
 1608  *
 1609  * The Windows NDIS API is implemented in terms of Windows kernel
 1610  * primitives, and some of the object manipulation is duplicated in
 1611  * NDIS. For example, NDIS has timers and events, which are actually
 1612  * Windows kevents and ktimers. Now, you're supposed to only use the
 1613  * NDIS variants of these objects within the confines of the NDIS API,
 1614  * but there are some naughty developers out there who will use
 1615  * KeWaitForSingleObject() on NDIS timer and event objects, so we
 1616  * have to support that as well. Conseqently, our NDIS timer and event
 1617  * code has to be closely tied into our ntoskrnl timer and event code,
 1618  * just as it is in Windows.
 1619  *
 1620  * KeWaitForSingleObject() may do different things for different kinds
 1621  * of objects:
 1622  *
 1623  * - For events, we check if the event has been signalled. If the
 1624  *   event is already in the signalled state, we just return immediately,
 1625  *   otherwise we wait for it to be set to the signalled state by someone
 1626  *   else calling KeSetEvent(). Events can be either synchronization or
 1627  *   notification events.
 1628  *
 1629  * - For timers, if the timer has already fired and the timer is in
 1630  *   the signalled state, we just return, otherwise we wait on the
 1631  *   timer. Unlike an event, timers get signalled automatically when
 1632  *   they expire rather than someone having to trip them manually.
 1633  *   Timers initialized with KeInitializeTimer() are always notification
 1634  *   events: KeInitializeTimerEx() lets you initialize a timer as
 1635  *   either a notification or synchronization event.
 1636  *
 1637  * - For mutexes, we try to acquire the mutex and if we can't, we wait
 1638  *   on the mutex until it's available and then grab it. When a mutex is
 1639  *   released, it enters the signalled state, which wakes up one of the
 1640  *   threads waiting to acquire it. Mutexes are always synchronization
 1641  *   events.
 1642  *
 1643  * - For threads, the only thing we do is wait until the thread object
 1644  *   enters a signalled state, which occurs when the thread terminates.
 1645  *   Threads are always notification events.
 1646  *
 1647  * A notification event wakes up all threads waiting on an object. A
 1648  * synchronization event wakes up just one. Also, a synchronization event
 1649  * is auto-clearing, which means we automatically set the event back to
 1650  * the non-signalled state once the wakeup is done.
 1651  */
 1652 
 1653 uint32_t
 1654 KeWaitForSingleObject(void *arg, uint32_t reason, uint32_t mode,
 1655     uint8_t alertable, int64_t *duetime)
 1656 {
 1657         wait_block              w;
 1658         struct thread           *td = curthread;
 1659         struct timeval          tv;
 1660         int                     error = 0;
 1661         uint64_t                curtime;
 1662         wb_ext                  we;
 1663         nt_dispatch_header      *obj;
 1664 
 1665         obj = arg;
 1666 
 1667         if (obj == NULL)
 1668                 return (STATUS_INVALID_PARAMETER);
 1669 
 1670         mtx_lock(&ntoskrnl_dispatchlock);
 1671 
 1672         cv_init(&we.we_cv, "KeWFS");
 1673         we.we_td = td;
 1674 
 1675         /*
 1676          * Check to see if this object is already signalled,
 1677          * and just return without waiting if it is.
 1678          */
 1679         if (ntoskrnl_is_signalled(obj, td) == TRUE) {
 1680                 /* Sanity check the signal state value. */
 1681                 if (obj->dh_sigstate != INT32_MIN) {
 1682                         ntoskrnl_satisfy_wait(obj, curthread);
 1683                         mtx_unlock(&ntoskrnl_dispatchlock);
 1684                         return (STATUS_SUCCESS);
 1685                 } else {
 1686                         /*
 1687                          * There's a limit to how many times we can
 1688                          * recursively acquire a mutant. If we hit
 1689                          * the limit, something is very wrong.
 1690                          */
 1691                         if (obj->dh_type == DISP_TYPE_MUTANT) {
 1692                                 mtx_unlock(&ntoskrnl_dispatchlock);
 1693                                 panic("mutant limit exceeded");
 1694                         }
 1695                 }
 1696         }
 1697 
 1698         bzero((char *)&w, sizeof(wait_block));
 1699         w.wb_object = obj;
 1700         w.wb_ext = &we;
 1701         w.wb_waittype = WAITTYPE_ANY;
 1702         w.wb_next = &w;
 1703         w.wb_waitkey = 0;
 1704         w.wb_awakened = FALSE;
 1705         w.wb_oldpri = td->td_priority;
 1706 
 1707         InsertTailList((&obj->dh_waitlisthead), (&w.wb_waitlist));
 1708 
 1709         /*
 1710          * The timeout value is specified in 100 nanosecond units
 1711          * and can be a positive or negative number. If it's positive,
 1712          * then the duetime is absolute, and we need to convert it
 1713          * to an absolute offset relative to now in order to use it.
 1714          * If it's negative, then the duetime is relative and we
 1715          * just have to convert the units.
 1716          */
 1717 
 1718         if (duetime != NULL) {
 1719                 if (*duetime < 0) {
 1720                         tv.tv_sec = - (*duetime) / 10000000;
 1721                         tv.tv_usec = (- (*duetime) / 10) -
 1722                             (tv.tv_sec * 1000000);
 1723                 } else {
 1724                         ntoskrnl_time(&curtime);
 1725                         if (*duetime < curtime)
 1726                                 tv.tv_sec = tv.tv_usec = 0;
 1727                         else {
 1728                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
 1729                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
 1730                                     (tv.tv_sec * 1000000);
 1731                         }
 1732                 }
 1733         }
 1734 
 1735         if (duetime == NULL)
 1736                 cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
 1737         else
 1738                 error = cv_timedwait(&we.we_cv,
 1739                     &ntoskrnl_dispatchlock, tvtohz(&tv));
 1740 
 1741         RemoveEntryList(&w.wb_waitlist);
 1742 
 1743         cv_destroy(&we.we_cv);
 1744 
 1745         /* We timed out. Leave the object alone and return status. */
 1746 
 1747         if (error == EWOULDBLOCK) {
 1748                 mtx_unlock(&ntoskrnl_dispatchlock);
 1749                 return (STATUS_TIMEOUT);
 1750         }
 1751 
 1752         mtx_unlock(&ntoskrnl_dispatchlock);
 1753 
 1754         return (STATUS_SUCCESS);
 1755 /*
 1756         return (KeWaitForMultipleObjects(1, &obj, WAITTYPE_ALL, reason,
 1757             mode, alertable, duetime, &w));
 1758 */
 1759 }
 1760 
 1761 static uint32_t
 1762 KeWaitForMultipleObjects(uint32_t cnt, nt_dispatch_header *obj[], uint32_t wtype,
 1763         uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime,
 1764         wait_block *wb_array)
 1765 {
 1766         struct thread           *td = curthread;
 1767         wait_block              *whead, *w;
 1768         wait_block              _wb_array[MAX_WAIT_OBJECTS];
 1769         nt_dispatch_header      *cur;
 1770         struct timeval          tv;
 1771         int                     i, wcnt = 0, error = 0;
 1772         uint64_t                curtime;
 1773         struct timespec         t1, t2;
 1774         uint32_t                status = STATUS_SUCCESS;
 1775         wb_ext                  we;
 1776 
 1777         if (cnt > MAX_WAIT_OBJECTS)
 1778                 return (STATUS_INVALID_PARAMETER);
 1779         if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
 1780                 return (STATUS_INVALID_PARAMETER);
 1781 
 1782         mtx_lock(&ntoskrnl_dispatchlock);
 1783 
 1784         cv_init(&we.we_cv, "KeWFM");
 1785         we.we_td = td;
 1786 
 1787         if (wb_array == NULL)
 1788                 whead = _wb_array;
 1789         else
 1790                 whead = wb_array;
 1791 
 1792         bzero((char *)whead, sizeof(wait_block) * cnt);
 1793 
 1794         /* First pass: see if we can satisfy any waits immediately. */
 1795 
 1796         wcnt = 0;
 1797         w = whead;
 1798 
 1799         for (i = 0; i < cnt; i++) {
 1800                 InsertTailList((&obj[i]->dh_waitlisthead),
 1801                     (&w->wb_waitlist));
 1802                 w->wb_ext = &we;
 1803                 w->wb_object = obj[i];
 1804                 w->wb_waittype = wtype;
 1805                 w->wb_waitkey = i;
 1806                 w->wb_awakened = FALSE;
 1807                 w->wb_oldpri = td->td_priority;
 1808                 w->wb_next = w + 1;
 1809                 w++;
 1810                 wcnt++;
 1811                 if (ntoskrnl_is_signalled(obj[i], td)) {
 1812                         /*
 1813                          * There's a limit to how many times
 1814                          * we can recursively acquire a mutant.
 1815                          * If we hit the limit, something
 1816                          * is very wrong.
 1817                          */
 1818                         if (obj[i]->dh_sigstate == INT32_MIN &&
 1819                             obj[i]->dh_type == DISP_TYPE_MUTANT) {
 1820                                 mtx_unlock(&ntoskrnl_dispatchlock);
 1821                                 panic("mutant limit exceeded");
 1822                         }
 1823 
 1824                         /*
 1825                          * If this is a WAITTYPE_ANY wait, then
 1826                          * satisfy the waited object and exit
 1827                          * right now.
 1828                          */
 1829 
 1830                         if (wtype == WAITTYPE_ANY) {
 1831                                 ntoskrnl_satisfy_wait(obj[i], td);
 1832                                 status = STATUS_WAIT_0 + i;
 1833                                 goto wait_done;
 1834                         } else {
 1835                                 w--;
 1836                                 wcnt--;
 1837                                 w->wb_object = NULL;
 1838                                 RemoveEntryList(&w->wb_waitlist);
 1839                         }
 1840                 }
 1841         }
 1842 
 1843         /*
 1844          * If this is a WAITTYPE_ALL wait and all objects are
 1845          * already signalled, satisfy the waits and exit now.
 1846          */
 1847 
 1848         if (wtype == WAITTYPE_ALL && wcnt == 0) {
 1849                 for (i = 0; i < cnt; i++)
 1850                         ntoskrnl_satisfy_wait(obj[i], td);
 1851                 status = STATUS_SUCCESS;
 1852                 goto wait_done;
 1853         }
 1854 
 1855         /*
 1856          * Create a circular waitblock list. The waitcount
 1857          * must always be non-zero when we get here.
 1858          */
 1859 
 1860         (w - 1)->wb_next = whead;
 1861 
 1862         /* Wait on any objects that aren't yet signalled. */
 1863 
 1864         /* Calculate timeout, if any. */
 1865 
 1866         if (duetime != NULL) {
 1867                 if (*duetime < 0) {
 1868                         tv.tv_sec = - (*duetime) / 10000000;
 1869                         tv.tv_usec = (- (*duetime) / 10) -
 1870                             (tv.tv_sec * 1000000);
 1871                 } else {
 1872                         ntoskrnl_time(&curtime);
 1873                         if (*duetime < curtime)
 1874                                 tv.tv_sec = tv.tv_usec = 0;
 1875                         else {
 1876                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
 1877                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
 1878                                     (tv.tv_sec * 1000000);
 1879                         }
 1880                 }
 1881         }
 1882 
 1883         while (wcnt) {
 1884                 nanotime(&t1);
 1885 
 1886                 if (duetime == NULL)
 1887                         cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
 1888                 else
 1889                         error = cv_timedwait(&we.we_cv,
 1890                             &ntoskrnl_dispatchlock, tvtohz(&tv));
 1891 
 1892                 /* Wait with timeout expired. */
 1893 
 1894                 if (error) {
 1895                         status = STATUS_TIMEOUT;
 1896                         goto wait_done;
 1897                 }
 1898 
 1899                 nanotime(&t2);
 1900 
 1901                 /* See what's been signalled. */
 1902 
 1903                 w = whead;
 1904                 do {
 1905                         cur = w->wb_object;
 1906                         if (ntoskrnl_is_signalled(cur, td) == TRUE ||
 1907                             w->wb_awakened == TRUE) {
 1908                                 /* Sanity check the signal state value. */
 1909                                 if (cur->dh_sigstate == INT32_MIN &&
 1910                                     cur->dh_type == DISP_TYPE_MUTANT) {
 1911                                         mtx_unlock(&ntoskrnl_dispatchlock);
 1912                                         panic("mutant limit exceeded");
 1913                                 }
 1914                                 wcnt--;
 1915                                 if (wtype == WAITTYPE_ANY) {
 1916                                         status = w->wb_waitkey &
 1917                                             STATUS_WAIT_0;
 1918                                         goto wait_done;
 1919                                 }
 1920                         }
 1921                         w = w->wb_next;
 1922                 } while (w != whead);
 1923 
 1924                 /*
 1925                  * If all objects have been signalled, or if this
 1926                  * is a WAITTYPE_ANY wait and we were woke up by
 1927                  * someone, we can bail.
 1928                  */
 1929 
 1930                 if (wcnt == 0) {
 1931                         status = STATUS_SUCCESS;
 1932                         goto wait_done;
 1933                 }
 1934 
 1935                 /*
 1936                  * If this is WAITTYPE_ALL wait, and there's still
 1937                  * objects that haven't been signalled, deduct the
 1938                  * time that's elapsed so far from the timeout and
 1939                  * wait again (or continue waiting indefinitely if
 1940                  * there's no timeout).
 1941                  */
 1942 
 1943                 if (duetime != NULL) {
 1944                         tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
 1945                         tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
 1946                 }
 1947         }
 1948 
 1949 wait_done:
 1950 
 1951         cv_destroy(&we.we_cv);
 1952 
 1953         for (i = 0; i < cnt; i++) {
 1954                 if (whead[i].wb_object != NULL)
 1955                         RemoveEntryList(&whead[i].wb_waitlist);
 1956         }
 1957         mtx_unlock(&ntoskrnl_dispatchlock);
 1958 
 1959         return (status);
 1960 }
 1961 
 1962 static void
 1963 WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val)
 1964 {
 1965         bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
 1966 }
 1967 
 1968 static uint16_t
 1969 READ_REGISTER_USHORT(reg)
 1970         uint16_t                *reg;
 1971 {
 1972         return (bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
 1973 }
 1974 
 1975 static void
 1976 WRITE_REGISTER_ULONG(reg, val)
 1977         uint32_t                *reg;
 1978         uint32_t                val;
 1979 {
 1980         bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
 1981 }
 1982 
 1983 static uint32_t
 1984 READ_REGISTER_ULONG(reg)
 1985         uint32_t                *reg;
 1986 {
 1987         return (bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
 1988 }
 1989 
 1990 static uint8_t
 1991 READ_REGISTER_UCHAR(uint8_t *reg)
 1992 {
 1993         return (bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
 1994 }
 1995 
 1996 static void
 1997 WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val)
 1998 {
 1999         bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
 2000 }
 2001 
 2002 static int64_t
 2003 _allmul(a, b)
 2004         int64_t                 a;
 2005         int64_t                 b;
 2006 {
 2007         return (a * b);
 2008 }
 2009 
 2010 static int64_t
 2011 _alldiv(a, b)
 2012         int64_t                 a;
 2013         int64_t                 b;
 2014 {
 2015         return (a / b);
 2016 }
 2017 
 2018 static int64_t
 2019 _allrem(a, b)
 2020         int64_t                 a;
 2021         int64_t                 b;
 2022 {
 2023         return (a % b);
 2024 }
 2025 
 2026 static uint64_t
 2027 _aullmul(a, b)
 2028         uint64_t                a;
 2029         uint64_t                b;
 2030 {
 2031         return (a * b);
 2032 }
 2033 
 2034 static uint64_t
 2035 _aulldiv(a, b)
 2036         uint64_t                a;
 2037         uint64_t                b;
 2038 {
 2039         return (a / b);
 2040 }
 2041 
 2042 static uint64_t
 2043 _aullrem(a, b)
 2044         uint64_t                a;
 2045         uint64_t                b;
 2046 {
 2047         return (a % b);
 2048 }
 2049 
 2050 static int64_t
 2051 _allshl(int64_t a, uint8_t b)
 2052 {
 2053         return (a << b);
 2054 }
 2055 
 2056 static uint64_t
 2057 _aullshl(uint64_t a, uint8_t b)
 2058 {
 2059         return (a << b);
 2060 }
 2061 
 2062 static int64_t
 2063 _allshr(int64_t a, uint8_t b)
 2064 {
 2065         return (a >> b);
 2066 }
 2067 
 2068 static uint64_t
 2069 _aullshr(uint64_t a, uint8_t b)
 2070 {
 2071         return (a >> b);
 2072 }
 2073 
 2074 static slist_entry *
 2075 ntoskrnl_pushsl(head, entry)
 2076         slist_header            *head;
 2077         slist_entry             *entry;
 2078 {
 2079         slist_entry             *oldhead;
 2080 
 2081         oldhead = head->slh_list.slh_next;
 2082         entry->sl_next = head->slh_list.slh_next;
 2083         head->slh_list.slh_next = entry;
 2084         head->slh_list.slh_depth++;
 2085         head->slh_list.slh_seq++;
 2086 
 2087         return (oldhead);
 2088 }
 2089 
 2090 static void
 2091 InitializeSListHead(head)
 2092         slist_header            *head;
 2093 {
 2094         memset(head, 0, sizeof(*head));
 2095 }
 2096 
 2097 static slist_entry *
 2098 ntoskrnl_popsl(head)
 2099         slist_header            *head;
 2100 {
 2101         slist_entry             *first;
 2102 
 2103         first = head->slh_list.slh_next;
 2104         if (first != NULL) {
 2105                 head->slh_list.slh_next = first->sl_next;
 2106                 head->slh_list.slh_depth--;
 2107                 head->slh_list.slh_seq++;
 2108         }
 2109 
 2110         return (first);
 2111 }
 2112 
 2113 /*
 2114  * We need this to make lookaside lists work for amd64.
 2115  * We pass a pointer to ExAllocatePoolWithTag() the lookaside
 2116  * list structure. For amd64 to work right, this has to be a
 2117  * pointer to the wrapped version of the routine, not the
 2118  * original. Letting the Windows driver invoke the original
 2119  * function directly will result in a convention calling
 2120  * mismatch and a pretty crash. On x86, this effectively
 2121  * becomes a no-op since ipt_func and ipt_wrap are the same.
 2122  */
 2123 
 2124 static funcptr
 2125 ntoskrnl_findwrap(func)
 2126         funcptr                 func;
 2127 {
 2128         image_patch_table       *patch;
 2129 
 2130         patch = ntoskrnl_functbl;
 2131         while (patch->ipt_func != NULL) {
 2132                 if ((funcptr)patch->ipt_func == func)
 2133                         return ((funcptr)patch->ipt_wrap);
 2134                 patch++;
 2135         }
 2136 
 2137         return (NULL);
 2138 }
 2139 
 2140 static void
 2141 ExInitializePagedLookasideList(paged_lookaside_list *lookaside,
 2142         lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
 2143         uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
 2144 {
 2145         bzero((char *)lookaside, sizeof(paged_lookaside_list));
 2146 
 2147         if (size < sizeof(slist_entry))
 2148                 lookaside->nll_l.gl_size = sizeof(slist_entry);
 2149         else
 2150                 lookaside->nll_l.gl_size = size;
 2151         lookaside->nll_l.gl_tag = tag;
 2152         if (allocfunc == NULL)
 2153                 lookaside->nll_l.gl_allocfunc =
 2154                     ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
 2155         else
 2156                 lookaside->nll_l.gl_allocfunc = allocfunc;
 2157 
 2158         if (freefunc == NULL)
 2159                 lookaside->nll_l.gl_freefunc =
 2160                     ntoskrnl_findwrap((funcptr)ExFreePool);
 2161         else
 2162                 lookaside->nll_l.gl_freefunc = freefunc;
 2163 
 2164 #ifdef __i386__
 2165         KeInitializeSpinLock(&lookaside->nll_obsoletelock);
 2166 #endif
 2167 
 2168         lookaside->nll_l.gl_type = NonPagedPool;
 2169         lookaside->nll_l.gl_depth = depth;
 2170         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
 2171 }
 2172 
 2173 static void
 2174 ExDeletePagedLookasideList(lookaside)
 2175         paged_lookaside_list   *lookaside;
 2176 {
 2177         void                    *buf;
 2178         void            (*freefunc)(void *);
 2179 
 2180         freefunc = lookaside->nll_l.gl_freefunc;
 2181         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
 2182                 MSCALL1(freefunc, buf);
 2183 }
 2184 
 2185 static void
 2186 ExInitializeNPagedLookasideList(npaged_lookaside_list *lookaside,
 2187         lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
 2188         uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
 2189 {
 2190         bzero((char *)lookaside, sizeof(npaged_lookaside_list));
 2191 
 2192         if (size < sizeof(slist_entry))
 2193                 lookaside->nll_l.gl_size = sizeof(slist_entry);
 2194         else
 2195                 lookaside->nll_l.gl_size = size;
 2196         lookaside->nll_l.gl_tag = tag;
 2197         if (allocfunc == NULL)
 2198                 lookaside->nll_l.gl_allocfunc =
 2199                     ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
 2200         else
 2201                 lookaside->nll_l.gl_allocfunc = allocfunc;
 2202 
 2203         if (freefunc == NULL)
 2204                 lookaside->nll_l.gl_freefunc =
 2205                     ntoskrnl_findwrap((funcptr)ExFreePool);
 2206         else
 2207                 lookaside->nll_l.gl_freefunc = freefunc;
 2208 
 2209 #ifdef __i386__
 2210         KeInitializeSpinLock(&lookaside->nll_obsoletelock);
 2211 #endif
 2212 
 2213         lookaside->nll_l.gl_type = NonPagedPool;
 2214         lookaside->nll_l.gl_depth = depth;
 2215         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
 2216 }
 2217 
 2218 static void
 2219 ExDeleteNPagedLookasideList(lookaside)
 2220         npaged_lookaside_list   *lookaside;
 2221 {
 2222         void                    *buf;
 2223         void            (*freefunc)(void *);
 2224 
 2225         freefunc = lookaside->nll_l.gl_freefunc;
 2226         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
 2227                 MSCALL1(freefunc, buf);
 2228 }
 2229 
 2230 slist_entry *
 2231 InterlockedPushEntrySList(head, entry)
 2232         slist_header            *head;
 2233         slist_entry             *entry;
 2234 {
 2235         slist_entry             *oldhead;
 2236 
 2237         mtx_lock_spin(&ntoskrnl_interlock);
 2238         oldhead = ntoskrnl_pushsl(head, entry);
 2239         mtx_unlock_spin(&ntoskrnl_interlock);
 2240 
 2241         return (oldhead);
 2242 }
 2243 
 2244 slist_entry *
 2245 InterlockedPopEntrySList(head)
 2246         slist_header            *head;
 2247 {
 2248         slist_entry             *first;
 2249 
 2250         mtx_lock_spin(&ntoskrnl_interlock);
 2251         first = ntoskrnl_popsl(head);
 2252         mtx_unlock_spin(&ntoskrnl_interlock);
 2253 
 2254         return (first);
 2255 }
 2256 
 2257 static slist_entry *
 2258 ExInterlockedPushEntrySList(head, entry, lock)
 2259         slist_header            *head;
 2260         slist_entry             *entry;
 2261         kspin_lock              *lock;
 2262 {
 2263         return (InterlockedPushEntrySList(head, entry));
 2264 }
 2265 
 2266 static slist_entry *
 2267 ExInterlockedPopEntrySList(head, lock)
 2268         slist_header            *head;
 2269         kspin_lock              *lock;
 2270 {
 2271         return (InterlockedPopEntrySList(head));
 2272 }
 2273 
 2274 uint16_t
 2275 ExQueryDepthSList(head)
 2276         slist_header            *head;
 2277 {
 2278         uint16_t                depth;
 2279 
 2280         mtx_lock_spin(&ntoskrnl_interlock);
 2281         depth = head->slh_list.slh_depth;
 2282         mtx_unlock_spin(&ntoskrnl_interlock);
 2283 
 2284         return (depth);
 2285 }
 2286 
 2287 void
 2288 KeInitializeSpinLock(lock)
 2289         kspin_lock              *lock;
 2290 {
 2291         *lock = 0;
 2292 }
 2293 
 2294 #ifdef __i386__
 2295 void
 2296 KefAcquireSpinLockAtDpcLevel(lock)
 2297         kspin_lock              *lock;
 2298 {
 2299 #ifdef NTOSKRNL_DEBUG_SPINLOCKS
 2300         int                     i = 0;
 2301 #endif
 2302 
 2303         while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) {
 2304                 /* sit and spin */;
 2305 #ifdef NTOSKRNL_DEBUG_SPINLOCKS
 2306                 i++;
 2307                 if (i > 200000000)
 2308                         panic("DEADLOCK!");
 2309 #endif
 2310         }
 2311 }
 2312 
 2313 void
 2314 KefReleaseSpinLockFromDpcLevel(lock)
 2315         kspin_lock              *lock;
 2316 {
 2317         atomic_store_rel_int((volatile u_int *)lock, 0);
 2318 }
 2319 
 2320 uint8_t
 2321 KeAcquireSpinLockRaiseToDpc(kspin_lock *lock)
 2322 {
 2323         uint8_t                 oldirql;
 2324 
 2325         if (KeGetCurrentIrql() > DISPATCH_LEVEL)
 2326                 panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
 2327 
 2328         KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
 2329         KeAcquireSpinLockAtDpcLevel(lock);
 2330 
 2331         return (oldirql);
 2332 }
 2333 #else
 2334 void
 2335 KeAcquireSpinLockAtDpcLevel(kspin_lock *lock)
 2336 {
 2337         while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
 2338                 /* sit and spin */;
 2339 }
 2340 
 2341 void
 2342 KeReleaseSpinLockFromDpcLevel(kspin_lock *lock)
 2343 {
 2344         atomic_store_rel_int((volatile u_int *)lock, 0);
 2345 }
 2346 #endif /* __i386__ */
 2347 
 2348 uintptr_t
 2349 InterlockedExchange(dst, val)
 2350         volatile uint32_t       *dst;
 2351         uintptr_t               val;
 2352 {
 2353         uintptr_t               r;
 2354 
 2355         mtx_lock_spin(&ntoskrnl_interlock);
 2356         r = *dst;
 2357         *dst = val;
 2358         mtx_unlock_spin(&ntoskrnl_interlock);
 2359 
 2360         return (r);
 2361 }
 2362 
 2363 static uint32_t
 2364 InterlockedIncrement(addend)
 2365         volatile uint32_t       *addend;
 2366 {
 2367         atomic_add_long((volatile u_long *)addend, 1);
 2368         return (*addend);
 2369 }
 2370 
 2371 static uint32_t
 2372 InterlockedDecrement(addend)
 2373         volatile uint32_t       *addend;
 2374 {
 2375         atomic_subtract_long((volatile u_long *)addend, 1);
 2376         return (*addend);
 2377 }
 2378 
 2379 static void
 2380 ExInterlockedAddLargeStatistic(addend, inc)
 2381         uint64_t                *addend;
 2382         uint32_t                inc;
 2383 {
 2384         mtx_lock_spin(&ntoskrnl_interlock);
 2385         *addend += inc;
 2386         mtx_unlock_spin(&ntoskrnl_interlock);
 2387 };
 2388 
 2389 mdl *
 2390 IoAllocateMdl(void *vaddr, uint32_t len, uint8_t secondarybuf,
 2391         uint8_t chargequota, irp *iopkt)
 2392 {
 2393         mdl                     *m;
 2394         int                     zone = 0;
 2395 
 2396         if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE)
 2397                 m = ExAllocatePoolWithTag(NonPagedPool,
 2398                     MmSizeOfMdl(vaddr, len), 0);
 2399         else {
 2400                 m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO);
 2401                 zone++;
 2402         }
 2403 
 2404         if (m == NULL)
 2405                 return (NULL);
 2406 
 2407         MmInitializeMdl(m, vaddr, len);
 2408 
 2409         /*
 2410          * MmInitializMdl() clears the flags field, so we
 2411          * have to set this here. If the MDL came from the
 2412          * MDL UMA zone, tag it so we can release it to
 2413          * the right place later.
 2414          */
 2415         if (zone)
 2416                 m->mdl_flags = MDL_ZONE_ALLOCED;
 2417 
 2418         if (iopkt != NULL) {
 2419                 if (secondarybuf == TRUE) {
 2420                         mdl                     *last;
 2421                         last = iopkt->irp_mdl;
 2422                         while (last->mdl_next != NULL)
 2423                                 last = last->mdl_next;
 2424                         last->mdl_next = m;
 2425                 } else {
 2426                         if (iopkt->irp_mdl != NULL)
 2427                                 panic("leaking an MDL in IoAllocateMdl()");
 2428                         iopkt->irp_mdl = m;
 2429                 }
 2430         }
 2431 
 2432         return (m);
 2433 }
 2434 
 2435 void
 2436 IoFreeMdl(m)
 2437         mdl                     *m;
 2438 {
 2439         if (m == NULL)
 2440                 return;
 2441 
 2442         if (m->mdl_flags & MDL_ZONE_ALLOCED)
 2443                 uma_zfree(mdl_zone, m);
 2444         else
 2445                 ExFreePool(m);
 2446 }
 2447 
 2448 static void *
 2449 MmAllocateContiguousMemory(size, highest)
 2450         uint32_t                size;
 2451         uint64_t                highest;
 2452 {
 2453         void *addr;
 2454         size_t pagelength = roundup(size, PAGE_SIZE);
 2455 
 2456         addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0);
 2457 
 2458         return (addr);
 2459 }
 2460 
 2461 static void *
 2462 MmAllocateContiguousMemorySpecifyCache(size, lowest, highest,
 2463     boundary, cachetype)
 2464         uint32_t                size;
 2465         uint64_t                lowest;
 2466         uint64_t                highest;
 2467         uint64_t                boundary;
 2468         enum nt_caching_type    cachetype;
 2469 {
 2470         vm_memattr_t            memattr;
 2471         void                    *ret;
 2472 
 2473         switch (cachetype) {
 2474         case MmNonCached:
 2475                 memattr = VM_MEMATTR_UNCACHEABLE;
 2476                 break;
 2477         case MmWriteCombined:
 2478                 memattr = VM_MEMATTR_WRITE_COMBINING;
 2479                 break;
 2480         case MmNonCachedUnordered:
 2481                 memattr = VM_MEMATTR_UNCACHEABLE;
 2482                 break;
 2483         case MmCached:
 2484         case MmHardwareCoherentCached:
 2485         case MmUSWCCached:
 2486         default:
 2487                 memattr = VM_MEMATTR_DEFAULT;
 2488                 break;
 2489         }
 2490 
 2491         ret = (void *)kmem_alloc_contig(size, M_ZERO | M_NOWAIT, lowest,
 2492             highest, PAGE_SIZE, boundary, memattr);
 2493         if (ret != NULL)
 2494                 malloc_type_allocated(M_DEVBUF, round_page(size));
 2495         return (ret);
 2496 }
 2497 
 2498 static void
 2499 MmFreeContiguousMemory(base)
 2500         void                    *base;
 2501 {
 2502         ExFreePool(base);
 2503 }
 2504 
 2505 static void
 2506 MmFreeContiguousMemorySpecifyCache(base, size, cachetype)
 2507         void                    *base;
 2508         uint32_t                size;
 2509         enum nt_caching_type    cachetype;
 2510 {
 2511         contigfree(base, size, M_DEVBUF);
 2512 }
 2513 
 2514 static uint32_t
 2515 MmSizeOfMdl(vaddr, len)
 2516         void                    *vaddr;
 2517         size_t                  len;
 2518 {
 2519         uint32_t                l;
 2520 
 2521         l = sizeof(struct mdl) +
 2522             (sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len));
 2523 
 2524         return (l);
 2525 }
 2526 
 2527 /*
 2528  * The Microsoft documentation says this routine fills in the
 2529  * page array of an MDL with the _physical_ page addresses that
 2530  * comprise the buffer, but we don't really want to do that here.
 2531  * Instead, we just fill in the page array with the kernel virtual
 2532  * addresses of the buffers.
 2533  */
 2534 void
 2535 MmBuildMdlForNonPagedPool(m)
 2536         mdl                     *m;
 2537 {
 2538         vm_offset_t             *mdl_pages;
 2539         int                     pagecnt, i;
 2540 
 2541         pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount);
 2542 
 2543         if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *))
 2544                 panic("not enough pages in MDL to describe buffer");
 2545 
 2546         mdl_pages = MmGetMdlPfnArray(m);
 2547 
 2548         for (i = 0; i < pagecnt; i++)
 2549                 *mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE);
 2550 
 2551         m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL;
 2552         m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m);
 2553 }
 2554 
 2555 static void *
 2556 MmMapLockedPages(mdl *buf, uint8_t accessmode)
 2557 {
 2558         buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA;
 2559         return (MmGetMdlVirtualAddress(buf));
 2560 }
 2561 
 2562 static void *
 2563 MmMapLockedPagesSpecifyCache(mdl *buf, uint8_t accessmode, uint32_t cachetype,
 2564         void *vaddr, uint32_t bugcheck, uint32_t prio)
 2565 {
 2566         return (MmMapLockedPages(buf, accessmode));
 2567 }
 2568 
 2569 static void
 2570 MmUnmapLockedPages(vaddr, buf)
 2571         void                    *vaddr;
 2572         mdl                     *buf;
 2573 {
 2574         buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA;
 2575 }
 2576 
 2577 /*
 2578  * This function has a problem in that it will break if you
 2579  * compile this module without PAE and try to use it on a PAE
 2580  * kernel. Unfortunately, there's no way around this at the
 2581  * moment. It's slightly less broken that using pmap_kextract().
 2582  * You'd think the virtual memory subsystem would help us out
 2583  * here, but it doesn't.
 2584  */
 2585 
 2586 static uint64_t
 2587 MmGetPhysicalAddress(void *base)
 2588 {
 2589         return (pmap_extract(kernel_map->pmap, (vm_offset_t)base));
 2590 }
 2591 
 2592 void *
 2593 MmGetSystemRoutineAddress(ustr)
 2594         unicode_string          *ustr;
 2595 {
 2596         ansi_string             astr;
 2597 
 2598         if (RtlUnicodeStringToAnsiString(&astr, ustr, TRUE))
 2599                 return (NULL);
 2600         return (ndis_get_routine_address(ntoskrnl_functbl, astr.as_buf));
 2601 }
 2602 
 2603 uint8_t
 2604 MmIsAddressValid(vaddr)
 2605         void                    *vaddr;
 2606 {
 2607         if (pmap_extract(kernel_map->pmap, (vm_offset_t)vaddr))
 2608                 return (TRUE);
 2609 
 2610         return (FALSE);
 2611 }
 2612 
 2613 void *
 2614 MmMapIoSpace(paddr, len, cachetype)
 2615         uint64_t                paddr;
 2616         uint32_t                len;
 2617         uint32_t                cachetype;
 2618 {
 2619         devclass_t              nexus_class;
 2620         device_t                *nexus_devs, devp;
 2621         int                     nexus_count = 0;
 2622         device_t                matching_dev = NULL;
 2623         struct resource         *res;
 2624         int                     i;
 2625         vm_offset_t             v;
 2626 
 2627         /* There will always be at least one nexus. */
 2628 
 2629         nexus_class = devclass_find("nexus");
 2630         devclass_get_devices(nexus_class, &nexus_devs, &nexus_count);
 2631 
 2632         for (i = 0; i < nexus_count; i++) {
 2633                 devp = nexus_devs[i];
 2634                 matching_dev = ntoskrnl_finddev(devp, paddr, &res);
 2635                 if (matching_dev)
 2636                         break;
 2637         }
 2638 
 2639         free(nexus_devs, M_TEMP);
 2640 
 2641         if (matching_dev == NULL)
 2642                 return (NULL);
 2643 
 2644         v = (vm_offset_t)rman_get_virtual(res);
 2645         if (paddr > rman_get_start(res))
 2646                 v += paddr - rman_get_start(res);
 2647 
 2648         return ((void *)v);
 2649 }
 2650 
 2651 void
 2652 MmUnmapIoSpace(vaddr, len)
 2653         void                    *vaddr;
 2654         size_t                  len;
 2655 {
 2656 }
 2657 
 2658 static device_t
 2659 ntoskrnl_finddev(dev, paddr, res)
 2660         device_t                dev;
 2661         uint64_t                paddr;
 2662         struct resource         **res;
 2663 {
 2664         device_t                *children = NULL;
 2665         device_t                matching_dev;
 2666         int                     childcnt;
 2667         struct resource         *r;
 2668         struct resource_list    *rl;
 2669         struct resource_list_entry      *rle;
 2670         uint32_t                flags;
 2671         int                     i;
 2672 
 2673         /* We only want devices that have been successfully probed. */
 2674 
 2675         if (device_is_alive(dev) == FALSE)
 2676                 return (NULL);
 2677 
 2678         rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
 2679         if (rl != NULL) {
 2680                 STAILQ_FOREACH(rle, rl, link) {
 2681                         r = rle->res;
 2682 
 2683                         if (r == NULL)
 2684                                 continue;
 2685 
 2686                         flags = rman_get_flags(r);
 2687 
 2688                         if (rle->type == SYS_RES_MEMORY &&
 2689                             paddr >= rman_get_start(r) &&
 2690                             paddr <= rman_get_end(r)) {
 2691                                 if (!(flags & RF_ACTIVE))
 2692                                         bus_activate_resource(dev,
 2693                                             SYS_RES_MEMORY, 0, r);
 2694                                 *res = r;
 2695                                 return (dev);
 2696                         }
 2697                 }
 2698         }
 2699 
 2700         /*
 2701          * If this device has children, do another
 2702          * level of recursion to inspect them.
 2703          */
 2704 
 2705         device_get_children(dev, &children, &childcnt);
 2706 
 2707         for (i = 0; i < childcnt; i++) {
 2708                 matching_dev = ntoskrnl_finddev(children[i], paddr, res);
 2709                 if (matching_dev != NULL) {
 2710                         free(children, M_TEMP);
 2711                         return (matching_dev);
 2712                 }
 2713         }
 2714 
 2715         /* Won't somebody please think of the children! */
 2716 
 2717         if (children != NULL)
 2718                 free(children, M_TEMP);
 2719 
 2720         return (NULL);
 2721 }
 2722 
 2723 /*
 2724  * Workitems are unlike DPCs, in that they run in a user-mode thread
 2725  * context rather than at DISPATCH_LEVEL in kernel context. In our
 2726  * case we run them in kernel context anyway.
 2727  */
 2728 static void
 2729 ntoskrnl_workitem_thread(arg)
 2730         void                    *arg;
 2731 {
 2732         kdpc_queue              *kq;
 2733         list_entry              *l;
 2734         io_workitem             *iw;
 2735         uint8_t                 irql;
 2736 
 2737         kq = arg;
 2738 
 2739         InitializeListHead(&kq->kq_disp);
 2740         kq->kq_td = curthread;
 2741         kq->kq_exit = 0;
 2742         KeInitializeSpinLock(&kq->kq_lock);
 2743         KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
 2744 
 2745         while (1) {
 2746                 KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
 2747 
 2748                 KeAcquireSpinLock(&kq->kq_lock, &irql);
 2749 
 2750                 if (kq->kq_exit) {
 2751                         kq->kq_exit = 0;
 2752                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2753                         break;
 2754                 }
 2755 
 2756                 while (!IsListEmpty(&kq->kq_disp)) {
 2757                         l = RemoveHeadList(&kq->kq_disp);
 2758                         iw = CONTAINING_RECORD(l,
 2759                             io_workitem, iw_listentry);
 2760                         InitializeListHead((&iw->iw_listentry));
 2761                         if (iw->iw_func == NULL)
 2762                                 continue;
 2763                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2764                         MSCALL2(iw->iw_func, iw->iw_dobj, iw->iw_ctx);
 2765                         KeAcquireSpinLock(&kq->kq_lock, &irql);
 2766                 }
 2767 
 2768                 KeReleaseSpinLock(&kq->kq_lock, irql);
 2769         }
 2770 
 2771         kproc_exit(0);
 2772         return; /* notreached */
 2773 }
 2774 
 2775 static ndis_status
 2776 RtlCharToInteger(src, base, val)
 2777         const char              *src;
 2778         uint32_t                base;
 2779         uint32_t                *val;
 2780 {
 2781         int negative = 0;
 2782         uint32_t res;
 2783 
 2784         if (!src || !val)
 2785                 return (STATUS_ACCESS_VIOLATION);
 2786         while (*src != '\0' && *src <= ' ')
 2787                 src++;
 2788         if (*src == '+')
 2789                 src++;
 2790         else if (*src == '-') {
 2791                 src++;
 2792                 negative = 1;
 2793         }
 2794         if (base == 0) {
 2795                 base = 10;
 2796                 if (*src == '') {
 2797                         src++;
 2798                         if (*src == 'b') {
 2799                                 base = 2;
 2800                                 src++;
 2801                         } else if (*src == 'o') {
 2802                                 base = 8;
 2803                                 src++;
 2804                         } else if (*src == 'x') {
 2805                                 base = 16;
 2806                                 src++;
 2807                         }
 2808                 }
 2809         } else if (!(base == 2 || base == 8 || base == 10 || base == 16))
 2810                 return (STATUS_INVALID_PARAMETER);
 2811 
 2812         for (res = 0; *src; src++) {
 2813                 int v;
 2814                 if (isdigit(*src))
 2815                         v = *src - '';
 2816                 else if (isxdigit(*src))
 2817                         v = tolower(*src) - 'a' + 10;
 2818                 else
 2819                         v = base;
 2820                 if (v >= base)
 2821                         return (STATUS_INVALID_PARAMETER);
 2822                 res = res * base + v;
 2823         }
 2824         *val = negative ? -res : res;
 2825         return (STATUS_SUCCESS);
 2826 }
 2827 
 2828 static void
 2829 ntoskrnl_destroy_workitem_threads(void)
 2830 {
 2831         kdpc_queue              *kq;
 2832         int                     i;
 2833 
 2834         for (i = 0; i < WORKITEM_THREADS; i++) {
 2835                 kq = wq_queues + i;
 2836                 kq->kq_exit = 1;
 2837                 KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 2838                 while (kq->kq_exit)
 2839                         tsleep(kq->kq_td->td_proc, PWAIT, "waitiw", hz/10);
 2840         }
 2841 }
 2842 
 2843 io_workitem *
 2844 IoAllocateWorkItem(dobj)
 2845         device_object           *dobj;
 2846 {
 2847         io_workitem             *iw;
 2848 
 2849         iw = uma_zalloc(iw_zone, M_NOWAIT);
 2850         if (iw == NULL)
 2851                 return (NULL);
 2852 
 2853         InitializeListHead(&iw->iw_listentry);
 2854         iw->iw_dobj = dobj;
 2855 
 2856         mtx_lock(&ntoskrnl_dispatchlock);
 2857         iw->iw_idx = wq_idx;
 2858         WORKIDX_INC(wq_idx);
 2859         mtx_unlock(&ntoskrnl_dispatchlock);
 2860 
 2861         return (iw);
 2862 }
 2863 
 2864 void
 2865 IoFreeWorkItem(iw)
 2866         io_workitem             *iw;
 2867 {
 2868         uma_zfree(iw_zone, iw);
 2869 }
 2870 
 2871 void
 2872 IoQueueWorkItem(iw, iw_func, qtype, ctx)
 2873         io_workitem             *iw;
 2874         io_workitem_func        iw_func;
 2875         uint32_t                qtype;
 2876         void                    *ctx;
 2877 {
 2878         kdpc_queue              *kq;
 2879         list_entry              *l;
 2880         io_workitem             *cur;
 2881         uint8_t                 irql;
 2882 
 2883         kq = wq_queues + iw->iw_idx;
 2884 
 2885         KeAcquireSpinLock(&kq->kq_lock, &irql);
 2886 
 2887         /*
 2888          * Traverse the list and make sure this workitem hasn't
 2889          * already been inserted. Queuing the same workitem
 2890          * twice will hose the list but good.
 2891          */
 2892 
 2893         l = kq->kq_disp.nle_flink;
 2894         while (l != &kq->kq_disp) {
 2895                 cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
 2896                 if (cur == iw) {
 2897                         /* Already queued -- do nothing. */
 2898                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2899                         return;
 2900                 }
 2901                 l = l->nle_flink;
 2902         }
 2903 
 2904         iw->iw_func = iw_func;
 2905         iw->iw_ctx = ctx;
 2906 
 2907         InsertTailList((&kq->kq_disp), (&iw->iw_listentry));
 2908         KeReleaseSpinLock(&kq->kq_lock, irql);
 2909 
 2910         KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 2911 }
 2912 
 2913 static void
 2914 ntoskrnl_workitem(dobj, arg)
 2915         device_object           *dobj;
 2916         void                    *arg;
 2917 {
 2918         io_workitem             *iw;
 2919         work_queue_item         *w;
 2920         work_item_func          f;
 2921 
 2922         iw = arg;
 2923         w = (work_queue_item *)dobj;
 2924         f = (work_item_func)w->wqi_func;
 2925         uma_zfree(iw_zone, iw);
 2926         MSCALL2(f, w, w->wqi_ctx);
 2927 }
 2928 
 2929 /*
 2930  * The ExQueueWorkItem() API is deprecated in Windows XP. Microsoft
 2931  * warns that it's unsafe and to use IoQueueWorkItem() instead. The
 2932  * problem with ExQueueWorkItem() is that it can't guard against
 2933  * the condition where a driver submits a job to the work queue and
 2934  * is then unloaded before the job is able to run. IoQueueWorkItem()
 2935  * acquires a reference to the device's device_object via the
 2936  * object manager and retains it until after the job has completed,
 2937  * which prevents the driver from being unloaded before the job
 2938  * runs. (We don't currently support this behavior, though hopefully
 2939  * that will change once the object manager API is fleshed out a bit.)
 2940  *
 2941  * Having said all that, the ExQueueWorkItem() API remains, because
 2942  * there are still other parts of Windows that use it, including
 2943  * NDIS itself: NdisScheduleWorkItem() calls ExQueueWorkItem().
 2944  * We fake up the ExQueueWorkItem() API on top of our implementation
 2945  * of IoQueueWorkItem(). Workitem thread #3 is reserved exclusively
 2946  * for ExQueueWorkItem() jobs, and we pass a pointer to the work
 2947  * queue item (provided by the caller) in to IoAllocateWorkItem()
 2948  * instead of the device_object. We need to save this pointer so
 2949  * we can apply a sanity check: as with the DPC queue and other
 2950  * workitem queues, we can't allow the same work queue item to
 2951  * be queued twice. If it's already pending, we silently return
 2952  */
 2953 
 2954 void
 2955 ExQueueWorkItem(w, qtype)
 2956         work_queue_item         *w;
 2957         uint32_t                qtype;
 2958 {
 2959         io_workitem             *iw;
 2960         io_workitem_func        iwf;
 2961         kdpc_queue              *kq;
 2962         list_entry              *l;
 2963         io_workitem             *cur;
 2964         uint8_t                 irql;
 2965 
 2966         /*
 2967          * We need to do a special sanity test to make sure
 2968          * the ExQueueWorkItem() API isn't used to queue
 2969          * the same workitem twice. Rather than checking the
 2970          * io_workitem pointer itself, we test the attached
 2971          * device object, which is really a pointer to the
 2972          * legacy work queue item structure.
 2973          */
 2974 
 2975         kq = wq_queues + WORKITEM_LEGACY_THREAD;
 2976         KeAcquireSpinLock(&kq->kq_lock, &irql);
 2977         l = kq->kq_disp.nle_flink;
 2978         while (l != &kq->kq_disp) {
 2979                 cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
 2980                 if (cur->iw_dobj == (device_object *)w) {
 2981                         /* Already queued -- do nothing. */
 2982                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2983                         return;
 2984                 }
 2985                 l = l->nle_flink;
 2986         }
 2987         KeReleaseSpinLock(&kq->kq_lock, irql);
 2988 
 2989         iw = IoAllocateWorkItem((device_object *)w);
 2990         if (iw == NULL)
 2991                 return;
 2992 
 2993         iw->iw_idx = WORKITEM_LEGACY_THREAD;
 2994         iwf = (io_workitem_func)ntoskrnl_findwrap((funcptr)ntoskrnl_workitem);
 2995         IoQueueWorkItem(iw, iwf, qtype, iw);
 2996 }
 2997 
 2998 static void
 2999 RtlZeroMemory(dst, len)
 3000         void                    *dst;
 3001         size_t                  len;
 3002 {
 3003         bzero(dst, len);
 3004 }
 3005 
 3006 static void
 3007 RtlSecureZeroMemory(dst, len)
 3008         void                    *dst;
 3009         size_t                  len;
 3010 {
 3011         memset(dst, 0, len);
 3012 }
 3013 
 3014 static void
 3015 RtlFillMemory(void *dst, size_t len, uint8_t c)
 3016 {
 3017         memset(dst, c, len);
 3018 }
 3019 
 3020 static void
 3021 RtlMoveMemory(dst, src, len)
 3022         void                    *dst;
 3023         const void              *src;
 3024         size_t                  len;
 3025 {
 3026         memmove(dst, src, len);
 3027 }
 3028 
 3029 static void
 3030 RtlCopyMemory(dst, src, len)
 3031         void                    *dst;
 3032         const void              *src;
 3033         size_t                  len;
 3034 {
 3035         bcopy(src, dst, len);
 3036 }
 3037 
 3038 static size_t
 3039 RtlCompareMemory(s1, s2, len)
 3040         const void              *s1;
 3041         const void              *s2;
 3042         size_t                  len;
 3043 {
 3044         size_t                  i;
 3045         uint8_t                 *m1, *m2;
 3046 
 3047         m1 = __DECONST(char *, s1);
 3048         m2 = __DECONST(char *, s2);
 3049 
 3050         for (i = 0; i < len && m1[i] == m2[i]; i++);
 3051         return (i);
 3052 }
 3053 
 3054 void
 3055 RtlInitAnsiString(dst, src)
 3056         ansi_string             *dst;
 3057         char                    *src;
 3058 {
 3059         ansi_string             *a;
 3060 
 3061         a = dst;
 3062         if (a == NULL)
 3063                 return;
 3064         if (src == NULL) {
 3065                 a->as_len = a->as_maxlen = 0;
 3066                 a->as_buf = NULL;
 3067         } else {
 3068                 a->as_buf = src;
 3069                 a->as_len = a->as_maxlen = strlen(src);
 3070         }
 3071 }
 3072 
 3073 void
 3074 RtlInitUnicodeString(dst, src)
 3075         unicode_string          *dst;
 3076         uint16_t                *src;
 3077 {
 3078         unicode_string          *u;
 3079         int                     i;
 3080 
 3081         u = dst;
 3082         if (u == NULL)
 3083                 return;
 3084         if (src == NULL) {
 3085                 u->us_len = u->us_maxlen = 0;
 3086                 u->us_buf = NULL;
 3087         } else {
 3088                 i = 0;
 3089                 while(src[i] != 0)
 3090                         i++;
 3091                 u->us_buf = src;
 3092                 u->us_len = u->us_maxlen = i * 2;
 3093         }
 3094 }
 3095 
 3096 ndis_status
 3097 RtlUnicodeStringToInteger(ustr, base, val)
 3098         unicode_string          *ustr;
 3099         uint32_t                base;
 3100         uint32_t                *val;
 3101 {
 3102         uint16_t                *uchr;
 3103         int                     len, neg = 0;
 3104         char                    abuf[64];
 3105         char                    *astr;
 3106 
 3107         uchr = ustr->us_buf;
 3108         len = ustr->us_len;
 3109         bzero(abuf, sizeof(abuf));
 3110 
 3111         if ((char)((*uchr) & 0xFF) == '-') {
 3112                 neg = 1;
 3113                 uchr++;
 3114                 len -= 2;
 3115         } else if ((char)((*uchr) & 0xFF) == '+') {
 3116                 neg = 0;
 3117                 uchr++;
 3118                 len -= 2;
 3119         }
 3120 
 3121         if (base == 0) {
 3122                 if ((char)((*uchr) & 0xFF) == 'b') {
 3123                         base = 2;
 3124                         uchr++;
 3125                         len -= 2;
 3126                 } else if ((char)((*uchr) & 0xFF) == 'o') {
 3127                         base = 8;
 3128                         uchr++;
 3129                         len -= 2;
 3130                 } else if ((char)((*uchr) & 0xFF) == 'x') {
 3131                         base = 16;
 3132                         uchr++;
 3133                         len -= 2;
 3134                 } else
 3135                         base = 10;
 3136         }
 3137 
 3138         astr = abuf;
 3139         if (neg) {
 3140                 strcpy(astr, "-");
 3141                 astr++;
 3142         }
 3143 
 3144         ntoskrnl_unicode_to_ascii(uchr, astr, len);
 3145         *val = strtoul(abuf, NULL, base);
 3146 
 3147         return (STATUS_SUCCESS);
 3148 }
 3149 
 3150 void
 3151 RtlFreeUnicodeString(ustr)
 3152         unicode_string          *ustr;
 3153 {
 3154         if (ustr->us_buf == NULL)
 3155                 return;
 3156         ExFreePool(ustr->us_buf);
 3157         ustr->us_buf = NULL;
 3158 }
 3159 
 3160 void
 3161 RtlFreeAnsiString(astr)
 3162         ansi_string             *astr;
 3163 {
 3164         if (astr->as_buf == NULL)
 3165                 return;
 3166         ExFreePool(astr->as_buf);
 3167         astr->as_buf = NULL;
 3168 }
 3169 
 3170 static int
 3171 atoi(str)
 3172         const char              *str;
 3173 {
 3174         return (int)strtol(str, (char **)NULL, 10);
 3175 }
 3176 
 3177 static long
 3178 atol(str)
 3179         const char              *str;
 3180 {
 3181         return strtol(str, (char **)NULL, 10);
 3182 }
 3183 
 3184 static int
 3185 rand(void)
 3186 {
 3187 
 3188         return (random());
 3189 }
 3190 
 3191 static void
 3192 srand(unsigned int seed __unused)
 3193 {
 3194 }
 3195 
 3196 static uint8_t
 3197 IoIsWdmVersionAvailable(uint8_t major, uint8_t minor)
 3198 {
 3199         if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
 3200                 return (TRUE);
 3201         return (FALSE);
 3202 }
 3203 
 3204 static int32_t
 3205 IoOpenDeviceRegistryKey(struct device_object *devobj, uint32_t type,
 3206     uint32_t mask, void **key)
 3207 {
 3208         return (NDIS_STATUS_INVALID_DEVICE_REQUEST);
 3209 }
 3210 
 3211 static ndis_status
 3212 IoGetDeviceObjectPointer(name, reqaccess, fileobj, devobj)
 3213         unicode_string          *name;
 3214         uint32_t                reqaccess;
 3215         void                    *fileobj;
 3216         device_object           *devobj;
 3217 {
 3218         return (STATUS_SUCCESS);
 3219 }
 3220 
 3221 static ndis_status
 3222 IoGetDeviceProperty(devobj, regprop, buflen, prop, reslen)
 3223         device_object           *devobj;
 3224         uint32_t                regprop;
 3225         uint32_t                buflen;
 3226         void                    *prop;
 3227         uint32_t                *reslen;
 3228 {
 3229         driver_object           *drv;
 3230         uint16_t                **name;
 3231 
 3232         drv = devobj->do_drvobj;
 3233 
 3234         switch (regprop) {
 3235         case DEVPROP_DRIVER_KEYNAME:
 3236                 name = prop;
 3237                 *name = drv->dro_drivername.us_buf;
 3238                 *reslen = drv->dro_drivername.us_len;
 3239                 break;
 3240         default:
 3241                 return (STATUS_INVALID_PARAMETER_2);
 3242                 break;
 3243         }
 3244 
 3245         return (STATUS_SUCCESS);
 3246 }
 3247 
 3248 static void
 3249 KeInitializeMutex(kmutex, level)
 3250         kmutant                 *kmutex;
 3251         uint32_t                level;
 3252 {
 3253         InitializeListHead((&kmutex->km_header.dh_waitlisthead));
 3254         kmutex->km_abandoned = FALSE;
 3255         kmutex->km_apcdisable = 1;
 3256         kmutex->km_header.dh_sigstate = 1;
 3257         kmutex->km_header.dh_type = DISP_TYPE_MUTANT;
 3258         kmutex->km_header.dh_size = sizeof(kmutant) / sizeof(uint32_t);
 3259         kmutex->km_ownerthread = NULL;
 3260 }
 3261 
 3262 static uint32_t
 3263 KeReleaseMutex(kmutant *kmutex, uint8_t kwait)
 3264 {
 3265         uint32_t                prevstate;
 3266 
 3267         mtx_lock(&ntoskrnl_dispatchlock);
 3268         prevstate = kmutex->km_header.dh_sigstate;
 3269         if (kmutex->km_ownerthread != curthread) {
 3270                 mtx_unlock(&ntoskrnl_dispatchlock);
 3271                 return (STATUS_MUTANT_NOT_OWNED);
 3272         }
 3273 
 3274         kmutex->km_header.dh_sigstate++;
 3275         kmutex->km_abandoned = FALSE;
 3276 
 3277         if (kmutex->km_header.dh_sigstate == 1) {
 3278                 kmutex->km_ownerthread = NULL;
 3279                 ntoskrnl_waittest(&kmutex->km_header, IO_NO_INCREMENT);
 3280         }
 3281 
 3282         mtx_unlock(&ntoskrnl_dispatchlock);
 3283 
 3284         return (prevstate);
 3285 }
 3286 
 3287 static uint32_t
 3288 KeReadStateMutex(kmutex)
 3289         kmutant                 *kmutex;
 3290 {
 3291         return (kmutex->km_header.dh_sigstate);
 3292 }
 3293 
 3294 void
 3295 KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state)
 3296 {
 3297         InitializeListHead((&kevent->k_header.dh_waitlisthead));
 3298         kevent->k_header.dh_sigstate = state;
 3299         if (type == EVENT_TYPE_NOTIFY)
 3300                 kevent->k_header.dh_type = DISP_TYPE_NOTIFICATION_EVENT;
 3301         else
 3302                 kevent->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_EVENT;
 3303         kevent->k_header.dh_size = sizeof(nt_kevent) / sizeof(uint32_t);
 3304 }
 3305 
 3306 uint32_t
 3307 KeResetEvent(kevent)
 3308         nt_kevent               *kevent;
 3309 {
 3310         uint32_t                prevstate;
 3311 
 3312         mtx_lock(&ntoskrnl_dispatchlock);
 3313         prevstate = kevent->k_header.dh_sigstate;
 3314         kevent->k_header.dh_sigstate = FALSE;
 3315         mtx_unlock(&ntoskrnl_dispatchlock);
 3316 
 3317         return (prevstate);
 3318 }
 3319 
 3320 uint32_t
 3321 KeSetEvent(nt_kevent *kevent, uint32_t increment, uint8_t kwait)
 3322 {
 3323         uint32_t                prevstate;
 3324         wait_block              *w;
 3325         nt_dispatch_header      *dh;
 3326         struct thread           *td;
 3327         wb_ext                  *we;
 3328 
 3329         mtx_lock(&ntoskrnl_dispatchlock);
 3330         prevstate = kevent->k_header.dh_sigstate;
 3331         dh = &kevent->k_header;
 3332 
 3333         if (IsListEmpty(&dh->dh_waitlisthead))
 3334                 /*
 3335                  * If there's nobody in the waitlist, just set
 3336                  * the state to signalled.
 3337                  */
 3338                 dh->dh_sigstate = 1;
 3339         else {
 3340                 /*
 3341                  * Get the first waiter. If this is a synchronization
 3342                  * event, just wake up that one thread (don't bother
 3343                  * setting the state to signalled since we're supposed
 3344                  * to automatically clear synchronization events anyway).
 3345                  *
 3346                  * If it's a notification event, or the first
 3347                  * waiter is doing a WAITTYPE_ALL wait, go through
 3348                  * the full wait satisfaction process.
 3349                  */
 3350                 w = CONTAINING_RECORD(dh->dh_waitlisthead.nle_flink,
 3351                     wait_block, wb_waitlist);
 3352                 we = w->wb_ext;
 3353                 td = we->we_td;
 3354                 if (kevent->k_header.dh_type == DISP_TYPE_NOTIFICATION_EVENT ||
 3355                     w->wb_waittype == WAITTYPE_ALL) {
 3356                         if (prevstate == 0) {
 3357                                 dh->dh_sigstate = 1;
 3358                                 ntoskrnl_waittest(dh, increment);
 3359                         }
 3360                 } else {
 3361                         w->wb_awakened |= TRUE;
 3362                         cv_broadcastpri(&we->we_cv,
 3363                             (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
 3364                             w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
 3365                 }
 3366         }
 3367 
 3368         mtx_unlock(&ntoskrnl_dispatchlock);
 3369 
 3370         return (prevstate);
 3371 }
 3372 
 3373 void
 3374 KeClearEvent(kevent)
 3375         nt_kevent               *kevent;
 3376 {
 3377         kevent->k_header.dh_sigstate = FALSE;
 3378 }
 3379 
 3380 uint32_t
 3381 KeReadStateEvent(kevent)
 3382         nt_kevent               *kevent;
 3383 {
 3384         return (kevent->k_header.dh_sigstate);
 3385 }
 3386 
 3387 /*
 3388  * The object manager in Windows is responsible for managing
 3389  * references and access to various types of objects, including
 3390  * device_objects, events, threads, timers and so on. However,
 3391  * there's a difference in the way objects are handled in user
 3392  * mode versus kernel mode.
 3393  *
 3394  * In user mode (i.e. Win32 applications), all objects are
 3395  * managed by the object manager. For example, when you create
 3396  * a timer or event object, you actually end up with an 
 3397  * object_header (for the object manager's bookkeeping
 3398  * purposes) and an object body (which contains the actual object
 3399  * structure, e.g. ktimer, kevent, etc...). This allows Windows
 3400  * to manage resource quotas and to enforce access restrictions
 3401  * on basically every kind of system object handled by the kernel.
 3402  *
 3403  * However, in kernel mode, you only end up using the object
 3404  * manager some of the time. For example, in a driver, you create
 3405  * a timer object by simply allocating the memory for a ktimer
 3406  * structure and initializing it with KeInitializeTimer(). Hence,
 3407  * the timer has no object_header and no reference counting or
 3408  * security/resource checks are done on it. The assumption in
 3409  * this case is that if you're running in kernel mode, you know
 3410  * what you're doing, and you're already at an elevated privilege
 3411  * anyway.
 3412  *
 3413  * There are some exceptions to this. The two most important ones
 3414  * for our purposes are device_objects and threads. We need to use
 3415  * the object manager to do reference counting on device_objects,
 3416  * and for threads, you can only get a pointer to a thread's
 3417  * dispatch header by using ObReferenceObjectByHandle() on the
 3418  * handle returned by PsCreateSystemThread().
 3419  */
 3420 
 3421 static ndis_status
 3422 ObReferenceObjectByHandle(ndis_handle handle, uint32_t reqaccess, void *otype,
 3423         uint8_t accessmode, void **object, void **handleinfo)
 3424 {
 3425         nt_objref               *nr;
 3426 
 3427         nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
 3428         if (nr == NULL)
 3429                 return (STATUS_INSUFFICIENT_RESOURCES);
 3430 
 3431         InitializeListHead((&nr->no_dh.dh_waitlisthead));
 3432         nr->no_obj = handle;
 3433         nr->no_dh.dh_type = DISP_TYPE_THREAD;
 3434         nr->no_dh.dh_sigstate = 0;
 3435         nr->no_dh.dh_size = (uint8_t)(sizeof(struct thread) /
 3436             sizeof(uint32_t));
 3437         TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
 3438         *object = nr;
 3439 
 3440         return (STATUS_SUCCESS);
 3441 }
 3442 
 3443 static void
 3444 ObfDereferenceObject(object)
 3445         void                    *object;
 3446 {
 3447         nt_objref               *nr;
 3448 
 3449         nr = object;
 3450         TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
 3451         free(nr, M_DEVBUF);
 3452 }
 3453 
 3454 static uint32_t
 3455 ZwClose(handle)
 3456         ndis_handle             handle;
 3457 {
 3458         return (STATUS_SUCCESS);
 3459 }
 3460 
 3461 static uint32_t
 3462 WmiQueryTraceInformation(traceclass, traceinfo, infolen, reqlen, buf)
 3463         uint32_t                traceclass;
 3464         void                    *traceinfo;
 3465         uint32_t                infolen;
 3466         uint32_t                reqlen;
 3467         void                    *buf;
 3468 {
 3469         return (STATUS_NOT_FOUND);
 3470 }
 3471 
 3472 static uint32_t
 3473 WmiTraceMessage(uint64_t loghandle, uint32_t messageflags,
 3474         void *guid, uint16_t messagenum, ...)
 3475 {
 3476         return (STATUS_SUCCESS);
 3477 }
 3478 
 3479 static uint32_t
 3480 IoWMIRegistrationControl(dobj, action)
 3481         device_object           *dobj;
 3482         uint32_t                action;
 3483 {
 3484         return (STATUS_SUCCESS);
 3485 }
 3486 
 3487 /*
 3488  * This is here just in case the thread returns without calling
 3489  * PsTerminateSystemThread().
 3490  */
 3491 static void
 3492 ntoskrnl_thrfunc(arg)
 3493         void                    *arg;
 3494 {
 3495         thread_context          *thrctx;
 3496         uint32_t (*tfunc)(void *);
 3497         void                    *tctx;
 3498         uint32_t                rval;
 3499 
 3500         thrctx = arg;
 3501         tfunc = thrctx->tc_thrfunc;
 3502         tctx = thrctx->tc_thrctx;
 3503         free(thrctx, M_TEMP);
 3504 
 3505         rval = MSCALL1(tfunc, tctx);
 3506 
 3507         PsTerminateSystemThread(rval);
 3508         return; /* notreached */
 3509 }
 3510 
 3511 static ndis_status
 3512 PsCreateSystemThread(handle, reqaccess, objattrs, phandle,
 3513         clientid, thrfunc, thrctx)
 3514         ndis_handle             *handle;
 3515         uint32_t                reqaccess;
 3516         void                    *objattrs;
 3517         ndis_handle             phandle;
 3518         void                    *clientid;
 3519         void                    *thrfunc;
 3520         void                    *thrctx;
 3521 {
 3522         int                     error;
 3523         thread_context          *tc;
 3524         struct proc             *p;
 3525 
 3526         tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
 3527         if (tc == NULL)
 3528                 return (STATUS_INSUFFICIENT_RESOURCES);
 3529 
 3530         tc->tc_thrctx = thrctx;
 3531         tc->tc_thrfunc = thrfunc;
 3532 
 3533         error = kproc_create(ntoskrnl_thrfunc, tc, &p,
 3534             RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Kthread %d", ntoskrnl_kth);
 3535 
 3536         if (error) {
 3537                 free(tc, M_TEMP);
 3538                 return (STATUS_INSUFFICIENT_RESOURCES);
 3539         }
 3540 
 3541         *handle = p;
 3542         ntoskrnl_kth++;
 3543 
 3544         return (STATUS_SUCCESS);
 3545 }
 3546 
 3547 /*
 3548  * In Windows, the exit of a thread is an event that you're allowed
 3549  * to wait on, assuming you've obtained a reference to the thread using
 3550  * ObReferenceObjectByHandle(). Unfortunately, the only way we can
 3551  * simulate this behavior is to register each thread we create in a
 3552  * reference list, and if someone holds a reference to us, we poke
 3553  * them.
 3554  */
 3555 static ndis_status
 3556 PsTerminateSystemThread(status)
 3557         ndis_status             status;
 3558 {
 3559         struct nt_objref        *nr;
 3560 
 3561         mtx_lock(&ntoskrnl_dispatchlock);
 3562         TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
 3563                 if (nr->no_obj != curthread->td_proc)
 3564                         continue;
 3565                 nr->no_dh.dh_sigstate = 1;
 3566                 ntoskrnl_waittest(&nr->no_dh, IO_NO_INCREMENT);
 3567                 break;
 3568         }
 3569         mtx_unlock(&ntoskrnl_dispatchlock);
 3570 
 3571         ntoskrnl_kth--;
 3572 
 3573         kproc_exit(0);
 3574         return (0);     /* notreached */
 3575 }
 3576 
 3577 static uint32_t
 3578 DbgPrint(char *fmt, ...)
 3579 {
 3580         va_list                 ap;
 3581 
 3582         if (bootverbose) {
 3583                 va_start(ap, fmt);
 3584                 vprintf(fmt, ap);
 3585                 va_end(ap);
 3586         }
 3587 
 3588         return (STATUS_SUCCESS);
 3589 }
 3590 
 3591 static void
 3592 DbgBreakPoint(void)
 3593 {
 3594 
 3595         kdb_enter(KDB_WHY_NDIS, "DbgBreakPoint(): breakpoint");
 3596 }
 3597 
 3598 static void
 3599 KeBugCheckEx(code, param1, param2, param3, param4)
 3600     uint32_t                    code;
 3601     u_long                      param1;
 3602     u_long                      param2;
 3603     u_long                      param3;
 3604     u_long                      param4;
 3605 {
 3606         panic("KeBugCheckEx: STOP 0x%X", code);
 3607 }
 3608 
 3609 static void
 3610 ntoskrnl_timercall(arg)
 3611         void                    *arg;
 3612 {
 3613         ktimer                  *timer;
 3614         struct timeval          tv;
 3615         kdpc                    *dpc;
 3616 
 3617         mtx_lock(&ntoskrnl_dispatchlock);
 3618 
 3619         timer = arg;
 3620 
 3621 #ifdef NTOSKRNL_DEBUG_TIMERS
 3622         ntoskrnl_timer_fires++;
 3623 #endif
 3624         ntoskrnl_remove_timer(timer);
 3625 
 3626         /*
 3627          * This should never happen, but complain
 3628          * if it does.
 3629          */
 3630 
 3631         if (timer->k_header.dh_inserted == FALSE) {
 3632                 mtx_unlock(&ntoskrnl_dispatchlock);
 3633                 printf("NTOS: timer %p fired even though "
 3634                     "it was canceled\n", timer);
 3635                 return;
 3636         }
 3637 
 3638         /* Mark the timer as no longer being on the timer queue. */
 3639 
 3640         timer->k_header.dh_inserted = FALSE;
 3641 
 3642         /* Now signal the object and satisfy any waits on it. */
 3643 
 3644         timer->k_header.dh_sigstate = 1;
 3645         ntoskrnl_waittest(&timer->k_header, IO_NO_INCREMENT);
 3646 
 3647         /*
 3648          * If this is a periodic timer, re-arm it
 3649          * so it will fire again. We do this before
 3650          * calling any deferred procedure calls because
 3651          * it's possible the DPC might cancel the timer,
 3652          * in which case it would be wrong for us to
 3653          * re-arm it again afterwards.
 3654          */
 3655 
 3656         if (timer->k_period) {
 3657                 tv.tv_sec = 0;
 3658                 tv.tv_usec = timer->k_period * 1000;
 3659                 timer->k_header.dh_inserted = TRUE;
 3660                 ntoskrnl_insert_timer(timer, tvtohz(&tv));
 3661 #ifdef NTOSKRNL_DEBUG_TIMERS
 3662                 ntoskrnl_timer_reloads++;
 3663 #endif
 3664         }
 3665 
 3666         dpc = timer->k_dpc;
 3667 
 3668         mtx_unlock(&ntoskrnl_dispatchlock);
 3669 
 3670         /* If there's a DPC associated with the timer, queue it up. */
 3671 
 3672         if (dpc != NULL)
 3673                 KeInsertQueueDpc(dpc, NULL, NULL);
 3674 }
 3675 
 3676 #ifdef NTOSKRNL_DEBUG_TIMERS
 3677 static int
 3678 sysctl_show_timers(SYSCTL_HANDLER_ARGS)
 3679 {
 3680         int                     ret;
 3681 
 3682         ret = 0;
 3683         ntoskrnl_show_timers();
 3684         return (sysctl_handle_int(oidp, &ret, 0, req));
 3685 }
 3686 
 3687 static void
 3688 ntoskrnl_show_timers()
 3689 {
 3690         int                     i = 0;
 3691         list_entry              *l;
 3692 
 3693         mtx_lock_spin(&ntoskrnl_calllock);
 3694         l = ntoskrnl_calllist.nle_flink;
 3695         while(l != &ntoskrnl_calllist) {
 3696                 i++;
 3697                 l = l->nle_flink;
 3698         }
 3699         mtx_unlock_spin(&ntoskrnl_calllock);
 3700 
 3701         printf("\n");
 3702         printf("%d timers available (out of %d)\n", i, NTOSKRNL_TIMEOUTS);
 3703         printf("timer sets: %qu\n", ntoskrnl_timer_sets);
 3704         printf("timer reloads: %qu\n", ntoskrnl_timer_reloads);
 3705         printf("timer cancels: %qu\n", ntoskrnl_timer_cancels);
 3706         printf("timer fires: %qu\n", ntoskrnl_timer_fires);
 3707         printf("\n");
 3708 }
 3709 #endif
 3710 
 3711 /*
 3712  * Must be called with dispatcher lock held.
 3713  */
 3714 
 3715 static void
 3716 ntoskrnl_insert_timer(timer, ticks)
 3717         ktimer                  *timer;
 3718         int                     ticks;
 3719 {
 3720         callout_entry           *e;
 3721         list_entry              *l;
 3722         struct callout          *c;
 3723 
 3724         /*
 3725          * Try and allocate a timer.
 3726          */
 3727         mtx_lock_spin(&ntoskrnl_calllock);
 3728         if (IsListEmpty(&ntoskrnl_calllist)) {
 3729                 mtx_unlock_spin(&ntoskrnl_calllock);
 3730 #ifdef NTOSKRNL_DEBUG_TIMERS
 3731                 ntoskrnl_show_timers();
 3732 #endif
 3733                 panic("out of timers!");
 3734         }
 3735         l = RemoveHeadList(&ntoskrnl_calllist);
 3736         mtx_unlock_spin(&ntoskrnl_calllock);
 3737 
 3738         e = CONTAINING_RECORD(l, callout_entry, ce_list);
 3739         c = &e->ce_callout;
 3740 
 3741         timer->k_callout = c;
 3742 
 3743         callout_init(c, 1);
 3744         callout_reset(c, ticks, ntoskrnl_timercall, timer);
 3745 }
 3746 
 3747 static void
 3748 ntoskrnl_remove_timer(timer)
 3749         ktimer                  *timer;
 3750 {
 3751         callout_entry           *e;
 3752 
 3753         e = (callout_entry *)timer->k_callout;
 3754         callout_stop(timer->k_callout);
 3755 
 3756         mtx_lock_spin(&ntoskrnl_calllock);
 3757         InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
 3758         mtx_unlock_spin(&ntoskrnl_calllock);
 3759 }
 3760 
 3761 void
 3762 KeInitializeTimer(timer)
 3763         ktimer                  *timer;
 3764 {
 3765         if (timer == NULL)
 3766                 return;
 3767 
 3768         KeInitializeTimerEx(timer,  EVENT_TYPE_NOTIFY);
 3769 }
 3770 
 3771 void
 3772 KeInitializeTimerEx(timer, type)
 3773         ktimer                  *timer;
 3774         uint32_t                type;
 3775 {
 3776         if (timer == NULL)
 3777                 return;
 3778 
 3779         bzero((char *)timer, sizeof(ktimer));
 3780         InitializeListHead((&timer->k_header.dh_waitlisthead));
 3781         timer->k_header.dh_sigstate = FALSE;
 3782         timer->k_header.dh_inserted = FALSE;
 3783         if (type == EVENT_TYPE_NOTIFY)
 3784                 timer->k_header.dh_type = DISP_TYPE_NOTIFICATION_TIMER;
 3785         else
 3786                 timer->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_TIMER;
 3787         timer->k_header.dh_size = sizeof(ktimer) / sizeof(uint32_t);
 3788 }
 3789 
 3790 /*
 3791  * DPC subsystem. A Windows Defered Procedure Call has the following
 3792  * properties:
 3793  * - It runs at DISPATCH_LEVEL.
 3794  * - It can have one of 3 importance values that control when it
 3795  *   runs relative to other DPCs in the queue.
 3796  * - On SMP systems, it can be set to run on a specific processor.
 3797  * In order to satisfy the last property, we create a DPC thread for
 3798  * each CPU in the system and bind it to that CPU. Each thread
 3799  * maintains three queues with different importance levels, which
 3800  * will be processed in order from lowest to highest.
 3801  *
 3802  * In Windows, interrupt handlers run as DPCs. (Not to be confused
 3803  * with ISRs, which run in interrupt context and can preempt DPCs.)
 3804  * ISRs are given the highest importance so that they'll take
 3805  * precedence over timers and other things.
 3806  */
 3807 
 3808 static void
 3809 ntoskrnl_dpc_thread(arg)
 3810         void                    *arg;
 3811 {
 3812         kdpc_queue              *kq;
 3813         kdpc                    *d;
 3814         list_entry              *l;
 3815         uint8_t                 irql;
 3816 
 3817         kq = arg;
 3818 
 3819         InitializeListHead(&kq->kq_disp);
 3820         kq->kq_td = curthread;
 3821         kq->kq_exit = 0;
 3822         kq->kq_running = FALSE;
 3823         KeInitializeSpinLock(&kq->kq_lock);
 3824         KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
 3825         KeInitializeEvent(&kq->kq_done, EVENT_TYPE_SYNC, FALSE);
 3826 
 3827         /*
 3828          * Elevate our priority. DPCs are used to run interrupt
 3829          * handlers, and they should trigger as soon as possible
 3830          * once scheduled by an ISR.
 3831          */
 3832 
 3833         thread_lock(curthread);
 3834 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3835         sched_bind(curthread, kq->kq_cpu);
 3836 #endif
 3837         sched_prio(curthread, PRI_MIN_KERN);
 3838         thread_unlock(curthread);
 3839 
 3840         while (1) {
 3841                 KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
 3842 
 3843                 KeAcquireSpinLock(&kq->kq_lock, &irql);
 3844 
 3845                 if (kq->kq_exit) {
 3846                         kq->kq_exit = 0;
 3847                         KeReleaseSpinLock(&kq->kq_lock, irql);
 3848                         break;
 3849                 }
 3850 
 3851                 kq->kq_running = TRUE;
 3852 
 3853                 while (!IsListEmpty(&kq->kq_disp)) {
 3854                         l = RemoveHeadList((&kq->kq_disp));
 3855                         d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
 3856                         InitializeListHead((&d->k_dpclistentry));
 3857                         KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
 3858                         MSCALL4(d->k_deferedfunc, d, d->k_deferredctx,
 3859                             d->k_sysarg1, d->k_sysarg2);
 3860                         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
 3861                 }
 3862 
 3863                 kq->kq_running = FALSE;
 3864 
 3865                 KeReleaseSpinLock(&kq->kq_lock, irql);
 3866 
 3867                 KeSetEvent(&kq->kq_done, IO_NO_INCREMENT, FALSE);
 3868         }
 3869 
 3870         kproc_exit(0);
 3871         return; /* notreached */
 3872 }
 3873 
 3874 static void
 3875 ntoskrnl_destroy_dpc_threads(void)
 3876 {
 3877         kdpc_queue              *kq;
 3878         kdpc                    dpc;
 3879         int                     i;
 3880 
 3881         kq = kq_queues;
 3882 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3883         for (i = 0; i < mp_ncpus; i++) {
 3884 #else
 3885         for (i = 0; i < 1; i++) {
 3886 #endif
 3887                 kq += i;
 3888 
 3889                 kq->kq_exit = 1;
 3890                 KeInitializeDpc(&dpc, NULL, NULL);
 3891                 KeSetTargetProcessorDpc(&dpc, i);
 3892                 KeInsertQueueDpc(&dpc, NULL, NULL);
 3893                 while (kq->kq_exit)
 3894                         tsleep(kq->kq_td->td_proc, PWAIT, "dpcw", hz/10);
 3895         }
 3896 }
 3897 
 3898 static uint8_t
 3899 ntoskrnl_insert_dpc(head, dpc)
 3900         list_entry              *head;
 3901         kdpc                    *dpc;
 3902 {
 3903         list_entry              *l;
 3904         kdpc                    *d;
 3905 
 3906         l = head->nle_flink;
 3907         while (l != head) {
 3908                 d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
 3909                 if (d == dpc)
 3910                         return (FALSE);
 3911                 l = l->nle_flink;
 3912         }
 3913 
 3914         if (dpc->k_importance == KDPC_IMPORTANCE_LOW)
 3915                 InsertTailList((head), (&dpc->k_dpclistentry));
 3916         else
 3917                 InsertHeadList((head), (&dpc->k_dpclistentry));
 3918 
 3919         return (TRUE);
 3920 }
 3921 
 3922 void
 3923 KeInitializeDpc(dpc, dpcfunc, dpcctx)
 3924         kdpc                    *dpc;
 3925         void                    *dpcfunc;
 3926         void                    *dpcctx;
 3927 {
 3928 
 3929         if (dpc == NULL)
 3930                 return;
 3931 
 3932         dpc->k_deferedfunc = dpcfunc;
 3933         dpc->k_deferredctx = dpcctx;
 3934         dpc->k_num = KDPC_CPU_DEFAULT;
 3935         dpc->k_importance = KDPC_IMPORTANCE_MEDIUM;
 3936         InitializeListHead((&dpc->k_dpclistentry));
 3937 }
 3938 
 3939 uint8_t
 3940 KeInsertQueueDpc(dpc, sysarg1, sysarg2)
 3941         kdpc                    *dpc;
 3942         void                    *sysarg1;
 3943         void                    *sysarg2;
 3944 {
 3945         kdpc_queue              *kq;
 3946         uint8_t                 r;
 3947         uint8_t                 irql;
 3948 
 3949         if (dpc == NULL)
 3950                 return (FALSE);
 3951 
 3952         kq = kq_queues;
 3953 
 3954 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3955         KeRaiseIrql(DISPATCH_LEVEL, &irql);
 3956 
 3957         /*
 3958          * By default, the DPC is queued to run on the same CPU
 3959          * that scheduled it.
 3960          */
 3961 
 3962         if (dpc->k_num == KDPC_CPU_DEFAULT)
 3963                 kq += curthread->td_oncpu;
 3964         else
 3965                 kq += dpc->k_num;
 3966         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
 3967 #else
 3968         KeAcquireSpinLock(&kq->kq_lock, &irql);
 3969 #endif
 3970 
 3971         r = ntoskrnl_insert_dpc(&kq->kq_disp, dpc);
 3972         if (r == TRUE) {
 3973                 dpc->k_sysarg1 = sysarg1;
 3974                 dpc->k_sysarg2 = sysarg2;
 3975         }
 3976         KeReleaseSpinLock(&kq->kq_lock, irql);
 3977 
 3978         if (r == FALSE)
 3979                 return (r);
 3980 
 3981         KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 3982 
 3983         return (r);
 3984 }
 3985 
 3986 uint8_t
 3987 KeRemoveQueueDpc(dpc)
 3988         kdpc                    *dpc;
 3989 {
 3990         kdpc_queue              *kq;
 3991         uint8_t                 irql;
 3992 
 3993         if (dpc == NULL)
 3994                 return (FALSE);
 3995 
 3996 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3997         KeRaiseIrql(DISPATCH_LEVEL, &irql);
 3998 
 3999         kq = kq_queues + dpc->k_num;
 4000 
 4001         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
 4002 #else
 4003         kq = kq_queues;
 4004         KeAcquireSpinLock(&kq->kq_lock, &irql);
 4005 #endif
 4006 
 4007         if (dpc->k_dpclistentry.nle_flink == &dpc->k_dpclistentry) {
 4008                 KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
 4009                 KeLowerIrql(irql);
 4010                 return (FALSE);
 4011         }
 4012 
 4013         RemoveEntryList((&dpc->k_dpclistentry));
 4014         InitializeListHead((&dpc->k_dpclistentry));
 4015 
 4016         KeReleaseSpinLock(&kq->kq_lock, irql);
 4017 
 4018         return (TRUE);
 4019 }
 4020 
 4021 void
 4022 KeSetImportanceDpc(dpc, imp)
 4023         kdpc                    *dpc;
 4024         uint32_t                imp;
 4025 {
 4026         if (imp != KDPC_IMPORTANCE_LOW &&
 4027             imp != KDPC_IMPORTANCE_MEDIUM &&
 4028             imp != KDPC_IMPORTANCE_HIGH)
 4029                 return;
 4030 
 4031         dpc->k_importance = (uint8_t)imp;
 4032 }
 4033 
 4034 void
 4035 KeSetTargetProcessorDpc(kdpc *dpc, uint8_t cpu)
 4036 {
 4037         if (cpu > mp_ncpus)
 4038                 return;
 4039 
 4040         dpc->k_num = cpu;
 4041 }
 4042 
 4043 void
 4044 KeFlushQueuedDpcs(void)
 4045 {
 4046         kdpc_queue              *kq;
 4047         int                     i;
 4048 
 4049         /*
 4050          * Poke each DPC queue and wait
 4051          * for them to drain.
 4052          */
 4053 
 4054 #ifdef NTOSKRNL_MULTIPLE_DPCS
 4055         for (i = 0; i < mp_ncpus; i++) {
 4056 #else
 4057         for (i = 0; i < 1; i++) {
 4058 #endif
 4059                 kq = kq_queues + i;
 4060                 KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 4061                 KeWaitForSingleObject(&kq->kq_done, 0, 0, TRUE, NULL);
 4062         }
 4063 }
 4064 
 4065 uint32_t
 4066 KeGetCurrentProcessorNumber(void)
 4067 {
 4068         return ((uint32_t)curthread->td_oncpu);
 4069 }
 4070 
 4071 uint8_t
 4072 KeSetTimerEx(timer, duetime, period, dpc)
 4073         ktimer                  *timer;
 4074         int64_t                 duetime;
 4075         uint32_t                period;
 4076         kdpc                    *dpc;
 4077 {
 4078         struct timeval          tv;
 4079         uint64_t                curtime;
 4080         uint8_t                 pending;
 4081 
 4082         if (timer == NULL)
 4083                 return (FALSE);
 4084 
 4085         mtx_lock(&ntoskrnl_dispatchlock);
 4086 
 4087         if (timer->k_header.dh_inserted == TRUE) {
 4088                 ntoskrnl_remove_timer(timer);
 4089 #ifdef NTOSKRNL_DEBUG_TIMERS
 4090                 ntoskrnl_timer_cancels++;
 4091 #endif
 4092                 timer->k_header.dh_inserted = FALSE;
 4093                 pending = TRUE;
 4094         } else
 4095                 pending = FALSE;
 4096 
 4097         timer->k_duetime = duetime;
 4098         timer->k_period = period;
 4099         timer->k_header.dh_sigstate = FALSE;
 4100         timer->k_dpc = dpc;
 4101 
 4102         if (duetime < 0) {
 4103                 tv.tv_sec = - (duetime) / 10000000;
 4104                 tv.tv_usec = (- (duetime) / 10) -
 4105                     (tv.tv_sec * 1000000);
 4106         } else {
 4107                 ntoskrnl_time(&curtime);
 4108                 if (duetime < curtime)
 4109                         tv.tv_sec = tv.tv_usec = 0;
 4110                 else {
 4111                         tv.tv_sec = ((duetime) - curtime) / 10000000;
 4112                         tv.tv_usec = ((duetime) - curtime) / 10 -
 4113                             (tv.tv_sec * 1000000);
 4114                 }
 4115         }
 4116 
 4117         timer->k_header.dh_inserted = TRUE;
 4118         ntoskrnl_insert_timer(timer, tvtohz(&tv));
 4119 #ifdef NTOSKRNL_DEBUG_TIMERS
 4120         ntoskrnl_timer_sets++;
 4121 #endif
 4122 
 4123         mtx_unlock(&ntoskrnl_dispatchlock);
 4124 
 4125         return (pending);
 4126 }
 4127 
 4128 uint8_t
 4129 KeSetTimer(timer, duetime, dpc)
 4130         ktimer                  *timer;
 4131         int64_t                 duetime;
 4132         kdpc                    *dpc;
 4133 {
 4134         return (KeSetTimerEx(timer, duetime, 0, dpc));
 4135 }
 4136 
 4137 /*
 4138  * The Windows DDK documentation seems to say that cancelling
 4139  * a timer that has a DPC will result in the DPC also being
 4140  * cancelled, but this isn't really the case.
 4141  */
 4142 
 4143 uint8_t
 4144 KeCancelTimer(timer)
 4145         ktimer                  *timer;
 4146 {
 4147         uint8_t                 pending;
 4148 
 4149         if (timer == NULL)
 4150                 return (FALSE);
 4151 
 4152         mtx_lock(&ntoskrnl_dispatchlock);
 4153 
 4154         pending = timer->k_header.dh_inserted;
 4155 
 4156         if (timer->k_header.dh_inserted == TRUE) {
 4157                 timer->k_header.dh_inserted = FALSE;
 4158                 ntoskrnl_remove_timer(timer);
 4159 #ifdef NTOSKRNL_DEBUG_TIMERS
 4160                 ntoskrnl_timer_cancels++;
 4161 #endif
 4162         }
 4163 
 4164         mtx_unlock(&ntoskrnl_dispatchlock);
 4165 
 4166         return (pending);
 4167 }
 4168 
 4169 uint8_t
 4170 KeReadStateTimer(timer)
 4171         ktimer                  *timer;
 4172 {
 4173         return (timer->k_header.dh_sigstate);
 4174 }
 4175 
 4176 static int32_t
 4177 KeDelayExecutionThread(uint8_t wait_mode, uint8_t alertable, int64_t *interval)
 4178 {
 4179         ktimer                  timer;
 4180 
 4181         if (wait_mode != 0)
 4182                 panic("invalid wait_mode %d", wait_mode);
 4183 
 4184         KeInitializeTimer(&timer);
 4185         KeSetTimer(&timer, *interval, NULL);
 4186         KeWaitForSingleObject(&timer, 0, 0, alertable, NULL);
 4187 
 4188         return STATUS_SUCCESS;
 4189 }
 4190 
 4191 static uint64_t
 4192 KeQueryInterruptTime(void)
 4193 {
 4194         int ticks;
 4195         struct timeval tv;
 4196 
 4197         getmicrouptime(&tv);
 4198 
 4199         ticks = tvtohz(&tv);
 4200 
 4201         return ticks * howmany(10000000, hz);
 4202 }
 4203 
 4204 static struct thread *
 4205 KeGetCurrentThread(void)
 4206 {
 4207 
 4208         return curthread;
 4209 }
 4210 
 4211 static int32_t
 4212 KeSetPriorityThread(td, pri)
 4213         struct thread   *td;
 4214         int32_t         pri;
 4215 {
 4216         int32_t old;
 4217 
 4218         if (td == NULL)
 4219                 return LOW_REALTIME_PRIORITY;
 4220 
 4221         if (td->td_priority <= PRI_MIN_KERN)
 4222                 old = HIGH_PRIORITY;
 4223         else if (td->td_priority >= PRI_MAX_KERN)
 4224                 old = LOW_PRIORITY;
 4225         else
 4226                 old = LOW_REALTIME_PRIORITY;
 4227 
 4228         thread_lock(td);
 4229         if (pri == HIGH_PRIORITY)
 4230                 sched_prio(td, PRI_MIN_KERN);
 4231         if (pri == LOW_REALTIME_PRIORITY)
 4232                 sched_prio(td, PRI_MIN_KERN + (PRI_MAX_KERN - PRI_MIN_KERN) / 2);
 4233         if (pri == LOW_PRIORITY)
 4234                 sched_prio(td, PRI_MAX_KERN);
 4235         thread_unlock(td);
 4236 
 4237         return old;
 4238 }
 4239 
 4240 static void
 4241 dummy()
 4242 {
 4243         printf("ntoskrnl dummy called...\n");
 4244 }
 4245 
 4246 image_patch_table ntoskrnl_functbl[] = {
 4247         IMPORT_SFUNC(RtlZeroMemory, 2),
 4248         IMPORT_SFUNC(RtlSecureZeroMemory, 2),
 4249         IMPORT_SFUNC(RtlFillMemory, 3),
 4250         IMPORT_SFUNC(RtlMoveMemory, 3),
 4251         IMPORT_SFUNC(RtlCharToInteger, 3),
 4252         IMPORT_SFUNC(RtlCopyMemory, 3),
 4253         IMPORT_SFUNC(RtlCopyString, 2),
 4254         IMPORT_SFUNC(RtlCompareMemory, 3),
 4255         IMPORT_SFUNC(RtlEqualUnicodeString, 3),
 4256         IMPORT_SFUNC(RtlCopyUnicodeString, 2),
 4257         IMPORT_SFUNC(RtlUnicodeStringToAnsiString, 3),
 4258         IMPORT_SFUNC(RtlAnsiStringToUnicodeString, 3),
 4259         IMPORT_SFUNC(RtlInitAnsiString, 2),
 4260         IMPORT_SFUNC_MAP(RtlInitString, RtlInitAnsiString, 2),
 4261         IMPORT_SFUNC(RtlInitUnicodeString, 2),
 4262         IMPORT_SFUNC(RtlFreeAnsiString, 1),
 4263         IMPORT_SFUNC(RtlFreeUnicodeString, 1),
 4264         IMPORT_SFUNC(RtlUnicodeStringToInteger, 3),
 4265         IMPORT_CFUNC(sprintf, 0),
 4266         IMPORT_CFUNC(vsprintf, 0),
 4267         IMPORT_CFUNC_MAP(_snprintf, snprintf, 0),
 4268         IMPORT_CFUNC_MAP(_vsnprintf, vsnprintf, 0),
 4269         IMPORT_CFUNC(DbgPrint, 0),
 4270         IMPORT_SFUNC(DbgBreakPoint, 0),
 4271         IMPORT_SFUNC(KeBugCheckEx, 5),
 4272         IMPORT_CFUNC(strncmp, 0),
 4273         IMPORT_CFUNC(strcmp, 0),
 4274         IMPORT_CFUNC_MAP(stricmp, strcasecmp, 0),
 4275         IMPORT_CFUNC(strncpy, 0),
 4276         IMPORT_CFUNC(strcpy, 0),
 4277         IMPORT_CFUNC(strlen, 0),
 4278         IMPORT_CFUNC_MAP(toupper, ntoskrnl_toupper, 0),
 4279         IMPORT_CFUNC_MAP(tolower, ntoskrnl_tolower, 0),
 4280         IMPORT_CFUNC_MAP(strstr, ntoskrnl_strstr, 0),
 4281         IMPORT_CFUNC_MAP(strncat, ntoskrnl_strncat, 0),
 4282         IMPORT_CFUNC_MAP(strchr, index, 0),
 4283         IMPORT_CFUNC_MAP(strrchr, rindex, 0),
 4284         IMPORT_CFUNC(memcpy, 0),
 4285         IMPORT_CFUNC_MAP(memmove, ntoskrnl_memmove, 0),
 4286         IMPORT_CFUNC_MAP(memset, ntoskrnl_memset, 0),
 4287         IMPORT_CFUNC_MAP(memchr, ntoskrnl_memchr, 0),
 4288         IMPORT_SFUNC(IoAllocateDriverObjectExtension, 4),
 4289         IMPORT_SFUNC(IoGetDriverObjectExtension, 2),
 4290         IMPORT_FFUNC(IofCallDriver, 2),
 4291         IMPORT_FFUNC(IofCompleteRequest, 2),
 4292         IMPORT_SFUNC(IoAcquireCancelSpinLock, 1),
 4293         IMPORT_SFUNC(IoReleaseCancelSpinLock, 1),
 4294         IMPORT_SFUNC(IoCancelIrp, 1),
 4295         IMPORT_SFUNC(IoConnectInterrupt, 11),
 4296         IMPORT_SFUNC(IoDisconnectInterrupt, 1),
 4297         IMPORT_SFUNC(IoCreateDevice, 7),
 4298         IMPORT_SFUNC(IoDeleteDevice, 1),
 4299         IMPORT_SFUNC(IoGetAttachedDevice, 1),
 4300         IMPORT_SFUNC(IoAttachDeviceToDeviceStack, 2),
 4301         IMPORT_SFUNC(IoDetachDevice, 1),
 4302         IMPORT_SFUNC(IoBuildSynchronousFsdRequest, 7),
 4303         IMPORT_SFUNC(IoBuildAsynchronousFsdRequest, 6),
 4304         IMPORT_SFUNC(IoBuildDeviceIoControlRequest, 9),
 4305         IMPORT_SFUNC(IoAllocateIrp, 2),
 4306         IMPORT_SFUNC(IoReuseIrp, 2),
 4307         IMPORT_SFUNC(IoMakeAssociatedIrp, 2),
 4308         IMPORT_SFUNC(IoFreeIrp, 1),
 4309         IMPORT_SFUNC(IoInitializeIrp, 3),
 4310         IMPORT_SFUNC(KeAcquireInterruptSpinLock, 1),
 4311         IMPORT_SFUNC(KeReleaseInterruptSpinLock, 2),
 4312         IMPORT_SFUNC(KeSynchronizeExecution, 3),
 4313         IMPORT_SFUNC(KeWaitForSingleObject, 5),
 4314         IMPORT_SFUNC(KeWaitForMultipleObjects, 8),
 4315         IMPORT_SFUNC(_allmul, 4),
 4316         IMPORT_SFUNC(_alldiv, 4),
 4317         IMPORT_SFUNC(_allrem, 4),
 4318         IMPORT_RFUNC(_allshr, 0),
 4319         IMPORT_RFUNC(_allshl, 0),
 4320         IMPORT_SFUNC(_aullmul, 4),
 4321         IMPORT_SFUNC(_aulldiv, 4),
 4322         IMPORT_SFUNC(_aullrem, 4),
 4323         IMPORT_RFUNC(_aullshr, 0),
 4324         IMPORT_RFUNC(_aullshl, 0),
 4325         IMPORT_CFUNC(atoi, 0),
 4326         IMPORT_CFUNC(atol, 0),
 4327         IMPORT_CFUNC(rand, 0),
 4328         IMPORT_CFUNC(srand, 0),
 4329         IMPORT_SFUNC(WRITE_REGISTER_USHORT, 2),
 4330         IMPORT_SFUNC(READ_REGISTER_USHORT, 1),
 4331         IMPORT_SFUNC(WRITE_REGISTER_ULONG, 2),
 4332         IMPORT_SFUNC(READ_REGISTER_ULONG, 1),
 4333         IMPORT_SFUNC(READ_REGISTER_UCHAR, 1),
 4334         IMPORT_SFUNC(WRITE_REGISTER_UCHAR, 2),
 4335         IMPORT_SFUNC(ExInitializePagedLookasideList, 7),
 4336         IMPORT_SFUNC(ExDeletePagedLookasideList, 1),
 4337         IMPORT_SFUNC(ExInitializeNPagedLookasideList, 7),
 4338         IMPORT_SFUNC(ExDeleteNPagedLookasideList, 1),
 4339         IMPORT_FFUNC(InterlockedPopEntrySList, 1),
 4340         IMPORT_FFUNC(InitializeSListHead, 1),
 4341         IMPORT_FFUNC(InterlockedPushEntrySList, 2),
 4342         IMPORT_SFUNC(ExQueryDepthSList, 1),
 4343         IMPORT_FFUNC_MAP(ExpInterlockedPopEntrySList,
 4344                 InterlockedPopEntrySList, 1),
 4345         IMPORT_FFUNC_MAP(ExpInterlockedPushEntrySList,
 4346                 InterlockedPushEntrySList, 2),
 4347         IMPORT_FFUNC(ExInterlockedPopEntrySList, 2),
 4348         IMPORT_FFUNC(ExInterlockedPushEntrySList, 3),
 4349         IMPORT_SFUNC(ExAllocatePoolWithTag, 3),
 4350         IMPORT_SFUNC(ExFreePoolWithTag, 2),
 4351         IMPORT_SFUNC(ExFreePool, 1),
 4352 #ifdef __i386__
 4353         IMPORT_FFUNC(KefAcquireSpinLockAtDpcLevel, 1),
 4354         IMPORT_FFUNC(KefReleaseSpinLockFromDpcLevel,1),
 4355         IMPORT_FFUNC(KeAcquireSpinLockRaiseToDpc, 1),
 4356 #else
 4357         /*
 4358          * For AMD64, we can get away with just mapping
 4359          * KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
 4360          * because the calling conventions end up being the same.
 4361          * On i386, we have to be careful because KfAcquireSpinLock()
 4362          * is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't.
 4363          */
 4364         IMPORT_SFUNC(KeAcquireSpinLockAtDpcLevel, 1),
 4365         IMPORT_SFUNC(KeReleaseSpinLockFromDpcLevel, 1),
 4366         IMPORT_SFUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock, 1),
 4367 #endif
 4368         IMPORT_SFUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock, 1),
 4369         IMPORT_FFUNC(InterlockedIncrement, 1),
 4370         IMPORT_FFUNC(InterlockedDecrement, 1),
 4371         IMPORT_FFUNC(InterlockedExchange, 2),
 4372         IMPORT_FFUNC(ExInterlockedAddLargeStatistic, 2),
 4373         IMPORT_SFUNC(IoAllocateMdl, 5),
 4374         IMPORT_SFUNC(IoFreeMdl, 1),
 4375         IMPORT_SFUNC(MmAllocateContiguousMemory, 2 + 1),
 4376         IMPORT_SFUNC(MmAllocateContiguousMemorySpecifyCache, 5 + 3),
 4377         IMPORT_SFUNC(MmFreeContiguousMemory, 1),
 4378         IMPORT_SFUNC(MmFreeContiguousMemorySpecifyCache, 3),
 4379         IMPORT_SFUNC(MmSizeOfMdl, 1),
 4380         IMPORT_SFUNC(MmMapLockedPages, 2),
 4381         IMPORT_SFUNC(MmMapLockedPagesSpecifyCache, 6),
 4382         IMPORT_SFUNC(MmUnmapLockedPages, 2),
 4383         IMPORT_SFUNC(MmBuildMdlForNonPagedPool, 1),
 4384         IMPORT_SFUNC(MmGetPhysicalAddress, 1),
 4385         IMPORT_SFUNC(MmGetSystemRoutineAddress, 1),
 4386         IMPORT_SFUNC(MmIsAddressValid, 1),
 4387         IMPORT_SFUNC(MmMapIoSpace, 3 + 1),
 4388         IMPORT_SFUNC(MmUnmapIoSpace, 2),
 4389         IMPORT_SFUNC(KeInitializeSpinLock, 1),
 4390         IMPORT_SFUNC(IoIsWdmVersionAvailable, 2),
 4391         IMPORT_SFUNC(IoOpenDeviceRegistryKey, 4),
 4392         IMPORT_SFUNC(IoGetDeviceObjectPointer, 4),
 4393         IMPORT_SFUNC(IoGetDeviceProperty, 5),
 4394         IMPORT_SFUNC(IoAllocateWorkItem, 1),
 4395         IMPORT_SFUNC(IoFreeWorkItem, 1),
 4396         IMPORT_SFUNC(IoQueueWorkItem, 4),
 4397         IMPORT_SFUNC(ExQueueWorkItem, 2),
 4398         IMPORT_SFUNC(ntoskrnl_workitem, 2),
 4399         IMPORT_SFUNC(KeInitializeMutex, 2),
 4400         IMPORT_SFUNC(KeReleaseMutex, 2),
 4401         IMPORT_SFUNC(KeReadStateMutex, 1),
 4402         IMPORT_SFUNC(KeInitializeEvent, 3),
 4403         IMPORT_SFUNC(KeSetEvent, 3),
 4404         IMPORT_SFUNC(KeResetEvent, 1),
 4405         IMPORT_SFUNC(KeClearEvent, 1),
 4406         IMPORT_SFUNC(KeReadStateEvent, 1),
 4407         IMPORT_SFUNC(KeInitializeTimer, 1),
 4408         IMPORT_SFUNC(KeInitializeTimerEx, 2),
 4409         IMPORT_SFUNC(KeSetTimer, 3),
 4410         IMPORT_SFUNC(KeSetTimerEx, 4),
 4411         IMPORT_SFUNC(KeCancelTimer, 1),
 4412         IMPORT_SFUNC(KeReadStateTimer, 1),
 4413         IMPORT_SFUNC(KeInitializeDpc, 3),
 4414         IMPORT_SFUNC(KeInsertQueueDpc, 3),
 4415         IMPORT_SFUNC(KeRemoveQueueDpc, 1),
 4416         IMPORT_SFUNC(KeSetImportanceDpc, 2),
 4417         IMPORT_SFUNC(KeSetTargetProcessorDpc, 2),
 4418         IMPORT_SFUNC(KeFlushQueuedDpcs, 0),
 4419         IMPORT_SFUNC(KeGetCurrentProcessorNumber, 1),
 4420         IMPORT_SFUNC(ObReferenceObjectByHandle, 6),
 4421         IMPORT_FFUNC(ObfDereferenceObject, 1),
 4422         IMPORT_SFUNC(ZwClose, 1),
 4423         IMPORT_SFUNC(PsCreateSystemThread, 7),
 4424         IMPORT_SFUNC(PsTerminateSystemThread, 1),
 4425         IMPORT_SFUNC(IoWMIRegistrationControl, 2),
 4426         IMPORT_SFUNC(WmiQueryTraceInformation, 5),
 4427         IMPORT_CFUNC(WmiTraceMessage, 0),
 4428         IMPORT_SFUNC(KeQuerySystemTime, 1),
 4429         IMPORT_CFUNC(KeTickCount, 0),
 4430         IMPORT_SFUNC(KeDelayExecutionThread, 3),
 4431         IMPORT_SFUNC(KeQueryInterruptTime, 0),
 4432         IMPORT_SFUNC(KeGetCurrentThread, 0),
 4433         IMPORT_SFUNC(KeSetPriorityThread, 2),
 4434 
 4435         /*
 4436          * This last entry is a catch-all for any function we haven't
 4437          * implemented yet. The PE import list patching routine will
 4438          * use it for any function that doesn't have an explicit match
 4439          * in this table.
 4440          */
 4441 
 4442         { NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
 4443 
 4444         /* End of list. */
 4445         { NULL, NULL, NULL }
 4446 };

Cache object: ac65350f64fbbc6657c396f07a6aa84d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.