The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/dev/iwlwifi/pcie/rx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
    2 /*
    3  * Copyright (C) 2003-2014, 2018-2022 Intel Corporation
    4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
    5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
    6  */
    7 #include <linux/sched.h>
    8 #include <linux/wait.h>
    9 #include <linux/gfp.h>
   10 
   11 #include "iwl-prph.h"
   12 #include "iwl-io.h"
   13 #include "internal.h"
   14 #include "iwl-op-mode.h"
   15 #include "iwl-context-info-gen3.h"
   16 
   17 /******************************************************************************
   18  *
   19  * RX path functions
   20  *
   21  ******************************************************************************/
   22 
   23 /*
   24  * Rx theory of operation
   25  *
   26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
   27  * each of which point to Receive Buffers to be filled by the NIC.  These get
   28  * used not only for Rx frames, but for any command response or notification
   29  * from the NIC.  The driver and NIC manage the Rx buffers by means
   30  * of indexes into the circular buffer.
   31  *
   32  * Rx Queue Indexes
   33  * The host/firmware share two index registers for managing the Rx buffers.
   34  *
   35  * The READ index maps to the first position that the firmware may be writing
   36  * to -- the driver can read up to (but not including) this position and get
   37  * good data.
   38  * The READ index is managed by the firmware once the card is enabled.
   39  *
   40  * The WRITE index maps to the last position the driver has read from -- the
   41  * position preceding WRITE is the last slot the firmware can place a packet.
   42  *
   43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
   44  * WRITE = READ.
   45  *
   46  * During initialization, the host sets up the READ queue position to the first
   47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
   48  *
   49  * When the firmware places a packet in a buffer, it will advance the READ index
   50  * and fire the RX interrupt.  The driver can then query the READ index and
   51  * process as many packets as possible, moving the WRITE index forward as it
   52  * resets the Rx queue buffers with new memory.
   53  *
   54  * The management in the driver is as follows:
   55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
   56  *   When the interrupt handler is called, the request is processed.
   57  *   The page is either stolen - transferred to the upper layer
   58  *   or reused - added immediately to the iwl->rxq->rx_free list.
   59  * + When the page is stolen - the driver updates the matching queue's used
   60  *   count, detaches the RBD and transfers it to the queue used list.
   61  *   When there are two used RBDs - they are transferred to the allocator empty
   62  *   list. Work is then scheduled for the allocator to start allocating
   63  *   eight buffers.
   64  *   When there are another 6 used RBDs - they are transferred to the allocator
   65  *   empty list and the driver tries to claim the pre-allocated buffers and
   66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
   67  *   until ready.
   68  *   When there are 8+ buffers in the free list - either from allocation or from
   69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
   70  * + In order to make sure the allocator always has RBDs to use for allocation
   71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
   72  *   maximum missing RBDs per allocation request (request posted with 2
   73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
   74  *   The queues supplies the recycle of the rest of the RBDs.
   75  * + A received packet is processed and handed to the kernel network stack,
   76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
   77  * + If there are no allocated buffers in iwl->rxq->rx_free,
   78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
   79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
   80  *
   81  *
   82  * Driver sequence:
   83  *
   84  * iwl_rxq_alloc()            Allocates rx_free
   85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
   86  *                            iwl_pcie_rxq_restock.
   87  *                            Used only during initialization.
   88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
   89  *                            queue, updates firmware pointers, and updates
   90  *                            the WRITE index.
   91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
   92  *
   93  * -- enable interrupts --
   94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
   95  *                            READ INDEX, detaching the SKB from the pool.
   96  *                            Moves the packet buffer from queue to rx_used.
   97  *                            Posts and claims requests to the allocator.
   98  *                            Calls iwl_pcie_rxq_restock to refill any empty
   99  *                            slots.
  100  *
  101  * RBD life-cycle:
  102  *
  103  * Init:
  104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
  105  *
  106  * Regular Receive interrupt:
  107  * Page Stolen:
  108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
  109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
  110  * Page not Stolen:
  111  * rxq.queue -> rxq.rx_free -> rxq.queue
  112  * ...
  113  *
  114  */
  115 
  116 /*
  117  * iwl_rxq_space - Return number of free slots available in queue.
  118  */
  119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
  120 {
  121         /* Make sure rx queue size is a power of 2 */
  122         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
  123 
  124         /*
  125          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
  126          * between empty and completely full queues.
  127          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
  128          * defined for negative dividends.
  129          */
  130         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
  131 }
  132 
  133 /*
  134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
  135  */
  136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
  137 {
  138         return cpu_to_le32((u32)(dma_addr >> 8));
  139 }
  140 
  141 /*
  142  * iwl_pcie_rx_stop - stops the Rx DMA
  143  */
  144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
  145 {
  146         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
  147                 /* TODO: remove this once fw does it */
  148                 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
  149                 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
  150                                               RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
  151         } else if (trans->trans_cfg->mq_rx_supported) {
  152                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
  153                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
  154                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
  155         } else {
  156                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
  157                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
  158                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
  159                                            1000);
  160         }
  161 }
  162 
  163 /*
  164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
  165  */
  166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
  167                                     struct iwl_rxq *rxq)
  168 {
  169         u32 reg;
  170 
  171         lockdep_assert_held(&rxq->lock);
  172 
  173         /*
  174          * explicitly wake up the NIC if:
  175          * 1. shadow registers aren't enabled
  176          * 2. there is a chance that the NIC is asleep
  177          */
  178         if (!trans->trans_cfg->base_params->shadow_reg_enable &&
  179             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
  180                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
  181 
  182                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
  183                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
  184                                        reg);
  185                         iwl_set_bit(trans, CSR_GP_CNTRL,
  186                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
  187                         rxq->need_update = true;
  188                         return;
  189                 }
  190         }
  191 
  192         rxq->write_actual = round_down(rxq->write, 8);
  193         if (!trans->trans_cfg->mq_rx_supported)
  194                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
  195         else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
  196                 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
  197                             HBUS_TARG_WRPTR_RX_Q(rxq->id));
  198         else
  199                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
  200                             rxq->write_actual);
  201 }
  202 
  203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
  204 {
  205         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  206         int i;
  207 
  208         for (i = 0; i < trans->num_rx_queues; i++) {
  209                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
  210 
  211                 if (!rxq->need_update)
  212                         continue;
  213                 spin_lock_bh(&rxq->lock);
  214                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
  215                 rxq->need_update = false;
  216                 spin_unlock_bh(&rxq->lock);
  217         }
  218 }
  219 
  220 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
  221                                 struct iwl_rxq *rxq,
  222                                 struct iwl_rx_mem_buffer *rxb)
  223 {
  224         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
  225                 struct iwl_rx_transfer_desc *bd = rxq->bd;
  226 
  227                 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
  228 
  229                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
  230                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
  231         } else {
  232                 __le64 *bd = rxq->bd;
  233 
  234                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
  235         }
  236 
  237 #if defined(__linux__)
  238         IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
  239 #elif defined(__FreeBSD__)
  240         IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
  241                      (u32)rxb->vid, rxq->id, rxq->write);
  242 #endif
  243 }
  244 
  245 /*
  246  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
  247  */
  248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
  249                                   struct iwl_rxq *rxq)
  250 {
  251         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  252         struct iwl_rx_mem_buffer *rxb;
  253 
  254         /*
  255          * If the device isn't enabled - no need to try to add buffers...
  256          * This can happen when we stop the device and still have an interrupt
  257          * pending. We stop the APM before we sync the interrupts because we
  258          * have to (see comment there). On the other hand, since the APM is
  259          * stopped, we cannot access the HW (in particular not prph).
  260          * So don't try to restock if the APM has been already stopped.
  261          */
  262         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
  263                 return;
  264 
  265         spin_lock_bh(&rxq->lock);
  266         while (rxq->free_count) {
  267                 /* Get next free Rx buffer, remove from free list */
  268                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
  269                                        list);
  270                 list_del(&rxb->list);
  271                 rxb->invalid = false;
  272                 /* some low bits are expected to be unset (depending on hw) */
  273                 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
  274                 /* Point to Rx buffer via next RBD in circular buffer */
  275                 iwl_pcie_restock_bd(trans, rxq, rxb);
  276                 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
  277                 rxq->free_count--;
  278         }
  279         spin_unlock_bh(&rxq->lock);
  280 
  281         /*
  282          * If we've added more space for the firmware to place data, tell it.
  283          * Increment device's write pointer in multiples of 8.
  284          */
  285         if (rxq->write_actual != (rxq->write & ~0x7)) {
  286                 spin_lock_bh(&rxq->lock);
  287                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
  288                 spin_unlock_bh(&rxq->lock);
  289         }
  290 }
  291 
  292 /*
  293  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
  294  */
  295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
  296                                   struct iwl_rxq *rxq)
  297 {
  298         struct iwl_rx_mem_buffer *rxb;
  299 
  300         /*
  301          * If the device isn't enabled - not need to try to add buffers...
  302          * This can happen when we stop the device and still have an interrupt
  303          * pending. We stop the APM before we sync the interrupts because we
  304          * have to (see comment there). On the other hand, since the APM is
  305          * stopped, we cannot access the HW (in particular not prph).
  306          * So don't try to restock if the APM has been already stopped.
  307          */
  308         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
  309                 return;
  310 
  311         spin_lock_bh(&rxq->lock);
  312         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
  313                 __le32 *bd = (__le32 *)rxq->bd;
  314                 /* The overwritten rxb must be a used one */
  315                 rxb = rxq->queue[rxq->write];
  316                 BUG_ON(rxb && rxb->page);
  317 
  318                 /* Get next free Rx buffer, remove from free list */
  319                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
  320                                        list);
  321                 list_del(&rxb->list);
  322                 rxb->invalid = false;
  323 
  324                 /* Point to Rx buffer via next RBD in circular buffer */
  325                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
  326                 rxq->queue[rxq->write] = rxb;
  327                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
  328                 rxq->free_count--;
  329         }
  330         spin_unlock_bh(&rxq->lock);
  331 
  332         /* If we've added more space for the firmware to place data, tell it.
  333          * Increment device's write pointer in multiples of 8. */
  334         if (rxq->write_actual != (rxq->write & ~0x7)) {
  335                 spin_lock_bh(&rxq->lock);
  336                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
  337                 spin_unlock_bh(&rxq->lock);
  338         }
  339 }
  340 
  341 /*
  342  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
  343  *
  344  * If there are slots in the RX queue that need to be restocked,
  345  * and we have free pre-allocated buffers, fill the ranks as much
  346  * as we can, pulling from rx_free.
  347  *
  348  * This moves the 'write' index forward to catch up with 'processed', and
  349  * also updates the memory address in the firmware to reference the new
  350  * target buffer.
  351  */
  352 static
  353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
  354 {
  355         if (trans->trans_cfg->mq_rx_supported)
  356                 iwl_pcie_rxmq_restock(trans, rxq);
  357         else
  358                 iwl_pcie_rxsq_restock(trans, rxq);
  359 }
  360 
  361 /*
  362  * iwl_pcie_rx_alloc_page - allocates and returns a page.
  363  *
  364  */
  365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
  366                                            u32 *offset, gfp_t priority)
  367 {
  368         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  369         unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
  370         unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
  371         struct page *page;
  372         gfp_t gfp_mask = priority;
  373 
  374         if (trans_pcie->rx_page_order > 0)
  375                 gfp_mask |= __GFP_COMP;
  376 
  377         if (trans_pcie->alloc_page) {
  378                 spin_lock_bh(&trans_pcie->alloc_page_lock);
  379                 /* recheck */
  380                 if (trans_pcie->alloc_page) {
  381                         *offset = trans_pcie->alloc_page_used;
  382                         page = trans_pcie->alloc_page;
  383                         trans_pcie->alloc_page_used += rbsize;
  384                         if (trans_pcie->alloc_page_used >= allocsize)
  385                                 trans_pcie->alloc_page = NULL;
  386                         else
  387                                 get_page(page);
  388                         spin_unlock_bh(&trans_pcie->alloc_page_lock);
  389                         return page;
  390                 }
  391                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
  392         }
  393 
  394         /* Alloc a new receive buffer */
  395         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
  396         if (!page) {
  397                 if (net_ratelimit())
  398                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
  399                                        trans_pcie->rx_page_order);
  400                 /*
  401                  * Issue an error if we don't have enough pre-allocated
  402                   * buffers.
  403                  */
  404                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
  405                         IWL_CRIT(trans,
  406                                  "Failed to alloc_pages\n");
  407                 return NULL;
  408         }
  409 
  410         if (2 * rbsize <= allocsize) {
  411                 spin_lock_bh(&trans_pcie->alloc_page_lock);
  412                 if (!trans_pcie->alloc_page) {
  413                         get_page(page);
  414                         trans_pcie->alloc_page = page;
  415                         trans_pcie->alloc_page_used = rbsize;
  416                 }
  417                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
  418         }
  419 
  420         *offset = 0;
  421         return page;
  422 }
  423 
  424 /*
  425  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
  426  *
  427  * A used RBD is an Rx buffer that has been given to the stack. To use it again
  428  * a page must be allocated and the RBD must point to the page. This function
  429  * doesn't change the HW pointer but handles the list of pages that is used by
  430  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
  431  * allocated buffers.
  432  */
  433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
  434                             struct iwl_rxq *rxq)
  435 {
  436         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  437         struct iwl_rx_mem_buffer *rxb;
  438         struct page *page;
  439 
  440         while (1) {
  441                 unsigned int offset;
  442 
  443                 spin_lock_bh(&rxq->lock);
  444                 if (list_empty(&rxq->rx_used)) {
  445                         spin_unlock_bh(&rxq->lock);
  446                         return;
  447                 }
  448                 spin_unlock_bh(&rxq->lock);
  449 
  450                 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
  451                 if (!page)
  452                         return;
  453 
  454                 spin_lock_bh(&rxq->lock);
  455 
  456                 if (list_empty(&rxq->rx_used)) {
  457                         spin_unlock_bh(&rxq->lock);
  458                         __free_pages(page, trans_pcie->rx_page_order);
  459                         return;
  460                 }
  461                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
  462                                        list);
  463                 list_del(&rxb->list);
  464                 spin_unlock_bh(&rxq->lock);
  465 
  466                 BUG_ON(rxb->page);
  467                 rxb->page = page;
  468                 rxb->offset = offset;
  469                 /* Get physical address of the RB */
  470                 rxb->page_dma =
  471                         dma_map_page(trans->dev, page, rxb->offset,
  472                                      trans_pcie->rx_buf_bytes,
  473                                      DMA_FROM_DEVICE);
  474                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
  475                         rxb->page = NULL;
  476                         spin_lock_bh(&rxq->lock);
  477                         list_add(&rxb->list, &rxq->rx_used);
  478                         spin_unlock_bh(&rxq->lock);
  479                         __free_pages(page, trans_pcie->rx_page_order);
  480                         return;
  481                 }
  482 
  483                 spin_lock_bh(&rxq->lock);
  484 
  485                 list_add_tail(&rxb->list, &rxq->rx_free);
  486                 rxq->free_count++;
  487 
  488                 spin_unlock_bh(&rxq->lock);
  489         }
  490 }
  491 
  492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
  493 {
  494         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  495         int i;
  496 
  497         if (!trans_pcie->rx_pool)
  498                 return;
  499 
  500         for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
  501                 if (!trans_pcie->rx_pool[i].page)
  502                         continue;
  503                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
  504                                trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
  505                 __free_pages(trans_pcie->rx_pool[i].page,
  506                              trans_pcie->rx_page_order);
  507                 trans_pcie->rx_pool[i].page = NULL;
  508         }
  509 }
  510 
  511 /*
  512  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
  513  *
  514  * Allocates for each received request 8 pages
  515  * Called as a scheduled work item.
  516  */
  517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
  518 {
  519         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  520         struct iwl_rb_allocator *rba = &trans_pcie->rba;
  521         struct list_head local_empty;
  522         int pending = atomic_read(&rba->req_pending);
  523 
  524         IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
  525 
  526         /* If we were scheduled - there is at least one request */
  527         spin_lock_bh(&rba->lock);
  528         /* swap out the rba->rbd_empty to a local list */
  529         list_replace_init(&rba->rbd_empty, &local_empty);
  530         spin_unlock_bh(&rba->lock);
  531 
  532         while (pending) {
  533                 int i;
  534                 LIST_HEAD(local_allocated);
  535                 gfp_t gfp_mask = GFP_KERNEL;
  536 
  537                 /* Do not post a warning if there are only a few requests */
  538                 if (pending < RX_PENDING_WATERMARK)
  539                         gfp_mask |= __GFP_NOWARN;
  540 
  541                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
  542                         struct iwl_rx_mem_buffer *rxb;
  543                         struct page *page;
  544 
  545                         /* List should never be empty - each reused RBD is
  546                          * returned to the list, and initial pool covers any
  547                          * possible gap between the time the page is allocated
  548                          * to the time the RBD is added.
  549                          */
  550                         BUG_ON(list_empty(&local_empty));
  551                         /* Get the first rxb from the rbd list */
  552                         rxb = list_first_entry(&local_empty,
  553                                                struct iwl_rx_mem_buffer, list);
  554                         BUG_ON(rxb->page);
  555 
  556                         /* Alloc a new receive buffer */
  557                         page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
  558                                                       gfp_mask);
  559                         if (!page)
  560                                 continue;
  561                         rxb->page = page;
  562 
  563                         /* Get physical address of the RB */
  564                         rxb->page_dma = dma_map_page(trans->dev, page,
  565                                                      rxb->offset,
  566                                                      trans_pcie->rx_buf_bytes,
  567                                                      DMA_FROM_DEVICE);
  568                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
  569                                 rxb->page = NULL;
  570                                 __free_pages(page, trans_pcie->rx_page_order);
  571                                 continue;
  572                         }
  573 
  574                         /* move the allocated entry to the out list */
  575                         list_move(&rxb->list, &local_allocated);
  576                         i++;
  577                 }
  578 
  579                 atomic_dec(&rba->req_pending);
  580                 pending--;
  581 
  582                 if (!pending) {
  583                         pending = atomic_read(&rba->req_pending);
  584                         if (pending)
  585                                 IWL_DEBUG_TPT(trans,
  586                                               "Got more pending allocation requests = %d\n",
  587                                               pending);
  588                 }
  589 
  590                 spin_lock_bh(&rba->lock);
  591                 /* add the allocated rbds to the allocator allocated list */
  592                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
  593                 /* get more empty RBDs for current pending requests */
  594                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
  595                 spin_unlock_bh(&rba->lock);
  596 
  597                 atomic_inc(&rba->req_ready);
  598 
  599         }
  600 
  601         spin_lock_bh(&rba->lock);
  602         /* return unused rbds to the allocator empty list */
  603         list_splice_tail(&local_empty, &rba->rbd_empty);
  604         spin_unlock_bh(&rba->lock);
  605 
  606         IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
  607 }
  608 
  609 /*
  610  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
  611 .*
  612 .* Called by queue when the queue posted allocation request and
  613  * has freed 8 RBDs in order to restock itself.
  614  * This function directly moves the allocated RBs to the queue's ownership
  615  * and updates the relevant counters.
  616  */
  617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
  618                                       struct iwl_rxq *rxq)
  619 {
  620         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  621         struct iwl_rb_allocator *rba = &trans_pcie->rba;
  622         int i;
  623 
  624         lockdep_assert_held(&rxq->lock);
  625 
  626         /*
  627          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
  628          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
  629          * function will return early, as there are no ready requests.
  630          * atomic_dec_if_positive will perofrm the *actual* decrement only if
  631          * req_ready > 0, i.e. - there are ready requests and the function
  632          * hands one request to the caller.
  633          */
  634         if (atomic_dec_if_positive(&rba->req_ready) < 0)
  635                 return;
  636 
  637         spin_lock(&rba->lock);
  638         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
  639                 /* Get next free Rx buffer, remove it from free list */
  640                 struct iwl_rx_mem_buffer *rxb =
  641                         list_first_entry(&rba->rbd_allocated,
  642                                          struct iwl_rx_mem_buffer, list);
  643 
  644                 list_move(&rxb->list, &rxq->rx_free);
  645         }
  646         spin_unlock(&rba->lock);
  647 
  648         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
  649         rxq->free_count += RX_CLAIM_REQ_ALLOC;
  650 }
  651 
  652 void iwl_pcie_rx_allocator_work(struct work_struct *data)
  653 {
  654         struct iwl_rb_allocator *rba_p =
  655                 container_of(data, struct iwl_rb_allocator, rx_alloc);
  656         struct iwl_trans_pcie *trans_pcie =
  657                 container_of(rba_p, struct iwl_trans_pcie, rba);
  658 
  659         iwl_pcie_rx_allocator(trans_pcie->trans);
  660 }
  661 
  662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
  663 {
  664         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
  665                 return sizeof(struct iwl_rx_transfer_desc);
  666 
  667         return trans->trans_cfg->mq_rx_supported ?
  668                         sizeof(__le64) : sizeof(__le32);
  669 }
  670 
  671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
  672 {
  673         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
  674                 return sizeof(struct iwl_rx_completion_desc_bz);
  675 
  676         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
  677                 return sizeof(struct iwl_rx_completion_desc);
  678 
  679         return sizeof(__le32);
  680 }
  681 
  682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
  683                                   struct iwl_rxq *rxq)
  684 {
  685         int free_size = iwl_pcie_free_bd_size(trans);
  686 
  687         if (rxq->bd)
  688                 dma_free_coherent(trans->dev,
  689                                   free_size * rxq->queue_size,
  690                                   rxq->bd, rxq->bd_dma);
  691         rxq->bd_dma = 0;
  692         rxq->bd = NULL;
  693 
  694         rxq->rb_stts_dma = 0;
  695         rxq->rb_stts = NULL;
  696 
  697         if (rxq->used_bd)
  698                 dma_free_coherent(trans->dev,
  699                                   iwl_pcie_used_bd_size(trans) *
  700                                         rxq->queue_size,
  701                                   rxq->used_bd, rxq->used_bd_dma);
  702         rxq->used_bd_dma = 0;
  703         rxq->used_bd = NULL;
  704 }
  705 
  706 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
  707                                   struct iwl_rxq *rxq)
  708 {
  709         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  710         struct device *dev = trans->dev;
  711         int i;
  712         int free_size;
  713         bool use_rx_td = (trans->trans_cfg->device_family >=
  714                           IWL_DEVICE_FAMILY_AX210);
  715         size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
  716                               sizeof(struct iwl_rb_status);
  717 
  718         spin_lock_init(&rxq->lock);
  719         if (trans->trans_cfg->mq_rx_supported)
  720                 rxq->queue_size = trans->cfg->num_rbds;
  721         else
  722                 rxq->queue_size = RX_QUEUE_SIZE;
  723 
  724         free_size = iwl_pcie_free_bd_size(trans);
  725 
  726         /*
  727          * Allocate the circular buffer of Read Buffer Descriptors
  728          * (RBDs)
  729          */
  730         rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
  731                                      &rxq->bd_dma, GFP_KERNEL);
  732         if (!rxq->bd)
  733                 goto err;
  734 
  735         if (trans->trans_cfg->mq_rx_supported) {
  736                 rxq->used_bd = dma_alloc_coherent(dev,
  737                                                   iwl_pcie_used_bd_size(trans) *
  738                                                         rxq->queue_size,
  739                                                   &rxq->used_bd_dma,
  740                                                   GFP_KERNEL);
  741                 if (!rxq->used_bd)
  742                         goto err;
  743         }
  744 
  745         rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
  746         rxq->rb_stts_dma =
  747                 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
  748 
  749         return 0;
  750 
  751 err:
  752         for (i = 0; i < trans->num_rx_queues; i++) {
  753                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
  754 
  755                 iwl_pcie_free_rxq_dma(trans, rxq);
  756         }
  757 
  758         return -ENOMEM;
  759 }
  760 
  761 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
  762 {
  763         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  764         struct iwl_rb_allocator *rba = &trans_pcie->rba;
  765         int i, ret;
  766         size_t rb_stts_size = trans->trans_cfg->device_family >=
  767                                 IWL_DEVICE_FAMILY_AX210 ?
  768                               sizeof(__le16) : sizeof(struct iwl_rb_status);
  769 
  770         if (WARN_ON(trans_pcie->rxq))
  771                 return -EINVAL;
  772 
  773         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
  774                                   GFP_KERNEL);
  775         trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
  776                                       sizeof(trans_pcie->rx_pool[0]),
  777                                       GFP_KERNEL);
  778         trans_pcie->global_table =
  779                 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
  780                         sizeof(trans_pcie->global_table[0]),
  781                         GFP_KERNEL);
  782         if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
  783             !trans_pcie->global_table) {
  784                 ret = -ENOMEM;
  785                 goto err;
  786         }
  787 
  788         spin_lock_init(&rba->lock);
  789 
  790         /*
  791          * Allocate the driver's pointer to receive buffer status.
  792          * Allocate for all queues continuously (HW requirement).
  793          */
  794         trans_pcie->base_rb_stts =
  795                         dma_alloc_coherent(trans->dev,
  796                                            rb_stts_size * trans->num_rx_queues,
  797                                            &trans_pcie->base_rb_stts_dma,
  798                                            GFP_KERNEL);
  799         if (!trans_pcie->base_rb_stts) {
  800                 ret = -ENOMEM;
  801                 goto err;
  802         }
  803 
  804         for (i = 0; i < trans->num_rx_queues; i++) {
  805                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
  806 
  807                 rxq->id = i;
  808                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
  809                 if (ret)
  810                         goto err;
  811         }
  812         return 0;
  813 
  814 err:
  815         if (trans_pcie->base_rb_stts) {
  816                 dma_free_coherent(trans->dev,
  817                                   rb_stts_size * trans->num_rx_queues,
  818                                   trans_pcie->base_rb_stts,
  819                                   trans_pcie->base_rb_stts_dma);
  820                 trans_pcie->base_rb_stts = NULL;
  821                 trans_pcie->base_rb_stts_dma = 0;
  822         }
  823         kfree(trans_pcie->rx_pool);
  824         trans_pcie->rx_pool = NULL;
  825         kfree(trans_pcie->global_table);
  826         trans_pcie->global_table = NULL;
  827         kfree(trans_pcie->rxq);
  828         trans_pcie->rxq = NULL;
  829 
  830         return ret;
  831 }
  832 
  833 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
  834 {
  835         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  836         u32 rb_size;
  837         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
  838 
  839         switch (trans_pcie->rx_buf_size) {
  840         case IWL_AMSDU_4K:
  841                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
  842                 break;
  843         case IWL_AMSDU_8K:
  844                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
  845                 break;
  846         case IWL_AMSDU_12K:
  847                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
  848                 break;
  849         default:
  850                 WARN_ON(1);
  851                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
  852         }
  853 
  854         if (!iwl_trans_grab_nic_access(trans))
  855                 return;
  856 
  857         /* Stop Rx DMA */
  858         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
  859         /* reset and flush pointers */
  860         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
  861         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
  862         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
  863 
  864         /* Reset driver's Rx queue write index */
  865         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
  866 
  867         /* Tell device where to find RBD circular buffer in DRAM */
  868         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
  869                     (u32)(rxq->bd_dma >> 8));
  870 
  871         /* Tell device where in DRAM to update its Rx status */
  872         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
  873                     rxq->rb_stts_dma >> 4);
  874 
  875         /* Enable Rx DMA
  876          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
  877          *      the credit mechanism in 5000 HW RX FIFO
  878          * Direct rx interrupts to hosts
  879          * Rx buffer size 4 or 8k or 12k
  880          * RB timeout 0x10
  881          * 256 RBDs
  882          */
  883         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
  884                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
  885                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
  886                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
  887                     rb_size |
  888                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
  889                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
  890 
  891         iwl_trans_release_nic_access(trans);
  892 
  893         /* Set interrupt coalescing timer to default (2048 usecs) */
  894         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
  895 
  896         /* W/A for interrupt coalescing bug in 7260 and 3160 */
  897         if (trans->cfg->host_interrupt_operation_mode)
  898                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
  899 }
  900 
  901 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
  902 {
  903         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  904         u32 rb_size, enabled = 0;
  905         int i;
  906 
  907         switch (trans_pcie->rx_buf_size) {
  908         case IWL_AMSDU_2K:
  909                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
  910                 break;
  911         case IWL_AMSDU_4K:
  912                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
  913                 break;
  914         case IWL_AMSDU_8K:
  915                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
  916                 break;
  917         case IWL_AMSDU_12K:
  918                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
  919                 break;
  920         default:
  921                 WARN_ON(1);
  922                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
  923         }
  924 
  925         if (!iwl_trans_grab_nic_access(trans))
  926                 return;
  927 
  928         /* Stop Rx DMA */
  929         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
  930         /* disable free amd used rx queue operation */
  931         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
  932 
  933         for (i = 0; i < trans->num_rx_queues; i++) {
  934                 /* Tell device where to find RBD free table in DRAM */
  935                 iwl_write_prph64_no_grab(trans,
  936                                          RFH_Q_FRBDCB_BA_LSB(i),
  937                                          trans_pcie->rxq[i].bd_dma);
  938                 /* Tell device where to find RBD used table in DRAM */
  939                 iwl_write_prph64_no_grab(trans,
  940                                          RFH_Q_URBDCB_BA_LSB(i),
  941                                          trans_pcie->rxq[i].used_bd_dma);
  942                 /* Tell device where in DRAM to update its Rx status */
  943                 iwl_write_prph64_no_grab(trans,
  944                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
  945                                          trans_pcie->rxq[i].rb_stts_dma);
  946                 /* Reset device indice tables */
  947                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
  948                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
  949                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
  950 
  951                 enabled |= BIT(i) | BIT(i + 16);
  952         }
  953 
  954         /*
  955          * Enable Rx DMA
  956          * Rx buffer size 4 or 8k or 12k
  957          * Min RB size 4 or 8
  958          * Drop frames that exceed RB size
  959          * 512 RBDs
  960          */
  961         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
  962                                RFH_DMA_EN_ENABLE_VAL | rb_size |
  963                                RFH_RXF_DMA_MIN_RB_4_8 |
  964                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
  965                                RFH_RXF_DMA_RBDCB_SIZE_512);
  966 
  967         /*
  968          * Activate DMA snooping.
  969          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
  970          * Default queue is 0
  971          */
  972         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
  973                                RFH_GEN_CFG_RFH_DMA_SNOOP |
  974                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
  975                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
  976                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
  977                                                trans->trans_cfg->integrated ?
  978                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
  979                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
  980         /* Enable the relevant rx queues */
  981         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
  982 
  983         iwl_trans_release_nic_access(trans);
  984 
  985         /* Set interrupt coalescing timer to default (2048 usecs) */
  986         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
  987 }
  988 
  989 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
  990 {
  991         lockdep_assert_held(&rxq->lock);
  992 
  993         INIT_LIST_HEAD(&rxq->rx_free);
  994         INIT_LIST_HEAD(&rxq->rx_used);
  995         rxq->free_count = 0;
  996         rxq->used_count = 0;
  997 }
  998 
  999 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
 1000 
 1001 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
 1002 {
 1003         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
 1004         struct iwl_trans_pcie *trans_pcie;
 1005         struct iwl_trans *trans;
 1006         int ret;
 1007 
 1008         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
 1009         trans = trans_pcie->trans;
 1010 
 1011         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
 1012 
 1013         IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
 1014                       rxq->id, ret, budget);
 1015 
 1016         if (ret < budget) {
 1017                 spin_lock(&trans_pcie->irq_lock);
 1018                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
 1019                         _iwl_enable_interrupts(trans);
 1020                 spin_unlock(&trans_pcie->irq_lock);
 1021 
 1022                 napi_complete_done(&rxq->napi, ret);
 1023         }
 1024 
 1025         return ret;
 1026 }
 1027 
 1028 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
 1029 {
 1030         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
 1031         struct iwl_trans_pcie *trans_pcie;
 1032         struct iwl_trans *trans;
 1033         int ret;
 1034 
 1035         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
 1036         trans = trans_pcie->trans;
 1037 
 1038         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
 1039         IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
 1040                       budget);
 1041 
 1042         if (ret < budget) {
 1043                 int irq_line = rxq->id;
 1044 
 1045                 /* FIRST_RSS is shared with line 0 */
 1046                 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
 1047                     rxq->id == 1)
 1048                         irq_line = 0;
 1049 
 1050                 spin_lock(&trans_pcie->irq_lock);
 1051                 iwl_pcie_clear_irq(trans, irq_line);
 1052                 spin_unlock(&trans_pcie->irq_lock);
 1053 
 1054                 napi_complete_done(&rxq->napi, ret);
 1055         }
 1056 
 1057         return ret;
 1058 }
 1059 
 1060 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
 1061 {
 1062         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1063         struct iwl_rxq *def_rxq;
 1064         struct iwl_rb_allocator *rba = &trans_pcie->rba;
 1065         int i, err, queue_size, allocator_pool_size, num_alloc;
 1066 
 1067         if (!trans_pcie->rxq) {
 1068                 err = iwl_pcie_rx_alloc(trans);
 1069                 if (err)
 1070                         return err;
 1071         }
 1072         def_rxq = trans_pcie->rxq;
 1073 
 1074         cancel_work_sync(&rba->rx_alloc);
 1075 
 1076         spin_lock_bh(&rba->lock);
 1077         atomic_set(&rba->req_pending, 0);
 1078         atomic_set(&rba->req_ready, 0);
 1079         INIT_LIST_HEAD(&rba->rbd_allocated);
 1080         INIT_LIST_HEAD(&rba->rbd_empty);
 1081         spin_unlock_bh(&rba->lock);
 1082 
 1083         /* free all first - we overwrite everything here */
 1084         iwl_pcie_free_rbs_pool(trans);
 1085 
 1086         for (i = 0; i < RX_QUEUE_SIZE; i++)
 1087                 def_rxq->queue[i] = NULL;
 1088 
 1089         for (i = 0; i < trans->num_rx_queues; i++) {
 1090                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 1091 
 1092                 spin_lock_bh(&rxq->lock);
 1093                 /*
 1094                  * Set read write pointer to reflect that we have processed
 1095                  * and used all buffers, but have not restocked the Rx queue
 1096                  * with fresh buffers
 1097                  */
 1098                 rxq->read = 0;
 1099                 rxq->write = 0;
 1100                 rxq->write_actual = 0;
 1101                 memset(rxq->rb_stts, 0,
 1102                        (trans->trans_cfg->device_family >=
 1103                         IWL_DEVICE_FAMILY_AX210) ?
 1104                        sizeof(__le16) : sizeof(struct iwl_rb_status));
 1105 
 1106                 iwl_pcie_rx_init_rxb_lists(rxq);
 1107 
 1108                 spin_unlock_bh(&rxq->lock);
 1109 
 1110                 if (!rxq->napi.poll) {
 1111                         int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
 1112 
 1113                         if (trans_pcie->msix_enabled)
 1114                                 poll = iwl_pcie_napi_poll_msix;
 1115 
 1116                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, poll);
 1117                         napi_enable(&rxq->napi);
 1118                 }
 1119 
 1120         }
 1121 
 1122         /* move the pool to the default queue and allocator ownerships */
 1123         queue_size = trans->trans_cfg->mq_rx_supported ?
 1124                         trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
 1125         allocator_pool_size = trans->num_rx_queues *
 1126                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
 1127         num_alloc = queue_size + allocator_pool_size;
 1128 
 1129         for (i = 0; i < num_alloc; i++) {
 1130                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
 1131 
 1132                 if (i < allocator_pool_size)
 1133                         list_add(&rxb->list, &rba->rbd_empty);
 1134                 else
 1135                         list_add(&rxb->list, &def_rxq->rx_used);
 1136                 trans_pcie->global_table[i] = rxb;
 1137                 rxb->vid = (u16)(i + 1);
 1138                 rxb->invalid = true;
 1139         }
 1140 
 1141         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
 1142 
 1143         return 0;
 1144 }
 1145 
 1146 int iwl_pcie_rx_init(struct iwl_trans *trans)
 1147 {
 1148         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1149         int ret = _iwl_pcie_rx_init(trans);
 1150 
 1151         if (ret)
 1152                 return ret;
 1153 
 1154         if (trans->trans_cfg->mq_rx_supported)
 1155                 iwl_pcie_rx_mq_hw_init(trans);
 1156         else
 1157                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
 1158 
 1159         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
 1160 
 1161         spin_lock_bh(&trans_pcie->rxq->lock);
 1162         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
 1163         spin_unlock_bh(&trans_pcie->rxq->lock);
 1164 
 1165         return 0;
 1166 }
 1167 
 1168 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
 1169 {
 1170         /* Set interrupt coalescing timer to default (2048 usecs) */
 1171         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 1172 
 1173         /*
 1174          * We don't configure the RFH.
 1175          * Restock will be done at alive, after firmware configured the RFH.
 1176          */
 1177         return _iwl_pcie_rx_init(trans);
 1178 }
 1179 
 1180 void iwl_pcie_rx_free(struct iwl_trans *trans)
 1181 {
 1182         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1183         struct iwl_rb_allocator *rba = &trans_pcie->rba;
 1184         int i;
 1185         size_t rb_stts_size = trans->trans_cfg->device_family >=
 1186                                 IWL_DEVICE_FAMILY_AX210 ?
 1187                               sizeof(__le16) : sizeof(struct iwl_rb_status);
 1188 
 1189         /*
 1190          * if rxq is NULL, it means that nothing has been allocated,
 1191          * exit now
 1192          */
 1193         if (!trans_pcie->rxq) {
 1194                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
 1195                 return;
 1196         }
 1197 
 1198         cancel_work_sync(&rba->rx_alloc);
 1199 
 1200         iwl_pcie_free_rbs_pool(trans);
 1201 
 1202         if (trans_pcie->base_rb_stts) {
 1203                 dma_free_coherent(trans->dev,
 1204                                   rb_stts_size * trans->num_rx_queues,
 1205                                   trans_pcie->base_rb_stts,
 1206                                   trans_pcie->base_rb_stts_dma);
 1207                 trans_pcie->base_rb_stts = NULL;
 1208                 trans_pcie->base_rb_stts_dma = 0;
 1209         }
 1210 
 1211         for (i = 0; i < trans->num_rx_queues; i++) {
 1212                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 1213 
 1214                 iwl_pcie_free_rxq_dma(trans, rxq);
 1215 
 1216                 if (rxq->napi.poll) {
 1217                         napi_disable(&rxq->napi);
 1218                         netif_napi_del(&rxq->napi);
 1219                 }
 1220         }
 1221         kfree(trans_pcie->rx_pool);
 1222         kfree(trans_pcie->global_table);
 1223         kfree(trans_pcie->rxq);
 1224 
 1225         if (trans_pcie->alloc_page)
 1226                 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
 1227 }
 1228 
 1229 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
 1230                                           struct iwl_rb_allocator *rba)
 1231 {
 1232         spin_lock(&rba->lock);
 1233         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
 1234         spin_unlock(&rba->lock);
 1235 }
 1236 
 1237 /*
 1238  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 1239  *
 1240  * Called when a RBD can be reused. The RBD is transferred to the allocator.
 1241  * When there are 2 empty RBDs - a request for allocation is posted
 1242  */
 1243 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
 1244                                   struct iwl_rx_mem_buffer *rxb,
 1245                                   struct iwl_rxq *rxq, bool emergency)
 1246 {
 1247         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1248         struct iwl_rb_allocator *rba = &trans_pcie->rba;
 1249 
 1250         /* Move the RBD to the used list, will be moved to allocator in batches
 1251          * before claiming or posting a request*/
 1252         list_add_tail(&rxb->list, &rxq->rx_used);
 1253 
 1254         if (unlikely(emergency))
 1255                 return;
 1256 
 1257         /* Count the allocator owned RBDs */
 1258         rxq->used_count++;
 1259 
 1260         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
 1261          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
 1262          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
 1263          * after but we still need to post another request.
 1264          */
 1265         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
 1266                 /* Move the 2 RBDs to the allocator ownership.
 1267                  Allocator has another 6 from pool for the request completion*/
 1268                 iwl_pcie_rx_move_to_allocator(rxq, rba);
 1269 
 1270                 atomic_inc(&rba->req_pending);
 1271                 queue_work(rba->alloc_wq, &rba->rx_alloc);
 1272         }
 1273 }
 1274 
 1275 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
 1276                                 struct iwl_rxq *rxq,
 1277                                 struct iwl_rx_mem_buffer *rxb,
 1278                                 bool emergency,
 1279                                 int i)
 1280 {
 1281         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1282         struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
 1283         bool page_stolen = false;
 1284         int max_len = trans_pcie->rx_buf_bytes;
 1285         u32 offset = 0;
 1286 
 1287         if (WARN_ON(!rxb))
 1288                 return;
 1289 
 1290         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
 1291 
 1292         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
 1293                 struct iwl_rx_packet *pkt;
 1294                 bool reclaim;
 1295                 int len;
 1296                 struct iwl_rx_cmd_buffer rxcb = {
 1297                         ._offset = rxb->offset + offset,
 1298                         ._rx_page_order = trans_pcie->rx_page_order,
 1299                         ._page = rxb->page,
 1300                         ._page_stolen = false,
 1301                         .truesize = max_len,
 1302                 };
 1303 
 1304                 pkt = rxb_addr(&rxcb);
 1305 
 1306                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
 1307                         IWL_DEBUG_RX(trans,
 1308                                      "Q %d: RB end marker at offset %d\n",
 1309                                      rxq->id, offset);
 1310                         break;
 1311                 }
 1312 
 1313                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
 1314                         FH_RSCSR_RXQ_POS != rxq->id,
 1315                      "frame on invalid queue - is on %d and indicates %d\n",
 1316                      rxq->id,
 1317                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
 1318                         FH_RSCSR_RXQ_POS);
 1319 
 1320                 IWL_DEBUG_RX(trans,
 1321                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
 1322                              rxq->id, offset,
 1323                              iwl_get_cmd_string(trans,
 1324                                                 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
 1325                              pkt->hdr.group_id, pkt->hdr.cmd,
 1326                              le16_to_cpu(pkt->hdr.sequence));
 1327 
 1328                 len = iwl_rx_packet_len(pkt);
 1329                 len += sizeof(u32); /* account for status word */
 1330 
 1331                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
 1332 
 1333                 /* check that what the device tells us made sense */
 1334                 if (len < sizeof(*pkt) || offset > max_len)
 1335                         break;
 1336 
 1337                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
 1338                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
 1339 
 1340                 /* Reclaim a command buffer only if this packet is a response
 1341                  *   to a (driver-originated) command.
 1342                  * If the packet (e.g. Rx frame) originated from uCode,
 1343                  *   there is no command buffer to reclaim.
 1344                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
 1345                  *   but apparently a few don't get set; catch them here. */
 1346                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
 1347                 if (reclaim && !pkt->hdr.group_id) {
 1348                         int i;
 1349 
 1350                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
 1351                                 if (trans_pcie->no_reclaim_cmds[i] ==
 1352                                                         pkt->hdr.cmd) {
 1353                                         reclaim = false;
 1354                                         break;
 1355                                 }
 1356                         }
 1357                 }
 1358 
 1359                 if (rxq->id == trans_pcie->def_rx_queue)
 1360                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
 1361                                        &rxcb);
 1362                 else
 1363                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
 1364                                            &rxcb, rxq->id);
 1365 
 1366                 /*
 1367                  * After here, we should always check rxcb._page_stolen,
 1368                  * if it is true then one of the handlers took the page.
 1369                  */
 1370 
 1371                 if (reclaim) {
 1372                         u16 sequence = le16_to_cpu(pkt->hdr.sequence);
 1373                         int index = SEQ_TO_INDEX(sequence);
 1374                         int cmd_index = iwl_txq_get_cmd_index(txq, index);
 1375 
 1376                         kfree_sensitive(txq->entries[cmd_index].free_buf);
 1377                         txq->entries[cmd_index].free_buf = NULL;
 1378 
 1379                         /* Invoke any callbacks, transfer the buffer to caller,
 1380                          * and fire off the (possibly) blocking
 1381                          * iwl_trans_send_cmd()
 1382                          * as we reclaim the driver command queue */
 1383                         if (!rxcb._page_stolen)
 1384                                 iwl_pcie_hcmd_complete(trans, &rxcb);
 1385                         else
 1386                                 IWL_WARN(trans, "Claim null rxb?\n");
 1387                 }
 1388 
 1389                 page_stolen |= rxcb._page_stolen;
 1390                 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
 1391                         break;
 1392         }
 1393 
 1394         /* page was stolen from us -- free our reference */
 1395         if (page_stolen) {
 1396                 __free_pages(rxb->page, trans_pcie->rx_page_order);
 1397                 rxb->page = NULL;
 1398         }
 1399 
 1400         /* Reuse the page if possible. For notification packets and
 1401          * SKBs that fail to Rx correctly, add them back into the
 1402          * rx_free list for reuse later. */
 1403         if (rxb->page != NULL) {
 1404                 rxb->page_dma =
 1405                         dma_map_page(trans->dev, rxb->page, rxb->offset,
 1406                                      trans_pcie->rx_buf_bytes,
 1407                                      DMA_FROM_DEVICE);
 1408                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 1409                         /*
 1410                          * free the page(s) as well to not break
 1411                          * the invariant that the items on the used
 1412                          * list have no page(s)
 1413                          */
 1414                         __free_pages(rxb->page, trans_pcie->rx_page_order);
 1415                         rxb->page = NULL;
 1416                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
 1417                 } else {
 1418                         list_add_tail(&rxb->list, &rxq->rx_free);
 1419                         rxq->free_count++;
 1420                 }
 1421         } else
 1422                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
 1423 }
 1424 
 1425 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
 1426                                                   struct iwl_rxq *rxq, int i,
 1427                                                   bool *join)
 1428 {
 1429         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1430         struct iwl_rx_mem_buffer *rxb;
 1431         u16 vid;
 1432 
 1433         BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
 1434         BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
 1435 
 1436         if (!trans->trans_cfg->mq_rx_supported) {
 1437                 rxb = rxq->queue[i];
 1438                 rxq->queue[i] = NULL;
 1439                 return rxb;
 1440         }
 1441 
 1442         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
 1443                 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
 1444 
 1445                 vid = le16_to_cpu(cd[i].rbid);
 1446                 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
 1447         } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 1448                 struct iwl_rx_completion_desc *cd = rxq->used_bd;
 1449 
 1450                 vid = le16_to_cpu(cd[i].rbid);
 1451                 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
 1452         } else {
 1453                 __le32 *cd = rxq->used_bd;
 1454 
 1455                 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
 1456         }
 1457 
 1458         if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
 1459                 goto out_err;
 1460 
 1461         rxb = trans_pcie->global_table[vid - 1];
 1462         if (rxb->invalid)
 1463                 goto out_err;
 1464 
 1465         IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
 1466 
 1467         rxb->invalid = true;
 1468 
 1469         return rxb;
 1470 
 1471 out_err:
 1472         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
 1473         iwl_force_nmi(trans);
 1474         return NULL;
 1475 }
 1476 
 1477 /*
 1478  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
 1479  */
 1480 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
 1481 {
 1482         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1483         struct iwl_rxq *rxq;
 1484         u32 r, i, count = 0, handled = 0;
 1485         bool emergency = false;
 1486 
 1487         if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
 1488                 return budget;
 1489 
 1490         rxq = &trans_pcie->rxq[queue];
 1491 
 1492 restart:
 1493         spin_lock(&rxq->lock);
 1494         /* uCode's read index (stored in shared DRAM) indicates the last Rx
 1495          * buffer that the driver may process (last buffer filled by ucode). */
 1496         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
 1497         i = rxq->read;
 1498 
 1499         /* W/A 9000 device step A0 wrap-around bug */
 1500         r &= (rxq->queue_size - 1);
 1501 
 1502         /* Rx interrupt, but nothing sent from uCode */
 1503         if (i == r)
 1504                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
 1505 
 1506         while (i != r && ++handled < budget) {
 1507                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
 1508                 struct iwl_rx_mem_buffer *rxb;
 1509                 /* number of RBDs still waiting for page allocation */
 1510                 u32 rb_pending_alloc =
 1511                         atomic_read(&trans_pcie->rba.req_pending) *
 1512                         RX_CLAIM_REQ_ALLOC;
 1513                 bool join = false;
 1514 
 1515                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
 1516                              !emergency)) {
 1517                         iwl_pcie_rx_move_to_allocator(rxq, rba);
 1518                         emergency = true;
 1519                         IWL_DEBUG_TPT(trans,
 1520                                       "RX path is in emergency. Pending allocations %d\n",
 1521                                       rb_pending_alloc);
 1522                 }
 1523 
 1524                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
 1525 
 1526                 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
 1527                 if (!rxb)
 1528                         goto out;
 1529 
 1530                 if (unlikely(join || rxq->next_rb_is_fragment)) {
 1531                         rxq->next_rb_is_fragment = join;
 1532                         /*
 1533                          * We can only get a multi-RB in the following cases:
 1534                          *  - firmware issue, sending a too big notification
 1535                          *  - sniffer mode with a large A-MSDU
 1536                          *  - large MTU frames (>2k)
 1537                          * since the multi-RB functionality is limited to newer
 1538                          * hardware that cannot put multiple entries into a
 1539                          * single RB.
 1540                          *
 1541                          * Right now, the higher layers aren't set up to deal
 1542                          * with that, so discard all of these.
 1543                          */
 1544                         list_add_tail(&rxb->list, &rxq->rx_free);
 1545                         rxq->free_count++;
 1546                 } else {
 1547                         iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
 1548                 }
 1549 
 1550                 i = (i + 1) & (rxq->queue_size - 1);
 1551 
 1552                 /*
 1553                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
 1554                  * try to claim the pre-allocated buffers from the allocator.
 1555                  * If not ready - will try to reclaim next time.
 1556                  * There is no need to reschedule work - allocator exits only
 1557                  * on success
 1558                  */
 1559                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
 1560                         iwl_pcie_rx_allocator_get(trans, rxq);
 1561 
 1562                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
 1563                         /* Add the remaining empty RBDs for allocator use */
 1564                         iwl_pcie_rx_move_to_allocator(rxq, rba);
 1565                 } else if (emergency) {
 1566                         count++;
 1567                         if (count == 8) {
 1568                                 count = 0;
 1569                                 if (rb_pending_alloc < rxq->queue_size / 3) {
 1570                                         IWL_DEBUG_TPT(trans,
 1571                                                       "RX path exited emergency. Pending allocations %d\n",
 1572                                                       rb_pending_alloc);
 1573                                         emergency = false;
 1574                                 }
 1575 
 1576                                 rxq->read = i;
 1577                                 spin_unlock(&rxq->lock);
 1578                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
 1579                                 iwl_pcie_rxq_restock(trans, rxq);
 1580                                 goto restart;
 1581                         }
 1582                 }
 1583         }
 1584 out:
 1585         /* Backtrack one entry */
 1586         rxq->read = i;
 1587         spin_unlock(&rxq->lock);
 1588 
 1589         /*
 1590          * handle a case where in emergency there are some unallocated RBDs.
 1591          * those RBDs are in the used list, but are not tracked by the queue's
 1592          * used_count which counts allocator owned RBDs.
 1593          * unallocated emergency RBDs must be allocated on exit, otherwise
 1594          * when called again the function may not be in emergency mode and
 1595          * they will be handed to the allocator with no tracking in the RBD
 1596          * allocator counters, which will lead to them never being claimed back
 1597          * by the queue.
 1598          * by allocating them here, they are now in the queue free list, and
 1599          * will be restocked by the next call of iwl_pcie_rxq_restock.
 1600          */
 1601         if (unlikely(emergency && count))
 1602                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
 1603 
 1604         iwl_pcie_rxq_restock(trans, rxq);
 1605 
 1606         return handled;
 1607 }
 1608 
 1609 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
 1610 {
 1611         u8 queue = entry->entry;
 1612         struct msix_entry *entries = entry - queue;
 1613 
 1614         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
 1615 }
 1616 
 1617 /*
 1618  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 1619  * This interrupt handler should be used with RSS queue only.
 1620  */
 1621 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
 1622 {
 1623         struct msix_entry *entry = dev_id;
 1624         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
 1625         struct iwl_trans *trans = trans_pcie->trans;
 1626         struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
 1627 
 1628         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
 1629 
 1630         if (WARN_ON(entry->entry >= trans->num_rx_queues))
 1631                 return IRQ_NONE;
 1632 
 1633         if (!rxq) {
 1634                 if (net_ratelimit())
 1635                         IWL_ERR(trans,
 1636                                 "[%d] Got MSI-X interrupt before we have Rx queues\n",
 1637                                 entry->entry);
 1638                 return IRQ_NONE;
 1639         }
 1640 
 1641         lock_map_acquire(&trans->sync_cmd_lockdep_map);
 1642         IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
 1643 
 1644         local_bh_disable();
 1645         if (napi_schedule_prep(&rxq->napi))
 1646                 __napi_schedule(&rxq->napi);
 1647         else
 1648                 iwl_pcie_clear_irq(trans, entry->entry);
 1649         local_bh_enable();
 1650 
 1651         lock_map_release(&trans->sync_cmd_lockdep_map);
 1652 
 1653         return IRQ_HANDLED;
 1654 }
 1655 
 1656 /*
 1657  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
 1658  */
 1659 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
 1660 {
 1661         int i;
 1662 
 1663         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
 1664         if (trans->cfg->internal_wimax_coex &&
 1665             !trans->cfg->apmg_not_supported &&
 1666             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
 1667                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
 1668              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
 1669                             APMG_PS_CTRL_VAL_RESET_REQ))) {
 1670                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
 1671                 iwl_op_mode_wimax_active(trans->op_mode);
 1672                 wake_up(&trans->wait_command_queue);
 1673                 return;
 1674         }
 1675 
 1676         for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
 1677                 if (!trans->txqs.txq[i])
 1678                         continue;
 1679                 del_timer(&trans->txqs.txq[i]->stuck_timer);
 1680         }
 1681 
 1682         /* The STATUS_FW_ERROR bit is set in this function. This must happen
 1683          * before we wake up the command caller, to ensure a proper cleanup. */
 1684         iwl_trans_fw_error(trans, false);
 1685 
 1686         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
 1687         wake_up(&trans->wait_command_queue);
 1688 }
 1689 
 1690 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
 1691 {
 1692         u32 inta;
 1693 
 1694         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
 1695 
 1696         trace_iwlwifi_dev_irq(trans->dev);
 1697 
 1698         /* Discover which interrupts are active/pending */
 1699         inta = iwl_read32(trans, CSR_INT);
 1700 
 1701         /* the thread will service interrupts and re-enable them */
 1702         return inta;
 1703 }
 1704 
 1705 /* a device (PCI-E) page is 4096 bytes long */
 1706 #define ICT_SHIFT       12
 1707 #define ICT_SIZE        (1 << ICT_SHIFT)
 1708 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
 1709 
 1710 /* interrupt handler using ict table, with this interrupt driver will
 1711  * stop using INTA register to get device's interrupt, reading this register
 1712  * is expensive, device will write interrupts in ICT dram table, increment
 1713  * index then will fire interrupt to driver, driver will OR all ICT table
 1714  * entries from current index up to table entry with 0 value. the result is
 1715  * the interrupt we need to service, driver will set the entries back to 0 and
 1716  * set index.
 1717  */
 1718 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
 1719 {
 1720         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1721         u32 inta;
 1722         u32 val = 0;
 1723         u32 read;
 1724 
 1725         trace_iwlwifi_dev_irq(trans->dev);
 1726 
 1727         /* Ignore interrupt if there's nothing in NIC to service.
 1728          * This may be due to IRQ shared with another device,
 1729          * or due to sporadic interrupts thrown from our NIC. */
 1730         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
 1731         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
 1732         if (!read)
 1733                 return 0;
 1734 
 1735         /*
 1736          * Collect all entries up to the first 0, starting from ict_index;
 1737          * note we already read at ict_index.
 1738          */
 1739         do {
 1740                 val |= read;
 1741                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
 1742                                 trans_pcie->ict_index, read);
 1743                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
 1744                 trans_pcie->ict_index =
 1745                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
 1746 
 1747                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
 1748                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
 1749                                            read);
 1750         } while (read);
 1751 
 1752         /* We should not get this value, just ignore it. */
 1753         if (val == 0xffffffff)
 1754                 val = 0;
 1755 
 1756         /*
 1757          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
 1758          * (bit 15 before shifting it to 31) to clear when using interrupt
 1759          * coalescing. fortunately, bits 18 and 19 stay set when this happens
 1760          * so we use them to decide on the real state of the Rx bit.
 1761          * In order words, bit 15 is set if bit 18 or bit 19 are set.
 1762          */
 1763         if (val & 0xC0000)
 1764                 val |= 0x8000;
 1765 
 1766         inta = (0xff & val) | ((0xff00 & val) << 16);
 1767         return inta;
 1768 }
 1769 
 1770 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
 1771 {
 1772         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1773         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
 1774         bool hw_rfkill, prev, report;
 1775 
 1776         mutex_lock(&trans_pcie->mutex);
 1777         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
 1778         hw_rfkill = iwl_is_rfkill_set(trans);
 1779         if (hw_rfkill) {
 1780                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
 1781                 set_bit(STATUS_RFKILL_HW, &trans->status);
 1782         }
 1783         if (trans_pcie->opmode_down)
 1784                 report = hw_rfkill;
 1785         else
 1786                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
 1787 
 1788         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
 1789                  hw_rfkill ? "disable radio" : "enable radio");
 1790 
 1791         isr_stats->rfkill++;
 1792 
 1793         if (prev != report)
 1794                 iwl_trans_pcie_rf_kill(trans, report);
 1795         mutex_unlock(&trans_pcie->mutex);
 1796 
 1797         if (hw_rfkill) {
 1798                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
 1799                                        &trans->status))
 1800                         IWL_DEBUG_RF_KILL(trans,
 1801                                           "Rfkill while SYNC HCMD in flight\n");
 1802                 wake_up(&trans->wait_command_queue);
 1803         } else {
 1804                 clear_bit(STATUS_RFKILL_HW, &trans->status);
 1805                 if (trans_pcie->opmode_down)
 1806                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
 1807         }
 1808 }
 1809 
 1810 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
 1811 {
 1812         struct iwl_trans *trans = dev_id;
 1813         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 1814         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
 1815         u32 inta = 0;
 1816         u32 handled = 0;
 1817         bool polling = false;
 1818 
 1819         lock_map_acquire(&trans->sync_cmd_lockdep_map);
 1820 
 1821         spin_lock_bh(&trans_pcie->irq_lock);
 1822 
 1823         /* dram interrupt table not set yet,
 1824          * use legacy interrupt.
 1825          */
 1826         if (likely(trans_pcie->use_ict))
 1827                 inta = iwl_pcie_int_cause_ict(trans);
 1828         else
 1829                 inta = iwl_pcie_int_cause_non_ict(trans);
 1830 
 1831 #ifdef CONFIG_IWLWIFI_DEBUG
 1832         if (iwl_have_debug_level(IWL_DL_ISR)) {
 1833                 IWL_DEBUG_ISR(trans,
 1834                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
 1835                               inta, trans_pcie->inta_mask,
 1836                               iwl_read32(trans, CSR_INT_MASK),
 1837                               iwl_read32(trans, CSR_FH_INT_STATUS));
 1838                 if (inta & (~trans_pcie->inta_mask))
 1839                         IWL_DEBUG_ISR(trans,
 1840                                       "We got a masked interrupt (0x%08x)\n",
 1841                                       inta & (~trans_pcie->inta_mask));
 1842         }
 1843 #endif
 1844 
 1845         inta &= trans_pcie->inta_mask;
 1846 
 1847         /*
 1848          * Ignore interrupt if there's nothing in NIC to service.
 1849          * This may be due to IRQ shared with another device,
 1850          * or due to sporadic interrupts thrown from our NIC.
 1851          */
 1852         if (unlikely(!inta)) {
 1853                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
 1854                 /*
 1855                  * Re-enable interrupts here since we don't
 1856                  * have anything to service
 1857                  */
 1858                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
 1859                         _iwl_enable_interrupts(trans);
 1860                 spin_unlock_bh(&trans_pcie->irq_lock);
 1861                 lock_map_release(&trans->sync_cmd_lockdep_map);
 1862                 return IRQ_NONE;
 1863         }
 1864 
 1865         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
 1866                 /*
 1867                  * Hardware disappeared. It might have
 1868                  * already raised an interrupt.
 1869                  */
 1870                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
 1871                 spin_unlock_bh(&trans_pcie->irq_lock);
 1872                 goto out;
 1873         }
 1874 
 1875         /* Ack/clear/reset pending uCode interrupts.
 1876          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
 1877          */
 1878         /* There is a hardware bug in the interrupt mask function that some
 1879          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
 1880          * they are disabled in the CSR_INT_MASK register. Furthermore the
 1881          * ICT interrupt handling mechanism has another bug that might cause
 1882          * these unmasked interrupts fail to be detected. We workaround the
 1883          * hardware bugs here by ACKing all the possible interrupts so that
 1884          * interrupt coalescing can still be achieved.
 1885          */
 1886         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
 1887 
 1888 #ifdef CONFIG_IWLWIFI_DEBUG
 1889         if (iwl_have_debug_level(IWL_DL_ISR))
 1890                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
 1891                               inta, iwl_read32(trans, CSR_INT_MASK));
 1892 #endif
 1893 
 1894         spin_unlock_bh(&trans_pcie->irq_lock);
 1895 
 1896         /* Now service all interrupt bits discovered above. */
 1897         if (inta & CSR_INT_BIT_HW_ERR) {
 1898                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
 1899 
 1900                 /* Tell the device to stop sending interrupts */
 1901                 iwl_disable_interrupts(trans);
 1902 
 1903                 isr_stats->hw++;
 1904                 iwl_pcie_irq_handle_error(trans);
 1905 
 1906                 handled |= CSR_INT_BIT_HW_ERR;
 1907 
 1908                 goto out;
 1909         }
 1910 
 1911         /* NIC fires this, but we don't use it, redundant with WAKEUP */
 1912         if (inta & CSR_INT_BIT_SCD) {
 1913                 IWL_DEBUG_ISR(trans,
 1914                               "Scheduler finished to transmit the frame/frames.\n");
 1915                 isr_stats->sch++;
 1916         }
 1917 
 1918         /* Alive notification via Rx interrupt will do the real work */
 1919         if (inta & CSR_INT_BIT_ALIVE) {
 1920                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
 1921                 isr_stats->alive++;
 1922                 if (trans->trans_cfg->gen2) {
 1923                         /*
 1924                          * We can restock, since firmware configured
 1925                          * the RFH
 1926                          */
 1927                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
 1928                 }
 1929 
 1930                 handled |= CSR_INT_BIT_ALIVE;
 1931         }
 1932 
 1933         /* Safely ignore these bits for debug checks below */
 1934         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
 1935 
 1936         /* HW RF KILL switch toggled */
 1937         if (inta & CSR_INT_BIT_RF_KILL) {
 1938                 iwl_pcie_handle_rfkill_irq(trans);
 1939                 handled |= CSR_INT_BIT_RF_KILL;
 1940         }
 1941 
 1942         /* Chip got too hot and stopped itself */
 1943         if (inta & CSR_INT_BIT_CT_KILL) {
 1944                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
 1945                 isr_stats->ctkill++;
 1946                 handled |= CSR_INT_BIT_CT_KILL;
 1947         }
 1948 
 1949         /* Error detected by uCode */
 1950         if (inta & CSR_INT_BIT_SW_ERR) {
 1951                 IWL_ERR(trans, "Microcode SW error detected. "
 1952                         " Restarting 0x%X.\n", inta);
 1953                 isr_stats->sw++;
 1954                 iwl_pcie_irq_handle_error(trans);
 1955                 handled |= CSR_INT_BIT_SW_ERR;
 1956         }
 1957 
 1958         /* uCode wakes up after power-down sleep */
 1959         if (inta & CSR_INT_BIT_WAKEUP) {
 1960                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
 1961                 iwl_pcie_rxq_check_wrptr(trans);
 1962                 iwl_pcie_txq_check_wrptrs(trans);
 1963 
 1964                 isr_stats->wakeup++;
 1965 
 1966                 handled |= CSR_INT_BIT_WAKEUP;
 1967         }
 1968 
 1969         /* All uCode command responses, including Tx command responses,
 1970          * Rx "responses" (frame-received notification), and other
 1971          * notifications from uCode come through here*/
 1972         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
 1973                     CSR_INT_BIT_RX_PERIODIC)) {
 1974                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
 1975                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
 1976                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
 1977                         iwl_write32(trans, CSR_FH_INT_STATUS,
 1978                                         CSR_FH_INT_RX_MASK);
 1979                 }
 1980                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
 1981                         handled |= CSR_INT_BIT_RX_PERIODIC;
 1982                         iwl_write32(trans,
 1983                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
 1984                 }
 1985                 /* Sending RX interrupt require many steps to be done in the
 1986                  * device:
 1987                  * 1- write interrupt to current index in ICT table.
 1988                  * 2- dma RX frame.
 1989                  * 3- update RX shared data to indicate last write index.
 1990                  * 4- send interrupt.
 1991                  * This could lead to RX race, driver could receive RX interrupt
 1992                  * but the shared data changes does not reflect this;
 1993                  * periodic interrupt will detect any dangling Rx activity.
 1994                  */
 1995 
 1996                 /* Disable periodic interrupt; we use it as just a one-shot. */
 1997                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
 1998                             CSR_INT_PERIODIC_DIS);
 1999 
 2000                 /*
 2001                  * Enable periodic interrupt in 8 msec only if we received
 2002                  * real RX interrupt (instead of just periodic int), to catch
 2003                  * any dangling Rx interrupt.  If it was just the periodic
 2004                  * interrupt, there was no dangling Rx activity, and no need
 2005                  * to extend the periodic interrupt; one-shot is enough.
 2006                  */
 2007                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
 2008                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
 2009                                    CSR_INT_PERIODIC_ENA);
 2010 
 2011                 isr_stats->rx++;
 2012 
 2013                 local_bh_disable();
 2014                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
 2015                         polling = true;
 2016                         __napi_schedule(&trans_pcie->rxq[0].napi);
 2017                 }
 2018                 local_bh_enable();
 2019         }
 2020 
 2021         /* This "Tx" DMA channel is used only for loading uCode */
 2022         if (inta & CSR_INT_BIT_FH_TX) {
 2023                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
 2024                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
 2025                 isr_stats->tx++;
 2026                 handled |= CSR_INT_BIT_FH_TX;
 2027                 /* Wake up uCode load routine, now that load is complete */
 2028                 trans_pcie->ucode_write_complete = true;
 2029                 wake_up(&trans_pcie->ucode_write_waitq);
 2030                 /* Wake up IMR write routine, now that write to SRAM is complete */
 2031                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
 2032                         trans_pcie->imr_status = IMR_D2S_COMPLETED;
 2033                         wake_up(&trans_pcie->ucode_write_waitq);
 2034                 }
 2035         }
 2036 
 2037         if (inta & ~handled) {
 2038                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
 2039                 isr_stats->unhandled++;
 2040         }
 2041 
 2042         if (inta & ~(trans_pcie->inta_mask)) {
 2043                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
 2044                          inta & ~trans_pcie->inta_mask);
 2045         }
 2046 
 2047         if (!polling) {
 2048                 spin_lock_bh(&trans_pcie->irq_lock);
 2049                 /* only Re-enable all interrupt if disabled by irq */
 2050                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
 2051                         _iwl_enable_interrupts(trans);
 2052                 /* we are loading the firmware, enable FH_TX interrupt only */
 2053                 else if (handled & CSR_INT_BIT_FH_TX)
 2054                         iwl_enable_fw_load_int(trans);
 2055                 /* Re-enable RF_KILL if it occurred */
 2056                 else if (handled & CSR_INT_BIT_RF_KILL)
 2057                         iwl_enable_rfkill_int(trans);
 2058                 /* Re-enable the ALIVE / Rx interrupt if it occurred */
 2059                 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
 2060                         iwl_enable_fw_load_int_ctx_info(trans);
 2061                 spin_unlock_bh(&trans_pcie->irq_lock);
 2062         }
 2063 
 2064 out:
 2065         lock_map_release(&trans->sync_cmd_lockdep_map);
 2066         return IRQ_HANDLED;
 2067 }
 2068 
 2069 /******************************************************************************
 2070  *
 2071  * ICT functions
 2072  *
 2073  ******************************************************************************/
 2074 
 2075 /* Free dram table */
 2076 void iwl_pcie_free_ict(struct iwl_trans *trans)
 2077 {
 2078         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 2079 
 2080         if (trans_pcie->ict_tbl) {
 2081                 dma_free_coherent(trans->dev, ICT_SIZE,
 2082                                   trans_pcie->ict_tbl,
 2083                                   trans_pcie->ict_tbl_dma);
 2084                 trans_pcie->ict_tbl = NULL;
 2085                 trans_pcie->ict_tbl_dma = 0;
 2086         }
 2087 }
 2088 
 2089 /*
 2090  * allocate dram shared table, it is an aligned memory
 2091  * block of ICT_SIZE.
 2092  * also reset all data related to ICT table interrupt.
 2093  */
 2094 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
 2095 {
 2096         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 2097 
 2098         trans_pcie->ict_tbl =
 2099                 dma_alloc_coherent(trans->dev, ICT_SIZE,
 2100                                    &trans_pcie->ict_tbl_dma, GFP_KERNEL);
 2101         if (!trans_pcie->ict_tbl)
 2102                 return -ENOMEM;
 2103 
 2104         /* just an API sanity check ... it is guaranteed to be aligned */
 2105         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
 2106                 iwl_pcie_free_ict(trans);
 2107                 return -EINVAL;
 2108         }
 2109 
 2110         return 0;
 2111 }
 2112 
 2113 /* Device is going up inform it about using ICT interrupt table,
 2114  * also we need to tell the driver to start using ICT interrupt.
 2115  */
 2116 void iwl_pcie_reset_ict(struct iwl_trans *trans)
 2117 {
 2118         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 2119         u32 val;
 2120 
 2121         if (!trans_pcie->ict_tbl)
 2122                 return;
 2123 
 2124         spin_lock_bh(&trans_pcie->irq_lock);
 2125         _iwl_disable_interrupts(trans);
 2126 
 2127         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
 2128 
 2129         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
 2130 
 2131         val |= CSR_DRAM_INT_TBL_ENABLE |
 2132                CSR_DRAM_INIT_TBL_WRAP_CHECK |
 2133                CSR_DRAM_INIT_TBL_WRITE_POINTER;
 2134 
 2135         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
 2136 
 2137         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
 2138         trans_pcie->use_ict = true;
 2139         trans_pcie->ict_index = 0;
 2140         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
 2141         _iwl_enable_interrupts(trans);
 2142         spin_unlock_bh(&trans_pcie->irq_lock);
 2143 }
 2144 
 2145 /* Device is going down disable ict interrupt usage */
 2146 void iwl_pcie_disable_ict(struct iwl_trans *trans)
 2147 {
 2148         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 2149 
 2150         spin_lock_bh(&trans_pcie->irq_lock);
 2151         trans_pcie->use_ict = false;
 2152         spin_unlock_bh(&trans_pcie->irq_lock);
 2153 }
 2154 
 2155 irqreturn_t iwl_pcie_isr(int irq, void *data)
 2156 {
 2157         struct iwl_trans *trans = data;
 2158 
 2159         if (!trans)
 2160                 return IRQ_NONE;
 2161 
 2162         /* Disable (but don't clear!) interrupts here to avoid
 2163          * back-to-back ISRs and sporadic interrupts from our NIC.
 2164          * If we have something to service, the tasklet will re-enable ints.
 2165          * If we *don't* have something, we'll re-enable before leaving here.
 2166          */
 2167         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
 2168 
 2169         return IRQ_WAKE_THREAD;
 2170 }
 2171 
 2172 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
 2173 {
 2174         return IRQ_WAKE_THREAD;
 2175 }
 2176 
 2177 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
 2178 {
 2179         struct msix_entry *entry = dev_id;
 2180         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
 2181         struct iwl_trans *trans = trans_pcie->trans;
 2182         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
 2183         u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
 2184         u32 inta_fh, inta_hw;
 2185         bool polling = false;
 2186         bool sw_err;
 2187 
 2188         if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
 2189                 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
 2190 
 2191         if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
 2192                 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
 2193 
 2194         lock_map_acquire(&trans->sync_cmd_lockdep_map);
 2195 
 2196         spin_lock_bh(&trans_pcie->irq_lock);
 2197         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
 2198         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
 2199         /*
 2200          * Clear causes registers to avoid being handling the same cause.
 2201          */
 2202         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
 2203         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
 2204         spin_unlock_bh(&trans_pcie->irq_lock);
 2205 
 2206         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
 2207 
 2208         if (unlikely(!(inta_fh | inta_hw))) {
 2209                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
 2210                 lock_map_release(&trans->sync_cmd_lockdep_map);
 2211                 return IRQ_NONE;
 2212         }
 2213 
 2214 #ifdef CONFIG_IWLWIFI_DEBUG
 2215         if (iwl_have_debug_level(IWL_DL_ISR)) {
 2216                 IWL_DEBUG_ISR(trans,
 2217                               "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
 2218                               entry->entry, inta_fh, trans_pcie->fh_mask,
 2219                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
 2220                 if (inta_fh & ~trans_pcie->fh_mask)
 2221                         IWL_DEBUG_ISR(trans,
 2222                                       "We got a masked interrupt (0x%08x)\n",
 2223                                       inta_fh & ~trans_pcie->fh_mask);
 2224         }
 2225 #endif
 2226 
 2227         inta_fh &= trans_pcie->fh_mask;
 2228 
 2229         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
 2230             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
 2231                 local_bh_disable();
 2232                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
 2233                         polling = true;
 2234                         __napi_schedule(&trans_pcie->rxq[0].napi);
 2235                 }
 2236                 local_bh_enable();
 2237         }
 2238 
 2239         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
 2240             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
 2241                 local_bh_disable();
 2242                 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
 2243                         polling = true;
 2244                         __napi_schedule(&trans_pcie->rxq[1].napi);
 2245                 }
 2246                 local_bh_enable();
 2247         }
 2248 
 2249         /* This "Tx" DMA channel is used only for loading uCode */
 2250         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
 2251             trans_pcie->imr_status == IMR_D2S_REQUESTED) {
 2252                 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
 2253                 isr_stats->tx++;
 2254 
 2255                 /* Wake up IMR routine once write to SRAM is complete */
 2256                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
 2257                         trans_pcie->imr_status = IMR_D2S_COMPLETED;
 2258                         wake_up(&trans_pcie->ucode_write_waitq);
 2259                 }
 2260         } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
 2261                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
 2262                 isr_stats->tx++;
 2263                 /*
 2264                  * Wake up uCode load routine,
 2265                  * now that load is complete
 2266                  */
 2267                 trans_pcie->ucode_write_complete = true;
 2268                 wake_up(&trans_pcie->ucode_write_waitq);
 2269 
 2270                 /* Wake up IMR routine once write to SRAM is complete */
 2271                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
 2272                         trans_pcie->imr_status = IMR_D2S_COMPLETED;
 2273                         wake_up(&trans_pcie->ucode_write_waitq);
 2274                 }
 2275         }
 2276 
 2277         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
 2278                 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
 2279         else
 2280                 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
 2281 
 2282         /* Error detected by uCode */
 2283         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
 2284                 IWL_ERR(trans,
 2285                         "Microcode SW error detected. Restarting 0x%X.\n",
 2286                         inta_fh);
 2287                 isr_stats->sw++;
 2288                 /* during FW reset flow report errors from there */
 2289                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
 2290                         trans_pcie->imr_status = IMR_D2S_ERROR;
 2291                         wake_up(&trans_pcie->imr_waitq);
 2292                 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
 2293                         trans_pcie->fw_reset_state = FW_RESET_ERROR;
 2294                         wake_up(&trans_pcie->fw_reset_waitq);
 2295                 } else {
 2296                         iwl_pcie_irq_handle_error(trans);
 2297                 }
 2298         }
 2299 
 2300         /* After checking FH register check HW register */
 2301 #ifdef CONFIG_IWLWIFI_DEBUG
 2302         if (iwl_have_debug_level(IWL_DL_ISR)) {
 2303                 IWL_DEBUG_ISR(trans,
 2304                               "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
 2305                               entry->entry, inta_hw, trans_pcie->hw_mask,
 2306                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
 2307                 if (inta_hw & ~trans_pcie->hw_mask)
 2308                         IWL_DEBUG_ISR(trans,
 2309                                       "We got a masked interrupt 0x%08x\n",
 2310                                       inta_hw & ~trans_pcie->hw_mask);
 2311         }
 2312 #endif
 2313 
 2314         inta_hw &= trans_pcie->hw_mask;
 2315 
 2316         /* Alive notification via Rx interrupt will do the real work */
 2317         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
 2318                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
 2319                 isr_stats->alive++;
 2320                 if (trans->trans_cfg->gen2) {
 2321                         /* We can restock, since firmware configured the RFH */
 2322                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
 2323                 }
 2324         }
 2325 
 2326         /*
 2327          * In some rare cases when the HW is in a bad state, we may
 2328          * get this interrupt too early, when prph_info is still NULL.
 2329          * So make sure that it's not NULL to prevent crashing.
 2330          */
 2331         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
 2332                 u32 sleep_notif =
 2333                         le32_to_cpu(trans_pcie->prph_info->sleep_notif);
 2334                 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
 2335                     sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
 2336                         IWL_DEBUG_ISR(trans,
 2337                                       "Sx interrupt: sleep notification = 0x%x\n",
 2338                                       sleep_notif);
 2339                         trans_pcie->sx_complete = true;
 2340                         wake_up(&trans_pcie->sx_waitq);
 2341                 } else {
 2342                         /* uCode wakes up after power-down sleep */
 2343                         IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
 2344                         iwl_pcie_rxq_check_wrptr(trans);
 2345                         iwl_pcie_txq_check_wrptrs(trans);
 2346 
 2347                         isr_stats->wakeup++;
 2348                 }
 2349         }
 2350 
 2351         /* Chip got too hot and stopped itself */
 2352         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
 2353                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
 2354                 isr_stats->ctkill++;
 2355         }
 2356 
 2357         /* HW RF KILL switch toggled */
 2358         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
 2359                 iwl_pcie_handle_rfkill_irq(trans);
 2360 
 2361         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
 2362                 IWL_ERR(trans,
 2363                         "Hardware error detected. Restarting.\n");
 2364 
 2365                 isr_stats->hw++;
 2366                 trans->dbg.hw_error = true;
 2367                 iwl_pcie_irq_handle_error(trans);
 2368         }
 2369 
 2370         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
 2371                 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
 2372                 trans_pcie->fw_reset_state = FW_RESET_OK;
 2373                 wake_up(&trans_pcie->fw_reset_waitq);
 2374         }
 2375 
 2376         if (!polling)
 2377                 iwl_pcie_clear_irq(trans, entry->entry);
 2378 
 2379         lock_map_release(&trans->sync_cmd_lockdep_map);
 2380 
 2381         return IRQ_HANDLED;
 2382 }

Cache object: 5d56095dbfce09d0f5477cedf5a783e5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.