The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/compat/ndis/subr_ntoskrnl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003
    3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/8.0/sys/compat/ndis/subr_ntoskrnl.c 189942 2009-03-18 01:57:54Z weongyo $");
   35 
   36 #include <sys/ctype.h>
   37 #include <sys/unistd.h>
   38 #include <sys/param.h>
   39 #include <sys/types.h>
   40 #include <sys/errno.h>
   41 #include <sys/systm.h>
   42 #include <sys/malloc.h>
   43 #include <sys/lock.h>
   44 #include <sys/mutex.h>
   45 
   46 #include <sys/callout.h>
   47 #if __FreeBSD_version > 502113
   48 #include <sys/kdb.h>
   49 #endif
   50 #include <sys/kernel.h>
   51 #include <sys/proc.h>
   52 #include <sys/condvar.h>
   53 #include <sys/kthread.h>
   54 #include <sys/module.h>
   55 #include <sys/smp.h>
   56 #include <sys/sched.h>
   57 #include <sys/sysctl.h>
   58 
   59 #include <machine/atomic.h>
   60 #include <machine/bus.h>
   61 #include <machine/stdarg.h>
   62 #include <machine/resource.h>
   63 
   64 #include <sys/bus.h>
   65 #include <sys/rman.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/vm_param.h>
   69 #include <vm/pmap.h>
   70 #include <vm/uma.h>
   71 #include <vm/vm_kern.h>
   72 #include <vm/vm_map.h>
   73 
   74 #include <compat/ndis/pe_var.h>
   75 #include <compat/ndis/cfg_var.h>
   76 #include <compat/ndis/resource_var.h>
   77 #include <compat/ndis/ntoskrnl_var.h>
   78 #include <compat/ndis/hal_var.h>
   79 #include <compat/ndis/ndis_var.h>
   80 
   81 #ifdef NTOSKRNL_DEBUG_TIMERS
   82 static int sysctl_show_timers(SYSCTL_HANDLER_ARGS);
   83 
   84 SYSCTL_PROC(_debug, OID_AUTO, ntoskrnl_timers, CTLFLAG_RW, 0, 0,
   85         sysctl_show_timers, "I", "Show ntoskrnl timer stats");
   86 #endif
   87 
   88 struct kdpc_queue {
   89         list_entry              kq_disp;
   90         struct thread           *kq_td;
   91         int                     kq_cpu;
   92         int                     kq_exit;
   93         int                     kq_running;
   94         kspin_lock              kq_lock;
   95         nt_kevent               kq_proc;
   96         nt_kevent               kq_done;
   97 };
   98 
   99 typedef struct kdpc_queue kdpc_queue;
  100 
  101 struct wb_ext {
  102         struct cv               we_cv;
  103         struct thread           *we_td;
  104 };
  105 
  106 typedef struct wb_ext wb_ext;
  107 
  108 #define NTOSKRNL_TIMEOUTS       256
  109 #ifdef NTOSKRNL_DEBUG_TIMERS
  110 static uint64_t ntoskrnl_timer_fires;
  111 static uint64_t ntoskrnl_timer_sets;
  112 static uint64_t ntoskrnl_timer_reloads;
  113 static uint64_t ntoskrnl_timer_cancels;
  114 #endif
  115 
  116 struct callout_entry {
  117         struct callout          ce_callout;
  118         list_entry              ce_list;
  119 };
  120 
  121 typedef struct callout_entry callout_entry;
  122 
  123 static struct list_entry ntoskrnl_calllist;
  124 static struct mtx ntoskrnl_calllock;
  125 
  126 static struct list_entry ntoskrnl_intlist;
  127 static kspin_lock ntoskrnl_intlock;
  128 
  129 static uint8_t RtlEqualUnicodeString(unicode_string *,
  130         unicode_string *, uint8_t);
  131 static void RtlCopyUnicodeString(unicode_string *,
  132         unicode_string *);
  133 static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *,
  134          void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *);
  135 static irp *IoBuildAsynchronousFsdRequest(uint32_t,
  136         device_object *, void *, uint32_t, uint64_t *, io_status_block *);
  137 static irp *IoBuildDeviceIoControlRequest(uint32_t,
  138         device_object *, void *, uint32_t, void *, uint32_t,
  139         uint8_t, nt_kevent *, io_status_block *);
  140 static irp *IoAllocateIrp(uint8_t, uint8_t);
  141 static void IoReuseIrp(irp *, uint32_t);
  142 static void IoFreeIrp(irp *);
  143 static void IoInitializeIrp(irp *, uint16_t, uint8_t);
  144 static irp *IoMakeAssociatedIrp(irp *, uint8_t);
  145 static uint32_t KeWaitForMultipleObjects(uint32_t,
  146         nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
  147         int64_t *, wait_block *);
  148 static void ntoskrnl_waittest(nt_dispatch_header *, uint32_t);
  149 static void ntoskrnl_satisfy_wait(nt_dispatch_header *, struct thread *);
  150 static void ntoskrnl_satisfy_multiple_waits(wait_block *);
  151 static int ntoskrnl_is_signalled(nt_dispatch_header *, struct thread *);
  152 static void ntoskrnl_insert_timer(ktimer *, int);
  153 static void ntoskrnl_remove_timer(ktimer *);
  154 #ifdef NTOSKRNL_DEBUG_TIMERS
  155 static void ntoskrnl_show_timers(void);
  156 #endif
  157 static void ntoskrnl_timercall(void *);
  158 static void ntoskrnl_dpc_thread(void *);
  159 static void ntoskrnl_destroy_dpc_threads(void);
  160 static void ntoskrnl_destroy_workitem_threads(void);
  161 static void ntoskrnl_workitem_thread(void *);
  162 static void ntoskrnl_workitem(device_object *, void *);
  163 static void ntoskrnl_unicode_to_ascii(uint16_t *, char *, int);
  164 static void ntoskrnl_ascii_to_unicode(char *, uint16_t *, int);
  165 static uint8_t ntoskrnl_insert_dpc(list_entry *, kdpc *);
  166 static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t);
  167 static uint16_t READ_REGISTER_USHORT(uint16_t *);
  168 static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t);
  169 static uint32_t READ_REGISTER_ULONG(uint32_t *);
  170 static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t);
  171 static uint8_t READ_REGISTER_UCHAR(uint8_t *);
  172 static int64_t _allmul(int64_t, int64_t);
  173 static int64_t _alldiv(int64_t, int64_t);
  174 static int64_t _allrem(int64_t, int64_t);
  175 static int64_t _allshr(int64_t, uint8_t);
  176 static int64_t _allshl(int64_t, uint8_t);
  177 static uint64_t _aullmul(uint64_t, uint64_t);
  178 static uint64_t _aulldiv(uint64_t, uint64_t);
  179 static uint64_t _aullrem(uint64_t, uint64_t);
  180 static uint64_t _aullshr(uint64_t, uint8_t);
  181 static uint64_t _aullshl(uint64_t, uint8_t);
  182 static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
  183 static slist_entry *ntoskrnl_popsl(slist_header *);
  184 static void ExInitializePagedLookasideList(paged_lookaside_list *,
  185         lookaside_alloc_func *, lookaside_free_func *,
  186         uint32_t, size_t, uint32_t, uint16_t);
  187 static void ExDeletePagedLookasideList(paged_lookaside_list *);
  188 static void ExInitializeNPagedLookasideList(npaged_lookaside_list *,
  189         lookaside_alloc_func *, lookaside_free_func *,
  190         uint32_t, size_t, uint32_t, uint16_t);
  191 static void ExDeleteNPagedLookasideList(npaged_lookaside_list *);
  192 static slist_entry
  193         *ExInterlockedPushEntrySList(slist_header *,
  194         slist_entry *, kspin_lock *);
  195 static slist_entry
  196         *ExInterlockedPopEntrySList(slist_header *, kspin_lock *);
  197 static uint32_t InterlockedIncrement(volatile uint32_t *);
  198 static uint32_t InterlockedDecrement(volatile uint32_t *);
  199 static void ExInterlockedAddLargeStatistic(uint64_t *, uint32_t);
  200 static void *MmAllocateContiguousMemory(uint32_t, uint64_t);
  201 static void *MmAllocateContiguousMemorySpecifyCache(uint32_t,
  202         uint64_t, uint64_t, uint64_t, uint32_t);
  203 static void MmFreeContiguousMemory(void *);
  204 static void MmFreeContiguousMemorySpecifyCache(void *, uint32_t, uint32_t);
  205 static uint32_t MmSizeOfMdl(void *, size_t);
  206 static void *MmMapLockedPages(mdl *, uint8_t);
  207 static void *MmMapLockedPagesSpecifyCache(mdl *,
  208         uint8_t, uint32_t, void *, uint32_t, uint32_t);
  209 static void MmUnmapLockedPages(void *, mdl *);
  210 static device_t ntoskrnl_finddev(device_t, uint64_t, struct resource **);
  211 static void RtlZeroMemory(void *, size_t);
  212 static void RtlCopyMemory(void *, const void *, size_t);
  213 static size_t RtlCompareMemory(const void *, const void *, size_t);
  214 static ndis_status RtlUnicodeStringToInteger(unicode_string *,
  215         uint32_t, uint32_t *);
  216 static int atoi (const char *);
  217 static long atol (const char *);
  218 static int rand(void);
  219 static void srand(unsigned int);
  220 static void KeQuerySystemTime(uint64_t *);
  221 static uint32_t KeTickCount(void);
  222 static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t);
  223 static void ntoskrnl_thrfunc(void *);
  224 static ndis_status PsCreateSystemThread(ndis_handle *,
  225         uint32_t, void *, ndis_handle, void *, void *, void *);
  226 static ndis_status PsTerminateSystemThread(ndis_status);
  227 static ndis_status IoGetDeviceObjectPointer(unicode_string *,
  228         uint32_t, void *, device_object *);
  229 static ndis_status IoGetDeviceProperty(device_object *, uint32_t,
  230         uint32_t, void *, uint32_t *);
  231 static void KeInitializeMutex(kmutant *, uint32_t);
  232 static uint32_t KeReleaseMutex(kmutant *, uint8_t);
  233 static uint32_t KeReadStateMutex(kmutant *);
  234 static ndis_status ObReferenceObjectByHandle(ndis_handle,
  235         uint32_t, void *, uint8_t, void **, void **);
  236 static void ObfDereferenceObject(void *);
  237 static uint32_t ZwClose(ndis_handle);
  238 static uint32_t WmiQueryTraceInformation(uint32_t, void *, uint32_t,
  239         uint32_t, void *);
  240 static uint32_t WmiTraceMessage(uint64_t, uint32_t, void *, uint16_t, ...);
  241 static uint32_t IoWMIRegistrationControl(device_object *, uint32_t);
  242 static void *ntoskrnl_memset(void *, int, size_t);
  243 static void *ntoskrnl_memmove(void *, void *, size_t);
  244 static void *ntoskrnl_memchr(void *, unsigned char, size_t);
  245 static char *ntoskrnl_strstr(char *, char *);
  246 static char *ntoskrnl_strncat(char *, char *, size_t);
  247 static int ntoskrnl_toupper(int);
  248 static int ntoskrnl_tolower(int);
  249 static funcptr ntoskrnl_findwrap(funcptr);
  250 static uint32_t DbgPrint(char *, ...);
  251 static void DbgBreakPoint(void);
  252 static void KeBugCheckEx(uint32_t, u_long, u_long, u_long, u_long);
  253 static int32_t KeDelayExecutionThread(uint8_t, uint8_t, int64_t *);
  254 static int32_t KeSetPriorityThread(struct thread *, int32_t);
  255 static void dummy(void);
  256 
  257 static struct mtx ntoskrnl_dispatchlock;
  258 static struct mtx ntoskrnl_interlock;
  259 static kspin_lock ntoskrnl_cancellock;
  260 static int ntoskrnl_kth = 0;
  261 static struct nt_objref_head ntoskrnl_reflist;
  262 static uma_zone_t mdl_zone;
  263 static uma_zone_t iw_zone;
  264 static struct kdpc_queue *kq_queues;
  265 static struct kdpc_queue *wq_queues;
  266 static int wq_idx = 0;
  267 
  268 int
  269 ntoskrnl_libinit()
  270 {
  271         image_patch_table       *patch;
  272         int                     error;
  273         struct proc             *p;
  274         kdpc_queue              *kq;
  275         callout_entry           *e;
  276         int                     i;
  277         char                    name[64];
  278 
  279         mtx_init(&ntoskrnl_dispatchlock,
  280             "ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF|MTX_RECURSE);
  281         mtx_init(&ntoskrnl_interlock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
  282         KeInitializeSpinLock(&ntoskrnl_cancellock);
  283         KeInitializeSpinLock(&ntoskrnl_intlock);
  284         TAILQ_INIT(&ntoskrnl_reflist);
  285 
  286         InitializeListHead(&ntoskrnl_calllist);
  287         InitializeListHead(&ntoskrnl_intlist);
  288         mtx_init(&ntoskrnl_calllock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
  289 
  290         kq_queues = ExAllocatePoolWithTag(NonPagedPool,
  291 #ifdef NTOSKRNL_MULTIPLE_DPCS
  292             sizeof(kdpc_queue) * mp_ncpus, 0);
  293 #else
  294             sizeof(kdpc_queue), 0);
  295 #endif
  296 
  297         if (kq_queues == NULL)
  298                 return(ENOMEM);
  299 
  300         wq_queues = ExAllocatePoolWithTag(NonPagedPool,
  301             sizeof(kdpc_queue) * WORKITEM_THREADS, 0);
  302 
  303         if (wq_queues == NULL)
  304                 return(ENOMEM);
  305 
  306 #ifdef NTOSKRNL_MULTIPLE_DPCS
  307         bzero((char *)kq_queues, sizeof(kdpc_queue) * mp_ncpus);
  308 #else
  309         bzero((char *)kq_queues, sizeof(kdpc_queue));
  310 #endif
  311         bzero((char *)wq_queues, sizeof(kdpc_queue) * WORKITEM_THREADS);
  312 
  313         /*
  314          * Launch the DPC threads.
  315          */
  316 
  317 #ifdef NTOSKRNL_MULTIPLE_DPCS
  318         for (i = 0; i < mp_ncpus; i++) {
  319 #else
  320         for (i = 0; i < 1; i++) {
  321 #endif
  322                 kq = kq_queues + i;
  323                 kq->kq_cpu = i;
  324                 sprintf(name, "Windows DPC %d", i);
  325                 error = kproc_create(ntoskrnl_dpc_thread, kq, &p,
  326                     RFHIGHPID, NDIS_KSTACK_PAGES, name);
  327                 if (error)
  328                         panic("failed to launch DPC thread");
  329         }
  330 
  331         /*
  332          * Launch the workitem threads.
  333          */
  334 
  335         for (i = 0; i < WORKITEM_THREADS; i++) {
  336                 kq = wq_queues + i;
  337                 sprintf(name, "Windows Workitem %d", i);
  338                 error = kproc_create(ntoskrnl_workitem_thread, kq, &p,
  339                     RFHIGHPID, NDIS_KSTACK_PAGES, name);
  340                 if (error)
  341                         panic("failed to launch workitem thread");
  342         }
  343 
  344         patch = ntoskrnl_functbl;
  345         while (patch->ipt_func != NULL) {
  346                 windrv_wrap((funcptr)patch->ipt_func,
  347                     (funcptr *)&patch->ipt_wrap,
  348                     patch->ipt_argcnt, patch->ipt_ftype);
  349                 patch++;
  350         }
  351 
  352         for (i = 0; i < NTOSKRNL_TIMEOUTS; i++) {
  353                 e = ExAllocatePoolWithTag(NonPagedPool,
  354                     sizeof(callout_entry), 0);
  355                 if (e == NULL)
  356                         panic("failed to allocate timeouts");
  357                 mtx_lock_spin(&ntoskrnl_calllock);
  358                 InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
  359                 mtx_unlock_spin(&ntoskrnl_calllock);
  360         }
  361 
  362         /*
  363          * MDLs are supposed to be variable size (they describe
  364          * buffers containing some number of pages, but we don't
  365          * know ahead of time how many pages that will be). But
  366          * always allocating them off the heap is very slow. As
  367          * a compromise, we create an MDL UMA zone big enough to
  368          * handle any buffer requiring up to 16 pages, and we
  369          * use those for any MDLs for buffers of 16 pages or less
  370          * in size. For buffers larger than that (which we assume
  371          * will be few and far between, we allocate the MDLs off
  372          * the heap.
  373          */
  374 
  375         mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE,
  376             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  377 
  378         iw_zone = uma_zcreate("Windows WorkItem", sizeof(io_workitem),
  379             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  380 
  381         return(0);
  382 }
  383 
  384 int
  385 ntoskrnl_libfini()
  386 {
  387         image_patch_table       *patch;
  388         callout_entry           *e;
  389         list_entry              *l;
  390 
  391         patch = ntoskrnl_functbl;
  392         while (patch->ipt_func != NULL) {
  393                 windrv_unwrap(patch->ipt_wrap);
  394                 patch++;
  395         }
  396 
  397         /* Stop the workitem queues. */
  398         ntoskrnl_destroy_workitem_threads();
  399         /* Stop the DPC queues. */
  400         ntoskrnl_destroy_dpc_threads();
  401 
  402         ExFreePool(kq_queues);
  403         ExFreePool(wq_queues);
  404 
  405         uma_zdestroy(mdl_zone);
  406         uma_zdestroy(iw_zone);
  407 
  408         mtx_lock_spin(&ntoskrnl_calllock);
  409         while(!IsListEmpty(&ntoskrnl_calllist)) {
  410                 l = RemoveHeadList(&ntoskrnl_calllist);
  411                 e = CONTAINING_RECORD(l, callout_entry, ce_list);
  412                 mtx_unlock_spin(&ntoskrnl_calllock);
  413                 ExFreePool(e);
  414                 mtx_lock_spin(&ntoskrnl_calllock);
  415         }
  416         mtx_unlock_spin(&ntoskrnl_calllock);
  417 
  418         mtx_destroy(&ntoskrnl_dispatchlock);
  419         mtx_destroy(&ntoskrnl_interlock);
  420         mtx_destroy(&ntoskrnl_calllock);
  421 
  422         return(0);
  423 }
  424 
  425 /*
  426  * We need to be able to reference this externally from the wrapper;
  427  * GCC only generates a local implementation of memset.
  428  */
  429 static void *
  430 ntoskrnl_memset(buf, ch, size)
  431         void                    *buf;
  432         int                     ch;
  433         size_t                  size;
  434 {
  435         return(memset(buf, ch, size));
  436 }
  437 
  438 static void *
  439 ntoskrnl_memmove(dst, src, size)
  440         void                    *src;
  441         void                    *dst;
  442         size_t                  size;
  443 {
  444         bcopy(src, dst, size);
  445         return(dst);
  446 }
  447 
  448 static void *
  449 ntoskrnl_memchr(void *buf, unsigned char ch, size_t len)
  450 {
  451         if (len != 0) {
  452                 unsigned char *p = buf;
  453 
  454                 do {
  455                         if (*p++ == ch)
  456                                 return (p - 1);
  457                 } while (--len != 0);
  458         }
  459         return (NULL);
  460 }
  461 
  462 static char *
  463 ntoskrnl_strstr(s, find)
  464         char *s, *find;
  465 {
  466         char c, sc;
  467         size_t len;
  468 
  469         if ((c = *find++) != 0) {
  470                 len = strlen(find);
  471                 do {
  472                         do {
  473                                 if ((sc = *s++) == 0)
  474                                         return (NULL);
  475                         } while (sc != c);
  476                 } while (strncmp(s, find, len) != 0);
  477                 s--;
  478         }
  479         return ((char *)s);
  480 }
  481 
  482 /* Taken from libc */
  483 static char *
  484 ntoskrnl_strncat(dst, src, n)
  485         char            *dst;
  486         char            *src;
  487         size_t          n;
  488 {
  489         if (n != 0) {
  490                 char *d = dst;
  491                 const char *s = src;
  492 
  493                 while (*d != 0)
  494                         d++;
  495                 do {
  496                         if ((*d = *s++) == 0)
  497                                 break;
  498                         d++;
  499                 } while (--n != 0);
  500                 *d = 0;
  501         }
  502         return (dst);
  503 }
  504 
  505 static int
  506 ntoskrnl_toupper(c)
  507         int                     c;
  508 {
  509         return(toupper(c));
  510 }
  511 
  512 static int
  513 ntoskrnl_tolower(c)
  514         int                     c;
  515 {
  516         return(tolower(c));
  517 }
  518 
  519 static uint8_t
  520 RtlEqualUnicodeString(unicode_string *str1, unicode_string *str2,
  521         uint8_t caseinsensitive)
  522 {
  523         int                     i;
  524 
  525         if (str1->us_len != str2->us_len)
  526                 return(FALSE);
  527 
  528         for (i = 0; i < str1->us_len; i++) {
  529                 if (caseinsensitive == TRUE) {
  530                         if (toupper((char)(str1->us_buf[i] & 0xFF)) !=
  531                             toupper((char)(str2->us_buf[i] & 0xFF)))
  532                                 return(FALSE);
  533                 } else {
  534                         if (str1->us_buf[i] != str2->us_buf[i])
  535                                 return(FALSE);
  536                 }
  537         }
  538 
  539         return(TRUE);
  540 }
  541 
  542 static void
  543 RtlCopyUnicodeString(dest, src)
  544         unicode_string          *dest;
  545         unicode_string          *src;
  546 {
  547 
  548         if (dest->us_maxlen >= src->us_len)
  549                 dest->us_len = src->us_len;
  550         else
  551                 dest->us_len = dest->us_maxlen;
  552         memcpy(dest->us_buf, src->us_buf, dest->us_len);
  553         return;
  554 }
  555 
  556 static void
  557 ntoskrnl_ascii_to_unicode(ascii, unicode, len)
  558         char                    *ascii;
  559         uint16_t                *unicode;
  560         int                     len;
  561 {
  562         int                     i;
  563         uint16_t                *ustr;
  564 
  565         ustr = unicode;
  566         for (i = 0; i < len; i++) {
  567                 *ustr = (uint16_t)ascii[i];
  568                 ustr++;
  569         }
  570 
  571         return;
  572 }
  573 
  574 static void
  575 ntoskrnl_unicode_to_ascii(unicode, ascii, len)
  576         uint16_t                *unicode;
  577         char                    *ascii;
  578         int                     len;
  579 {
  580         int                     i;
  581         uint8_t                 *astr;
  582 
  583         astr = ascii;
  584         for (i = 0; i < len / 2; i++) {
  585                 *astr = (uint8_t)unicode[i];
  586                 astr++;
  587         }
  588 
  589         return;
  590 }
  591 
  592 uint32_t
  593 RtlUnicodeStringToAnsiString(ansi_string *dest, unicode_string *src, uint8_t allocate)
  594 {
  595         if (dest == NULL || src == NULL)
  596                 return(STATUS_INVALID_PARAMETER);
  597 
  598         dest->as_len = src->us_len / 2;
  599         if (dest->as_maxlen < dest->as_len)
  600                 dest->as_len = dest->as_maxlen;
  601 
  602         if (allocate == TRUE) {
  603                 dest->as_buf = ExAllocatePoolWithTag(NonPagedPool,
  604                     (src->us_len / 2) + 1, 0);
  605                 if (dest->as_buf == NULL)
  606                         return(STATUS_INSUFFICIENT_RESOURCES);
  607                 dest->as_len = dest->as_maxlen = src->us_len / 2;
  608         } else {
  609                 dest->as_len = src->us_len / 2; /* XXX */
  610                 if (dest->as_maxlen < dest->as_len)
  611                         dest->as_len = dest->as_maxlen;
  612         }
  613 
  614         ntoskrnl_unicode_to_ascii(src->us_buf, dest->as_buf,
  615             dest->as_len * 2);
  616 
  617         return (STATUS_SUCCESS);
  618 }
  619 
  620 uint32_t
  621 RtlAnsiStringToUnicodeString(unicode_string *dest, ansi_string *src,
  622         uint8_t allocate)
  623 {
  624         if (dest == NULL || src == NULL)
  625                 return(STATUS_INVALID_PARAMETER);
  626 
  627         if (allocate == TRUE) {
  628                 dest->us_buf = ExAllocatePoolWithTag(NonPagedPool,
  629                     src->as_len * 2, 0);
  630                 if (dest->us_buf == NULL)
  631                         return(STATUS_INSUFFICIENT_RESOURCES);
  632                 dest->us_len = dest->us_maxlen = strlen(src->as_buf) * 2;
  633         } else {
  634                 dest->us_len = src->as_len * 2; /* XXX */
  635                 if (dest->us_maxlen < dest->us_len)
  636                         dest->us_len = dest->us_maxlen;
  637         }
  638 
  639         ntoskrnl_ascii_to_unicode(src->as_buf, dest->us_buf,
  640             dest->us_len / 2);
  641 
  642         return (STATUS_SUCCESS);
  643 }
  644 
  645 void *
  646 ExAllocatePoolWithTag(pooltype, len, tag)
  647         uint32_t                pooltype;
  648         size_t                  len;
  649         uint32_t                tag;
  650 {
  651         void                    *buf;
  652 
  653         buf = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
  654         if (buf == NULL)
  655                 return(NULL);
  656 
  657         return(buf);
  658 }
  659 
  660 void
  661 ExFreePool(buf)
  662         void                    *buf;
  663 {
  664         free(buf, M_DEVBUF);
  665         return;
  666 }
  667 
  668 uint32_t
  669 IoAllocateDriverObjectExtension(drv, clid, extlen, ext)
  670         driver_object           *drv;
  671         void                    *clid;
  672         uint32_t                extlen;
  673         void                    **ext;
  674 {
  675         custom_extension        *ce;
  676 
  677         ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension)
  678             + extlen, 0);
  679 
  680         if (ce == NULL)
  681                 return(STATUS_INSUFFICIENT_RESOURCES);
  682 
  683         ce->ce_clid = clid;
  684         InsertTailList((&drv->dro_driverext->dre_usrext), (&ce->ce_list));
  685 
  686         *ext = (void *)(ce + 1);
  687 
  688         return(STATUS_SUCCESS);
  689 }
  690 
  691 void *
  692 IoGetDriverObjectExtension(drv, clid)
  693         driver_object           *drv;
  694         void                    *clid;
  695 {
  696         list_entry              *e;
  697         custom_extension        *ce;
  698 
  699         /*
  700          * Sanity check. Our dummy bus drivers don't have
  701          * any driver extentions.
  702          */
  703 
  704         if (drv->dro_driverext == NULL)
  705                 return(NULL);
  706 
  707         e = drv->dro_driverext->dre_usrext.nle_flink;
  708         while (e != &drv->dro_driverext->dre_usrext) {
  709                 ce = (custom_extension *)e;
  710                 if (ce->ce_clid == clid)
  711                         return((void *)(ce + 1));
  712                 e = e->nle_flink;
  713         }
  714 
  715         return(NULL);
  716 }
  717 
  718 
  719 uint32_t
  720 IoCreateDevice(driver_object *drv, uint32_t devextlen, unicode_string *devname,
  721         uint32_t devtype, uint32_t devchars, uint8_t exclusive,
  722         device_object **newdev)
  723 {
  724         device_object           *dev;
  725 
  726         dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0);
  727         if (dev == NULL)
  728                 return(STATUS_INSUFFICIENT_RESOURCES);
  729 
  730         dev->do_type = devtype;
  731         dev->do_drvobj = drv;
  732         dev->do_currirp = NULL;
  733         dev->do_flags = 0;
  734 
  735         if (devextlen) {
  736                 dev->do_devext = ExAllocatePoolWithTag(NonPagedPool,
  737                     devextlen, 0);
  738 
  739                 if (dev->do_devext == NULL) {
  740                         ExFreePool(dev);
  741                         return(STATUS_INSUFFICIENT_RESOURCES);
  742                 }
  743 
  744                 bzero(dev->do_devext, devextlen);
  745         } else
  746                 dev->do_devext = NULL;
  747 
  748         dev->do_size = sizeof(device_object) + devextlen;
  749         dev->do_refcnt = 1;
  750         dev->do_attacheddev = NULL;
  751         dev->do_nextdev = NULL;
  752         dev->do_devtype = devtype;
  753         dev->do_stacksize = 1;
  754         dev->do_alignreq = 1;
  755         dev->do_characteristics = devchars;
  756         dev->do_iotimer = NULL;
  757         KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE);
  758 
  759         /*
  760          * Vpd is used for disk/tape devices,
  761          * but we don't support those. (Yet.)
  762          */
  763         dev->do_vpb = NULL;
  764 
  765         dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool,
  766             sizeof(devobj_extension), 0);
  767 
  768         if (dev->do_devobj_ext == NULL) {
  769                 if (dev->do_devext != NULL)
  770                         ExFreePool(dev->do_devext);
  771                 ExFreePool(dev);
  772                 return(STATUS_INSUFFICIENT_RESOURCES);
  773         }
  774 
  775         dev->do_devobj_ext->dve_type = 0;
  776         dev->do_devobj_ext->dve_size = sizeof(devobj_extension);
  777         dev->do_devobj_ext->dve_devobj = dev;
  778 
  779         /*
  780          * Attach this device to the driver object's list
  781          * of devices. Note: this is not the same as attaching
  782          * the device to the device stack. The driver's AddDevice
  783          * routine must explicitly call IoAddDeviceToDeviceStack()
  784          * to do that.
  785          */
  786 
  787         if (drv->dro_devobj == NULL) {
  788                 drv->dro_devobj = dev;
  789                 dev->do_nextdev = NULL;
  790         } else {
  791                 dev->do_nextdev = drv->dro_devobj;
  792                 drv->dro_devobj = dev;
  793         }
  794 
  795         *newdev = dev;
  796 
  797         return(STATUS_SUCCESS);
  798 }
  799 
  800 void
  801 IoDeleteDevice(dev)
  802         device_object           *dev;
  803 {
  804         device_object           *prev;
  805 
  806         if (dev == NULL)
  807                 return;
  808 
  809         if (dev->do_devobj_ext != NULL)
  810                 ExFreePool(dev->do_devobj_ext);
  811 
  812         if (dev->do_devext != NULL)
  813                 ExFreePool(dev->do_devext);
  814 
  815         /* Unlink the device from the driver's device list. */
  816 
  817         prev = dev->do_drvobj->dro_devobj;
  818         if (prev == dev)
  819                 dev->do_drvobj->dro_devobj = dev->do_nextdev;
  820         else {
  821                 while (prev->do_nextdev != dev)
  822                         prev = prev->do_nextdev;
  823                 prev->do_nextdev = dev->do_nextdev;
  824         }
  825 
  826         ExFreePool(dev);
  827 
  828         return;
  829 }
  830 
  831 device_object *
  832 IoGetAttachedDevice(dev)
  833         device_object           *dev;
  834 {
  835         device_object           *d;
  836 
  837         if (dev == NULL)
  838                 return (NULL);
  839 
  840         d = dev;
  841 
  842         while (d->do_attacheddev != NULL)
  843                 d = d->do_attacheddev;
  844 
  845         return (d);
  846 }
  847 
  848 static irp *
  849 IoBuildSynchronousFsdRequest(func, dobj, buf, len, off, event, status)
  850         uint32_t                func;
  851         device_object           *dobj;
  852         void                    *buf;
  853         uint32_t                len;
  854         uint64_t                *off;
  855         nt_kevent               *event;
  856         io_status_block         *status;
  857 {
  858         irp                     *ip;
  859 
  860         ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status);
  861         if (ip == NULL)
  862                 return(NULL);
  863         ip->irp_usrevent = event;
  864 
  865         return(ip);
  866 }
  867 
  868 static irp *
  869 IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status)
  870         uint32_t                func;
  871         device_object           *dobj;
  872         void                    *buf;
  873         uint32_t                len;
  874         uint64_t                *off;
  875         io_status_block         *status;
  876 {
  877         irp                     *ip;
  878         io_stack_location       *sl;
  879 
  880         ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
  881         if (ip == NULL)
  882                 return(NULL);
  883 
  884         ip->irp_usriostat = status;
  885         ip->irp_tail.irp_overlay.irp_thread = NULL;
  886 
  887         sl = IoGetNextIrpStackLocation(ip);
  888         sl->isl_major = func;
  889         sl->isl_minor = 0;
  890         sl->isl_flags = 0;
  891         sl->isl_ctl = 0;
  892         sl->isl_devobj = dobj;
  893         sl->isl_fileobj = NULL;
  894         sl->isl_completionfunc = NULL;
  895 
  896         ip->irp_userbuf = buf;
  897 
  898         if (dobj->do_flags & DO_BUFFERED_IO) {
  899                 ip->irp_assoc.irp_sysbuf =
  900                     ExAllocatePoolWithTag(NonPagedPool, len, 0);
  901                 if (ip->irp_assoc.irp_sysbuf == NULL) {
  902                         IoFreeIrp(ip);
  903                         return(NULL);
  904                 }
  905                 bcopy(buf, ip->irp_assoc.irp_sysbuf, len);
  906         }
  907 
  908         if (dobj->do_flags & DO_DIRECT_IO) {
  909                 ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip);
  910                 if (ip->irp_mdl == NULL) {
  911                         if (ip->irp_assoc.irp_sysbuf != NULL)
  912                                 ExFreePool(ip->irp_assoc.irp_sysbuf);
  913                         IoFreeIrp(ip);
  914                         return(NULL);
  915                 }
  916                 ip->irp_userbuf = NULL;
  917                 ip->irp_assoc.irp_sysbuf = NULL;
  918         }
  919 
  920         if (func == IRP_MJ_READ) {
  921                 sl->isl_parameters.isl_read.isl_len = len;
  922                 if (off != NULL)
  923                         sl->isl_parameters.isl_read.isl_byteoff = *off;
  924                 else
  925                         sl->isl_parameters.isl_read.isl_byteoff = 0;
  926         }
  927 
  928         if (func == IRP_MJ_WRITE) {
  929                 sl->isl_parameters.isl_write.isl_len = len;
  930                 if (off != NULL)
  931                         sl->isl_parameters.isl_write.isl_byteoff = *off;
  932                 else
  933                         sl->isl_parameters.isl_write.isl_byteoff = 0;
  934         }
  935 
  936         return(ip);
  937 }
  938 
  939 static irp *
  940 IoBuildDeviceIoControlRequest(uint32_t iocode, device_object *dobj, void *ibuf,
  941         uint32_t ilen, void *obuf, uint32_t olen, uint8_t isinternal,
  942         nt_kevent *event, io_status_block *status)
  943 {
  944         irp                     *ip;
  945         io_stack_location       *sl;
  946         uint32_t                buflen;
  947 
  948         ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
  949         if (ip == NULL)
  950                 return(NULL);
  951         ip->irp_usrevent = event;
  952         ip->irp_usriostat = status;
  953         ip->irp_tail.irp_overlay.irp_thread = NULL;
  954 
  955         sl = IoGetNextIrpStackLocation(ip);
  956         sl->isl_major = isinternal == TRUE ?
  957             IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL;
  958         sl->isl_minor = 0;
  959         sl->isl_flags = 0;
  960         sl->isl_ctl = 0;
  961         sl->isl_devobj = dobj;
  962         sl->isl_fileobj = NULL;
  963         sl->isl_completionfunc = NULL;
  964         sl->isl_parameters.isl_ioctl.isl_iocode = iocode;
  965         sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen;
  966         sl->isl_parameters.isl_ioctl.isl_obuflen = olen;
  967 
  968         switch(IO_METHOD(iocode)) {
  969         case METHOD_BUFFERED:
  970                 if (ilen > olen)
  971                         buflen = ilen;
  972                 else
  973                         buflen = olen;
  974                 if (buflen) {
  975                         ip->irp_assoc.irp_sysbuf =
  976                             ExAllocatePoolWithTag(NonPagedPool, buflen, 0);
  977                         if (ip->irp_assoc.irp_sysbuf == NULL) {
  978                                 IoFreeIrp(ip);
  979                                 return(NULL);
  980                         }
  981                 }
  982                 if (ilen && ibuf != NULL) {
  983                         bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
  984                         bzero((char *)ip->irp_assoc.irp_sysbuf + ilen,
  985                             buflen - ilen);
  986                 } else
  987                         bzero(ip->irp_assoc.irp_sysbuf, ilen);
  988                 ip->irp_userbuf = obuf;
  989                 break;
  990         case METHOD_IN_DIRECT:
  991         case METHOD_OUT_DIRECT:
  992                 if (ilen && ibuf != NULL) {
  993                         ip->irp_assoc.irp_sysbuf =
  994                             ExAllocatePoolWithTag(NonPagedPool, ilen, 0);
  995                         if (ip->irp_assoc.irp_sysbuf == NULL) {
  996                                 IoFreeIrp(ip);
  997                                 return(NULL);
  998                         }
  999                         bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
 1000                 }
 1001                 if (olen && obuf != NULL) {
 1002                         ip->irp_mdl = IoAllocateMdl(obuf, olen,
 1003                             FALSE, FALSE, ip);
 1004                         /*
 1005                          * Normally we would MmProbeAndLockPages()
 1006                          * here, but we don't have to in our
 1007                          * imlementation.
 1008                          */
 1009                 }
 1010                 break;
 1011         case METHOD_NEITHER:
 1012                 ip->irp_userbuf = obuf;
 1013                 sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf;
 1014                 break;
 1015         default:
 1016                 break;
 1017         }
 1018 
 1019         /*
 1020          * Ideally, we should associate this IRP with the calling
 1021          * thread here.
 1022          */
 1023 
 1024         return (ip);
 1025 }
 1026 
 1027 static irp *
 1028 IoAllocateIrp(uint8_t stsize, uint8_t chargequota)
 1029 {
 1030         irp                     *i;
 1031 
 1032         i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0);
 1033         if (i == NULL)
 1034                 return (NULL);
 1035 
 1036         IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize);
 1037 
 1038         return (i);
 1039 }
 1040 
 1041 static irp *
 1042 IoMakeAssociatedIrp(irp *ip, uint8_t stsize)
 1043 {
 1044         irp                     *associrp;
 1045 
 1046         associrp = IoAllocateIrp(stsize, FALSE);
 1047         if (associrp == NULL)
 1048                 return(NULL);
 1049 
 1050         mtx_lock(&ntoskrnl_dispatchlock);
 1051         associrp->irp_flags |= IRP_ASSOCIATED_IRP;
 1052         associrp->irp_tail.irp_overlay.irp_thread =
 1053             ip->irp_tail.irp_overlay.irp_thread;
 1054         associrp->irp_assoc.irp_master = ip;
 1055         mtx_unlock(&ntoskrnl_dispatchlock);
 1056 
 1057         return(associrp);
 1058 }
 1059 
 1060 static void
 1061 IoFreeIrp(ip)
 1062         irp                     *ip;
 1063 {
 1064         ExFreePool(ip);
 1065         return;
 1066 }
 1067 
 1068 static void
 1069 IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize)
 1070 {
 1071         bzero((char *)io, IoSizeOfIrp(ssize));
 1072         io->irp_size = psize;
 1073         io->irp_stackcnt = ssize;
 1074         io->irp_currentstackloc = ssize;
 1075         InitializeListHead(&io->irp_thlist);
 1076         io->irp_tail.irp_overlay.irp_csl =
 1077             (io_stack_location *)(io + 1) + ssize;
 1078 
 1079         return;
 1080 }
 1081 
 1082 static void
 1083 IoReuseIrp(ip, status)
 1084         irp                     *ip;
 1085         uint32_t                status;
 1086 {
 1087         uint8_t                 allocflags;
 1088 
 1089         allocflags = ip->irp_allocflags;
 1090         IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt);
 1091         ip->irp_iostat.isb_status = status;
 1092         ip->irp_allocflags = allocflags;
 1093 
 1094         return;
 1095 }
 1096 
 1097 void
 1098 IoAcquireCancelSpinLock(uint8_t *irql)
 1099 {
 1100         KeAcquireSpinLock(&ntoskrnl_cancellock, irql);
 1101         return;
 1102 }
 1103 
 1104 void
 1105 IoReleaseCancelSpinLock(uint8_t irql)
 1106 {
 1107         KeReleaseSpinLock(&ntoskrnl_cancellock, irql);
 1108         return;
 1109 }
 1110 
 1111 uint8_t
 1112 IoCancelIrp(irp *ip)
 1113 {
 1114         cancel_func             cfunc;
 1115         uint8_t                 cancelirql;
 1116 
 1117         IoAcquireCancelSpinLock(&cancelirql);
 1118         cfunc = IoSetCancelRoutine(ip, NULL);
 1119         ip->irp_cancel = TRUE;
 1120         if (cfunc == NULL) {
 1121                 IoReleaseCancelSpinLock(cancelirql);
 1122                 return(FALSE);
 1123         }
 1124         ip->irp_cancelirql = cancelirql;
 1125         MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip);
 1126         return (uint8_t)IoSetCancelValue(ip, TRUE);
 1127 }
 1128 
 1129 uint32_t
 1130 IofCallDriver(dobj, ip)
 1131         device_object           *dobj;
 1132         irp                     *ip;
 1133 {
 1134         driver_object           *drvobj;
 1135         io_stack_location       *sl;
 1136         uint32_t                status;
 1137         driver_dispatch         disp;
 1138 
 1139         drvobj = dobj->do_drvobj;
 1140 
 1141         if (ip->irp_currentstackloc <= 0)
 1142                 panic("IoCallDriver(): out of stack locations");
 1143 
 1144         IoSetNextIrpStackLocation(ip);
 1145         sl = IoGetCurrentIrpStackLocation(ip);
 1146 
 1147         sl->isl_devobj = dobj;
 1148 
 1149         disp = drvobj->dro_dispatch[sl->isl_major];
 1150         status = MSCALL2(disp, dobj, ip);
 1151 
 1152         return(status);
 1153 }
 1154 
 1155 void
 1156 IofCompleteRequest(irp *ip, uint8_t prioboost)
 1157 {
 1158         uint32_t                status;
 1159         device_object           *dobj;
 1160         io_stack_location       *sl;
 1161         completion_func         cf;
 1162 
 1163         KASSERT(ip->irp_iostat.isb_status != STATUS_PENDING,
 1164             ("incorrect IRP(%p) status (STATUS_PENDING)", ip));
 1165 
 1166         sl = IoGetCurrentIrpStackLocation(ip);
 1167         IoSkipCurrentIrpStackLocation(ip);
 1168 
 1169         do {
 1170                 if (sl->isl_ctl & SL_PENDING_RETURNED)
 1171                         ip->irp_pendingreturned = TRUE;
 1172 
 1173                 if (ip->irp_currentstackloc != (ip->irp_stackcnt + 1))
 1174                         dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj;
 1175                 else
 1176                         dobj = NULL;
 1177 
 1178                 if (sl->isl_completionfunc != NULL &&
 1179                     ((ip->irp_iostat.isb_status == STATUS_SUCCESS &&
 1180                     sl->isl_ctl & SL_INVOKE_ON_SUCCESS) ||
 1181                     (ip->irp_iostat.isb_status != STATUS_SUCCESS &&
 1182                     sl->isl_ctl & SL_INVOKE_ON_ERROR) ||
 1183                     (ip->irp_cancel == TRUE &&
 1184                     sl->isl_ctl & SL_INVOKE_ON_CANCEL))) {
 1185                         cf = sl->isl_completionfunc;
 1186                         status = MSCALL3(cf, dobj, ip, sl->isl_completionctx);
 1187                         if (status == STATUS_MORE_PROCESSING_REQUIRED)
 1188                                 return;
 1189                 } else {
 1190                         if ((ip->irp_currentstackloc <= ip->irp_stackcnt) &&
 1191                             (ip->irp_pendingreturned == TRUE))
 1192                                 IoMarkIrpPending(ip);
 1193                 }
 1194 
 1195                 /* move to the next.  */
 1196                 IoSkipCurrentIrpStackLocation(ip);
 1197                 sl++;
 1198         } while (ip->irp_currentstackloc <= (ip->irp_stackcnt + 1));
 1199 
 1200         if (ip->irp_usriostat != NULL)
 1201                 *ip->irp_usriostat = ip->irp_iostat;
 1202         if (ip->irp_usrevent != NULL)
 1203                 KeSetEvent(ip->irp_usrevent, prioboost, FALSE);
 1204 
 1205         /* Handle any associated IRPs. */
 1206 
 1207         if (ip->irp_flags & IRP_ASSOCIATED_IRP) {
 1208                 uint32_t                masterirpcnt;
 1209                 irp                     *masterirp;
 1210                 mdl                     *m;
 1211 
 1212                 masterirp = ip->irp_assoc.irp_master;
 1213                 masterirpcnt =
 1214                     InterlockedDecrement(&masterirp->irp_assoc.irp_irpcnt);
 1215 
 1216                 while ((m = ip->irp_mdl) != NULL) {
 1217                         ip->irp_mdl = m->mdl_next;
 1218                         IoFreeMdl(m);
 1219                 }
 1220                 IoFreeIrp(ip);
 1221                 if (masterirpcnt == 0)
 1222                         IoCompleteRequest(masterirp, IO_NO_INCREMENT);
 1223                 return;
 1224         }
 1225 
 1226         /* With any luck, these conditions will never arise. */
 1227 
 1228         if (ip->irp_flags & IRP_PAGING_IO) {
 1229                 if (ip->irp_mdl != NULL)
 1230                         IoFreeMdl(ip->irp_mdl);
 1231                 IoFreeIrp(ip);
 1232         }
 1233 
 1234         return;
 1235 }
 1236 
 1237 void
 1238 ntoskrnl_intr(arg)
 1239         void                    *arg;
 1240 {
 1241         kinterrupt              *iobj;
 1242         uint8_t                 irql;
 1243         uint8_t                 claimed;
 1244         list_entry              *l;
 1245 
 1246         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1247         l = ntoskrnl_intlist.nle_flink;
 1248         while (l != &ntoskrnl_intlist) {
 1249                 iobj = CONTAINING_RECORD(l, kinterrupt, ki_list);
 1250                 claimed = MSCALL2(iobj->ki_svcfunc, iobj, iobj->ki_svcctx);
 1251                 if (claimed == TRUE)
 1252                         break;
 1253                 l = l->nle_flink;
 1254         }
 1255         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1256 
 1257         return;
 1258 }
 1259 
 1260 uint8_t
 1261 KeAcquireInterruptSpinLock(iobj)
 1262         kinterrupt              *iobj;
 1263 {
 1264         uint8_t                 irql;
 1265         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1266         return(irql);
 1267 }
 1268 
 1269 void
 1270 KeReleaseInterruptSpinLock(kinterrupt *iobj, uint8_t irql)
 1271 {
 1272         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1273         return;
 1274 }
 1275 
 1276 uint8_t
 1277 KeSynchronizeExecution(iobj, syncfunc, syncctx)
 1278         kinterrupt              *iobj;
 1279         void                    *syncfunc;
 1280         void                    *syncctx;
 1281 {
 1282         uint8_t                 irql;
 1283 
 1284         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1285         MSCALL1(syncfunc, syncctx);
 1286         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1287 
 1288         return(TRUE);
 1289 }
 1290 
 1291 /*
 1292  * IoConnectInterrupt() is passed only the interrupt vector and
 1293  * irql that a device wants to use, but no device-specific tag
 1294  * of any kind. This conflicts rather badly with FreeBSD's
 1295  * bus_setup_intr(), which needs the device_t for the device
 1296  * requesting interrupt delivery. In order to bypass this
 1297  * inconsistency, we implement a second level of interrupt
 1298  * dispatching on top of bus_setup_intr(). All devices use
 1299  * ntoskrnl_intr() as their ISR, and any device requesting
 1300  * interrupts will be registered with ntoskrnl_intr()'s interrupt
 1301  * dispatch list. When an interrupt arrives, we walk the list
 1302  * and invoke all the registered ISRs. This effectively makes all
 1303  * interrupts shared, but it's the only way to duplicate the
 1304  * semantics of IoConnectInterrupt() and IoDisconnectInterrupt() properly.
 1305  */
 1306 
 1307 uint32_t
 1308 IoConnectInterrupt(kinterrupt **iobj, void *svcfunc, void *svcctx,
 1309         kspin_lock *lock, uint32_t vector, uint8_t irql, uint8_t syncirql,
 1310         uint8_t imode, uint8_t shared, uint32_t affinity, uint8_t savefloat)
 1311 {
 1312         uint8_t                 curirql;
 1313 
 1314         *iobj = ExAllocatePoolWithTag(NonPagedPool, sizeof(kinterrupt), 0);
 1315         if (*iobj == NULL)
 1316                 return(STATUS_INSUFFICIENT_RESOURCES);
 1317 
 1318         (*iobj)->ki_svcfunc = svcfunc;
 1319         (*iobj)->ki_svcctx = svcctx;
 1320 
 1321         if (lock == NULL) {
 1322                 KeInitializeSpinLock(&(*iobj)->ki_lock_priv);
 1323                 (*iobj)->ki_lock = &(*iobj)->ki_lock_priv;
 1324         } else
 1325                 (*iobj)->ki_lock = lock;
 1326 
 1327         KeAcquireSpinLock(&ntoskrnl_intlock, &curirql);
 1328         InsertHeadList((&ntoskrnl_intlist), (&(*iobj)->ki_list));
 1329         KeReleaseSpinLock(&ntoskrnl_intlock, curirql);
 1330 
 1331         return(STATUS_SUCCESS);
 1332 }
 1333 
 1334 void
 1335 IoDisconnectInterrupt(iobj)
 1336         kinterrupt              *iobj;
 1337 {
 1338         uint8_t                 irql;
 1339 
 1340         if (iobj == NULL)
 1341                 return;
 1342 
 1343         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
 1344         RemoveEntryList((&iobj->ki_list));
 1345         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
 1346 
 1347         ExFreePool(iobj);
 1348 
 1349         return;
 1350 }
 1351 
 1352 device_object *
 1353 IoAttachDeviceToDeviceStack(src, dst)
 1354         device_object           *src;
 1355         device_object           *dst;
 1356 {
 1357         device_object           *attached;
 1358 
 1359         mtx_lock(&ntoskrnl_dispatchlock);
 1360         attached = IoGetAttachedDevice(dst);
 1361         attached->do_attacheddev = src;
 1362         src->do_attacheddev = NULL;
 1363         src->do_stacksize = attached->do_stacksize + 1;
 1364         mtx_unlock(&ntoskrnl_dispatchlock);
 1365 
 1366         return(attached);
 1367 }
 1368 
 1369 void
 1370 IoDetachDevice(topdev)
 1371         device_object           *topdev;
 1372 {
 1373         device_object           *tail;
 1374 
 1375         mtx_lock(&ntoskrnl_dispatchlock);
 1376 
 1377         /* First, break the chain. */
 1378         tail = topdev->do_attacheddev;
 1379         if (tail == NULL) {
 1380                 mtx_unlock(&ntoskrnl_dispatchlock);
 1381                 return;
 1382         }
 1383         topdev->do_attacheddev = tail->do_attacheddev;
 1384         topdev->do_refcnt--;
 1385 
 1386         /* Now reduce the stacksize count for the takm_il objects. */
 1387 
 1388         tail = topdev->do_attacheddev;
 1389         while (tail != NULL) {
 1390                 tail->do_stacksize--;
 1391                 tail = tail->do_attacheddev;
 1392         }
 1393 
 1394         mtx_unlock(&ntoskrnl_dispatchlock);
 1395 
 1396         return;
 1397 }
 1398 
 1399 /*
 1400  * For the most part, an object is considered signalled if
 1401  * dh_sigstate == TRUE. The exception is for mutant objects
 1402  * (mutexes), where the logic works like this:
 1403  *
 1404  * - If the thread already owns the object and sigstate is
 1405  *   less than or equal to 0, then the object is considered
 1406  *   signalled (recursive acquisition).
 1407  * - If dh_sigstate == 1, the object is also considered
 1408  *   signalled.
 1409  */
 1410 
 1411 static int
 1412 ntoskrnl_is_signalled(obj, td)
 1413         nt_dispatch_header      *obj;
 1414         struct thread           *td;
 1415 {
 1416         kmutant                 *km;
 1417 
 1418         if (obj->dh_type == DISP_TYPE_MUTANT) {
 1419                 km = (kmutant *)obj;
 1420                 if ((obj->dh_sigstate <= 0 && km->km_ownerthread == td) ||
 1421                     obj->dh_sigstate == 1)
 1422                         return(TRUE);
 1423                 return(FALSE);
 1424         }
 1425 
 1426         if (obj->dh_sigstate > 0)
 1427                 return(TRUE);
 1428         return(FALSE);
 1429 }
 1430 
 1431 static void
 1432 ntoskrnl_satisfy_wait(obj, td)
 1433         nt_dispatch_header      *obj;
 1434         struct thread           *td;
 1435 {
 1436         kmutant                 *km;
 1437 
 1438         switch (obj->dh_type) {
 1439         case DISP_TYPE_MUTANT:
 1440                 km = (struct kmutant *)obj;
 1441                 obj->dh_sigstate--;
 1442                 /*
 1443                  * If sigstate reaches 0, the mutex is now
 1444                  * non-signalled (the new thread owns it).
 1445                  */
 1446                 if (obj->dh_sigstate == 0) {
 1447                         km->km_ownerthread = td;
 1448                         if (km->km_abandoned == TRUE)
 1449                                 km->km_abandoned = FALSE;
 1450                 }
 1451                 break;
 1452         /* Synchronization objects get reset to unsignalled. */
 1453         case DISP_TYPE_SYNCHRONIZATION_EVENT:
 1454         case DISP_TYPE_SYNCHRONIZATION_TIMER:
 1455                 obj->dh_sigstate = 0;
 1456                 break;
 1457         case DISP_TYPE_SEMAPHORE:
 1458                 obj->dh_sigstate--;
 1459                 break;
 1460         default:
 1461                 break;
 1462         }
 1463 
 1464         return;
 1465 }
 1466 
 1467 static void
 1468 ntoskrnl_satisfy_multiple_waits(wb)
 1469         wait_block              *wb;
 1470 {
 1471         wait_block              *cur;
 1472         struct thread           *td;
 1473 
 1474         cur = wb;
 1475         td = wb->wb_kthread;
 1476 
 1477         do {
 1478                 ntoskrnl_satisfy_wait(wb->wb_object, td);
 1479                 cur->wb_awakened = TRUE;
 1480                 cur = cur->wb_next;
 1481         } while (cur != wb);
 1482 
 1483         return;
 1484 }
 1485 
 1486 /* Always called with dispatcher lock held. */
 1487 static void
 1488 ntoskrnl_waittest(obj, increment)
 1489         nt_dispatch_header      *obj;
 1490         uint32_t                increment;
 1491 {
 1492         wait_block              *w, *next;
 1493         list_entry              *e;
 1494         struct thread           *td;
 1495         wb_ext                  *we;
 1496         int                     satisfied;
 1497 
 1498         /*
 1499          * Once an object has been signalled, we walk its list of
 1500          * wait blocks. If a wait block can be awakened, then satisfy
 1501          * waits as necessary and wake the thread.
 1502          *
 1503          * The rules work like this:
 1504          *
 1505          * If a wait block is marked as WAITTYPE_ANY, then
 1506          * we can satisfy the wait conditions on the current
 1507          * object and wake the thread right away. Satisfying
 1508          * the wait also has the effect of breaking us out
 1509          * of the search loop.
 1510          *
 1511          * If the object is marked as WAITTYLE_ALL, then the
 1512          * wait block will be part of a circularly linked
 1513          * list of wait blocks belonging to a waiting thread
 1514          * that's sleeping in KeWaitForMultipleObjects(). In
 1515          * order to wake the thread, all the objects in the
 1516          * wait list must be in the signalled state. If they
 1517          * are, we then satisfy all of them and wake the
 1518          * thread.
 1519          *
 1520          */
 1521 
 1522         e = obj->dh_waitlisthead.nle_flink;
 1523 
 1524         while (e != &obj->dh_waitlisthead && obj->dh_sigstate > 0) {
 1525                 w = CONTAINING_RECORD(e, wait_block, wb_waitlist);
 1526                 we = w->wb_ext;
 1527                 td = we->we_td;
 1528                 satisfied = FALSE;
 1529                 if (w->wb_waittype == WAITTYPE_ANY) {
 1530                         /*
 1531                          * Thread can be awakened if
 1532                          * any wait is satisfied.
 1533                          */
 1534                         ntoskrnl_satisfy_wait(obj, td);
 1535                         satisfied = TRUE;
 1536                         w->wb_awakened = TRUE;
 1537                 } else {
 1538                         /*
 1539                          * Thread can only be woken up
 1540                          * if all waits are satisfied.
 1541                          * If the thread is waiting on multiple
 1542                          * objects, they should all be linked
 1543                          * through the wb_next pointers in the
 1544                          * wait blocks.
 1545                          */
 1546                         satisfied = TRUE;
 1547                         next = w->wb_next;
 1548                         while (next != w) {
 1549                                 if (ntoskrnl_is_signalled(obj, td) == FALSE) {
 1550                                         satisfied = FALSE;
 1551                                         break;
 1552                                 }
 1553                                 next = next->wb_next;
 1554                         }
 1555                         ntoskrnl_satisfy_multiple_waits(w);
 1556                 }
 1557 
 1558                 if (satisfied == TRUE)
 1559                         cv_broadcastpri(&we->we_cv,
 1560                             (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
 1561                             w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
 1562 
 1563                 e = e->nle_flink;
 1564         }
 1565 
 1566         return;
 1567 }
 1568 
 1569 /*
 1570  * Return the number of 100 nanosecond intervals since
 1571  * January 1, 1601. (?!?!)
 1572  */
 1573 void
 1574 ntoskrnl_time(tval)
 1575         uint64_t                *tval;
 1576 {
 1577         struct timespec         ts;
 1578 
 1579         nanotime(&ts);
 1580         *tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
 1581             11644473600 * 10000000; /* 100ns ticks from 1601 to 1970 */
 1582 
 1583         return;
 1584 }
 1585 
 1586 static void
 1587 KeQuerySystemTime(current_time)
 1588         uint64_t                *current_time;
 1589 {
 1590         ntoskrnl_time(current_time);
 1591 }
 1592 
 1593 static uint32_t
 1594 KeTickCount(void)
 1595 {
 1596         struct timeval tv;
 1597         getmicrouptime(&tv);
 1598         return tvtohz(&tv);
 1599 }
 1600 
 1601 
 1602 /*
 1603  * KeWaitForSingleObject() is a tricky beast, because it can be used
 1604  * with several different object types: semaphores, timers, events,
 1605  * mutexes and threads. Semaphores don't appear very often, but the
 1606  * other object types are quite common. KeWaitForSingleObject() is
 1607  * what's normally used to acquire a mutex, and it can be used to
 1608  * wait for a thread termination.
 1609  *
 1610  * The Windows NDIS API is implemented in terms of Windows kernel
 1611  * primitives, and some of the object manipulation is duplicated in
 1612  * NDIS. For example, NDIS has timers and events, which are actually
 1613  * Windows kevents and ktimers. Now, you're supposed to only use the
 1614  * NDIS variants of these objects within the confines of the NDIS API,
 1615  * but there are some naughty developers out there who will use
 1616  * KeWaitForSingleObject() on NDIS timer and event objects, so we
 1617  * have to support that as well. Conseqently, our NDIS timer and event
 1618  * code has to be closely tied into our ntoskrnl timer and event code,
 1619  * just as it is in Windows.
 1620  *
 1621  * KeWaitForSingleObject() may do different things for different kinds
 1622  * of objects:
 1623  *
 1624  * - For events, we check if the event has been signalled. If the
 1625  *   event is already in the signalled state, we just return immediately,
 1626  *   otherwise we wait for it to be set to the signalled state by someone
 1627  *   else calling KeSetEvent(). Events can be either synchronization or
 1628  *   notification events.
 1629  *
 1630  * - For timers, if the timer has already fired and the timer is in
 1631  *   the signalled state, we just return, otherwise we wait on the
 1632  *   timer. Unlike an event, timers get signalled automatically when
 1633  *   they expire rather than someone having to trip them manually.
 1634  *   Timers initialized with KeInitializeTimer() are always notification
 1635  *   events: KeInitializeTimerEx() lets you initialize a timer as
 1636  *   either a notification or synchronization event.
 1637  *
 1638  * - For mutexes, we try to acquire the mutex and if we can't, we wait
 1639  *   on the mutex until it's available and then grab it. When a mutex is
 1640  *   released, it enters the signalled state, which wakes up one of the
 1641  *   threads waiting to acquire it. Mutexes are always synchronization
 1642  *   events.
 1643  *
 1644  * - For threads, the only thing we do is wait until the thread object
 1645  *   enters a signalled state, which occurs when the thread terminates.
 1646  *   Threads are always notification events.
 1647  *
 1648  * A notification event wakes up all threads waiting on an object. A
 1649  * synchronization event wakes up just one. Also, a synchronization event
 1650  * is auto-clearing, which means we automatically set the event back to
 1651  * the non-signalled state once the wakeup is done.
 1652  */
 1653 
 1654 uint32_t
 1655 KeWaitForSingleObject(void *arg, uint32_t reason, uint32_t mode,
 1656     uint8_t alertable, int64_t *duetime)
 1657 {
 1658         wait_block              w;
 1659         struct thread           *td = curthread;
 1660         struct timeval          tv;
 1661         int                     error = 0;
 1662         uint64_t                curtime;
 1663         wb_ext                  we;
 1664         nt_dispatch_header      *obj;
 1665 
 1666         obj = arg;
 1667 
 1668         if (obj == NULL)
 1669                 return(STATUS_INVALID_PARAMETER);
 1670 
 1671         mtx_lock(&ntoskrnl_dispatchlock);
 1672 
 1673         cv_init(&we.we_cv, "KeWFS");
 1674         we.we_td = td;
 1675 
 1676         /*
 1677          * Check to see if this object is already signalled,
 1678          * and just return without waiting if it is.
 1679          */
 1680         if (ntoskrnl_is_signalled(obj, td) == TRUE) {
 1681                 /* Sanity check the signal state value. */
 1682                 if (obj->dh_sigstate != INT32_MIN) {
 1683                         ntoskrnl_satisfy_wait(obj, curthread);
 1684                         mtx_unlock(&ntoskrnl_dispatchlock);
 1685                         return (STATUS_SUCCESS);
 1686                 } else {
 1687                         /*
 1688                          * There's a limit to how many times we can
 1689                          * recursively acquire a mutant. If we hit
 1690                          * the limit, something is very wrong.
 1691                          */
 1692                         if (obj->dh_type == DISP_TYPE_MUTANT) {
 1693                                 mtx_unlock(&ntoskrnl_dispatchlock);
 1694                                 panic("mutant limit exceeded");
 1695                         }
 1696                 }
 1697         }
 1698 
 1699         bzero((char *)&w, sizeof(wait_block));
 1700         w.wb_object = obj;
 1701         w.wb_ext = &we;
 1702         w.wb_waittype = WAITTYPE_ANY;
 1703         w.wb_next = &w;
 1704         w.wb_waitkey = 0;
 1705         w.wb_awakened = FALSE;
 1706         w.wb_oldpri = td->td_priority;
 1707 
 1708         InsertTailList((&obj->dh_waitlisthead), (&w.wb_waitlist));
 1709 
 1710         /*
 1711          * The timeout value is specified in 100 nanosecond units
 1712          * and can be a positive or negative number. If it's positive,
 1713          * then the duetime is absolute, and we need to convert it
 1714          * to an absolute offset relative to now in order to use it.
 1715          * If it's negative, then the duetime is relative and we
 1716          * just have to convert the units.
 1717          */
 1718 
 1719         if (duetime != NULL) {
 1720                 if (*duetime < 0) {
 1721                         tv.tv_sec = - (*duetime) / 10000000;
 1722                         tv.tv_usec = (- (*duetime) / 10) -
 1723                             (tv.tv_sec * 1000000);
 1724                 } else {
 1725                         ntoskrnl_time(&curtime);
 1726                         if (*duetime < curtime)
 1727                                 tv.tv_sec = tv.tv_usec = 0;
 1728                         else {
 1729                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
 1730                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
 1731                                     (tv.tv_sec * 1000000);
 1732                         }
 1733                 }
 1734         }
 1735 
 1736         if (duetime == NULL)
 1737                 cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
 1738         else
 1739                 error = cv_timedwait(&we.we_cv,
 1740                     &ntoskrnl_dispatchlock, tvtohz(&tv));
 1741 
 1742         RemoveEntryList(&w.wb_waitlist);
 1743 
 1744         cv_destroy(&we.we_cv);
 1745 
 1746         /* We timed out. Leave the object alone and return status. */
 1747 
 1748         if (error == EWOULDBLOCK) {
 1749                 mtx_unlock(&ntoskrnl_dispatchlock);
 1750                 return(STATUS_TIMEOUT);
 1751         }
 1752 
 1753         mtx_unlock(&ntoskrnl_dispatchlock);
 1754 
 1755         return(STATUS_SUCCESS);
 1756 /*
 1757         return(KeWaitForMultipleObjects(1, &obj, WAITTYPE_ALL, reason,
 1758             mode, alertable, duetime, &w));
 1759 */
 1760 }
 1761 
 1762 static uint32_t
 1763 KeWaitForMultipleObjects(uint32_t cnt, nt_dispatch_header *obj[], uint32_t wtype,
 1764         uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime,
 1765         wait_block *wb_array)
 1766 {
 1767         struct thread           *td = curthread;
 1768         wait_block              *whead, *w;
 1769         wait_block              _wb_array[MAX_WAIT_OBJECTS];
 1770         nt_dispatch_header      *cur;
 1771         struct timeval          tv;
 1772         int                     i, wcnt = 0, error = 0;
 1773         uint64_t                curtime;
 1774         struct timespec         t1, t2;
 1775         uint32_t                status = STATUS_SUCCESS;
 1776         wb_ext                  we;
 1777 
 1778         if (cnt > MAX_WAIT_OBJECTS)
 1779                 return(STATUS_INVALID_PARAMETER);
 1780         if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
 1781                 return(STATUS_INVALID_PARAMETER);
 1782 
 1783         mtx_lock(&ntoskrnl_dispatchlock);
 1784 
 1785         cv_init(&we.we_cv, "KeWFM");
 1786         we.we_td = td;
 1787 
 1788         if (wb_array == NULL)
 1789                 whead = _wb_array;
 1790         else
 1791                 whead = wb_array;
 1792 
 1793         bzero((char *)whead, sizeof(wait_block) * cnt);
 1794 
 1795         /* First pass: see if we can satisfy any waits immediately. */
 1796 
 1797         wcnt = 0;
 1798         w = whead;
 1799 
 1800         for (i = 0; i < cnt; i++) {
 1801                 InsertTailList((&obj[i]->dh_waitlisthead),
 1802                     (&w->wb_waitlist));
 1803                 w->wb_ext = &we;
 1804                 w->wb_object = obj[i];
 1805                 w->wb_waittype = wtype;
 1806                 w->wb_waitkey = i;
 1807                 w->wb_awakened = FALSE;
 1808                 w->wb_oldpri = td->td_priority;
 1809                 w->wb_next = w + 1;
 1810                 w++;
 1811                 wcnt++;
 1812                 if (ntoskrnl_is_signalled(obj[i], td)) {
 1813                         /*
 1814                          * There's a limit to how many times
 1815                          * we can recursively acquire a mutant.
 1816                          * If we hit the limit, something
 1817                          * is very wrong.
 1818                          */
 1819                         if (obj[i]->dh_sigstate == INT32_MIN &&
 1820                             obj[i]->dh_type == DISP_TYPE_MUTANT) {
 1821                                 mtx_unlock(&ntoskrnl_dispatchlock);
 1822                                 panic("mutant limit exceeded");
 1823                         }
 1824 
 1825                         /*
 1826                          * If this is a WAITTYPE_ANY wait, then
 1827                          * satisfy the waited object and exit
 1828                          * right now.
 1829                          */
 1830 
 1831                         if (wtype == WAITTYPE_ANY) {
 1832                                 ntoskrnl_satisfy_wait(obj[i], td);
 1833                                 status = STATUS_WAIT_0 + i;
 1834                                 goto wait_done;
 1835                         } else {
 1836                                 w--;
 1837                                 wcnt--;
 1838                                 w->wb_object = NULL;
 1839                                 RemoveEntryList(&w->wb_waitlist);
 1840                         }
 1841                 }
 1842         }
 1843 
 1844         /*
 1845          * If this is a WAITTYPE_ALL wait and all objects are
 1846          * already signalled, satisfy the waits and exit now.
 1847          */
 1848 
 1849         if (wtype == WAITTYPE_ALL && wcnt == 0) {
 1850                 for (i = 0; i < cnt; i++)
 1851                         ntoskrnl_satisfy_wait(obj[i], td);
 1852                 status = STATUS_SUCCESS;
 1853                 goto wait_done;
 1854         }
 1855 
 1856         /*
 1857          * Create a circular waitblock list. The waitcount
 1858          * must always be non-zero when we get here.
 1859          */
 1860 
 1861         (w - 1)->wb_next = whead;
 1862 
 1863         /* Wait on any objects that aren't yet signalled. */
 1864 
 1865         /* Calculate timeout, if any. */
 1866 
 1867         if (duetime != NULL) {
 1868                 if (*duetime < 0) {
 1869                         tv.tv_sec = - (*duetime) / 10000000;
 1870                         tv.tv_usec = (- (*duetime) / 10) -
 1871                             (tv.tv_sec * 1000000);
 1872                 } else {
 1873                         ntoskrnl_time(&curtime);
 1874                         if (*duetime < curtime)
 1875                                 tv.tv_sec = tv.tv_usec = 0;
 1876                         else {
 1877                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
 1878                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
 1879                                     (tv.tv_sec * 1000000);
 1880                         }
 1881                 }
 1882         }
 1883 
 1884         while (wcnt) {
 1885                 nanotime(&t1);
 1886 
 1887                 if (duetime == NULL)
 1888                         cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
 1889                 else
 1890                         error = cv_timedwait(&we.we_cv,
 1891                             &ntoskrnl_dispatchlock, tvtohz(&tv));
 1892 
 1893                 /* Wait with timeout expired. */
 1894 
 1895                 if (error) {
 1896                         status = STATUS_TIMEOUT;
 1897                         goto wait_done;
 1898                 }
 1899 
 1900                 nanotime(&t2);
 1901 
 1902                 /* See what's been signalled. */
 1903 
 1904                 w = whead;
 1905                 do {
 1906                         cur = w->wb_object;
 1907                         if (ntoskrnl_is_signalled(cur, td) == TRUE ||
 1908                             w->wb_awakened == TRUE) {
 1909                                 /* Sanity check the signal state value. */
 1910                                 if (cur->dh_sigstate == INT32_MIN &&
 1911                                     cur->dh_type == DISP_TYPE_MUTANT) {
 1912                                         mtx_unlock(&ntoskrnl_dispatchlock);
 1913                                         panic("mutant limit exceeded");
 1914                                 }
 1915                                 wcnt--;
 1916                                 if (wtype == WAITTYPE_ANY) {
 1917                                         status = w->wb_waitkey &
 1918                                             STATUS_WAIT_0;
 1919                                         goto wait_done;
 1920                                 }
 1921                         }
 1922                         w = w->wb_next;
 1923                 } while (w != whead);
 1924 
 1925                 /*
 1926                  * If all objects have been signalled, or if this
 1927                  * is a WAITTYPE_ANY wait and we were woke up by
 1928                  * someone, we can bail.
 1929                  */
 1930 
 1931                 if (wcnt == 0) {
 1932                         status = STATUS_SUCCESS;
 1933                         goto wait_done;
 1934                 }
 1935 
 1936                 /*
 1937                  * If this is WAITTYPE_ALL wait, and there's still
 1938                  * objects that haven't been signalled, deduct the
 1939                  * time that's elapsed so far from the timeout and
 1940                  * wait again (or continue waiting indefinitely if
 1941                  * there's no timeout).
 1942                  */
 1943 
 1944                 if (duetime != NULL) {
 1945                         tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
 1946                         tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
 1947                 }
 1948         }
 1949 
 1950 
 1951 wait_done:
 1952 
 1953         cv_destroy(&we.we_cv);
 1954 
 1955         for (i = 0; i < cnt; i++) {
 1956                 if (whead[i].wb_object != NULL)
 1957                         RemoveEntryList(&whead[i].wb_waitlist);
 1958 
 1959         }
 1960         mtx_unlock(&ntoskrnl_dispatchlock);
 1961 
 1962         return(status);
 1963 }
 1964 
 1965 static void
 1966 WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val)
 1967 {
 1968         bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
 1969         return;
 1970 }
 1971 
 1972 static uint16_t
 1973 READ_REGISTER_USHORT(reg)
 1974         uint16_t                *reg;
 1975 {
 1976         return(bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
 1977 }
 1978 
 1979 static void
 1980 WRITE_REGISTER_ULONG(reg, val)
 1981         uint32_t                *reg;
 1982         uint32_t                val;
 1983 {
 1984         bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
 1985         return;
 1986 }
 1987 
 1988 static uint32_t
 1989 READ_REGISTER_ULONG(reg)
 1990         uint32_t                *reg;
 1991 {
 1992         return(bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
 1993 }
 1994 
 1995 static uint8_t
 1996 READ_REGISTER_UCHAR(uint8_t *reg)
 1997 {
 1998         return(bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
 1999 }
 2000 
 2001 static void
 2002 WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val)
 2003 {
 2004         bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
 2005         return;
 2006 }
 2007 
 2008 static int64_t
 2009 _allmul(a, b)
 2010         int64_t                 a;
 2011         int64_t                 b;
 2012 {
 2013         return (a * b);
 2014 }
 2015 
 2016 static int64_t
 2017 _alldiv(a, b)
 2018         int64_t                 a;
 2019         int64_t                 b;
 2020 {
 2021         return (a / b);
 2022 }
 2023 
 2024 static int64_t
 2025 _allrem(a, b)
 2026         int64_t                 a;
 2027         int64_t                 b;
 2028 {
 2029         return (a % b);
 2030 }
 2031 
 2032 static uint64_t
 2033 _aullmul(a, b)
 2034         uint64_t                a;
 2035         uint64_t                b;
 2036 {
 2037         return (a * b);
 2038 }
 2039 
 2040 static uint64_t
 2041 _aulldiv(a, b)
 2042         uint64_t                a;
 2043         uint64_t                b;
 2044 {
 2045         return (a / b);
 2046 }
 2047 
 2048 static uint64_t
 2049 _aullrem(a, b)
 2050         uint64_t                a;
 2051         uint64_t                b;
 2052 {
 2053         return (a % b);
 2054 }
 2055 
 2056 static int64_t
 2057 _allshl(int64_t a, uint8_t b)
 2058 {
 2059         return (a << b);
 2060 }
 2061 
 2062 static uint64_t
 2063 _aullshl(uint64_t a, uint8_t b)
 2064 {
 2065         return (a << b);
 2066 }
 2067 
 2068 static int64_t
 2069 _allshr(int64_t a, uint8_t b)
 2070 {
 2071         return (a >> b);
 2072 }
 2073 
 2074 static uint64_t
 2075 _aullshr(uint64_t a, uint8_t b)
 2076 {
 2077         return (a >> b);
 2078 }
 2079 
 2080 static slist_entry *
 2081 ntoskrnl_pushsl(head, entry)
 2082         slist_header            *head;
 2083         slist_entry             *entry;
 2084 {
 2085         slist_entry             *oldhead;
 2086 
 2087         oldhead = head->slh_list.slh_next;
 2088         entry->sl_next = head->slh_list.slh_next;
 2089         head->slh_list.slh_next = entry;
 2090         head->slh_list.slh_depth++;
 2091         head->slh_list.slh_seq++;
 2092 
 2093         return(oldhead);
 2094 }
 2095 
 2096 static slist_entry *
 2097 ntoskrnl_popsl(head)
 2098         slist_header            *head;
 2099 {
 2100         slist_entry             *first;
 2101 
 2102         first = head->slh_list.slh_next;
 2103         if (first != NULL) {
 2104                 head->slh_list.slh_next = first->sl_next;
 2105                 head->slh_list.slh_depth--;
 2106                 head->slh_list.slh_seq++;
 2107         }
 2108 
 2109         return(first);
 2110 }
 2111 
 2112 /*
 2113  * We need this to make lookaside lists work for amd64.
 2114  * We pass a pointer to ExAllocatePoolWithTag() the lookaside
 2115  * list structure. For amd64 to work right, this has to be a
 2116  * pointer to the wrapped version of the routine, not the
 2117  * original. Letting the Windows driver invoke the original
 2118  * function directly will result in a convention calling
 2119  * mismatch and a pretty crash. On x86, this effectively
 2120  * becomes a no-op since ipt_func and ipt_wrap are the same.
 2121  */
 2122 
 2123 static funcptr
 2124 ntoskrnl_findwrap(func)
 2125         funcptr                 func;
 2126 {
 2127         image_patch_table       *patch;
 2128 
 2129         patch = ntoskrnl_functbl;
 2130         while (patch->ipt_func != NULL) {
 2131                 if ((funcptr)patch->ipt_func == func)
 2132                         return((funcptr)patch->ipt_wrap);
 2133                 patch++;
 2134         }
 2135 
 2136         return(NULL);
 2137 }
 2138 
 2139 static void
 2140 ExInitializePagedLookasideList(paged_lookaside_list *lookaside,
 2141         lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
 2142         uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
 2143 {
 2144         bzero((char *)lookaside, sizeof(paged_lookaside_list));
 2145 
 2146         if (size < sizeof(slist_entry))
 2147                 lookaside->nll_l.gl_size = sizeof(slist_entry);
 2148         else
 2149                 lookaside->nll_l.gl_size = size;
 2150         lookaside->nll_l.gl_tag = tag;
 2151         if (allocfunc == NULL)
 2152                 lookaside->nll_l.gl_allocfunc =
 2153                     ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
 2154         else
 2155                 lookaside->nll_l.gl_allocfunc = allocfunc;
 2156 
 2157         if (freefunc == NULL)
 2158                 lookaside->nll_l.gl_freefunc =
 2159                     ntoskrnl_findwrap((funcptr)ExFreePool);
 2160         else
 2161                 lookaside->nll_l.gl_freefunc = freefunc;
 2162 
 2163 #ifdef __i386__
 2164         KeInitializeSpinLock(&lookaside->nll_obsoletelock);
 2165 #endif
 2166 
 2167         lookaside->nll_l.gl_type = NonPagedPool;
 2168         lookaside->nll_l.gl_depth = depth;
 2169         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
 2170 
 2171         return;
 2172 }
 2173 
 2174 static void
 2175 ExDeletePagedLookasideList(lookaside)
 2176         paged_lookaside_list   *lookaside;
 2177 {
 2178         void                    *buf;
 2179         void            (*freefunc)(void *);
 2180 
 2181         freefunc = lookaside->nll_l.gl_freefunc;
 2182         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
 2183                 MSCALL1(freefunc, buf);
 2184 
 2185         return;
 2186 }
 2187 
 2188 static void
 2189 ExInitializeNPagedLookasideList(npaged_lookaside_list *lookaside,
 2190         lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
 2191         uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
 2192 {
 2193         bzero((char *)lookaside, sizeof(npaged_lookaside_list));
 2194 
 2195         if (size < sizeof(slist_entry))
 2196                 lookaside->nll_l.gl_size = sizeof(slist_entry);
 2197         else
 2198                 lookaside->nll_l.gl_size = size;
 2199         lookaside->nll_l.gl_tag = tag;
 2200         if (allocfunc == NULL)
 2201                 lookaside->nll_l.gl_allocfunc =
 2202                     ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
 2203         else
 2204                 lookaside->nll_l.gl_allocfunc = allocfunc;
 2205 
 2206         if (freefunc == NULL)
 2207                 lookaside->nll_l.gl_freefunc =
 2208                     ntoskrnl_findwrap((funcptr)ExFreePool);
 2209         else
 2210                 lookaside->nll_l.gl_freefunc = freefunc;
 2211 
 2212 #ifdef __i386__
 2213         KeInitializeSpinLock(&lookaside->nll_obsoletelock);
 2214 #endif
 2215 
 2216         lookaside->nll_l.gl_type = NonPagedPool;
 2217         lookaside->nll_l.gl_depth = depth;
 2218         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
 2219 
 2220         return;
 2221 }
 2222 
 2223 static void
 2224 ExDeleteNPagedLookasideList(lookaside)
 2225         npaged_lookaside_list   *lookaside;
 2226 {
 2227         void                    *buf;
 2228         void            (*freefunc)(void *);
 2229 
 2230         freefunc = lookaside->nll_l.gl_freefunc;
 2231         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
 2232                 MSCALL1(freefunc, buf);
 2233 
 2234         return;
 2235 }
 2236 
 2237 slist_entry *
 2238 InterlockedPushEntrySList(head, entry)
 2239         slist_header            *head;
 2240         slist_entry             *entry;
 2241 {
 2242         slist_entry             *oldhead;
 2243 
 2244         mtx_lock_spin(&ntoskrnl_interlock);
 2245         oldhead = ntoskrnl_pushsl(head, entry);
 2246         mtx_unlock_spin(&ntoskrnl_interlock);
 2247 
 2248         return(oldhead);
 2249 }
 2250 
 2251 slist_entry *
 2252 InterlockedPopEntrySList(head)
 2253         slist_header            *head;
 2254 {
 2255         slist_entry             *first;
 2256 
 2257         mtx_lock_spin(&ntoskrnl_interlock);
 2258         first = ntoskrnl_popsl(head);
 2259         mtx_unlock_spin(&ntoskrnl_interlock);
 2260 
 2261         return(first);
 2262 }
 2263 
 2264 static slist_entry *
 2265 ExInterlockedPushEntrySList(head, entry, lock)
 2266         slist_header            *head;
 2267         slist_entry             *entry;
 2268         kspin_lock              *lock;
 2269 {
 2270         return(InterlockedPushEntrySList(head, entry));
 2271 }
 2272 
 2273 static slist_entry *
 2274 ExInterlockedPopEntrySList(head, lock)
 2275         slist_header            *head;
 2276         kspin_lock              *lock;
 2277 {
 2278         return(InterlockedPopEntrySList(head));
 2279 }
 2280 
 2281 uint16_t
 2282 ExQueryDepthSList(head)
 2283         slist_header            *head;
 2284 {
 2285         uint16_t                depth;
 2286 
 2287         mtx_lock_spin(&ntoskrnl_interlock);
 2288         depth = head->slh_list.slh_depth;
 2289         mtx_unlock_spin(&ntoskrnl_interlock);
 2290 
 2291         return(depth);
 2292 }
 2293 
 2294 void
 2295 KeInitializeSpinLock(lock)
 2296         kspin_lock              *lock;
 2297 {
 2298         *lock = 0;
 2299 
 2300         return;
 2301 }
 2302 
 2303 #ifdef __i386__
 2304 void
 2305 KefAcquireSpinLockAtDpcLevel(lock)
 2306         kspin_lock              *lock;
 2307 {
 2308 #ifdef NTOSKRNL_DEBUG_SPINLOCKS
 2309         int                     i = 0;
 2310 #endif
 2311 
 2312         while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) {
 2313                 /* sit and spin */;
 2314 #ifdef NTOSKRNL_DEBUG_SPINLOCKS
 2315                 i++;
 2316                 if (i > 200000000)
 2317                         panic("DEADLOCK!");
 2318 #endif
 2319         }
 2320 
 2321         return;
 2322 }
 2323 
 2324 void
 2325 KefReleaseSpinLockFromDpcLevel(lock)
 2326         kspin_lock              *lock;
 2327 {
 2328         atomic_store_rel_int((volatile u_int *)lock, 0);
 2329 
 2330         return;
 2331 }
 2332 
 2333 uint8_t
 2334 KeAcquireSpinLockRaiseToDpc(kspin_lock *lock)
 2335 {
 2336         uint8_t                 oldirql;
 2337 
 2338         if (KeGetCurrentIrql() > DISPATCH_LEVEL)
 2339                 panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
 2340 
 2341         KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
 2342         KeAcquireSpinLockAtDpcLevel(lock);
 2343 
 2344         return(oldirql);
 2345 }
 2346 #else
 2347 void
 2348 KeAcquireSpinLockAtDpcLevel(kspin_lock *lock)
 2349 {
 2350         while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
 2351                 /* sit and spin */;
 2352 
 2353         return;
 2354 }
 2355 
 2356 void
 2357 KeReleaseSpinLockFromDpcLevel(kspin_lock *lock)
 2358 {
 2359         atomic_store_rel_int((volatile u_int *)lock, 0);
 2360 
 2361         return;
 2362 }
 2363 #endif /* __i386__ */
 2364 
 2365 uintptr_t
 2366 InterlockedExchange(dst, val)
 2367         volatile uint32_t       *dst;
 2368         uintptr_t               val;
 2369 {
 2370         uintptr_t               r;
 2371 
 2372         mtx_lock_spin(&ntoskrnl_interlock);
 2373         r = *dst;
 2374         *dst = val;
 2375         mtx_unlock_spin(&ntoskrnl_interlock);
 2376 
 2377         return(r);
 2378 }
 2379 
 2380 static uint32_t
 2381 InterlockedIncrement(addend)
 2382         volatile uint32_t       *addend;
 2383 {
 2384         atomic_add_long((volatile u_long *)addend, 1);
 2385         return(*addend);
 2386 }
 2387 
 2388 static uint32_t
 2389 InterlockedDecrement(addend)
 2390         volatile uint32_t       *addend;
 2391 {
 2392         atomic_subtract_long((volatile u_long *)addend, 1);
 2393         return(*addend);
 2394 }
 2395 
 2396 static void
 2397 ExInterlockedAddLargeStatistic(addend, inc)
 2398         uint64_t                *addend;
 2399         uint32_t                inc;
 2400 {
 2401         mtx_lock_spin(&ntoskrnl_interlock);
 2402         *addend += inc;
 2403         mtx_unlock_spin(&ntoskrnl_interlock);
 2404 
 2405         return;
 2406 };
 2407 
 2408 mdl *
 2409 IoAllocateMdl(void *vaddr, uint32_t len, uint8_t secondarybuf,
 2410         uint8_t chargequota, irp *iopkt)
 2411 {
 2412         mdl                     *m;
 2413         int                     zone = 0;
 2414 
 2415         if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE)
 2416                 m = ExAllocatePoolWithTag(NonPagedPool,
 2417                     MmSizeOfMdl(vaddr, len), 0);
 2418         else {
 2419                 m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO);
 2420                 zone++;
 2421         }
 2422 
 2423         if (m == NULL)
 2424                 return (NULL);
 2425 
 2426         MmInitializeMdl(m, vaddr, len);
 2427 
 2428         /*
 2429          * MmInitializMdl() clears the flags field, so we
 2430          * have to set this here. If the MDL came from the
 2431          * MDL UMA zone, tag it so we can release it to
 2432          * the right place later.
 2433          */
 2434         if (zone)
 2435                 m->mdl_flags = MDL_ZONE_ALLOCED;
 2436 
 2437         if (iopkt != NULL) {
 2438                 if (secondarybuf == TRUE) {
 2439                         mdl                     *last;
 2440                         last = iopkt->irp_mdl;
 2441                         while (last->mdl_next != NULL)
 2442                                 last = last->mdl_next;
 2443                         last->mdl_next = m;
 2444                 } else {
 2445                         if (iopkt->irp_mdl != NULL)
 2446                                 panic("leaking an MDL in IoAllocateMdl()");
 2447                         iopkt->irp_mdl = m;
 2448                 }
 2449         }
 2450 
 2451         return (m);
 2452 }
 2453 
 2454 void
 2455 IoFreeMdl(m)
 2456         mdl                     *m;
 2457 {
 2458         if (m == NULL)
 2459                 return;
 2460 
 2461         if (m->mdl_flags & MDL_ZONE_ALLOCED)
 2462                 uma_zfree(mdl_zone, m);
 2463         else
 2464                 ExFreePool(m);
 2465 
 2466         return;
 2467 }
 2468 
 2469 static void *
 2470 MmAllocateContiguousMemory(size, highest)
 2471         uint32_t                size;
 2472         uint64_t                highest;
 2473 {
 2474         void *addr;
 2475         size_t pagelength = roundup(size, PAGE_SIZE);
 2476 
 2477         addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0);
 2478 
 2479         return(addr);
 2480 }
 2481 
 2482 static void *
 2483 MmAllocateContiguousMemorySpecifyCache(size, lowest, highest,
 2484     boundary, cachetype)
 2485         uint32_t                size;
 2486         uint64_t                lowest;
 2487         uint64_t                highest;
 2488         uint64_t                boundary;
 2489         uint32_t                cachetype;
 2490 {
 2491         void *addr;
 2492         size_t pagelength = roundup(size, PAGE_SIZE);
 2493 
 2494         addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0);
 2495 
 2496         return(addr);
 2497 }
 2498 
 2499 static void
 2500 MmFreeContiguousMemory(base)
 2501         void                    *base;
 2502 {
 2503         ExFreePool(base);
 2504 }
 2505 
 2506 static void
 2507 MmFreeContiguousMemorySpecifyCache(base, size, cachetype)
 2508         void                    *base;
 2509         uint32_t                size;
 2510         uint32_t                cachetype;
 2511 {
 2512         ExFreePool(base);
 2513 }
 2514 
 2515 static uint32_t
 2516 MmSizeOfMdl(vaddr, len)
 2517         void                    *vaddr;
 2518         size_t                  len;
 2519 {
 2520         uint32_t                l;
 2521 
 2522         l = sizeof(struct mdl) +
 2523             (sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len));
 2524 
 2525         return(l);
 2526 }
 2527 
 2528 /*
 2529  * The Microsoft documentation says this routine fills in the
 2530  * page array of an MDL with the _physical_ page addresses that
 2531  * comprise the buffer, but we don't really want to do that here.
 2532  * Instead, we just fill in the page array with the kernel virtual
 2533  * addresses of the buffers.
 2534  */
 2535 void
 2536 MmBuildMdlForNonPagedPool(m)
 2537         mdl                     *m;
 2538 {
 2539         vm_offset_t             *mdl_pages;
 2540         int                     pagecnt, i;
 2541 
 2542         pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount);
 2543 
 2544         if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *))
 2545                 panic("not enough pages in MDL to describe buffer");
 2546 
 2547         mdl_pages = MmGetMdlPfnArray(m);
 2548 
 2549         for (i = 0; i < pagecnt; i++)
 2550                 *mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE);
 2551 
 2552         m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL;
 2553         m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m);
 2554 
 2555         return;
 2556 }
 2557 
 2558 static void *
 2559 MmMapLockedPages(mdl *buf, uint8_t accessmode)
 2560 {
 2561         buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA;
 2562         return(MmGetMdlVirtualAddress(buf));
 2563 }
 2564 
 2565 static void *
 2566 MmMapLockedPagesSpecifyCache(mdl *buf, uint8_t accessmode, uint32_t cachetype,
 2567         void *vaddr, uint32_t bugcheck, uint32_t prio)
 2568 {
 2569         return(MmMapLockedPages(buf, accessmode));
 2570 }
 2571 
 2572 static void
 2573 MmUnmapLockedPages(vaddr, buf)
 2574         void                    *vaddr;
 2575         mdl                     *buf;
 2576 {
 2577         buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA;
 2578         return;
 2579 }
 2580 
 2581 /*
 2582  * This function has a problem in that it will break if you
 2583  * compile this module without PAE and try to use it on a PAE
 2584  * kernel. Unfortunately, there's no way around this at the
 2585  * moment. It's slightly less broken that using pmap_kextract().
 2586  * You'd think the virtual memory subsystem would help us out
 2587  * here, but it doesn't.
 2588  */
 2589 
 2590 uint8_t
 2591 MmIsAddressValid(vaddr)
 2592         void                    *vaddr;
 2593 {
 2594         if (pmap_extract(kernel_map->pmap, (vm_offset_t)vaddr))
 2595                 return(TRUE);
 2596 
 2597         return(FALSE);
 2598 }
 2599 
 2600 void *
 2601 MmMapIoSpace(paddr, len, cachetype)
 2602         uint64_t                paddr;
 2603         uint32_t                len;
 2604         uint32_t                cachetype;
 2605 {
 2606         devclass_t              nexus_class;
 2607         device_t                *nexus_devs, devp;
 2608         int                     nexus_count = 0;
 2609         device_t                matching_dev = NULL;
 2610         struct resource         *res;
 2611         int                     i;
 2612         vm_offset_t             v;
 2613 
 2614         /* There will always be at least one nexus. */
 2615 
 2616         nexus_class = devclass_find("nexus");
 2617         devclass_get_devices(nexus_class, &nexus_devs, &nexus_count);
 2618 
 2619         for (i = 0; i < nexus_count; i++) {
 2620                 devp = nexus_devs[i];
 2621                 matching_dev = ntoskrnl_finddev(devp, paddr, &res);
 2622                 if (matching_dev)
 2623                         break;
 2624         }
 2625 
 2626         free(nexus_devs, M_TEMP);
 2627 
 2628         if (matching_dev == NULL)
 2629                 return(NULL);
 2630 
 2631         v = (vm_offset_t)rman_get_virtual(res);
 2632         if (paddr > rman_get_start(res))
 2633                 v += paddr - rman_get_start(res);
 2634 
 2635         return((void *)v);
 2636 }
 2637 
 2638 void
 2639 MmUnmapIoSpace(vaddr, len)
 2640         void                    *vaddr;
 2641         size_t                  len;
 2642 {
 2643         return;
 2644 }
 2645 
 2646 
 2647 static device_t
 2648 ntoskrnl_finddev(dev, paddr, res)
 2649         device_t                dev;
 2650         uint64_t                paddr;
 2651         struct resource         **res;
 2652 {
 2653         device_t                *children = NULL;
 2654         device_t                matching_dev;
 2655         int                     childcnt;
 2656         struct resource         *r;
 2657         struct resource_list    *rl;
 2658         struct resource_list_entry      *rle;
 2659         uint32_t                flags;
 2660         int                     i;
 2661 
 2662         /* We only want devices that have been successfully probed. */
 2663 
 2664         if (device_is_alive(dev) == FALSE)
 2665                 return(NULL);
 2666 
 2667         rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
 2668         if (rl != NULL) {
 2669 #if __FreeBSD_version < 600022
 2670                 SLIST_FOREACH(rle, rl, link) {
 2671 #else
 2672                 STAILQ_FOREACH(rle, rl, link) {
 2673 #endif
 2674                         r = rle->res;
 2675 
 2676                         if (r == NULL)
 2677                                 continue;
 2678 
 2679                         flags = rman_get_flags(r);
 2680 
 2681                         if (rle->type == SYS_RES_MEMORY &&
 2682                             paddr >= rman_get_start(r) &&
 2683                             paddr <= rman_get_end(r)) {
 2684                                 if (!(flags & RF_ACTIVE))
 2685                                         bus_activate_resource(dev,
 2686                                             SYS_RES_MEMORY, 0, r);
 2687                                 *res = r;
 2688                                 return(dev);
 2689                         }
 2690                 }
 2691         }
 2692 
 2693         /*
 2694          * If this device has children, do another
 2695          * level of recursion to inspect them.
 2696          */
 2697 
 2698         device_get_children(dev, &children, &childcnt);
 2699 
 2700         for (i = 0; i < childcnt; i++) {
 2701                 matching_dev = ntoskrnl_finddev(children[i], paddr, res);
 2702                 if (matching_dev != NULL) {
 2703                         free(children, M_TEMP);
 2704                         return(matching_dev);
 2705                 }
 2706         }
 2707 
 2708 
 2709         /* Won't somebody please think of the children! */
 2710 
 2711         if (children != NULL)
 2712                 free(children, M_TEMP);
 2713 
 2714         return(NULL);
 2715 }
 2716 
 2717 /*
 2718  * Workitems are unlike DPCs, in that they run in a user-mode thread
 2719  * context rather than at DISPATCH_LEVEL in kernel context. In our
 2720  * case we run them in kernel context anyway.
 2721  */
 2722 static void
 2723 ntoskrnl_workitem_thread(arg)
 2724         void                    *arg;
 2725 {
 2726         kdpc_queue              *kq;
 2727         list_entry              *l;
 2728         io_workitem             *iw;
 2729         uint8_t                 irql;
 2730 
 2731         kq = arg;
 2732 
 2733         InitializeListHead(&kq->kq_disp);
 2734         kq->kq_td = curthread;
 2735         kq->kq_exit = 0;
 2736         KeInitializeSpinLock(&kq->kq_lock);
 2737         KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
 2738 
 2739         while (1) {
 2740                 KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
 2741 
 2742                 KeAcquireSpinLock(&kq->kq_lock, &irql);
 2743 
 2744                 if (kq->kq_exit) {
 2745                         kq->kq_exit = 0;
 2746                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2747                         break;
 2748                 }
 2749 
 2750                 while (!IsListEmpty(&kq->kq_disp)) {
 2751                         l = RemoveHeadList(&kq->kq_disp);
 2752                         iw = CONTAINING_RECORD(l,
 2753                             io_workitem, iw_listentry);
 2754                         InitializeListHead((&iw->iw_listentry));
 2755                         if (iw->iw_func == NULL)
 2756                                 continue;
 2757                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2758                         MSCALL2(iw->iw_func, iw->iw_dobj, iw->iw_ctx);
 2759                         KeAcquireSpinLock(&kq->kq_lock, &irql);
 2760                 }
 2761 
 2762                 KeReleaseSpinLock(&kq->kq_lock, irql);
 2763         }
 2764 
 2765 #if __FreeBSD_version < 502113
 2766         mtx_lock(&Giant);
 2767 #endif
 2768         kproc_exit(0);
 2769         return; /* notreached */
 2770 }
 2771 
 2772 static void
 2773 ntoskrnl_destroy_workitem_threads(void)
 2774 {
 2775         kdpc_queue              *kq;
 2776         int                     i;
 2777 
 2778         for (i = 0; i < WORKITEM_THREADS; i++) {
 2779                 kq = wq_queues + i;
 2780                 kq->kq_exit = 1;
 2781                 KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 2782                 while (kq->kq_exit)
 2783                         tsleep(kq->kq_td->td_proc, PWAIT, "waitiw", hz/10);
 2784         }
 2785 
 2786         return;
 2787 }
 2788 
 2789 io_workitem *
 2790 IoAllocateWorkItem(dobj)
 2791         device_object           *dobj;
 2792 {
 2793         io_workitem             *iw;
 2794 
 2795         iw = uma_zalloc(iw_zone, M_NOWAIT);
 2796         if (iw == NULL)
 2797                 return(NULL);
 2798 
 2799         InitializeListHead(&iw->iw_listentry);
 2800         iw->iw_dobj = dobj;
 2801 
 2802         mtx_lock(&ntoskrnl_dispatchlock);
 2803         iw->iw_idx = wq_idx;
 2804         WORKIDX_INC(wq_idx);
 2805         mtx_unlock(&ntoskrnl_dispatchlock);
 2806 
 2807         return(iw);
 2808 }
 2809 
 2810 void
 2811 IoFreeWorkItem(iw)
 2812         io_workitem             *iw;
 2813 {
 2814         uma_zfree(iw_zone, iw);
 2815         return;
 2816 }
 2817 
 2818 void
 2819 IoQueueWorkItem(iw, iw_func, qtype, ctx)
 2820         io_workitem             *iw;
 2821         io_workitem_func        iw_func;
 2822         uint32_t                qtype;
 2823         void                    *ctx;
 2824 {
 2825         kdpc_queue              *kq;
 2826         list_entry              *l;
 2827         io_workitem             *cur;
 2828         uint8_t                 irql;
 2829 
 2830         kq = wq_queues + iw->iw_idx;
 2831 
 2832         KeAcquireSpinLock(&kq->kq_lock, &irql);
 2833 
 2834         /*
 2835          * Traverse the list and make sure this workitem hasn't
 2836          * already been inserted. Queuing the same workitem
 2837          * twice will hose the list but good.
 2838          */
 2839 
 2840         l = kq->kq_disp.nle_flink;
 2841         while (l != &kq->kq_disp) {
 2842                 cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
 2843                 if (cur == iw) {
 2844                         /* Already queued -- do nothing. */
 2845                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2846                         return;
 2847                 }
 2848                 l = l->nle_flink;
 2849         }
 2850 
 2851         iw->iw_func = iw_func;
 2852         iw->iw_ctx = ctx;
 2853 
 2854         InsertTailList((&kq->kq_disp), (&iw->iw_listentry));
 2855         KeReleaseSpinLock(&kq->kq_lock, irql);
 2856 
 2857         KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 2858 
 2859         return;
 2860 }
 2861 
 2862 static void
 2863 ntoskrnl_workitem(dobj, arg)
 2864         device_object           *dobj;
 2865         void                    *arg;
 2866 {
 2867         io_workitem             *iw;
 2868         work_queue_item         *w;
 2869         work_item_func          f;
 2870 
 2871         iw = arg;
 2872         w = (work_queue_item *)dobj;
 2873         f = (work_item_func)w->wqi_func;
 2874         uma_zfree(iw_zone, iw);
 2875         MSCALL2(f, w, w->wqi_ctx);
 2876 
 2877         return;
 2878 }
 2879 
 2880 /*
 2881  * The ExQueueWorkItem() API is deprecated in Windows XP. Microsoft
 2882  * warns that it's unsafe and to use IoQueueWorkItem() instead. The
 2883  * problem with ExQueueWorkItem() is that it can't guard against
 2884  * the condition where a driver submits a job to the work queue and
 2885  * is then unloaded before the job is able to run. IoQueueWorkItem()
 2886  * acquires a reference to the device's device_object via the
 2887  * object manager and retains it until after the job has completed,
 2888  * which prevents the driver from being unloaded before the job
 2889  * runs. (We don't currently support this behavior, though hopefully
 2890  * that will change once the object manager API is fleshed out a bit.)
 2891  *
 2892  * Having said all that, the ExQueueWorkItem() API remains, because
 2893  * there are still other parts of Windows that use it, including
 2894  * NDIS itself: NdisScheduleWorkItem() calls ExQueueWorkItem().
 2895  * We fake up the ExQueueWorkItem() API on top of our implementation
 2896  * of IoQueueWorkItem(). Workitem thread #3 is reserved exclusively
 2897  * for ExQueueWorkItem() jobs, and we pass a pointer to the work
 2898  * queue item (provided by the caller) in to IoAllocateWorkItem()
 2899  * instead of the device_object. We need to save this pointer so
 2900  * we can apply a sanity check: as with the DPC queue and other
 2901  * workitem queues, we can't allow the same work queue item to
 2902  * be queued twice. If it's already pending, we silently return
 2903  */
 2904 
 2905 void
 2906 ExQueueWorkItem(w, qtype)
 2907         work_queue_item         *w;
 2908         uint32_t                qtype;
 2909 {
 2910         io_workitem             *iw;
 2911         io_workitem_func        iwf;
 2912         kdpc_queue              *kq;
 2913         list_entry              *l;
 2914         io_workitem             *cur;
 2915         uint8_t                 irql;
 2916 
 2917 
 2918         /*
 2919          * We need to do a special sanity test to make sure
 2920          * the ExQueueWorkItem() API isn't used to queue
 2921          * the same workitem twice. Rather than checking the
 2922          * io_workitem pointer itself, we test the attached
 2923          * device object, which is really a pointer to the
 2924          * legacy work queue item structure.
 2925          */
 2926 
 2927         kq = wq_queues + WORKITEM_LEGACY_THREAD;
 2928         KeAcquireSpinLock(&kq->kq_lock, &irql);
 2929         l = kq->kq_disp.nle_flink;
 2930         while (l != &kq->kq_disp) {
 2931                 cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
 2932                 if (cur->iw_dobj == (device_object *)w) {
 2933                         /* Already queued -- do nothing. */
 2934                         KeReleaseSpinLock(&kq->kq_lock, irql);
 2935                         return;
 2936                 }
 2937                 l = l->nle_flink;
 2938         }
 2939         KeReleaseSpinLock(&kq->kq_lock, irql);
 2940 
 2941         iw = IoAllocateWorkItem((device_object *)w);
 2942         if (iw == NULL)
 2943                 return;
 2944 
 2945         iw->iw_idx = WORKITEM_LEGACY_THREAD;
 2946         iwf = (io_workitem_func)ntoskrnl_findwrap((funcptr)ntoskrnl_workitem);
 2947         IoQueueWorkItem(iw, iwf, qtype, iw);
 2948 
 2949         return;
 2950 }
 2951 
 2952 static void
 2953 RtlZeroMemory(dst, len)
 2954         void                    *dst;
 2955         size_t                  len;
 2956 {
 2957         bzero(dst, len);
 2958         return;
 2959 }
 2960 
 2961 static void
 2962 RtlCopyMemory(dst, src, len)
 2963         void                    *dst;
 2964         const void              *src;
 2965         size_t                  len;
 2966 {
 2967         bcopy(src, dst, len);
 2968         return;
 2969 }
 2970 
 2971 static size_t
 2972 RtlCompareMemory(s1, s2, len)
 2973         const void              *s1;
 2974         const void              *s2;
 2975         size_t                  len;
 2976 {
 2977         size_t                  i, total = 0;
 2978         uint8_t                 *m1, *m2;
 2979 
 2980         m1 = __DECONST(char *, s1);
 2981         m2 = __DECONST(char *, s2);
 2982 
 2983         for (i = 0; i < len; i++) {
 2984                 if (m1[i] == m2[i])
 2985                         total++;
 2986         }
 2987         return(total);
 2988 }
 2989 
 2990 void
 2991 RtlInitAnsiString(dst, src)
 2992         ansi_string             *dst;
 2993         char                    *src;
 2994 {
 2995         ansi_string             *a;
 2996 
 2997         a = dst;
 2998         if (a == NULL)
 2999                 return;
 3000         if (src == NULL) {
 3001                 a->as_len = a->as_maxlen = 0;
 3002                 a->as_buf = NULL;
 3003         } else {
 3004                 a->as_buf = src;
 3005                 a->as_len = a->as_maxlen = strlen(src);
 3006         }
 3007 
 3008         return;
 3009 }
 3010 
 3011 void
 3012 RtlInitUnicodeString(dst, src)
 3013         unicode_string          *dst;
 3014         uint16_t                *src;
 3015 {
 3016         unicode_string          *u;
 3017         int                     i;
 3018 
 3019         u = dst;
 3020         if (u == NULL)
 3021                 return;
 3022         if (src == NULL) {
 3023                 u->us_len = u->us_maxlen = 0;
 3024                 u->us_buf = NULL;
 3025         } else {
 3026                 i = 0;
 3027                 while(src[i] != 0)
 3028                         i++;
 3029                 u->us_buf = src;
 3030                 u->us_len = u->us_maxlen = i * 2;
 3031         }
 3032 
 3033         return;
 3034 }
 3035 
 3036 ndis_status
 3037 RtlUnicodeStringToInteger(ustr, base, val)
 3038         unicode_string          *ustr;
 3039         uint32_t                base;
 3040         uint32_t                *val;
 3041 {
 3042         uint16_t                *uchr;
 3043         int                     len, neg = 0;
 3044         char                    abuf[64];
 3045         char                    *astr;
 3046 
 3047         uchr = ustr->us_buf;
 3048         len = ustr->us_len;
 3049         bzero(abuf, sizeof(abuf));
 3050 
 3051         if ((char)((*uchr) & 0xFF) == '-') {
 3052                 neg = 1;
 3053                 uchr++;
 3054                 len -= 2;
 3055         } else if ((char)((*uchr) & 0xFF) == '+') {
 3056                 neg = 0;
 3057                 uchr++;
 3058                 len -= 2;
 3059         }
 3060 
 3061         if (base == 0) {
 3062                 if ((char)((*uchr) & 0xFF) == 'b') {
 3063                         base = 2;
 3064                         uchr++;
 3065                         len -= 2;
 3066                 } else if ((char)((*uchr) & 0xFF) == 'o') {
 3067                         base = 8;
 3068                         uchr++;
 3069                         len -= 2;
 3070                 } else if ((char)((*uchr) & 0xFF) == 'x') {
 3071                         base = 16;
 3072                         uchr++;
 3073                         len -= 2;
 3074                 } else
 3075                         base = 10;
 3076         }
 3077 
 3078         astr = abuf;
 3079         if (neg) {
 3080                 strcpy(astr, "-");
 3081                 astr++;
 3082         }
 3083 
 3084         ntoskrnl_unicode_to_ascii(uchr, astr, len);
 3085         *val = strtoul(abuf, NULL, base);
 3086 
 3087         return(STATUS_SUCCESS);
 3088 }
 3089 
 3090 void
 3091 RtlFreeUnicodeString(ustr)
 3092         unicode_string          *ustr;
 3093 {
 3094         if (ustr->us_buf == NULL)
 3095                 return;
 3096         ExFreePool(ustr->us_buf);
 3097         ustr->us_buf = NULL;
 3098         return;
 3099 }
 3100 
 3101 void
 3102 RtlFreeAnsiString(astr)
 3103         ansi_string             *astr;
 3104 {
 3105         if (astr->as_buf == NULL)
 3106                 return;
 3107         ExFreePool(astr->as_buf);
 3108         astr->as_buf = NULL;
 3109         return;
 3110 }
 3111 
 3112 static int
 3113 atoi(str)
 3114         const char              *str;
 3115 {
 3116         return (int)strtol(str, (char **)NULL, 10);
 3117 }
 3118 
 3119 static long
 3120 atol(str)
 3121         const char              *str;
 3122 {
 3123         return strtol(str, (char **)NULL, 10);
 3124 }
 3125 
 3126 static int
 3127 rand(void)
 3128 {
 3129         struct timeval          tv;
 3130 
 3131         microtime(&tv);
 3132         srandom(tv.tv_usec);
 3133         return((int)random());
 3134 }
 3135 
 3136 static void
 3137 srand(seed)
 3138         unsigned int            seed;
 3139 {
 3140         srandom(seed);
 3141         return;
 3142 }
 3143 
 3144 static uint8_t
 3145 IoIsWdmVersionAvailable(uint8_t major, uint8_t minor)
 3146 {
 3147         if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
 3148                 return(TRUE);
 3149         return(FALSE);
 3150 }
 3151 
 3152 static ndis_status
 3153 IoGetDeviceObjectPointer(name, reqaccess, fileobj, devobj)
 3154         unicode_string          *name;
 3155         uint32_t                reqaccess;
 3156         void                    *fileobj;
 3157         device_object           *devobj;
 3158 {
 3159         return(STATUS_SUCCESS);
 3160 }
 3161 
 3162 static ndis_status
 3163 IoGetDeviceProperty(devobj, regprop, buflen, prop, reslen)
 3164         device_object           *devobj;
 3165         uint32_t                regprop;
 3166         uint32_t                buflen;
 3167         void                    *prop;
 3168         uint32_t                *reslen;
 3169 {
 3170         driver_object           *drv;
 3171         uint16_t                **name;
 3172 
 3173         drv = devobj->do_drvobj;
 3174 
 3175         switch (regprop) {
 3176         case DEVPROP_DRIVER_KEYNAME:
 3177                 name = prop;
 3178                 *name = drv->dro_drivername.us_buf;
 3179                 *reslen = drv->dro_drivername.us_len;
 3180                 break;
 3181         default:
 3182                 return(STATUS_INVALID_PARAMETER_2);
 3183                 break;
 3184         }
 3185 
 3186         return(STATUS_SUCCESS);
 3187 }
 3188 
 3189 static void
 3190 KeInitializeMutex(kmutex, level)
 3191         kmutant                 *kmutex;
 3192         uint32_t                level;
 3193 {
 3194         InitializeListHead((&kmutex->km_header.dh_waitlisthead));
 3195         kmutex->km_abandoned = FALSE;
 3196         kmutex->km_apcdisable = 1;
 3197         kmutex->km_header.dh_sigstate = 1;
 3198         kmutex->km_header.dh_type = DISP_TYPE_MUTANT;
 3199         kmutex->km_header.dh_size = sizeof(kmutant) / sizeof(uint32_t);
 3200         kmutex->km_ownerthread = NULL;
 3201         return;
 3202 }
 3203 
 3204 static uint32_t
 3205 KeReleaseMutex(kmutant *kmutex, uint8_t kwait)
 3206 {
 3207         uint32_t                prevstate;
 3208 
 3209         mtx_lock(&ntoskrnl_dispatchlock);
 3210         prevstate = kmutex->km_header.dh_sigstate;
 3211         if (kmutex->km_ownerthread != curthread) {
 3212                 mtx_unlock(&ntoskrnl_dispatchlock);
 3213                 return(STATUS_MUTANT_NOT_OWNED);
 3214         }
 3215 
 3216         kmutex->km_header.dh_sigstate++;
 3217         kmutex->km_abandoned = FALSE;
 3218 
 3219         if (kmutex->km_header.dh_sigstate == 1) {
 3220                 kmutex->km_ownerthread = NULL;
 3221                 ntoskrnl_waittest(&kmutex->km_header, IO_NO_INCREMENT);
 3222         }
 3223 
 3224         mtx_unlock(&ntoskrnl_dispatchlock);
 3225 
 3226         return(prevstate);
 3227 }
 3228 
 3229 static uint32_t
 3230 KeReadStateMutex(kmutex)
 3231         kmutant                 *kmutex;
 3232 {
 3233         return(kmutex->km_header.dh_sigstate);
 3234 }
 3235 
 3236 void
 3237 KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state)
 3238 {
 3239         InitializeListHead((&kevent->k_header.dh_waitlisthead));
 3240         kevent->k_header.dh_sigstate = state;
 3241         if (type == EVENT_TYPE_NOTIFY)
 3242                 kevent->k_header.dh_type = DISP_TYPE_NOTIFICATION_EVENT;
 3243         else
 3244                 kevent->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_EVENT;
 3245         kevent->k_header.dh_size = sizeof(nt_kevent) / sizeof(uint32_t);
 3246         return;
 3247 }
 3248 
 3249 uint32_t
 3250 KeResetEvent(kevent)
 3251         nt_kevent               *kevent;
 3252 {
 3253         uint32_t                prevstate;
 3254 
 3255         mtx_lock(&ntoskrnl_dispatchlock);
 3256         prevstate = kevent->k_header.dh_sigstate;
 3257         kevent->k_header.dh_sigstate = FALSE;
 3258         mtx_unlock(&ntoskrnl_dispatchlock);
 3259 
 3260         return(prevstate);
 3261 }
 3262 
 3263 uint32_t
 3264 KeSetEvent(nt_kevent *kevent, uint32_t increment, uint8_t kwait)
 3265 {
 3266         uint32_t                prevstate;
 3267         wait_block              *w;
 3268         nt_dispatch_header      *dh;
 3269         struct thread           *td;
 3270         wb_ext                  *we;
 3271 
 3272         mtx_lock(&ntoskrnl_dispatchlock);
 3273         prevstate = kevent->k_header.dh_sigstate;
 3274         dh = &kevent->k_header;
 3275 
 3276         if (IsListEmpty(&dh->dh_waitlisthead))
 3277                 /*
 3278                  * If there's nobody in the waitlist, just set
 3279                  * the state to signalled.
 3280                  */
 3281                 dh->dh_sigstate = 1;
 3282         else {
 3283                 /*
 3284                  * Get the first waiter. If this is a synchronization
 3285                  * event, just wake up that one thread (don't bother
 3286                  * setting the state to signalled since we're supposed
 3287                  * to automatically clear synchronization events anyway).
 3288                  *
 3289                  * If it's a notification event, or the the first
 3290                  * waiter is doing a WAITTYPE_ALL wait, go through
 3291                  * the full wait satisfaction process.
 3292                  */
 3293                 w = CONTAINING_RECORD(dh->dh_waitlisthead.nle_flink,
 3294                     wait_block, wb_waitlist);
 3295                 we = w->wb_ext;
 3296                 td = we->we_td;
 3297                 if (kevent->k_header.dh_type == DISP_TYPE_NOTIFICATION_EVENT ||
 3298                     w->wb_waittype == WAITTYPE_ALL) {
 3299                         if (prevstate == 0) {
 3300                                 dh->dh_sigstate = 1;
 3301                                 ntoskrnl_waittest(dh, increment);
 3302                         }
 3303                 } else {
 3304                         w->wb_awakened |= TRUE;
 3305                         cv_broadcastpri(&we->we_cv,
 3306                             (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
 3307                             w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
 3308                 }
 3309         }
 3310 
 3311         mtx_unlock(&ntoskrnl_dispatchlock);
 3312 
 3313         return(prevstate);
 3314 }
 3315 
 3316 void
 3317 KeClearEvent(kevent)
 3318         nt_kevent               *kevent;
 3319 {
 3320         kevent->k_header.dh_sigstate = FALSE;
 3321         return;
 3322 }
 3323 
 3324 uint32_t
 3325 KeReadStateEvent(kevent)
 3326         nt_kevent               *kevent;
 3327 {
 3328         return(kevent->k_header.dh_sigstate);
 3329 }
 3330 
 3331 /*
 3332  * The object manager in Windows is responsible for managing
 3333  * references and access to various types of objects, including
 3334  * device_objects, events, threads, timers and so on. However,
 3335  * there's a difference in the way objects are handled in user
 3336  * mode versus kernel mode.
 3337  *
 3338  * In user mode (i.e. Win32 applications), all objects are
 3339  * managed by the object manager. For example, when you create
 3340  * a timer or event object, you actually end up with an 
 3341  * object_header (for the object manager's bookkeeping
 3342  * purposes) and an object body (which contains the actual object
 3343  * structure, e.g. ktimer, kevent, etc...). This allows Windows
 3344  * to manage resource quotas and to enforce access restrictions
 3345  * on basically every kind of system object handled by the kernel.
 3346  *
 3347  * However, in kernel mode, you only end up using the object
 3348  * manager some of the time. For example, in a driver, you create
 3349  * a timer object by simply allocating the memory for a ktimer
 3350  * structure and initializing it with KeInitializeTimer(). Hence,
 3351  * the timer has no object_header and no reference counting or
 3352  * security/resource checks are done on it. The assumption in
 3353  * this case is that if you're running in kernel mode, you know
 3354  * what you're doing, and you're already at an elevated privilege
 3355  * anyway.
 3356  *
 3357  * There are some exceptions to this. The two most important ones
 3358  * for our purposes are device_objects and threads. We need to use
 3359  * the object manager to do reference counting on device_objects,
 3360  * and for threads, you can only get a pointer to a thread's
 3361  * dispatch header by using ObReferenceObjectByHandle() on the
 3362  * handle returned by PsCreateSystemThread().
 3363  */
 3364 
 3365 static ndis_status
 3366 ObReferenceObjectByHandle(ndis_handle handle, uint32_t reqaccess, void *otype,
 3367         uint8_t accessmode, void **object, void **handleinfo)
 3368 {
 3369         nt_objref               *nr;
 3370 
 3371         nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
 3372         if (nr == NULL)
 3373                 return(STATUS_INSUFFICIENT_RESOURCES);
 3374 
 3375         InitializeListHead((&nr->no_dh.dh_waitlisthead));
 3376         nr->no_obj = handle;
 3377         nr->no_dh.dh_type = DISP_TYPE_THREAD;
 3378         nr->no_dh.dh_sigstate = 0;
 3379         nr->no_dh.dh_size = (uint8_t)(sizeof(struct thread) /
 3380             sizeof(uint32_t));
 3381         TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
 3382         *object = nr;
 3383 
 3384         return(STATUS_SUCCESS);
 3385 }
 3386 
 3387 static void
 3388 ObfDereferenceObject(object)
 3389         void                    *object;
 3390 {
 3391         nt_objref               *nr;
 3392 
 3393         nr = object;
 3394         TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
 3395         free(nr, M_DEVBUF);
 3396 
 3397         return;
 3398 }
 3399 
 3400 static uint32_t
 3401 ZwClose(handle)
 3402         ndis_handle             handle;
 3403 {
 3404         return(STATUS_SUCCESS);
 3405 }
 3406 
 3407 static uint32_t
 3408 WmiQueryTraceInformation(traceclass, traceinfo, infolen, reqlen, buf)
 3409         uint32_t                traceclass;
 3410         void                    *traceinfo;
 3411         uint32_t                infolen;
 3412         uint32_t                reqlen;
 3413         void                    *buf;
 3414 {
 3415         return(STATUS_NOT_FOUND);
 3416 }
 3417 
 3418 static uint32_t
 3419 WmiTraceMessage(uint64_t loghandle, uint32_t messageflags,
 3420         void *guid, uint16_t messagenum, ...)
 3421 {
 3422         return(STATUS_SUCCESS);
 3423 }
 3424 
 3425 static uint32_t
 3426 IoWMIRegistrationControl(dobj, action)
 3427         device_object           *dobj;
 3428         uint32_t                action;
 3429 {
 3430         return(STATUS_SUCCESS);
 3431 }
 3432 
 3433 /*
 3434  * This is here just in case the thread returns without calling
 3435  * PsTerminateSystemThread().
 3436  */
 3437 static void
 3438 ntoskrnl_thrfunc(arg)
 3439         void                    *arg;
 3440 {
 3441         thread_context          *thrctx;
 3442         uint32_t (*tfunc)(void *);
 3443         void                    *tctx;
 3444         uint32_t                rval;
 3445 
 3446         thrctx = arg;
 3447         tfunc = thrctx->tc_thrfunc;
 3448         tctx = thrctx->tc_thrctx;
 3449         free(thrctx, M_TEMP);
 3450 
 3451         rval = MSCALL1(tfunc, tctx);
 3452 
 3453         PsTerminateSystemThread(rval);
 3454         return; /* notreached */
 3455 }
 3456 
 3457 static ndis_status
 3458 PsCreateSystemThread(handle, reqaccess, objattrs, phandle,
 3459         clientid, thrfunc, thrctx)
 3460         ndis_handle             *handle;
 3461         uint32_t                reqaccess;
 3462         void                    *objattrs;
 3463         ndis_handle             phandle;
 3464         void                    *clientid;
 3465         void                    *thrfunc;
 3466         void                    *thrctx;
 3467 {
 3468         int                     error;
 3469         char                    tname[128];
 3470         thread_context          *tc;
 3471         struct proc             *p;
 3472 
 3473         tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
 3474         if (tc == NULL)
 3475                 return(STATUS_INSUFFICIENT_RESOURCES);
 3476 
 3477         tc->tc_thrctx = thrctx;
 3478         tc->tc_thrfunc = thrfunc;
 3479 
 3480         sprintf(tname, "windows kthread %d", ntoskrnl_kth);
 3481         error = kproc_create(ntoskrnl_thrfunc, tc, &p,
 3482             RFHIGHPID, NDIS_KSTACK_PAGES, tname);
 3483 
 3484         if (error) {
 3485                 free(tc, M_TEMP);
 3486                 return(STATUS_INSUFFICIENT_RESOURCES);
 3487         }
 3488 
 3489         *handle = p;
 3490         ntoskrnl_kth++;
 3491 
 3492         return(STATUS_SUCCESS);
 3493 }
 3494 
 3495 /*
 3496  * In Windows, the exit of a thread is an event that you're allowed
 3497  * to wait on, assuming you've obtained a reference to the thread using
 3498  * ObReferenceObjectByHandle(). Unfortunately, the only way we can
 3499  * simulate this behavior is to register each thread we create in a
 3500  * reference list, and if someone holds a reference to us, we poke
 3501  * them.
 3502  */
 3503 static ndis_status
 3504 PsTerminateSystemThread(status)
 3505         ndis_status             status;
 3506 {
 3507         struct nt_objref        *nr;
 3508 
 3509         mtx_lock(&ntoskrnl_dispatchlock);
 3510         TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
 3511                 if (nr->no_obj != curthread->td_proc)
 3512                         continue;
 3513                 nr->no_dh.dh_sigstate = 1;
 3514                 ntoskrnl_waittest(&nr->no_dh, IO_NO_INCREMENT);
 3515                 break;
 3516         }
 3517         mtx_unlock(&ntoskrnl_dispatchlock);
 3518 
 3519         ntoskrnl_kth--;
 3520 
 3521 #if __FreeBSD_version < 502113
 3522         mtx_lock(&Giant);
 3523 #endif
 3524         kproc_exit(0);
 3525         return(0);      /* notreached */
 3526 }
 3527 
 3528 static uint32_t
 3529 DbgPrint(char *fmt, ...)
 3530 {
 3531         va_list                 ap;
 3532 
 3533         if (bootverbose) {
 3534                 va_start(ap, fmt);
 3535                 vprintf(fmt, ap);
 3536         }
 3537 
 3538         return(STATUS_SUCCESS);
 3539 }
 3540 
 3541 static void
 3542 DbgBreakPoint(void)
 3543 {
 3544 
 3545 #if __FreeBSD_version < 502113
 3546         Debugger("DbgBreakPoint(): breakpoint");
 3547 #else
 3548         kdb_enter(KDB_WHY_NDIS, "DbgBreakPoint(): breakpoint");
 3549 #endif
 3550 }
 3551 
 3552 static void
 3553 KeBugCheckEx(code, param1, param2, param3, param4)
 3554     uint32_t                    code;
 3555     u_long                      param1;
 3556     u_long                      param2;
 3557     u_long                      param3;
 3558     u_long                      param4;
 3559 {
 3560         panic("KeBugCheckEx: STOP 0x%X", code);
 3561 }
 3562 
 3563 static void
 3564 ntoskrnl_timercall(arg)
 3565         void                    *arg;
 3566 {
 3567         ktimer                  *timer;
 3568         struct timeval          tv;
 3569         kdpc                    *dpc;
 3570 
 3571         mtx_lock(&ntoskrnl_dispatchlock);
 3572 
 3573         timer = arg;
 3574 
 3575 #ifdef NTOSKRNL_DEBUG_TIMERS
 3576         ntoskrnl_timer_fires++;
 3577 #endif
 3578         ntoskrnl_remove_timer(timer);
 3579 
 3580         /*
 3581          * This should never happen, but complain
 3582          * if it does.
 3583          */
 3584 
 3585         if (timer->k_header.dh_inserted == FALSE) {
 3586                 mtx_unlock(&ntoskrnl_dispatchlock);
 3587                 printf("NTOS: timer %p fired even though "
 3588                     "it was canceled\n", timer);
 3589                 return;
 3590         }
 3591 
 3592         /* Mark the timer as no longer being on the timer queue. */
 3593 
 3594         timer->k_header.dh_inserted = FALSE;
 3595 
 3596         /* Now signal the object and satisfy any waits on it. */
 3597 
 3598         timer->k_header.dh_sigstate = 1;
 3599         ntoskrnl_waittest(&timer->k_header, IO_NO_INCREMENT);
 3600 
 3601         /*
 3602          * If this is a periodic timer, re-arm it
 3603          * so it will fire again. We do this before
 3604          * calling any deferred procedure calls because
 3605          * it's possible the DPC might cancel the timer,
 3606          * in which case it would be wrong for us to
 3607          * re-arm it again afterwards.
 3608          */
 3609 
 3610         if (timer->k_period) {
 3611                 tv.tv_sec = 0;
 3612                 tv.tv_usec = timer->k_period * 1000;
 3613                 timer->k_header.dh_inserted = TRUE;
 3614                 ntoskrnl_insert_timer(timer, tvtohz(&tv));
 3615 #ifdef NTOSKRNL_DEBUG_TIMERS
 3616                 ntoskrnl_timer_reloads++;
 3617 #endif
 3618         }
 3619 
 3620         dpc = timer->k_dpc;
 3621 
 3622         mtx_unlock(&ntoskrnl_dispatchlock);
 3623 
 3624         /* If there's a DPC associated with the timer, queue it up. */
 3625 
 3626         if (dpc != NULL)
 3627                 KeInsertQueueDpc(dpc, NULL, NULL);
 3628 
 3629         return;
 3630 }
 3631 
 3632 #ifdef NTOSKRNL_DEBUG_TIMERS
 3633 static int
 3634 sysctl_show_timers(SYSCTL_HANDLER_ARGS)
 3635 {
 3636         int                     ret;
 3637 
 3638         ret = 0;
 3639         ntoskrnl_show_timers();
 3640         return (sysctl_handle_int(oidp, &ret, 0, req));
 3641 }
 3642 
 3643 static void
 3644 ntoskrnl_show_timers()
 3645 {
 3646         int                     i = 0;
 3647         list_entry              *l;
 3648 
 3649         mtx_lock_spin(&ntoskrnl_calllock);
 3650         l = ntoskrnl_calllist.nle_flink;
 3651         while(l != &ntoskrnl_calllist) {
 3652                 i++;
 3653                 l = l->nle_flink;
 3654         }
 3655         mtx_unlock_spin(&ntoskrnl_calllock);
 3656 
 3657         printf("\n");
 3658         printf("%d timers available (out of %d)\n", i, NTOSKRNL_TIMEOUTS);
 3659         printf("timer sets: %qu\n", ntoskrnl_timer_sets);
 3660         printf("timer reloads: %qu\n", ntoskrnl_timer_reloads);
 3661         printf("timer cancels: %qu\n", ntoskrnl_timer_cancels);
 3662         printf("timer fires: %qu\n", ntoskrnl_timer_fires);
 3663         printf("\n");
 3664 
 3665         return;
 3666 }
 3667 #endif
 3668 
 3669 /*
 3670  * Must be called with dispatcher lock held.
 3671  */
 3672 
 3673 static void
 3674 ntoskrnl_insert_timer(timer, ticks)
 3675         ktimer                  *timer;
 3676         int                     ticks;
 3677 {
 3678         callout_entry           *e;
 3679         list_entry              *l;
 3680         struct callout          *c;
 3681 
 3682         /*
 3683          * Try and allocate a timer.
 3684          */
 3685         mtx_lock_spin(&ntoskrnl_calllock);
 3686         if (IsListEmpty(&ntoskrnl_calllist)) {
 3687                 mtx_unlock_spin(&ntoskrnl_calllock);
 3688 #ifdef NTOSKRNL_DEBUG_TIMERS
 3689                 ntoskrnl_show_timers();
 3690 #endif
 3691                 panic("out of timers!");
 3692         }
 3693         l = RemoveHeadList(&ntoskrnl_calllist);
 3694         mtx_unlock_spin(&ntoskrnl_calllock);
 3695 
 3696         e = CONTAINING_RECORD(l, callout_entry, ce_list);
 3697         c = &e->ce_callout;
 3698 
 3699         timer->k_callout = c;
 3700 
 3701         callout_init(c, CALLOUT_MPSAFE);
 3702         callout_reset(c, ticks, ntoskrnl_timercall, timer);
 3703 
 3704         return;
 3705 }
 3706 
 3707 static void
 3708 ntoskrnl_remove_timer(timer)
 3709         ktimer                  *timer;
 3710 {
 3711         callout_entry           *e;
 3712 
 3713         e = (callout_entry *)timer->k_callout;
 3714         callout_stop(timer->k_callout);
 3715 
 3716         mtx_lock_spin(&ntoskrnl_calllock);
 3717         InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
 3718         mtx_unlock_spin(&ntoskrnl_calllock);
 3719 
 3720         return;
 3721 }
 3722 
 3723 void
 3724 KeInitializeTimer(timer)
 3725         ktimer                  *timer;
 3726 {
 3727         if (timer == NULL)
 3728                 return;
 3729 
 3730         KeInitializeTimerEx(timer,  EVENT_TYPE_NOTIFY);
 3731 
 3732         return;
 3733 }
 3734 
 3735 void
 3736 KeInitializeTimerEx(timer, type)
 3737         ktimer                  *timer;
 3738         uint32_t                type;
 3739 {
 3740         if (timer == NULL)
 3741                 return;
 3742 
 3743         bzero((char *)timer, sizeof(ktimer));
 3744         InitializeListHead((&timer->k_header.dh_waitlisthead));
 3745         timer->k_header.dh_sigstate = FALSE;
 3746         timer->k_header.dh_inserted = FALSE;
 3747         if (type == EVENT_TYPE_NOTIFY)
 3748                 timer->k_header.dh_type = DISP_TYPE_NOTIFICATION_TIMER;
 3749         else
 3750                 timer->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_TIMER;
 3751         timer->k_header.dh_size = sizeof(ktimer) / sizeof(uint32_t);
 3752 
 3753         return;
 3754 }
 3755 
 3756 /*
 3757  * DPC subsystem. A Windows Defered Procedure Call has the following
 3758  * properties:
 3759  * - It runs at DISPATCH_LEVEL.
 3760  * - It can have one of 3 importance values that control when it
 3761  *   runs relative to other DPCs in the queue.
 3762  * - On SMP systems, it can be set to run on a specific processor.
 3763  * In order to satisfy the last property, we create a DPC thread for
 3764  * each CPU in the system and bind it to that CPU. Each thread
 3765  * maintains three queues with different importance levels, which
 3766  * will be processed in order from lowest to highest.
 3767  *
 3768  * In Windows, interrupt handlers run as DPCs. (Not to be confused
 3769  * with ISRs, which run in interrupt context and can preempt DPCs.)
 3770  * ISRs are given the highest importance so that they'll take
 3771  * precedence over timers and other things.
 3772  */
 3773 
 3774 static void
 3775 ntoskrnl_dpc_thread(arg)
 3776         void                    *arg;
 3777 {
 3778         kdpc_queue              *kq;
 3779         kdpc                    *d;
 3780         list_entry              *l;
 3781         uint8_t                 irql;
 3782 
 3783         kq = arg;
 3784 
 3785         InitializeListHead(&kq->kq_disp);
 3786         kq->kq_td = curthread;
 3787         kq->kq_exit = 0;
 3788         kq->kq_running = FALSE;
 3789         KeInitializeSpinLock(&kq->kq_lock);
 3790         KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
 3791         KeInitializeEvent(&kq->kq_done, EVENT_TYPE_SYNC, FALSE);
 3792 
 3793         /*
 3794          * Elevate our priority. DPCs are used to run interrupt
 3795          * handlers, and they should trigger as soon as possible
 3796          * once scheduled by an ISR.
 3797          */
 3798 
 3799         thread_lock(curthread);
 3800 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3801 #if __FreeBSD_version >= 502102
 3802         sched_bind(curthread, kq->kq_cpu);
 3803 #endif
 3804 #endif
 3805         sched_prio(curthread, PRI_MIN_KERN);
 3806 #if __FreeBSD_version < 600000
 3807         curthread->td_base_pri = PRI_MIN_KERN;
 3808 #endif
 3809         thread_unlock(curthread);
 3810 
 3811         while (1) {
 3812                 KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
 3813 
 3814                 KeAcquireSpinLock(&kq->kq_lock, &irql);
 3815 
 3816                 if (kq->kq_exit) {
 3817                         kq->kq_exit = 0;
 3818                         KeReleaseSpinLock(&kq->kq_lock, irql);
 3819                         break;
 3820                 }
 3821 
 3822                 kq->kq_running = TRUE;
 3823 
 3824                 while (!IsListEmpty(&kq->kq_disp)) {
 3825                         l = RemoveHeadList((&kq->kq_disp));
 3826                         d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
 3827                         InitializeListHead((&d->k_dpclistentry));
 3828                         KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
 3829                         MSCALL4(d->k_deferedfunc, d, d->k_deferredctx,
 3830                             d->k_sysarg1, d->k_sysarg2);
 3831                         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
 3832                 }
 3833 
 3834                 kq->kq_running = FALSE;
 3835 
 3836                 KeReleaseSpinLock(&kq->kq_lock, irql);
 3837 
 3838                 KeSetEvent(&kq->kq_done, IO_NO_INCREMENT, FALSE);
 3839         }
 3840 
 3841 #if __FreeBSD_version < 502113
 3842         mtx_lock(&Giant);
 3843 #endif
 3844         kproc_exit(0);
 3845         return; /* notreached */
 3846 }
 3847 
 3848 static void
 3849 ntoskrnl_destroy_dpc_threads(void)
 3850 {
 3851         kdpc_queue              *kq;
 3852         kdpc                    dpc;
 3853         int                     i;
 3854 
 3855         kq = kq_queues;
 3856 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3857         for (i = 0; i < mp_ncpus; i++) {
 3858 #else
 3859         for (i = 0; i < 1; i++) {
 3860 #endif
 3861                 kq += i;
 3862 
 3863                 kq->kq_exit = 1;
 3864                 KeInitializeDpc(&dpc, NULL, NULL);
 3865                 KeSetTargetProcessorDpc(&dpc, i);
 3866                 KeInsertQueueDpc(&dpc, NULL, NULL);
 3867                 while (kq->kq_exit)
 3868                         tsleep(kq->kq_td->td_proc, PWAIT, "dpcw", hz/10);
 3869         }
 3870 
 3871         return;
 3872 }
 3873 
 3874 static uint8_t
 3875 ntoskrnl_insert_dpc(head, dpc)
 3876         list_entry              *head;
 3877         kdpc                    *dpc;
 3878 {
 3879         list_entry              *l;
 3880         kdpc                    *d;
 3881 
 3882         l = head->nle_flink;
 3883         while (l != head) {
 3884                 d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
 3885                 if (d == dpc)
 3886                         return(FALSE);
 3887                 l = l->nle_flink;
 3888         }
 3889 
 3890         if (dpc->k_importance == KDPC_IMPORTANCE_LOW)
 3891                 InsertTailList((head), (&dpc->k_dpclistentry));
 3892         else
 3893                 InsertHeadList((head), (&dpc->k_dpclistentry));
 3894 
 3895         return (TRUE);
 3896 }
 3897 
 3898 void
 3899 KeInitializeDpc(dpc, dpcfunc, dpcctx)
 3900         kdpc                    *dpc;
 3901         void                    *dpcfunc;
 3902         void                    *dpcctx;
 3903 {
 3904 
 3905         if (dpc == NULL)
 3906                 return;
 3907 
 3908         dpc->k_deferedfunc = dpcfunc;
 3909         dpc->k_deferredctx = dpcctx;
 3910         dpc->k_num = KDPC_CPU_DEFAULT;
 3911         dpc->k_importance = KDPC_IMPORTANCE_MEDIUM;
 3912         InitializeListHead((&dpc->k_dpclistentry));
 3913 
 3914         return;
 3915 }
 3916 
 3917 uint8_t
 3918 KeInsertQueueDpc(dpc, sysarg1, sysarg2)
 3919         kdpc                    *dpc;
 3920         void                    *sysarg1;
 3921         void                    *sysarg2;
 3922 {
 3923         kdpc_queue              *kq;
 3924         uint8_t                 r;
 3925         uint8_t                 irql;
 3926 
 3927         if (dpc == NULL)
 3928                 return(FALSE);
 3929 
 3930         kq = kq_queues;
 3931 
 3932 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3933         KeRaiseIrql(DISPATCH_LEVEL, &irql);
 3934 
 3935         /*
 3936          * By default, the DPC is queued to run on the same CPU
 3937          * that scheduled it.
 3938          */
 3939 
 3940         if (dpc->k_num == KDPC_CPU_DEFAULT)
 3941                 kq += curthread->td_oncpu;
 3942         else
 3943                 kq += dpc->k_num;
 3944         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
 3945 #else
 3946         KeAcquireSpinLock(&kq->kq_lock, &irql);
 3947 #endif
 3948 
 3949         r = ntoskrnl_insert_dpc(&kq->kq_disp, dpc);
 3950         if (r == TRUE) {
 3951                 dpc->k_sysarg1 = sysarg1;
 3952                 dpc->k_sysarg2 = sysarg2;
 3953         }
 3954         KeReleaseSpinLock(&kq->kq_lock, irql);
 3955 
 3956         if (r == FALSE)
 3957                 return(r);
 3958 
 3959         KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 3960 
 3961         return(r);
 3962 }
 3963 
 3964 uint8_t
 3965 KeRemoveQueueDpc(dpc)
 3966         kdpc                    *dpc;
 3967 {
 3968         kdpc_queue              *kq;
 3969         uint8_t                 irql;
 3970 
 3971         if (dpc == NULL)
 3972                 return(FALSE);
 3973 
 3974 #ifdef NTOSKRNL_MULTIPLE_DPCS
 3975         KeRaiseIrql(DISPATCH_LEVEL, &irql);
 3976 
 3977         kq = kq_queues + dpc->k_num;
 3978 
 3979         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
 3980 #else
 3981         kq = kq_queues;
 3982         KeAcquireSpinLock(&kq->kq_lock, &irql);
 3983 #endif
 3984 
 3985         if (dpc->k_dpclistentry.nle_flink == &dpc->k_dpclistentry) {
 3986                 KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
 3987                 KeLowerIrql(irql);
 3988                 return(FALSE);
 3989         }
 3990 
 3991         RemoveEntryList((&dpc->k_dpclistentry));
 3992         InitializeListHead((&dpc->k_dpclistentry));
 3993 
 3994         KeReleaseSpinLock(&kq->kq_lock, irql);
 3995 
 3996         return(TRUE);
 3997 }
 3998 
 3999 void
 4000 KeSetImportanceDpc(dpc, imp)
 4001         kdpc                    *dpc;
 4002         uint32_t                imp;
 4003 {
 4004         if (imp != KDPC_IMPORTANCE_LOW &&
 4005             imp != KDPC_IMPORTANCE_MEDIUM &&
 4006             imp != KDPC_IMPORTANCE_HIGH)
 4007                 return;
 4008 
 4009         dpc->k_importance = (uint8_t)imp;
 4010         return;
 4011 }
 4012 
 4013 void
 4014 KeSetTargetProcessorDpc(kdpc *dpc, uint8_t cpu)
 4015 {
 4016         if (cpu > mp_ncpus)
 4017                 return;
 4018 
 4019         dpc->k_num = cpu;
 4020         return;
 4021 }
 4022 
 4023 void
 4024 KeFlushQueuedDpcs(void)
 4025 {
 4026         kdpc_queue              *kq;
 4027         int                     i;
 4028 
 4029         /*
 4030          * Poke each DPC queue and wait
 4031          * for them to drain.
 4032          */
 4033 
 4034 #ifdef NTOSKRNL_MULTIPLE_DPCS
 4035         for (i = 0; i < mp_ncpus; i++) {
 4036 #else
 4037         for (i = 0; i < 1; i++) {
 4038 #endif
 4039                 kq = kq_queues + i;
 4040                 KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
 4041                 KeWaitForSingleObject(&kq->kq_done, 0, 0, TRUE, NULL);
 4042         }
 4043 
 4044         return;
 4045 }
 4046 
 4047 uint32_t
 4048 KeGetCurrentProcessorNumber(void)
 4049 {
 4050         return((uint32_t)curthread->td_oncpu);
 4051 }
 4052 
 4053 uint8_t
 4054 KeSetTimerEx(timer, duetime, period, dpc)
 4055         ktimer                  *timer;
 4056         int64_t                 duetime;
 4057         uint32_t                period;
 4058         kdpc                    *dpc;
 4059 {
 4060         struct timeval          tv;
 4061         uint64_t                curtime;
 4062         uint8_t                 pending;
 4063 
 4064         if (timer == NULL)
 4065                 return(FALSE);
 4066 
 4067         mtx_lock(&ntoskrnl_dispatchlock);
 4068 
 4069         if (timer->k_header.dh_inserted == TRUE) {
 4070                 ntoskrnl_remove_timer(timer);
 4071 #ifdef NTOSKRNL_DEBUG_TIMERS
 4072                 ntoskrnl_timer_cancels++;
 4073 #endif
 4074                 timer->k_header.dh_inserted = FALSE;
 4075                 pending = TRUE;
 4076         } else
 4077                 pending = FALSE;
 4078 
 4079         timer->k_duetime = duetime;
 4080         timer->k_period = period;
 4081         timer->k_header.dh_sigstate = FALSE;
 4082         timer->k_dpc = dpc;
 4083 
 4084         if (duetime < 0) {
 4085                 tv.tv_sec = - (duetime) / 10000000;
 4086                 tv.tv_usec = (- (duetime) / 10) -
 4087                     (tv.tv_sec * 1000000);
 4088         } else {
 4089                 ntoskrnl_time(&curtime);
 4090                 if (duetime < curtime)
 4091                         tv.tv_sec = tv.tv_usec = 0;
 4092                 else {
 4093                         tv.tv_sec = ((duetime) - curtime) / 10000000;
 4094                         tv.tv_usec = ((duetime) - curtime) / 10 -
 4095                             (tv.tv_sec * 1000000);
 4096                 }
 4097         }
 4098 
 4099         timer->k_header.dh_inserted = TRUE;
 4100         ntoskrnl_insert_timer(timer, tvtohz(&tv));
 4101 #ifdef NTOSKRNL_DEBUG_TIMERS
 4102         ntoskrnl_timer_sets++;
 4103 #endif
 4104 
 4105         mtx_unlock(&ntoskrnl_dispatchlock);
 4106 
 4107         return(pending);
 4108 }
 4109 
 4110 uint8_t
 4111 KeSetTimer(timer, duetime, dpc)
 4112         ktimer                  *timer;
 4113         int64_t                 duetime;
 4114         kdpc                    *dpc;
 4115 {
 4116         return (KeSetTimerEx(timer, duetime, 0, dpc));
 4117 }
 4118 
 4119 /*
 4120  * The Windows DDK documentation seems to say that cancelling
 4121  * a timer that has a DPC will result in the DPC also being
 4122  * cancelled, but this isn't really the case.
 4123  */
 4124 
 4125 uint8_t
 4126 KeCancelTimer(timer)
 4127         ktimer                  *timer;
 4128 {
 4129         uint8_t                 pending;
 4130 
 4131         if (timer == NULL)
 4132                 return(FALSE);
 4133 
 4134         mtx_lock(&ntoskrnl_dispatchlock);
 4135 
 4136         pending = timer->k_header.dh_inserted;
 4137 
 4138         if (timer->k_header.dh_inserted == TRUE) {
 4139                 timer->k_header.dh_inserted = FALSE;
 4140                 ntoskrnl_remove_timer(timer);
 4141 #ifdef NTOSKRNL_DEBUG_TIMERS
 4142                 ntoskrnl_timer_cancels++;
 4143 #endif
 4144         }
 4145 
 4146         mtx_unlock(&ntoskrnl_dispatchlock);
 4147 
 4148         return(pending);
 4149 }
 4150 
 4151 uint8_t
 4152 KeReadStateTimer(timer)
 4153         ktimer                  *timer;
 4154 {
 4155         return(timer->k_header.dh_sigstate);
 4156 }
 4157 
 4158 static int32_t
 4159 KeDelayExecutionThread(uint8_t wait_mode, uint8_t alertable, int64_t *interval)
 4160 {
 4161         ktimer                  timer;
 4162 
 4163         if (wait_mode != 0)
 4164                 panic("invalid wait_mode %d", wait_mode);
 4165 
 4166         KeInitializeTimer(&timer);
 4167         KeSetTimer(&timer, *interval, NULL);
 4168         KeWaitForSingleObject(&timer, 0, 0, alertable, NULL);
 4169 
 4170         return STATUS_SUCCESS;
 4171 }
 4172 
 4173 static uint64_t
 4174 KeQueryInterruptTime(void)
 4175 {
 4176         int ticks;
 4177         struct timeval tv;
 4178 
 4179         getmicrouptime(&tv);
 4180 
 4181         ticks = tvtohz(&tv);
 4182 
 4183         return ticks * ((10000000 + hz - 1) / hz);
 4184 }
 4185 
 4186 static struct thread *
 4187 KeGetCurrentThread(void)
 4188 {
 4189 
 4190         return curthread;
 4191 }
 4192 
 4193 static int32_t
 4194 KeSetPriorityThread(td, pri)
 4195         struct thread   *td;
 4196         int32_t         pri;
 4197 {
 4198         int32_t old;
 4199 
 4200         if (td == NULL)
 4201                 return LOW_REALTIME_PRIORITY;
 4202 
 4203         if (td->td_priority <= PRI_MIN_KERN)
 4204                 old = HIGH_PRIORITY;
 4205         else if (td->td_priority >= PRI_MAX_KERN)
 4206                 old = LOW_PRIORITY;
 4207         else
 4208                 old = LOW_REALTIME_PRIORITY;
 4209 
 4210         thread_lock(td);
 4211         if (pri == HIGH_PRIORITY)
 4212                 sched_prio(td, PRI_MIN_KERN);
 4213         if (pri == LOW_REALTIME_PRIORITY)
 4214                 sched_prio(td, PRI_MIN_KERN + (PRI_MAX_KERN - PRI_MIN_KERN) / 2);
 4215         if (pri == LOW_PRIORITY)
 4216                 sched_prio(td, PRI_MAX_KERN);
 4217         thread_unlock(td);
 4218 
 4219         return old;
 4220 }
 4221 
 4222 static void
 4223 dummy()
 4224 {
 4225         printf ("ntoskrnl dummy called...\n");
 4226         return;
 4227 }
 4228 
 4229 
 4230 image_patch_table ntoskrnl_functbl[] = {
 4231         IMPORT_SFUNC(RtlZeroMemory, 2),
 4232         IMPORT_SFUNC(RtlCopyMemory, 3),
 4233         IMPORT_SFUNC(RtlCompareMemory, 3),
 4234         IMPORT_SFUNC(RtlEqualUnicodeString, 3),
 4235         IMPORT_SFUNC(RtlCopyUnicodeString, 2),
 4236         IMPORT_SFUNC(RtlUnicodeStringToAnsiString, 3),
 4237         IMPORT_SFUNC(RtlAnsiStringToUnicodeString, 3),
 4238         IMPORT_SFUNC(RtlInitAnsiString, 2),
 4239         IMPORT_SFUNC_MAP(RtlInitString, RtlInitAnsiString, 2),
 4240         IMPORT_SFUNC(RtlInitUnicodeString, 2),
 4241         IMPORT_SFUNC(RtlFreeAnsiString, 1),
 4242         IMPORT_SFUNC(RtlFreeUnicodeString, 1),
 4243         IMPORT_SFUNC(RtlUnicodeStringToInteger, 3),
 4244         IMPORT_CFUNC(sprintf, 0),
 4245         IMPORT_CFUNC(vsprintf, 0),
 4246         IMPORT_CFUNC_MAP(_snprintf, snprintf, 0),
 4247         IMPORT_CFUNC_MAP(_vsnprintf, vsnprintf, 0),
 4248         IMPORT_CFUNC(DbgPrint, 0),
 4249         IMPORT_SFUNC(DbgBreakPoint, 0),
 4250         IMPORT_SFUNC(KeBugCheckEx, 5),
 4251         IMPORT_CFUNC(strncmp, 0),
 4252         IMPORT_CFUNC(strcmp, 0),
 4253         IMPORT_CFUNC_MAP(stricmp, strcasecmp, 0),
 4254         IMPORT_CFUNC(strncpy, 0),
 4255         IMPORT_CFUNC(strcpy, 0),
 4256         IMPORT_CFUNC(strlen, 0),
 4257         IMPORT_CFUNC_MAP(toupper, ntoskrnl_toupper, 0),
 4258         IMPORT_CFUNC_MAP(tolower, ntoskrnl_tolower, 0),
 4259         IMPORT_CFUNC_MAP(strstr, ntoskrnl_strstr, 0),
 4260         IMPORT_CFUNC_MAP(strncat, ntoskrnl_strncat, 0),
 4261         IMPORT_CFUNC_MAP(strchr, index, 0),
 4262         IMPORT_CFUNC_MAP(strrchr, rindex, 0),
 4263         IMPORT_CFUNC(memcpy, 0),
 4264         IMPORT_CFUNC_MAP(memmove, ntoskrnl_memmove, 0),
 4265         IMPORT_CFUNC_MAP(memset, ntoskrnl_memset, 0),
 4266         IMPORT_CFUNC_MAP(memchr, ntoskrnl_memchr, 0),
 4267         IMPORT_SFUNC(IoAllocateDriverObjectExtension, 4),
 4268         IMPORT_SFUNC(IoGetDriverObjectExtension, 2),
 4269         IMPORT_FFUNC(IofCallDriver, 2),
 4270         IMPORT_FFUNC(IofCompleteRequest, 2),
 4271         IMPORT_SFUNC(IoAcquireCancelSpinLock, 1),
 4272         IMPORT_SFUNC(IoReleaseCancelSpinLock, 1),
 4273         IMPORT_SFUNC(IoCancelIrp, 1),
 4274         IMPORT_SFUNC(IoConnectInterrupt, 11),
 4275         IMPORT_SFUNC(IoDisconnectInterrupt, 1),
 4276         IMPORT_SFUNC(IoCreateDevice, 7),
 4277         IMPORT_SFUNC(IoDeleteDevice, 1),
 4278         IMPORT_SFUNC(IoGetAttachedDevice, 1),
 4279         IMPORT_SFUNC(IoAttachDeviceToDeviceStack, 2),
 4280         IMPORT_SFUNC(IoDetachDevice, 1),
 4281         IMPORT_SFUNC(IoBuildSynchronousFsdRequest, 7),
 4282         IMPORT_SFUNC(IoBuildAsynchronousFsdRequest, 6),
 4283         IMPORT_SFUNC(IoBuildDeviceIoControlRequest, 9),
 4284         IMPORT_SFUNC(IoAllocateIrp, 2),
 4285         IMPORT_SFUNC(IoReuseIrp, 2),
 4286         IMPORT_SFUNC(IoMakeAssociatedIrp, 2),
 4287         IMPORT_SFUNC(IoFreeIrp, 1),
 4288         IMPORT_SFUNC(IoInitializeIrp, 3),
 4289         IMPORT_SFUNC(KeAcquireInterruptSpinLock, 1),
 4290         IMPORT_SFUNC(KeReleaseInterruptSpinLock, 2),
 4291         IMPORT_SFUNC(KeSynchronizeExecution, 3),
 4292         IMPORT_SFUNC(KeWaitForSingleObject, 5),
 4293         IMPORT_SFUNC(KeWaitForMultipleObjects, 8),
 4294         IMPORT_SFUNC(_allmul, 4),
 4295         IMPORT_SFUNC(_alldiv, 4),
 4296         IMPORT_SFUNC(_allrem, 4),
 4297         IMPORT_RFUNC(_allshr, 0),
 4298         IMPORT_RFUNC(_allshl, 0),
 4299         IMPORT_SFUNC(_aullmul, 4),
 4300         IMPORT_SFUNC(_aulldiv, 4),
 4301         IMPORT_SFUNC(_aullrem, 4),
 4302         IMPORT_RFUNC(_aullshr, 0),
 4303         IMPORT_RFUNC(_aullshl, 0),
 4304         IMPORT_CFUNC(atoi, 0),
 4305         IMPORT_CFUNC(atol, 0),
 4306         IMPORT_CFUNC(rand, 0),
 4307         IMPORT_CFUNC(srand, 0),
 4308         IMPORT_SFUNC(WRITE_REGISTER_USHORT, 2),
 4309         IMPORT_SFUNC(READ_REGISTER_USHORT, 1),
 4310         IMPORT_SFUNC(WRITE_REGISTER_ULONG, 2),
 4311         IMPORT_SFUNC(READ_REGISTER_ULONG, 1),
 4312         IMPORT_SFUNC(READ_REGISTER_UCHAR, 1),
 4313         IMPORT_SFUNC(WRITE_REGISTER_UCHAR, 2),
 4314         IMPORT_SFUNC(ExInitializePagedLookasideList, 7),
 4315         IMPORT_SFUNC(ExDeletePagedLookasideList, 1),
 4316         IMPORT_SFUNC(ExInitializeNPagedLookasideList, 7),
 4317         IMPORT_SFUNC(ExDeleteNPagedLookasideList, 1),
 4318         IMPORT_FFUNC(InterlockedPopEntrySList, 1),
 4319         IMPORT_FFUNC(InterlockedPushEntrySList, 2),
 4320         IMPORT_SFUNC(ExQueryDepthSList, 1),
 4321         IMPORT_FFUNC_MAP(ExpInterlockedPopEntrySList,
 4322                 InterlockedPopEntrySList, 1),
 4323         IMPORT_FFUNC_MAP(ExpInterlockedPushEntrySList,
 4324                 InterlockedPushEntrySList, 2),
 4325         IMPORT_FFUNC(ExInterlockedPopEntrySList, 2),
 4326         IMPORT_FFUNC(ExInterlockedPushEntrySList, 3),
 4327         IMPORT_SFUNC(ExAllocatePoolWithTag, 3),
 4328         IMPORT_SFUNC(ExFreePool, 1),
 4329 #ifdef __i386__
 4330         IMPORT_FFUNC(KefAcquireSpinLockAtDpcLevel, 1),
 4331         IMPORT_FFUNC(KefReleaseSpinLockFromDpcLevel,1),
 4332         IMPORT_FFUNC(KeAcquireSpinLockRaiseToDpc, 1),
 4333 #else
 4334         /*
 4335          * For AMD64, we can get away with just mapping
 4336          * KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
 4337          * because the calling conventions end up being the same.
 4338          * On i386, we have to be careful because KfAcquireSpinLock()
 4339          * is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't.
 4340          */
 4341         IMPORT_SFUNC(KeAcquireSpinLockAtDpcLevel, 1),
 4342         IMPORT_SFUNC(KeReleaseSpinLockFromDpcLevel, 1),
 4343         IMPORT_SFUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock, 1),
 4344 #endif
 4345         IMPORT_SFUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock, 1),
 4346         IMPORT_FFUNC(InterlockedIncrement, 1),
 4347         IMPORT_FFUNC(InterlockedDecrement, 1),
 4348         IMPORT_FFUNC(InterlockedExchange, 2),
 4349         IMPORT_FFUNC(ExInterlockedAddLargeStatistic, 2),
 4350         IMPORT_SFUNC(IoAllocateMdl, 5),
 4351         IMPORT_SFUNC(IoFreeMdl, 1),
 4352         IMPORT_SFUNC(MmAllocateContiguousMemory, 2),
 4353         IMPORT_SFUNC(MmAllocateContiguousMemorySpecifyCache, 5),
 4354         IMPORT_SFUNC(MmFreeContiguousMemory, 1),
 4355         IMPORT_SFUNC(MmFreeContiguousMemorySpecifyCache, 3),
 4356         IMPORT_SFUNC_MAP(MmGetPhysicalAddress, pmap_kextract, 1),
 4357         IMPORT_SFUNC(MmSizeOfMdl, 1),
 4358         IMPORT_SFUNC(MmMapLockedPages, 2),
 4359         IMPORT_SFUNC(MmMapLockedPagesSpecifyCache, 6),
 4360         IMPORT_SFUNC(MmUnmapLockedPages, 2),
 4361         IMPORT_SFUNC(MmBuildMdlForNonPagedPool, 1),
 4362         IMPORT_SFUNC(MmIsAddressValid, 1),
 4363         IMPORT_SFUNC(MmMapIoSpace, 3 + 1),
 4364         IMPORT_SFUNC(MmUnmapIoSpace, 2),
 4365         IMPORT_SFUNC(KeInitializeSpinLock, 1),
 4366         IMPORT_SFUNC(IoIsWdmVersionAvailable, 2),
 4367         IMPORT_SFUNC(IoGetDeviceObjectPointer, 4),
 4368         IMPORT_SFUNC(IoGetDeviceProperty, 5),
 4369         IMPORT_SFUNC(IoAllocateWorkItem, 1),
 4370         IMPORT_SFUNC(IoFreeWorkItem, 1),
 4371         IMPORT_SFUNC(IoQueueWorkItem, 4),
 4372         IMPORT_SFUNC(ExQueueWorkItem, 2),
 4373         IMPORT_SFUNC(ntoskrnl_workitem, 2),
 4374         IMPORT_SFUNC(KeInitializeMutex, 2),
 4375         IMPORT_SFUNC(KeReleaseMutex, 2),
 4376         IMPORT_SFUNC(KeReadStateMutex, 1),
 4377         IMPORT_SFUNC(KeInitializeEvent, 3),
 4378         IMPORT_SFUNC(KeSetEvent, 3),
 4379         IMPORT_SFUNC(KeResetEvent, 1),
 4380         IMPORT_SFUNC(KeClearEvent, 1),
 4381         IMPORT_SFUNC(KeReadStateEvent, 1),
 4382         IMPORT_SFUNC(KeInitializeTimer, 1),
 4383         IMPORT_SFUNC(KeInitializeTimerEx, 2),
 4384         IMPORT_SFUNC(KeSetTimer, 3),
 4385         IMPORT_SFUNC(KeSetTimerEx, 4),
 4386         IMPORT_SFUNC(KeCancelTimer, 1),
 4387         IMPORT_SFUNC(KeReadStateTimer, 1),
 4388         IMPORT_SFUNC(KeInitializeDpc, 3),
 4389         IMPORT_SFUNC(KeInsertQueueDpc, 3),
 4390         IMPORT_SFUNC(KeRemoveQueueDpc, 1),
 4391         IMPORT_SFUNC(KeSetImportanceDpc, 2),
 4392         IMPORT_SFUNC(KeSetTargetProcessorDpc, 2),
 4393         IMPORT_SFUNC(KeFlushQueuedDpcs, 0),
 4394         IMPORT_SFUNC(KeGetCurrentProcessorNumber, 1),
 4395         IMPORT_SFUNC(ObReferenceObjectByHandle, 6),
 4396         IMPORT_FFUNC(ObfDereferenceObject, 1),
 4397         IMPORT_SFUNC(ZwClose, 1),
 4398         IMPORT_SFUNC(PsCreateSystemThread, 7),
 4399         IMPORT_SFUNC(PsTerminateSystemThread, 1),
 4400         IMPORT_SFUNC(IoWMIRegistrationControl, 2),
 4401         IMPORT_SFUNC(WmiQueryTraceInformation, 5),
 4402         IMPORT_CFUNC(WmiTraceMessage, 0),
 4403         IMPORT_SFUNC(KeQuerySystemTime, 1),
 4404         IMPORT_CFUNC(KeTickCount, 0),
 4405         IMPORT_SFUNC(KeDelayExecutionThread, 3),
 4406         IMPORT_SFUNC(KeQueryInterruptTime, 0),
 4407         IMPORT_SFUNC(KeGetCurrentThread, 0),
 4408         IMPORT_SFUNC(KeSetPriorityThread, 2),
 4409 
 4410         /*
 4411          * This last entry is a catch-all for any function we haven't
 4412          * implemented yet. The PE import list patching routine will
 4413          * use it for any function that doesn't have an explicit match
 4414          * in this table.
 4415          */
 4416 
 4417         { NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
 4418 
 4419         /* End of list. */
 4420 
 4421         { NULL, NULL, NULL }
 4422 };

Cache object: 5e4a82545ac6e70f137a84850e3785bc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.