1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3 * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 #if defined(__FreeBSD__)
25 #include <linux/skbuff.h>
26 #include "iwl-modparams.h"
27 #endif
28
29 /**
30 * DOC: Transport layer - what is it ?
31 *
32 * The transport layer is the layer that deals with the HW directly. It provides
33 * an abstraction of the underlying HW to the upper layer. The transport layer
34 * doesn't provide any policy, algorithm or anything of this kind, but only
35 * mechanisms to make the HW do something. It is not completely stateless but
36 * close to it.
37 * We will have an implementation for each different supported bus.
38 */
39
40 /**
41 * DOC: Life cycle of the transport layer
42 *
43 * The transport layer has a very precise life cycle.
44 *
45 * 1) A helper function is called during the module initialization and
46 * registers the bus driver's ops with the transport's alloc function.
47 * 2) Bus's probe calls to the transport layer's allocation functions.
48 * Of course this function is bus specific.
49 * 3) This allocation functions will spawn the upper layer which will
50 * register mac80211.
51 *
52 * 4) At some point (i.e. mac80211's start call), the op_mode will call
53 * the following sequence:
54 * start_hw
55 * start_fw
56 *
57 * 5) Then when finished (or reset):
58 * stop_device
59 *
60 * 6) Eventually, the free function will be called.
61 */
62
63 #define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON
64
65 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */
66 #define FH_RSCSR_FRAME_INVALID 0x55550000
67 #define FH_RSCSR_FRAME_ALIGN 0x40
68 #define FH_RSCSR_RPA_EN BIT(25)
69 #define FH_RSCSR_RADA_EN BIT(26)
70 #define FH_RSCSR_RXQ_POS 16
71 #define FH_RSCSR_RXQ_MASK 0x3F0000
72
73 struct iwl_rx_packet {
74 /*
75 * The first 4 bytes of the RX frame header contain both the RX frame
76 * size and some flags.
77 * Bit fields:
78 * 31: flag flush RB request
79 * 30: flag ignore TC (terminal counter) request
80 * 29: flag fast IRQ request
81 * 28-27: Reserved
82 * 26: RADA enabled
83 * 25: Offload enabled
84 * 24: RPF enabled
85 * 23: RSS enabled
86 * 22: Checksum enabled
87 * 21-16: RX queue
88 * 15-14: Reserved
89 * 13-00: RX frame size
90 */
91 __le32 len_n_flags;
92 struct iwl_cmd_header hdr;
93 u8 data[];
94 } __packed;
95
96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97 {
98 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99 }
100
101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102 {
103 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104 }
105
106 /**
107 * enum CMD_MODE - how to send the host commands ?
108 *
109 * @CMD_ASYNC: Return right away and don't wait for the response
110 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111 * the response. The caller needs to call iwl_free_resp when done.
112 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
113 * called after this command completes. Valid only with CMD_ASYNC.
114 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
115 * SUSPEND and RESUME commands. We are in D3 mode when we set
116 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
117 */
118 enum CMD_MODE {
119 CMD_ASYNC = BIT(0),
120 CMD_WANT_SKB = BIT(1),
121 CMD_SEND_IN_RFKILL = BIT(2),
122 CMD_WANT_ASYNC_CALLBACK = BIT(3),
123 CMD_SEND_IN_D3 = BIT(4),
124 };
125
126 #define DEF_CMD_PAYLOAD_SIZE 320
127
128 /**
129 * struct iwl_device_cmd
130 *
131 * For allocation of the command and tx queues, this establishes the overall
132 * size of the largest command we send to uCode, except for commands that
133 * aren't fully copied and use other TFD space.
134 */
135 struct iwl_device_cmd {
136 union {
137 struct {
138 struct iwl_cmd_header hdr; /* uCode API */
139 u8 payload[DEF_CMD_PAYLOAD_SIZE];
140 };
141 struct {
142 struct iwl_cmd_header_wide hdr_wide;
143 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
144 sizeof(struct iwl_cmd_header_wide) +
145 sizeof(struct iwl_cmd_header)];
146 };
147 };
148 } __packed;
149
150 /**
151 * struct iwl_device_tx_cmd - buffer for TX command
152 * @hdr: the header
153 * @payload: the payload placeholder
154 *
155 * The actual structure is sized dynamically according to need.
156 */
157 struct iwl_device_tx_cmd {
158 struct iwl_cmd_header hdr;
159 u8 payload[];
160 } __packed;
161
162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
163
164 /*
165 * number of transfer buffers (fragments) per transmit frame descriptor;
166 * this is just the driver's idea, the hardware supports 20
167 */
168 #define IWL_MAX_CMD_TBS_PER_TFD 2
169
170 /* We need 2 entries for the TX command and header, and another one might
171 * be needed for potential data in the SKB's head. The remaining ones can
172 * be used for frags.
173 */
174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
175
176 /**
177 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
178 *
179 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
180 * ring. The transport layer doesn't map the command's buffer to DMA, but
181 * rather copies it to a previously allocated DMA buffer. This flag tells
182 * the transport layer not to copy the command, but to map the existing
183 * buffer (that is passed in) instead. This saves the memcpy and allows
184 * commands that are bigger than the fixed buffer to be submitted.
185 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
186 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
187 * chunk internally and free it again after the command completes. This
188 * can (currently) be used only once per command.
189 * Note that a TFD entry after a DUP one cannot be a normal copied one.
190 */
191 enum iwl_hcmd_dataflag {
192 IWL_HCMD_DFL_NOCOPY = BIT(0),
193 IWL_HCMD_DFL_DUP = BIT(1),
194 };
195
196 enum iwl_error_event_table_status {
197 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
198 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
199 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
200 IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
201 IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
202 IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
203 IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
204 };
205
206 /**
207 * struct iwl_host_cmd - Host command to the uCode
208 *
209 * @data: array of chunks that composes the data of the host command
210 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
211 * @_rx_page_order: (internally used to free response packet);
212 * FreeBSD uses _page instead.
213 * @_rx_page_addr: (internally used to free response packet)
214 * @flags: can be CMD_*
215 * @len: array of the lengths of the chunks in data
216 * @dataflags: IWL_HCMD_DFL_*
217 * @id: command id of the host command, for wide commands encoding the
218 * version and group as well
219 */
220 struct iwl_host_cmd {
221 const void *data[IWL_MAX_CMD_TBS_PER_TFD];
222 struct iwl_rx_packet *resp_pkt;
223 #if defined(__linux__)
224 unsigned long _rx_page_addr;
225 #elif defined(__FreeBSD__)
226 struct page *_page;
227 #endif
228 u32 _rx_page_order;
229
230 u32 flags;
231 u32 id;
232 u16 len[IWL_MAX_CMD_TBS_PER_TFD];
233 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
234 };
235
236 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
237 {
238 #if defined(__linux__)
239 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
240 #elif defined(__FreeBSD__)
241 __free_pages(cmd->_page, cmd->_rx_page_order);
242 #endif
243 }
244
245 struct iwl_rx_cmd_buffer {
246 struct page *_page;
247 int _offset;
248 bool _page_stolen;
249 u32 _rx_page_order;
250 unsigned int truesize;
251 };
252
253 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
254 {
255 return (void *)((unsigned long)page_address(r->_page) + r->_offset);
256 }
257
258 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
259 {
260 return r->_offset;
261 }
262
263 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
264 {
265 r->_page_stolen = true;
266 get_page(r->_page);
267 return r->_page;
268 }
269
270 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
271 {
272 __free_pages(r->_page, r->_rx_page_order);
273 }
274
275 #define MAX_NO_RECLAIM_CMDS 6
276
277 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
278
279 /*
280 * Maximum number of HW queues the transport layer
281 * currently supports
282 */
283 #define IWL_MAX_HW_QUEUES 32
284 #define IWL_MAX_TVQM_QUEUES 512
285
286 #define IWL_MAX_TID_COUNT 8
287 #define IWL_MGMT_TID 15
288 #define IWL_FRAME_LIMIT 64
289 #define IWL_MAX_RX_HW_QUEUES 16
290 #define IWL_9000_MAX_RX_HW_QUEUES 6
291
292 /**
293 * enum iwl_wowlan_status - WoWLAN image/device status
294 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
295 * @IWL_D3_STATUS_RESET: device was reset while suspended
296 */
297 enum iwl_d3_status {
298 IWL_D3_STATUS_ALIVE,
299 IWL_D3_STATUS_RESET,
300 };
301
302 /**
303 * enum iwl_trans_status: transport status flags
304 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
305 * @STATUS_DEVICE_ENABLED: APM is enabled
306 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
307 * @STATUS_INT_ENABLED: interrupts are enabled
308 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
309 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
310 * @STATUS_FW_ERROR: the fw is in error state
311 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
312 * are sent
313 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
314 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
315 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
316 * e.g. for testing
317 */
318 enum iwl_trans_status {
319 STATUS_SYNC_HCMD_ACTIVE,
320 STATUS_DEVICE_ENABLED,
321 STATUS_TPOWER_PMI,
322 STATUS_INT_ENABLED,
323 STATUS_RFKILL_HW,
324 STATUS_RFKILL_OPMODE,
325 STATUS_FW_ERROR,
326 STATUS_TRANS_GOING_IDLE,
327 STATUS_TRANS_IDLE,
328 STATUS_TRANS_DEAD,
329 STATUS_SUPPRESS_CMD_ERROR_ONCE,
330 };
331
332 static inline int
333 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
334 {
335 switch (rb_size) {
336 case IWL_AMSDU_2K:
337 return get_order(2 * 1024);
338 case IWL_AMSDU_4K:
339 return get_order(4 * 1024);
340 case IWL_AMSDU_8K:
341 return get_order(8 * 1024);
342 case IWL_AMSDU_12K:
343 return get_order(16 * 1024);
344 default:
345 WARN_ON(1);
346 return -1;
347 }
348 }
349
350 static inline int
351 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
352 {
353 switch (rb_size) {
354 case IWL_AMSDU_2K:
355 return 2 * 1024;
356 case IWL_AMSDU_4K:
357 return 4 * 1024;
358 case IWL_AMSDU_8K:
359 return 8 * 1024;
360 case IWL_AMSDU_12K:
361 return 16 * 1024;
362 default:
363 WARN_ON(1);
364 return 0;
365 }
366 }
367
368 struct iwl_hcmd_names {
369 u8 cmd_id;
370 const char *const cmd_name;
371 };
372
373 #define HCMD_NAME(x) \
374 { .cmd_id = x, .cmd_name = #x }
375
376 struct iwl_hcmd_arr {
377 const struct iwl_hcmd_names *arr;
378 int size;
379 };
380
381 #define HCMD_ARR(x) \
382 { .arr = x, .size = ARRAY_SIZE(x) }
383
384 /**
385 * struct iwl_dump_sanitize_ops - dump sanitization operations
386 * @frob_txf: Scrub the TX FIFO data
387 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
388 * but that might be short or long (&struct iwl_cmd_header or
389 * &struct iwl_cmd_header_wide)
390 * @frob_mem: Scrub memory data
391 */
392 struct iwl_dump_sanitize_ops {
393 void (*frob_txf)(void *ctx, void *buf, size_t buflen);
394 void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
395 void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
396 };
397
398 /**
399 * struct iwl_trans_config - transport configuration
400 *
401 * @op_mode: pointer to the upper layer.
402 * @cmd_queue: the index of the command queue.
403 * Must be set before start_fw.
404 * @cmd_fifo: the fifo for host commands
405 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
406 * @no_reclaim_cmds: Some devices erroneously don't set the
407 * SEQ_RX_FRAME bit on some notifications, this is the
408 * list of such notifications to filter. Max length is
409 * %MAX_NO_RECLAIM_CMDS.
410 * @n_no_reclaim_cmds: # of commands in list
411 * @rx_buf_size: RX buffer size needed for A-MSDUs
412 * if unset 4k will be the RX buffer size
413 * @bc_table_dword: set to true if the BC table expects the byte count to be
414 * in DWORD (as opposed to bytes)
415 * @scd_set_active: should the transport configure the SCD for HCMD queue
416 * @command_groups: array of command groups, each member is an array of the
417 * commands in the group; for debugging only
418 * @command_groups_size: number of command groups, to avoid illegal access
419 * @cb_data_offs: offset inside skb->cb to store transport data at, must have
420 * space for at least two pointers
421 * @fw_reset_handshake: firmware supports reset flow handshake
422 * @queue_alloc_cmd_ver: queue allocation command version, set to 0
423 * for using the older SCD_QUEUE_CFG, set to the version of
424 * SCD_QUEUE_CONFIG_CMD otherwise.
425 */
426 struct iwl_trans_config {
427 struct iwl_op_mode *op_mode;
428
429 u8 cmd_queue;
430 u8 cmd_fifo;
431 unsigned int cmd_q_wdg_timeout;
432 const u8 *no_reclaim_cmds;
433 unsigned int n_no_reclaim_cmds;
434
435 enum iwl_amsdu_size rx_buf_size;
436 bool bc_table_dword;
437 bool scd_set_active;
438 const struct iwl_hcmd_arr *command_groups;
439 int command_groups_size;
440
441 u8 cb_data_offs;
442 bool fw_reset_handshake;
443 u8 queue_alloc_cmd_ver;
444 };
445
446 struct iwl_trans_dump_data {
447 u32 len;
448 u8 data[];
449 };
450
451 struct iwl_trans;
452
453 struct iwl_trans_txq_scd_cfg {
454 u8 fifo;
455 u8 sta_id;
456 u8 tid;
457 bool aggregate;
458 int frame_limit;
459 };
460
461 /**
462 * struct iwl_trans_rxq_dma_data - RX queue DMA data
463 * @fr_bd_cb: DMA address of free BD cyclic buffer
464 * @fr_bd_wid: Initial write index of the free BD cyclic buffer
465 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
466 * @ur_bd_cb: DMA address of used BD cyclic buffer
467 */
468 struct iwl_trans_rxq_dma_data {
469 u64 fr_bd_cb;
470 u32 fr_bd_wid;
471 u64 urbd_stts_wrptr;
472 u64 ur_bd_cb;
473 };
474
475 /**
476 * struct iwl_trans_ops - transport specific operations
477 *
478 * All the handlers MUST be implemented
479 *
480 * @start_hw: starts the HW. From that point on, the HW can send interrupts.
481 * May sleep.
482 * @op_mode_leave: Turn off the HW RF kill indication if on
483 * May sleep
484 * @start_fw: allocates and inits all the resources for the transport
485 * layer. Also kick a fw image.
486 * May sleep
487 * @fw_alive: called when the fw sends alive notification. If the fw provides
488 * the SCD base address in SRAM, then provide it here, or 0 otherwise.
489 * May sleep
490 * @stop_device: stops the whole device (embedded CPU put to reset) and stops
491 * the HW. From that point on, the HW will be stopped but will still issue
492 * an interrupt if the HW RF kill switch is triggered.
493 * This callback must do the right thing and not crash even if %start_hw()
494 * was called but not &start_fw(). May sleep.
495 * @d3_suspend: put the device into the correct mode for WoWLAN during
496 * suspend. This is optional, if not implemented WoWLAN will not be
497 * supported. This callback may sleep.
498 * @d3_resume: resume the device after WoWLAN, enabling the opmode to
499 * talk to the WoWLAN image to get its status. This is optional, if not
500 * implemented WoWLAN will not be supported. This callback may sleep.
501 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
502 * If RFkill is asserted in the middle of a SYNC host command, it must
503 * return -ERFKILL straight away.
504 * May sleep only if CMD_ASYNC is not set
505 * @tx: send an skb. The transport relies on the op_mode to zero the
506 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
507 * the CSUM will be taken care of (TCP CSUM and IP header in case of
508 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
509 * header if it is IPv4.
510 * Must be atomic
511 * @reclaim: free packet until ssn. Returns a list of freed packets.
512 * Must be atomic
513 * @txq_enable: setup a queue. To setup an AC queue, use the
514 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
515 * this one. The op_mode must not configure the HCMD queue. The scheduler
516 * configuration may be %NULL, in which case the hardware will not be
517 * configured. If true is returned, the operation mode needs to increment
518 * the sequence number of the packets routed to this queue because of a
519 * hardware scheduler bug. May sleep.
520 * @txq_disable: de-configure a Tx queue to send AMPDUs
521 * Must be atomic
522 * @txq_set_shared_mode: change Tx queue shared/unshared marking
523 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
524 * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
525 * @freeze_txq_timer: prevents the timer of the queue from firing until the
526 * queue is set to awake. Must be atomic.
527 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
528 * that the transport needs to refcount the calls since this function
529 * will be called several times with block = true, and then the queues
530 * need to be unblocked only after the same number of calls with
531 * block = false.
532 * @write8: write a u8 to a register at offset ofs from the BAR
533 * @write32: write a u32 to a register at offset ofs from the BAR
534 * @read32: read a u32 register at offset ofs from the BAR
535 * @read_prph: read a DWORD from a periphery register
536 * @write_prph: write a DWORD to a periphery register
537 * @read_mem: read device's SRAM in DWORD
538 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
539 * will be zeroed.
540 * @read_config32: read a u32 value from the device's config space at
541 * the given offset.
542 * @configure: configure parameters required by the transport layer from
543 * the op_mode. May be called several times before start_fw, can't be
544 * called after that.
545 * @set_pmi: set the power pmi state
546 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
547 * Sleeping is not allowed between grab_nic_access and
548 * release_nic_access.
549 * @release_nic_access: let the NIC go to sleep. The "flags" parameter
550 * must be the same one that was sent before to the grab_nic_access.
551 * @set_bits_mask - set SRAM register according to value and mask.
552 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
553 * TX'ed commands and similar. The buffer will be vfree'd by the caller.
554 * Note that the transport must fill in the proper file headers.
555 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
556 * of the trans debugfs
557 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
558 * context info.
559 * @interrupts: disable/enable interrupts to transport
560 */
561 struct iwl_trans_ops {
562
563 int (*start_hw)(struct iwl_trans *iwl_trans);
564 void (*op_mode_leave)(struct iwl_trans *iwl_trans);
565 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
566 bool run_in_rfkill);
567 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
568 void (*stop_device)(struct iwl_trans *trans);
569
570 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
571 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
572 bool test, bool reset);
573
574 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
575
576 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
577 struct iwl_device_tx_cmd *dev_cmd, int queue);
578 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
579 struct sk_buff_head *skbs);
580
581 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
582
583 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
584 const struct iwl_trans_txq_scd_cfg *cfg,
585 unsigned int queue_wdg_timeout);
586 void (*txq_disable)(struct iwl_trans *trans, int queue,
587 bool configure_scd);
588 /* 22000 functions */
589 int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
590 u32 sta_mask, u8 tid,
591 int size, unsigned int queue_wdg_timeout);
592 void (*txq_free)(struct iwl_trans *trans, int queue);
593 int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
594 struct iwl_trans_rxq_dma_data *data);
595
596 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
597 bool shared);
598
599 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
600 int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
601 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
602 bool freeze);
603 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
604
605 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
606 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
607 u32 (*read32)(struct iwl_trans *trans, u32 ofs);
608 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
609 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
610 int (*read_mem)(struct iwl_trans *trans, u32 addr,
611 void *buf, int dwords);
612 int (*write_mem)(struct iwl_trans *trans, u32 addr,
613 const void *buf, int dwords);
614 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
615 void (*configure)(struct iwl_trans *trans,
616 const struct iwl_trans_config *trans_cfg);
617 void (*set_pmi)(struct iwl_trans *trans, bool state);
618 int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
619 bool (*grab_nic_access)(struct iwl_trans *trans);
620 void (*release_nic_access)(struct iwl_trans *trans);
621 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
622 u32 value);
623
624 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
625 u32 dump_mask,
626 const struct iwl_dump_sanitize_ops *sanitize_ops,
627 void *sanitize_ctx);
628 void (*debugfs_cleanup)(struct iwl_trans *trans);
629 void (*sync_nmi)(struct iwl_trans *trans);
630 int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
631 int (*set_reduce_power)(struct iwl_trans *trans,
632 const void *data, u32 len);
633 void (*interrupts)(struct iwl_trans *trans, bool enable);
634 int (*imr_dma_data)(struct iwl_trans *trans,
635 u32 dst_addr, u64 src_addr,
636 u32 byte_cnt);
637
638 };
639
640 /**
641 * enum iwl_trans_state - state of the transport layer
642 *
643 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
644 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
645 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
646 */
647 enum iwl_trans_state {
648 IWL_TRANS_NO_FW,
649 IWL_TRANS_FW_STARTED,
650 IWL_TRANS_FW_ALIVE,
651 };
652
653 /**
654 * DOC: Platform power management
655 *
656 * In system-wide power management the entire platform goes into a low
657 * power state (e.g. idle or suspend to RAM) at the same time and the
658 * device is configured as a wakeup source for the entire platform.
659 * This is usually triggered by userspace activity (e.g. the user
660 * presses the suspend button or a power management daemon decides to
661 * put the platform in low power mode). The device's behavior in this
662 * mode is dictated by the wake-on-WLAN configuration.
663 *
664 * The terms used for the device's behavior are as follows:
665 *
666 * - D0: the device is fully powered and the host is awake;
667 * - D3: the device is in low power mode and only reacts to
668 * specific events (e.g. magic-packet received or scan
669 * results found);
670 *
671 * These terms reflect the power modes in the firmware and are not to
672 * be confused with the physical device power state.
673 */
674
675 /**
676 * enum iwl_plat_pm_mode - platform power management mode
677 *
678 * This enumeration describes the device's platform power management
679 * behavior when in system-wide suspend (i.e WoWLAN).
680 *
681 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
682 * device. In system-wide suspend mode, it means that the all
683 * connections will be closed automatically by mac80211 before
684 * the platform is suspended.
685 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
686 */
687 enum iwl_plat_pm_mode {
688 IWL_PLAT_PM_MODE_DISABLED,
689 IWL_PLAT_PM_MODE_D3,
690 };
691
692 /**
693 * enum iwl_ini_cfg_state
694 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
695 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
696 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
697 * are corrupted. The rest of the debug TLVs will still be used
698 */
699 enum iwl_ini_cfg_state {
700 IWL_INI_CFG_STATE_NOT_LOADED,
701 IWL_INI_CFG_STATE_LOADED,
702 IWL_INI_CFG_STATE_CORRUPTED,
703 };
704
705 /* Max time to wait for nmi interrupt */
706 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
707
708 /**
709 * struct iwl_dram_data
710 * @physical: page phy pointer
711 * @block: pointer to the allocated block/page
712 * @size: size of the block/page
713 */
714 struct iwl_dram_data {
715 dma_addr_t physical;
716 void *block;
717 int size;
718 };
719
720 /**
721 * struct iwl_fw_mon - fw monitor per allocation id
722 * @num_frags: number of fragments
723 * @frags: an array of DRAM buffer fragments
724 */
725 struct iwl_fw_mon {
726 u32 num_frags;
727 struct iwl_dram_data *frags;
728 };
729
730 /**
731 * struct iwl_self_init_dram - dram data used by self init process
732 * @fw: lmac and umac dram data
733 * @fw_cnt: total number of items in array
734 * @paging: paging dram data
735 * @paging_cnt: total number of items in array
736 */
737 struct iwl_self_init_dram {
738 struct iwl_dram_data *fw;
739 int fw_cnt;
740 struct iwl_dram_data *paging;
741 int paging_cnt;
742 };
743
744 /**
745 * struct iwl_imr_data - imr dram data used during debug process
746 * @imr_enable: imr enable status received from fw
747 * @imr_size: imr dram size received from fw
748 * @sram_addr: sram address from debug tlv
749 * @sram_size: sram size from debug tlv
750 * @imr2sram_remainbyte`: size remained after each dma transfer
751 * @imr_curr_addr: current dst address used during dma transfer
752 * @imr_base_addr: imr address received from fw
753 */
754 struct iwl_imr_data {
755 u32 imr_enable;
756 u32 imr_size;
757 u32 sram_addr;
758 u32 sram_size;
759 u32 imr2sram_remainbyte;
760 u64 imr_curr_addr;
761 __le64 imr_base_addr;
762 };
763
764 /**
765 * struct iwl_trans_debug - transport debug related data
766 *
767 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
768 * @rec_on: true iff there is a fw debug recording currently active
769 * @dest_tlv: points to the destination TLV for debug
770 * @conf_tlv: array of pointers to configuration TLVs for debug
771 * @trigger_tlv: array of pointers to triggers TLVs for debug
772 * @lmac_error_event_table: addrs of lmacs error tables
773 * @umac_error_event_table: addr of umac error table
774 * @tcm_error_event_table: address(es) of TCM error table(s)
775 * @rcm_error_event_table: address(es) of RCM error table(s)
776 * @error_event_table_tlv_status: bitmap that indicates what error table
777 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status
778 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
779 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
780 * @fw_mon_cfg: debug buffer allocation configuration
781 * @fw_mon_ini: DRAM buffer fragments per allocation id
782 * @fw_mon: DRAM buffer for firmware monitor
783 * @hw_error: equals true if hw error interrupt was received from the FW
784 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
785 * @active_regions: active regions
786 * @debug_info_tlv_list: list of debug info TLVs
787 * @time_point: array of debug time points
788 * @periodic_trig_list: periodic triggers list
789 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
790 * @ucode_preset: preset based on ucode
791 */
792 struct iwl_trans_debug {
793 u8 n_dest_reg;
794 bool rec_on;
795
796 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
797 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
798 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
799
800 u32 lmac_error_event_table[2];
801 u32 umac_error_event_table;
802 u32 tcm_error_event_table[2];
803 u32 rcm_error_event_table[2];
804 unsigned int error_event_table_tlv_status;
805
806 enum iwl_ini_cfg_state internal_ini_cfg;
807 enum iwl_ini_cfg_state external_ini_cfg;
808
809 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
810 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
811
812 struct iwl_dram_data fw_mon;
813
814 bool hw_error;
815 enum iwl_fw_ini_buffer_location ini_dest;
816
817 u64 unsupported_region_msk;
818 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
819 struct list_head debug_info_tlv_list;
820 struct iwl_dbg_tlv_time_point_data
821 time_point[IWL_FW_INI_TIME_POINT_NUM];
822 struct list_head periodic_trig_list;
823
824 u32 domains_bitmap;
825 u32 ucode_preset;
826 bool restart_required;
827 u32 last_tp_resetfw;
828 struct iwl_imr_data imr_data;
829 };
830
831 struct iwl_dma_ptr {
832 dma_addr_t dma;
833 void *addr;
834 size_t size;
835 };
836
837 struct iwl_cmd_meta {
838 /* only for SYNC commands, iff the reply skb is wanted */
839 struct iwl_host_cmd *source;
840 u32 flags;
841 u32 tbs;
842 };
843
844 /*
845 * The FH will write back to the first TB only, so we need to copy some data
846 * into the buffer regardless of whether it should be mapped or not.
847 * This indicates how big the first TB must be to include the scratch buffer
848 * and the assigned PN.
849 * Since PN location is 8 bytes at offset 12, it's 20 now.
850 * If we make it bigger then allocations will be bigger and copy slower, so
851 * that's probably not useful.
852 */
853 #define IWL_FIRST_TB_SIZE 20
854 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
855
856 struct iwl_pcie_txq_entry {
857 void *cmd;
858 struct sk_buff *skb;
859 /* buffer to free after command completes */
860 const void *free_buf;
861 struct iwl_cmd_meta meta;
862 };
863
864 struct iwl_pcie_first_tb_buf {
865 u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
866 };
867
868 /**
869 * struct iwl_txq - Tx Queue for DMA
870 * @q: generic Rx/Tx queue descriptor
871 * @tfds: transmit frame descriptors (DMA memory)
872 * @first_tb_bufs: start of command headers, including scratch buffers, for
873 * the writeback -- this is DMA memory and an array holding one buffer
874 * for each command on the queue
875 * @first_tb_dma: DMA address for the first_tb_bufs start
876 * @entries: transmit entries (driver state)
877 * @lock: queue lock
878 * @stuck_timer: timer that fires if queue gets stuck
879 * @trans: pointer back to transport (for timer)
880 * @need_update: indicates need to update read/write index
881 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
882 * @wd_timeout: queue watchdog timeout (jiffies) - per queue
883 * @frozen: tx stuck queue timer is frozen
884 * @frozen_expiry_remainder: remember how long until the timer fires
885 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
886 * @write_ptr: 1-st empty entry (index) host_w
887 * @read_ptr: last used entry (index) host_r
888 * @dma_addr: physical addr for BD's
889 * @n_window: safe queue window
890 * @id: queue id
891 * @low_mark: low watermark, resume queue if free space more than this
892 * @high_mark: high watermark, stop queue if free space less than this
893 *
894 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
895 * descriptors) and required locking structures.
896 *
897 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
898 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
899 * there might be HW changes in the future). For the normal TX
900 * queues, n_window, which is the size of the software queue data
901 * is also 256; however, for the command queue, n_window is only
902 * 32 since we don't need so many commands pending. Since the HW
903 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
904 * This means that we end up with the following:
905 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
906 * SW entries: | 0 | ... | 31 |
907 * where N is a number between 0 and 7. This means that the SW
908 * data is a window overlayed over the HW queue.
909 */
910 struct iwl_txq {
911 void *tfds;
912 struct iwl_pcie_first_tb_buf *first_tb_bufs;
913 dma_addr_t first_tb_dma;
914 struct iwl_pcie_txq_entry *entries;
915 /* lock for syncing changes on the queue */
916 spinlock_t lock;
917 unsigned long frozen_expiry_remainder;
918 struct timer_list stuck_timer;
919 struct iwl_trans *trans;
920 bool need_update;
921 bool frozen;
922 bool ampdu;
923 int block;
924 unsigned long wd_timeout;
925 struct sk_buff_head overflow_q;
926 struct iwl_dma_ptr bc_tbl;
927
928 int write_ptr;
929 int read_ptr;
930 dma_addr_t dma_addr;
931 int n_window;
932 u32 id;
933 int low_mark;
934 int high_mark;
935
936 bool overflow_tx;
937 };
938
939 /**
940 * struct iwl_trans_txqs - transport tx queues data
941 *
942 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
943 * @page_offs: offset from skb->cb to mac header page pointer
944 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
945 * @queue_used - bit mask of used queues
946 * @queue_stopped - bit mask of stopped queues
947 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
948 * @queue_alloc_cmd_ver: queue allocation command version
949 */
950 struct iwl_trans_txqs {
951 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
952 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
953 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
954 struct dma_pool *bc_pool;
955 size_t bc_tbl_size;
956 bool bc_table_dword;
957 u8 page_offs;
958 u8 dev_cmd_offs;
959 struct iwl_tso_hdr_page __percpu *tso_hdr_page;
960
961 struct {
962 u8 fifo;
963 u8 q_id;
964 unsigned int wdg_timeout;
965 } cmd;
966
967 struct {
968 u8 max_tbs;
969 u16 size;
970 u8 addr_size;
971 } tfd;
972
973 struct iwl_dma_ptr scd_bc_tbls;
974
975 u8 queue_alloc_cmd_ver;
976 };
977
978 /**
979 * struct iwl_trans - transport common data
980 *
981 * @csme_own - true if we couldn't get ownership on the device
982 * @ops - pointer to iwl_trans_ops
983 * @op_mode - pointer to the op_mode
984 * @trans_cfg: the trans-specific configuration part
985 * @cfg - pointer to the configuration
986 * @drv - pointer to iwl_drv
987 * @status: a bit-mask of transport status flags
988 * @dev - pointer to struct device * that represents the device
989 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
990 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
991 * @hw_rf_id a u32 with the device RF ID
992 * @hw_id: a u32 with the ID of the device / sub-device.
993 * Set during transport allocation.
994 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
995 * @hw_rev_step: The mac step of the HW
996 * @pm_support: set to true in start_hw if link pm is supported
997 * @ltr_enabled: set to true if the LTR is enabled
998 * @wide_cmd_header: true when ucode supports wide command header format
999 * @wait_command_queue: wait queue for sync commands
1000 * @num_rx_queues: number of RX queues allocated by the transport;
1001 * the transport must set this before calling iwl_drv_start()
1002 * @iml_len: the length of the image loader
1003 * @iml: a pointer to the image loader itself
1004 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1005 * The user should use iwl_trans_{alloc,free}_tx_cmd.
1006 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1007 * starting the firmware, used for tracing
1008 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1009 * start of the 802.11 header in the @rx_mpdu_cmd
1010 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
1011 * @system_pm_mode: the system-wide power management mode in use.
1012 * This mode is set dynamically, depending on the WoWLAN values
1013 * configured from the userspace at runtime.
1014 * @iwl_trans_txqs: transport tx queues data.
1015 */
1016 struct iwl_trans {
1017 bool csme_own;
1018 const struct iwl_trans_ops *ops;
1019 struct iwl_op_mode *op_mode;
1020 const struct iwl_cfg_trans_params *trans_cfg;
1021 const struct iwl_cfg *cfg;
1022 struct iwl_drv *drv;
1023 enum iwl_trans_state state;
1024 unsigned long status;
1025
1026 struct device *dev;
1027 u32 max_skb_frags;
1028 u32 hw_rev;
1029 u32 hw_rev_step;
1030 u32 hw_rf_id;
1031 u32 hw_id;
1032 char hw_id_str[52];
1033 u32 sku_id[3];
1034
1035 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1036
1037 bool pm_support;
1038 bool ltr_enabled;
1039 u8 pnvm_loaded:1;
1040 u8 reduce_power_loaded:1;
1041
1042 const struct iwl_hcmd_arr *command_groups;
1043 int command_groups_size;
1044 bool wide_cmd_header;
1045
1046 wait_queue_head_t wait_command_queue;
1047 u8 num_rx_queues;
1048
1049 size_t iml_len;
1050 u8 *iml;
1051
1052 /* The following fields are internal only */
1053 struct kmem_cache *dev_cmd_pool;
1054 char dev_cmd_pool_name[50];
1055
1056 struct dentry *dbgfs_dir;
1057
1058 #ifdef CONFIG_LOCKDEP
1059 struct lockdep_map sync_cmd_lockdep_map;
1060 #endif
1061
1062 struct iwl_trans_debug dbg;
1063 struct iwl_self_init_dram init_dram;
1064
1065 enum iwl_plat_pm_mode system_pm_mode;
1066
1067 const char *name;
1068 struct iwl_trans_txqs txqs;
1069
1070 /* pointer to trans specific struct */
1071 /*Ensure that this pointer will always be aligned to sizeof pointer */
1072 char trans_specific[] __aligned(sizeof(void *));
1073 };
1074
1075 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1076 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1077
1078 static inline void iwl_trans_configure(struct iwl_trans *trans,
1079 const struct iwl_trans_config *trans_cfg)
1080 {
1081 trans->op_mode = trans_cfg->op_mode;
1082
1083 trans->ops->configure(trans, trans_cfg);
1084 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1085 }
1086
1087 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1088 {
1089 might_sleep();
1090
1091 return trans->ops->start_hw(trans);
1092 }
1093
1094 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1095 {
1096 might_sleep();
1097
1098 if (trans->ops->op_mode_leave)
1099 trans->ops->op_mode_leave(trans);
1100
1101 trans->op_mode = NULL;
1102
1103 trans->state = IWL_TRANS_NO_FW;
1104 }
1105
1106 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1107 {
1108 might_sleep();
1109
1110 trans->state = IWL_TRANS_FW_ALIVE;
1111
1112 trans->ops->fw_alive(trans, scd_addr);
1113 }
1114
1115 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1116 const struct fw_img *fw,
1117 bool run_in_rfkill)
1118 {
1119 int ret;
1120
1121 might_sleep();
1122
1123 WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1124
1125 clear_bit(STATUS_FW_ERROR, &trans->status);
1126 ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1127 if (ret == 0)
1128 trans->state = IWL_TRANS_FW_STARTED;
1129
1130 return ret;
1131 }
1132
1133 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1134 {
1135 might_sleep();
1136
1137 trans->ops->stop_device(trans);
1138
1139 trans->state = IWL_TRANS_NO_FW;
1140 }
1141
1142 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1143 bool reset)
1144 {
1145 might_sleep();
1146 if (!trans->ops->d3_suspend)
1147 return 0;
1148
1149 return trans->ops->d3_suspend(trans, test, reset);
1150 }
1151
1152 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1153 enum iwl_d3_status *status,
1154 bool test, bool reset)
1155 {
1156 might_sleep();
1157 if (!trans->ops->d3_resume)
1158 return 0;
1159
1160 return trans->ops->d3_resume(trans, status, test, reset);
1161 }
1162
1163 static inline struct iwl_trans_dump_data *
1164 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1165 const struct iwl_dump_sanitize_ops *sanitize_ops,
1166 void *sanitize_ctx)
1167 {
1168 if (!trans->ops->dump_data)
1169 return NULL;
1170 return trans->ops->dump_data(trans, dump_mask,
1171 sanitize_ops, sanitize_ctx);
1172 }
1173
1174 static inline struct iwl_device_tx_cmd *
1175 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1176 {
1177 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1178 }
1179
1180 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1181
1182 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1183 struct iwl_device_tx_cmd *dev_cmd)
1184 {
1185 kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1186 }
1187
1188 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1189 struct iwl_device_tx_cmd *dev_cmd, int queue)
1190 {
1191 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1192 return -EIO;
1193
1194 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1195 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1196 return -EIO;
1197 }
1198
1199 return trans->ops->tx(trans, skb, dev_cmd, queue);
1200 }
1201
1202 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1203 int ssn, struct sk_buff_head *skbs)
1204 {
1205 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1206 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1207 return;
1208 }
1209
1210 trans->ops->reclaim(trans, queue, ssn, skbs);
1211 }
1212
1213 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1214 int ptr)
1215 {
1216 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1217 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1218 return;
1219 }
1220
1221 trans->ops->set_q_ptrs(trans, queue, ptr);
1222 }
1223
1224 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1225 bool configure_scd)
1226 {
1227 trans->ops->txq_disable(trans, queue, configure_scd);
1228 }
1229
1230 static inline bool
1231 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1232 const struct iwl_trans_txq_scd_cfg *cfg,
1233 unsigned int queue_wdg_timeout)
1234 {
1235 might_sleep();
1236
1237 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1238 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1239 return false;
1240 }
1241
1242 return trans->ops->txq_enable(trans, queue, ssn,
1243 cfg, queue_wdg_timeout);
1244 }
1245
1246 static inline int
1247 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1248 struct iwl_trans_rxq_dma_data *data)
1249 {
1250 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1251 return -ENOTSUPP;
1252
1253 return trans->ops->rxq_dma_data(trans, queue, data);
1254 }
1255
1256 static inline void
1257 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1258 {
1259 if (WARN_ON_ONCE(!trans->ops->txq_free))
1260 return;
1261
1262 trans->ops->txq_free(trans, queue);
1263 }
1264
1265 static inline int
1266 iwl_trans_txq_alloc(struct iwl_trans *trans,
1267 u32 flags, u32 sta_mask, u8 tid,
1268 int size, unsigned int wdg_timeout)
1269 {
1270 might_sleep();
1271
1272 if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1273 return -ENOTSUPP;
1274
1275 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1276 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1277 return -EIO;
1278 }
1279
1280 return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1281 size, wdg_timeout);
1282 }
1283
1284 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1285 int queue, bool shared_mode)
1286 {
1287 if (trans->ops->txq_set_shared_mode)
1288 trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1289 }
1290
1291 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1292 int fifo, int sta_id, int tid,
1293 int frame_limit, u16 ssn,
1294 unsigned int queue_wdg_timeout)
1295 {
1296 struct iwl_trans_txq_scd_cfg cfg = {
1297 .fifo = fifo,
1298 .sta_id = sta_id,
1299 .tid = tid,
1300 .frame_limit = frame_limit,
1301 .aggregate = sta_id >= 0,
1302 };
1303
1304 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1305 }
1306
1307 static inline
1308 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1309 unsigned int queue_wdg_timeout)
1310 {
1311 struct iwl_trans_txq_scd_cfg cfg = {
1312 .fifo = fifo,
1313 .sta_id = -1,
1314 .tid = IWL_MAX_TID_COUNT,
1315 .frame_limit = IWL_FRAME_LIMIT,
1316 .aggregate = false,
1317 };
1318
1319 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1320 }
1321
1322 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1323 unsigned long txqs,
1324 bool freeze)
1325 {
1326 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1327 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1328 return;
1329 }
1330
1331 if (trans->ops->freeze_txq_timer)
1332 trans->ops->freeze_txq_timer(trans, txqs, freeze);
1333 }
1334
1335 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1336 bool block)
1337 {
1338 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1339 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1340 return;
1341 }
1342
1343 if (trans->ops->block_txq_ptrs)
1344 trans->ops->block_txq_ptrs(trans, block);
1345 }
1346
1347 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1348 u32 txqs)
1349 {
1350 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1351 return -ENOTSUPP;
1352
1353 /* No need to wait if the firmware is not alive */
1354 if (trans->state != IWL_TRANS_FW_ALIVE) {
1355 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1356 return -EIO;
1357 }
1358
1359 return trans->ops->wait_tx_queues_empty(trans, txqs);
1360 }
1361
1362 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1363 {
1364 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1365 return -ENOTSUPP;
1366
1367 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1368 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1369 return -EIO;
1370 }
1371
1372 return trans->ops->wait_txq_empty(trans, queue);
1373 }
1374
1375 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1376 {
1377 trans->ops->write8(trans, ofs, val);
1378 }
1379
1380 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1381 {
1382 trans->ops->write32(trans, ofs, val);
1383 }
1384
1385 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1386 {
1387 return trans->ops->read32(trans, ofs);
1388 }
1389
1390 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1391 {
1392 return trans->ops->read_prph(trans, ofs);
1393 }
1394
1395 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1396 u32 val)
1397 {
1398 return trans->ops->write_prph(trans, ofs, val);
1399 }
1400
1401 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1402 void *buf, int dwords)
1403 {
1404 return trans->ops->read_mem(trans, addr, buf, dwords);
1405 }
1406
1407 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \
1408 do { \
1409 if (__builtin_constant_p(bufsize)) \
1410 BUILD_BUG_ON((bufsize) % sizeof(u32)); \
1411 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1412 } while (0)
1413
1414 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1415 u32 dst_addr, u64 src_addr,
1416 u32 byte_cnt)
1417 {
1418 if (trans->ops->imr_dma_data)
1419 return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1420 return 0;
1421 }
1422
1423 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1424 {
1425 u32 value;
1426
1427 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1428 return 0xa5a5a5a5;
1429
1430 return value;
1431 }
1432
1433 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1434 const void *buf, int dwords)
1435 {
1436 return trans->ops->write_mem(trans, addr, buf, dwords);
1437 }
1438
1439 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1440 u32 val)
1441 {
1442 return iwl_trans_write_mem(trans, addr, &val, 1);
1443 }
1444
1445 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1446 {
1447 if (trans->ops->set_pmi)
1448 trans->ops->set_pmi(trans, state);
1449 }
1450
1451 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1452 bool retake_ownership)
1453 {
1454 if (trans->ops->sw_reset)
1455 return trans->ops->sw_reset(trans, retake_ownership);
1456 return 0;
1457 }
1458
1459 static inline void
1460 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1461 {
1462 trans->ops->set_bits_mask(trans, reg, mask, value);
1463 }
1464
1465 #define iwl_trans_grab_nic_access(trans) \
1466 __cond_lock(nic_access, \
1467 likely((trans)->ops->grab_nic_access(trans)))
1468
1469 static inline void __releases(nic_access)
1470 iwl_trans_release_nic_access(struct iwl_trans *trans)
1471 {
1472 trans->ops->release_nic_access(trans);
1473 __release(nic_access);
1474 }
1475
1476 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1477 {
1478 if (WARN_ON_ONCE(!trans->op_mode))
1479 return;
1480
1481 /* prevent double restarts due to the same erroneous FW */
1482 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1483 iwl_op_mode_nic_error(trans->op_mode, sync);
1484 trans->state = IWL_TRANS_NO_FW;
1485 }
1486 }
1487
1488 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1489 {
1490 return trans->state == IWL_TRANS_FW_ALIVE;
1491 }
1492
1493 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1494 {
1495 if (trans->ops->sync_nmi)
1496 trans->ops->sync_nmi(trans);
1497 }
1498
1499 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1500 u32 sw_err_bit);
1501
1502 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1503 const void *data, u32 len)
1504 {
1505 if (trans->ops->set_pnvm) {
1506 int ret = trans->ops->set_pnvm(trans, data, len);
1507
1508 if (ret)
1509 return ret;
1510 }
1511
1512 trans->pnvm_loaded = true;
1513
1514 return 0;
1515 }
1516
1517 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1518 const void *data, u32 len)
1519 {
1520 if (trans->ops->set_reduce_power) {
1521 int ret = trans->ops->set_reduce_power(trans, data, len);
1522
1523 if (ret)
1524 return ret;
1525 }
1526
1527 trans->reduce_power_loaded = true;
1528 return 0;
1529 }
1530
1531 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1532 {
1533 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1534 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1535 }
1536
1537 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1538 {
1539 if (trans->ops->interrupts)
1540 trans->ops->interrupts(trans, enable);
1541 }
1542
1543 /*****************************************************
1544 * transport helper functions
1545 *****************************************************/
1546 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1547 struct device *dev,
1548 const struct iwl_trans_ops *ops,
1549 const struct iwl_cfg_trans_params *cfg_trans);
1550 int iwl_trans_init(struct iwl_trans *trans);
1551 void iwl_trans_free(struct iwl_trans *trans);
1552
1553 /*****************************************************
1554 * driver (transport) register/unregister functions
1555 ******************************************************/
1556 int __must_check iwl_pci_register_driver(void);
1557 void iwl_pci_unregister_driver(void);
1558
1559 #endif /* __iwl_trans_h__ */
Cache object: aa6878f2cfc39c31c2f9078083e6375b
|