The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/dev/ath/ath_hal/ar9300/ar9300_eeprom.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
    3  *
    4  * Permission to use, copy, modify, and/or distribute this software for any
    5  * purpose with or without fee is hereby granted, provided that the above
    6  * copyright notice and this permission notice appear in all copies.
    7  *
    8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
    9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
   10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
   11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
   12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
   13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
   14  * PERFORMANCE OF THIS SOFTWARE.
   15  */
   16 
   17 #include "opt_ah.h"
   18 
   19 #include "ah.h"
   20 #include "ah_internal.h"
   21 #include "ah_devid.h"
   22 #ifdef AH_DEBUG
   23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
   24 #endif
   25 #include "ar9300/ar9300.h"
   26 #include "ar9300/ar9300eep.h"
   27 #include "ar9300/ar9300template_generic.h"
   28 #include "ar9300/ar9300template_xb112.h"
   29 #include "ar9300/ar9300template_hb116.h"
   30 #include "ar9300/ar9300template_xb113.h"
   31 #include "ar9300/ar9300template_hb112.h"
   32 #include "ar9300/ar9300template_ap121.h"
   33 #include "ar9300/ar9300template_osprey_k31.h"
   34 #include "ar9300/ar9300template_wasp_2.h"
   35 #include "ar9300/ar9300template_wasp_k31.h"
   36 #include "ar9300/ar9300template_aphrodite.h"
   37 #include "ar9300/ar9300reg.h"
   38 #include "ar9300/ar9300phy.h"
   39 
   40 
   41 
   42 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
   43 void ar9300_swap_eeprom(ar9300_eeprom_t *eep);
   44 void ar9300_eeprom_template_swap(void);
   45 #endif
   46 
   47 static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah,
   48     int spur_chan, HAL_BOOL is_2ghz);
   49 #ifdef UNUSED
   50 static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah);
   51 static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah);
   52 #endif
   53 
   54 static ar9300_eeprom_t *default9300[] =
   55 {
   56     &ar9300_template_generic,
   57     &ar9300_template_xb112,
   58     &ar9300_template_hb116,
   59     &ar9300_template_hb112,
   60     &ar9300_template_xb113,
   61     &ar9300_template_ap121,
   62     &ar9300_template_wasp_2,
   63     &ar9300_template_wasp_k31,
   64     &ar9300_template_osprey_k31,
   65     &ar9300_template_aphrodite,
   66 };
   67 
   68 /*
   69  * Different types of memory where the calibration data might be stored.
   70  * All types are searched in ar9300_eeprom_restore()
   71  * in the order flash, eeprom, otp.
   72  * To disable searching a type, set its parameter to 0.
   73  */
   74 
   75 /*
   76  * This is where we look for the calibration data.
   77  * must be set before ath_attach() is called
   78  */
   79 static int calibration_data_try = calibration_data_none;
   80 static int calibration_data_try_address = 0;
   81 
   82 /*
   83  * Set the type of memory used to store calibration data.
   84  * Used by nart to force reading/writing of a specific type.
   85  * The driver can normally allow autodetection
   86  * by setting source to calibration_data_none=0.
   87  */
   88 void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source)
   89 {
   90     if (ah != 0) {
   91         AH9300(ah)->calibration_data_source = source;
   92     } else {
   93         calibration_data_try = source;
   94     }
   95 }
   96 
   97 int32_t ar9300_calibration_data_get(struct ath_hal *ah)
   98 {
   99     if (ah != 0) {
  100         return AH9300(ah)->calibration_data_source;
  101     } else {
  102         return calibration_data_try;
  103     }
  104 }
  105 
  106 /*
  107  * Set the address of first byte used to store calibration data.
  108  * Used by nart to force reading/writing at a specific address.
  109  * The driver can normally allow autodetection by setting size=0.
  110  */
  111 void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t size)
  112 {
  113     if (ah != 0) {
  114         AH9300(ah)->calibration_data_source_address = size;
  115     } else {
  116         calibration_data_try_address = size;
  117     }
  118 }
  119 
  120 int32_t ar9300_calibration_data_address_get(struct ath_hal *ah)
  121 {
  122     if (ah != 0) {
  123         return AH9300(ah)->calibration_data_source_address;
  124     } else {
  125         return calibration_data_try_address;
  126     }
  127 }
  128 
  129 /*
  130  * This is the template that is loaded if ar9300_eeprom_restore()
  131  * can't find valid data in the memory.
  132  */
  133 static int Ar9300_eeprom_template_preference = ar9300_eeprom_template_generic;
  134 
  135 void ar9300_eeprom_template_preference(int32_t value)
  136 {
  137     Ar9300_eeprom_template_preference = value;
  138 }
  139 
  140 /*
  141  * Install the specified default template.
  142  * Overwrites any existing calibration and configuration information in memory.
  143  */
  144 int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value)
  145 {
  146     struct ath_hal_9300 *ahp = AH9300(ah);
  147     ar9300_eeprom_t *mptr, *dptr;
  148     int mdata_size;
  149 
  150     mptr = &ahp->ah_eeprom;
  151     mdata_size = ar9300_eeprom_struct_size();
  152     if (mptr != 0) {
  153 #if 0
  154         calibration_data_source = calibration_data_none;
  155         calibration_data_source_address = 0;
  156 #endif
  157         dptr = ar9300_eeprom_struct_default_find_by_id(value);
  158         if (dptr != 0) {
  159             OS_MEMCPY(mptr, dptr, mdata_size);
  160             return 0;
  161         }
  162     }
  163     return -1;
  164 }
  165 
  166 static int
  167 ar9300_eeprom_restore_something(struct ath_hal *ah, ar9300_eeprom_t *mptr,
  168     int mdata_size)
  169 {
  170     int it;
  171     ar9300_eeprom_t *dptr;
  172     int nptr;
  173 
  174     nptr = -1; 
  175     /*
  176      * if we didn't find any blocks in the memory,
  177      * put the prefered template in place
  178      */
  179     if (nptr < 0) {
  180         AH9300(ah)->calibration_data_source = calibration_data_none;
  181         AH9300(ah)->calibration_data_source_address = 0;
  182         dptr = ar9300_eeprom_struct_default_find_by_id(
  183             Ar9300_eeprom_template_preference);
  184         if (dptr != 0) {
  185             OS_MEMCPY(mptr, dptr, mdata_size);    
  186             nptr = 0;
  187         }
  188     }
  189     /*
  190      * if we didn't find the prefered one,
  191      * put the normal default template in place
  192      */
  193     if (nptr < 0) {
  194         AH9300(ah)->calibration_data_source = calibration_data_none;
  195         AH9300(ah)->calibration_data_source_address = 0;
  196         dptr = ar9300_eeprom_struct_default_find_by_id(
  197             ar9300_eeprom_template_default);
  198         if (dptr != 0) {
  199             OS_MEMCPY(mptr, dptr, mdata_size);    
  200             nptr = 0;
  201         }
  202     }
  203     /*
  204      * if we can't find the best template, put any old template in place
  205      * presume that newer ones are better, so search backwards
  206      */
  207     if (nptr < 0) {
  208         AH9300(ah)->calibration_data_source = calibration_data_none;
  209         AH9300(ah)->calibration_data_source_address = 0;
  210         for (it = ar9300_eeprom_struct_default_many() - 1; it >= 0; it--) {
  211             dptr = ar9300_eeprom_struct_default(it);
  212             if (dptr != 0) {
  213                 OS_MEMCPY(mptr, dptr, mdata_size);    
  214                 nptr = 0;
  215                 break;
  216             }
  217         }
  218     }
  219     return nptr;
  220 }
  221 
  222 /*
  223  * Read 16 bits of data from offset into *data
  224  */
  225 HAL_BOOL
  226 ar9300_eeprom_read_word(struct ath_hal *ah, u_int off, u_int16_t *data)
  227 {
  228     if (AR_SREV_OSPREY(ah) || AR_SREV_POSEIDON(ah))
  229     {
  230         (void) OS_REG_READ(ah, AR9300_EEPROM_OFFSET + (off << AR9300_EEPROM_S));
  231         if (!ath_hal_wait(ah,
  232                           AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA),
  233                           AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS,
  234                           0))
  235         {
  236             return AH_FALSE;
  237         }
  238         *data = MS(OS_REG_READ(ah,
  239                                AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA)), AR_EEPROM_STATUS_DATA_VAL);
  240        return AH_TRUE;
  241     }
  242     else
  243     {
  244         *data = 0;
  245         return AH_FALSE;
  246     }
  247 }
  248 
  249 
  250 HAL_BOOL
  251 ar9300_otp_read(struct ath_hal *ah, u_int off, u_int32_t *data, HAL_BOOL is_wifi)
  252 {
  253     int time_out = 1000;
  254     int status = 0;
  255     u_int32_t addr;
  256 
  257     if (AR_SREV_HONEYBEE(ah)){ /* no OTP for Honeybee */
  258         return false;
  259     }
  260     addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah))?
  261         OTP_MEM_START_ADDRESS_WASP : OTP_MEM_START_ADDRESS;
  262         if (!is_wifi) {
  263         addr = BTOTP_MEM_START_ADDRESS;
  264     }
  265     addr += off * 4; /* OTP is 32 bit addressable */
  266     (void) OS_REG_READ(ah, addr);
  267 
  268     addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
  269         OTP_STATUS0_OTP_SM_BUSY_WASP : OTP_STATUS0_OTP_SM_BUSY;
  270         if (!is_wifi) {
  271         addr = BTOTP_STATUS0_OTP_SM_BUSY;
  272     }
  273     while ((time_out > 0) && (!status)) { /* wait for access complete */
  274         /* Read data valid, access not busy, sm not busy */
  275         status = ((OS_REG_READ(ah, addr) & 0x7) == 0x4) ? 1 : 0;
  276         time_out--;
  277     }
  278     if (time_out == 0) {
  279         HALDEBUG(ah, HAL_DEBUG_EEPROM,
  280             "%s: Timed out during OTP Status0 validation\n", __func__);
  281         return AH_FALSE;
  282     }
  283 
  284     addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
  285         OTP_STATUS1_EFUSE_READ_DATA_WASP : OTP_STATUS1_EFUSE_READ_DATA;
  286         if (!is_wifi) {
  287         addr = BTOTP_STATUS1_EFUSE_READ_DATA;
  288     }
  289     *data = OS_REG_READ(ah, addr);
  290     return AH_TRUE;
  291 }
  292 
  293 
  294 
  295 
  296 static HAL_STATUS
  297 ar9300_flash_map(struct ath_hal *ah)
  298 {
  299     /* XXX disable flash remapping for now (ie, SoC support) */
  300     ath_hal_printf(ah, "%s: unimplemented for now\n", __func__);
  301 #if 0
  302     struct ath_hal_9300 *ahp = AH9300(ah);
  303 #if defined(AR9100) || defined(__NetBSD__)
  304     ahp->ah_cal_mem = OS_REMAP(ah, AR9300_EEPROM_START_ADDR, AR9300_EEPROM_MAX);
  305 #else
  306     ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
  307         (AR9300_EEPROM_MAX + AR9300_FLASH_CAL_START_OFFSET));
  308 #endif
  309     if (!ahp->ah_cal_mem) {
  310         HALDEBUG(ah, HAL_DEBUG_EEPROM,
  311             "%s: cannot remap eeprom region \n", __func__);
  312         return HAL_EIO;
  313     }
  314 #endif
  315     return HAL_OK;
  316 }
  317 
  318 HAL_BOOL
  319 ar9300_flash_read(struct ath_hal *ah, u_int off, u_int16_t *data)
  320 {
  321     struct ath_hal_9300 *ahp = AH9300(ah);
  322 
  323     *data = ((u_int16_t *)ahp->ah_cal_mem)[off];
  324     return AH_TRUE;
  325 }
  326 
  327 HAL_BOOL
  328 ar9300_flash_write(struct ath_hal *ah, u_int off, u_int16_t data)
  329 {
  330     struct ath_hal_9300 *ahp = AH9300(ah);
  331 
  332     ((u_int16_t *)ahp->ah_cal_mem)[off] = data;
  333     return AH_TRUE;
  334 }
  335 
  336 HAL_STATUS
  337 ar9300_eeprom_attach(struct ath_hal *ah)
  338 {
  339     struct ath_hal_9300 *ahp = AH9300(ah);
  340     ahp->try_dram = 1;
  341     ahp->try_eeprom = 1;
  342     ahp->try_otp = 1;
  343 #ifdef ATH_CAL_NAND_FLASH
  344     ahp->try_nand = 1;
  345 #else
  346     ahp->try_flash = 1;
  347 #endif
  348     ahp->calibration_data_source = calibration_data_none;
  349     ahp->calibration_data_source_address = 0;
  350     ahp->calibration_data_try = calibration_data_try;
  351     ahp->calibration_data_try_address = 0;
  352 
  353     /*
  354      * In case flash will be used for EEPROM. Otherwise ahp->ah_cal_mem
  355      * must be set to NULL or the real EEPROM address.
  356      */
  357     ar9300_flash_map(ah);
  358     /*
  359      * ###### This function always return NO SPUR.
  360      * This is not true for many board designs.
  361      * Does anyone use this?
  362      */
  363     AH_PRIVATE(ah)->ah_getSpurChan = ar9300_eeprom_get_spur_chan;
  364 
  365 #ifdef OLDCODE
  366     /* XXX Needs to be moved for dynamic selection */
  367     ahp->ah_eeprom = *(default9300[ar9300_eeprom_template_default]);
  368 
  369 
  370     if (AR_SREV_HORNET(ah)) {
  371         /* Set default values for Hornet. */
  372         ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
  373             AR9300_OPFLAGS_11G;
  374         ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
  375     } else if (AR_SREV_POSEIDON(ah)) {
  376         /* Set default values for Poseidon. */
  377         ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
  378             AR9300_OPFLAGS_11G;
  379         ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
  380     }
  381 
  382     if (AH_PRIVATE(ah)->ah_config.ath_hal_skip_eeprom_read) {
  383         ahp->ah_emu_eeprom = 1;
  384         return HAL_OK;
  385     }
  386 
  387     ahp->ah_emu_eeprom = 1;
  388 
  389 #ifdef UNUSED
  390 #endif
  391     
  392     if (!ar9300_fill_eeprom(ah)) {
  393         return HAL_EIO;
  394     }
  395 
  396     return HAL_OK;
  397     /* return ar9300_check_eeprom(ah); */
  398 #else
  399     ahp->ah_emu_eeprom = 1;
  400 
  401 #if 0
  402 /*#ifdef MDK_AP*/ /* MDK_AP is defined only in NART AP build */
  403     u_int8_t buffer[10];
  404     int caldata_check = 0;
  405 
  406     ar9300_calibration_data_read_flash(
  407         ah, FLASH_BASE_CALDATA_OFFSET, buffer, 4);
  408     printf("flash caldata:: %x\n", buffer[0]);
  409     if (buffer[0] != 0xff) {
  410         caldata_check = 1;
  411     }
  412     if (!caldata_check) {
  413         ar9300_eeprom_t *mptr;
  414         int mdata_size;
  415         if (AR_SREV_HORNET(ah)) {
  416             /* XXX: For initial testing */
  417             mptr = &ahp->ah_eeprom;
  418             mdata_size = ar9300_eeprom_struct_size();
  419             ahp->ah_eeprom = ar9300_template_ap121;
  420             ahp->ah_emu_eeprom = 1;
  421             /* need it to let art save in to flash ????? */
  422             calibration_data_source = calibration_data_flash;
  423         } else if (AR_SREV_WASP(ah)) {
  424             /* XXX: For initial testing */
  425             ath_hal_printf(ah, " wasp eep attach\n");
  426             mptr = &ahp->ah_eeprom;
  427             mdata_size = ar9300_eeprom_struct_size();
  428             ahp->ah_eeprom = ar9300_template_generic;
  429             ahp->ah_eeprom.mac_addr[0] = 0x00;
  430             ahp->ah_eeprom.mac_addr[1] = 0x03;
  431             ahp->ah_eeprom.mac_addr[2] = 0x7F;
  432             ahp->ah_eeprom.mac_addr[3] = 0xBA;
  433             ahp->ah_eeprom.mac_addr[4] = 0xD0;
  434             ahp->ah_eeprom.mac_addr[5] = 0x00;
  435             ahp->ah_emu_eeprom = 1;
  436             ahp->ah_eeprom.base_eep_header.txrx_mask = 0x33;
  437             ahp->ah_eeprom.base_eep_header.txrxgain = 0x10;
  438             /* need it to let art save in to flash ????? */
  439             calibration_data_source = calibration_data_flash;
  440         }
  441         return HAL_OK;
  442     }
  443 #endif
  444     if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)
  445         || AR_SREV_HONEYBEE(ah)) {
  446         ahp->try_eeprom = 0;
  447     }
  448 
  449     if (AR_SREV_HONEYBEE(ah)) {
  450         ahp->try_otp = 0;
  451     }
  452 
  453     if (!ar9300_eeprom_restore(ah)) {
  454         return HAL_EIO;
  455     }
  456     return HAL_OK;
  457 #endif
  458 }
  459 
  460 u_int32_t
  461 ar9300_eeprom_get(struct ath_hal_9300 *ahp, EEPROM_PARAM param)
  462 {
  463     ar9300_eeprom_t *eep = &ahp->ah_eeprom;
  464     OSPREY_BASE_EEP_HEADER *p_base = &eep->base_eep_header;
  465     OSPREY_BASE_EXTENSION_1 *base_ext1 = &eep->base_ext1;
  466 
  467     switch (param) {
  468 #ifdef NOTYET
  469     case EEP_NFTHRESH_5:
  470         return p_modal[0].noise_floor_thresh_ch[0];
  471     case EEP_NFTHRESH_2:
  472         return p_modal[1].noise_floor_thresh_ch[0];
  473 #endif
  474     case EEP_MAC_LSW:
  475         return eep->mac_addr[0] << 8 | eep->mac_addr[1];
  476     case EEP_MAC_MID:
  477         return eep->mac_addr[2] << 8 | eep->mac_addr[3];
  478     case EEP_MAC_MSW:
  479         return eep->mac_addr[4] << 8 | eep->mac_addr[5];
  480     case EEP_REG_0:
  481         return p_base->reg_dmn[0];
  482     case EEP_REG_1:
  483         return p_base->reg_dmn[1];
  484     case EEP_OP_CAP:
  485         return p_base->device_cap;
  486     case EEP_OP_MODE:
  487         return p_base->op_cap_flags.op_flags;
  488     case EEP_RF_SILENT:
  489         return p_base->rf_silent;
  490 #ifdef NOTYET
  491     case EEP_OB_5:
  492         return p_modal[0].ob;
  493     case EEP_DB_5:
  494         return p_modal[0].db;
  495     case EEP_OB_2:
  496         return p_modal[1].ob;
  497     case EEP_DB_2:
  498         return p_modal[1].db;
  499     case EEP_MINOR_REV:
  500         return p_base->eeprom_version & AR9300_EEP_VER_MINOR_MASK;
  501 #endif
  502     case EEP_TX_MASK:
  503         return (p_base->txrx_mask >> 4) & 0xf;
  504     case EEP_RX_MASK:
  505         return p_base->txrx_mask & 0xf;
  506 #ifdef NOTYET
  507     case EEP_FSTCLK_5G:
  508         return p_base->fast_clk5g;
  509     case EEP_RXGAIN_TYPE:
  510         return p_base->rx_gain_type;
  511 #endif
  512     case EEP_DRIVE_STRENGTH:
  513 #define AR9300_EEP_BASE_DRIVE_STRENGTH    0x1 
  514         return p_base->misc_configuration & AR9300_EEP_BASE_DRIVE_STRENGTH;
  515     case EEP_INTERNAL_REGULATOR:
  516         /* Bit 4 is internal regulator flag */
  517         return ((p_base->feature_enable & 0x10) >> 4);
  518     case EEP_SWREG:
  519         return (p_base->swreg);
  520     case EEP_PAPRD_ENABLED:
  521         /* Bit 5 is paprd flag */
  522         return ((p_base->feature_enable & 0x20) >> 5);
  523     case EEP_ANTDIV_control:
  524         return (u_int32_t)(base_ext1->ant_div_control);
  525     case EEP_CHAIN_MASK_REDUCE:
  526         return ((p_base->misc_configuration >> 3) & 0x1);
  527     case EEP_OL_PWRCTRL:
  528         return 0;
  529      case EEP_DEV_TYPE:
  530         return p_base->device_type;
  531     default:
  532         HALASSERT(0);
  533         return 0;
  534     }
  535 }
  536 
  537 
  538 
  539 /******************************************************************************/
  540 /*!
  541 **  \brief EEPROM fixup code for INI values
  542 **
  543 ** This routine provides a place to insert "fixup" code for specific devices
  544 ** that need to modify INI values based on EEPROM values, BEFORE the INI values
  545 ** are written.
  546 ** Certain registers in the INI file can only be written once without
  547 ** undesired side effects, and this provides a place for EEPROM overrides
  548 ** in these cases.
  549 **
  550 ** This is called at attach time once.  It should not affect run time
  551 ** performance at all
  552 **
  553 **  \param ah       Pointer to HAL object (this)
  554 **  \param p_eep_data Pointer to (filled in) eeprom data structure
  555 **  \param reg      register being inspected on this call
  556 **  \param value    value in INI file
  557 **
  558 **  \return Updated value for INI file.
  559 */
  560 u_int32_t
  561 ar9300_ini_fixup(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data,
  562     u_int32_t reg, u_int32_t value)
  563 {
  564     HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
  565         "ar9300_eeprom_def_ini_fixup: FIXME\n");
  566 #if 0
  567     BASE_EEPDEF_HEADER  *p_base  = &(p_eep_data->base_eep_header);
  568 
  569     switch (AH_PRIVATE(ah)->ah_devid)
  570     {
  571     case AR9300_DEVID_AR9300_PCI:
  572         /*
  573         ** Need to set the external/internal regulator bit to the proper value.
  574         ** Can only write this ONCE.
  575         */
  576 
  577         if ( reg == 0x7894 )
  578         {
  579             /*
  580             ** Check for an EEPROM data structure of "0x0b" or better
  581             */
  582 
  583             HALDEBUG(ah, HAL_DEBUG_EEPROM, "ini VAL: %x  EEPROM: %x\n",
  584                      value, (p_base->version & 0xff));
  585 
  586             if ( (p_base->version & 0xff) > 0x0a) {
  587                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
  588                     "PWDCLKIND: %d\n", p_base->pwdclkind);
  589                 value &= ~AR_AN_TOP2_PWDCLKIND;
  590                 value |=
  591                     AR_AN_TOP2_PWDCLKIND &
  592                     (p_base->pwdclkind <<  AR_AN_TOP2_PWDCLKIND_S);
  593             } else {
  594                 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND Earlier Rev\n");
  595             }
  596 
  597             HALDEBUG(ah, HAL_DEBUG_EEPROM, "final ini VAL: %x\n", value);
  598         }
  599         break;
  600 
  601     }
  602 
  603     return (value);
  604 #else
  605     return 0;
  606 #endif
  607 }
  608 
  609 /*
  610  * Returns the interpolated y value corresponding to the specified x value
  611  * from the np ordered pairs of data (px,py).
  612  * The pairs do not have to be in any order.
  613  * If the specified x value is less than any of the px,
  614  * the returned y value is equal to the py for the lowest px.
  615  * If the specified x value is greater than any of the px,
  616  * the returned y value is equal to the py for the highest px.
  617  */
  618 static int
  619 interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np)
  620 {
  621     int ip = 0;
  622     int lx = 0, ly = 0, lhave = 0;
  623     int hx = 0, hy = 0, hhave = 0;
  624     int dx = 0;
  625     int y = 0;
  626     int bf, factor, plus;
  627 
  628     lhave = 0;
  629     hhave = 0;
  630     /*
  631      * identify best lower and higher x calibration measurement
  632      */
  633     for (ip = 0; ip < np; ip++) {
  634         dx = x - px[ip];
  635         /* this measurement is higher than our desired x */
  636         if (dx <= 0) {
  637             if (!hhave || dx > (x - hx)) {
  638                 /* new best higher x measurement */
  639                 hx = px[ip];
  640                 hy = py[ip];
  641                 hhave = 1;
  642             }
  643         }
  644         /* this measurement is lower than our desired x */
  645         if (dx >= 0) {
  646             if (!lhave || dx < (x - lx)) {
  647                 /* new best lower x measurement */
  648                 lx = px[ip];
  649                 ly = py[ip];
  650                 lhave = 1;
  651             }
  652         }
  653     }
  654     /* the low x is good */
  655     if (lhave) {
  656         /* so is the high x */
  657         if (hhave) {
  658             /* they're the same, so just pick one */
  659             if (hx == lx) {
  660                 y = ly;
  661             } else {
  662                 /* interpolate with round off */
  663                 bf = (2 * (hy - ly) * (x - lx)) / (hx - lx);
  664                 plus = (bf % 2);
  665                 factor = bf / 2;
  666                 y = ly + factor + plus;
  667             }
  668         } else {
  669             /* only low is good, use it */
  670             y = ly;
  671         }
  672     } else if (hhave) {
  673         /* only high is good, use it */
  674         y = hy;
  675     } else {
  676         /* nothing is good,this should never happen unless np=0, ????  */
  677         y = -(1 << 30);
  678     }
  679 
  680     return y;
  681 }
  682 
  683 u_int8_t
  684 ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
  685     u_int16_t freq, HAL_BOOL is_2ghz)
  686 {
  687     u_int16_t            num_piers, i;
  688     int32_t              target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
  689     int32_t              freq_array[OSPREY_NUM_5G_20_TARGET_POWERS]; 
  690     u_int8_t             *p_freq_bin;
  691     ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
  692     CAL_TARGET_POWER_LEG *p_eeprom_target_pwr;
  693 
  694     if (is_2ghz) {
  695         num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;    
  696         p_eeprom_target_pwr = eep->cal_target_power_2g;
  697         p_freq_bin = eep->cal_target_freqbin_2g;
  698     } else {
  699         num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
  700         p_eeprom_target_pwr = eep->cal_target_power_5g;
  701         p_freq_bin = eep->cal_target_freqbin_5g;
  702    }
  703 
  704     /*
  705      * create array of channels and targetpower from
  706      * targetpower piers stored on eeprom
  707      */
  708     for (i = 0; i < num_piers; i++) {
  709         freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
  710         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
  711     }
  712 
  713     /* interpolate to get target power for given frequency */
  714     return
  715         ((u_int8_t)interpolate(
  716             (int32_t)freq, freq_array, target_power_array, num_piers));
  717 }
  718 
  719 u_int8_t
  720 ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
  721     u_int16_t freq, HAL_BOOL is_2ghz)
  722 {
  723     u_int16_t               num_piers, i;
  724     int32_t                 target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
  725     int32_t                 freq_array[OSPREY_NUM_5G_20_TARGET_POWERS]; 
  726     u_int8_t                *p_freq_bin;
  727     ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
  728     OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
  729 
  730     if (is_2ghz) {
  731         num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;    
  732         p_eeprom_target_pwr = eep->cal_target_power_2g_ht20;
  733         p_freq_bin = eep->cal_target_freqbin_2g_ht20;
  734     } else {
  735         num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
  736         p_eeprom_target_pwr = eep->cal_target_power_5g_ht20;
  737         p_freq_bin = eep->cal_target_freqbin_5g_ht20;
  738     }
  739 
  740     /*
  741      * create array of channels and targetpower from
  742      * targetpower piers stored on eeprom
  743      */
  744     for (i = 0; i < num_piers; i++) {
  745         freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
  746         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
  747     }
  748 
  749     /* interpolate to get target power for given frequency */
  750     return
  751         ((u_int8_t)interpolate(
  752             (int32_t)freq, freq_array, target_power_array, num_piers));
  753 }
  754 
  755 u_int8_t
  756 ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
  757     u_int16_t freq, HAL_BOOL is_2ghz)
  758 {
  759     u_int16_t               num_piers, i;
  760     int32_t                 target_power_array[OSPREY_NUM_5G_40_TARGET_POWERS];
  761     int32_t                 freq_array[OSPREY_NUM_5G_40_TARGET_POWERS]; 
  762     u_int8_t                *p_freq_bin;
  763     ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
  764     OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
  765 
  766     if (is_2ghz) {
  767         num_piers = OSPREY_NUM_2G_40_TARGET_POWERS;    
  768         p_eeprom_target_pwr = eep->cal_target_power_2g_ht40;
  769         p_freq_bin = eep->cal_target_freqbin_2g_ht40;
  770     } else {
  771         num_piers = OSPREY_NUM_5G_40_TARGET_POWERS;
  772         p_eeprom_target_pwr = eep->cal_target_power_5g_ht40;
  773         p_freq_bin = eep->cal_target_freqbin_5g_ht40;
  774     }
  775 
  776     /*
  777      * create array of channels and targetpower from
  778      * targetpower piers stored on eeprom
  779      */
  780     for (i = 0; i < num_piers; i++) {
  781         freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
  782         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
  783     }
  784 
  785     /* interpolate to get target power for given frequency */
  786     return
  787         ((u_int8_t)interpolate(
  788             (int32_t)freq, freq_array, target_power_array, num_piers));
  789 }
  790 
  791 u_int8_t
  792 ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
  793     u_int16_t freq)
  794 {
  795     u_int16_t            num_piers = OSPREY_NUM_2G_CCK_TARGET_POWERS, i;
  796     int32_t              target_power_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
  797     int32_t              freq_array[OSPREY_NUM_2G_CCK_TARGET_POWERS]; 
  798     ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
  799     u_int8_t             *p_freq_bin = eep->cal_target_freqbin_cck;
  800     CAL_TARGET_POWER_LEG *p_eeprom_target_pwr = eep->cal_target_power_cck;
  801 
  802     /*
  803      * create array of channels and targetpower from
  804      * targetpower piers stored on eeprom
  805      */
  806     for (i = 0; i < num_piers; i++) {
  807         freq_array[i] = FBIN2FREQ(p_freq_bin[i], 1);
  808         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
  809     }
  810 
  811     /* interpolate to get target power for given frequency */
  812     return
  813         ((u_int8_t)interpolate(
  814             (int32_t)freq, freq_array, target_power_array, num_piers));
  815 }
  816 
  817 /*
  818  * Set tx power registers to array of values passed in
  819  */
  820 int
  821 ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array) 
  822 {   
  823 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
  824     /* make sure forced gain is not set */
  825 #if 0
  826     field_write("force_dac_gain", 0);
  827     OS_REG_WRITE(ah, 0xa3f8, 0);
  828     field_write("force_tx_gain", 0);
  829 #endif
  830 
  831     OS_REG_WRITE(ah, 0xa458, 0);
  832 
  833     /* Write the OFDM power per rate set */
  834     /* 6 (LSB), 9, 12, 18 (MSB) */
  835     OS_REG_WRITE(ah, 0xa3c0,
  836         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
  837           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
  838           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
  839           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
  840     );
  841     /* 24 (LSB), 36, 48, 54 (MSB) */
  842     OS_REG_WRITE(ah, 0xa3c4,
  843         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
  844           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
  845           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
  846           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
  847     );
  848 
  849     /* Write the CCK power per rate set */
  850     /* 1L (LSB), reserved, 2L, 2S (MSB) */  
  851     OS_REG_WRITE(ah, 0xa3c8,
  852         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
  853           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
  854 /*          | POW_SM(tx_power_times2,  8)*/ /* this is reserved for Osprey */
  855           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
  856     );
  857     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
  858     OS_REG_WRITE(ah, 0xa3cc,
  859         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
  860           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
  861           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
  862           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
  863     );
  864 
  865         /* write the power for duplicated frames - HT40 */
  866         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm  (MSB) */
  867     OS_REG_WRITE(ah, 0xa3e0,
  868         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
  869           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
  870           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
  871           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
  872     );
  873 
  874     /* Write the HT20 power per rate set */
  875     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
  876     OS_REG_WRITE(ah, 0xa3d0,
  877         POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24)
  878           | POW_SM(p_pwr_array[ALL_TARGET_HT20_4],  16)
  879           | POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
  880           | POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
  881     );
  882     
  883     /* 6 (LSB), 7, 12, 13 (MSB) */
  884     OS_REG_WRITE(ah, 0xa3d4,
  885         POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24)
  886           | POW_SM(p_pwr_array[ALL_TARGET_HT20_12],  16)
  887           | POW_SM(p_pwr_array[ALL_TARGET_HT20_7],  8)
  888           | POW_SM(p_pwr_array[ALL_TARGET_HT20_6],   0)
  889     );
  890 
  891     /* 14 (LSB), 15, 20, 21 */
  892     OS_REG_WRITE(ah, 0xa3e4,
  893         POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24)
  894           | POW_SM(p_pwr_array[ALL_TARGET_HT20_20],  16)
  895           | POW_SM(p_pwr_array[ALL_TARGET_HT20_15],  8)
  896           | POW_SM(p_pwr_array[ALL_TARGET_HT20_14],   0)
  897     );
  898 
  899     /* Mixed HT20 and HT40 rates */
  900     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
  901     OS_REG_WRITE(ah, 0xa3e8,
  902         POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24)
  903           | POW_SM(p_pwr_array[ALL_TARGET_HT40_22],  16)
  904           | POW_SM(p_pwr_array[ALL_TARGET_HT20_23],  8)
  905           | POW_SM(p_pwr_array[ALL_TARGET_HT20_22],   0)
  906     );
  907     
  908     /* Write the HT40 power per rate set */
  909     /* correct PAR difference between HT40 and HT20/LEGACY */
  910     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
  911     OS_REG_WRITE(ah, 0xa3d8,
  912         POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24)
  913           | POW_SM(p_pwr_array[ALL_TARGET_HT40_4],  16)
  914           | POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
  915           | POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
  916     );
  917 
  918     /* 6 (LSB), 7, 12, 13 (MSB) */
  919     OS_REG_WRITE(ah, 0xa3dc,
  920         POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24)
  921           | POW_SM(p_pwr_array[ALL_TARGET_HT40_12],  16)
  922           | POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8)
  923           | POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0)
  924     );
  925 
  926     /* 14 (LSB), 15, 20, 21 */
  927     OS_REG_WRITE(ah, 0xa3ec,
  928         POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24)
  929           | POW_SM(p_pwr_array[ALL_TARGET_HT40_20],  16)
  930           | POW_SM(p_pwr_array[ALL_TARGET_HT40_15],  8)
  931           | POW_SM(p_pwr_array[ALL_TARGET_HT40_14],   0)
  932     );
  933 
  934     return 0;
  935 #undef POW_SM    
  936 }
  937 
  938 static void
  939 ar9300_selfgen_tpc_reg_write(struct ath_hal *ah, const struct ieee80211_channel *chan,
  940                              u_int8_t *p_pwr_array) 
  941 {
  942     u_int32_t tpc_reg_val;
  943 
  944     /* Set the target power values for self generated frames (ACK,RTS/CTS) to
  945      * be within limits. This is just a safety measure.With per packet TPC mode
  946      * enabled the target power value used with self generated frames will be
  947      * MIN( TPC reg, BB_powertx_rate register)
  948      */
  949     
  950     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
  951         tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
  952                        SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
  953                        SM(0x3f, AR_TPC_CHIRP) |
  954                        SM(0x3f, AR_TPC_RPT));
  955     } else {
  956         tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
  957                        SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
  958                        SM(0x3f, AR_TPC_CHIRP) |
  959                        SM(0x3f, AR_TPC_RPT));
  960     }
  961     OS_REG_WRITE(ah, AR_TPC, tpc_reg_val);
  962 }
  963 
  964 void
  965 ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq,
  966     u_int8_t *target_power_val_t2)
  967 {
  968     /* hard code for now, need to get from eeprom struct */
  969     u_int8_t ht40_power_inc_for_pdadc = 0;
  970     HAL_BOOL  is_2ghz = 0;
  971     
  972     if (freq < 4000) {
  973         is_2ghz = 1;
  974     }
  975 
  976     target_power_val_t2[ALL_TARGET_LEGACY_6_24] =
  977         ar9300_eeprom_get_legacy_trgt_pwr(
  978             ah, LEGACY_TARGET_RATE_6_24, freq, is_2ghz);
  979     target_power_val_t2[ALL_TARGET_LEGACY_36] =
  980         ar9300_eeprom_get_legacy_trgt_pwr(
  981             ah, LEGACY_TARGET_RATE_36, freq, is_2ghz);
  982     target_power_val_t2[ALL_TARGET_LEGACY_48] =
  983         ar9300_eeprom_get_legacy_trgt_pwr(
  984             ah, LEGACY_TARGET_RATE_48, freq, is_2ghz);
  985     target_power_val_t2[ALL_TARGET_LEGACY_54] =
  986         ar9300_eeprom_get_legacy_trgt_pwr(
  987             ah, LEGACY_TARGET_RATE_54, freq, is_2ghz);
  988     target_power_val_t2[ALL_TARGET_LEGACY_1L_5L] =
  989         ar9300_eeprom_get_cck_trgt_pwr(
  990             ah, LEGACY_TARGET_RATE_1L_5L, freq);
  991     target_power_val_t2[ALL_TARGET_LEGACY_5S] =
  992         ar9300_eeprom_get_cck_trgt_pwr(
  993             ah, LEGACY_TARGET_RATE_5S, freq);
  994     target_power_val_t2[ALL_TARGET_LEGACY_11L] =
  995         ar9300_eeprom_get_cck_trgt_pwr(
  996             ah, LEGACY_TARGET_RATE_11L, freq);
  997     target_power_val_t2[ALL_TARGET_LEGACY_11S] =
  998         ar9300_eeprom_get_cck_trgt_pwr(
  999             ah, LEGACY_TARGET_RATE_11S, freq);
 1000     target_power_val_t2[ALL_TARGET_HT20_0_8_16] =
 1001         ar9300_eeprom_get_ht20_trgt_pwr(
 1002             ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz);
 1003     target_power_val_t2[ALL_TARGET_HT20_1_3_9_11_17_19] =
 1004         ar9300_eeprom_get_ht20_trgt_pwr(
 1005             ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz);
 1006     target_power_val_t2[ALL_TARGET_HT20_4] =
 1007         ar9300_eeprom_get_ht20_trgt_pwr(
 1008             ah, HT_TARGET_RATE_4, freq, is_2ghz);
 1009     target_power_val_t2[ALL_TARGET_HT20_5] =
 1010         ar9300_eeprom_get_ht20_trgt_pwr(
 1011             ah, HT_TARGET_RATE_5, freq, is_2ghz);
 1012     target_power_val_t2[ALL_TARGET_HT20_6] =
 1013         ar9300_eeprom_get_ht20_trgt_pwr(
 1014             ah, HT_TARGET_RATE_6, freq, is_2ghz);
 1015     target_power_val_t2[ALL_TARGET_HT20_7] =
 1016         ar9300_eeprom_get_ht20_trgt_pwr(
 1017             ah, HT_TARGET_RATE_7, freq, is_2ghz);
 1018     target_power_val_t2[ALL_TARGET_HT20_12] =
 1019         ar9300_eeprom_get_ht20_trgt_pwr(
 1020             ah, HT_TARGET_RATE_12, freq, is_2ghz);
 1021     target_power_val_t2[ALL_TARGET_HT20_13] =
 1022         ar9300_eeprom_get_ht20_trgt_pwr(
 1023             ah, HT_TARGET_RATE_13, freq, is_2ghz);
 1024     target_power_val_t2[ALL_TARGET_HT20_14] =
 1025         ar9300_eeprom_get_ht20_trgt_pwr(
 1026             ah, HT_TARGET_RATE_14, freq, is_2ghz);
 1027     target_power_val_t2[ALL_TARGET_HT20_15] =
 1028         ar9300_eeprom_get_ht20_trgt_pwr(
 1029             ah, HT_TARGET_RATE_15, freq, is_2ghz);
 1030     target_power_val_t2[ALL_TARGET_HT20_20] =
 1031         ar9300_eeprom_get_ht20_trgt_pwr(
 1032             ah, HT_TARGET_RATE_20, freq, is_2ghz);
 1033     target_power_val_t2[ALL_TARGET_HT20_21] =
 1034         ar9300_eeprom_get_ht20_trgt_pwr(
 1035             ah, HT_TARGET_RATE_21, freq, is_2ghz);
 1036     target_power_val_t2[ALL_TARGET_HT20_22] =
 1037         ar9300_eeprom_get_ht20_trgt_pwr(
 1038             ah, HT_TARGET_RATE_22, freq, is_2ghz);
 1039     target_power_val_t2[ALL_TARGET_HT20_23] =
 1040         ar9300_eeprom_get_ht20_trgt_pwr(
 1041             ah, HT_TARGET_RATE_23, freq, is_2ghz);
 1042     target_power_val_t2[ALL_TARGET_HT40_0_8_16] =
 1043         ar9300_eeprom_get_ht40_trgt_pwr(
 1044             ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz) +
 1045         ht40_power_inc_for_pdadc;
 1046     target_power_val_t2[ALL_TARGET_HT40_1_3_9_11_17_19] =
 1047         ar9300_eeprom_get_ht40_trgt_pwr(
 1048             ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz) +
 1049         ht40_power_inc_for_pdadc;
 1050     target_power_val_t2[ALL_TARGET_HT40_4] =
 1051         ar9300_eeprom_get_ht40_trgt_pwr(
 1052             ah, HT_TARGET_RATE_4, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1053     target_power_val_t2[ALL_TARGET_HT40_5] =
 1054         ar9300_eeprom_get_ht40_trgt_pwr(
 1055             ah, HT_TARGET_RATE_5, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1056     target_power_val_t2[ALL_TARGET_HT40_6] =
 1057         ar9300_eeprom_get_ht40_trgt_pwr(
 1058             ah, HT_TARGET_RATE_6, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1059     target_power_val_t2[ALL_TARGET_HT40_7] =
 1060         ar9300_eeprom_get_ht40_trgt_pwr(
 1061             ah, HT_TARGET_RATE_7, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1062     target_power_val_t2[ALL_TARGET_HT40_12] =
 1063         ar9300_eeprom_get_ht40_trgt_pwr(
 1064             ah, HT_TARGET_RATE_12, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1065     target_power_val_t2[ALL_TARGET_HT40_13] =
 1066         ar9300_eeprom_get_ht40_trgt_pwr(
 1067             ah, HT_TARGET_RATE_13, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1068     target_power_val_t2[ALL_TARGET_HT40_14] =
 1069         ar9300_eeprom_get_ht40_trgt_pwr(
 1070             ah, HT_TARGET_RATE_14, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1071     target_power_val_t2[ALL_TARGET_HT40_15] =
 1072         ar9300_eeprom_get_ht40_trgt_pwr(
 1073             ah, HT_TARGET_RATE_15, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1074     target_power_val_t2[ALL_TARGET_HT40_20] =
 1075         ar9300_eeprom_get_ht40_trgt_pwr(
 1076             ah, HT_TARGET_RATE_20, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1077     target_power_val_t2[ALL_TARGET_HT40_21] =
 1078         ar9300_eeprom_get_ht40_trgt_pwr(
 1079             ah, HT_TARGET_RATE_21, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1080     target_power_val_t2[ALL_TARGET_HT40_22] =
 1081         ar9300_eeprom_get_ht40_trgt_pwr(
 1082             ah, HT_TARGET_RATE_22, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1083     target_power_val_t2[ALL_TARGET_HT40_23] =
 1084         ar9300_eeprom_get_ht40_trgt_pwr(
 1085             ah, HT_TARGET_RATE_23, freq, is_2ghz) + ht40_power_inc_for_pdadc;
 1086 
 1087 #ifdef AH_DEBUG
 1088     {
 1089         int  i = 0;
 1090 
 1091         HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: APPLYING TARGET POWERS\n", __func__);
 1092         while (i < ar9300_rate_size) {
 1093             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
 1094                      __func__, i, target_power_val_t2[i]);
 1095             i++;
 1096                         if (i == ar9300_rate_size) {
 1097                 break;
 1098                         }
 1099             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
 1100                      __func__, i, target_power_val_t2[i]);
 1101             i++;
 1102                         if (i == ar9300_rate_size) {
 1103                 break;
 1104                         }
 1105             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
 1106                      __func__, i, target_power_val_t2[i]);
 1107             i++;
 1108                         if (i == ar9300_rate_size) {
 1109                 break;
 1110                         }
 1111             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x \n",
 1112                      __func__, i, target_power_val_t2[i]);
 1113             i++;
 1114         }
 1115     }
 1116 #endif
 1117 } 
 1118 
 1119 u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah)
 1120 {
 1121     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1122     return eep->base_eep_header.reg_dmn;
 1123 }
 1124 
 1125 
 1126 int32_t 
 1127 ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah)
 1128 {
 1129     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1130     return eep->base_eep_header.eeprom_write_enable_gpio;
 1131 }
 1132 
 1133 int32_t 
 1134 ar9300_wlan_disable_gpio_get(struct ath_hal *ah)
 1135 {
 1136     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1137     return eep->base_eep_header.wlan_disable_gpio;
 1138 }
 1139 
 1140 int32_t 
 1141 ar9300_wlan_led_gpio_get(struct ath_hal *ah)
 1142 {
 1143     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1144     return eep->base_eep_header.wlan_led_gpio;
 1145 }
 1146 
 1147 int32_t 
 1148 ar9300_rx_band_select_gpio_get(struct ath_hal *ah)
 1149 {
 1150     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1151     return eep->base_eep_header.rx_band_select_gpio;
 1152 }
 1153 
 1154 /*
 1155  * since valid noise floor values are negative, returns 1 on error
 1156  */
 1157 int32_t
 1158 ar9300_noise_floor_cal_or_power_get(struct ath_hal *ah, int32_t frequency,
 1159     int32_t ichain, HAL_BOOL use_cal)
 1160 {
 1161     int     nf_use = 1; /* start with an error return value */
 1162     int32_t fx[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
 1163     int32_t nf[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
 1164     int     nnf;
 1165     int     is_2ghz;
 1166     int     ipier, npier;
 1167     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1168     u_int8_t        *p_cal_pier;
 1169     OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
 1170 
 1171     /*
 1172      * check chain value
 1173      */
 1174     if (ichain < 0 || ichain >= OSPREY_MAX_CHAINS) {
 1175         return 1;
 1176     }
 1177 
 1178     /* figure out which band we're using */
 1179     is_2ghz = (frequency < 4000);
 1180     if (is_2ghz) {
 1181         npier = OSPREY_NUM_2G_CAL_PIERS;
 1182         p_cal_pier = eep->cal_freq_pier_2g;
 1183         p_cal_pier_struct = eep->cal_pier_data_2g[ichain];
 1184     } else {
 1185         npier = OSPREY_NUM_5G_CAL_PIERS;
 1186         p_cal_pier = eep->cal_freq_pier_5g;
 1187         p_cal_pier_struct = eep->cal_pier_data_5g[ichain];
 1188     }
 1189     /* look for valid noise floor values */
 1190     nnf = 0;
 1191     for (ipier = 0; ipier < npier; ipier++) {
 1192         fx[nnf] = FBIN2FREQ(p_cal_pier[ipier], is_2ghz);
 1193         nf[nnf] = use_cal ?
 1194             p_cal_pier_struct[ipier].rx_noisefloor_cal :
 1195             p_cal_pier_struct[ipier].rx_noisefloor_power;
 1196         if (nf[nnf] < 0) {
 1197             nnf++;
 1198         }
 1199     }
 1200     /*
 1201      * If we have some valid values, interpolate to find the value
 1202      * at the desired frequency.
 1203      */
 1204     if (nnf > 0) {
 1205         nf_use = interpolate(frequency, fx, nf, nnf);
 1206     }
 1207 
 1208     return nf_use;
 1209 }
 1210 
 1211 /*
 1212  * Return the Rx NF offset for specific channel.
 1213  * The values saved in EEPROM/OTP/Flash is converted through the following way:
 1214  *     ((_p) - NOISE_PWR_DATA_OFFSET) << 2
 1215  * So we need to convert back to the original values.
 1216  */
 1217 int ar9300_get_rx_nf_offset(struct ath_hal *ah, struct ieee80211_channel *chan, int8_t *nf_pwr, int8_t *nf_cal) {
 1218     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
 1219     int8_t rx_nf_pwr, rx_nf_cal;
 1220     int i; 
 1221     //HALASSERT(ichan);
 1222 
 1223     /* Fill 0 if valid internal channel is not found */
 1224     if (ichan == AH_NULL) {
 1225         OS_MEMZERO(nf_pwr, sizeof(nf_pwr[0])*OSPREY_MAX_CHAINS);
 1226         OS_MEMZERO(nf_cal, sizeof(nf_cal[0])*OSPREY_MAX_CHAINS);
 1227         return -1;
 1228     }
 1229 
 1230     for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
 1231             if ((rx_nf_pwr = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 0)) == 1) {
 1232                 nf_pwr[i] = 0;
 1233             } else {
 1234                 //printk("%s: raw nf_pwr[%d] = %d\n", __func__, i, rx_nf_pwr);
 1235             nf_pwr[i] = NOISE_PWR_DBM_2_INT(rx_nf_pwr);
 1236             }
 1237 
 1238             if ((rx_nf_cal = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 1)) == 1) {
 1239                 nf_cal[i] = 0;
 1240             } else {
 1241                 //printk("%s: raw nf_cal[%d] = %d\n", __func__, i, rx_nf_cal);
 1242             nf_cal[i] = NOISE_PWR_DBM_2_INT(rx_nf_cal);
 1243             }
 1244     }
 1245 
 1246     return 0;
 1247 }
 1248 
 1249 int32_t ar9300_rx_gain_index_get(struct ath_hal *ah)
 1250 {
 1251     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1252 
 1253     return (eep->base_eep_header.txrxgain) & 0xf;        /* bits 3:0 */
 1254 }
 1255 
 1256 
 1257 int32_t ar9300_tx_gain_index_get(struct ath_hal *ah)
 1258 {
 1259     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1260 
 1261     return (eep->base_eep_header.txrxgain >> 4) & 0xf;    /* bits 7:4 */
 1262 }
 1263 
 1264 HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah)
 1265 {
 1266     struct ath_hal_9300 *ahp = AH9300(ah);
 1267     int internal_regulator = ar9300_eeprom_get(ahp, EEP_INTERNAL_REGULATOR);
 1268     int reg_pmu1, reg_pmu2, reg_pmu1_set, reg_pmu2_set;
 1269     u_int32_t reg_PMU1, reg_PMU2;
 1270     unsigned long eep_addr;
 1271     u_int32_t reg_val, reg_usb = 0, reg_pmu = 0;
 1272     int usb_valid = 0, pmu_valid = 0;
 1273     unsigned char pmu_refv; 
 1274 
 1275     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
 1276         reg_PMU1 = AR_PHY_PMU1_JUPITER;
 1277         reg_PMU2 = AR_PHY_PMU2_JUPITER;
 1278     }
 1279     else {
 1280         reg_PMU1 = AR_PHY_PMU1;
 1281         reg_PMU2 = AR_PHY_PMU2;
 1282     }
 1283 
 1284     if (internal_regulator) {
 1285         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
 1286             if (AR_SREV_HORNET(ah)) {
 1287                 /* Read OTP first */
 1288                 for (eep_addr = 0x14; ; eep_addr -= 0x10) {
 1289 
 1290                     ar9300_otp_read(ah, eep_addr / 4, &reg_val, 1);
 1291 
 1292                     if ((reg_val & 0x80) == 0x80){
 1293                         usb_valid = 1;
 1294                         reg_usb = reg_val & 0x000000ff;
 1295                     }
 1296                     
 1297                     if ((reg_val & 0x80000000) == 0x80000000){
 1298                         pmu_valid = 1;
 1299                         reg_pmu = (reg_val & 0xff000000) >> 24;
 1300                     }
 1301 
 1302                     if (eep_addr == 0x4) {
 1303                         break;
 1304                     }
 1305                 }
 1306 
 1307                 if (pmu_valid) {
 1308                     pmu_refv = reg_pmu & 0xf;
 1309                 } else {
 1310                     pmu_refv = 0x8;
 1311                 }
 1312 
 1313                 /*
 1314                  * If (valid) {
 1315                  *   Usb_phy_ctrl2_tx_cal_en -> 0
 1316                  *   Usb_phy_ctrl2_tx_cal_sel -> 0
 1317                  *   Usb_phy_ctrl2_tx_man_cal -> 0, 1, 3, 7 or 15 from OTP
 1318                  * }
 1319                  */
 1320                 if (usb_valid) {
 1321                     OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_EN, 0x0);
 1322                     OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_SEL, 0x0);
 1323                     OS_REG_RMW_FIELD(ah, 0x16c88, 
 1324                         AR_PHY_CTRL2_TX_MAN_CAL, (reg_usb & 0xf));
 1325                 }
 1326 
 1327             } else {
 1328                 pmu_refv = 0x8;
 1329             }
 1330             /*#ifndef USE_HIF*/
 1331             /* Follow the MDK settings for Hornet PMU.
 1332              * my $pwd               = 0x0;
 1333              * my $Nfdiv             = 0x3;  # xtal_freq = 25MHz
 1334              * my $Nfdiv             = 0x4;  # xtal_freq = 40MHz
 1335              * my $Refv              = 0x7;  # 0x5:1.22V; 0x8:1.29V
 1336              * my $Gm1               = 0x3;  #Poseidon $Gm1=1
 1337              * my $classb            = 0x0;
 1338              * my $Cc                = 0x1;  #Poseidon $Cc=7
 1339              * my $Rc                = 0x6;
 1340              * my $ramp_slope        = 0x1;
 1341              * my $Segm              = 0x3;
 1342              * my $use_local_osc     = 0x0;
 1343              * my $force_xosc_stable = 0x0;
 1344              * my $Selfb             = 0x0;  #Poseidon $Selfb=1
 1345              * my $Filterfb          = 0x3;  #Poseidon $Filterfb=0
 1346              * my $Filtervc          = 0x0;
 1347              * my $disc              = 0x0;
 1348              * my $discdel           = 0x4;
 1349              * my $spare             = 0x0;
 1350              * $reg_PMU1 =
 1351              *     $pwd | ($Nfdiv<<1) | ($Refv<<4) | ($Gm1<<8) |
 1352              *     ($classb<<11) | ($Cc<<14) | ($Rc<<17) | ($ramp_slope<<20) |
 1353              *     ($Segm<<24) | ($use_local_osc<<26) |
 1354              *     ($force_xosc_stable<<27) | ($Selfb<<28) | ($Filterfb<<29);
 1355              * $reg_PMU2 = $handle->reg_rd("ch0_PMU2");
 1356              * $reg_PMU2 = ($reg_PMU2 & 0xfe3fffff) | ($Filtervc<<22);
 1357              * $reg_PMU2 = ($reg_PMU2 & 0xe3ffffff) | ($discdel<<26);
 1358              * $reg_PMU2 = ($reg_PMU2 & 0x1fffffff) | ($spare<<29); 
 1359              */
 1360             if (ahp->clk_25mhz) {
 1361                 reg_pmu1_set = 0 |
 1362                     (3 <<  1) | (pmu_refv << 4) | (3 <<  8) | (0 << 11) |
 1363                     (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
 1364                     (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29);
 1365             } else {
 1366                 if (AR_SREV_POSEIDON(ah)) {
 1367                     reg_pmu1_set = 0 | 
 1368                         (5 <<  1) | (7 <<  4) | (2 <<  8) | (0 << 11) |
 1369                         (2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
 1370                         (0 << 26) | (0 << 27) | (1 << 28) | (0 << 29) ;
 1371                 } else {
 1372                     reg_pmu1_set = 0 |
 1373                         (4 <<  1) | (7 <<  4) | (3 <<  8) | (0 << 11) |
 1374                         (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
 1375                         (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29) ;
 1376                 } 
 1377             }
 1378             OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
 1379 
 1380             OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);   /* 0x638c8376 */
 1381             reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
 1382             while (reg_pmu1 != reg_pmu1_set) {
 1383                 OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);  /* 0x638c8376 */
 1384                 OS_DELAY(10);
 1385                 reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
 1386             }
 1387                                 
 1388             reg_pmu2_set =
 1389                  (OS_REG_READ(ah, reg_PMU2) & (~0xFFC00000)) | (4 << 26);
 1390             OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
 1391             reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
 1392             while (reg_pmu2 != reg_pmu2_set) {
 1393                 OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
 1394                 OS_DELAY(10);
 1395                 reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
 1396             }
 1397             reg_pmu2_set =
 1398                  (OS_REG_READ(ah, reg_PMU2) & (~0x00200000)) | (1 << 21);
 1399             OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
 1400             reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
 1401             while (reg_pmu2 != reg_pmu2_set) {
 1402                 OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
 1403                 OS_DELAY(10);
 1404                 reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
 1405             }
 1406             /*#endif*/
 1407         } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
 1408             /* Internal regulator is ON. Write swreg register. */
 1409             int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
 1410             OS_REG_WRITE(ah, reg_PMU1, swreg);
 1411         } else {
 1412             /* Internal regulator is ON. Write swreg register. */
 1413             int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
 1414             OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
 1415                          OS_REG_READ(ah, AR_RTC_REG_CONTROL1) &
 1416                          (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
 1417             OS_REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
 1418             /* Set REG_CONTROL1.SWREG_PROGRAM */
 1419             OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
 1420                 OS_REG_READ(ah, AR_RTC_REG_CONTROL1) |
 1421                 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
 1422         }
 1423     } else {
 1424         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
 1425             OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
 1426             reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
 1427             while (reg_pmu2) {
 1428                 OS_DELAY(10);
 1429                 reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
 1430             }
 1431             OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
 1432             reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
 1433             while (!reg_pmu1) {
 1434                 OS_DELAY(10);
 1435                 reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
 1436             }
 1437             OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x1);
 1438             reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
 1439             while (!reg_pmu2) {
 1440                 OS_DELAY(10);
 1441                 reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
 1442             }
 1443         } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
 1444             OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
 1445         } else {
 1446             OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
 1447                 (OS_REG_READ(ah, AR_RTC_SLEEP_CLK) |
 1448                 AR_RTC_FORCE_SWREG_PRD | AR_RTC_PCIE_RST_PWDN_EN));
 1449         }
 1450     }
 1451 
 1452     return 0;  
 1453 }
 1454 
 1455 HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah)
 1456 {
 1457     struct ath_hal_9300 *ahp = AH9300(ah);
 1458     int drive_strength;
 1459     unsigned long reg;
 1460 
 1461     drive_strength = ar9300_eeprom_get(ahp, EEP_DRIVE_STRENGTH);
 1462     if (drive_strength) {
 1463         reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
 1464         reg &= ~0x00ffffc0;
 1465         reg |= 0x5 << 21;
 1466         reg |= 0x5 << 18;
 1467         reg |= 0x5 << 15;
 1468         reg |= 0x5 << 12;
 1469         reg |= 0x5 << 9;
 1470         reg |= 0x5 << 6;
 1471         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
 1472 
 1473         reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
 1474         reg &= ~0xffffffe0;
 1475         reg |= 0x5 << 29;
 1476         reg |= 0x5 << 26;
 1477         reg |= 0x5 << 23;
 1478         reg |= 0x5 << 20;
 1479         reg |= 0x5 << 17;
 1480         reg |= 0x5 << 14;
 1481         reg |= 0x5 << 11;
 1482         reg |= 0x5 << 8;
 1483         reg |= 0x5 << 5;
 1484         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
 1485 
 1486         reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
 1487         reg &= ~0xff800000;
 1488         reg |= 0x5 << 29;
 1489         reg |= 0x5 << 26;
 1490         reg |= 0x5 << 23;
 1491         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
 1492     }
 1493     return 0;
 1494 }
 1495 
 1496 int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
 1497 {
 1498     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1499     if (is_2ghz) {
 1500         return eep->modal_header_2g.xpa_bias_lvl;
 1501     } else {
 1502         return eep->modal_header_5g.xpa_bias_lvl;
 1503     }
 1504 }
 1505 
 1506 HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
 1507 {
 1508     /*
 1509      * In ar9330 emu, we can't access radio registers, 
 1510      * merlin is used for radio part.
 1511      */
 1512     int bias;
 1513     bias = ar9300_xpa_bias_level_get(ah, is_2ghz);
 1514 
 1515     if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
 1516         OS_REG_RMW_FIELD(ah,
 1517             AR_HORNET_CH0_TOP2, AR_HORNET_CH0_TOP2_XPABIASLVL, bias);
 1518     } else if (AR_SREV_SCORPION(ah)) {
 1519         OS_REG_RMW_FIELD(ah,
 1520             AR_SCORPION_CH0_TOP, AR_SCORPION_CH0_TOP_XPABIASLVL, bias);
 1521     } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
 1522         OS_REG_RMW_FIELD(ah,
 1523             AR_PHY_65NM_CH0_TOP_JUPITER, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
 1524     } else {
 1525         OS_REG_RMW_FIELD(ah,
 1526             AR_PHY_65NM_CH0_TOP, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
 1527         OS_REG_RMW_FIELD(ah,
 1528             AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
 1529             bias >> 2);
 1530         OS_REG_RMW_FIELD(ah,
 1531             AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPASHORT2GND, 1);
 1532     }
 1533     return 0;
 1534 }
 1535 
 1536 u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
 1537 {
 1538     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1539     if (is_2ghz) {
 1540         return eep->modal_header_2g.ant_ctrl_common;
 1541     } else {
 1542         return eep->modal_header_5g.ant_ctrl_common;
 1543     }
 1544 }
 1545 static u_int16_t 
 1546 ar9300_switch_com_spdt_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
 1547 {
 1548     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1549     if (is_2ghz) {
 1550         return eep->modal_header_2g.switchcomspdt;
 1551     } else {
 1552         return eep->modal_header_5g.switchcomspdt;
 1553     }
 1554 }
 1555 u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
 1556 {
 1557     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1558     if (is_2ghz) {
 1559         return eep->modal_header_2g.ant_ctrl_common2;
 1560     } else {
 1561         return eep->modal_header_5g.ant_ctrl_common2;
 1562     }
 1563 }
 1564 
 1565 u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain,
 1566     HAL_BOOL is_2ghz)
 1567 {
 1568     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1569     if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
 1570         if (is_2ghz) {
 1571             return eep->modal_header_2g.ant_ctrl_chain[chain];
 1572         } else {
 1573             return eep->modal_header_5g.ant_ctrl_chain[chain];
 1574         }
 1575     }
 1576     return 0;
 1577 }
 1578 
 1579 /*
 1580  * Select the usage of antenna via the RF switch.
 1581  * Default values are loaded from eeprom.
 1582  */
 1583 HAL_BOOL ar9300_ant_swcom_sel(struct ath_hal *ah, u_int8_t ops,
 1584                         u_int32_t *common_tbl1, u_int32_t *common_tbl2)
 1585 {
 1586     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1587     struct ath_hal_private  *ap  = AH_PRIVATE(ah);
 1588     const struct ieee80211_channel *curchan = ap->ah_curchan;
 1589     enum {
 1590         ANT_SELECT_OPS_GET,
 1591         ANT_SELECT_OPS_SET,
 1592     };
 1593 
 1594     if (AR_SREV_JUPITER(ah) || AR_SREV_SCORPION(ah))
 1595         return AH_FALSE;
 1596 
 1597     if (!curchan)
 1598         return AH_FALSE;
 1599 
 1600 #define AR_SWITCH_TABLE_COM_ALL (0xffff)
 1601 #define AR_SWITCH_TABLE_COM_ALL_S (0)
 1602 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
 1603 #define AR_SWITCH_TABLE_COM2_ALL_S (0)
 1604     switch (ops) {
 1605     case ANT_SELECT_OPS_GET:
 1606         *common_tbl1 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM,
 1607                             AR_SWITCH_TABLE_COM_ALL);
 1608         *common_tbl2 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM_2,
 1609                             AR_SWITCH_TABLE_COM2_ALL);
 1610         break;
 1611     case ANT_SELECT_OPS_SET:
 1612         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
 1613             AR_SWITCH_TABLE_COM_ALL, *common_tbl1);
 1614         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2,
 1615             AR_SWITCH_TABLE_COM2_ALL, *common_tbl2);
 1616 
 1617         /* write back to eeprom */
 1618         if (IEEE80211_IS_CHAN_2GHZ(curchan)) {
 1619             eep->modal_header_2g.ant_ctrl_common = *common_tbl1;
 1620             eep->modal_header_2g.ant_ctrl_common2 = *common_tbl2;
 1621         } else {
 1622             eep->modal_header_5g.ant_ctrl_common = *common_tbl1;
 1623             eep->modal_header_5g.ant_ctrl_common2 = *common_tbl2;
 1624         }
 1625 
 1626         break;
 1627     default:
 1628         break;
 1629     }
 1630 
 1631     return AH_TRUE;
 1632 }
 1633 
 1634 HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
 1635 {
 1636     u_int32_t value;
 1637     struct ath_hal_9300 *ahp = AH9300(ah);
 1638     u_int32_t regval;
 1639     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
 1640 #if ATH_ANT_DIV_COMB
 1641     HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;
 1642 #endif  /* ATH_ANT_DIV_COMB */
 1643     u_int32_t xlan_gpio_cfg;
 1644     u_int8_t  i;
 1645 
 1646     HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: use_bt_ant_enable=%d\n",
 1647       __func__, ahp->ah_lna_div_use_bt_ant_enable);
 1648 
 1649     /* XXX TODO: only if rx_gain_idx == 0 */
 1650     if (AR_SREV_POSEIDON(ah)) {
 1651         xlan_gpio_cfg = ah->ah_config.ath_hal_ext_lna_ctl_gpio;
 1652         if (xlan_gpio_cfg) {
 1653             for (i = 0; i < 32; i++) {
 1654                 if (xlan_gpio_cfg & (1 << i)) {
 1655                     ath_hal_gpioCfgOutput(ah, i, 
 1656                         HAL_GPIO_OUTPUT_MUX_PCIE_ATTENTION_LED);
 1657                 }
 1658             }
 1659         }    
 1660     }
 1661 #define AR_SWITCH_TABLE_COM_ALL (0xffff)
 1662 #define AR_SWITCH_TABLE_COM_ALL_S (0)
 1663 #define AR_SWITCH_TABLE_COM_JUPITER_ALL (0xffffff)
 1664 #define AR_SWITCH_TABLE_COM_JUPITER_ALL_S (0)
 1665 #define AR_SWITCH_TABLE_COM_SCORPION_ALL (0xffffff)
 1666 #define AR_SWITCH_TABLE_COM_SCORPION_ALL_S (0)
 1667 #define AR_SWITCH_TABLE_COM_HONEYBEE_ALL (0xffffff)
 1668 #define AR_SWITCH_TABLE_COM_HONEYBEE_ALL_S (0)
 1669 #define AR_SWITCH_TABLE_COM_SPDT (0x00f00000)
 1670     value = ar9300_ant_ctrl_common_get(ah, is_2ghz);
 1671     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
 1672         if (AR_SREV_JUPITER_10(ah)) {
 1673             /* Force SPDT setting for Jupiter 1.0 chips. */
 1674             value &= ~AR_SWITCH_TABLE_COM_SPDT;
 1675             value |= 0x00100000;
 1676         }
 1677         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, 
 1678             AR_SWITCH_TABLE_COM_JUPITER_ALL, value);
 1679     }
 1680     else if (AR_SREV_SCORPION(ah)) {
 1681         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, 
 1682             AR_SWITCH_TABLE_COM_SCORPION_ALL, value);
 1683     }
 1684     else if (AR_SREV_HONEYBEE(ah)) {
 1685         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, 
 1686             AR_SWITCH_TABLE_COM_HONEYBEE_ALL, value);
 1687     }
 1688     else {
 1689         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, 
 1690             AR_SWITCH_TABLE_COM_ALL, value);
 1691     }
 1692 /*
 1693 *   Jupiter2.0 defines new switch table for BT/WLAN, 
 1694 *       here's new field name in WB222.ref for both 2G and 5G.
 1695 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
 1696 *   15:12       R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX   SWITCH_TABLE_COM_SPDT_WLAN_RX 
 1697 *   11:8        R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX   SWITCH_TABLE_COM_SPDT_WLAN_TX
 1698 *   7:4 R/W     SWITCH_TABLE_COM_SPDT_WLAN_IDLE SWITCH_TABLE_COM_SPDT_WLAN_IDLE 
 1699 */
 1700 #define AR_SWITCH_TABLE_COM_SPDT_ALL (0x0000fff0)
 1701 #define AR_SWITCH_TABLE_COM_SPDT_ALL_S (4)
 1702     if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
 1703         value = ar9300_switch_com_spdt_get(ah, is_2ghz);
 1704         OS_REG_RMW_FIELD(ah, AR_GLB_CONTROL, 
 1705             AR_SWITCH_TABLE_COM_SPDT_ALL, value);
 1706 
 1707         OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
 1708             AR_BTCOEX_CTRL_SPDT_ENABLE);
 1709         //OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
 1710         //    AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
 1711     }
 1712 
 1713 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
 1714 #define AR_SWITCH_TABLE_COM2_ALL_S (0)
 1715     value = ar9300_ant_ctrl_common2_get(ah, is_2ghz);
 1716 #if ATH_ANT_DIV_COMB
 1717     if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
 1718         value &= ~AR_SWITCH_TABLE_COM2_ALL;
 1719         value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
 1720         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value)
 1721     }
 1722 #endif  /* ATH_ANT_DIV_COMB */
 1723     OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
 1724 
 1725 #define AR_SWITCH_TABLE_ALL (0xfff)
 1726 #define AR_SWITCH_TABLE_ALL_S (0)
 1727     value = ar9300_ant_ctrl_chain_get(ah, 0, is_2ghz);
 1728     OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
 1729 
 1730     if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
 1731         value = ar9300_ant_ctrl_chain_get(ah, 1, is_2ghz);
 1732         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
 1733 
 1734         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) {
 1735             value = ar9300_ant_ctrl_chain_get(ah, 2, is_2ghz);
 1736             OS_REG_RMW_FIELD(ah,
 1737                 AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
 1738         }
 1739     }
 1740     if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
 1741         value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
 1742         /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
 1743         regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
 1744         regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */     
 1745         regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S; 
 1746         /* enable_lnadiv */
 1747         regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
 1748         regval |= ((value >> 6) & 0x1) << 
 1749                   MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT; 
 1750 #if ATH_ANT_DIV_COMB
 1751         if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
 1752             regval |= ANT_DIV_ENABLE;
 1753         }
 1754         if (AR_SREV_APHRODITE(ah)) {
 1755                 if (ahp->ah_lna_div_use_bt_ant_enable) {
 1756                         regval |= (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT);
 1757 
 1758                         OS_REG_SET_BIT(ah, AR_PHY_RESTART,
 1759                                     RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK);
 1760 
 1761                         /* Force WLAN LNA diversity ON */
 1762                         OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
 1763                                     AR_BTCOEX_WL_LNADIV_FORCE_ON);
 1764                 } else {
 1765                         regval &= ~(1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT);
 1766                         regval &= ~(1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT);
 1767 
 1768                         OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
 1769                                     (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT));
 1770 
 1771                         /* Force WLAN LNA diversity OFF */
 1772                         OS_REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
 1773                                     AR_BTCOEX_WL_LNADIV_FORCE_ON);
 1774                 }
 1775         }
 1776 
 1777 #endif  /* ATH_ANT_DIV_COMB */
 1778         OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
 1779         
 1780         /* enable fast_div */
 1781         regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
 1782         regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
 1783         regval |= ((value >> 7) & 0x1) << 
 1784                   BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
 1785 #if ATH_ANT_DIV_COMB
 1786         if ((AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah))
 1787           && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
 1788             regval |= FAST_DIV_ENABLE;
 1789         }
 1790 #endif  /* ATH_ANT_DIV_COMB */
 1791         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);        
 1792     }
 1793 
 1794 #if ATH_ANT_DIV_COMB    
 1795     if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON_11_OR_LATER(ah)) {
 1796         if (pcap->halAntDivCombSupport) {
 1797             /* If support DivComb, set MAIN to LNA1, ALT to LNA2 at beginning */
 1798             regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
 1799             /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
 1800             regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK | 
 1801                          MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK | 
 1802                          MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK | 
 1803                          MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK)); 
 1804             regval |= (HAL_ANT_DIV_COMB_LNA1 << 
 1805                        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); 
 1806             regval |= (HAL_ANT_DIV_COMB_LNA2 << 
 1807                        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); 
 1808             OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
 1809         }
 1810 
 1811     }
 1812 #endif /* ATH_ANT_DIV_COMB */
 1813     if (AR_SREV_POSEIDON(ah) && ( ahp->ah_diversity_control == HAL_ANT_FIXED_A 
 1814              || ahp->ah_diversity_control == HAL_ANT_FIXED_B))
 1815     {
 1816         u_int32_t reg_val = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
 1817         reg_val &=  ~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK | 
 1818                     MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
 1819                     MULTICHAIN_GAIN_CTRL__ANT_FAST_DIV_BIAS__MASK |
 1820                         MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK |
 1821                         MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK );
 1822 
 1823         switch (ahp->ah_diversity_control) {
 1824         case HAL_ANT_FIXED_A:
 1825             /* Enable first antenna only */
 1826             reg_val |= (HAL_ANT_DIV_COMB_LNA1 << 
 1827                        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); 
 1828             reg_val |= (HAL_ANT_DIV_COMB_LNA2 << 
 1829                        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); 
 1830             /* main/alt gain table and Fast Div Bias all set to 0 */
 1831             OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
 1832             regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
 1833             regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
 1834             OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);        
 1835             break;
 1836         case HAL_ANT_FIXED_B:
 1837             /* Enable second antenna only, after checking capability */
 1838             reg_val |= (HAL_ANT_DIV_COMB_LNA2 << 
 1839                        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); 
 1840             reg_val |= (HAL_ANT_DIV_COMB_LNA1 << 
 1841                        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); 
 1842             /* main/alt gain table and Fast Div all set to 0 */
 1843             OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
 1844             regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
 1845             regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
 1846             OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);        
 1847             /* For WB225, need to swith ANT2 from BT to Wifi
 1848              * This will not affect HB125 LNA diversity feature.
 1849              */
 1850              HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__,
 1851                  ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable)
 1852             OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, 
 1853                 ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable);
 1854             break;
 1855         default:
 1856             break;
 1857         }
 1858     }    
 1859     return 0;
 1860 }
 1861 
 1862 static u_int16_t
 1863 ar9300_attenuation_chain_get(struct ath_hal *ah, int chain, u_int16_t channel)
 1864 {
 1865     int32_t f[3], t[3];
 1866     u_int16_t value;
 1867     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1868     if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
 1869         if (channel < 4000) {
 1870             return eep->modal_header_2g.xatten1_db[chain];
 1871         } else {
 1872             if (eep->base_ext2.xatten1_db_low[chain] != 0) {        
 1873                 t[0] = eep->base_ext2.xatten1_db_low[chain];
 1874                 f[0] = 5180;
 1875                 t[1] = eep->modal_header_5g.xatten1_db[chain];
 1876                 f[1] = 5500;
 1877                 t[2] = eep->base_ext2.xatten1_db_high[chain];
 1878                 f[2] = 5785;
 1879                 value = interpolate(channel, f, t, 3);
 1880                 return value;
 1881             } else {
 1882                 return eep->modal_header_5g.xatten1_db[chain];
 1883             }
 1884         }
 1885     }
 1886     return 0;
 1887 }
 1888 
 1889 static u_int16_t
 1890 ar9300_attenuation_margin_chain_get(struct ath_hal *ah, int chain,
 1891     u_int16_t channel)
 1892 {
 1893     int32_t f[3], t[3];
 1894     u_int16_t value;
 1895     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 1896     if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
 1897         if (channel < 4000) {
 1898             return eep->modal_header_2g.xatten1_margin[chain];
 1899         } else {
 1900             if (eep->base_ext2.xatten1_margin_low[chain] != 0) {    
 1901                 t[0] = eep->base_ext2.xatten1_margin_low[chain];
 1902                 f[0] = 5180;
 1903                 t[1] = eep->modal_header_5g.xatten1_margin[chain];
 1904                 f[1] = 5500;
 1905                 t[2] = eep->base_ext2.xatten1_margin_high[chain];
 1906                 f[2] = 5785;
 1907                 value = interpolate(channel, f, t, 3);
 1908                 return value;
 1909             } else {
 1910                 return eep->modal_header_5g.xatten1_margin[chain];
 1911             }
 1912         }
 1913     }
 1914     return 0;
 1915 }
 1916 
 1917 #if 0
 1918 HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
 1919 {
 1920     u_int32_t value;
 1921 //    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
 1922 
 1923     /* Test value. if 0 then attenuation is unused. Don't load anything. */
 1924     value = ar9300_attenuation_chain_get(ah, 0, channel);
 1925     OS_REG_RMW_FIELD(ah,
 1926         AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
 1927     value = ar9300_attenuation_margin_chain_get(ah, 0, channel);
 1928     if (ar9300_rx_gain_index_get(ah) == 0
 1929         && ah->ah_config.ath_hal_ext_atten_margin_cfg)
 1930     {
 1931         value = 5;
 1932     }
 1933     OS_REG_RMW_FIELD(ah,
 1934         AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
 1935 
 1936     if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
 1937         value = ar9300_attenuation_chain_get(ah, 1, channel);
 1938         OS_REG_RMW_FIELD(ah,
 1939             AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
 1940         value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
 1941         OS_REG_RMW_FIELD(ah,
 1942             AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
 1943             value);
 1944         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)&& !AR_SREV_HONEYBEE(ah) ) {
 1945             value = ar9300_attenuation_chain_get(ah, 2, channel);
 1946             OS_REG_RMW_FIELD(ah,
 1947                 AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
 1948             value = ar9300_attenuation_margin_chain_get(ah, 2, channel);
 1949             OS_REG_RMW_FIELD(ah,
 1950                 AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
 1951                 value);
 1952         }
 1953     }
 1954     return 0;
 1955 }
 1956 #endif
 1957 HAL_BOOL
 1958 ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
 1959 {
 1960         int i;
 1961         uint32_t value;
 1962         uint32_t ext_atten_reg[3] = {
 1963             AR_PHY_EXT_ATTEN_CTL_0,
 1964             AR_PHY_EXT_ATTEN_CTL_1,
 1965             AR_PHY_EXT_ATTEN_CTL_2
 1966         };
 1967 
 1968         /*
 1969          * If it's an AR9462 and we're receiving on the second
 1970          * chain only, set the chain 0 details from chain 1
 1971          * calibration.
 1972          *
 1973          * This is from ath9k.
 1974          */
 1975         if (AR_SREV_JUPITER(ah) && (AH9300(ah)->ah_rx_chainmask == 0x2)) {
 1976                 value = ar9300_attenuation_chain_get(ah, 1, channel);
 1977                 OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
 1978                     AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
 1979                 value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
 1980                 OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
 1981                     AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
 1982         }
 1983 
 1984         /*
 1985          * Now, loop over the configured transmit chains and
 1986          * load in the attenuation/margin settings as appropriate.
 1987          */
 1988         for (i = 0; i < 3; i++) {
 1989                 if ((AH9300(ah)->ah_tx_chainmask & (1 << i)) == 0)
 1990                         continue;
 1991 
 1992                 value = ar9300_attenuation_chain_get(ah, i, channel);
 1993                 OS_REG_RMW_FIELD(ah, ext_atten_reg[i],
 1994                     AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB,
 1995                     value);
 1996 
 1997                 if (AR_SREV_POSEIDON(ah) &&
 1998                     (ar9300_rx_gain_index_get(ah) == 0) &&
 1999                     ah->ah_config.ath_hal_ext_atten_margin_cfg) {
 2000                         value = 5;
 2001                 } else {
 2002                         value = ar9300_attenuation_margin_chain_get(ah, 0,
 2003                             channel);
 2004                 }
 2005 
 2006                 /*
 2007                  * I'm not sure why it's loading in this setting into
 2008                  * the chain 0 margin regardless of the current chain.
 2009                  */
 2010                 if (ah->ah_config.ath_hal_min_gainidx)
 2011                         OS_REG_RMW_FIELD(ah,
 2012                             AR_PHY_EXT_ATTEN_CTL_0,
 2013                             AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
 2014                             value);
 2015 
 2016                 OS_REG_RMW_FIELD(ah,
 2017                     ext_atten_reg[i],
 2018                     AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
 2019                     value);
 2020         }
 2021 
 2022         return (0);
 2023 }
 2024 
 2025 
 2026 static u_int16_t ar9300_quick_drop_get(struct ath_hal *ah, 
 2027                                                                 int chain, u_int16_t channel)
 2028 {
 2029     int32_t f[3], t[3];
 2030     u_int16_t value;
 2031     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 2032 
 2033     if (channel < 4000) {
 2034         return eep->modal_header_2g.quick_drop;
 2035     } else {
 2036         t[0] = eep->base_ext1.quick_drop_low;
 2037         f[0] = 5180;
 2038         t[1] = eep->modal_header_5g.quick_drop;
 2039         f[1] = 5500;
 2040         t[2] = eep->base_ext1.quick_drop_high;
 2041         f[2] = 5785;
 2042         value = interpolate(channel, f, t, 3);
 2043         return value;
 2044     }
 2045 }
 2046 
 2047 
 2048 static HAL_BOOL ar9300_quick_drop_apply(struct ath_hal *ah, u_int16_t channel)
 2049 {
 2050     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 2051     u_int32_t value;
 2052     //
 2053     // Test value. if 0 then quickDrop is unused. Don't load anything.
 2054     //
 2055     if (eep->base_eep_header.misc_configuration & 0x10)
 2056         {
 2057         if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah)) 
 2058         {
 2059             value = ar9300_quick_drop_get(ah, 0, channel);
 2060             OS_REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, value);
 2061         }
 2062     }
 2063     return 0;
 2064 }
 2065 
 2066 static u_int16_t ar9300_tx_end_to_xpa_off_get(struct ath_hal *ah, u_int16_t channel)
 2067 {
 2068     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 2069 
 2070     if (channel < 4000) {
 2071         return eep->modal_header_2g.tx_end_to_xpa_off;
 2072     } else {
 2073         return eep->modal_header_5g.tx_end_to_xpa_off;
 2074     }
 2075 }
 2076 
 2077 static HAL_BOOL ar9300_tx_end_to_xpab_off_apply(struct ath_hal *ah, u_int16_t channel)
 2078 {
 2079     u_int32_t value;
 2080 
 2081     value = ar9300_tx_end_to_xpa_off_get(ah, channel);
 2082     /* Apply to both xpaa and xpab */
 2083     if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah)) 
 2084     {
 2085         OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, 
 2086             AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
 2087         OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, 
 2088             AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
 2089     }
 2090     return 0;
 2091 }
 2092 
 2093 static int
 2094 ar9300_eeprom_cal_pier_get(struct ath_hal *ah, int mode, int ipier, int ichain, 
 2095     int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage)
 2096 {
 2097     u_int8_t *p_cal_pier;
 2098     OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
 2099     int is_2ghz;
 2100     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 2101 
 2102     if (ichain >= OSPREY_MAX_CHAINS) {
 2103         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 2104             "%s: Invalid chain index, must be less than %d\n",
 2105             __func__, OSPREY_MAX_CHAINS);
 2106         return -1;
 2107     }
 2108 
 2109     if (mode) {/* 5GHz */
 2110         if (ipier >= OSPREY_NUM_5G_CAL_PIERS){
 2111             HALDEBUG(ah, HAL_DEBUG_EEPROM,
 2112                 "%s: Invalid 5GHz cal pier index, must be less than %d\n",
 2113                 __func__, OSPREY_NUM_5G_CAL_PIERS);
 2114             return -1;
 2115         }
 2116         p_cal_pier = &(eep->cal_freq_pier_5g[ipier]);
 2117         p_cal_pier_struct = &(eep->cal_pier_data_5g[ichain][ipier]);
 2118         is_2ghz = 0;
 2119     } else {
 2120         if (ipier >= OSPREY_NUM_2G_CAL_PIERS){
 2121             HALDEBUG(ah, HAL_DEBUG_EEPROM,
 2122                 "%s: Invalid 2GHz cal pier index, must be less than %d\n",
 2123                 __func__, OSPREY_NUM_2G_CAL_PIERS);
 2124             return -1;
 2125         }
 2126 
 2127         p_cal_pier = &(eep->cal_freq_pier_2g[ipier]);
 2128         p_cal_pier_struct = &(eep->cal_pier_data_2g[ichain][ipier]);
 2129         is_2ghz = 1;
 2130     }
 2131     *pfrequency = FBIN2FREQ(*p_cal_pier, is_2ghz);
 2132     *pcorrection = p_cal_pier_struct->ref_power;
 2133     *ptemperature = p_cal_pier_struct->temp_meas;
 2134     *pvoltage = p_cal_pier_struct->volt_meas;
 2135     return 0;
 2136 }
 2137 
 2138 /*
 2139  * Apply the recorded correction values.
 2140  */
 2141 static int
 2142 ar9300_calibration_apply(struct ath_hal *ah, int frequency)
 2143 {
 2144     struct ath_hal_9300 *ahp = AH9300(ah);
 2145 
 2146     int ichain, ipier, npier;
 2147     int mode;
 2148     int fdiff;
 2149     int pfrequency, pcorrection, ptemperature, pvoltage; 
 2150     int bf, factor, plus;
 2151 
 2152     int lfrequency[AR9300_MAX_CHAINS];
 2153     int hfrequency[AR9300_MAX_CHAINS];
 2154 
 2155     int lcorrection[AR9300_MAX_CHAINS];
 2156     int hcorrection[AR9300_MAX_CHAINS];
 2157     int correction[AR9300_MAX_CHAINS];
 2158 
 2159     int ltemperature[AR9300_MAX_CHAINS];
 2160     int htemperature[AR9300_MAX_CHAINS];
 2161     int temperature[AR9300_MAX_CHAINS];
 2162 
 2163     int lvoltage[AR9300_MAX_CHAINS];
 2164     int hvoltage[AR9300_MAX_CHAINS];
 2165     int voltage[AR9300_MAX_CHAINS];
 2166 
 2167     mode = (frequency >= 4000);
 2168     npier = (mode) ?  OSPREY_NUM_5G_CAL_PIERS : OSPREY_NUM_2G_CAL_PIERS;
 2169 
 2170     for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
 2171         lfrequency[ichain] = 0;
 2172         hfrequency[ichain] = 100000;
 2173     }
 2174     /*
 2175      * identify best lower and higher frequency calibration measurement
 2176      */
 2177     for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
 2178         for (ipier = 0; ipier < npier; ipier++) {
 2179             if (ar9300_eeprom_cal_pier_get(
 2180                     ah, mode, ipier, ichain,
 2181                     &pfrequency, &pcorrection, &ptemperature, &pvoltage) == 0)
 2182             {
 2183                 fdiff = frequency - pfrequency;
 2184                 /*
 2185                  * this measurement is higher than our desired frequency
 2186                  */
 2187                 if (fdiff <= 0) {
 2188                     if (hfrequency[ichain] <= 0 ||
 2189                         hfrequency[ichain] >= 100000 ||
 2190                         fdiff > (frequency - hfrequency[ichain]))
 2191                     {
 2192                         /*
 2193                          * new best higher frequency measurement
 2194                          */
 2195                         hfrequency[ichain] = pfrequency;
 2196                         hcorrection[ichain] = pcorrection;
 2197                         htemperature[ichain] = ptemperature;
 2198                         hvoltage[ichain] = pvoltage;
 2199                     }
 2200                 }
 2201                 if (fdiff >= 0) {
 2202                     if (lfrequency[ichain] <= 0 ||
 2203                         fdiff < (frequency - lfrequency[ichain]))
 2204                     {
 2205                         /*
 2206                          * new best lower frequency measurement
 2207                          */
 2208                         lfrequency[ichain] = pfrequency;
 2209                         lcorrection[ichain] = pcorrection;
 2210                         ltemperature[ichain] = ptemperature;
 2211                         lvoltage[ichain] = pvoltage;
 2212                     }
 2213                 }
 2214             }
 2215         }
 2216     }
 2217     /* interpolate */
 2218     for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
 2219         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 2220             "%s: ch=%d f=%d low=%d %d h=%d %d\n",
 2221             __func__, ichain, frequency,
 2222             lfrequency[ichain], lcorrection[ichain],
 2223             hfrequency[ichain], hcorrection[ichain]);
 2224         /*
 2225          * they're the same, so just pick one
 2226          */ 
 2227         if (hfrequency[ichain] == lfrequency[ichain]) {
 2228             correction[ichain] = lcorrection[ichain];
 2229             voltage[ichain] = lvoltage[ichain];
 2230             temperature[ichain] = ltemperature[ichain];
 2231         } else if (frequency - lfrequency[ichain] < 1000) {
 2232             /* the low frequency is good */
 2233             if (hfrequency[ichain] - frequency < 1000) {
 2234                 /*
 2235                  * The high frequency is good too -
 2236                  * interpolate with round off.
 2237                  */
 2238                 int mult, div, diff;
 2239                 mult = frequency - lfrequency[ichain];
 2240                 div = hfrequency[ichain] - lfrequency[ichain];
 2241 
 2242                 diff = hcorrection[ichain] - lcorrection[ichain];
 2243                 bf = 2 * diff * mult / div;
 2244                 plus = (bf % 2);
 2245                 factor = bf / 2;
 2246                 correction[ichain] = lcorrection[ichain] + factor + plus;
 2247 
 2248                 diff = htemperature[ichain] - ltemperature[ichain];
 2249                 bf = 2 * diff * mult / div;
 2250                 plus = (bf % 2);
 2251                 factor = bf / 2;
 2252                 temperature[ichain] = ltemperature[ichain] + factor + plus;
 2253 
 2254                 diff = hvoltage[ichain] - lvoltage[ichain];
 2255                 bf = 2 * diff * mult / div;
 2256                 plus = (bf % 2);
 2257                 factor = bf / 2;
 2258                 voltage[ichain] = lvoltage[ichain] + factor + plus;
 2259             } else {
 2260                 /* only low is good, use it */
 2261                 correction[ichain] = lcorrection[ichain];
 2262                 temperature[ichain] = ltemperature[ichain];
 2263                 voltage[ichain] = lvoltage[ichain];
 2264             }
 2265         } else if (hfrequency[ichain] - frequency < 1000) {
 2266             /* only high is good, use it */
 2267             correction[ichain] = hcorrection[ichain];
 2268             temperature[ichain] = htemperature[ichain];
 2269             voltage[ichain] = hvoltage[ichain];
 2270         } else {
 2271             /* nothing is good, presume 0???? */
 2272             correction[ichain] = 0;
 2273             temperature[ichain] = 0;
 2274             voltage[ichain] = 0;
 2275         }
 2276     }
 2277 
 2278     /* GreenTx isn't currently supported */
 2279     /* GreenTx */
 2280     if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
 2281         if (AR_SREV_POSEIDON(ah)) {
 2282             /* Get calibrated OLPC gain delta value for GreenTx */
 2283             ahp->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET] = 
 2284                 (u_int32_t) correction[0];
 2285         }
 2286     }
 2287 
 2288     ar9300_power_control_override(
 2289         ah, frequency, correction, voltage, temperature);
 2290     HALDEBUG(ah, HAL_DEBUG_EEPROM,
 2291         "%s: for frequency=%d, calibration correction = %d %d %d\n",
 2292          __func__, frequency, correction[0], correction[1], correction[2]);
 2293 
 2294     return 0;
 2295 }
 2296 
 2297 int
 2298 ar9300_power_control_override(struct ath_hal *ah, int frequency,
 2299     int *correction, int *voltage, int *temperature)
 2300 {
 2301     int temp_slope = 0;
 2302     int temp_slope_1 = 0;
 2303     int temp_slope_2 = 0;
 2304     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 2305     int32_t f[8], t[8],t1[3], t2[3];
 2306         int i;
 2307 
 2308     OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
 2309         (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
 2310         AR_PHY_TPC_OLPC_GAIN_DELTA);
 2311     if (!AR_SREV_POSEIDON(ah)) {
 2312         OS_REG_RMW(ah, AR_PHY_TPC_11_B1,
 2313             (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
 2314             AR_PHY_TPC_OLPC_GAIN_DELTA);
 2315         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
 2316             OS_REG_RMW(ah, AR_PHY_TPC_11_B2, 
 2317                 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
 2318                 AR_PHY_TPC_OLPC_GAIN_DELTA);
 2319         }
 2320     }
 2321     /*
 2322      * enable open loop power control on chip
 2323      */
 2324     OS_REG_RMW(ah, AR_PHY_TPC_6_B0,
 2325         (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
 2326     if (!AR_SREV_POSEIDON(ah)) {
 2327         OS_REG_RMW(ah, AR_PHY_TPC_6_B1, 
 2328             (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
 2329         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
 2330             OS_REG_RMW(ah, AR_PHY_TPC_6_B2, 
 2331                 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
 2332                 AR_PHY_TPC_6_ERROR_EST_MODE);
 2333         }
 2334     }
 2335 
 2336     /*
 2337      * Enable temperature compensation
 2338      * Need to use register names
 2339      */
 2340     if (frequency < 4000) {
 2341         temp_slope = eep->modal_header_2g.temp_slope;
 2342     } else {
 2343                 if ((eep->base_eep_header.misc_configuration & 0x20) != 0)
 2344                 {
 2345                                 for(i=0;i<8;i++)
 2346                                 {
 2347                                         t[i]=eep->base_ext1.tempslopextension[i];
 2348                                         f[i]=FBIN2FREQ(eep->cal_freq_pier_5g[i], 0);
 2349                                 }
 2350                                 temp_slope=interpolate(frequency,f,t,8);
 2351                 }
 2352                 else
 2353                 {
 2354         if(!AR_SREV_SCORPION(ah)) {
 2355           if (eep->base_ext2.temp_slope_low != 0) {
 2356              t[0] = eep->base_ext2.temp_slope_low;
 2357              f[0] = 5180;
 2358              t[1] = eep->modal_header_5g.temp_slope;
 2359              f[1] = 5500;
 2360              t[2] = eep->base_ext2.temp_slope_high;
 2361              f[2] = 5785;
 2362              temp_slope = interpolate(frequency, f, t, 3);
 2363            } else {
 2364              temp_slope = eep->modal_header_5g.temp_slope;
 2365            }
 2366          } else {
 2367             /*
 2368              * Scorpion has individual chain tempslope values
 2369              */
 2370              t[0] = eep->base_ext1.tempslopextension[2];
 2371              t1[0]= eep->base_ext1.tempslopextension[3];
 2372              t2[0]= eep->base_ext1.tempslopextension[4];
 2373              f[0] = 5180;
 2374              t[1] = eep->modal_header_5g.temp_slope;
 2375              t1[1]= eep->base_ext1.tempslopextension[0];
 2376              t2[1]= eep->base_ext1.tempslopextension[1];
 2377              f[1] = 5500;
 2378              t[2] = eep->base_ext1.tempslopextension[5];
 2379              t1[2]= eep->base_ext1.tempslopextension[6];
 2380              t2[2]= eep->base_ext1.tempslopextension[7];
 2381              f[2] = 5785;
 2382              temp_slope = interpolate(frequency, f, t, 3);
 2383              temp_slope_1=interpolate(frequency, f, t1,3);
 2384              temp_slope_2=interpolate(frequency, f, t2,3);
 2385        } 
 2386          }
 2387   }
 2388 
 2389     if (!AR_SREV_SCORPION(ah) && !AR_SREV_HONEYBEE(ah)) {
 2390         OS_REG_RMW_FIELD(ah,
 2391             AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
 2392     } else {
 2393         /*Scorpion and Honeybee has tempSlope register for each chain*/
 2394         /*Check whether temp_compensation feature is enabled or not*/
 2395         if (eep->base_eep_header.feature_enable & 0x1){
 2396             if(frequency < 4000) {
 2397                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
 2398                     OS_REG_RMW_FIELD(ah,
 2399                                     AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 
 2400                                     eep->base_ext2.temp_slope_low);
 2401                     } 
 2402                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
 2403                     OS_REG_RMW_FIELD(ah,
 2404                                     AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 
 2405                                     temp_slope);
 2406                     } 
 2407                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
 2408                     OS_REG_RMW_FIELD(ah,
 2409                                     AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 
 2410                                     eep->base_ext2.temp_slope_high);
 2411                      }  
 2412             } else {
 2413                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
 2414                     OS_REG_RMW_FIELD(ah,
 2415                                     AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 
 2416                                     temp_slope);
 2417                         }
 2418                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
 2419                     OS_REG_RMW_FIELD(ah,
 2420                                     AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 
 2421                                     temp_slope_1);
 2422                 }
 2423                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
 2424                     OS_REG_RMW_FIELD(ah,
 2425                                     AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 
 2426                                     temp_slope_2);
 2427                         } 
 2428             }
 2429         }else {
 2430                 /* If temp compensation is not enabled, set all registers to 0*/
 2431                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
 2432             OS_REG_RMW_FIELD(ah,
 2433                 AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 0);
 2434                     }
 2435                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
 2436             OS_REG_RMW_FIELD(ah,
 2437                 AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 0);
 2438                     }  
 2439                 if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
 2440             OS_REG_RMW_FIELD(ah,
 2441                 AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 0);
 2442                 } 
 2443         }
 2444     }
 2445     OS_REG_RMW_FIELD(ah,
 2446         AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]);
 2447 
 2448     return 0;
 2449 }
 2450 
 2451 /**************************************************************
 2452  * ar9300_eep_def_get_max_edge_power
 2453  *
 2454  * Find the maximum conformance test limit for the given channel and CTL info
 2455  */
 2456 static inline u_int16_t
 2457 ar9300_eep_def_get_max_edge_power(ar9300_eeprom_t *p_eep_data, u_int16_t freq,
 2458     int idx, HAL_BOOL is_2ghz)
 2459 {
 2460     u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
 2461     u_int8_t *ctl_freqbin = is_2ghz ?
 2462         &p_eep_data->ctl_freqbin_2G[idx][0] :
 2463         &p_eep_data->ctl_freqbin_5G[idx][0];
 2464     u_int16_t num_edges = is_2ghz ?
 2465         OSPREY_NUM_BAND_EDGES_2G : OSPREY_NUM_BAND_EDGES_5G;
 2466     int i;
 2467 
 2468     /* Get the edge power */
 2469     for (i = 0; (i < num_edges) && (ctl_freqbin[i] != AR9300_BCHAN_UNUSED); i++)
 2470     {
 2471         /*
 2472          * If there's an exact channel match or an inband flag set
 2473          * on the lower channel use the given rd_edge_power
 2474          */
 2475         if (freq == fbin2freq(ctl_freqbin[i], is_2ghz)) {
 2476             if (is_2ghz) {
 2477                 twice_max_edge_power =
 2478                     p_eep_data->ctl_power_data_2g[idx].ctl_edges[i].t_power;
 2479             } else {       
 2480                 twice_max_edge_power =
 2481                     p_eep_data->ctl_power_data_5g[idx].ctl_edges[i].t_power;
 2482             }
 2483             break;
 2484         } else if ((i > 0) && (freq < fbin2freq(ctl_freqbin[i], is_2ghz))) {
 2485             if (is_2ghz) {
 2486                 if (fbin2freq(ctl_freqbin[i - 1], 1) < freq &&
 2487                     p_eep_data->ctl_power_data_2g[idx].ctl_edges[i - 1].flag)
 2488                 {
 2489                     twice_max_edge_power =
 2490                         p_eep_data->ctl_power_data_2g[idx].
 2491                             ctl_edges[i - 1].t_power;
 2492                 }
 2493             } else {
 2494                 if (fbin2freq(ctl_freqbin[i - 1], 0) < freq &&
 2495                     p_eep_data->ctl_power_data_5g[idx].ctl_edges[i - 1].flag)
 2496                 {
 2497                     twice_max_edge_power =
 2498                         p_eep_data->ctl_power_data_5g[idx].
 2499                             ctl_edges[i - 1].t_power;
 2500                 }
 2501             }
 2502             /*
 2503              * Leave loop - no more affecting edges possible
 2504              * in this monotonic increasing list
 2505              */
 2506             break;
 2507         }
 2508     }
 2509     /*
 2510      * EV89475: EEPROM might contain 0 txpower in CTL table for certain
 2511      * 2.4GHz channels. We workaround it by overwriting 60 (30 dBm) here.
 2512      */
 2513     if (is_2ghz && (twice_max_edge_power == 0)) {
 2514         twice_max_edge_power = 60;
 2515     }
 2516 
 2517     HALASSERT(twice_max_edge_power > 0);
 2518     return twice_max_edge_power;
 2519 }
 2520 
 2521 HAL_BOOL
 2522 ar9300_eeprom_set_power_per_rate_table(
 2523     struct ath_hal *ah,
 2524     ar9300_eeprom_t *p_eep_data,
 2525     const struct ieee80211_channel *chan,
 2526     u_int8_t *p_pwr_array,
 2527     u_int16_t cfg_ctl,
 2528     u_int16_t antenna_reduction,
 2529     u_int16_t twice_max_regulatory_power,
 2530     u_int16_t power_limit,
 2531     u_int8_t chainmask)
 2532 {
 2533     /* Local defines to distinguish between extension and control CTL's */
 2534 #define EXT_ADDITIVE (0x8000)
 2535 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
 2536 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
 2537 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
 2538 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
 2539 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN  10  /* 10*log10(3)*2 */
 2540 #define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
 2541 #define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
 2542 #define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
 2543 
 2544     static const u_int16_t tp_scale_reduction_table[5] =
 2545         { 0, 3, 6, 9, AR9300_MAX_RATE_POWER };
 2546     int i;
 2547     int16_t twice_largest_antenna;
 2548     u_int16_t twice_antenna_reduction = 2*antenna_reduction ;
 2549     int16_t scaled_power = 0, min_ctl_power, max_reg_allowed_power;
 2550 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
 2551 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
 2552     u_int16_t ctl_modes_for11a[] =
 2553         {CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40};
 2554     u_int16_t ctl_modes_for11g[] =
 2555         {CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
 2556     u_int16_t num_ctl_modes, *p_ctl_mode, ctl_mode, freq;
 2557     CHAN_CENTERS centers;
 2558     int tx_chainmask;
 2559     struct ath_hal_9300 *ahp = AH9300(ah);
 2560     u_int8_t *ctl_index;
 2561     u_int8_t ctl_num;
 2562     u_int16_t twice_min_edge_power;
 2563     u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
 2564 #ifdef  AH_DEBUG
 2565     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
 2566 #endif
 2567 
 2568     if (chainmask)
 2569         tx_chainmask = chainmask;
 2570     else
 2571         tx_chainmask = ahp->ah_tx_chainmaskopt ?
 2572                             ahp->ah_tx_chainmaskopt :ahp->ah_tx_chainmask;
 2573 
 2574     ar9300_get_channel_centers(ah, chan, &centers);
 2575 
 2576 #if 1
 2577     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 2578         ahp->twice_antenna_gain = p_eep_data->modal_header_2g.antenna_gain;
 2579     } else {
 2580         ahp->twice_antenna_gain = p_eep_data->modal_header_5g.antenna_gain;
 2581     }
 2582 
 2583 #else
 2584     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 2585         ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_2g.antenna_gain,
 2586                                          AH_PRIVATE(ah)->ah_antenna_gain_2g);
 2587     } else {
 2588         ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_5g.antenna_gain,
 2589                                          AH_PRIVATE(ah)->ah_antenna_gain_5g);
 2590     }
 2591 #endif
 2592 
 2593     /* Save max allowed antenna gain to ease future lookups */
 2594     ahp->twice_antenna_reduction = twice_antenna_reduction; 
 2595 
 2596     /*  Deduct antenna gain from  EIRP to get the upper limit */
 2597     twice_largest_antenna = (int16_t)AH_MIN((twice_antenna_reduction -
 2598                                        ahp->twice_antenna_gain), 0);
 2599     max_reg_allowed_power = twice_max_regulatory_power + twice_largest_antenna;
 2600 
 2601     /* Use ah_tp_scale - see bug 30070. */
 2602     if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) { 
 2603         max_reg_allowed_power -=
 2604             (tp_scale_reduction_table[(AH_PRIVATE(ah)->ah_tpScale)] * 2);
 2605     }
 2606 
 2607     scaled_power = AH_MIN(power_limit, max_reg_allowed_power);
 2608 
 2609     /*
 2610      * Reduce scaled Power by number of chains active to get to
 2611      * per chain tx power level
 2612      */
 2613     /* TODO: better value than these? */
 2614     switch (ar9300_get_ntxchains(tx_chainmask)) {
 2615     case 1:
 2616         ahp->upper_limit[0] = AH_MAX(0, scaled_power);
 2617         break;
 2618     case 2:
 2619         scaled_power -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
 2620         ahp->upper_limit[1] = AH_MAX(0, scaled_power);
 2621         break;
 2622     case 3:
 2623         scaled_power -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
 2624         ahp->upper_limit[2] = AH_MAX(0, scaled_power);
 2625         break;
 2626     default:
 2627         HALASSERT(0); /* Unsupported number of chains */
 2628     }
 2629 
 2630     scaled_power = AH_MAX(0, scaled_power);
 2631 
 2632     /* Get target powers from EEPROM - our baseline for TX Power */
 2633     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 2634         /* Setup for CTL modes */
 2635         /* CTL_11B, CTL_11G, CTL_2GHT20 */
 2636         num_ctl_modes =
 2637             ARRAY_LENGTH(ctl_modes_for11g) - SUB_NUM_CTL_MODES_AT_2G_40;
 2638         p_ctl_mode = ctl_modes_for11g;
 2639 
 2640         if (IEEE80211_IS_CHAN_HT40(chan)) {
 2641             num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g); /* All 2G CTL's */
 2642         }
 2643     } else {
 2644         /* Setup for CTL modes */
 2645         /* CTL_11A, CTL_5GHT20 */
 2646         num_ctl_modes =
 2647             ARRAY_LENGTH(ctl_modes_for11a) - SUB_NUM_CTL_MODES_AT_5G_40;
 2648         p_ctl_mode = ctl_modes_for11a;
 2649 
 2650         if (IEEE80211_IS_CHAN_HT40(chan)) {
 2651             num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a); /* All 5G CTL's */
 2652         }
 2653     }
 2654 
 2655     /*
 2656      * For MIMO, need to apply regulatory caps individually across dynamically
 2657      * running modes: CCK, OFDM, HT20, HT40
 2658      *
 2659      * The outer loop walks through each possible applicable runtime mode.
 2660      * The inner loop walks through each ctl_index entry in EEPROM.
 2661      * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
 2662      *
 2663      */
 2664     for (ctl_mode = 0; ctl_mode < num_ctl_modes; ctl_mode++) {
 2665         HAL_BOOL is_ht40_ctl_mode =
 2666             (p_ctl_mode[ctl_mode] == CTL_5GHT40) ||
 2667             (p_ctl_mode[ctl_mode] == CTL_2GHT40);
 2668         if (is_ht40_ctl_mode) {
 2669             freq = centers.synth_center;
 2670         } else if (p_ctl_mode[ctl_mode] & EXT_ADDITIVE) {
 2671             freq = centers.ext_center;
 2672         } else {
 2673             freq = centers.ctl_center;
 2674         }
 2675 
 2676         HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
 2677             "LOOP-Mode ctl_mode %d < %d, "
 2678             "is_ht40_ctl_mode %d, EXT_ADDITIVE %d\n",
 2679             ctl_mode, num_ctl_modes, is_ht40_ctl_mode,
 2680             (p_ctl_mode[ctl_mode] & EXT_ADDITIVE));
 2681         /* walk through each CTL index stored in EEPROM */
 2682         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 2683             ctl_index = p_eep_data->ctl_index_2g;
 2684             ctl_num = OSPREY_NUM_CTLS_2G;
 2685         } else {
 2686             ctl_index = p_eep_data->ctl_index_5g;
 2687             ctl_num = OSPREY_NUM_CTLS_5G;
 2688         }
 2689 
 2690         for (i = 0; (i < ctl_num) && ctl_index[i]; i++) {
 2691             HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, 
 2692                 "  LOOP-Ctlidx %d: cfg_ctl 0x%2.2x p_ctl_mode 0x%2.2x "
 2693                 "ctl_index 0x%2.2x chan %d chanctl 0x%x\n",
 2694                 i, cfg_ctl, p_ctl_mode[ctl_mode], ctl_index[i], 
 2695                 ichan->channel, ath_hal_getctl(ah, chan));
 2696 
 2697 
 2698             /* 
 2699              * compare test group from regulatory channel list
 2700              * with test mode from p_ctl_mode list
 2701              */
 2702             if ((((cfg_ctl & ~CTL_MODE_M) |
 2703                   (p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ctl_index[i]) ||
 2704                 (((cfg_ctl & ~CTL_MODE_M) |
 2705                   (p_ctl_mode[ctl_mode] & CTL_MODE_M)) ==
 2706                  ((ctl_index[i] & CTL_MODE_M) | SD_NO_CTL)))
 2707             {
 2708                 twice_min_edge_power =
 2709                     ar9300_eep_def_get_max_edge_power(
 2710                         p_eep_data, freq, i, IEEE80211_IS_CHAN_2GHZ(chan));
 2711 
 2712                 HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
 2713                     "    MATCH-EE_IDX %d: ch %d is2 %d "
 2714                     "2xMinEdge %d chainmask %d chains %d\n",
 2715                     i, freq, IEEE80211_IS_CHAN_2GHZ(chan),
 2716                     twice_min_edge_power, tx_chainmask,
 2717                     ar9300_get_ntxchains(tx_chainmask));
 2718 
 2719                 if ((cfg_ctl & ~CTL_MODE_M) == SD_NO_CTL) {
 2720                     /*
 2721                      * Find the minimum of all CTL edge powers
 2722                      * that apply to this channel
 2723                      */
 2724                     twice_max_edge_power =
 2725                         AH_MIN(twice_max_edge_power, twice_min_edge_power);
 2726                 } else {
 2727                     /* specific */
 2728                     twice_max_edge_power = twice_min_edge_power;
 2729                     break;
 2730                 }
 2731             }
 2732         }
 2733 
 2734         min_ctl_power = (u_int8_t)AH_MIN(twice_max_edge_power, scaled_power);
 2735 
 2736         HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
 2737             "    SEL-Min ctl_mode %d p_ctl_mode %d "
 2738             "2xMaxEdge %d sP %d min_ctl_pwr %d\n",
 2739             ctl_mode, p_ctl_mode[ctl_mode],
 2740             twice_max_edge_power, scaled_power, min_ctl_power);
 2741 
 2742         /* Apply ctl mode to correct target power set */
 2743         switch (p_ctl_mode[ctl_mode]) {
 2744         case CTL_11B:
 2745             for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) {
 2746                 p_pwr_array[i] =
 2747                     (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
 2748             }
 2749             break;
 2750         case CTL_11A:
 2751         case CTL_11G:
 2752             for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
 2753                 p_pwr_array[i] =
 2754                     (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
 2755 #ifdef ATH_BT_COEX
 2756                 if ((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
 2757                     (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
 2758                 {
 2759                     if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR)
 2760                         && (ahp->ah_bt_wlan_isolation 
 2761                          < HAL_BT_COEX_ISOLATION_FOR_NO_COEX))
 2762                     {
 2763 
 2764                         u_int8_t reduce_pow;
 2765                         
 2766                         reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX 
 2767                                      - ahp->ah_bt_wlan_isolation) << 1;
 2768 
 2769                         if (reduce_pow <= p_pwr_array[i]) {
 2770                             p_pwr_array[i] -= reduce_pow;
 2771                         }
 2772                     }
 2773                     if ((ahp->ah_bt_coex_flag & 
 2774                           HAL_BT_COEX_FLAG_LOW_ACK_PWR) &&
 2775                           (i != ALL_TARGET_LEGACY_36) &&
 2776                           (i != ALL_TARGET_LEGACY_48) &&
 2777                           (i != ALL_TARGET_LEGACY_54) &&
 2778                           (p_ctl_mode[ctl_mode] == CTL_11G))
 2779                     {
 2780                         p_pwr_array[i] = 0;
 2781                     }
 2782                 }
 2783 #endif
 2784             }
 2785             break;
 2786         case CTL_5GHT20:
 2787         case CTL_2GHT20:
 2788             for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_23; i++) {
 2789                 p_pwr_array[i] =
 2790                     (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
 2791 #ifdef ATH_BT_COEX
 2792                 if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
 2793                      (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
 2794                     (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) && 
 2795                     (ahp->ah_bt_wlan_isolation 
 2796                         < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
 2797 
 2798                     u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX 
 2799                                            - ahp->ah_bt_wlan_isolation) << 1;
 2800 
 2801                     if (reduce_pow <= p_pwr_array[i]) {
 2802                         p_pwr_array[i] -= reduce_pow;
 2803                     }
 2804                 }
 2805 #if ATH_SUPPORT_MCI
 2806                 else if ((ahp->ah_bt_coex_flag & 
 2807                           HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
 2808                          (p_ctl_mode[ctl_mode] == CTL_2GHT20) &&
 2809                          (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
 2810                 {
 2811                     u_int8_t max_pwr;
 2812 
 2813                     max_pwr = MS(mci_concur_tx_max_pwr[2][1],
 2814                                  ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
 2815                     if (p_pwr_array[i] > max_pwr) {
 2816                         p_pwr_array[i] = max_pwr;
 2817                     }
 2818                 }
 2819 #endif
 2820 #endif
 2821             }
 2822             break;
 2823         case CTL_11B_EXT:
 2824 #ifdef NOT_YET
 2825             target_power_cck_ext.t_pow2x[0] = (u_int8_t)
 2826                 AH_MIN(target_power_cck_ext.t_pow2x[0], min_ctl_power);
 2827 #endif /* NOT_YET */
 2828             break;
 2829         case CTL_11A_EXT:
 2830         case CTL_11G_EXT:
 2831 #ifdef NOT_YET
 2832             target_power_ofdm_ext.t_pow2x[0] = (u_int8_t)
 2833                 AH_MIN(target_power_ofdm_ext.t_pow2x[0], min_ctl_power);
 2834 #endif /* NOT_YET */
 2835             break;
 2836         case CTL_5GHT40:
 2837         case CTL_2GHT40:
 2838             for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) {
 2839                 p_pwr_array[i] = (u_int8_t)
 2840                     AH_MIN(p_pwr_array[i], min_ctl_power);
 2841 #ifdef ATH_BT_COEX
 2842                 if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
 2843                      (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
 2844                     (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) && 
 2845                     (ahp->ah_bt_wlan_isolation 
 2846                         < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
 2847 
 2848                     u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX 
 2849                                               - ahp->ah_bt_wlan_isolation) << 1;
 2850 
 2851                     if (reduce_pow <= p_pwr_array[i]) {
 2852                         p_pwr_array[i] -= reduce_pow;
 2853                     }
 2854                 }
 2855 #if ATH_SUPPORT_MCI
 2856                 else if ((ahp->ah_bt_coex_flag & 
 2857                           HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
 2858                          (p_ctl_mode[ctl_mode] == CTL_2GHT40) &&
 2859                          (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
 2860                 {
 2861                     u_int8_t max_pwr;
 2862 
 2863                     max_pwr = MS(mci_concur_tx_max_pwr[3][1],
 2864                                  ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
 2865                     if (p_pwr_array[i] > max_pwr) {
 2866                         p_pwr_array[i] = max_pwr;
 2867                     }
 2868                 }
 2869 #endif
 2870 #endif
 2871             }
 2872             break;
 2873         default:
 2874             HALASSERT(0);
 2875             break;
 2876         }
 2877     } /* end ctl mode checking */
 2878 
 2879     return AH_TRUE;
 2880 #undef EXT_ADDITIVE
 2881 #undef CTL_11A_EXT
 2882 #undef CTL_11G_EXT
 2883 #undef CTL_11B_EXT
 2884 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
 2885 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
 2886 }
 2887 
 2888 /**************************************************************
 2889  * ar9300_eeprom_set_transmit_power
 2890  *
 2891  * Set the transmit power in the baseband for the given
 2892  * operating channel and mode.
 2893  */
 2894 HAL_STATUS
 2895 ar9300_eeprom_set_transmit_power(struct ath_hal *ah,
 2896     ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int16_t cfg_ctl,
 2897     u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power,
 2898     u_int16_t power_limit)
 2899 {
 2900 #define ABS(_x, _y) ((int)_x > (int)_y ? (int)_x - (int)_y : (int)_y - (int)_x)
 2901 #define INCREASE_MAXPOW_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
 2902 #define INCREASE_MAXPOW_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */
 2903     u_int8_t target_power_val_t2[ar9300_rate_size];
 2904     u_int8_t target_power_val_t2_eep[ar9300_rate_size];
 2905     int16_t twice_array_gain = 0, max_power_level = 0;
 2906     struct ath_hal_9300 *ahp = AH9300(ah);
 2907     int  i = 0;
 2908     u_int32_t tmp_paprd_rate_mask = 0, *tmp_ptr = NULL;
 2909     int      paprd_scale_factor = 5;
 2910     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
 2911 
 2912     u_int8_t *ptr_mcs_rate2power_table_index;
 2913     u_int8_t mcs_rate2power_table_index_ht20[24] =
 2914     {
 2915         ALL_TARGET_HT20_0_8_16,
 2916         ALL_TARGET_HT20_1_3_9_11_17_19,
 2917         ALL_TARGET_HT20_1_3_9_11_17_19,
 2918         ALL_TARGET_HT20_1_3_9_11_17_19,
 2919         ALL_TARGET_HT20_4,
 2920         ALL_TARGET_HT20_5,
 2921         ALL_TARGET_HT20_6,
 2922         ALL_TARGET_HT20_7,
 2923         ALL_TARGET_HT20_0_8_16,
 2924         ALL_TARGET_HT20_1_3_9_11_17_19,
 2925         ALL_TARGET_HT20_1_3_9_11_17_19,
 2926         ALL_TARGET_HT20_1_3_9_11_17_19,
 2927         ALL_TARGET_HT20_12,
 2928         ALL_TARGET_HT20_13,
 2929         ALL_TARGET_HT20_14,
 2930         ALL_TARGET_HT20_15,
 2931         ALL_TARGET_HT20_0_8_16,
 2932         ALL_TARGET_HT20_1_3_9_11_17_19,
 2933         ALL_TARGET_HT20_1_3_9_11_17_19,
 2934         ALL_TARGET_HT20_1_3_9_11_17_19,
 2935         ALL_TARGET_HT20_20,
 2936         ALL_TARGET_HT20_21,
 2937         ALL_TARGET_HT20_22,
 2938         ALL_TARGET_HT20_23
 2939     };
 2940 
 2941     u_int8_t mcs_rate2power_table_index_ht40[24] =
 2942     {
 2943         ALL_TARGET_HT40_0_8_16,
 2944         ALL_TARGET_HT40_1_3_9_11_17_19,
 2945         ALL_TARGET_HT40_1_3_9_11_17_19,
 2946         ALL_TARGET_HT40_1_3_9_11_17_19,
 2947         ALL_TARGET_HT40_4,
 2948         ALL_TARGET_HT40_5,
 2949         ALL_TARGET_HT40_6,
 2950         ALL_TARGET_HT40_7,
 2951         ALL_TARGET_HT40_0_8_16,
 2952         ALL_TARGET_HT40_1_3_9_11_17_19,
 2953         ALL_TARGET_HT40_1_3_9_11_17_19,
 2954         ALL_TARGET_HT40_1_3_9_11_17_19,
 2955         ALL_TARGET_HT40_12,
 2956         ALL_TARGET_HT40_13,
 2957         ALL_TARGET_HT40_14,
 2958         ALL_TARGET_HT40_15,
 2959         ALL_TARGET_HT40_0_8_16,
 2960         ALL_TARGET_HT40_1_3_9_11_17_19,
 2961         ALL_TARGET_HT40_1_3_9_11_17_19,
 2962         ALL_TARGET_HT40_1_3_9_11_17_19,
 2963         ALL_TARGET_HT40_20,
 2964         ALL_TARGET_HT40_21,
 2965         ALL_TARGET_HT40_22,
 2966         ALL_TARGET_HT40_23,
 2967     };
 2968 
 2969     HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
 2970         "%s[%d] +++chan %d,cfgctl 0x%04x  "
 2971         "antenna_reduction 0x%04x, twice_max_regulatory_power 0x%04x "
 2972         "power_limit 0x%04x\n",
 2973         __func__, __LINE__, ichan->channel, cfg_ctl,
 2974         antenna_reduction, twice_max_regulatory_power, power_limit);
 2975     ar9300_set_target_power_from_eeprom(ah, ichan->channel, target_power_val_t2);
 2976 
 2977     if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
 2978         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 2979             if (IEEE80211_IS_CHAN_HT40(chan)) {
 2980                 tmp_paprd_rate_mask =
 2981                     p_eep_data->modal_header_2g.paprd_rate_mask_ht40;
 2982                 tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht40;
 2983             } else {
 2984                 tmp_paprd_rate_mask =
 2985                     p_eep_data->modal_header_2g.paprd_rate_mask_ht20;
 2986                 tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht20;
 2987             }
 2988         } else {
 2989             if (IEEE80211_IS_CHAN_HT40(chan)) {
 2990                 tmp_paprd_rate_mask =
 2991                     p_eep_data->modal_header_5g.paprd_rate_mask_ht40;
 2992                 tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht40;
 2993             } else {
 2994                 tmp_paprd_rate_mask =
 2995                     p_eep_data->modal_header_5g.paprd_rate_mask_ht20;
 2996                 tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht20;
 2997             }
 2998         }
 2999         AH_PAPRD_GET_SCALE_FACTOR(
 3000             paprd_scale_factor, p_eep_data, IEEE80211_IS_CHAN_2GHZ(chan), ichan->channel);
 3001         HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] paprd_scale_factor %d\n",
 3002             __func__, __LINE__, paprd_scale_factor);
 3003         /* PAPRD is not done yet, Scale down the EEP power */
 3004         if (IEEE80211_IS_CHAN_HT40(chan)) {
 3005             ptr_mcs_rate2power_table_index =
 3006                 &mcs_rate2power_table_index_ht40[0];
 3007         } else {
 3008             ptr_mcs_rate2power_table_index =
 3009                 &mcs_rate2power_table_index_ht20[0];
 3010         }
 3011         if (! ichan->paprd_table_write_done) {
 3012             for (i = 0;  i < 24; i++) {
 3013                 /* PAPRD is done yet, so Scale down Power for PAPRD Rates*/
 3014                 if (tmp_paprd_rate_mask & (1 << i)) {
 3015                     target_power_val_t2[ptr_mcs_rate2power_table_index[i]] -=
 3016                         paprd_scale_factor;
 3017                     HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
 3018                         "%s[%d]: Chan %d "
 3019                         "Scale down target_power_val_t2[%d] = 0x%04x\n",
 3020                         __func__, __LINE__,
 3021                         ichan->channel, i, target_power_val_t2[i]);
 3022                 }
 3023             }
 3024         } else {
 3025             HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
 3026                 "%s[%d]: PAPRD Done No TGT PWR Scaling\n", __func__, __LINE__);
 3027         }
 3028     }
 3029 
 3030     /* Save the Target power for future use */
 3031     OS_MEMCPY(target_power_val_t2_eep, target_power_val_t2,
 3032                                    sizeof(target_power_val_t2));
 3033     ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
 3034                                      target_power_val_t2, cfg_ctl,
 3035                                      antenna_reduction,
 3036                                      twice_max_regulatory_power,
 3037                                      power_limit, 0);
 3038     
 3039     /* Save this for quick lookup */
 3040     ahp->reg_dmn = ath_hal_getctl(ah, chan);
 3041 
 3042     /*
 3043      * After reading FCC/OET 13TR1003 (Directional Gain of IEEE 802.11
 3044      * MIMO devices employing cyclic delay diversity) and looking at what
 3045      * ath9k does, let's disable the CDD check until it's clearer exactly
 3046      * how the maximum cap should be applied here.
 3047      *
 3048      * Right now the CDD check is simply unconditionally reducing the
 3049      * gain of legacy and 1/2 stream rates depending upon the chainmask.
 3050      * (CDD is used when transmitting rates that don't already use up the
 3051      * full set of streams - eg OFDM or MCS0-7 on a 2 or 3 chain TX path.)
 3052      *
 3053      * It's dropping the 2-chain TX by 3dB and 3-chain by 5dB to "meet"
 3054      * power spectral density requirements but it's not currently taking
 3055      * into account how close to the regulatory limit the hardware/antenna
 3056      * system is already at.  It doesn't help that the conductive testing
 3057      * limits have the array gain at 0dB for all AR9300/derivative
 3058      * configurations.
 3059      *
 3060      * It also doesn't let us do single chain transmit at the full allowed
 3061      * power for the regulatory/CTL limits as it subtracts it from what's
 3062      * programmed into the hardware.
 3063      *
 3064      * ath9k doesn't factor any of the CDD stuff into account, so I'm going
 3065      * to disable it here and in the TPC path until I get a better idea
 3066      * of what to really do here.
 3067      */
 3068 #if 0
 3069     /*
 3070      * Always use CDD/direct per rate power table for register based approach.
 3071      * For FCC, CDD calculations should factor in the array gain, hence 
 3072      * this adjust call. ETSI and MKK does not have this requirement.
 3073      */
 3074     if (is_reg_dmn_fcc(ahp->reg_dmn)) {
 3075         HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
 3076             "%s: FCC regdomain, calling reg_txpower_cdd\n",
 3077             __func__);
 3078         ar9300_adjust_reg_txpower_cdd(ah, target_power_val_t2);
 3079     }
 3080 #endif
 3081 
 3082     if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
 3083         for (i = 0;  i < ar9300_rate_size; i++) {
 3084             /*
 3085              * EEPROM TGT PWR is not same as current TGT PWR,
 3086              * so Disable PAPRD for this rate.
 3087              * Some of APs might ask to reduce Target Power,
 3088              * if target power drops significantly,
 3089              * disable PAPRD for that rate.
 3090              */
 3091             if (tmp_paprd_rate_mask & (1 << i)) {
 3092                 if (ABS(target_power_val_t2_eep[i], target_power_val_t2[i]) >
 3093                     paprd_scale_factor)
 3094                 {
 3095                     tmp_paprd_rate_mask &= ~(1 << i);
 3096                     HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
 3097                         "%s: EEP TPC[%02d] 0x%08x "
 3098                         "Curr TPC[%02d] 0x%08x mask = 0x%08x\n",
 3099                         __func__, i, target_power_val_t2_eep[i], i,
 3100                         target_power_val_t2[i], tmp_paprd_rate_mask);
 3101                 }
 3102             }
 3103             
 3104         }
 3105         HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
 3106             "%s: Chan %d After tmp_paprd_rate_mask = 0x%08x\n",
 3107             __func__, ichan->channel, tmp_paprd_rate_mask);
 3108         if (tmp_ptr) {
 3109             *tmp_ptr = tmp_paprd_rate_mask;
 3110         }
 3111     }
 3112 
 3113     /* Write target power array to registers */
 3114     ar9300_transmit_power_reg_write(ah, target_power_val_t2);
 3115     
 3116     /* Write target power for self generated frames to the TPC register */
 3117     ar9300_selfgen_tpc_reg_write(ah, chan, target_power_val_t2);
 3118 
 3119     /* GreenTx or Paprd */
 3120     if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable || 
 3121         AH_PRIVATE(ah)->ah_caps.halPaprdEnabled) 
 3122     {
 3123         if (AR_SREV_POSEIDON(ah)) {
 3124             /*For HAL_RSSI_TX_POWER_NONE array*/
 3125             OS_MEMCPY(ahp->ah_default_tx_power, 
 3126                 target_power_val_t2, 
 3127                 sizeof(target_power_val_t2));
 3128             /* Get defautl tx related register setting for GreenTx */
 3129             /* Record OB/DB */
 3130             ahp->ah_ob_db1[POSEIDON_STORED_REG_OBDB] = 
 3131                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2);
 3132             /* Record TPC settting */
 3133             ahp->ah_ob_db1[POSEIDON_STORED_REG_TPC] =
 3134                 OS_REG_READ(ah, AR_TPC);
 3135             /* Record BB_powertx_rate9 setting */ 
 3136             ahp->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9] = 
 3137                 OS_REG_READ(ah, AR_PHY_BB_POWERTX_RATE9);
 3138         }
 3139     }
 3140 
 3141     /*
 3142      * Return tx power used to iwconfig.
 3143      * Since power is rate dependent, use one of the indices from the
 3144      * AR9300_Rates enum to select an entry from target_power_val_t2[]
 3145      * to report.
 3146      * Currently returns the power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
 3147      * as CCK power is less interesting (?).
 3148      */
 3149     i = ALL_TARGET_LEGACY_6_24;         /* legacy */
 3150     if (IEEE80211_IS_CHAN_HT40(chan)) {
 3151         i = ALL_TARGET_HT40_0_8_16;     /* ht40 */
 3152     } else if (IEEE80211_IS_CHAN_HT20(chan)) {
 3153         i = ALL_TARGET_HT20_0_8_16;     /* ht20 */
 3154     }
 3155     max_power_level = target_power_val_t2[i];
 3156     /* Adjusting the ah_max_power_level based on chains and antennaGain*/
 3157     switch (ar9300_get_ntxchains(((ahp->ah_tx_chainmaskopt > 0) ?
 3158                                     ahp->ah_tx_chainmaskopt : ahp->ah_tx_chainmask)))
 3159     {
 3160         case 1:
 3161             break;
 3162         case 2:
 3163             twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0: 
 3164                                ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
 3165                                    (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_TWO_CHAIN)), 0));
 3166             /* Adjusting maxpower with antennaGain */
 3167             max_power_level -= twice_array_gain;
 3168             /* Adjusting maxpower based on chain */
 3169             max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
 3170             break;
 3171         case 3:
 3172             twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
 3173                                ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
 3174                                    (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_THREE_CHAIN)), 0));
 3175 
 3176             /* Adjusting maxpower with antennaGain */
 3177             max_power_level -= twice_array_gain;
 3178             /* Adjusting maxpower based on chain */
 3179             max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
 3180             break;
 3181         default:
 3182             HALASSERT(0); /* Unsupported number of chains */
 3183     }
 3184     AH_PRIVATE(ah)->ah_maxPowerLevel = (int8_t)max_power_level;
 3185 
 3186     ar9300_calibration_apply(ah, ichan->channel);
 3187 #undef ABS
 3188 
 3189     /* Handle per packet TPC initializations */
 3190     if (ah->ah_config.ath_hal_desc_tpc) {
 3191         /* Transmit Power per-rate per-chain  are  computed here. A separate
 3192          * power table is maintained for different MIMO modes (i.e. TXBF ON,
 3193          * STBC) to enable easy lookup during packet transmit. 
 3194          * The reason for maintaing each of these tables per chain is that
 3195          * the transmit power used for different number of chains is different
 3196          * depending on whether the power has been limited by the target power,
 3197          * the regulatory domain  or the CTL limits.
 3198          */
 3199         u_int mode = ath_hal_get_curmode(ah, chan);
 3200         u_int32_t val = 0;
 3201         u_int8_t chainmasks[AR9300_MAX_CHAINS] =
 3202             {OSPREY_1_CHAINMASK, OSPREY_2LOHI_CHAINMASK, OSPREY_3_CHAINMASK};
 3203         for (i = 0; i < AR9300_MAX_CHAINS; i++) {
 3204             OS_MEMCPY(target_power_val_t2, target_power_val_t2_eep,
 3205                                    sizeof(target_power_val_t2_eep));
 3206             ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
 3207                                      target_power_val_t2, cfg_ctl,
 3208                                      antenna_reduction,
 3209                                      twice_max_regulatory_power,
 3210                                      power_limit, chainmasks[i]);
 3211             HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
 3212                  " Channel = %d Chainmask = %d, Upper Limit = [%2d.%1d dBm]\n",
 3213                                        ichan->channel, i, ahp->upper_limit[i]/2,
 3214                                        ahp->upper_limit[i]%2 * 5);
 3215             ar9300_init_rate_txpower(ah, mode, chan, target_power_val_t2,
 3216                                                            chainmasks[i]);
 3217                                      
 3218         }
 3219 
 3220         /* Enable TPC */
 3221         OS_REG_WRITE(ah, AR_PHY_PWRTX_MAX, AR_PHY_PWRTX_MAX_TPC_ENABLE);
 3222         /*
 3223          * Disable per chain power reduction since we are already 
 3224          * accounting for this in our calculations 
 3225          */
 3226         val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
 3227         if (AR_SREV_WASP(ah)) {
 3228             OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
 3229                        val & AR_PHY_POWER_TX_SUB_2_DISABLE);
 3230         } else {
 3231             OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
 3232                        val & AR_PHY_POWER_TX_SUB_3_DISABLE);
 3233         }
 3234     }
 3235 
 3236     return HAL_OK;
 3237 }
 3238 
 3239 /**************************************************************
 3240  * ar9300_eeprom_set_addac
 3241  *
 3242  * Set the ADDAC from eeprom.
 3243  */
 3244 void
 3245 ar9300_eeprom_set_addac(struct ath_hal *ah, struct ieee80211_channel *chan)
 3246 {
 3247 
 3248     HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
 3249                  "FIXME: ar9300_eeprom_def_set_addac called\n");
 3250 #if 0
 3251     MODAL_EEPDEF_HEADER *p_modal;
 3252     struct ath_hal_9300 *ahp = AH9300(ah);
 3253     ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
 3254     u_int8_t biaslevel;
 3255 
 3256     if (AH_PRIVATE(ah)->ah_macVersion != AR_SREV_VERSION_SOWL) {
 3257         return;
 3258     }
 3259 
 3260     HALASSERT(owl_get_eepdef_ver(ahp) == AR9300_EEP_VER);
 3261 
 3262     /* Xpa bias levels in eeprom are valid from rev 14.7 */
 3263     if (owl_get_eepdef_rev(ahp) < AR9300_EEP_MINOR_VER_7) {
 3264         return;
 3265     }
 3266 
 3267     if (ahp->ah_emu_eeprom) {
 3268         return;
 3269     }
 3270 
 3271     p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
 3272 
 3273     if (p_modal->xpa_bias_lvl != 0xff) {
 3274         biaslevel = p_modal->xpa_bias_lvl;
 3275     } else {
 3276         /* Use freqeuncy specific xpa bias level */
 3277         u_int16_t reset_freq_bin, freq_bin, freq_count = 0;
 3278         CHAN_CENTERS centers;
 3279 
 3280         ar9300_get_channel_centers(ah, chan, &centers);
 3281 
 3282         reset_freq_bin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
 3283         freq_bin = p_modal->xpa_bias_lvl_freq[0] & 0xff;
 3284         biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[0] >> 14);
 3285 
 3286         freq_count++;
 3287 
 3288         while (freq_count < 3) {
 3289             if (p_modal->xpa_bias_lvl_freq[freq_count] == 0x0) {
 3290                 break;
 3291             }
 3292 
 3293             freq_bin = p_modal->xpa_bias_lvl_freq[freq_count] & 0xff;
 3294             if (reset_freq_bin >= freq_bin) {
 3295                 biaslevel =
 3296                     (u_int8_t)(p_modal->xpa_bias_lvl_freq[freq_count] >> 14);
 3297             } else {
 3298                 break;
 3299             }
 3300             freq_count++;
 3301         }
 3302     }
 3303 
 3304     /* Apply bias level to the ADDAC values in the INI array */
 3305     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 3306         INI_RA(&ahp->ah_ini_addac, 7, 1) =
 3307             (INI_RA(&ahp->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
 3308     } else {
 3309         INI_RA(&ahp->ah_ini_addac, 6, 1) =
 3310             (INI_RA(&ahp->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
 3311     }
 3312 #endif
 3313 }
 3314 
 3315 u_int
 3316 ar9300_eeprom_dump_support(struct ath_hal *ah, void **pp_e)
 3317 {
 3318     *pp_e = &(AH9300(ah)->ah_eeprom);
 3319     return sizeof(ar9300_eeprom_t);
 3320 }
 3321 
 3322 u_int8_t
 3323 ar9300_eeprom_get_num_ant_config(struct ath_hal_9300 *ahp,
 3324     HAL_FREQ_BAND freq_band)
 3325 {
 3326 #if 0
 3327     ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
 3328     MODAL_EEPDEF_HEADER *p_modal =
 3329         &(eep->modal_header[HAL_FREQ_BAND_2GHZ == freq_band]);
 3330     BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
 3331     u_int8_t         num_ant_config;
 3332 
 3333     num_ant_config = 1; /* default antenna configuration */
 3334 
 3335     if (p_base->version >= 0x0E0D) {
 3336         if (p_modal->use_ant1) {
 3337             num_ant_config += 1;
 3338         }
 3339     }
 3340 
 3341     return num_ant_config;
 3342 #else
 3343     return 1;
 3344 #endif
 3345 }
 3346 
 3347 HAL_STATUS
 3348 ar9300_eeprom_get_ant_cfg(struct ath_hal_9300 *ahp,
 3349   const struct ieee80211_channel *chan,
 3350   u_int8_t index, u_int16_t *config)
 3351 {
 3352 #if 0
 3353     ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
 3354     MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
 3355     BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
 3356 
 3357     switch (index) {
 3358     case 0:
 3359         *config = p_modal->ant_ctrl_common & 0xFFFF;
 3360         return HAL_OK;
 3361     case 1:
 3362         if (p_base->version >= 0x0E0D) {
 3363             if (p_modal->use_ant1) {
 3364                 *config = ((p_modal->ant_ctrl_common & 0xFFFF0000) >> 16);
 3365                 return HAL_OK;
 3366             }
 3367         }
 3368         break;
 3369     default:
 3370         break;
 3371     }
 3372 #endif
 3373     return HAL_EINVAL;
 3374 }
 3375 
 3376 u_int8_t*
 3377 ar9300_eeprom_get_cust_data(struct ath_hal_9300 *ahp)
 3378 {
 3379     return (u_int8_t *)ahp;
 3380 }
 3381 
 3382 #ifdef UNUSED
 3383 static inline HAL_STATUS
 3384 ar9300_check_eeprom(struct ath_hal *ah)
 3385 {
 3386 #if 0
 3387     u_int32_t sum = 0, el;
 3388     u_int16_t *eepdata;
 3389     int i;
 3390     struct ath_hal_9300 *ahp = AH9300(ah);
 3391     HAL_BOOL need_swap = AH_FALSE;
 3392     ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom.def;
 3393     u_int16_t magic, magic2;
 3394     int addr;
 3395     u_int16_t temp;
 3396 
 3397     /*
 3398     ** We need to check the EEPROM data regardless of if it's in flash or
 3399     ** in EEPROM.
 3400     */
 3401 
 3402     if (!ahp->ah_priv.priv.ah_eeprom_read(
 3403             ah, AR9300_EEPROM_MAGIC_OFFSET, &magic))
 3404     {
 3405         HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Reading Magic # failed\n", __func__);
 3406         return AH_FALSE;
 3407     }
 3408 
 3409     HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic);
 3410 
 3411     if (!ar9300_eep_data_in_flash(ah)) {
 3412 
 3413         if (magic != AR9300_EEPROM_MAGIC) {
 3414             magic2 = SWAP16(magic);
 3415 
 3416             if (magic2 == AR9300_EEPROM_MAGIC) {
 3417                 need_swap = AH_TRUE;
 3418                 eepdata = (u_int16_t *)(&ahp->ah_eeprom);
 3419 
 3420                 for (addr = 0;
 3421                      addr < sizeof(ar9300_eeprom_t) / sizeof(u_int16_t);
 3422                      addr++)
 3423                 {
 3424                     temp = SWAP16(*eepdata);
 3425                     *eepdata = temp;
 3426                     eepdata++;
 3427 
 3428                     HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "0x%04X  ", *eepdata);
 3429                     if (((addr + 1) % 6) == 0) {
 3430                         HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "\n");
 3431                     }
 3432                 }
 3433             } else {
 3434                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3435                     "Invalid EEPROM Magic. endianness missmatch.\n");
 3436                 return HAL_EEBADSUM;
 3437             }
 3438         }
 3439     } else {
 3440         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3441                  "EEPROM being read from flash @0x%p\n", AH_PRIVATE(ah)->ah_st);
 3442     }
 3443 
 3444     HALDEBUG(ah, HAL_DEBUG_EEPROM, "need_swap = %s.\n", need_swap?"True":"False");
 3445 
 3446     if (need_swap) {
 3447         el = SWAP16(ahp->ah_eeprom.def.base_eep_header.length);
 3448     } else {
 3449         el = ahp->ah_eeprom.def.base_eep_header.length;
 3450     }
 3451 
 3452     eepdata = (u_int16_t *)(&ahp->ah_eeprom.def);
 3453     for (i = 0;
 3454          i < AH_MIN(el, sizeof(ar9300_eeprom_t)) / sizeof(u_int16_t);
 3455          i++) {
 3456         sum ^= *eepdata++;
 3457     }
 3458 
 3459     if (need_swap) {
 3460         /*
 3461         *  preddy: EEPROM endianness does not match. So change it
 3462         *  8bit values in eeprom data structure does not need to be swapped
 3463         *  Only >8bits (16 & 32) values need to be swapped
 3464         *  If a new 16 or 32 bit field is added to the EEPROM contents,
 3465         *  please make sure to swap the field here
 3466         */
 3467         u_int32_t integer, j;
 3468         u_int16_t word;
 3469 
 3470         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3471             "EEPROM Endianness is not native.. Changing \n");
 3472 
 3473         /* convert Base Eep header */
 3474         word = SWAP16(eep->base_eep_header.length);
 3475         eep->base_eep_header.length = word;
 3476 
 3477         word = SWAP16(eep->base_eep_header.checksum);
 3478         eep->base_eep_header.checksum = word;
 3479 
 3480         word = SWAP16(eep->base_eep_header.version);
 3481         eep->base_eep_header.version = word;
 3482 
 3483         word = SWAP16(eep->base_eep_header.reg_dmn[0]);
 3484         eep->base_eep_header.reg_dmn[0] = word;
 3485 
 3486         word = SWAP16(eep->base_eep_header.reg_dmn[1]);
 3487         eep->base_eep_header.reg_dmn[1] = word;
 3488 
 3489         word = SWAP16(eep->base_eep_header.rf_silent);
 3490         eep->base_eep_header.rf_silent = word;
 3491 
 3492         word = SWAP16(eep->base_eep_header.blue_tooth_options);
 3493         eep->base_eep_header.blue_tooth_options = word;
 3494 
 3495         word = SWAP16(eep->base_eep_header.device_cap);
 3496         eep->base_eep_header.device_cap = word;
 3497 
 3498         /* convert Modal Eep header */
 3499         for (j = 0; j < ARRAY_LENGTH(eep->modal_header); j++) {
 3500             MODAL_EEPDEF_HEADER *p_modal = &eep->modal_header[j];
 3501             integer = SWAP32(p_modal->ant_ctrl_common);
 3502             p_modal->ant_ctrl_common = integer;
 3503 
 3504             for (i = 0; i < AR9300_MAX_CHAINS; i++) {
 3505                 integer = SWAP32(p_modal->ant_ctrl_chain[i]);
 3506                 p_modal->ant_ctrl_chain[i] = integer;
 3507             }
 3508 
 3509             for (i = 0; i < AR9300_EEPROM_MODAL_SPURS; i++) {
 3510                 word = SWAP16(p_modal->spur_chans[i].spur_chan);
 3511                 p_modal->spur_chans[i].spur_chan = word;
 3512             }
 3513         }
 3514     }
 3515 
 3516     /* Check CRC - Attach should fail on a bad checksum */
 3517     if (sum != 0xffff || owl_get_eepdef_ver(ahp) != AR9300_EEP_VER ||
 3518         owl_get_eepdef_rev(ahp) < AR9300_EEP_NO_BACK_VER) {
 3519         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3520             "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
 3521             sum, owl_get_eepdef_ver(ahp));
 3522         return HAL_EEBADSUM;
 3523     }
 3524 #ifdef EEPROM_DUMP
 3525     ar9300_eeprom_def_dump(ah, eep);
 3526 #endif
 3527 
 3528 #if 0
 3529 #ifdef AH_AR9300_OVRD_TGT_PWR
 3530 
 3531     /*
 3532      * 14.4 EEPROM contains low target powers.
 3533      * Hardcode until EEPROM > 14.4
 3534      */
 3535     if (owl_get_eepdef_ver(ahp) == 14 && owl_get_eepdef_rev(ahp) <= 4) {
 3536         MODAL_EEPDEF_HEADER *p_modal;
 3537 
 3538 #ifdef EEPROM_DUMP
 3539         HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE, "Original Target Powers\n");
 3540         ar9300_eep_def_dump_tgt_power(ah, eep);
 3541 #endif
 3542         HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE, 
 3543                 "Override Target Powers. EEPROM Version is %d.%d, "
 3544                 "Device Type %d\n",
 3545                 owl_get_eepdef_ver(ahp),
 3546                 owl_get_eepdef_rev(ahp),
 3547                 eep->base_eep_header.device_type);
 3548 
 3549 
 3550         ar9300_eep_def_override_tgt_power(ah, eep);
 3551 
 3552         if (eep->base_eep_header.device_type == 5) {
 3553             /* for xb72 only: improve transmit EVM for interop */
 3554             p_modal = &eep->modal_header[1];
 3555             p_modal->tx_frame_to_data_start = 0x23;
 3556             p_modal->tx_frame_to_xpa_on = 0x23;
 3557             p_modal->tx_frame_to_pa_on = 0x23;
 3558     }
 3559 
 3560 #ifdef EEPROM_DUMP
 3561         HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Modified Target Powers\n");
 3562         ar9300_eep_def_dump_tgt_power(ah, eep);
 3563 #endif
 3564         }
 3565 #endif /* AH_AR9300_OVRD_TGT_PWR */
 3566 #endif
 3567 #endif
 3568     return HAL_OK;
 3569 }
 3570 #endif
 3571 
 3572 static u_int16_t
 3573 ar9300_eeprom_get_spur_chan(struct ath_hal *ah, int i, HAL_BOOL is_2ghz)
 3574 {
 3575     u_int16_t   spur_val = AR_NO_SPUR;
 3576 #if 0
 3577     struct ath_hal_9300 *ahp = AH9300(ah);
 3578     ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom;
 3579 
 3580     HALASSERT(i <  AR_EEPROM_MODAL_SPURS );
 3581 
 3582     HALDEBUG(ah, HAL_DEBUG_ANI,
 3583              "Getting spur idx %d is2Ghz. %d val %x\n",
 3584              i, is_2ghz,
 3585              AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]);
 3586 
 3587     switch (AH_PRIVATE(ah)->ah_config.ath_hal_spur_mode) {
 3588     case SPUR_DISABLE:
 3589         /* returns AR_NO_SPUR */
 3590         break;
 3591     case SPUR_ENABLE_IOCTL:
 3592         spur_val = AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz];
 3593         HALDEBUG(ah, HAL_DEBUG_ANI,
 3594             "Getting spur val from new loc. %d\n", spur_val);
 3595         break;
 3596     case SPUR_ENABLE_EEPROM:
 3597         spur_val = eep->modal_header[is_2ghz].spur_chans[i].spur_chan;
 3598         break;
 3599 
 3600     }
 3601 #endif
 3602     return spur_val;
 3603 }
 3604 
 3605 #ifdef UNUSED
 3606 static inline HAL_BOOL
 3607 ar9300_fill_eeprom(struct ath_hal *ah)
 3608 {
 3609     return ar9300_eeprom_restore(ah);
 3610 }
 3611 #endif
 3612 
 3613 u_int16_t
 3614 ar9300_eeprom_struct_size(void) 
 3615 {
 3616     return sizeof(ar9300_eeprom_t);
 3617 }
 3618 
 3619 int ar9300_eeprom_struct_default_many(void)
 3620 {
 3621     return ARRAY_LENGTH(default9300);
 3622 }
 3623 
 3624 
 3625 ar9300_eeprom_t *
 3626 ar9300_eeprom_struct_default(int default_index) 
 3627 {
 3628     if (default_index >= 0 &&
 3629         default_index < ARRAY_LENGTH(default9300))
 3630     {
 3631         return default9300[default_index];
 3632     } else {
 3633         return 0;
 3634     }
 3635 }
 3636 
 3637 ar9300_eeprom_t *
 3638 ar9300_eeprom_struct_default_find_by_id(int id) 
 3639 {
 3640     int it;
 3641 
 3642     for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
 3643         if (default9300[it] != 0 && default9300[it]->template_version == id) {
 3644             return default9300[it];
 3645         }
 3646     }
 3647     return 0;
 3648 }
 3649 
 3650 
 3651 HAL_BOOL
 3652 ar9300_calibration_data_read_flash(struct ath_hal *ah, long address,
 3653     u_int8_t *buffer, int many)
 3654 {
 3655 
 3656     if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) {
 3657         return AH_FALSE;
 3658     }
 3659     return AH_FALSE;
 3660 }
 3661 
 3662 HAL_BOOL
 3663 ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address,
 3664     u_int8_t *buffer, int many)
 3665 {
 3666     int i;
 3667     u_int8_t value[2];
 3668     unsigned long eep_addr;
 3669     unsigned long byte_addr;
 3670     u_int16_t *svalue;
 3671 
 3672     if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE)) {
 3673         return AH_FALSE;
 3674     }
 3675 
 3676     for (i = 0; i < many; i++) {
 3677         eep_addr = (u_int16_t) (address + i) / 2;
 3678         byte_addr = (u_int16_t) (address + i) % 2;
 3679         svalue = (u_int16_t *) value;
 3680         if (! ath_hal_eepromRead(ah, eep_addr, svalue)) {
 3681             HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3682                 "%s: Unable to read eeprom region \n", __func__);
 3683             return AH_FALSE;
 3684         }  
 3685         buffer[i] = (*svalue >> (8 * byte_addr)) & 0xff;
 3686     }  
 3687     return AH_TRUE;
 3688 }
 3689 
 3690 HAL_BOOL
 3691 ar9300_calibration_data_read_otp(struct ath_hal *ah, long address,
 3692     u_int8_t *buffer, int many, HAL_BOOL is_wifi)
 3693 {
 3694     int i;
 3695     unsigned long eep_addr;
 3696     unsigned long byte_addr;
 3697     u_int32_t svalue;
 3698 
 3699     if (((address) < 0) || ((address + many) > 0x400)) {
 3700         return AH_FALSE;
 3701     }
 3702 
 3703     for (i = 0; i < many; i++) {
 3704         eep_addr = (u_int16_t) (address + i) / 4; /* otp is 4 bytes long???? */
 3705         byte_addr = (u_int16_t) (address + i) % 4;
 3706         if (!ar9300_otp_read(ah, eep_addr, &svalue, is_wifi)) {
 3707             HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3708                 "%s: Unable to read otp region \n", __func__);
 3709             return AH_FALSE;
 3710         }  
 3711         buffer[i] = (svalue >> (8 * byte_addr)) & 0xff;
 3712     }  
 3713     return AH_TRUE;
 3714 }
 3715 
 3716 #ifdef ATH_CAL_NAND_FLASH
 3717 HAL_BOOL
 3718 ar9300_calibration_data_read_nand(struct ath_hal *ah, long address,
 3719     u_int8_t *buffer, int many)
 3720 {
 3721     int ret_len;
 3722     int ret_val = 1;
 3723     
 3724       /* Calling OS based API to read NAND */
 3725     ret_val = OS_NAND_FLASH_READ(ATH_CAL_NAND_PARTITION, address, many, &ret_len, buffer);
 3726     
 3727     return (ret_val ? AH_FALSE: AH_TRUE);
 3728 }
 3729 #endif
 3730 
 3731 HAL_BOOL
 3732 ar9300_calibration_data_read(struct ath_hal *ah, long address,
 3733     u_int8_t *buffer, int many)
 3734 {
 3735     switch (AH9300(ah)->calibration_data_source) {
 3736     case calibration_data_flash:
 3737         return ar9300_calibration_data_read_flash(ah, address, buffer, many);
 3738     case calibration_data_eeprom:
 3739         return ar9300_calibration_data_read_eeprom(ah, address, buffer, many);
 3740     case calibration_data_otp:
 3741         return ar9300_calibration_data_read_otp(ah, address, buffer, many, 1);
 3742 #ifdef ATH_CAL_NAND_FLASH
 3743     case calibration_data_nand:
 3744         return ar9300_calibration_data_read_nand(ah,address,buffer,many);
 3745 #endif
 3746 
 3747     }
 3748     return AH_FALSE;
 3749 }
 3750 
 3751 
 3752 HAL_BOOL 
 3753 ar9300_calibration_data_read_array(struct ath_hal *ah, int address,
 3754     u_int8_t *buffer, int many)
 3755 {
 3756     int it;
 3757 
 3758     for (it = 0; it < many; it++) {
 3759         (void)ar9300_calibration_data_read(ah, address - it, buffer + it, 1);
 3760     }
 3761     return AH_TRUE;
 3762 }
 3763 
 3764 
 3765 /*
 3766  * the address where the first configuration block is written
 3767  */
 3768 static const int base_address = 0x3ff;                /* 1KB */
 3769 static const int base_address_512 = 0x1ff;            /* 512Bytes */
 3770 
 3771 /*
 3772  * the address where the NAND first configuration block is written
 3773  */
 3774 #ifdef ATH_CAL_NAND_FLASH
 3775 static const int base_address_nand = AR9300_FLASH_CAL_START_OFFSET;
 3776 #endif
 3777 
 3778 
 3779 /*
 3780  * the lower limit on configuration data
 3781  */
 3782 static const int low_limit = 0x040;
 3783 
 3784 /*
 3785  * returns size of the physical eeprom in bytes.
 3786  * 1024 and 2048 are normal sizes. 
 3787  * 0 means there is no eeprom. 
 3788  */ 
 3789 int32_t 
 3790 ar9300_eeprom_size(struct ath_hal *ah)
 3791 {
 3792     u_int16_t data;
 3793     /*
 3794      * first we'll try for 4096 bytes eeprom
 3795      */
 3796     if (ar9300_eeprom_read_word(ah, 2047, &data)) {
 3797         if (data != 0) {
 3798             return 4096;
 3799         }
 3800     }
 3801     /*
 3802      * then we'll try for 2048 bytes eeprom
 3803      */
 3804     if (ar9300_eeprom_read_word(ah, 1023, &data)) {
 3805         if (data != 0) {
 3806             return 2048;
 3807         }
 3808     }
 3809     /*
 3810      * then we'll try for 1024 bytes eeprom
 3811      */
 3812     if (ar9300_eeprom_read_word(ah, 511, &data)) {
 3813         if (data != 0) {
 3814             return 1024;
 3815         }
 3816     }
 3817     return 0;
 3818 }
 3819 
 3820 /*
 3821  * returns size of the physical otp in bytes.
 3822  * 1024 and 2048 are normal sizes. 
 3823  * 0 means there is no eeprom. 
 3824  */ 
 3825 int32_t 
 3826 ar9300_otp_size(struct ath_hal *ah)
 3827 {
 3828     if (AR_SREV_POSEIDON(ah) || AR_SREV_HORNET(ah)) {
 3829         return base_address_512+1;
 3830     } else {
 3831         return base_address+1;
 3832     }
 3833 }
 3834 
 3835 
 3836 /*
 3837  * find top of memory
 3838  */
 3839 int
 3840 ar9300_eeprom_base_address(struct ath_hal *ah)
 3841 {
 3842     int size;
 3843 
 3844     if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
 3845                 return ar9300_otp_size(ah)-1;
 3846         }
 3847         else
 3848         {
 3849                 size = ar9300_eeprom_size(ah);
 3850                 if (size > 0) {
 3851                         return size - 1;
 3852                 } else {
 3853                         return ar9300_otp_size(ah)-1;
 3854                 }
 3855         }
 3856 }
 3857 
 3858 int
 3859 ar9300_eeprom_volatile(struct ath_hal *ah)
 3860 {
 3861     if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
 3862         return 0;        /* no eeprom, use otp */
 3863     } else {
 3864         return 1;        /* board has eeprom or flash */
 3865     }
 3866 }
 3867 
 3868 /*
 3869  * need to change this to look for the pcie data in the low parts of memory
 3870  * cal data needs to stop a few locations above 
 3871  */
 3872 int
 3873 ar9300_eeprom_low_limit(struct ath_hal *ah)
 3874 {
 3875     return low_limit;
 3876 }
 3877 
 3878 u_int16_t
 3879 ar9300_compression_checksum(u_int8_t *data, int dsize)
 3880 {
 3881     int it;
 3882     int checksum = 0;
 3883 
 3884     for (it = 0; it < dsize; it++) {
 3885         checksum += data[it];
 3886         checksum &= 0xffff;
 3887     }
 3888 
 3889     return checksum;
 3890 }
 3891 
 3892 int
 3893 ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference,
 3894     int *length, int *major, int *minor)
 3895 {
 3896     unsigned long value[4];
 3897 
 3898     value[0] = best[0];
 3899     value[1] = best[1];
 3900     value[2] = best[2];
 3901     value[3] = best[3];
 3902     *code = ((value[0] >> 5) & 0x0007);
 3903     *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
 3904     *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
 3905     *major = (value[2] & 0x000f);
 3906     *minor = (value[3] & 0x00ff);
 3907 
 3908     return 4;
 3909 }
 3910 
 3911 
 3912 static HAL_BOOL
 3913 ar9300_uncompress_block(struct ath_hal *ah, u_int8_t *mptr, int mdata_size,
 3914     u_int8_t *block, int size)
 3915 {
 3916     int it;
 3917     int spot;
 3918     int offset;
 3919     int length;
 3920 
 3921     spot = 0;
 3922     for (it = 0; it < size; it += (length + 2)) {
 3923         offset = block[it];
 3924         offset &= 0xff;
 3925         spot += offset;
 3926         length = block[it + 1];
 3927         length &= 0xff;
 3928         if (length > 0 && spot >= 0 && spot + length <= mdata_size) {
 3929             HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3930                 "%s: Restore at %d: spot=%d offset=%d length=%d\n",
 3931                 __func__, it, spot, offset, length);
 3932             OS_MEMCPY(&mptr[spot], &block[it + 2], length);
 3933             spot += length;
 3934         } else if (length > 0) {
 3935             HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3936                 "%s: Bad restore at %d: spot=%d offset=%d length=%d\n",
 3937                 __func__, it, spot, offset, length);
 3938             return AH_FALSE;
 3939         }
 3940     }
 3941     return AH_TRUE;
 3942 }
 3943 
 3944 static int
 3945 ar9300_eeprom_restore_internal_address(struct ath_hal *ah,
 3946     ar9300_eeprom_t *mptr, int mdata_size, int cptr, u_int8_t blank)
 3947 {
 3948     u_int8_t word[MOUTPUT]; 
 3949     ar9300_eeprom_t *dptr; /* was uint8 */
 3950     int code;
 3951     int reference, length, major, minor;
 3952     int osize;
 3953     int it;
 3954     int restored;
 3955     u_int16_t checksum, mchecksum;
 3956 
 3957     restored = 0;
 3958     for (it = 0; it < MSTATE; it++) {            
 3959         (void) ar9300_calibration_data_read_array(
 3960             ah, cptr, word, compression_header_length);
 3961         if (word[0] == blank && word[1] == blank && word[2] == blank && word[3] == blank)
 3962         {
 3963             break;
 3964         }
 3965         ar9300_compression_header_unpack(
 3966             word, &code, &reference, &length, &major, &minor);
 3967         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3968             "%s: Found block at %x: "
 3969             "code=%d ref=%d length=%d major=%d minor=%d\n",
 3970             __func__, cptr, code, reference, length, major, minor);
 3971 #ifdef DONTUSE
 3972         if (length >= 1024) {
 3973             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Skipping bad header\n", __func__);
 3974             cptr -= compression_header_length;
 3975             continue;
 3976         }
 3977 #endif
 3978         osize = length;                
 3979         (void) ar9300_calibration_data_read_array(
 3980             ah, cptr, word,
 3981             compression_header_length + osize + compression_checksum_length);
 3982         checksum = ar9300_compression_checksum(
 3983             &word[compression_header_length], length);
 3984         mchecksum =
 3985             word[compression_header_length + osize] |
 3986             (word[compression_header_length + osize + 1] << 8);
 3987         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3988             "%s: checksum %x %x\n", __func__, checksum, mchecksum);
 3989         if (checksum == mchecksum) {
 3990             switch (code) {
 3991             case _compress_none:
 3992                 if (length != mdata_size) {
 3993                     HALDEBUG(ah, HAL_DEBUG_EEPROM,
 3994                         "%s: EEPROM structure size mismatch "
 3995                         "memory=%d eeprom=%d\n", __func__, mdata_size, length);
 3996                     return -1;
 3997                 }
 3998                 OS_MEMCPY((u_int8_t *)mptr,
 3999                     (u_int8_t *)(word + compression_header_length), length);
 4000                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4001                     "%s: restored eeprom %d: uncompressed, length %d\n",
 4002                     __func__, it, length);
 4003                 restored = 1;
 4004                 break;
 4005 #ifdef UNUSED
 4006             case _compress_lzma:
 4007                 if (reference == reference_current) {
 4008                     dptr = mptr;
 4009                 } else {
 4010                     dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
 4011                         reference);
 4012                     if (dptr == 0) {
 4013                         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4014                             "%s: Can't find reference eeprom struct %d\n",
 4015                             __func__, reference);
 4016                         goto done;
 4017                     }
 4018                 }
 4019                 usize = -1;
 4020                 if (usize != mdata_size) {
 4021                     HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4022                         "%s: uncompressed data is wrong size %d %d\n",
 4023                         __func__, usize, mdata_size);
 4024                     goto done;
 4025                 }
 4026 
 4027                 for (ib = 0; ib < mdata_size; ib++) {
 4028                     mptr[ib] = dptr[ib] ^ word[ib + overhead];
 4029                 }
 4030                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4031                     "%s: restored eeprom %d: compressed, "
 4032                     "reference %d, length %d\n",
 4033                     __func__, it, reference, length);
 4034                 break;
 4035             case _compress_pairs:
 4036                 if (reference == reference_current) {
 4037                     dptr = mptr;
 4038                 } else {
 4039                     dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
 4040                         reference);
 4041                     if (dptr == 0) {
 4042                         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4043                             "%s: Can't find the reference "
 4044                             "eeprom structure %d\n",
 4045                             __func__, reference);
 4046                         goto done;
 4047                     }
 4048                 }
 4049                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4050                     "%s: restored eeprom %d: "
 4051                     "pairs, reference %d, length %d,\n",
 4052                     __func__, it, reference, length);
 4053                 break;
 4054 #endif
 4055             case _compress_block:
 4056                 if (reference == reference_current) {
 4057                     dptr = mptr;
 4058                 } else {
 4059                     dptr = ar9300_eeprom_struct_default_find_by_id(reference);
 4060                     if (dptr == 0) {
 4061                         HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4062                             "%s: cant find reference eeprom struct %d\n",
 4063                             __func__, reference);
 4064                         break;
 4065                     }
 4066                     OS_MEMCPY(mptr, dptr, mdata_size);
 4067                 }
 4068 
 4069                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4070                     "%s: restore eeprom %d: block, reference %d, length %d\n",
 4071                     __func__, it, reference, length);
 4072                 (void) ar9300_uncompress_block(ah,
 4073                     (u_int8_t *) mptr, mdata_size,
 4074                     (u_int8_t *) (word + compression_header_length), length);
 4075                 restored = 1;
 4076                 break;
 4077             default:
 4078                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4079                     "%s: unknown compression code %d\n", __func__, code);
 4080                 break;
 4081             }
 4082         } else {
 4083             HALDEBUG(ah, HAL_DEBUG_EEPROM,
 4084                 "%s: skipping block with bad checksum\n", __func__);
 4085         }
 4086         cptr -= compression_header_length + osize + compression_checksum_length;
 4087     }
 4088 
 4089     if (!restored) {
 4090         cptr = -1;
 4091     }
 4092     return cptr;
 4093 }
 4094 
 4095 static int
 4096 ar9300_eeprom_restore_from_dram(struct ath_hal *ah, ar9300_eeprom_t *mptr,
 4097     int mdata_size)
 4098 {
 4099     struct ath_hal_9300 *ahp = AH9300(ah);
 4100 #if !defined(USE_PLATFORM_FRAMEWORK)
 4101     char *cal_ptr;
 4102 #endif
 4103 
 4104     HALASSERT(mdata_size > 0);
 4105 
 4106     /* if cal_in_flash is AH_TRUE, the address sent by LMAC to HAL
 4107        (i.e. ah->ah_st) is corresponding to Flash. so return from 
 4108        here if ar9300_eep_data_in_flash(ah) returns AH_TRUE */
 4109     if(ar9300_eep_data_in_flash(ah))
 4110         return -1;
 4111 
 4112 #if 0
 4113     /* check if LMAC sent DRAM address is valid */
 4114     if (!(uintptr_t)(AH_PRIVATE(ah)->ah_st)) {
 4115         return -1;
 4116     }
 4117 #endif
 4118 
 4119     /* When calibration data is from host, Host will copy the 
 4120        compressed data to the predefined DRAM location saved at ah->ah_st */
 4121 #if 0
 4122     ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
 4123     ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st), 
 4124                                                         HOST_CALDATA_SIZE);
 4125 #endif
 4126     if (!ahp->ah_cal_mem)
 4127     {
 4128        HALDEBUG(ah, HAL_DEBUG_EEPROM,"%s: can't remap dram region\n", __func__);
 4129        return -1;
 4130     }
 4131 #if !defined(USE_PLATFORM_FRAMEWORK)
 4132     cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
 4133     OS_MEMCPY(mptr, cal_ptr, mdata_size);
 4134 #else
 4135     OS_MEMCPY(mptr, ahp->ah_cal_mem, mdata_size);
 4136 #endif
 4137 
 4138     if (mptr->eeprom_version   == 0xff ||
 4139         mptr->template_version == 0xff ||
 4140         mptr->eeprom_version   == 0    ||
 4141         mptr->template_version == 0)
 4142     {
 4143         /* The board is uncalibrated */
 4144         return -1;
 4145     }
 4146     if (mptr->eeprom_version != 0x2)
 4147     {
 4148         return -1;
 4149     }
 4150 
 4151     return mdata_size;
 4152 
 4153 }
 4154 
 4155 static int
 4156 ar9300_eeprom_restore_from_flash(struct ath_hal *ah, ar9300_eeprom_t *mptr,
 4157     int mdata_size)
 4158 {
 4159     struct ath_hal_9300 *ahp = AH9300(ah);
 4160     char *cal_ptr;
 4161 
 4162     HALASSERT(mdata_size > 0);
 4163 
 4164     if (!ahp->ah_cal_mem) {
 4165         return -1;
 4166     }
 4167 
 4168     ath_hal_printf(ah, "Restoring Cal data from Flash\n");
 4169     /*
 4170      * When calibration data is saved in flash, read
 4171      * uncompressed eeprom structure from flash and return
 4172      */
 4173     cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
 4174     OS_MEMCPY(mptr, cal_ptr, mdata_size);
 4175 #if 0
 4176     ar9300_swap_eeprom((ar9300_eeprom_t *)mptr); DONE IN ar9300_restore()
 4177 #endif
 4178     if (mptr->eeprom_version   == 0xff ||
 4179         mptr->template_version == 0xff ||
 4180         mptr->eeprom_version   == 0    ||
 4181         mptr->template_version == 0)
 4182     {   
 4183         /* The board is uncalibrated */
 4184         return -1;
 4185     } 
 4186     if (mptr->eeprom_version != 0x2)
 4187     {
 4188         return -1;
 4189     }
 4190     return mdata_size;
 4191 }
 4192 
 4193 /*
 4194  * Read the configuration data from the storage. We try the order with:
 4195  * EEPROM, Flash, OTP. If all of above failed, use the default template.
 4196  * The data can be put in any specified memory buffer.
 4197  *
 4198  * Returns -1 on error. 
 4199  * Returns address of next memory location on success.
 4200  */
 4201 int
 4202 ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr,
 4203     int mdata_size)
 4204 {
 4205     int nptr;
 4206 
 4207     nptr = -1;    
 4208 
 4209     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
 4210          AH9300(ah)->calibration_data_try == calibration_data_dram) &&
 4211          AH9300(ah)->try_dram && nptr < 0)
 4212     {   
 4213         ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
 4214         AH9300(ah)->calibration_data_source = calibration_data_dram;
 4215         AH9300(ah)->calibration_data_source_address = 0;
 4216         nptr = ar9300_eeprom_restore_from_dram(ah, mptr, mdata_size);
 4217         if (nptr < 0) {
 4218             AH9300(ah)->calibration_data_source = calibration_data_none;
 4219             AH9300(ah)->calibration_data_source_address = 0;
 4220         }
 4221     }
 4222     
 4223     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
 4224          AH9300(ah)->calibration_data_try == calibration_data_eeprom) &&
 4225         AH9300(ah)->try_eeprom && nptr < 0)
 4226     {
 4227         /*
 4228          * need to look at highest eeprom address as well as at
 4229          * base_address=0x3ff where we used to write the data
 4230          */
 4231         ath_hal_printf(ah, "Restoring Cal data from EEPROM\n");
 4232         AH9300(ah)->calibration_data_source = calibration_data_eeprom;
 4233         if (AH9300(ah)->calibration_data_try_address != 0) {
 4234             AH9300(ah)->calibration_data_source_address =
 4235                 AH9300(ah)->calibration_data_try_address;
 4236             nptr = ar9300_eeprom_restore_internal_address(
 4237                 ah, mptr, mdata_size,
 4238                 AH9300(ah)->calibration_data_source_address, 0xff);
 4239         } else {
 4240             AH9300(ah)->calibration_data_source_address =
 4241                 ar9300_eeprom_base_address(ah);
 4242             nptr = ar9300_eeprom_restore_internal_address(
 4243                 ah, mptr, mdata_size,
 4244                 AH9300(ah)->calibration_data_source_address, 0xff);
 4245             if (nptr < 0 &&
 4246                 AH9300(ah)->calibration_data_source_address != base_address)
 4247             {
 4248                 AH9300(ah)->calibration_data_source_address = base_address;
 4249                 nptr = ar9300_eeprom_restore_internal_address(
 4250                     ah, mptr, mdata_size,
 4251                     AH9300(ah)->calibration_data_source_address, 0xff);
 4252             }
 4253         }
 4254         if (nptr < 0) {
 4255             AH9300(ah)->calibration_data_source = calibration_data_none;
 4256             AH9300(ah)->calibration_data_source_address = 0;
 4257         }
 4258     }
 4259 
 4260     /*
 4261      * ##### should be an ifdef test for any AP usage,
 4262      * either in driver or in nart
 4263      */
 4264     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
 4265          AH9300(ah)->calibration_data_try == calibration_data_flash) &&
 4266         AH9300(ah)->try_flash && nptr < 0)
 4267     {
 4268         ath_hal_printf(ah, "Restoring Cal data from Flash\n");
 4269         AH9300(ah)->calibration_data_source = calibration_data_flash;
 4270         /* how are we supposed to set this for flash? */
 4271         AH9300(ah)->calibration_data_source_address = 0;
 4272         nptr = ar9300_eeprom_restore_from_flash(ah, mptr, mdata_size);
 4273         if (nptr < 0) {
 4274             AH9300(ah)->calibration_data_source = calibration_data_none;
 4275             AH9300(ah)->calibration_data_source_address = 0;
 4276         }
 4277     }
 4278 
 4279     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
 4280          AH9300(ah)->calibration_data_try == calibration_data_otp) &&
 4281         AH9300(ah)->try_otp && nptr < 0)
 4282     {
 4283         ath_hal_printf(ah, "Restoring Cal data from OTP\n");
 4284         AH9300(ah)->calibration_data_source = calibration_data_otp;
 4285         if (AH9300(ah)->calibration_data_try_address != 0) {
 4286             AH9300(ah)->calibration_data_source_address =
 4287                 AH9300(ah)->calibration_data_try_address;
 4288                 } else {
 4289             AH9300(ah)->calibration_data_source_address =
 4290                 ar9300_eeprom_base_address(ah);
 4291                 }
 4292         nptr = ar9300_eeprom_restore_internal_address(
 4293             ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0);
 4294         if (nptr < 0) {
 4295             AH9300(ah)->calibration_data_source = calibration_data_none;
 4296             AH9300(ah)->calibration_data_source_address = 0;
 4297         }
 4298     }
 4299 
 4300 #ifdef ATH_CAL_NAND_FLASH
 4301     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
 4302          AH9300(ah)->calibration_data_try == calibration_data_nand) &&
 4303         AH9300(ah)->try_nand && nptr < 0)
 4304     {
 4305         AH9300(ah)->calibration_data_source = calibration_data_nand;
 4306         AH9300(ah)->calibration_data_source_address = ((unsigned int)(AH_PRIVATE(ah)->ah_st)) + base_address_nand;
 4307         if(ar9300_calibration_data_read(
 4308             ah, AH9300(ah)->calibration_data_source_address, 
 4309             (u_int8_t *)mptr, mdata_size) == AH_TRUE)
 4310         {
 4311             nptr = mdata_size;
 4312         }
 4313         /*nptr=ar9300EepromRestoreInternalAddress(ah, mptr, mdataSize, CalibrationDataSourceAddress);*/
 4314         if(nptr < 0)
 4315         {
 4316             AH9300(ah)->calibration_data_source = calibration_data_none;
 4317             AH9300(ah)->calibration_data_source_address = 0;
 4318         }
 4319     }
 4320 #endif
 4321     if (nptr < 0) {
 4322         ath_hal_printf(ah, "%s[%d] No vaid CAL, calling default template\n",
 4323             __func__, __LINE__);
 4324         nptr = ar9300_eeprom_restore_something(ah, mptr, mdata_size);
 4325     }
 4326 
 4327     return nptr;
 4328 }
 4329 
 4330 /******************************************************************************/
 4331 /*!
 4332 **  \brief Eeprom Swapping Function
 4333 **
 4334 **  This function will swap the contents of the "longer" EEPROM data items
 4335 **  to ensure they are consistent with the endian requirements for the platform
 4336 **  they are being compiled for
 4337 **
 4338 **  \param eh    Pointer to the EEPROM data structure
 4339 **  \return N/A
 4340 */
 4341 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
 4342 void
 4343 ar9300_swap_eeprom(ar9300_eeprom_t *eep)
 4344 {
 4345     u_int32_t dword;
 4346     u_int16_t word;
 4347     int          i;
 4348 
 4349     word = __bswap16(eep->base_eep_header.reg_dmn[0]);
 4350     eep->base_eep_header.reg_dmn[0] = word;
 4351 
 4352     word = __bswap16(eep->base_eep_header.reg_dmn[1]);
 4353     eep->base_eep_header.reg_dmn[1] = word;
 4354 
 4355     dword = __bswap32(eep->base_eep_header.swreg);
 4356     eep->base_eep_header.swreg = dword;
 4357 
 4358     dword = __bswap32(eep->modal_header_2g.ant_ctrl_common);
 4359     eep->modal_header_2g.ant_ctrl_common = dword;
 4360 
 4361     dword = __bswap32(eep->modal_header_2g.ant_ctrl_common2);
 4362     eep->modal_header_2g.ant_ctrl_common2 = dword;
 4363 
 4364     dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht20);
 4365     eep->modal_header_2g.paprd_rate_mask_ht20 = dword;
 4366 
 4367     dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht40);
 4368     eep->modal_header_2g.paprd_rate_mask_ht40 = dword;
 4369 
 4370     dword = __bswap32(eep->modal_header_5g.ant_ctrl_common);
 4371     eep->modal_header_5g.ant_ctrl_common = dword;
 4372 
 4373     dword = __bswap32(eep->modal_header_5g.ant_ctrl_common2);
 4374     eep->modal_header_5g.ant_ctrl_common2 = dword;
 4375 
 4376     dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht20);
 4377     eep->modal_header_5g.paprd_rate_mask_ht20 = dword;
 4378 
 4379     dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht40);
 4380     eep->modal_header_5g.paprd_rate_mask_ht40 = dword;
 4381 
 4382     for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
 4383         word = __bswap16(eep->modal_header_2g.ant_ctrl_chain[i]);
 4384         eep->modal_header_2g.ant_ctrl_chain[i] = word;
 4385 
 4386         word = __bswap16(eep->modal_header_5g.ant_ctrl_chain[i]);
 4387         eep->modal_header_5g.ant_ctrl_chain[i] = word;
 4388     }
 4389 }
 4390 
 4391 void ar9300_eeprom_template_swap(void)
 4392 {
 4393     int it;
 4394     ar9300_eeprom_t *dptr;
 4395 
 4396     for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
 4397         dptr = ar9300_eeprom_struct_default(it);
 4398         if (dptr != 0) {
 4399             ar9300_swap_eeprom(dptr);
 4400         }
 4401     }
 4402 }
 4403 #endif
 4404 
 4405 
 4406 /*
 4407  * Restore the configuration structure by reading the eeprom.
 4408  * This function destroys any existing in-memory structure content.
 4409  */
 4410 HAL_BOOL
 4411 ar9300_eeprom_restore(struct ath_hal *ah)
 4412 {
 4413     struct ath_hal_9300 *ahp = AH9300(ah);
 4414     ar9300_eeprom_t *mptr;
 4415     int mdata_size;
 4416     HAL_BOOL status = AH_FALSE;
 4417 
 4418     mptr = &ahp->ah_eeprom;
 4419     mdata_size = ar9300_eeprom_struct_size();
 4420 
 4421     if (mptr != 0 && mdata_size > 0) {
 4422 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
 4423         ar9300_eeprom_template_swap();
 4424         ar9300_swap_eeprom(mptr);
 4425 #endif
 4426         /*
 4427          * At this point, mptr points to the eeprom data structure
 4428          * in its "default" state.  If this is big endian, swap the
 4429          * data structures back to "little endian" form.
 4430          */
 4431         if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0) {
 4432             status = AH_TRUE;
 4433         }
 4434 
 4435 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
 4436         /* Second Swap, back to Big Endian */
 4437         ar9300_eeprom_template_swap();
 4438         ar9300_swap_eeprom(mptr);
 4439 #endif
 4440 
 4441     }
 4442     ahp->ah_2g_paprd_rate_mask_ht40 =
 4443         mptr->modal_header_2g.paprd_rate_mask_ht40;
 4444     ahp->ah_2g_paprd_rate_mask_ht20 =
 4445         mptr->modal_header_2g.paprd_rate_mask_ht20;
 4446     ahp->ah_5g_paprd_rate_mask_ht40 =
 4447         mptr->modal_header_5g.paprd_rate_mask_ht40;
 4448     ahp->ah_5g_paprd_rate_mask_ht20 =
 4449         mptr->modal_header_5g.paprd_rate_mask_ht20;
 4450     return status;
 4451 }
 4452 
 4453 int32_t ar9300_thermometer_get(struct ath_hal *ah)
 4454 {
 4455     struct ath_hal_9300 *ahp = AH9300(ah);
 4456     int thermometer;
 4457     thermometer =
 4458         (ahp->ah_eeprom.base_eep_header.misc_configuration >> 1) & 0x3;
 4459     thermometer--;
 4460     return thermometer;
 4461 }
 4462 
 4463 HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah)
 4464 {
 4465     int thermometer = ar9300_thermometer_get(ah);
 4466 
 4467 /* ch0_RXTX4 */
 4468 /*#define AR_PHY_65NM_CH0_RXTX4       AR_PHY_65NM(ch0_RXTX4)*/
 4469 #define AR_PHY_65NM_CH1_RXTX4       AR_PHY_65NM(ch1_RXTX4)
 4470 #define AR_PHY_65NM_CH2_RXTX4       AR_PHY_65NM(ch2_RXTX4)
 4471 /*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON          0x10000000*/
 4472 /*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_S        28*/
 4473 #define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S      29
 4474 #define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR        \
 4475     (0x1<<AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S)
 4476 
 4477     if (thermometer < 0) {
 4478         OS_REG_RMW_FIELD(ah,
 4479             AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
 4480         if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
 4481             OS_REG_RMW_FIELD(ah,
 4482                 AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
 4483             if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
 4484                 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
 4485                     AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
 4486             }
 4487         }
 4488         OS_REG_RMW_FIELD(ah,
 4489             AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4490         if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
 4491             OS_REG_RMW_FIELD(ah,
 4492                 AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4493             if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
 4494                 OS_REG_RMW_FIELD(ah,
 4495                     AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4496             }
 4497         }
 4498     } else {
 4499         OS_REG_RMW_FIELD(ah,
 4500             AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
 4501         if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
 4502             OS_REG_RMW_FIELD(ah,
 4503                 AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
 4504             if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
 4505                 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
 4506                     AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
 4507             }
 4508         }
 4509         if (thermometer == 0) {
 4510             OS_REG_RMW_FIELD(ah,
 4511                 AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
 4512             if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
 4513                 OS_REG_RMW_FIELD(ah,
 4514                     AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4515                 if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
 4516                     OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
 4517                         AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4518                 }
 4519             }
 4520         } else if (thermometer == 1) {
 4521             OS_REG_RMW_FIELD(ah,
 4522                 AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4523             if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
 4524                 OS_REG_RMW_FIELD(ah,
 4525                     AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
 4526                 if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
 4527                     OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
 4528                         AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4529                 }
 4530             }
 4531         } else if (thermometer == 2) {
 4532             OS_REG_RMW_FIELD(ah,
 4533                 AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4534             if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
 4535                 OS_REG_RMW_FIELD(ah,
 4536                     AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
 4537                 if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
 4538                     OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
 4539                         AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
 4540                 }
 4541             }
 4542         }
 4543     }
 4544     return AH_TRUE;
 4545 }
 4546 
 4547 static int32_t ar9300_tuning_caps_params_get(struct ath_hal *ah)
 4548 {
 4549     int tuning_caps_params;
 4550     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 4551     tuning_caps_params = eep->base_eep_header.params_for_tuning_caps[0];
 4552     return tuning_caps_params;
 4553 }
 4554 
 4555 /*
 4556  * Read the tuning caps params from eeprom and set to correct register.
 4557  * To regulation the frequency accuracy.
 4558  */
 4559 HAL_BOOL ar9300_tuning_caps_apply(struct ath_hal *ah)
 4560 {
 4561     int tuning_caps_params;
 4562     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 4563     tuning_caps_params = ar9300_tuning_caps_params_get(ah);
 4564     if ((eep->base_eep_header.feature_enable & 0x40) >> 6) {
 4565         tuning_caps_params &= 0x7f;
 4566 
 4567         if (AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
 4568             return true;
 4569         } else if (AR_SREV_HORNET(ah)) {
 4570             OS_REG_RMW_FIELD(ah,
 4571                 AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
 4572                 tuning_caps_params);
 4573             OS_REG_RMW_FIELD(ah,
 4574                 AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
 4575                 tuning_caps_params);
 4576         } else if (AR_SREV_SCORPION(ah)) {
 4577             OS_REG_RMW_FIELD(ah,
 4578                 AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
 4579                 tuning_caps_params);
 4580             OS_REG_RMW_FIELD(ah,
 4581                 AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
 4582                 tuning_caps_params);
 4583         } else {
 4584             OS_REG_RMW_FIELD(ah,
 4585                 AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
 4586                 tuning_caps_params);
 4587             OS_REG_RMW_FIELD(ah,
 4588                 AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
 4589                 tuning_caps_params);
 4590         }
 4591 
 4592     }
 4593     return AH_TRUE;
 4594 }
 4595 
 4596 /*
 4597  * Read the tx_frame_to_xpa_on param from eeprom and apply the value to 
 4598  * correct register.
 4599  */
 4600 HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
 4601 {
 4602     u_int8_t xpa_timing_control;
 4603     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 4604     if ((eep->base_eep_header.feature_enable & 0x80) >> 7) {
 4605                 if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
 4606                         if (is_2ghz) {
 4607                 xpa_timing_control = eep->modal_header_2g.tx_frame_to_xpa_on;
 4608                 OS_REG_RMW_FIELD(ah,
 4609                                                 AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON,
 4610                                                 xpa_timing_control);
 4611                         } else {
 4612                 xpa_timing_control = eep->modal_header_5g.tx_frame_to_xpa_on;
 4613                 OS_REG_RMW_FIELD(ah,
 4614                                                 AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON,
 4615                                                 xpa_timing_control);
 4616                         }
 4617                 }
 4618         }
 4619     return AH_TRUE;
 4620 }
 4621 
 4622 
 4623 /*
 4624  * Read the xLNA_bias_strength param from eeprom and apply the value to 
 4625  * correct register.
 4626  */ 
 4627 HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
 4628 {
 4629     u_int8_t x_lNABias;
 4630     u_int32_t value = 0;
 4631     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 4632 
 4633     if ((eep->base_eep_header.misc_configuration & 0x40) >> 6) {
 4634         if (AR_SREV_OSPREY(ah)) {
 4635             if (is_2ghz) {
 4636                 x_lNABias = eep->modal_header_2g.xLNA_bias_strength;
 4637             } else {
 4638                 x_lNABias = eep->modal_header_5g.xLNA_bias_strength;
 4639             }
 4640             value = x_lNABias & ( 0x03 );       // bit0,1 for chain0
 4641             OS_REG_RMW_FIELD(ah,
 4642                                         AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
 4643             value = (x_lNABias >> 2) & ( 0x03 );        // bit2,3 for chain1
 4644             OS_REG_RMW_FIELD(ah,
 4645                                         AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
 4646             value = (x_lNABias >> 4) & ( 0x03 );        // bit4,5 for chain2
 4647             OS_REG_RMW_FIELD(ah,
 4648                                         AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
 4649         }
 4650     }
 4651     return AH_TRUE;
 4652 }
 4653 
 4654 
 4655 /*
 4656  * Read EEPROM header info and program the device for correct operation
 4657  * given the channel value.
 4658  */
 4659 HAL_BOOL
 4660 ar9300_eeprom_set_board_values(struct ath_hal *ah, const struct ieee80211_channel *chan)
 4661 {
 4662     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
 4663 
 4664     ar9300_xpa_bias_level_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
 4665 
 4666     ar9300_xpa_timing_control_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
 4667 
 4668     ar9300_ant_ctrl_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
 4669     ar9300_drive_strength_apply(ah);
 4670 
 4671     ar9300_x_lNA_bias_strength_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
 4672 
 4673         /* wait for Poseidon internal regular turnning */
 4674     /* for Hornet we move it before initPLL to avoid an access issue */
 4675     /* Function not used when EMULATION. */
 4676     if (!AR_SREV_HORNET(ah) && !AR_SREV_WASP(ah) && !AR_SREV_HONEYBEE(ah)) {
 4677         ar9300_internal_regulator_apply(ah);
 4678     }
 4679 
 4680     ar9300_attenuation_apply(ah, ichan->channel);
 4681     ar9300_quick_drop_apply(ah, ichan->channel);
 4682     ar9300_thermometer_apply(ah);
 4683     if(!AR_SREV_WASP(ah))
 4684     {
 4685         ar9300_tuning_caps_apply(ah);
 4686     }
 4687 
 4688     ar9300_tx_end_to_xpab_off_apply(ah, ichan->channel);
 4689 
 4690     return AH_TRUE;
 4691 }
 4692 
 4693 u_int8_t *
 4694 ar9300_eeprom_get_spur_chans_ptr(struct ath_hal *ah, HAL_BOOL is_2ghz)
 4695 {
 4696     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
 4697 
 4698     if (is_2ghz) {
 4699         return &(eep->modal_header_2g.spur_chans[0]);
 4700     } else {
 4701         return &(eep->modal_header_5g.spur_chans[0]);
 4702     }
 4703 }
 4704 
 4705 static u_int8_t ar9300_eeprom_get_tx_gain_table_number_max(struct ath_hal *ah)
 4706 {
 4707     unsigned long tx_gain_table_max;
 4708     tx_gain_table_max = OS_REG_READ_FIELD(ah,
 4709         AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);
 4710     return tx_gain_table_max;
 4711 }
 4712 
 4713 u_int8_t ar9300_eeprom_tx_gain_table_index_max_apply(struct ath_hal *ah, u_int16_t channel)
 4714 {
 4715     unsigned int index;
 4716     ar9300_eeprom_t *ahp_Eeprom;
 4717     struct ath_hal_9300 *ahp = AH9300(ah);
 4718 
 4719     ahp_Eeprom = &ahp->ah_eeprom;
 4720 
 4721     if (ahp_Eeprom->base_ext1.misc_enable == 0)
 4722         return AH_FALSE;
 4723 
 4724     if (channel < 4000) 
 4725     {
 4726         index = ahp_Eeprom->modal_header_2g.tx_gain_cap;
 4727     }
 4728     else
 4729     {
 4730         index = ahp_Eeprom->modal_header_5g.tx_gain_cap;
 4731     }
 4732 
 4733     OS_REG_RMW_FIELD(ah,
 4734         AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX, index);
 4735     return AH_TRUE;
 4736 }
 4737 
 4738 static u_int8_t ar9300_eeprom_get_pcdac_tx_gain_table_i(struct ath_hal *ah, 
 4739                                                int i, u_int8_t *pcdac)
 4740 {
 4741     unsigned long tx_gain;
 4742     u_int8_t tx_gain_table_max;
 4743     tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
 4744     if (i <= 0 || i > tx_gain_table_max) {
 4745         *pcdac = 0;
 4746         return AH_FALSE;
 4747     }
 4748 
 4749     tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
 4750     *pcdac = ((tx_gain >> 24) & 0xff);
 4751     return AH_TRUE;
 4752 }
 4753 
 4754 u_int8_t ar9300_eeprom_set_tx_gain_cap(struct ath_hal *ah, 
 4755                                                int *tx_gain_max)
 4756 // pcdac read back from reg, read back value depends on reset 2GHz/5GHz ini 
 4757 // tx_gain_table, this function will be called twice after each 
 4758 // band's calibration.
 4759 // after 2GHz cal, tx_gain_max[0] has 2GHz, calibration max txgain, 
 4760 // tx_gain_max[1]=-100
 4761 // after 5GHz cal, tx_gain_max[0],tx_gain_max[1] have calibration 
 4762 // value for both band
 4763 // reset is on 5GHz, reg reading from tx_gain_table is for 5GHz,
 4764 // so program can't recalculate 2g.tx_gain_cap at this point.
 4765 {
 4766     int i = 0, ig, im = 0;
 4767     u_int8_t pcdac = 0;
 4768     u_int8_t tx_gain_table_max;
 4769     ar9300_eeprom_t *ahp_Eeprom;
 4770     struct ath_hal_9300 *ahp = AH9300(ah);
 4771 
 4772     ahp_Eeprom = &ahp->ah_eeprom;
 4773 
 4774     if (ahp_Eeprom->base_ext1.misc_enable == 0)
 4775         return AH_FALSE;
 4776 
 4777     tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
 4778 
 4779     for (i = 0; i < 2; i++) {
 4780         if (tx_gain_max[i]>-100) {      // -100 didn't cal that band.
 4781             if ( i== 0) {
 4782                 if (tx_gain_max[1]>-100) {
 4783                     continue;
 4784                     // both band are calibrated, skip 2GHz 2g.tx_gain_cap reset
 4785                 }
 4786             }
 4787             for (ig = 1; ig <= tx_gain_table_max; ig++) {
 4788                 if (ah != 0 && ah->ah_reset != 0)
 4789                 {
 4790                     ar9300_eeprom_get_pcdac_tx_gain_table_i(ah, ig, &pcdac);
 4791                     if (pcdac >= tx_gain_max[i])
 4792                         break;
 4793                 }
 4794             }
 4795             if (ig+1 <= tx_gain_table_max) {
 4796                 if (pcdac == tx_gain_max[i])
 4797                     im = ig;
 4798                 else
 4799                     im = ig + 1;
 4800                 if (i == 0) {
 4801                     ahp_Eeprom->modal_header_2g.tx_gain_cap = im;
 4802                 } else {
 4803                     ahp_Eeprom->modal_header_5g.tx_gain_cap = im;
 4804                 }
 4805             } else {
 4806                 if (i == 0) {
 4807                     ahp_Eeprom->modal_header_2g.tx_gain_cap = ig;
 4808                 } else {
 4809                     ahp_Eeprom->modal_header_5g.tx_gain_cap = ig;
 4810                 }
 4811             }
 4812         }
 4813     }
 4814     return AH_TRUE;
 4815 }

Cache object: 2d64a2ef5e5e772c72c1e7b79320c432


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.