1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2003-2014, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16
17 /******************************************************************************
18 *
19 * RX path functions
20 *
21 ******************************************************************************/
22
23 /*
24 * Rx theory of operation
25 *
26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27 * each of which point to Receive Buffers to be filled by the NIC. These get
28 * used not only for Rx frames, but for any command response or notification
29 * from the NIC. The driver and NIC manage the Rx buffers by means
30 * of indexes into the circular buffer.
31 *
32 * Rx Queue Indexes
33 * The host/firmware share two index registers for managing the Rx buffers.
34 *
35 * The READ index maps to the first position that the firmware may be writing
36 * to -- the driver can read up to (but not including) this position and get
37 * good data.
38 * The READ index is managed by the firmware once the card is enabled.
39 *
40 * The WRITE index maps to the last position the driver has read from -- the
41 * position preceding WRITE is the last slot the firmware can place a packet.
42 *
43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44 * WRITE = READ.
45 *
46 * During initialization, the host sets up the READ queue position to the first
47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
48 *
49 * When the firmware places a packet in a buffer, it will advance the READ index
50 * and fire the RX interrupt. The driver can then query the READ index and
51 * process as many packets as possible, moving the WRITE index forward as it
52 * resets the Rx queue buffers with new memory.
53 *
54 * The management in the driver is as follows:
55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56 * When the interrupt handler is called, the request is processed.
57 * The page is either stolen - transferred to the upper layer
58 * or reused - added immediately to the iwl->rxq->rx_free list.
59 * + When the page is stolen - the driver updates the matching queue's used
60 * count, detaches the RBD and transfers it to the queue used list.
61 * When there are two used RBDs - they are transferred to the allocator empty
62 * list. Work is then scheduled for the allocator to start allocating
63 * eight buffers.
64 * When there are another 6 used RBDs - they are transferred to the allocator
65 * empty list and the driver tries to claim the pre-allocated buffers and
66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67 * until ready.
68 * When there are 8+ buffers in the free list - either from allocation or from
69 * 8 reused unstolen pages - restock is called to update the FW and indexes.
70 * + In order to make sure the allocator always has RBDs to use for allocation
71 * the allocator has initial pool in the size of num_queues*(8-2) - the
72 * maximum missing RBDs per allocation request (request posted with 2
73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74 * The queues supplies the recycle of the rest of the RBDs.
75 * + A received packet is processed and handed to the kernel network stack,
76 * detached from the iwl->rxq. The driver 'processed' index is updated.
77 * + If there are no allocated buffers in iwl->rxq->rx_free,
78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79 * If there were enough free buffers and RX_STALLED is set it is cleared.
80 *
81 *
82 * Driver sequence:
83 *
84 * iwl_rxq_alloc() Allocates rx_free
85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
86 * iwl_pcie_rxq_restock.
87 * Used only during initialization.
88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
89 * queue, updates firmware pointers, and updates
90 * the WRITE index.
91 * iwl_pcie_rx_allocator() Background work for allocating pages.
92 *
93 * -- enable interrupts --
94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
95 * READ INDEX, detaching the SKB from the pool.
96 * Moves the packet buffer from queue to rx_used.
97 * Posts and claims requests to the allocator.
98 * Calls iwl_pcie_rxq_restock to refill any empty
99 * slots.
100 *
101 * RBD life-cycle:
102 *
103 * Init:
104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105 *
106 * Regular Receive interrupt:
107 * Page Stolen:
108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110 * Page not Stolen:
111 * rxq.queue -> rxq.rx_free -> rxq.queue
112 * ...
113 *
114 */
115
116 /*
117 * iwl_rxq_space - Return number of free slots available in queue.
118 */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 /* Make sure rx queue size is a power of 2 */
122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123
124 /*
125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 * between empty and completely full queues.
127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 * defined for negative dividends.
129 */
130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132
133 /*
134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135 */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140
141 /*
142 * iwl_pcie_rx_stop - stops the Rx DMA
143 */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 /* TODO: remove this once fw does it */
148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 } else if (trans->trans_cfg->mq_rx_supported) {
152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 } else {
156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 1000);
160 }
161 }
162
163 /*
164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165 */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 struct iwl_rxq *rxq)
168 {
169 u32 reg;
170
171 lockdep_assert_held(&rxq->lock);
172
173 /*
174 * explicitly wake up the NIC if:
175 * 1. shadow registers aren't enabled
176 * 2. there is a chance that the NIC is asleep
177 */
178 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181
182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 reg);
185 iwl_set_bit(trans, CSR_GP_CNTRL,
186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 rxq->need_update = true;
188 return;
189 }
190 }
191
192 rxq->write_actual = round_down(rxq->write, 8);
193 if (!trans->trans_cfg->mq_rx_supported)
194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
197 HBUS_TARG_WRPTR_RX_Q(rxq->id));
198 else
199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
200 rxq->write_actual);
201 }
202
203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
204 {
205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
206 int i;
207
208 for (i = 0; i < trans->num_rx_queues; i++) {
209 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
210
211 if (!rxq->need_update)
212 continue;
213 spin_lock_bh(&rxq->lock);
214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
215 rxq->need_update = false;
216 spin_unlock_bh(&rxq->lock);
217 }
218 }
219
220 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
221 struct iwl_rxq *rxq,
222 struct iwl_rx_mem_buffer *rxb)
223 {
224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
225 struct iwl_rx_transfer_desc *bd = rxq->bd;
226
227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
228
229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
231 } else {
232 __le64 *bd = rxq->bd;
233
234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
235 }
236
237 #if defined(__linux__)
238 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
239 #elif defined(__FreeBSD__)
240 IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
241 (u32)rxb->vid, rxq->id, rxq->write);
242 #endif
243 }
244
245 /*
246 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
247 */
248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
249 struct iwl_rxq *rxq)
250 {
251 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
252 struct iwl_rx_mem_buffer *rxb;
253
254 /*
255 * If the device isn't enabled - no need to try to add buffers...
256 * This can happen when we stop the device and still have an interrupt
257 * pending. We stop the APM before we sync the interrupts because we
258 * have to (see comment there). On the other hand, since the APM is
259 * stopped, we cannot access the HW (in particular not prph).
260 * So don't try to restock if the APM has been already stopped.
261 */
262 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
263 return;
264
265 spin_lock_bh(&rxq->lock);
266 while (rxq->free_count) {
267 /* Get next free Rx buffer, remove from free list */
268 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
269 list);
270 list_del(&rxb->list);
271 rxb->invalid = false;
272 /* some low bits are expected to be unset (depending on hw) */
273 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
274 /* Point to Rx buffer via next RBD in circular buffer */
275 iwl_pcie_restock_bd(trans, rxq, rxb);
276 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
277 rxq->free_count--;
278 }
279 spin_unlock_bh(&rxq->lock);
280
281 /*
282 * If we've added more space for the firmware to place data, tell it.
283 * Increment device's write pointer in multiples of 8.
284 */
285 if (rxq->write_actual != (rxq->write & ~0x7)) {
286 spin_lock_bh(&rxq->lock);
287 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
288 spin_unlock_bh(&rxq->lock);
289 }
290 }
291
292 /*
293 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
294 */
295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
296 struct iwl_rxq *rxq)
297 {
298 struct iwl_rx_mem_buffer *rxb;
299
300 /*
301 * If the device isn't enabled - not need to try to add buffers...
302 * This can happen when we stop the device and still have an interrupt
303 * pending. We stop the APM before we sync the interrupts because we
304 * have to (see comment there). On the other hand, since the APM is
305 * stopped, we cannot access the HW (in particular not prph).
306 * So don't try to restock if the APM has been already stopped.
307 */
308 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
309 return;
310
311 spin_lock_bh(&rxq->lock);
312 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
313 __le32 *bd = (__le32 *)rxq->bd;
314 /* The overwritten rxb must be a used one */
315 rxb = rxq->queue[rxq->write];
316 BUG_ON(rxb && rxb->page);
317
318 /* Get next free Rx buffer, remove from free list */
319 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
320 list);
321 list_del(&rxb->list);
322 rxb->invalid = false;
323
324 /* Point to Rx buffer via next RBD in circular buffer */
325 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
326 rxq->queue[rxq->write] = rxb;
327 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
328 rxq->free_count--;
329 }
330 spin_unlock_bh(&rxq->lock);
331
332 /* If we've added more space for the firmware to place data, tell it.
333 * Increment device's write pointer in multiples of 8. */
334 if (rxq->write_actual != (rxq->write & ~0x7)) {
335 spin_lock_bh(&rxq->lock);
336 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
337 spin_unlock_bh(&rxq->lock);
338 }
339 }
340
341 /*
342 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
343 *
344 * If there are slots in the RX queue that need to be restocked,
345 * and we have free pre-allocated buffers, fill the ranks as much
346 * as we can, pulling from rx_free.
347 *
348 * This moves the 'write' index forward to catch up with 'processed', and
349 * also updates the memory address in the firmware to reference the new
350 * target buffer.
351 */
352 static
353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
354 {
355 if (trans->trans_cfg->mq_rx_supported)
356 iwl_pcie_rxmq_restock(trans, rxq);
357 else
358 iwl_pcie_rxsq_restock(trans, rxq);
359 }
360
361 /*
362 * iwl_pcie_rx_alloc_page - allocates and returns a page.
363 *
364 */
365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
366 u32 *offset, gfp_t priority)
367 {
368 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
369 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
370 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
371 struct page *page;
372 gfp_t gfp_mask = priority;
373
374 if (trans_pcie->rx_page_order > 0)
375 gfp_mask |= __GFP_COMP;
376
377 if (trans_pcie->alloc_page) {
378 spin_lock_bh(&trans_pcie->alloc_page_lock);
379 /* recheck */
380 if (trans_pcie->alloc_page) {
381 *offset = trans_pcie->alloc_page_used;
382 page = trans_pcie->alloc_page;
383 trans_pcie->alloc_page_used += rbsize;
384 if (trans_pcie->alloc_page_used >= allocsize)
385 trans_pcie->alloc_page = NULL;
386 else
387 get_page(page);
388 spin_unlock_bh(&trans_pcie->alloc_page_lock);
389 return page;
390 }
391 spin_unlock_bh(&trans_pcie->alloc_page_lock);
392 }
393
394 /* Alloc a new receive buffer */
395 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
396 if (!page) {
397 if (net_ratelimit())
398 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
399 trans_pcie->rx_page_order);
400 /*
401 * Issue an error if we don't have enough pre-allocated
402 * buffers.
403 */
404 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
405 IWL_CRIT(trans,
406 "Failed to alloc_pages\n");
407 return NULL;
408 }
409
410 if (2 * rbsize <= allocsize) {
411 spin_lock_bh(&trans_pcie->alloc_page_lock);
412 if (!trans_pcie->alloc_page) {
413 get_page(page);
414 trans_pcie->alloc_page = page;
415 trans_pcie->alloc_page_used = rbsize;
416 }
417 spin_unlock_bh(&trans_pcie->alloc_page_lock);
418 }
419
420 *offset = 0;
421 return page;
422 }
423
424 /*
425 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
426 *
427 * A used RBD is an Rx buffer that has been given to the stack. To use it again
428 * a page must be allocated and the RBD must point to the page. This function
429 * doesn't change the HW pointer but handles the list of pages that is used by
430 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
431 * allocated buffers.
432 */
433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
434 struct iwl_rxq *rxq)
435 {
436 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
437 struct iwl_rx_mem_buffer *rxb;
438 struct page *page;
439
440 while (1) {
441 unsigned int offset;
442
443 spin_lock_bh(&rxq->lock);
444 if (list_empty(&rxq->rx_used)) {
445 spin_unlock_bh(&rxq->lock);
446 return;
447 }
448 spin_unlock_bh(&rxq->lock);
449
450 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
451 if (!page)
452 return;
453
454 spin_lock_bh(&rxq->lock);
455
456 if (list_empty(&rxq->rx_used)) {
457 spin_unlock_bh(&rxq->lock);
458 __free_pages(page, trans_pcie->rx_page_order);
459 return;
460 }
461 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
462 list);
463 list_del(&rxb->list);
464 spin_unlock_bh(&rxq->lock);
465
466 BUG_ON(rxb->page);
467 rxb->page = page;
468 rxb->offset = offset;
469 /* Get physical address of the RB */
470 rxb->page_dma =
471 dma_map_page(trans->dev, page, rxb->offset,
472 trans_pcie->rx_buf_bytes,
473 DMA_FROM_DEVICE);
474 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
475 rxb->page = NULL;
476 spin_lock_bh(&rxq->lock);
477 list_add(&rxb->list, &rxq->rx_used);
478 spin_unlock_bh(&rxq->lock);
479 __free_pages(page, trans_pcie->rx_page_order);
480 return;
481 }
482
483 spin_lock_bh(&rxq->lock);
484
485 list_add_tail(&rxb->list, &rxq->rx_free);
486 rxq->free_count++;
487
488 spin_unlock_bh(&rxq->lock);
489 }
490 }
491
492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
493 {
494 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
495 int i;
496
497 if (!trans_pcie->rx_pool)
498 return;
499
500 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
501 if (!trans_pcie->rx_pool[i].page)
502 continue;
503 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
504 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
505 __free_pages(trans_pcie->rx_pool[i].page,
506 trans_pcie->rx_page_order);
507 trans_pcie->rx_pool[i].page = NULL;
508 }
509 }
510
511 /*
512 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
513 *
514 * Allocates for each received request 8 pages
515 * Called as a scheduled work item.
516 */
517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
518 {
519 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
520 struct iwl_rb_allocator *rba = &trans_pcie->rba;
521 struct list_head local_empty;
522 int pending = atomic_read(&rba->req_pending);
523
524 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
525
526 /* If we were scheduled - there is at least one request */
527 spin_lock_bh(&rba->lock);
528 /* swap out the rba->rbd_empty to a local list */
529 list_replace_init(&rba->rbd_empty, &local_empty);
530 spin_unlock_bh(&rba->lock);
531
532 while (pending) {
533 int i;
534 LIST_HEAD(local_allocated);
535 gfp_t gfp_mask = GFP_KERNEL;
536
537 /* Do not post a warning if there are only a few requests */
538 if (pending < RX_PENDING_WATERMARK)
539 gfp_mask |= __GFP_NOWARN;
540
541 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
542 struct iwl_rx_mem_buffer *rxb;
543 struct page *page;
544
545 /* List should never be empty - each reused RBD is
546 * returned to the list, and initial pool covers any
547 * possible gap between the time the page is allocated
548 * to the time the RBD is added.
549 */
550 BUG_ON(list_empty(&local_empty));
551 /* Get the first rxb from the rbd list */
552 rxb = list_first_entry(&local_empty,
553 struct iwl_rx_mem_buffer, list);
554 BUG_ON(rxb->page);
555
556 /* Alloc a new receive buffer */
557 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
558 gfp_mask);
559 if (!page)
560 continue;
561 rxb->page = page;
562
563 /* Get physical address of the RB */
564 rxb->page_dma = dma_map_page(trans->dev, page,
565 rxb->offset,
566 trans_pcie->rx_buf_bytes,
567 DMA_FROM_DEVICE);
568 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
569 rxb->page = NULL;
570 __free_pages(page, trans_pcie->rx_page_order);
571 continue;
572 }
573
574 /* move the allocated entry to the out list */
575 list_move(&rxb->list, &local_allocated);
576 i++;
577 }
578
579 atomic_dec(&rba->req_pending);
580 pending--;
581
582 if (!pending) {
583 pending = atomic_read(&rba->req_pending);
584 if (pending)
585 IWL_DEBUG_TPT(trans,
586 "Got more pending allocation requests = %d\n",
587 pending);
588 }
589
590 spin_lock_bh(&rba->lock);
591 /* add the allocated rbds to the allocator allocated list */
592 list_splice_tail(&local_allocated, &rba->rbd_allocated);
593 /* get more empty RBDs for current pending requests */
594 list_splice_tail_init(&rba->rbd_empty, &local_empty);
595 spin_unlock_bh(&rba->lock);
596
597 atomic_inc(&rba->req_ready);
598
599 }
600
601 spin_lock_bh(&rba->lock);
602 /* return unused rbds to the allocator empty list */
603 list_splice_tail(&local_empty, &rba->rbd_empty);
604 spin_unlock_bh(&rba->lock);
605
606 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
607 }
608
609 /*
610 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
611 .*
612 .* Called by queue when the queue posted allocation request and
613 * has freed 8 RBDs in order to restock itself.
614 * This function directly moves the allocated RBs to the queue's ownership
615 * and updates the relevant counters.
616 */
617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
618 struct iwl_rxq *rxq)
619 {
620 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
621 struct iwl_rb_allocator *rba = &trans_pcie->rba;
622 int i;
623
624 lockdep_assert_held(&rxq->lock);
625
626 /*
627 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
628 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
629 * function will return early, as there are no ready requests.
630 * atomic_dec_if_positive will perofrm the *actual* decrement only if
631 * req_ready > 0, i.e. - there are ready requests and the function
632 * hands one request to the caller.
633 */
634 if (atomic_dec_if_positive(&rba->req_ready) < 0)
635 return;
636
637 spin_lock(&rba->lock);
638 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
639 /* Get next free Rx buffer, remove it from free list */
640 struct iwl_rx_mem_buffer *rxb =
641 list_first_entry(&rba->rbd_allocated,
642 struct iwl_rx_mem_buffer, list);
643
644 list_move(&rxb->list, &rxq->rx_free);
645 }
646 spin_unlock(&rba->lock);
647
648 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
649 rxq->free_count += RX_CLAIM_REQ_ALLOC;
650 }
651
652 void iwl_pcie_rx_allocator_work(struct work_struct *data)
653 {
654 struct iwl_rb_allocator *rba_p =
655 container_of(data, struct iwl_rb_allocator, rx_alloc);
656 struct iwl_trans_pcie *trans_pcie =
657 container_of(rba_p, struct iwl_trans_pcie, rba);
658
659 iwl_pcie_rx_allocator(trans_pcie->trans);
660 }
661
662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
663 {
664 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
665 return sizeof(struct iwl_rx_transfer_desc);
666
667 return trans->trans_cfg->mq_rx_supported ?
668 sizeof(__le64) : sizeof(__le32);
669 }
670
671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
672 {
673 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
674 return sizeof(struct iwl_rx_completion_desc_bz);
675
676 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
677 return sizeof(struct iwl_rx_completion_desc);
678
679 return sizeof(__le32);
680 }
681
682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
683 struct iwl_rxq *rxq)
684 {
685 int free_size = iwl_pcie_free_bd_size(trans);
686
687 if (rxq->bd)
688 dma_free_coherent(trans->dev,
689 free_size * rxq->queue_size,
690 rxq->bd, rxq->bd_dma);
691 rxq->bd_dma = 0;
692 rxq->bd = NULL;
693
694 rxq->rb_stts_dma = 0;
695 rxq->rb_stts = NULL;
696
697 if (rxq->used_bd)
698 dma_free_coherent(trans->dev,
699 iwl_pcie_used_bd_size(trans) *
700 rxq->queue_size,
701 rxq->used_bd, rxq->used_bd_dma);
702 rxq->used_bd_dma = 0;
703 rxq->used_bd = NULL;
704 }
705
706 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
707 struct iwl_rxq *rxq)
708 {
709 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
710 struct device *dev = trans->dev;
711 int i;
712 int free_size;
713 bool use_rx_td = (trans->trans_cfg->device_family >=
714 IWL_DEVICE_FAMILY_AX210);
715 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
716 sizeof(struct iwl_rb_status);
717
718 spin_lock_init(&rxq->lock);
719 if (trans->trans_cfg->mq_rx_supported)
720 rxq->queue_size = trans->cfg->num_rbds;
721 else
722 rxq->queue_size = RX_QUEUE_SIZE;
723
724 free_size = iwl_pcie_free_bd_size(trans);
725
726 /*
727 * Allocate the circular buffer of Read Buffer Descriptors
728 * (RBDs)
729 */
730 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
731 &rxq->bd_dma, GFP_KERNEL);
732 if (!rxq->bd)
733 goto err;
734
735 if (trans->trans_cfg->mq_rx_supported) {
736 rxq->used_bd = dma_alloc_coherent(dev,
737 iwl_pcie_used_bd_size(trans) *
738 rxq->queue_size,
739 &rxq->used_bd_dma,
740 GFP_KERNEL);
741 if (!rxq->used_bd)
742 goto err;
743 }
744
745 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
746 rxq->rb_stts_dma =
747 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
748
749 return 0;
750
751 err:
752 for (i = 0; i < trans->num_rx_queues; i++) {
753 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
754
755 iwl_pcie_free_rxq_dma(trans, rxq);
756 }
757
758 return -ENOMEM;
759 }
760
761 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
762 {
763 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
764 struct iwl_rb_allocator *rba = &trans_pcie->rba;
765 int i, ret;
766 size_t rb_stts_size = trans->trans_cfg->device_family >=
767 IWL_DEVICE_FAMILY_AX210 ?
768 sizeof(__le16) : sizeof(struct iwl_rb_status);
769
770 if (WARN_ON(trans_pcie->rxq))
771 return -EINVAL;
772
773 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
774 GFP_KERNEL);
775 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
776 sizeof(trans_pcie->rx_pool[0]),
777 GFP_KERNEL);
778 trans_pcie->global_table =
779 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
780 sizeof(trans_pcie->global_table[0]),
781 GFP_KERNEL);
782 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
783 !trans_pcie->global_table) {
784 ret = -ENOMEM;
785 goto err;
786 }
787
788 spin_lock_init(&rba->lock);
789
790 /*
791 * Allocate the driver's pointer to receive buffer status.
792 * Allocate for all queues continuously (HW requirement).
793 */
794 trans_pcie->base_rb_stts =
795 dma_alloc_coherent(trans->dev,
796 rb_stts_size * trans->num_rx_queues,
797 &trans_pcie->base_rb_stts_dma,
798 GFP_KERNEL);
799 if (!trans_pcie->base_rb_stts) {
800 ret = -ENOMEM;
801 goto err;
802 }
803
804 for (i = 0; i < trans->num_rx_queues; i++) {
805 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
806
807 rxq->id = i;
808 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
809 if (ret)
810 goto err;
811 }
812 return 0;
813
814 err:
815 if (trans_pcie->base_rb_stts) {
816 dma_free_coherent(trans->dev,
817 rb_stts_size * trans->num_rx_queues,
818 trans_pcie->base_rb_stts,
819 trans_pcie->base_rb_stts_dma);
820 trans_pcie->base_rb_stts = NULL;
821 trans_pcie->base_rb_stts_dma = 0;
822 }
823 kfree(trans_pcie->rx_pool);
824 trans_pcie->rx_pool = NULL;
825 kfree(trans_pcie->global_table);
826 trans_pcie->global_table = NULL;
827 kfree(trans_pcie->rxq);
828 trans_pcie->rxq = NULL;
829
830 return ret;
831 }
832
833 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
834 {
835 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
836 u32 rb_size;
837 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
838
839 switch (trans_pcie->rx_buf_size) {
840 case IWL_AMSDU_4K:
841 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
842 break;
843 case IWL_AMSDU_8K:
844 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
845 break;
846 case IWL_AMSDU_12K:
847 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
848 break;
849 default:
850 WARN_ON(1);
851 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
852 }
853
854 if (!iwl_trans_grab_nic_access(trans))
855 return;
856
857 /* Stop Rx DMA */
858 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
859 /* reset and flush pointers */
860 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
861 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
862 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
863
864 /* Reset driver's Rx queue write index */
865 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
866
867 /* Tell device where to find RBD circular buffer in DRAM */
868 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
869 (u32)(rxq->bd_dma >> 8));
870
871 /* Tell device where in DRAM to update its Rx status */
872 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
873 rxq->rb_stts_dma >> 4);
874
875 /* Enable Rx DMA
876 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
877 * the credit mechanism in 5000 HW RX FIFO
878 * Direct rx interrupts to hosts
879 * Rx buffer size 4 or 8k or 12k
880 * RB timeout 0x10
881 * 256 RBDs
882 */
883 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
884 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
885 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
886 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
887 rb_size |
888 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
889 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
890
891 iwl_trans_release_nic_access(trans);
892
893 /* Set interrupt coalescing timer to default (2048 usecs) */
894 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
895
896 /* W/A for interrupt coalescing bug in 7260 and 3160 */
897 if (trans->cfg->host_interrupt_operation_mode)
898 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
899 }
900
901 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
902 {
903 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
904 u32 rb_size, enabled = 0;
905 int i;
906
907 switch (trans_pcie->rx_buf_size) {
908 case IWL_AMSDU_2K:
909 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
910 break;
911 case IWL_AMSDU_4K:
912 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
913 break;
914 case IWL_AMSDU_8K:
915 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
916 break;
917 case IWL_AMSDU_12K:
918 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
919 break;
920 default:
921 WARN_ON(1);
922 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
923 }
924
925 if (!iwl_trans_grab_nic_access(trans))
926 return;
927
928 /* Stop Rx DMA */
929 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
930 /* disable free amd used rx queue operation */
931 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
932
933 for (i = 0; i < trans->num_rx_queues; i++) {
934 /* Tell device where to find RBD free table in DRAM */
935 iwl_write_prph64_no_grab(trans,
936 RFH_Q_FRBDCB_BA_LSB(i),
937 trans_pcie->rxq[i].bd_dma);
938 /* Tell device where to find RBD used table in DRAM */
939 iwl_write_prph64_no_grab(trans,
940 RFH_Q_URBDCB_BA_LSB(i),
941 trans_pcie->rxq[i].used_bd_dma);
942 /* Tell device where in DRAM to update its Rx status */
943 iwl_write_prph64_no_grab(trans,
944 RFH_Q_URBD_STTS_WPTR_LSB(i),
945 trans_pcie->rxq[i].rb_stts_dma);
946 /* Reset device indice tables */
947 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
948 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
949 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
950
951 enabled |= BIT(i) | BIT(i + 16);
952 }
953
954 /*
955 * Enable Rx DMA
956 * Rx buffer size 4 or 8k or 12k
957 * Min RB size 4 or 8
958 * Drop frames that exceed RB size
959 * 512 RBDs
960 */
961 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
962 RFH_DMA_EN_ENABLE_VAL | rb_size |
963 RFH_RXF_DMA_MIN_RB_4_8 |
964 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
965 RFH_RXF_DMA_RBDCB_SIZE_512);
966
967 /*
968 * Activate DMA snooping.
969 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
970 * Default queue is 0
971 */
972 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
973 RFH_GEN_CFG_RFH_DMA_SNOOP |
974 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
975 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
976 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
977 trans->trans_cfg->integrated ?
978 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
979 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
980 /* Enable the relevant rx queues */
981 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
982
983 iwl_trans_release_nic_access(trans);
984
985 /* Set interrupt coalescing timer to default (2048 usecs) */
986 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
987 }
988
989 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
990 {
991 lockdep_assert_held(&rxq->lock);
992
993 INIT_LIST_HEAD(&rxq->rx_free);
994 INIT_LIST_HEAD(&rxq->rx_used);
995 rxq->free_count = 0;
996 rxq->used_count = 0;
997 }
998
999 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1000
1001 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1002 {
1003 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1004 struct iwl_trans_pcie *trans_pcie;
1005 struct iwl_trans *trans;
1006 int ret;
1007
1008 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1009 trans = trans_pcie->trans;
1010
1011 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1012
1013 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1014 rxq->id, ret, budget);
1015
1016 if (ret < budget) {
1017 spin_lock(&trans_pcie->irq_lock);
1018 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1019 _iwl_enable_interrupts(trans);
1020 spin_unlock(&trans_pcie->irq_lock);
1021
1022 napi_complete_done(&rxq->napi, ret);
1023 }
1024
1025 return ret;
1026 }
1027
1028 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1029 {
1030 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1031 struct iwl_trans_pcie *trans_pcie;
1032 struct iwl_trans *trans;
1033 int ret;
1034
1035 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1036 trans = trans_pcie->trans;
1037
1038 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1039 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1040 budget);
1041
1042 if (ret < budget) {
1043 int irq_line = rxq->id;
1044
1045 /* FIRST_RSS is shared with line 0 */
1046 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1047 rxq->id == 1)
1048 irq_line = 0;
1049
1050 spin_lock(&trans_pcie->irq_lock);
1051 iwl_pcie_clear_irq(trans, irq_line);
1052 spin_unlock(&trans_pcie->irq_lock);
1053
1054 napi_complete_done(&rxq->napi, ret);
1055 }
1056
1057 return ret;
1058 }
1059
1060 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1061 {
1062 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1063 struct iwl_rxq *def_rxq;
1064 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1065 int i, err, queue_size, allocator_pool_size, num_alloc;
1066
1067 if (!trans_pcie->rxq) {
1068 err = iwl_pcie_rx_alloc(trans);
1069 if (err)
1070 return err;
1071 }
1072 def_rxq = trans_pcie->rxq;
1073
1074 cancel_work_sync(&rba->rx_alloc);
1075
1076 spin_lock_bh(&rba->lock);
1077 atomic_set(&rba->req_pending, 0);
1078 atomic_set(&rba->req_ready, 0);
1079 INIT_LIST_HEAD(&rba->rbd_allocated);
1080 INIT_LIST_HEAD(&rba->rbd_empty);
1081 spin_unlock_bh(&rba->lock);
1082
1083 /* free all first - we overwrite everything here */
1084 iwl_pcie_free_rbs_pool(trans);
1085
1086 for (i = 0; i < RX_QUEUE_SIZE; i++)
1087 def_rxq->queue[i] = NULL;
1088
1089 for (i = 0; i < trans->num_rx_queues; i++) {
1090 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1091
1092 spin_lock_bh(&rxq->lock);
1093 /*
1094 * Set read write pointer to reflect that we have processed
1095 * and used all buffers, but have not restocked the Rx queue
1096 * with fresh buffers
1097 */
1098 rxq->read = 0;
1099 rxq->write = 0;
1100 rxq->write_actual = 0;
1101 memset(rxq->rb_stts, 0,
1102 (trans->trans_cfg->device_family >=
1103 IWL_DEVICE_FAMILY_AX210) ?
1104 sizeof(__le16) : sizeof(struct iwl_rb_status));
1105
1106 iwl_pcie_rx_init_rxb_lists(rxq);
1107
1108 spin_unlock_bh(&rxq->lock);
1109
1110 if (!rxq->napi.poll) {
1111 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1112
1113 if (trans_pcie->msix_enabled)
1114 poll = iwl_pcie_napi_poll_msix;
1115
1116 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, poll);
1117 napi_enable(&rxq->napi);
1118 }
1119
1120 }
1121
1122 /* move the pool to the default queue and allocator ownerships */
1123 queue_size = trans->trans_cfg->mq_rx_supported ?
1124 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1125 allocator_pool_size = trans->num_rx_queues *
1126 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1127 num_alloc = queue_size + allocator_pool_size;
1128
1129 for (i = 0; i < num_alloc; i++) {
1130 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1131
1132 if (i < allocator_pool_size)
1133 list_add(&rxb->list, &rba->rbd_empty);
1134 else
1135 list_add(&rxb->list, &def_rxq->rx_used);
1136 trans_pcie->global_table[i] = rxb;
1137 rxb->vid = (u16)(i + 1);
1138 rxb->invalid = true;
1139 }
1140
1141 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1142
1143 return 0;
1144 }
1145
1146 int iwl_pcie_rx_init(struct iwl_trans *trans)
1147 {
1148 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1149 int ret = _iwl_pcie_rx_init(trans);
1150
1151 if (ret)
1152 return ret;
1153
1154 if (trans->trans_cfg->mq_rx_supported)
1155 iwl_pcie_rx_mq_hw_init(trans);
1156 else
1157 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1158
1159 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1160
1161 spin_lock_bh(&trans_pcie->rxq->lock);
1162 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1163 spin_unlock_bh(&trans_pcie->rxq->lock);
1164
1165 return 0;
1166 }
1167
1168 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1169 {
1170 /* Set interrupt coalescing timer to default (2048 usecs) */
1171 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1172
1173 /*
1174 * We don't configure the RFH.
1175 * Restock will be done at alive, after firmware configured the RFH.
1176 */
1177 return _iwl_pcie_rx_init(trans);
1178 }
1179
1180 void iwl_pcie_rx_free(struct iwl_trans *trans)
1181 {
1182 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1183 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1184 int i;
1185 size_t rb_stts_size = trans->trans_cfg->device_family >=
1186 IWL_DEVICE_FAMILY_AX210 ?
1187 sizeof(__le16) : sizeof(struct iwl_rb_status);
1188
1189 /*
1190 * if rxq is NULL, it means that nothing has been allocated,
1191 * exit now
1192 */
1193 if (!trans_pcie->rxq) {
1194 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1195 return;
1196 }
1197
1198 cancel_work_sync(&rba->rx_alloc);
1199
1200 iwl_pcie_free_rbs_pool(trans);
1201
1202 if (trans_pcie->base_rb_stts) {
1203 dma_free_coherent(trans->dev,
1204 rb_stts_size * trans->num_rx_queues,
1205 trans_pcie->base_rb_stts,
1206 trans_pcie->base_rb_stts_dma);
1207 trans_pcie->base_rb_stts = NULL;
1208 trans_pcie->base_rb_stts_dma = 0;
1209 }
1210
1211 for (i = 0; i < trans->num_rx_queues; i++) {
1212 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1213
1214 iwl_pcie_free_rxq_dma(trans, rxq);
1215
1216 if (rxq->napi.poll) {
1217 napi_disable(&rxq->napi);
1218 netif_napi_del(&rxq->napi);
1219 }
1220 }
1221 kfree(trans_pcie->rx_pool);
1222 kfree(trans_pcie->global_table);
1223 kfree(trans_pcie->rxq);
1224
1225 if (trans_pcie->alloc_page)
1226 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1227 }
1228
1229 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1230 struct iwl_rb_allocator *rba)
1231 {
1232 spin_lock(&rba->lock);
1233 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1234 spin_unlock(&rba->lock);
1235 }
1236
1237 /*
1238 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1239 *
1240 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1241 * When there are 2 empty RBDs - a request for allocation is posted
1242 */
1243 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1244 struct iwl_rx_mem_buffer *rxb,
1245 struct iwl_rxq *rxq, bool emergency)
1246 {
1247 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1248 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1249
1250 /* Move the RBD to the used list, will be moved to allocator in batches
1251 * before claiming or posting a request*/
1252 list_add_tail(&rxb->list, &rxq->rx_used);
1253
1254 if (unlikely(emergency))
1255 return;
1256
1257 /* Count the allocator owned RBDs */
1258 rxq->used_count++;
1259
1260 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1261 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1262 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1263 * after but we still need to post another request.
1264 */
1265 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1266 /* Move the 2 RBDs to the allocator ownership.
1267 Allocator has another 6 from pool for the request completion*/
1268 iwl_pcie_rx_move_to_allocator(rxq, rba);
1269
1270 atomic_inc(&rba->req_pending);
1271 queue_work(rba->alloc_wq, &rba->rx_alloc);
1272 }
1273 }
1274
1275 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1276 struct iwl_rxq *rxq,
1277 struct iwl_rx_mem_buffer *rxb,
1278 bool emergency,
1279 int i)
1280 {
1281 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1282 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1283 bool page_stolen = false;
1284 int max_len = trans_pcie->rx_buf_bytes;
1285 u32 offset = 0;
1286
1287 if (WARN_ON(!rxb))
1288 return;
1289
1290 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1291
1292 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1293 struct iwl_rx_packet *pkt;
1294 bool reclaim;
1295 int len;
1296 struct iwl_rx_cmd_buffer rxcb = {
1297 ._offset = rxb->offset + offset,
1298 ._rx_page_order = trans_pcie->rx_page_order,
1299 ._page = rxb->page,
1300 ._page_stolen = false,
1301 .truesize = max_len,
1302 };
1303
1304 pkt = rxb_addr(&rxcb);
1305
1306 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1307 IWL_DEBUG_RX(trans,
1308 "Q %d: RB end marker at offset %d\n",
1309 rxq->id, offset);
1310 break;
1311 }
1312
1313 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1314 FH_RSCSR_RXQ_POS != rxq->id,
1315 "frame on invalid queue - is on %d and indicates %d\n",
1316 rxq->id,
1317 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1318 FH_RSCSR_RXQ_POS);
1319
1320 IWL_DEBUG_RX(trans,
1321 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1322 rxq->id, offset,
1323 iwl_get_cmd_string(trans,
1324 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1325 pkt->hdr.group_id, pkt->hdr.cmd,
1326 le16_to_cpu(pkt->hdr.sequence));
1327
1328 len = iwl_rx_packet_len(pkt);
1329 len += sizeof(u32); /* account for status word */
1330
1331 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1332
1333 /* check that what the device tells us made sense */
1334 if (len < sizeof(*pkt) || offset > max_len)
1335 break;
1336
1337 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1338 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1339
1340 /* Reclaim a command buffer only if this packet is a response
1341 * to a (driver-originated) command.
1342 * If the packet (e.g. Rx frame) originated from uCode,
1343 * there is no command buffer to reclaim.
1344 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1345 * but apparently a few don't get set; catch them here. */
1346 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1347 if (reclaim && !pkt->hdr.group_id) {
1348 int i;
1349
1350 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1351 if (trans_pcie->no_reclaim_cmds[i] ==
1352 pkt->hdr.cmd) {
1353 reclaim = false;
1354 break;
1355 }
1356 }
1357 }
1358
1359 if (rxq->id == trans_pcie->def_rx_queue)
1360 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1361 &rxcb);
1362 else
1363 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1364 &rxcb, rxq->id);
1365
1366 /*
1367 * After here, we should always check rxcb._page_stolen,
1368 * if it is true then one of the handlers took the page.
1369 */
1370
1371 if (reclaim) {
1372 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1373 int index = SEQ_TO_INDEX(sequence);
1374 int cmd_index = iwl_txq_get_cmd_index(txq, index);
1375
1376 kfree_sensitive(txq->entries[cmd_index].free_buf);
1377 txq->entries[cmd_index].free_buf = NULL;
1378
1379 /* Invoke any callbacks, transfer the buffer to caller,
1380 * and fire off the (possibly) blocking
1381 * iwl_trans_send_cmd()
1382 * as we reclaim the driver command queue */
1383 if (!rxcb._page_stolen)
1384 iwl_pcie_hcmd_complete(trans, &rxcb);
1385 else
1386 IWL_WARN(trans, "Claim null rxb?\n");
1387 }
1388
1389 page_stolen |= rxcb._page_stolen;
1390 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1391 break;
1392 }
1393
1394 /* page was stolen from us -- free our reference */
1395 if (page_stolen) {
1396 __free_pages(rxb->page, trans_pcie->rx_page_order);
1397 rxb->page = NULL;
1398 }
1399
1400 /* Reuse the page if possible. For notification packets and
1401 * SKBs that fail to Rx correctly, add them back into the
1402 * rx_free list for reuse later. */
1403 if (rxb->page != NULL) {
1404 rxb->page_dma =
1405 dma_map_page(trans->dev, rxb->page, rxb->offset,
1406 trans_pcie->rx_buf_bytes,
1407 DMA_FROM_DEVICE);
1408 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1409 /*
1410 * free the page(s) as well to not break
1411 * the invariant that the items on the used
1412 * list have no page(s)
1413 */
1414 __free_pages(rxb->page, trans_pcie->rx_page_order);
1415 rxb->page = NULL;
1416 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1417 } else {
1418 list_add_tail(&rxb->list, &rxq->rx_free);
1419 rxq->free_count++;
1420 }
1421 } else
1422 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1423 }
1424
1425 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1426 struct iwl_rxq *rxq, int i,
1427 bool *join)
1428 {
1429 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1430 struct iwl_rx_mem_buffer *rxb;
1431 u16 vid;
1432
1433 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1434 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1435
1436 if (!trans->trans_cfg->mq_rx_supported) {
1437 rxb = rxq->queue[i];
1438 rxq->queue[i] = NULL;
1439 return rxb;
1440 }
1441
1442 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1443 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1444
1445 vid = le16_to_cpu(cd[i].rbid);
1446 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1447 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1448 struct iwl_rx_completion_desc *cd = rxq->used_bd;
1449
1450 vid = le16_to_cpu(cd[i].rbid);
1451 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1452 } else {
1453 __le32 *cd = rxq->used_bd;
1454
1455 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1456 }
1457
1458 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1459 goto out_err;
1460
1461 rxb = trans_pcie->global_table[vid - 1];
1462 if (rxb->invalid)
1463 goto out_err;
1464
1465 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1466
1467 rxb->invalid = true;
1468
1469 return rxb;
1470
1471 out_err:
1472 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1473 iwl_force_nmi(trans);
1474 return NULL;
1475 }
1476
1477 /*
1478 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1479 */
1480 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1481 {
1482 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1483 struct iwl_rxq *rxq;
1484 u32 r, i, count = 0, handled = 0;
1485 bool emergency = false;
1486
1487 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1488 return budget;
1489
1490 rxq = &trans_pcie->rxq[queue];
1491
1492 restart:
1493 spin_lock(&rxq->lock);
1494 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1495 * buffer that the driver may process (last buffer filled by ucode). */
1496 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1497 i = rxq->read;
1498
1499 /* W/A 9000 device step A0 wrap-around bug */
1500 r &= (rxq->queue_size - 1);
1501
1502 /* Rx interrupt, but nothing sent from uCode */
1503 if (i == r)
1504 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1505
1506 while (i != r && ++handled < budget) {
1507 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1508 struct iwl_rx_mem_buffer *rxb;
1509 /* number of RBDs still waiting for page allocation */
1510 u32 rb_pending_alloc =
1511 atomic_read(&trans_pcie->rba.req_pending) *
1512 RX_CLAIM_REQ_ALLOC;
1513 bool join = false;
1514
1515 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1516 !emergency)) {
1517 iwl_pcie_rx_move_to_allocator(rxq, rba);
1518 emergency = true;
1519 IWL_DEBUG_TPT(trans,
1520 "RX path is in emergency. Pending allocations %d\n",
1521 rb_pending_alloc);
1522 }
1523
1524 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1525
1526 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1527 if (!rxb)
1528 goto out;
1529
1530 if (unlikely(join || rxq->next_rb_is_fragment)) {
1531 rxq->next_rb_is_fragment = join;
1532 /*
1533 * We can only get a multi-RB in the following cases:
1534 * - firmware issue, sending a too big notification
1535 * - sniffer mode with a large A-MSDU
1536 * - large MTU frames (>2k)
1537 * since the multi-RB functionality is limited to newer
1538 * hardware that cannot put multiple entries into a
1539 * single RB.
1540 *
1541 * Right now, the higher layers aren't set up to deal
1542 * with that, so discard all of these.
1543 */
1544 list_add_tail(&rxb->list, &rxq->rx_free);
1545 rxq->free_count++;
1546 } else {
1547 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1548 }
1549
1550 i = (i + 1) & (rxq->queue_size - 1);
1551
1552 /*
1553 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1554 * try to claim the pre-allocated buffers from the allocator.
1555 * If not ready - will try to reclaim next time.
1556 * There is no need to reschedule work - allocator exits only
1557 * on success
1558 */
1559 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1560 iwl_pcie_rx_allocator_get(trans, rxq);
1561
1562 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1563 /* Add the remaining empty RBDs for allocator use */
1564 iwl_pcie_rx_move_to_allocator(rxq, rba);
1565 } else if (emergency) {
1566 count++;
1567 if (count == 8) {
1568 count = 0;
1569 if (rb_pending_alloc < rxq->queue_size / 3) {
1570 IWL_DEBUG_TPT(trans,
1571 "RX path exited emergency. Pending allocations %d\n",
1572 rb_pending_alloc);
1573 emergency = false;
1574 }
1575
1576 rxq->read = i;
1577 spin_unlock(&rxq->lock);
1578 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1579 iwl_pcie_rxq_restock(trans, rxq);
1580 goto restart;
1581 }
1582 }
1583 }
1584 out:
1585 /* Backtrack one entry */
1586 rxq->read = i;
1587 spin_unlock(&rxq->lock);
1588
1589 /*
1590 * handle a case where in emergency there are some unallocated RBDs.
1591 * those RBDs are in the used list, but are not tracked by the queue's
1592 * used_count which counts allocator owned RBDs.
1593 * unallocated emergency RBDs must be allocated on exit, otherwise
1594 * when called again the function may not be in emergency mode and
1595 * they will be handed to the allocator with no tracking in the RBD
1596 * allocator counters, which will lead to them never being claimed back
1597 * by the queue.
1598 * by allocating them here, they are now in the queue free list, and
1599 * will be restocked by the next call of iwl_pcie_rxq_restock.
1600 */
1601 if (unlikely(emergency && count))
1602 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1603
1604 iwl_pcie_rxq_restock(trans, rxq);
1605
1606 return handled;
1607 }
1608
1609 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1610 {
1611 u8 queue = entry->entry;
1612 struct msix_entry *entries = entry - queue;
1613
1614 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1615 }
1616
1617 /*
1618 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1619 * This interrupt handler should be used with RSS queue only.
1620 */
1621 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1622 {
1623 struct msix_entry *entry = dev_id;
1624 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1625 struct iwl_trans *trans = trans_pcie->trans;
1626 struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1627
1628 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1629
1630 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1631 return IRQ_NONE;
1632
1633 if (!rxq) {
1634 if (net_ratelimit())
1635 IWL_ERR(trans,
1636 "[%d] Got MSI-X interrupt before we have Rx queues\n",
1637 entry->entry);
1638 return IRQ_NONE;
1639 }
1640
1641 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1642 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1643
1644 local_bh_disable();
1645 if (napi_schedule_prep(&rxq->napi))
1646 __napi_schedule(&rxq->napi);
1647 else
1648 iwl_pcie_clear_irq(trans, entry->entry);
1649 local_bh_enable();
1650
1651 lock_map_release(&trans->sync_cmd_lockdep_map);
1652
1653 return IRQ_HANDLED;
1654 }
1655
1656 /*
1657 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1658 */
1659 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1660 {
1661 int i;
1662
1663 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1664 if (trans->cfg->internal_wimax_coex &&
1665 !trans->cfg->apmg_not_supported &&
1666 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1667 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1668 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1669 APMG_PS_CTRL_VAL_RESET_REQ))) {
1670 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1671 iwl_op_mode_wimax_active(trans->op_mode);
1672 wake_up(&trans->wait_command_queue);
1673 return;
1674 }
1675
1676 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1677 if (!trans->txqs.txq[i])
1678 continue;
1679 del_timer(&trans->txqs.txq[i]->stuck_timer);
1680 }
1681
1682 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1683 * before we wake up the command caller, to ensure a proper cleanup. */
1684 iwl_trans_fw_error(trans, false);
1685
1686 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1687 wake_up(&trans->wait_command_queue);
1688 }
1689
1690 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1691 {
1692 u32 inta;
1693
1694 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1695
1696 trace_iwlwifi_dev_irq(trans->dev);
1697
1698 /* Discover which interrupts are active/pending */
1699 inta = iwl_read32(trans, CSR_INT);
1700
1701 /* the thread will service interrupts and re-enable them */
1702 return inta;
1703 }
1704
1705 /* a device (PCI-E) page is 4096 bytes long */
1706 #define ICT_SHIFT 12
1707 #define ICT_SIZE (1 << ICT_SHIFT)
1708 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1709
1710 /* interrupt handler using ict table, with this interrupt driver will
1711 * stop using INTA register to get device's interrupt, reading this register
1712 * is expensive, device will write interrupts in ICT dram table, increment
1713 * index then will fire interrupt to driver, driver will OR all ICT table
1714 * entries from current index up to table entry with 0 value. the result is
1715 * the interrupt we need to service, driver will set the entries back to 0 and
1716 * set index.
1717 */
1718 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1719 {
1720 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1721 u32 inta;
1722 u32 val = 0;
1723 u32 read;
1724
1725 trace_iwlwifi_dev_irq(trans->dev);
1726
1727 /* Ignore interrupt if there's nothing in NIC to service.
1728 * This may be due to IRQ shared with another device,
1729 * or due to sporadic interrupts thrown from our NIC. */
1730 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1731 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1732 if (!read)
1733 return 0;
1734
1735 /*
1736 * Collect all entries up to the first 0, starting from ict_index;
1737 * note we already read at ict_index.
1738 */
1739 do {
1740 val |= read;
1741 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1742 trans_pcie->ict_index, read);
1743 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1744 trans_pcie->ict_index =
1745 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1746
1747 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1748 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1749 read);
1750 } while (read);
1751
1752 /* We should not get this value, just ignore it. */
1753 if (val == 0xffffffff)
1754 val = 0;
1755
1756 /*
1757 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1758 * (bit 15 before shifting it to 31) to clear when using interrupt
1759 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1760 * so we use them to decide on the real state of the Rx bit.
1761 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1762 */
1763 if (val & 0xC0000)
1764 val |= 0x8000;
1765
1766 inta = (0xff & val) | ((0xff00 & val) << 16);
1767 return inta;
1768 }
1769
1770 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1771 {
1772 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1773 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1774 bool hw_rfkill, prev, report;
1775
1776 mutex_lock(&trans_pcie->mutex);
1777 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1778 hw_rfkill = iwl_is_rfkill_set(trans);
1779 if (hw_rfkill) {
1780 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1781 set_bit(STATUS_RFKILL_HW, &trans->status);
1782 }
1783 if (trans_pcie->opmode_down)
1784 report = hw_rfkill;
1785 else
1786 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1787
1788 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1789 hw_rfkill ? "disable radio" : "enable radio");
1790
1791 isr_stats->rfkill++;
1792
1793 if (prev != report)
1794 iwl_trans_pcie_rf_kill(trans, report);
1795 mutex_unlock(&trans_pcie->mutex);
1796
1797 if (hw_rfkill) {
1798 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1799 &trans->status))
1800 IWL_DEBUG_RF_KILL(trans,
1801 "Rfkill while SYNC HCMD in flight\n");
1802 wake_up(&trans->wait_command_queue);
1803 } else {
1804 clear_bit(STATUS_RFKILL_HW, &trans->status);
1805 if (trans_pcie->opmode_down)
1806 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1807 }
1808 }
1809
1810 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1811 {
1812 struct iwl_trans *trans = dev_id;
1813 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1814 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1815 u32 inta = 0;
1816 u32 handled = 0;
1817 bool polling = false;
1818
1819 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1820
1821 spin_lock_bh(&trans_pcie->irq_lock);
1822
1823 /* dram interrupt table not set yet,
1824 * use legacy interrupt.
1825 */
1826 if (likely(trans_pcie->use_ict))
1827 inta = iwl_pcie_int_cause_ict(trans);
1828 else
1829 inta = iwl_pcie_int_cause_non_ict(trans);
1830
1831 #ifdef CONFIG_IWLWIFI_DEBUG
1832 if (iwl_have_debug_level(IWL_DL_ISR)) {
1833 IWL_DEBUG_ISR(trans,
1834 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1835 inta, trans_pcie->inta_mask,
1836 iwl_read32(trans, CSR_INT_MASK),
1837 iwl_read32(trans, CSR_FH_INT_STATUS));
1838 if (inta & (~trans_pcie->inta_mask))
1839 IWL_DEBUG_ISR(trans,
1840 "We got a masked interrupt (0x%08x)\n",
1841 inta & (~trans_pcie->inta_mask));
1842 }
1843 #endif
1844
1845 inta &= trans_pcie->inta_mask;
1846
1847 /*
1848 * Ignore interrupt if there's nothing in NIC to service.
1849 * This may be due to IRQ shared with another device,
1850 * or due to sporadic interrupts thrown from our NIC.
1851 */
1852 if (unlikely(!inta)) {
1853 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1854 /*
1855 * Re-enable interrupts here since we don't
1856 * have anything to service
1857 */
1858 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1859 _iwl_enable_interrupts(trans);
1860 spin_unlock_bh(&trans_pcie->irq_lock);
1861 lock_map_release(&trans->sync_cmd_lockdep_map);
1862 return IRQ_NONE;
1863 }
1864
1865 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1866 /*
1867 * Hardware disappeared. It might have
1868 * already raised an interrupt.
1869 */
1870 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1871 spin_unlock_bh(&trans_pcie->irq_lock);
1872 goto out;
1873 }
1874
1875 /* Ack/clear/reset pending uCode interrupts.
1876 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1877 */
1878 /* There is a hardware bug in the interrupt mask function that some
1879 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1880 * they are disabled in the CSR_INT_MASK register. Furthermore the
1881 * ICT interrupt handling mechanism has another bug that might cause
1882 * these unmasked interrupts fail to be detected. We workaround the
1883 * hardware bugs here by ACKing all the possible interrupts so that
1884 * interrupt coalescing can still be achieved.
1885 */
1886 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1887
1888 #ifdef CONFIG_IWLWIFI_DEBUG
1889 if (iwl_have_debug_level(IWL_DL_ISR))
1890 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1891 inta, iwl_read32(trans, CSR_INT_MASK));
1892 #endif
1893
1894 spin_unlock_bh(&trans_pcie->irq_lock);
1895
1896 /* Now service all interrupt bits discovered above. */
1897 if (inta & CSR_INT_BIT_HW_ERR) {
1898 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1899
1900 /* Tell the device to stop sending interrupts */
1901 iwl_disable_interrupts(trans);
1902
1903 isr_stats->hw++;
1904 iwl_pcie_irq_handle_error(trans);
1905
1906 handled |= CSR_INT_BIT_HW_ERR;
1907
1908 goto out;
1909 }
1910
1911 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1912 if (inta & CSR_INT_BIT_SCD) {
1913 IWL_DEBUG_ISR(trans,
1914 "Scheduler finished to transmit the frame/frames.\n");
1915 isr_stats->sch++;
1916 }
1917
1918 /* Alive notification via Rx interrupt will do the real work */
1919 if (inta & CSR_INT_BIT_ALIVE) {
1920 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1921 isr_stats->alive++;
1922 if (trans->trans_cfg->gen2) {
1923 /*
1924 * We can restock, since firmware configured
1925 * the RFH
1926 */
1927 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1928 }
1929
1930 handled |= CSR_INT_BIT_ALIVE;
1931 }
1932
1933 /* Safely ignore these bits for debug checks below */
1934 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1935
1936 /* HW RF KILL switch toggled */
1937 if (inta & CSR_INT_BIT_RF_KILL) {
1938 iwl_pcie_handle_rfkill_irq(trans);
1939 handled |= CSR_INT_BIT_RF_KILL;
1940 }
1941
1942 /* Chip got too hot and stopped itself */
1943 if (inta & CSR_INT_BIT_CT_KILL) {
1944 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1945 isr_stats->ctkill++;
1946 handled |= CSR_INT_BIT_CT_KILL;
1947 }
1948
1949 /* Error detected by uCode */
1950 if (inta & CSR_INT_BIT_SW_ERR) {
1951 IWL_ERR(trans, "Microcode SW error detected. "
1952 " Restarting 0x%X.\n", inta);
1953 isr_stats->sw++;
1954 iwl_pcie_irq_handle_error(trans);
1955 handled |= CSR_INT_BIT_SW_ERR;
1956 }
1957
1958 /* uCode wakes up after power-down sleep */
1959 if (inta & CSR_INT_BIT_WAKEUP) {
1960 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1961 iwl_pcie_rxq_check_wrptr(trans);
1962 iwl_pcie_txq_check_wrptrs(trans);
1963
1964 isr_stats->wakeup++;
1965
1966 handled |= CSR_INT_BIT_WAKEUP;
1967 }
1968
1969 /* All uCode command responses, including Tx command responses,
1970 * Rx "responses" (frame-received notification), and other
1971 * notifications from uCode come through here*/
1972 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1973 CSR_INT_BIT_RX_PERIODIC)) {
1974 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1975 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1976 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1977 iwl_write32(trans, CSR_FH_INT_STATUS,
1978 CSR_FH_INT_RX_MASK);
1979 }
1980 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1981 handled |= CSR_INT_BIT_RX_PERIODIC;
1982 iwl_write32(trans,
1983 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1984 }
1985 /* Sending RX interrupt require many steps to be done in the
1986 * device:
1987 * 1- write interrupt to current index in ICT table.
1988 * 2- dma RX frame.
1989 * 3- update RX shared data to indicate last write index.
1990 * 4- send interrupt.
1991 * This could lead to RX race, driver could receive RX interrupt
1992 * but the shared data changes does not reflect this;
1993 * periodic interrupt will detect any dangling Rx activity.
1994 */
1995
1996 /* Disable periodic interrupt; we use it as just a one-shot. */
1997 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1998 CSR_INT_PERIODIC_DIS);
1999
2000 /*
2001 * Enable periodic interrupt in 8 msec only if we received
2002 * real RX interrupt (instead of just periodic int), to catch
2003 * any dangling Rx interrupt. If it was just the periodic
2004 * interrupt, there was no dangling Rx activity, and no need
2005 * to extend the periodic interrupt; one-shot is enough.
2006 */
2007 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2008 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2009 CSR_INT_PERIODIC_ENA);
2010
2011 isr_stats->rx++;
2012
2013 local_bh_disable();
2014 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2015 polling = true;
2016 __napi_schedule(&trans_pcie->rxq[0].napi);
2017 }
2018 local_bh_enable();
2019 }
2020
2021 /* This "Tx" DMA channel is used only for loading uCode */
2022 if (inta & CSR_INT_BIT_FH_TX) {
2023 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2024 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2025 isr_stats->tx++;
2026 handled |= CSR_INT_BIT_FH_TX;
2027 /* Wake up uCode load routine, now that load is complete */
2028 trans_pcie->ucode_write_complete = true;
2029 wake_up(&trans_pcie->ucode_write_waitq);
2030 /* Wake up IMR write routine, now that write to SRAM is complete */
2031 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2032 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2033 wake_up(&trans_pcie->ucode_write_waitq);
2034 }
2035 }
2036
2037 if (inta & ~handled) {
2038 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2039 isr_stats->unhandled++;
2040 }
2041
2042 if (inta & ~(trans_pcie->inta_mask)) {
2043 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2044 inta & ~trans_pcie->inta_mask);
2045 }
2046
2047 if (!polling) {
2048 spin_lock_bh(&trans_pcie->irq_lock);
2049 /* only Re-enable all interrupt if disabled by irq */
2050 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2051 _iwl_enable_interrupts(trans);
2052 /* we are loading the firmware, enable FH_TX interrupt only */
2053 else if (handled & CSR_INT_BIT_FH_TX)
2054 iwl_enable_fw_load_int(trans);
2055 /* Re-enable RF_KILL if it occurred */
2056 else if (handled & CSR_INT_BIT_RF_KILL)
2057 iwl_enable_rfkill_int(trans);
2058 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2059 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2060 iwl_enable_fw_load_int_ctx_info(trans);
2061 spin_unlock_bh(&trans_pcie->irq_lock);
2062 }
2063
2064 out:
2065 lock_map_release(&trans->sync_cmd_lockdep_map);
2066 return IRQ_HANDLED;
2067 }
2068
2069 /******************************************************************************
2070 *
2071 * ICT functions
2072 *
2073 ******************************************************************************/
2074
2075 /* Free dram table */
2076 void iwl_pcie_free_ict(struct iwl_trans *trans)
2077 {
2078 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2079
2080 if (trans_pcie->ict_tbl) {
2081 dma_free_coherent(trans->dev, ICT_SIZE,
2082 trans_pcie->ict_tbl,
2083 trans_pcie->ict_tbl_dma);
2084 trans_pcie->ict_tbl = NULL;
2085 trans_pcie->ict_tbl_dma = 0;
2086 }
2087 }
2088
2089 /*
2090 * allocate dram shared table, it is an aligned memory
2091 * block of ICT_SIZE.
2092 * also reset all data related to ICT table interrupt.
2093 */
2094 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2095 {
2096 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2097
2098 trans_pcie->ict_tbl =
2099 dma_alloc_coherent(trans->dev, ICT_SIZE,
2100 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2101 if (!trans_pcie->ict_tbl)
2102 return -ENOMEM;
2103
2104 /* just an API sanity check ... it is guaranteed to be aligned */
2105 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2106 iwl_pcie_free_ict(trans);
2107 return -EINVAL;
2108 }
2109
2110 return 0;
2111 }
2112
2113 /* Device is going up inform it about using ICT interrupt table,
2114 * also we need to tell the driver to start using ICT interrupt.
2115 */
2116 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2117 {
2118 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2119 u32 val;
2120
2121 if (!trans_pcie->ict_tbl)
2122 return;
2123
2124 spin_lock_bh(&trans_pcie->irq_lock);
2125 _iwl_disable_interrupts(trans);
2126
2127 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2128
2129 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2130
2131 val |= CSR_DRAM_INT_TBL_ENABLE |
2132 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2133 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2134
2135 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2136
2137 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2138 trans_pcie->use_ict = true;
2139 trans_pcie->ict_index = 0;
2140 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2141 _iwl_enable_interrupts(trans);
2142 spin_unlock_bh(&trans_pcie->irq_lock);
2143 }
2144
2145 /* Device is going down disable ict interrupt usage */
2146 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2147 {
2148 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2149
2150 spin_lock_bh(&trans_pcie->irq_lock);
2151 trans_pcie->use_ict = false;
2152 spin_unlock_bh(&trans_pcie->irq_lock);
2153 }
2154
2155 irqreturn_t iwl_pcie_isr(int irq, void *data)
2156 {
2157 struct iwl_trans *trans = data;
2158
2159 if (!trans)
2160 return IRQ_NONE;
2161
2162 /* Disable (but don't clear!) interrupts here to avoid
2163 * back-to-back ISRs and sporadic interrupts from our NIC.
2164 * If we have something to service, the tasklet will re-enable ints.
2165 * If we *don't* have something, we'll re-enable before leaving here.
2166 */
2167 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2168
2169 return IRQ_WAKE_THREAD;
2170 }
2171
2172 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2173 {
2174 return IRQ_WAKE_THREAD;
2175 }
2176
2177 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2178 {
2179 struct msix_entry *entry = dev_id;
2180 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2181 struct iwl_trans *trans = trans_pcie->trans;
2182 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2183 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2184 u32 inta_fh, inta_hw;
2185 bool polling = false;
2186 bool sw_err;
2187
2188 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2189 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2190
2191 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2192 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2193
2194 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2195
2196 spin_lock_bh(&trans_pcie->irq_lock);
2197 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2198 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2199 /*
2200 * Clear causes registers to avoid being handling the same cause.
2201 */
2202 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2203 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2204 spin_unlock_bh(&trans_pcie->irq_lock);
2205
2206 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2207
2208 if (unlikely(!(inta_fh | inta_hw))) {
2209 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2210 lock_map_release(&trans->sync_cmd_lockdep_map);
2211 return IRQ_NONE;
2212 }
2213
2214 #ifdef CONFIG_IWLWIFI_DEBUG
2215 if (iwl_have_debug_level(IWL_DL_ISR)) {
2216 IWL_DEBUG_ISR(trans,
2217 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2218 entry->entry, inta_fh, trans_pcie->fh_mask,
2219 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2220 if (inta_fh & ~trans_pcie->fh_mask)
2221 IWL_DEBUG_ISR(trans,
2222 "We got a masked interrupt (0x%08x)\n",
2223 inta_fh & ~trans_pcie->fh_mask);
2224 }
2225 #endif
2226
2227 inta_fh &= trans_pcie->fh_mask;
2228
2229 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2230 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2231 local_bh_disable();
2232 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2233 polling = true;
2234 __napi_schedule(&trans_pcie->rxq[0].napi);
2235 }
2236 local_bh_enable();
2237 }
2238
2239 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2240 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2241 local_bh_disable();
2242 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2243 polling = true;
2244 __napi_schedule(&trans_pcie->rxq[1].napi);
2245 }
2246 local_bh_enable();
2247 }
2248
2249 /* This "Tx" DMA channel is used only for loading uCode */
2250 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2251 trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2252 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2253 isr_stats->tx++;
2254
2255 /* Wake up IMR routine once write to SRAM is complete */
2256 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2257 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2258 wake_up(&trans_pcie->ucode_write_waitq);
2259 }
2260 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2261 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2262 isr_stats->tx++;
2263 /*
2264 * Wake up uCode load routine,
2265 * now that load is complete
2266 */
2267 trans_pcie->ucode_write_complete = true;
2268 wake_up(&trans_pcie->ucode_write_waitq);
2269
2270 /* Wake up IMR routine once write to SRAM is complete */
2271 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2272 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2273 wake_up(&trans_pcie->ucode_write_waitq);
2274 }
2275 }
2276
2277 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2278 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2279 else
2280 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2281
2282 /* Error detected by uCode */
2283 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2284 IWL_ERR(trans,
2285 "Microcode SW error detected. Restarting 0x%X.\n",
2286 inta_fh);
2287 isr_stats->sw++;
2288 /* during FW reset flow report errors from there */
2289 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2290 trans_pcie->imr_status = IMR_D2S_ERROR;
2291 wake_up(&trans_pcie->imr_waitq);
2292 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2293 trans_pcie->fw_reset_state = FW_RESET_ERROR;
2294 wake_up(&trans_pcie->fw_reset_waitq);
2295 } else {
2296 iwl_pcie_irq_handle_error(trans);
2297 }
2298 }
2299
2300 /* After checking FH register check HW register */
2301 #ifdef CONFIG_IWLWIFI_DEBUG
2302 if (iwl_have_debug_level(IWL_DL_ISR)) {
2303 IWL_DEBUG_ISR(trans,
2304 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2305 entry->entry, inta_hw, trans_pcie->hw_mask,
2306 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2307 if (inta_hw & ~trans_pcie->hw_mask)
2308 IWL_DEBUG_ISR(trans,
2309 "We got a masked interrupt 0x%08x\n",
2310 inta_hw & ~trans_pcie->hw_mask);
2311 }
2312 #endif
2313
2314 inta_hw &= trans_pcie->hw_mask;
2315
2316 /* Alive notification via Rx interrupt will do the real work */
2317 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2318 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2319 isr_stats->alive++;
2320 if (trans->trans_cfg->gen2) {
2321 /* We can restock, since firmware configured the RFH */
2322 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2323 }
2324 }
2325
2326 /*
2327 * In some rare cases when the HW is in a bad state, we may
2328 * get this interrupt too early, when prph_info is still NULL.
2329 * So make sure that it's not NULL to prevent crashing.
2330 */
2331 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2332 u32 sleep_notif =
2333 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2334 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2335 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2336 IWL_DEBUG_ISR(trans,
2337 "Sx interrupt: sleep notification = 0x%x\n",
2338 sleep_notif);
2339 trans_pcie->sx_complete = true;
2340 wake_up(&trans_pcie->sx_waitq);
2341 } else {
2342 /* uCode wakes up after power-down sleep */
2343 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2344 iwl_pcie_rxq_check_wrptr(trans);
2345 iwl_pcie_txq_check_wrptrs(trans);
2346
2347 isr_stats->wakeup++;
2348 }
2349 }
2350
2351 /* Chip got too hot and stopped itself */
2352 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2353 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2354 isr_stats->ctkill++;
2355 }
2356
2357 /* HW RF KILL switch toggled */
2358 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2359 iwl_pcie_handle_rfkill_irq(trans);
2360
2361 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2362 IWL_ERR(trans,
2363 "Hardware error detected. Restarting.\n");
2364
2365 isr_stats->hw++;
2366 trans->dbg.hw_error = true;
2367 iwl_pcie_irq_handle_error(trans);
2368 }
2369
2370 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2371 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2372 trans_pcie->fw_reset_state = FW_RESET_OK;
2373 wake_up(&trans_pcie->fw_reset_waitq);
2374 }
2375
2376 if (!polling)
2377 iwl_pcie_clear_irq(trans, entry->entry);
2378
2379 lock_map_release(&trans->sync_cmd_lockdep_map);
2380
2381 return IRQ_HANDLED;
2382 }
Cache object: 5d56095dbfce09d0f5477cedf5a783e5
|