The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/dev/rtw88/efuse.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
    2 /* Copyright(c) 2018-2019  Realtek Corporation
    3  */
    4 
    5 #include <linux/iopoll.h>
    6 
    7 #include "main.h"
    8 #include "efuse.h"
    9 #include "reg.h"
   10 #include "debug.h"
   11 
   12 #define RTW_EFUSE_BANK_WIFI             0x0
   13 
   14 static void switch_efuse_bank(struct rtw_dev *rtwdev)
   15 {
   16         rtw_write32_mask(rtwdev, REG_LDO_EFUSE_CTRL, BIT_MASK_EFUSE_BANK_SEL,
   17                          RTW_EFUSE_BANK_WIFI);
   18 }
   19 
   20 #define invalid_efuse_header(hdr1, hdr2) \
   21         ((hdr1) == 0xff || (((hdr1) & 0x1f) == 0xf && (hdr2) == 0xff))
   22 #define invalid_efuse_content(word_en, i) \
   23         (((word_en) & BIT(i)) != 0x0)
   24 #define get_efuse_blk_idx_2_byte(hdr1, hdr2) \
   25         ((((hdr2) & 0xf0) >> 1) | (((hdr1) >> 5) & 0x07))
   26 #define get_efuse_blk_idx_1_byte(hdr1) \
   27         (((hdr1) & 0xf0) >> 4)
   28 #define block_idx_to_logical_idx(blk_idx, i) \
   29         (((blk_idx) << 3) + ((i) << 1))
   30 
   31 /* efuse header format
   32  *
   33  * | 7        5   4    0 | 7        4   3          0 | 15  8  7   0 |
   34  *   block[2:0]   0 1111   block[6:3]   word_en[3:0]   byte0  byte1
   35  * | header 1 (optional) |          header 2         |    word N    |
   36  *
   37  * word_en: 4 bits each word. 0 -> write; 1 -> not write
   38  * N: 1~4, depends on word_en
   39  */
   40 static int rtw_dump_logical_efuse_map(struct rtw_dev *rtwdev, u8 *phy_map,
   41                                       u8 *log_map)
   42 {
   43         u32 physical_size = rtwdev->efuse.physical_size;
   44         u32 protect_size = rtwdev->efuse.protect_size;
   45         u32 logical_size = rtwdev->efuse.logical_size;
   46         u32 phy_idx, log_idx;
   47         u8 hdr1, hdr2;
   48         u8 blk_idx;
   49         u8 word_en;
   50         int i;
   51 
   52         for (phy_idx = 0; phy_idx < physical_size - protect_size;) {
   53                 hdr1 = phy_map[phy_idx];
   54                 hdr2 = phy_map[phy_idx + 1];
   55                 if (invalid_efuse_header(hdr1, hdr2))
   56                         break;
   57 
   58                 if ((hdr1 & 0x1f) == 0xf) {
   59                         /* 2-byte header format */
   60                         blk_idx = get_efuse_blk_idx_2_byte(hdr1, hdr2);
   61                         word_en = hdr2 & 0xf;
   62                         phy_idx += 2;
   63                 } else {
   64                         /* 1-byte header format */
   65                         blk_idx = get_efuse_blk_idx_1_byte(hdr1);
   66                         word_en = hdr1 & 0xf;
   67                         phy_idx += 1;
   68                 }
   69 
   70                 for (i = 0; i < 4; i++) {
   71                         if (invalid_efuse_content(word_en, i))
   72                                 continue;
   73 
   74                         log_idx = block_idx_to_logical_idx(blk_idx, i);
   75                         if (phy_idx + 1 > physical_size - protect_size ||
   76                             log_idx + 1 > logical_size)
   77                                 return -EINVAL;
   78 
   79                         log_map[log_idx] = phy_map[phy_idx];
   80                         log_map[log_idx + 1] = phy_map[phy_idx + 1];
   81                         phy_idx += 2;
   82                 }
   83         }
   84         return 0;
   85 }
   86 
   87 static int rtw_dump_physical_efuse_map(struct rtw_dev *rtwdev, u8 *map)
   88 {
   89         struct rtw_chip_info *chip = rtwdev->chip;
   90         u32 size = rtwdev->efuse.physical_size;
   91         u32 efuse_ctl;
   92         u32 addr;
   93         u32 cnt;
   94 
   95         rtw_chip_efuse_grant_on(rtwdev);
   96 
   97         switch_efuse_bank(rtwdev);
   98 
   99         /* disable 2.5V LDO */
  100         chip->ops->cfg_ldo25(rtwdev, false);
  101 
  102         efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
  103 
  104         for (addr = 0; addr < size; addr++) {
  105                 efuse_ctl &= ~(BIT_MASK_EF_DATA | BITS_EF_ADDR);
  106                 efuse_ctl |= (addr & BIT_MASK_EF_ADDR) << BIT_SHIFT_EF_ADDR;
  107                 rtw_write32(rtwdev, REG_EFUSE_CTRL, efuse_ctl & (~BIT_EF_FLAG));
  108 
  109                 cnt = 1000000;
  110                 do {
  111                         udelay(1);
  112                         efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
  113                         if (--cnt == 0)
  114                                 return -EBUSY;
  115                 } while (!(efuse_ctl & BIT_EF_FLAG));
  116 
  117                 *(map + addr) = (u8)(efuse_ctl & BIT_MASK_EF_DATA);
  118         }
  119 
  120         rtw_chip_efuse_grant_off(rtwdev);
  121 
  122         return 0;
  123 }
  124 
  125 int rtw_read8_physical_efuse(struct rtw_dev *rtwdev, u16 addr, u8 *data)
  126 {
  127         u32 efuse_ctl;
  128         int ret;
  129 
  130         rtw_write32_mask(rtwdev, REG_EFUSE_CTRL, 0x3ff00, addr);
  131         rtw_write32_clr(rtwdev, REG_EFUSE_CTRL, BIT_EF_FLAG);
  132 
  133         ret = read_poll_timeout(rtw_read32, efuse_ctl, efuse_ctl & BIT_EF_FLAG,
  134                                 1000, 100000, false, rtwdev, REG_EFUSE_CTRL);
  135         if (ret) {
  136                 *data = EFUSE_READ_FAIL;
  137                 return ret;
  138         }
  139 
  140         *data = rtw_read8(rtwdev, REG_EFUSE_CTRL);
  141 
  142         return 0;
  143 }
  144 EXPORT_SYMBOL(rtw_read8_physical_efuse);
  145 
  146 int rtw_parse_efuse_map(struct rtw_dev *rtwdev)
  147 {
  148         struct rtw_chip_info *chip = rtwdev->chip;
  149         struct rtw_efuse *efuse = &rtwdev->efuse;
  150         u32 phy_size = efuse->physical_size;
  151         u32 log_size = efuse->logical_size;
  152         u8 *phy_map = NULL;
  153         u8 *log_map = NULL;
  154         int ret = 0;
  155 
  156         phy_map = kmalloc(phy_size, GFP_KERNEL);
  157         log_map = kmalloc(log_size, GFP_KERNEL);
  158         if (!phy_map || !log_map) {
  159                 ret = -ENOMEM;
  160                 goto out_free;
  161         }
  162 
  163         ret = rtw_dump_physical_efuse_map(rtwdev, phy_map);
  164         if (ret) {
  165                 rtw_err(rtwdev, "failed to dump efuse physical map\n");
  166                 goto out_free;
  167         }
  168 
  169         memset(log_map, 0xff, log_size);
  170         ret = rtw_dump_logical_efuse_map(rtwdev, phy_map, log_map);
  171         if (ret) {
  172                 rtw_err(rtwdev, "failed to dump efuse logical map\n");
  173                 goto out_free;
  174         }
  175 
  176         ret = chip->ops->read_efuse(rtwdev, log_map);
  177         if (ret) {
  178                 rtw_err(rtwdev, "failed to read efuse map\n");
  179                 goto out_free;
  180         }
  181 
  182 out_free:
  183         kfree(log_map);
  184         kfree(phy_map);
  185 
  186         return ret;
  187 }

Cache object: 5b87f89d8f477de3eb093c80ee45cc11


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.