The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/dev/iwlwifi/mvm/nvm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
    2 /*
    3  * Copyright (C) 2012-2014, 2018-2019, 2021 Intel Corporation
    4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
    5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
    6  */
    7 #include <linux/firmware.h>
    8 #if defined(__linux__)
    9 #include <linux/rtnetlink.h>
   10 #endif
   11 #include "iwl-trans.h"
   12 #include "iwl-csr.h"
   13 #include "mvm.h"
   14 #include "iwl-eeprom-parse.h"
   15 #include "iwl-eeprom-read.h"
   16 #include "iwl-nvm-parse.h"
   17 #include "iwl-prph.h"
   18 #include "fw/acpi.h"
   19 
   20 /* Default NVM size to read */
   21 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
   22 
   23 #define NVM_WRITE_OPCODE 1
   24 #define NVM_READ_OPCODE 0
   25 
   26 /* load nvm chunk response */
   27 enum {
   28         READ_NVM_CHUNK_SUCCEED = 0,
   29         READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
   30 };
   31 
   32 /*
   33  * prepare the NVM host command w/ the pointers to the nvm buffer
   34  * and send it to fw
   35  */
   36 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
   37                                u16 offset, u16 length, const u8 *data)
   38 {
   39         struct iwl_nvm_access_cmd nvm_access_cmd = {
   40                 .offset = cpu_to_le16(offset),
   41                 .length = cpu_to_le16(length),
   42                 .type = cpu_to_le16(section),
   43                 .op_code = NVM_WRITE_OPCODE,
   44         };
   45         struct iwl_host_cmd cmd = {
   46                 .id = NVM_ACCESS_CMD,
   47                 .len = { sizeof(struct iwl_nvm_access_cmd), length },
   48                 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
   49                 .data = { &nvm_access_cmd, data },
   50                 /* data may come from vmalloc, so use _DUP */
   51                 .dataflags = { 0, IWL_HCMD_DFL_DUP },
   52         };
   53         struct iwl_rx_packet *pkt;
   54         struct iwl_nvm_access_resp *nvm_resp;
   55         int ret;
   56 
   57         ret = iwl_mvm_send_cmd(mvm, &cmd);
   58         if (ret)
   59                 return ret;
   60 
   61         pkt = cmd.resp_pkt;
   62         /* Extract & check NVM write response */
   63         nvm_resp = (void *)pkt->data;
   64         if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
   65                 IWL_ERR(mvm,
   66                         "NVM access write command failed for section %u (status = 0x%x)\n",
   67                         section, le16_to_cpu(nvm_resp->status));
   68                 ret = -EIO;
   69         }
   70 
   71         iwl_free_resp(&cmd);
   72         return ret;
   73 }
   74 
   75 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
   76                               u16 offset, u16 length, u8 *data)
   77 {
   78         struct iwl_nvm_access_cmd nvm_access_cmd = {
   79                 .offset = cpu_to_le16(offset),
   80                 .length = cpu_to_le16(length),
   81                 .type = cpu_to_le16(section),
   82                 .op_code = NVM_READ_OPCODE,
   83         };
   84         struct iwl_nvm_access_resp *nvm_resp;
   85         struct iwl_rx_packet *pkt;
   86         struct iwl_host_cmd cmd = {
   87                 .id = NVM_ACCESS_CMD,
   88                 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
   89                 .data = { &nvm_access_cmd, },
   90         };
   91         int ret, bytes_read, offset_read;
   92         u8 *resp_data;
   93 
   94         cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
   95 
   96         ret = iwl_mvm_send_cmd(mvm, &cmd);
   97         if (ret)
   98                 return ret;
   99 
  100         pkt = cmd.resp_pkt;
  101 
  102         /* Extract NVM response */
  103         nvm_resp = (void *)pkt->data;
  104         ret = le16_to_cpu(nvm_resp->status);
  105         bytes_read = le16_to_cpu(nvm_resp->length);
  106         offset_read = le16_to_cpu(nvm_resp->offset);
  107         resp_data = nvm_resp->data;
  108         if (ret) {
  109                 if ((offset != 0) &&
  110                     (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
  111                         /*
  112                          * meaning of NOT_VALID_ADDRESS:
  113                          * driver try to read chunk from address that is
  114                          * multiple of 2K and got an error since addr is empty.
  115                          * meaning of (offset != 0): driver already
  116                          * read valid data from another chunk so this case
  117                          * is not an error.
  118                          */
  119                         IWL_DEBUG_EEPROM(mvm->trans->dev,
  120                                          "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
  121                                          offset);
  122                         ret = 0;
  123                 } else {
  124                         IWL_DEBUG_EEPROM(mvm->trans->dev,
  125                                          "NVM access command failed with status %d (device: %s)\n",
  126                                          ret, mvm->trans->name);
  127                         ret = -ENODATA;
  128                 }
  129                 goto exit;
  130         }
  131 
  132         if (offset_read != offset) {
  133                 IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
  134                         offset_read);
  135                 ret = -EINVAL;
  136                 goto exit;
  137         }
  138 
  139         /* Write data to NVM */
  140         memcpy(data + offset, resp_data, bytes_read);
  141         ret = bytes_read;
  142 
  143 exit:
  144         iwl_free_resp(&cmd);
  145         return ret;
  146 }
  147 
  148 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
  149                                  const u8 *data, u16 length)
  150 {
  151         int offset = 0;
  152 
  153         /* copy data in chunks of 2k (and remainder if any) */
  154 
  155         while (offset < length) {
  156                 int chunk_size, ret;
  157 
  158                 chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
  159                                  length - offset);
  160 
  161                 ret = iwl_nvm_write_chunk(mvm, section, offset,
  162                                           chunk_size, data + offset);
  163                 if (ret < 0)
  164                         return ret;
  165 
  166                 offset += chunk_size;
  167         }
  168 
  169         return 0;
  170 }
  171 
  172 /*
  173  * Reads an NVM section completely.
  174  * NICs prior to 7000 family doesn't have a real NVM, but just read
  175  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
  176  * by uCode, we need to manually check in this case that we don't
  177  * overflow and try to read more than the EEPROM size.
  178  * For 7000 family NICs, we supply the maximal size we can read, and
  179  * the uCode fills the response with as much data as we can,
  180  * without overflowing, so no check is needed.
  181  */
  182 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
  183                                 u8 *data, u32 size_read)
  184 {
  185         u16 length, offset = 0;
  186         int ret;
  187 
  188         /* Set nvm section read length */
  189         length = IWL_NVM_DEFAULT_CHUNK_SIZE;
  190 
  191         ret = length;
  192 
  193         /* Read the NVM until exhausted (reading less than requested) */
  194         while (ret == length) {
  195                 /* Check no memory assumptions fail and cause an overflow */
  196                 if ((size_read + offset + length) >
  197                     mvm->trans->trans_cfg->base_params->eeprom_size) {
  198                         IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
  199                         return -ENOBUFS;
  200                 }
  201 
  202                 ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
  203                 if (ret < 0) {
  204                         IWL_DEBUG_EEPROM(mvm->trans->dev,
  205                                          "Cannot read NVM from section %d offset %d, length %d\n",
  206                                          section, offset, length);
  207                         return ret;
  208                 }
  209                 offset += ret;
  210         }
  211 
  212         iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
  213 
  214         IWL_DEBUG_EEPROM(mvm->trans->dev,
  215                          "NVM section %d read completed\n", section);
  216         return offset;
  217 }
  218 
  219 static struct iwl_nvm_data *
  220 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
  221 {
  222         struct iwl_nvm_section *sections = mvm->nvm_sections;
  223         const __be16 *hw;
  224         const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
  225         int regulatory_type;
  226 
  227         /* Checking for required sections */
  228         if (mvm->trans->cfg->nvm_type == IWL_NVM) {
  229                 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
  230                     !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
  231                         IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
  232                         return NULL;
  233                 }
  234         } else {
  235                 if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
  236                         regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
  237                 else
  238                         regulatory_type = NVM_SECTION_TYPE_REGULATORY;
  239 
  240                 /* SW and REGULATORY sections are mandatory */
  241                 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
  242                     !mvm->nvm_sections[regulatory_type].data) {
  243                         IWL_ERR(mvm,
  244                                 "Can't parse empty family 8000 OTP/NVM sections\n");
  245                         return NULL;
  246                 }
  247                 /* MAC_OVERRIDE or at least HW section must exist */
  248                 if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
  249                     !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
  250                         IWL_ERR(mvm,
  251                                 "Can't parse mac_address, empty sections\n");
  252                         return NULL;
  253                 }
  254 
  255                 /* PHY_SKU section is mandatory in B0 */
  256                 if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
  257                     !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
  258                         IWL_ERR(mvm,
  259                                 "Can't parse phy_sku in B0, empty sections\n");
  260                         return NULL;
  261                 }
  262         }
  263 
  264         hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
  265         sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
  266         calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
  267         mac_override =
  268                 (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
  269         phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
  270 
  271         regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
  272                 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
  273                 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
  274 
  275         return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
  276                                   regulatory, mac_override, phy_sku,
  277                                   mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant);
  278 }
  279 
  280 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
  281 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
  282 {
  283         int i, ret = 0;
  284         struct iwl_nvm_section *sections = mvm->nvm_sections;
  285 
  286         IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
  287 
  288         for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
  289                 if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
  290                         continue;
  291                 ret = iwl_nvm_write_section(mvm, i, sections[i].data,
  292                                             sections[i].length);
  293                 if (ret < 0) {
  294                         IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
  295                         break;
  296                 }
  297         }
  298         return ret;
  299 }
  300 
  301 int iwl_nvm_init(struct iwl_mvm *mvm)
  302 {
  303         int ret, section;
  304         u32 size_read = 0;
  305         u8 *nvm_buffer, *temp;
  306         const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
  307 
  308         if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
  309                 return -EINVAL;
  310 
  311         /* load NVM values from nic */
  312         /* Read From FW NVM */
  313         IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
  314 
  315         nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
  316                              GFP_KERNEL);
  317         if (!nvm_buffer)
  318                 return -ENOMEM;
  319         for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
  320                 /* we override the constness for initial read */
  321                 ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
  322                                            size_read);
  323                 if (ret == -ENODATA) {
  324                         ret = 0;
  325                         continue;
  326                 }
  327                 if (ret < 0)
  328                         break;
  329                 size_read += ret;
  330                 temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
  331                 if (!temp) {
  332                         ret = -ENOMEM;
  333                         break;
  334                 }
  335 
  336                 iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
  337 
  338                 mvm->nvm_sections[section].data = temp;
  339                 mvm->nvm_sections[section].length = ret;
  340 
  341 #ifdef CONFIG_IWLWIFI_DEBUGFS
  342                 switch (section) {
  343                 case NVM_SECTION_TYPE_SW:
  344                         mvm->nvm_sw_blob.data = temp;
  345                         mvm->nvm_sw_blob.size  = ret;
  346                         break;
  347                 case NVM_SECTION_TYPE_CALIBRATION:
  348                         mvm->nvm_calib_blob.data = temp;
  349                         mvm->nvm_calib_blob.size  = ret;
  350                         break;
  351                 case NVM_SECTION_TYPE_PRODUCTION:
  352                         mvm->nvm_prod_blob.data = temp;
  353                         mvm->nvm_prod_blob.size  = ret;
  354                         break;
  355                 case NVM_SECTION_TYPE_PHY_SKU:
  356                         mvm->nvm_phy_sku_blob.data = temp;
  357                         mvm->nvm_phy_sku_blob.size  = ret;
  358                         break;
  359                 case NVM_SECTION_TYPE_REGULATORY_SDP:
  360                 case NVM_SECTION_TYPE_REGULATORY:
  361                         mvm->nvm_reg_blob.data = temp;
  362                         mvm->nvm_reg_blob.size  = ret;
  363                         break;
  364                 default:
  365                         if (section == mvm->cfg->nvm_hw_section_num) {
  366                                 mvm->nvm_hw_blob.data = temp;
  367                                 mvm->nvm_hw_blob.size = ret;
  368                                 break;
  369                         }
  370                 }
  371 #endif
  372         }
  373         if (!size_read)
  374                 IWL_ERR(mvm, "OTP is blank\n");
  375         kfree(nvm_buffer);
  376 
  377         /* Only if PNVM selected in the mod param - load external NVM  */
  378         if (mvm->nvm_file_name) {
  379                 /* read External NVM file from the mod param */
  380                 ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
  381                                             mvm->nvm_sections);
  382                 if (ret) {
  383                         mvm->nvm_file_name = nvm_file_C;
  384 
  385                         if ((ret == -EFAULT || ret == -ENOENT) &&
  386                             mvm->nvm_file_name) {
  387                                 /* in case nvm file was failed try again */
  388                                 ret = iwl_read_external_nvm(mvm->trans,
  389                                                             mvm->nvm_file_name,
  390                                                             mvm->nvm_sections);
  391                                 if (ret)
  392                                         return ret;
  393                         } else {
  394                                 return ret;
  395                         }
  396                 }
  397         }
  398 
  399         /* parse the relevant nvm sections */
  400         mvm->nvm_data = iwl_parse_nvm_sections(mvm);
  401         if (!mvm->nvm_data)
  402                 return -ENODATA;
  403         IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
  404                          mvm->nvm_data->nvm_version);
  405 
  406         return ret < 0 ? ret : 0;
  407 }
  408 
  409 struct iwl_mcc_update_resp *
  410 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
  411                    enum iwl_mcc_source src_id)
  412 {
  413         struct iwl_mcc_update_cmd mcc_update_cmd = {
  414                 .mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
  415                 .source_id = (u8)src_id,
  416         };
  417         struct iwl_mcc_update_resp *resp_cp;
  418         struct iwl_rx_packet *pkt;
  419         struct iwl_host_cmd cmd = {
  420                 .id = MCC_UPDATE_CMD,
  421                 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
  422                 .data = { &mcc_update_cmd },
  423         };
  424 
  425         int ret;
  426         u32 status;
  427         int resp_len, n_channels;
  428         u16 mcc;
  429 
  430         if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
  431                 return ERR_PTR(-EOPNOTSUPP);
  432 
  433         cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
  434 
  435         IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
  436                       alpha2[0], alpha2[1], src_id);
  437 
  438         ret = iwl_mvm_send_cmd(mvm, &cmd);
  439         if (ret)
  440                 return ERR_PTR(ret);
  441 
  442         pkt = cmd.resp_pkt;
  443 
  444         /* Extract MCC response */
  445         if (fw_has_capa(&mvm->fw->ucode_capa,
  446                         IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
  447                 struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data;
  448 
  449                 n_channels =  __le32_to_cpu(mcc_resp->n_channels);
  450                 resp_len = sizeof(struct iwl_mcc_update_resp) +
  451                            n_channels * sizeof(__le32);
  452                 resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL);
  453                 if (!resp_cp) {
  454                         resp_cp = ERR_PTR(-ENOMEM);
  455                         goto exit;
  456                 }
  457         } else {
  458                 struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
  459 
  460                 n_channels =  __le32_to_cpu(mcc_resp_v3->n_channels);
  461                 resp_len = sizeof(struct iwl_mcc_update_resp) +
  462                            n_channels * sizeof(__le32);
  463                 resp_cp = kzalloc(resp_len, GFP_KERNEL);
  464                 if (!resp_cp) {
  465                         resp_cp = ERR_PTR(-ENOMEM);
  466                         goto exit;
  467                 }
  468 
  469                 resp_cp->status = mcc_resp_v3->status;
  470                 resp_cp->mcc = mcc_resp_v3->mcc;
  471                 resp_cp->cap = cpu_to_le16(mcc_resp_v3->cap);
  472                 resp_cp->source_id = mcc_resp_v3->source_id;
  473                 resp_cp->time = mcc_resp_v3->time;
  474                 resp_cp->geo_info = mcc_resp_v3->geo_info;
  475                 resp_cp->n_channels = mcc_resp_v3->n_channels;
  476                 memcpy(resp_cp->channels, mcc_resp_v3->channels,
  477                        n_channels * sizeof(__le32));
  478         }
  479 
  480         status = le32_to_cpu(resp_cp->status);
  481 
  482         mcc = le16_to_cpu(resp_cp->mcc);
  483 
  484         /* W/A for a FW/NVM issue - returns 0x00 for the world domain */
  485         if (mcc == 0) {
  486                 mcc = 0x3030;  /* "00" - world */
  487                 resp_cp->mcc = cpu_to_le16(mcc);
  488         }
  489 
  490         IWL_DEBUG_LAR(mvm,
  491                       "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
  492                       status, mcc, mcc >> 8, mcc & 0xff, n_channels);
  493 
  494 exit:
  495         iwl_free_resp(&cmd);
  496         return resp_cp;
  497 }
  498 
  499 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
  500 {
  501         bool tlv_lar;
  502         bool nvm_lar;
  503         int retval;
  504         struct ieee80211_regdomain *regd;
  505         char mcc[3];
  506 
  507         if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
  508                 tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
  509                                       IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
  510                 nvm_lar = mvm->nvm_data->lar_enabled;
  511                 if (tlv_lar != nvm_lar)
  512                         IWL_INFO(mvm,
  513                                  "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
  514                                  tlv_lar ? "enabled" : "disabled",
  515                                  nvm_lar ? "enabled" : "disabled");
  516         }
  517 
  518         if (!iwl_mvm_is_lar_supported(mvm))
  519                 return 0;
  520 
  521         /*
  522          * try to replay the last set MCC to FW. If it doesn't exist,
  523          * queue an update to cfg80211 to retrieve the default alpha2 from FW.
  524          */
  525         retval = iwl_mvm_init_fw_regd(mvm);
  526         if (retval != -ENOENT)
  527                 return retval;
  528 
  529         /*
  530          * Driver regulatory hint for initial update, this also informs the
  531          * firmware we support wifi location updates.
  532          * Disallow scans that might crash the FW while the LAR regdomain
  533          * is not set.
  534          */
  535         mvm->lar_regdom_set = false;
  536 
  537         regd = iwl_mvm_get_current_regdomain(mvm, NULL);
  538         if (IS_ERR_OR_NULL(regd))
  539                 return -EIO;
  540 
  541         if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
  542             !iwl_acpi_get_mcc(mvm->dev, mcc)) {
  543                 kfree(regd);
  544                 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
  545                                              MCC_SOURCE_BIOS, NULL);
  546                 if (IS_ERR_OR_NULL(regd))
  547                         return -EIO;
  548         }
  549 
  550         retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
  551         kfree(regd);
  552         return retval;
  553 }
  554 
  555 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
  556                                 struct iwl_rx_cmd_buffer *rxb)
  557 {
  558         struct iwl_rx_packet *pkt = rxb_addr(rxb);
  559         struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
  560         enum iwl_mcc_source src;
  561         char mcc[3];
  562         struct ieee80211_regdomain *regd;
  563         int wgds_tbl_idx;
  564 
  565         lockdep_assert_held(&mvm->mutex);
  566 
  567         if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
  568                 IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
  569                 return;
  570         }
  571 
  572         if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
  573                 return;
  574 
  575         mcc[0] = le16_to_cpu(notif->mcc) >> 8;
  576         mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
  577         mcc[2] = '\0';
  578         src = notif->source_id;
  579 
  580         IWL_DEBUG_LAR(mvm,
  581                       "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
  582                       mcc, src);
  583         regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
  584         if (IS_ERR_OR_NULL(regd))
  585                 return;
  586 
  587         wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
  588         if (wgds_tbl_idx < 1)
  589                 IWL_DEBUG_INFO(mvm,
  590                                "SAR WGDS is disabled or error received (%d)\n",
  591                                wgds_tbl_idx);
  592         else
  593                 IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
  594                                wgds_tbl_idx);
  595 
  596         regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
  597         kfree(regd);
  598 }

Cache object: 27bc4dc684a55dc56cacd5ad1aa41f91


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.