1 /*-
2 * Copyright (c) 2009 Alex Keda <admin@lissyara.su>
3 * Copyright (c) 2009-2010 Jung-uk Kim <jkim@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD: releng/9.0/sys/compat/x86bios/x86bios.c 219430 2011-03-09 16:16:38Z jkim $");
30
31 #include "opt_x86bios.h"
32
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/mutex.h>
40 #include <sys/sysctl.h>
41
42 #include <contrib/x86emu/x86emu.h>
43 #include <contrib/x86emu/x86emu_regs.h>
44 #include <compat/x86bios/x86bios.h>
45
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51
52 #ifdef __amd64__
53 #define X86BIOS_NATIVE_ARCH
54 #endif
55 #ifdef __i386__
56 #define X86BIOS_NATIVE_VM86
57 #endif
58
59 #define X86BIOS_MEM_SIZE 0x00100000 /* 1M */
60
61 #define X86BIOS_TRACE(h, n, r) do { \
62 printf(__STRING(h) \
63 " (ax=0x%04x bx=0x%04x cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",\
64 (n), (r)->R_AX, (r)->R_BX, (r)->R_CX, (r)->R_DX, \
65 (r)->R_ES, (r)->R_DI); \
66 } while (0)
67
68 static struct mtx x86bios_lock;
69
70 SYSCTL_NODE(_debug, OID_AUTO, x86bios, CTLFLAG_RD, NULL, "x86bios debugging");
71 static int x86bios_trace_call;
72 TUNABLE_INT("debug.x86bios.call", &x86bios_trace_call);
73 SYSCTL_INT(_debug_x86bios, OID_AUTO, call, CTLFLAG_RW, &x86bios_trace_call, 0,
74 "Trace far function calls");
75 static int x86bios_trace_int;
76 TUNABLE_INT("debug.x86bios.int", &x86bios_trace_int);
77 SYSCTL_INT(_debug_x86bios, OID_AUTO, int, CTLFLAG_RW, &x86bios_trace_int, 0,
78 "Trace software interrupt handlers");
79
80 #ifdef X86BIOS_NATIVE_VM86
81
82 #include <machine/vm86.h>
83 #include <machine/vmparam.h>
84 #include <machine/pc/bios.h>
85
86 struct vm86context x86bios_vmc;
87
88 static void
89 x86bios_emu2vmf(struct x86emu_regs *regs, struct vm86frame *vmf)
90 {
91
92 vmf->vmf_ds = regs->R_DS;
93 vmf->vmf_es = regs->R_ES;
94 vmf->vmf_ax = regs->R_AX;
95 vmf->vmf_bx = regs->R_BX;
96 vmf->vmf_cx = regs->R_CX;
97 vmf->vmf_dx = regs->R_DX;
98 vmf->vmf_bp = regs->R_BP;
99 vmf->vmf_si = regs->R_SI;
100 vmf->vmf_di = regs->R_DI;
101 }
102
103 static void
104 x86bios_vmf2emu(struct vm86frame *vmf, struct x86emu_regs *regs)
105 {
106
107 regs->R_DS = vmf->vmf_ds;
108 regs->R_ES = vmf->vmf_es;
109 regs->R_FLG = vmf->vmf_flags;
110 regs->R_AX = vmf->vmf_ax;
111 regs->R_BX = vmf->vmf_bx;
112 regs->R_CX = vmf->vmf_cx;
113 regs->R_DX = vmf->vmf_dx;
114 regs->R_BP = vmf->vmf_bp;
115 regs->R_SI = vmf->vmf_si;
116 regs->R_DI = vmf->vmf_di;
117 }
118
119 void *
120 x86bios_alloc(uint32_t *offset, size_t size, int flags)
121 {
122 void *vaddr;
123 int i;
124
125 if (offset == NULL || size == 0)
126 return (NULL);
127 vaddr = contigmalloc(size, M_DEVBUF, flags, 0, X86BIOS_MEM_SIZE,
128 PAGE_SIZE, 0);
129 if (vaddr != NULL) {
130 *offset = vtophys(vaddr);
131 mtx_lock(&x86bios_lock);
132 for (i = 0; i < atop(round_page(size)); i++)
133 vm86_addpage(&x86bios_vmc, atop(*offset) + i,
134 (vm_offset_t)vaddr + ptoa(i));
135 mtx_unlock(&x86bios_lock);
136 }
137
138 return (vaddr);
139 }
140
141 void
142 x86bios_free(void *addr, size_t size)
143 {
144 vm_paddr_t paddr;
145 int i, nfree;
146
147 if (addr == NULL || size == 0)
148 return;
149 paddr = vtophys(addr);
150 if (paddr >= X86BIOS_MEM_SIZE || (paddr & PAGE_MASK) != 0)
151 return;
152 mtx_lock(&x86bios_lock);
153 for (i = 0; i < x86bios_vmc.npages; i++)
154 if (x86bios_vmc.pmap[i].kva == (vm_offset_t)addr)
155 break;
156 if (i >= x86bios_vmc.npages) {
157 mtx_unlock(&x86bios_lock);
158 return;
159 }
160 nfree = atop(round_page(size));
161 bzero(x86bios_vmc.pmap + i, sizeof(*x86bios_vmc.pmap) * nfree);
162 if (i + nfree == x86bios_vmc.npages) {
163 x86bios_vmc.npages -= nfree;
164 while (--i >= 0 && x86bios_vmc.pmap[i].kva == 0)
165 x86bios_vmc.npages--;
166 }
167 mtx_unlock(&x86bios_lock);
168 contigfree(addr, size, M_DEVBUF);
169 }
170
171 void
172 x86bios_init_regs(struct x86regs *regs)
173 {
174
175 bzero(regs, sizeof(*regs));
176 }
177
178 void
179 x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off)
180 {
181 struct vm86frame vmf;
182
183 if (x86bios_trace_call)
184 X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs);
185
186 bzero(&vmf, sizeof(vmf));
187 x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf);
188 vmf.vmf_cs = seg;
189 vmf.vmf_ip = off;
190 mtx_lock(&x86bios_lock);
191 vm86_datacall(-1, &vmf, &x86bios_vmc);
192 mtx_unlock(&x86bios_lock);
193 x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs);
194
195 if (x86bios_trace_call)
196 X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs);
197 }
198
199 uint32_t
200 x86bios_get_intr(int intno)
201 {
202
203 return (readl(BIOS_PADDRTOVADDR(intno * 4)));
204 }
205
206 void
207 x86bios_set_intr(int intno, uint32_t saddr)
208 {
209
210 writel(BIOS_PADDRTOVADDR(intno * 4), saddr);
211 }
212
213 void
214 x86bios_intr(struct x86regs *regs, int intno)
215 {
216 struct vm86frame vmf;
217
218 if (x86bios_trace_int)
219 X86BIOS_TRACE(Calling INT 0x%02x, intno, regs);
220
221 bzero(&vmf, sizeof(vmf));
222 x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf);
223 mtx_lock(&x86bios_lock);
224 vm86_datacall(intno, &vmf, &x86bios_vmc);
225 mtx_unlock(&x86bios_lock);
226 x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs);
227
228 if (x86bios_trace_int)
229 X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs);
230 }
231
232 void *
233 x86bios_offset(uint32_t offset)
234 {
235 vm_offset_t addr;
236
237 addr = vm86_getaddr(&x86bios_vmc, X86BIOS_PHYSTOSEG(offset),
238 X86BIOS_PHYSTOOFF(offset));
239 if (addr == 0)
240 addr = BIOS_PADDRTOVADDR(offset);
241
242 return ((void *)addr);
243 }
244
245 static int
246 x86bios_init(void)
247 {
248
249 mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_DEF);
250 bzero(&x86bios_vmc, sizeof(x86bios_vmc));
251
252 return (0);
253 }
254
255 static int
256 x86bios_uninit(void)
257 {
258
259 mtx_destroy(&x86bios_lock);
260
261 return (0);
262 }
263
264 #else
265
266 #include <machine/iodev.h>
267
268 #define X86BIOS_PAGE_SIZE 0x00001000 /* 4K */
269
270 #define X86BIOS_IVT_SIZE 0x00000500 /* 1K + 256 (BDA) */
271
272 #define X86BIOS_IVT_BASE 0x00000000
273 #define X86BIOS_RAM_BASE 0x00001000
274 #define X86BIOS_ROM_BASE 0x000a0000
275
276 #define X86BIOS_ROM_SIZE (X86BIOS_MEM_SIZE - x86bios_rom_phys)
277 #define X86BIOS_SEG_SIZE X86BIOS_PAGE_SIZE
278
279 #define X86BIOS_PAGES (X86BIOS_MEM_SIZE / X86BIOS_PAGE_SIZE)
280
281 #define X86BIOS_R_SS _pad2
282 #define X86BIOS_R_SP _pad3.I16_reg.x_reg
283
284 static struct x86emu x86bios_emu;
285
286 static void *x86bios_ivt;
287 static void *x86bios_rom;
288 static void *x86bios_seg;
289
290 static vm_offset_t *x86bios_map;
291
292 static vm_paddr_t x86bios_rom_phys;
293 static vm_paddr_t x86bios_seg_phys;
294
295 static int x86bios_fault;
296 static uint32_t x86bios_fault_addr;
297 static uint16_t x86bios_fault_cs;
298 static uint16_t x86bios_fault_ip;
299
300 static void
301 x86bios_set_fault(struct x86emu *emu, uint32_t addr)
302 {
303
304 x86bios_fault = 1;
305 x86bios_fault_addr = addr;
306 x86bios_fault_cs = emu->x86.R_CS;
307 x86bios_fault_ip = emu->x86.R_IP;
308 x86emu_halt_sys(emu);
309 }
310
311 static void *
312 x86bios_get_pages(uint32_t offset, size_t size)
313 {
314 vm_offset_t addr;
315
316 if (offset + size > X86BIOS_MEM_SIZE + X86BIOS_IVT_SIZE)
317 return (NULL);
318
319 if (offset >= X86BIOS_MEM_SIZE)
320 offset -= X86BIOS_MEM_SIZE;
321 addr = x86bios_map[offset / X86BIOS_PAGE_SIZE];
322 if (addr != 0)
323 addr += offset % X86BIOS_PAGE_SIZE;
324
325 return ((void *)addr);
326 }
327
328 static void
329 x86bios_set_pages(vm_offset_t va, vm_paddr_t pa, size_t size)
330 {
331 int i, j;
332
333 for (i = pa / X86BIOS_PAGE_SIZE, j = 0;
334 j < howmany(size, X86BIOS_PAGE_SIZE); i++, j++)
335 x86bios_map[i] = va + j * X86BIOS_PAGE_SIZE;
336 }
337
338 static uint8_t
339 x86bios_emu_rdb(struct x86emu *emu, uint32_t addr)
340 {
341 uint8_t *va;
342
343 va = x86bios_get_pages(addr, sizeof(*va));
344 if (va == NULL)
345 x86bios_set_fault(emu, addr);
346
347 return (*va);
348 }
349
350 static uint16_t
351 x86bios_emu_rdw(struct x86emu *emu, uint32_t addr)
352 {
353 uint16_t *va;
354
355 va = x86bios_get_pages(addr, sizeof(*va));
356 if (va == NULL)
357 x86bios_set_fault(emu, addr);
358
359 #ifndef __NO_STRICT_ALIGNMENT
360 if ((addr & 1) != 0)
361 return (le16dec(va));
362 else
363 #endif
364 return (le16toh(*va));
365 }
366
367 static uint32_t
368 x86bios_emu_rdl(struct x86emu *emu, uint32_t addr)
369 {
370 uint32_t *va;
371
372 va = x86bios_get_pages(addr, sizeof(*va));
373 if (va == NULL)
374 x86bios_set_fault(emu, addr);
375
376 #ifndef __NO_STRICT_ALIGNMENT
377 if ((addr & 3) != 0)
378 return (le32dec(va));
379 else
380 #endif
381 return (le32toh(*va));
382 }
383
384 static void
385 x86bios_emu_wrb(struct x86emu *emu, uint32_t addr, uint8_t val)
386 {
387 uint8_t *va;
388
389 va = x86bios_get_pages(addr, sizeof(*va));
390 if (va == NULL)
391 x86bios_set_fault(emu, addr);
392
393 *va = val;
394 }
395
396 static void
397 x86bios_emu_wrw(struct x86emu *emu, uint32_t addr, uint16_t val)
398 {
399 uint16_t *va;
400
401 va = x86bios_get_pages(addr, sizeof(*va));
402 if (va == NULL)
403 x86bios_set_fault(emu, addr);
404
405 #ifndef __NO_STRICT_ALIGNMENT
406 if ((addr & 1) != 0)
407 le16enc(va, val);
408 else
409 #endif
410 *va = htole16(val);
411 }
412
413 static void
414 x86bios_emu_wrl(struct x86emu *emu, uint32_t addr, uint32_t val)
415 {
416 uint32_t *va;
417
418 va = x86bios_get_pages(addr, sizeof(*va));
419 if (va == NULL)
420 x86bios_set_fault(emu, addr);
421
422 #ifndef __NO_STRICT_ALIGNMENT
423 if ((addr & 3) != 0)
424 le32enc(va, val);
425 else
426 #endif
427 *va = htole32(val);
428 }
429
430 static uint8_t
431 x86bios_emu_inb(struct x86emu *emu, uint16_t port)
432 {
433
434 #ifndef X86BIOS_NATIVE_ARCH
435 if (port == 0xb2) /* APM scratch register */
436 return (0);
437 if (port >= 0x80 && port < 0x88) /* POST status register */
438 return (0);
439 #endif
440
441 return (iodev_read_1(port));
442 }
443
444 static uint16_t
445 x86bios_emu_inw(struct x86emu *emu, uint16_t port)
446 {
447 uint16_t val;
448
449 #ifndef X86BIOS_NATIVE_ARCH
450 if (port >= 0x80 && port < 0x88) /* POST status register */
451 return (0);
452
453 if ((port & 1) != 0) {
454 val = iodev_read_1(port);
455 val |= iodev_read_1(port + 1) << 8;
456 } else
457 #endif
458 val = iodev_read_2(port);
459
460 return (val);
461 }
462
463 static uint32_t
464 x86bios_emu_inl(struct x86emu *emu, uint16_t port)
465 {
466 uint32_t val;
467
468 #ifndef X86BIOS_NATIVE_ARCH
469 if (port >= 0x80 && port < 0x88) /* POST status register */
470 return (0);
471
472 if ((port & 1) != 0) {
473 val = iodev_read_1(port);
474 val |= iodev_read_2(port + 1) << 8;
475 val |= iodev_read_1(port + 3) << 24;
476 } else if ((port & 2) != 0) {
477 val = iodev_read_2(port);
478 val |= iodev_read_2(port + 2) << 16;
479 } else
480 #endif
481 val = iodev_read_4(port);
482
483 return (val);
484 }
485
486 static void
487 x86bios_emu_outb(struct x86emu *emu, uint16_t port, uint8_t val)
488 {
489
490 #ifndef X86BIOS_NATIVE_ARCH
491 if (port == 0xb2) /* APM scratch register */
492 return;
493 if (port >= 0x80 && port < 0x88) /* POST status register */
494 return;
495 #endif
496
497 iodev_write_1(port, val);
498 }
499
500 static void
501 x86bios_emu_outw(struct x86emu *emu, uint16_t port, uint16_t val)
502 {
503
504 #ifndef X86BIOS_NATIVE_ARCH
505 if (port >= 0x80 && port < 0x88) /* POST status register */
506 return;
507
508 if ((port & 1) != 0) {
509 iodev_write_1(port, val);
510 iodev_write_1(port + 1, val >> 8);
511 } else
512 #endif
513 iodev_write_2(port, val);
514 }
515
516 static void
517 x86bios_emu_outl(struct x86emu *emu, uint16_t port, uint32_t val)
518 {
519
520 #ifndef X86BIOS_NATIVE_ARCH
521 if (port >= 0x80 && port < 0x88) /* POST status register */
522 return;
523
524 if ((port & 1) != 0) {
525 iodev_write_1(port, val);
526 iodev_write_2(port + 1, val >> 8);
527 iodev_write_1(port + 3, val >> 24);
528 } else if ((port & 2) != 0) {
529 iodev_write_2(port, val);
530 iodev_write_2(port + 2, val >> 16);
531 } else
532 #endif
533 iodev_write_4(port, val);
534 }
535
536 void *
537 x86bios_alloc(uint32_t *offset, size_t size, int flags)
538 {
539 void *vaddr;
540
541 if (offset == NULL || size == 0)
542 return (NULL);
543 vaddr = contigmalloc(size, M_DEVBUF, flags, X86BIOS_RAM_BASE,
544 x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0);
545 if (vaddr != NULL) {
546 *offset = vtophys(vaddr);
547 mtx_lock(&x86bios_lock);
548 x86bios_set_pages((vm_offset_t)vaddr, *offset, size);
549 mtx_unlock(&x86bios_lock);
550 }
551
552 return (vaddr);
553 }
554
555 void
556 x86bios_free(void *addr, size_t size)
557 {
558 vm_paddr_t paddr;
559
560 if (addr == NULL || size == 0)
561 return;
562 paddr = vtophys(addr);
563 if (paddr < X86BIOS_RAM_BASE || paddr >= x86bios_rom_phys ||
564 paddr % X86BIOS_PAGE_SIZE != 0)
565 return;
566 mtx_lock(&x86bios_lock);
567 bzero(x86bios_map + paddr / X86BIOS_PAGE_SIZE,
568 sizeof(*x86bios_map) * howmany(size, X86BIOS_PAGE_SIZE));
569 mtx_unlock(&x86bios_lock);
570 contigfree(addr, size, M_DEVBUF);
571 }
572
573 void
574 x86bios_init_regs(struct x86regs *regs)
575 {
576
577 bzero(regs, sizeof(*regs));
578 regs->X86BIOS_R_SS = X86BIOS_PHYSTOSEG(x86bios_seg_phys);
579 regs->X86BIOS_R_SP = X86BIOS_PAGE_SIZE - 2;
580 }
581
582 void
583 x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off)
584 {
585
586 if (x86bios_trace_call)
587 X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs);
588
589 mtx_lock(&x86bios_lock);
590 memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
591 x86bios_fault = 0;
592 spinlock_enter();
593 x86emu_exec_call(&x86bios_emu, seg, off);
594 spinlock_exit();
595 memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
596 mtx_unlock(&x86bios_lock);
597
598 if (x86bios_trace_call) {
599 X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs);
600 if (x86bios_fault)
601 printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n",
602 x86bios_fault_addr, x86bios_fault_cs,
603 x86bios_fault_ip);
604 }
605 }
606
607 uint32_t
608 x86bios_get_intr(int intno)
609 {
610
611 return (le32toh(*((uint32_t *)x86bios_ivt + intno)));
612 }
613
614 void
615 x86bios_set_intr(int intno, uint32_t saddr)
616 {
617
618 *((uint32_t *)x86bios_ivt + intno) = htole32(saddr);
619 }
620
621 void
622 x86bios_intr(struct x86regs *regs, int intno)
623 {
624
625 if (intno < 0 || intno > 255)
626 return;
627
628 if (x86bios_trace_int)
629 X86BIOS_TRACE(Calling INT 0x%02x, intno, regs);
630
631 mtx_lock(&x86bios_lock);
632 memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
633 x86bios_fault = 0;
634 spinlock_enter();
635 x86emu_exec_intr(&x86bios_emu, intno);
636 spinlock_exit();
637 memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
638 mtx_unlock(&x86bios_lock);
639
640 if (x86bios_trace_int) {
641 X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs);
642 if (x86bios_fault)
643 printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n",
644 x86bios_fault_addr, x86bios_fault_cs,
645 x86bios_fault_ip);
646 }
647 }
648
649 void *
650 x86bios_offset(uint32_t offset)
651 {
652
653 return (x86bios_get_pages(offset, 1));
654 }
655
656 static __inline void
657 x86bios_unmap_mem(void)
658 {
659
660 free(x86bios_map, M_DEVBUF);
661 if (x86bios_ivt != NULL)
662 #ifdef X86BIOS_NATIVE_ARCH
663 pmap_unmapbios((vm_offset_t)x86bios_ivt, X86BIOS_IVT_SIZE);
664 #else
665 free(x86bios_ivt, M_DEVBUF);
666 #endif
667 if (x86bios_rom != NULL)
668 pmap_unmapdev((vm_offset_t)x86bios_rom, X86BIOS_ROM_SIZE);
669 if (x86bios_seg != NULL)
670 contigfree(x86bios_seg, X86BIOS_SEG_SIZE, M_DEVBUF);
671 }
672
673 static __inline int
674 x86bios_map_mem(void)
675 {
676
677 x86bios_map = malloc(sizeof(*x86bios_map) * X86BIOS_PAGES, M_DEVBUF,
678 M_WAITOK | M_ZERO);
679
680 #ifdef X86BIOS_NATIVE_ARCH
681 x86bios_ivt = pmap_mapbios(X86BIOS_IVT_BASE, X86BIOS_IVT_SIZE);
682
683 /* Probe EBDA via BDA. */
684 x86bios_rom_phys = *(uint16_t *)((caddr_t)x86bios_ivt + 0x40e);
685 x86bios_rom_phys = x86bios_rom_phys << 4;
686 if (x86bios_rom_phys != 0 && x86bios_rom_phys < X86BIOS_ROM_BASE &&
687 X86BIOS_ROM_BASE - x86bios_rom_phys <= 128 * 1024)
688 x86bios_rom_phys =
689 rounddown(x86bios_rom_phys, X86BIOS_PAGE_SIZE);
690 else
691 #else
692 x86bios_ivt = malloc(X86BIOS_IVT_SIZE, M_DEVBUF, M_ZERO | M_WAITOK);
693 #endif
694
695 x86bios_rom_phys = X86BIOS_ROM_BASE;
696 x86bios_rom = pmap_mapdev(x86bios_rom_phys, X86BIOS_ROM_SIZE);
697 if (x86bios_rom == NULL)
698 goto fail;
699 #ifdef X86BIOS_NATIVE_ARCH
700 /* Change attribute for EBDA. */
701 if (x86bios_rom_phys < X86BIOS_ROM_BASE &&
702 pmap_change_attr((vm_offset_t)x86bios_rom,
703 X86BIOS_ROM_BASE - x86bios_rom_phys, PAT_WRITE_BACK) != 0)
704 goto fail;
705 #endif
706
707 x86bios_seg = contigmalloc(X86BIOS_SEG_SIZE, M_DEVBUF, M_WAITOK,
708 X86BIOS_RAM_BASE, x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0);
709 x86bios_seg_phys = vtophys(x86bios_seg);
710
711 x86bios_set_pages((vm_offset_t)x86bios_ivt, X86BIOS_IVT_BASE,
712 X86BIOS_IVT_SIZE);
713 x86bios_set_pages((vm_offset_t)x86bios_rom, x86bios_rom_phys,
714 X86BIOS_ROM_SIZE);
715 x86bios_set_pages((vm_offset_t)x86bios_seg, x86bios_seg_phys,
716 X86BIOS_SEG_SIZE);
717
718 if (bootverbose) {
719 printf("x86bios: IVT 0x%06jx-0x%06jx at %p\n",
720 (vm_paddr_t)X86BIOS_IVT_BASE,
721 (vm_paddr_t)X86BIOS_IVT_SIZE + X86BIOS_IVT_BASE - 1,
722 x86bios_ivt);
723 printf("x86bios: SSEG 0x%06jx-0x%06jx at %p\n",
724 x86bios_seg_phys,
725 (vm_paddr_t)X86BIOS_SEG_SIZE + x86bios_seg_phys - 1,
726 x86bios_seg);
727 if (x86bios_rom_phys < X86BIOS_ROM_BASE)
728 printf("x86bios: EBDA 0x%06jx-0x%06jx at %p\n",
729 x86bios_rom_phys, (vm_paddr_t)X86BIOS_ROM_BASE - 1,
730 x86bios_rom);
731 printf("x86bios: ROM 0x%06jx-0x%06jx at %p\n",
732 (vm_paddr_t)X86BIOS_ROM_BASE,
733 (vm_paddr_t)X86BIOS_MEM_SIZE - X86BIOS_SEG_SIZE - 1,
734 (caddr_t)x86bios_rom + X86BIOS_ROM_BASE - x86bios_rom_phys);
735 }
736
737 return (0);
738
739 fail:
740 x86bios_unmap_mem();
741
742 return (1);
743 }
744
745 static int
746 x86bios_init(void)
747 {
748
749 mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_DEF);
750
751 if (x86bios_map_mem() != 0)
752 return (ENOMEM);
753
754 bzero(&x86bios_emu, sizeof(x86bios_emu));
755
756 x86bios_emu.emu_rdb = x86bios_emu_rdb;
757 x86bios_emu.emu_rdw = x86bios_emu_rdw;
758 x86bios_emu.emu_rdl = x86bios_emu_rdl;
759 x86bios_emu.emu_wrb = x86bios_emu_wrb;
760 x86bios_emu.emu_wrw = x86bios_emu_wrw;
761 x86bios_emu.emu_wrl = x86bios_emu_wrl;
762
763 x86bios_emu.emu_inb = x86bios_emu_inb;
764 x86bios_emu.emu_inw = x86bios_emu_inw;
765 x86bios_emu.emu_inl = x86bios_emu_inl;
766 x86bios_emu.emu_outb = x86bios_emu_outb;
767 x86bios_emu.emu_outw = x86bios_emu_outw;
768 x86bios_emu.emu_outl = x86bios_emu_outl;
769
770 return (0);
771 }
772
773 static int
774 x86bios_uninit(void)
775 {
776
777 x86bios_unmap_mem();
778 mtx_destroy(&x86bios_lock);
779
780 return (0);
781 }
782
783 #endif
784
785 void *
786 x86bios_get_orm(uint32_t offset)
787 {
788 uint8_t *p;
789
790 /* Does the shadow ROM contain BIOS POST code for x86? */
791 p = x86bios_offset(offset);
792 if (p == NULL || p[0] != 0x55 || p[1] != 0xaa ||
793 (p[3] != 0xe9 && p[3] != 0xeb))
794 return (NULL);
795
796 return (p);
797 }
798
799 int
800 x86bios_match_device(uint32_t offset, device_t dev)
801 {
802 uint8_t *p;
803 uint16_t device, vendor;
804 uint8_t class, progif, subclass;
805
806 /* Does the shadow ROM contain BIOS POST code for x86? */
807 p = x86bios_get_orm(offset);
808 if (p == NULL)
809 return (0);
810
811 /* Does it contain PCI data structure? */
812 p += le16toh(*(uint16_t *)(p + 0x18));
813 if (bcmp(p, "PCIR", 4) != 0 ||
814 le16toh(*(uint16_t *)(p + 0x0a)) < 0x18 || *(p + 0x14) != 0)
815 return (0);
816
817 /* Does it match the vendor, device, and classcode? */
818 vendor = le16toh(*(uint16_t *)(p + 0x04));
819 device = le16toh(*(uint16_t *)(p + 0x06));
820 progif = *(p + 0x0d);
821 subclass = *(p + 0x0e);
822 class = *(p + 0x0f);
823 if (vendor != pci_get_vendor(dev) || device != pci_get_device(dev) ||
824 class != pci_get_class(dev) || subclass != pci_get_subclass(dev) ||
825 progif != pci_get_progif(dev))
826 return (0);
827
828 return (1);
829 }
830
831 static int
832 x86bios_modevent(module_t mod __unused, int type, void *data __unused)
833 {
834
835 switch (type) {
836 case MOD_LOAD:
837 return (x86bios_init());
838 case MOD_UNLOAD:
839 return (x86bios_uninit());
840 default:
841 return (ENOTSUP);
842 }
843 }
844
845 static moduledata_t x86bios_mod = {
846 "x86bios",
847 x86bios_modevent,
848 NULL,
849 };
850
851 DECLARE_MODULE(x86bios, x86bios_mod, SI_SUB_CPU, SI_ORDER_ANY);
852 MODULE_VERSION(x86bios, 1);
Cache object: 01d5aaf33e1a6feb5bfe2494c50416de
|