The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/dev/rtw88/phy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
    2 /* Copyright(c) 2018-2019  Realtek Corporation
    3  */
    4 
    5 #include <linux/bcd.h>
    6 
    7 #include "main.h"
    8 #include "reg.h"
    9 #include "fw.h"
   10 #include "phy.h"
   11 #include "debug.h"
   12 #include "regd.h"
   13 #include "sar.h"
   14 
   15 struct phy_cfg_pair {
   16         u32 addr;
   17         u32 data;
   18 };
   19 
   20 union phy_table_tile {
   21         struct rtw_phy_cond cond;
   22         struct phy_cfg_pair cfg;
   23 };
   24 
   25 static const u32 db_invert_table[12][8] = {
   26         {10,            13,             16,             20,
   27          25,            32,             40,             50},
   28         {64,            80,             101,            128,
   29          160,           201,            256,            318},
   30         {401,           505,            635,            800,
   31          1007,          1268,           1596,           2010},
   32         {316,           398,            501,            631,
   33          794,           1000,           1259,           1585},
   34         {1995,          2512,           3162,           3981,
   35          5012,          6310,           7943,           10000},
   36         {12589,         15849,          19953,          25119,
   37          31623,         39811,          50119,          63098},
   38         {79433,         100000,         125893,         158489,
   39          199526,        251189,         316228,         398107},
   40         {501187,        630957,         794328,         1000000,
   41          1258925,       1584893,        1995262,        2511886},
   42         {3162278,       3981072,        5011872,        6309573,
   43          7943282,       1000000,        12589254,       15848932},
   44         {19952623,      25118864,       31622777,       39810717,
   45          50118723,      63095734,       79432823,       100000000},
   46         {125892541,     158489319,      199526232,      251188643,
   47          316227766,     398107171,      501187234,      630957345},
   48         {794328235,     1000000000,     1258925412,     1584893192,
   49          1995262315,    2511886432U,    3162277660U,    3981071706U}
   50 };
   51 
   52 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
   53 u8 rtw_ofdm_rates[] = {
   54         DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
   55         DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
   56         DESC_RATE48M, DESC_RATE54M
   57 };
   58 u8 rtw_ht_1s_rates[] = {
   59         DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
   60         DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
   61         DESC_RATEMCS6, DESC_RATEMCS7
   62 };
   63 u8 rtw_ht_2s_rates[] = {
   64         DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
   65         DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
   66         DESC_RATEMCS14, DESC_RATEMCS15
   67 };
   68 u8 rtw_vht_1s_rates[] = {
   69         DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
   70         DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
   71         DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
   72         DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
   73         DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
   74 };
   75 u8 rtw_vht_2s_rates[] = {
   76         DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
   77         DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
   78         DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
   79         DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
   80         DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
   81 };
   82 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
   83         rtw_cck_rates, rtw_ofdm_rates,
   84         rtw_ht_1s_rates, rtw_ht_2s_rates,
   85         rtw_vht_1s_rates, rtw_vht_2s_rates
   86 };
   87 EXPORT_SYMBOL(rtw_rate_section);
   88 
   89 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
   90         ARRAY_SIZE(rtw_cck_rates),
   91         ARRAY_SIZE(rtw_ofdm_rates),
   92         ARRAY_SIZE(rtw_ht_1s_rates),
   93         ARRAY_SIZE(rtw_ht_2s_rates),
   94         ARRAY_SIZE(rtw_vht_1s_rates),
   95         ARRAY_SIZE(rtw_vht_2s_rates)
   96 };
   97 EXPORT_SYMBOL(rtw_rate_size);
   98 
   99 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
  100 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
  101 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
  102 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
  103 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
  104 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
  105 
  106 enum rtw_phy_band_type {
  107         PHY_BAND_2G     = 0,
  108         PHY_BAND_5G     = 1,
  109 };
  110 
  111 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
  112 {
  113         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  114         u8 i, j;
  115 
  116         for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
  117                 for (j = 0; j < RTW_RF_PATH_MAX; j++)
  118                         dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
  119         }
  120 
  121         dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
  122 }
  123 
  124 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
  125 {
  126         struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
  127 
  128         rtw_write32_mask(rtwdev,
  129                          edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
  130                          edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
  131                          l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
  132         rtw_write32_mask(rtwdev,
  133                          edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
  134                          edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
  135                          h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
  136 }
  137 EXPORT_SYMBOL(rtw_phy_set_edcca_th);
  138 
  139 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
  140 {
  141         struct rtw_chip_info *chip = rtwdev->chip;
  142         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  143 
  144         /* turn off in debugfs for debug usage */
  145         if (!rtw_edcca_enabled) {
  146                 dm_info->edcca_mode = RTW_EDCCA_NORMAL;
  147                 rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
  148                 return;
  149         }
  150 
  151         switch (rtwdev->regd.dfs_region) {
  152         case NL80211_DFS_ETSI:
  153                 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
  154                 dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
  155                 break;
  156         case NL80211_DFS_JP:
  157                 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
  158                 dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
  159                 break;
  160         default:
  161                 dm_info->edcca_mode = RTW_EDCCA_NORMAL;
  162                 break;
  163         }
  164 }
  165 
  166 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
  167 {
  168         struct rtw_chip_info *chip = rtwdev->chip;
  169 
  170         rtw_phy_adaptivity_set_mode(rtwdev);
  171         if (chip->ops->adaptivity_init)
  172                 chip->ops->adaptivity_init(rtwdev);
  173 }
  174 
  175 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
  176 {
  177         if (rtwdev->chip->ops->adaptivity)
  178                 rtwdev->chip->ops->adaptivity(rtwdev);
  179 }
  180 
  181 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
  182 {
  183         struct rtw_chip_info *chip = rtwdev->chip;
  184 
  185         if (chip->ops->cfo_init)
  186                 chip->ops->cfo_init(rtwdev);
  187 }
  188 
  189 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
  190 {
  191         struct rtw_path_div *path_div = &rtwdev->dm_path_div;
  192 
  193         path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
  194         path_div->path_a_cnt = 0;
  195         path_div->path_a_sum = 0;
  196         path_div->path_b_cnt = 0;
  197         path_div->path_b_sum = 0;
  198 }
  199 
  200 void rtw_phy_init(struct rtw_dev *rtwdev)
  201 {
  202         struct rtw_chip_info *chip = rtwdev->chip;
  203         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  204         u32 addr, mask;
  205 
  206         dm_info->fa_history[3] = 0;
  207         dm_info->fa_history[2] = 0;
  208         dm_info->fa_history[1] = 0;
  209         dm_info->fa_history[0] = 0;
  210         dm_info->igi_bitmap = 0;
  211         dm_info->igi_history[3] = 0;
  212         dm_info->igi_history[2] = 0;
  213         dm_info->igi_history[1] = 0;
  214 
  215         addr = chip->dig[0].addr;
  216         mask = chip->dig[0].mask;
  217         dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
  218         rtw_phy_cck_pd_init(rtwdev);
  219 
  220         dm_info->iqk.done = false;
  221         rtw_phy_adaptivity_init(rtwdev);
  222         rtw_phy_cfo_init(rtwdev);
  223         rtw_phy_tx_path_div_init(rtwdev);
  224 }
  225 EXPORT_SYMBOL(rtw_phy_init);
  226 
  227 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
  228 {
  229         struct rtw_chip_info *chip = rtwdev->chip;
  230         struct rtw_hal *hal = &rtwdev->hal;
  231         u32 addr, mask;
  232         u8 path;
  233 
  234         if (chip->dig_cck) {
  235                 const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
  236                 rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
  237         }
  238 
  239         for (path = 0; path < hal->rf_path_num; path++) {
  240                 addr = chip->dig[path].addr;
  241                 mask = chip->dig[path].mask;
  242                 rtw_write32_mask(rtwdev, addr, mask, igi);
  243         }
  244 }
  245 
  246 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
  247 {
  248         struct rtw_chip_info *chip = rtwdev->chip;
  249 
  250         chip->ops->false_alarm_statistics(rtwdev);
  251 }
  252 
  253 #define RA_FLOOR_TABLE_SIZE     7
  254 #define RA_FLOOR_UP_GAP         3
  255 
  256 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
  257 {
  258         u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
  259         u8 new_level = 0;
  260         int i;
  261 
  262         for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
  263                 if (i >= old_level)
  264                         table[i] += RA_FLOOR_UP_GAP;
  265 
  266         for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
  267                 if (rssi < table[i]) {
  268                         new_level = i;
  269                         break;
  270                 }
  271         }
  272 
  273         return new_level;
  274 }
  275 
  276 struct rtw_phy_stat_iter_data {
  277         struct rtw_dev *rtwdev;
  278         u8 min_rssi;
  279 };
  280 
  281 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
  282 {
  283         struct rtw_phy_stat_iter_data *iter_data = data;
  284         struct rtw_dev *rtwdev = iter_data->rtwdev;
  285         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
  286         u8 rssi;
  287 
  288         rssi = ewma_rssi_read(&si->avg_rssi);
  289         si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
  290 
  291         rtw_fw_send_rssi_info(rtwdev, si);
  292 
  293         iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
  294 }
  295 
  296 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
  297 {
  298         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  299         struct rtw_phy_stat_iter_data data = {};
  300 
  301         data.rtwdev = rtwdev;
  302         data.min_rssi = U8_MAX;
  303         rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
  304 
  305         dm_info->pre_min_rssi = dm_info->min_rssi;
  306         dm_info->min_rssi = data.min_rssi;
  307 }
  308 
  309 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
  310 {
  311         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  312 
  313         dm_info->last_pkt_count = dm_info->cur_pkt_count;
  314         memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
  315 }
  316 
  317 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
  318 {
  319         rtw_phy_stat_rssi(rtwdev);
  320         rtw_phy_stat_false_alarm(rtwdev);
  321         rtw_phy_stat_rate_cnt(rtwdev);
  322 }
  323 
  324 #define DIG_PERF_FA_TH_LOW                      250
  325 #define DIG_PERF_FA_TH_HIGH                     500
  326 #define DIG_PERF_FA_TH_EXTRA_HIGH               750
  327 #define DIG_PERF_MAX                            0x5a
  328 #define DIG_PERF_MID                            0x40
  329 #define DIG_CVRG_FA_TH_LOW                      2000
  330 #define DIG_CVRG_FA_TH_HIGH                     4000
  331 #define DIG_CVRG_FA_TH_EXTRA_HIGH               5000
  332 #define DIG_CVRG_MAX                            0x2a
  333 #define DIG_CVRG_MID                            0x26
  334 #define DIG_CVRG_MIN                            0x1c
  335 #define DIG_RSSI_GAIN_OFFSET                    15
  336 
  337 static bool
  338 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
  339 {
  340         u16 fa_lo = DIG_PERF_FA_TH_LOW;
  341         u16 fa_hi = DIG_PERF_FA_TH_HIGH;
  342         u16 *fa_history;
  343         u8 *igi_history;
  344         u8 damping_rssi;
  345         u8 min_rssi;
  346         u8 diff;
  347         u8 igi_bitmap;
  348         bool damping = false;
  349 
  350         min_rssi = dm_info->min_rssi;
  351         if (dm_info->damping) {
  352                 damping_rssi = dm_info->damping_rssi;
  353                 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
  354                                                  damping_rssi - min_rssi;
  355                 if (diff > 3 || dm_info->damping_cnt++ > 20) {
  356                         dm_info->damping = false;
  357                         return false;
  358                 }
  359 
  360                 return true;
  361         }
  362 
  363         igi_history = dm_info->igi_history;
  364         fa_history = dm_info->fa_history;
  365         igi_bitmap = dm_info->igi_bitmap & 0xf;
  366         switch (igi_bitmap) {
  367         case 5:
  368                 /* down -> up -> down -> up */
  369                 if (igi_history[0] > igi_history[1] &&
  370                     igi_history[2] > igi_history[3] &&
  371                     igi_history[0] - igi_history[1] >= 2 &&
  372                     igi_history[2] - igi_history[3] >= 2 &&
  373                     fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
  374                     fa_history[2] > fa_hi && fa_history[3] < fa_lo)
  375                         damping = true;
  376                 break;
  377         case 9:
  378                 /* up -> down -> down -> up */
  379                 if (igi_history[0] > igi_history[1] &&
  380                     igi_history[3] > igi_history[2] &&
  381                     igi_history[0] - igi_history[1] >= 4 &&
  382                     igi_history[3] - igi_history[2] >= 2 &&
  383                     fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
  384                     fa_history[2] < fa_lo && fa_history[3] > fa_hi)
  385                         damping = true;
  386                 break;
  387         default:
  388                 return false;
  389         }
  390 
  391         if (damping) {
  392                 dm_info->damping = true;
  393                 dm_info->damping_cnt = 0;
  394                 dm_info->damping_rssi = min_rssi;
  395         }
  396 
  397         return damping;
  398 }
  399 
  400 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
  401                                      struct rtw_dm_info *dm_info,
  402                                      u8 *upper, u8 *lower, bool linked)
  403 {
  404         u8 dig_max, dig_min, dig_mid;
  405         u8 min_rssi;
  406 
  407         if (linked) {
  408                 dig_max = DIG_PERF_MAX;
  409                 dig_mid = DIG_PERF_MID;
  410                 dig_min = rtwdev->chip->dig_min;
  411                 min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
  412         } else {
  413                 dig_max = DIG_CVRG_MAX;
  414                 dig_mid = DIG_CVRG_MID;
  415                 dig_min = DIG_CVRG_MIN;
  416                 min_rssi = dig_min;
  417         }
  418 
  419         /* DIG MAX should be bounded by minimum RSSI with offset +15 */
  420         dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
  421 
  422         *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
  423         *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
  424 }
  425 
  426 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
  427                                       u16 *fa_th, u8 *step, bool linked)
  428 {
  429         u8 min_rssi, pre_min_rssi;
  430 
  431         min_rssi = dm_info->min_rssi;
  432         pre_min_rssi = dm_info->pre_min_rssi;
  433         step[0] = 4;
  434         step[1] = 3;
  435         step[2] = 2;
  436 
  437         if (linked) {
  438                 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
  439                 fa_th[1] = DIG_PERF_FA_TH_HIGH;
  440                 fa_th[2] = DIG_PERF_FA_TH_LOW;
  441                 if (pre_min_rssi > min_rssi) {
  442                         step[0] = 6;
  443                         step[1] = 4;
  444                         step[2] = 2;
  445                 }
  446         } else {
  447                 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
  448                 fa_th[1] = DIG_CVRG_FA_TH_HIGH;
  449                 fa_th[2] = DIG_CVRG_FA_TH_LOW;
  450         }
  451 }
  452 
  453 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
  454 {
  455         u8 *igi_history;
  456         u16 *fa_history;
  457         u8 igi_bitmap;
  458         bool up;
  459 
  460         igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
  461         igi_history = dm_info->igi_history;
  462         fa_history = dm_info->fa_history;
  463 
  464         up = igi > igi_history[0];
  465         igi_bitmap |= up;
  466 
  467         igi_history[3] = igi_history[2];
  468         igi_history[2] = igi_history[1];
  469         igi_history[1] = igi_history[0];
  470         igi_history[0] = igi;
  471 
  472         fa_history[3] = fa_history[2];
  473         fa_history[2] = fa_history[1];
  474         fa_history[1] = fa_history[0];
  475         fa_history[0] = fa;
  476 
  477         dm_info->igi_bitmap = igi_bitmap;
  478 }
  479 
  480 static void rtw_phy_dig(struct rtw_dev *rtwdev)
  481 {
  482         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  483         u8 upper_bound, lower_bound;
  484         u8 pre_igi, cur_igi;
  485         u16 fa_th[3], fa_cnt;
  486         u8 level;
  487         u8 step[3];
  488         bool linked;
  489 
  490         if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
  491                 return;
  492 
  493         if (rtw_phy_dig_check_damping(dm_info))
  494                 return;
  495 
  496         linked = !!rtwdev->sta_cnt;
  497 
  498         fa_cnt = dm_info->total_fa_cnt;
  499         pre_igi = dm_info->igi_history[0];
  500 
  501         rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
  502 
  503         /* test the false alarm count from the highest threshold level first,
  504          * and increase it by corresponding step size
  505          *
  506          * note that the step size is offset by -2, compensate it afterall
  507          */
  508         cur_igi = pre_igi;
  509         for (level = 0; level < 3; level++) {
  510                 if (fa_cnt > fa_th[level]) {
  511                         cur_igi += step[level];
  512                         break;
  513                 }
  514         }
  515         cur_igi -= 2;
  516 
  517         /* calculate the upper/lower bound by the minimum rssi we have among
  518          * the peers connected with us, meanwhile make sure the igi value does
  519          * not beyond the hardware limitation
  520          */
  521         rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
  522                                  linked);
  523         cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
  524 
  525         /* record current igi value and false alarm statistics for further
  526          * damping checks, and record the trend of igi values
  527          */
  528         rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
  529 
  530         if (cur_igi != pre_igi)
  531                 rtw_phy_dig_write(rtwdev, cur_igi);
  532 }
  533 
  534 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
  535 {
  536         struct rtw_dev *rtwdev = data;
  537         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
  538 
  539         rtw_update_sta_info(rtwdev, si, false);
  540 }
  541 
  542 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
  543 {
  544         if (rtwdev->watch_dog_cnt & 0x3)
  545                 return;
  546 
  547         rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
  548 }
  549 
  550 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
  551 {
  552         u8 rate_order;
  553 
  554         rate_order = rate_idx;
  555 
  556         if (rate_idx >= DESC_RATEVHT4SS_MCS0)
  557                 rate_order -= DESC_RATEVHT4SS_MCS0;
  558         else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
  559                 rate_order -= DESC_RATEVHT3SS_MCS0;
  560         else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
  561                 rate_order -= DESC_RATEVHT2SS_MCS0;
  562         else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
  563                 rate_order -= DESC_RATEVHT1SS_MCS0;
  564         else if (rate_idx >= DESC_RATEMCS24)
  565                 rate_order -= DESC_RATEMCS24;
  566         else if (rate_idx >= DESC_RATEMCS16)
  567                 rate_order -= DESC_RATEMCS16;
  568         else if (rate_idx >= DESC_RATEMCS8)
  569                 rate_order -= DESC_RATEMCS8;
  570         else if (rate_idx >= DESC_RATEMCS0)
  571                 rate_order -= DESC_RATEMCS0;
  572         else if (rate_idx >= DESC_RATE6M)
  573                 rate_order -= DESC_RATE6M;
  574         else
  575                 rate_order -= DESC_RATE1M;
  576 
  577         if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
  578                 rate_order++;
  579 
  580         return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
  581 }
  582 
  583 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
  584 {
  585         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
  586         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
  587         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  588         u32 mask = 0;
  589 
  590         mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
  591         if (mask < dm_info->rrsr_mask_min)
  592                 dm_info->rrsr_mask_min = mask;
  593 }
  594 
  595 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
  596 {
  597         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  598 
  599         dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
  600         rtw_iterate_stas_atomic(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
  601         rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
  602 }
  603 
  604 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
  605 {
  606         struct rtw_chip_info *chip = rtwdev->chip;
  607 
  608         if (chip->ops->dpk_track)
  609                 chip->ops->dpk_track(rtwdev);
  610 }
  611 
  612 struct rtw_rx_addr_match_data {
  613         struct rtw_dev *rtwdev;
  614         struct ieee80211_hdr *hdr;
  615         struct rtw_rx_pkt_stat *pkt_stat;
  616         u8 *bssid;
  617 };
  618 
  619 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
  620                                      struct ieee80211_vif *vif)
  621 {
  622         struct rtw_rx_addr_match_data *iter_data = data;
  623         struct rtw_dev *rtwdev = iter_data->rtwdev;
  624         struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
  625         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  626         struct rtw_cfo_track *cfo = &dm_info->cfo_track;
  627         u8 *bssid = iter_data->bssid;
  628         u8 i;
  629 
  630         if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
  631                 return;
  632 
  633         for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
  634                 cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
  635                 cfo->cfo_cnt[i]++;
  636         }
  637 
  638         cfo->packet_count++;
  639 }
  640 
  641 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
  642                          struct rtw_rx_pkt_stat *pkt_stat)
  643 {
  644         struct ieee80211_hdr *hdr = pkt_stat->hdr;
  645         struct rtw_rx_addr_match_data data = {};
  646 
  647         if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
  648             ieee80211_is_ctl(hdr->frame_control))
  649                 return;
  650 
  651         data.rtwdev = rtwdev;
  652         data.hdr = hdr;
  653         data.pkt_stat = pkt_stat;
  654         data.bssid = get_hdr_bssid(hdr);
  655 
  656         rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
  657 }
  658 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
  659 
  660 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
  661 {
  662         struct rtw_chip_info *chip = rtwdev->chip;
  663 
  664         if (chip->ops->cfo_track)
  665                 chip->ops->cfo_track(rtwdev);
  666 }
  667 
  668 #define CCK_PD_FA_LV1_MIN       1000
  669 #define CCK_PD_FA_LV0_MAX       500
  670 
  671 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
  672 {
  673         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  674         u32 cck_fa_avg = dm_info->cck_fa_avg;
  675 
  676         if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
  677                 return CCK_PD_LV1;
  678 
  679         if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
  680                 return CCK_PD_LV0;
  681 
  682         return CCK_PD_LV_MAX;
  683 }
  684 
  685 #define CCK_PD_IGI_LV4_VAL 0x38
  686 #define CCK_PD_IGI_LV3_VAL 0x2a
  687 #define CCK_PD_IGI_LV2_VAL 0x24
  688 #define CCK_PD_RSSI_LV4_VAL 32
  689 #define CCK_PD_RSSI_LV3_VAL 32
  690 #define CCK_PD_RSSI_LV2_VAL 24
  691 
  692 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
  693 {
  694         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  695         u8 igi = dm_info->igi_history[0];
  696         u8 rssi = dm_info->min_rssi;
  697         u32 cck_fa_avg = dm_info->cck_fa_avg;
  698 
  699         if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
  700                 return CCK_PD_LV4;
  701         if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
  702                 return CCK_PD_LV3;
  703         if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
  704                 return CCK_PD_LV2;
  705         if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
  706                 return CCK_PD_LV1;
  707         if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
  708                 return CCK_PD_LV0;
  709 
  710         return CCK_PD_LV_MAX;
  711 }
  712 
  713 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
  714 {
  715         if (!rtw_is_assoc(rtwdev))
  716                 return rtw_phy_cck_pd_lv_unlink(rtwdev);
  717         else
  718                 return rtw_phy_cck_pd_lv_link(rtwdev);
  719 }
  720 
  721 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
  722 {
  723         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
  724         struct rtw_chip_info *chip = rtwdev->chip;
  725         u32 cck_fa = dm_info->cck_fa_cnt;
  726         u8 level;
  727 
  728         if (rtwdev->hal.current_band_type != RTW_BAND_2G)
  729                 return;
  730 
  731         if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
  732                 dm_info->cck_fa_avg = cck_fa;
  733         else
  734                 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
  735 
  736         rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
  737                 dm_info->igi_history[0], dm_info->min_rssi,
  738                 dm_info->fa_history[0]);
  739         rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
  740                 dm_info->cck_fa_avg, dm_info->cck_pd_default);
  741 
  742         level = rtw_phy_cck_pd_lv(rtwdev);
  743 
  744         if (level >= CCK_PD_LV_MAX)
  745                 return;
  746 
  747         if (chip->ops->cck_pd_set)
  748                 chip->ops->cck_pd_set(rtwdev, level);
  749 }
  750 
  751 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
  752 {
  753         rtwdev->chip->ops->pwr_track(rtwdev);
  754 }
  755 
  756 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
  757 {
  758         rtw_fw_update_wl_phy_info(rtwdev);
  759         rtw_phy_ra_info_update(rtwdev);
  760         rtw_phy_rrsr_update(rtwdev);
  761 }
  762 
  763 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
  764 {
  765         /* for further calculation */
  766         rtw_phy_statistics(rtwdev);
  767         rtw_phy_dig(rtwdev);
  768         rtw_phy_cck_pd(rtwdev);
  769         rtw_phy_ra_track(rtwdev);
  770         rtw_phy_tx_path_diversity(rtwdev);
  771         rtw_phy_cfo_track(rtwdev);
  772         rtw_phy_dpk_track(rtwdev);
  773         rtw_phy_pwr_track(rtwdev);
  774 
  775         if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
  776                 rtw_fw_adaptivity(rtwdev);
  777         else
  778                 rtw_phy_adaptivity(rtwdev);
  779 }
  780 
  781 #define FRAC_BITS 3
  782 
  783 static u8 rtw_phy_power_2_db(s8 power)
  784 {
  785         if (power <= -100 || power >= 20)
  786                 return 0;
  787         else if (power >= 0)
  788                 return 100;
  789         else
  790                 return 100 + power;
  791 }
  792 
  793 static u64 rtw_phy_db_2_linear(u8 power_db)
  794 {
  795         u8 i, j;
  796         u64 linear;
  797 
  798         if (power_db > 96)
  799                 power_db = 96;
  800         else if (power_db < 1)
  801                 return 1;
  802 
  803         /* 1dB ~ 96dB */
  804         i = (power_db - 1) >> 3;
  805         j = (power_db - 1) - (i << 3);
  806 
  807         linear = db_invert_table[i][j];
  808         linear = i > 2 ? linear << FRAC_BITS : linear;
  809 
  810         return linear;
  811 }
  812 
  813 static u8 rtw_phy_linear_2_db(u64 linear)
  814 {
  815         u8 i;
  816         u8 j;
  817         u32 dB;
  818 
  819         if (linear >= db_invert_table[11][7])
  820                 return 96; /* maximum 96 dB */
  821 
  822         for (i = 0; i < 12; i++) {
  823                 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
  824                         break;
  825                 else if (i > 2 && linear <= db_invert_table[i][7])
  826                         break;
  827         }
  828 
  829         for (j = 0; j < 8; j++) {
  830                 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
  831                         break;
  832                 else if (i > 2 && linear <= db_invert_table[i][j])
  833                         break;
  834         }
  835 
  836         if (j == 0 && i == 0)
  837                 goto end;
  838 
  839         if (j == 0) {
  840                 if (i != 3) {
  841                         if (db_invert_table[i][0] - linear >
  842                             linear - db_invert_table[i - 1][7]) {
  843                                 i = i - 1;
  844                                 j = 7;
  845                         }
  846                 } else {
  847                         if (db_invert_table[3][0] - linear >
  848                             linear - db_invert_table[2][7]) {
  849                                 i = 2;
  850                                 j = 7;
  851                         }
  852                 }
  853         } else {
  854                 if (db_invert_table[i][j] - linear >
  855                     linear - db_invert_table[i][j - 1]) {
  856                         j = j - 1;
  857                 }
  858         }
  859 end:
  860         dB = (i << 3) + j + 1;
  861 
  862         return dB;
  863 }
  864 
  865 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
  866 {
  867         s8 power;
  868         u8 power_db;
  869         u64 linear;
  870         u64 sum = 0;
  871         u8 path;
  872 
  873         for (path = 0; path < path_num; path++) {
  874                 power = rf_power[path];
  875                 power_db = rtw_phy_power_2_db(power);
  876                 linear = rtw_phy_db_2_linear(power_db);
  877                 sum += linear;
  878         }
  879 
  880         sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
  881         switch (path_num) {
  882         case 2:
  883                 sum >>= 1;
  884                 break;
  885         case 3:
  886                 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
  887                 break;
  888         case 4:
  889                 sum >>= 2;
  890                 break;
  891         default:
  892                 break;
  893         }
  894 
  895         return rtw_phy_linear_2_db(sum);
  896 }
  897 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
  898 
  899 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  900                     u32 addr, u32 mask)
  901 {
  902         struct rtw_hal *hal = &rtwdev->hal;
  903         struct rtw_chip_info *chip = rtwdev->chip;
  904         const u32 *base_addr = chip->rf_base_addr;
  905         u32 val, direct_addr;
  906 
  907         if (rf_path >= hal->rf_phy_num) {
  908                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
  909                 return INV_RF_DATA;
  910         }
  911 
  912         addr &= 0xff;
  913         direct_addr = base_addr[rf_path] + (addr << 2);
  914         mask &= RFREG_MASK;
  915 
  916         val = rtw_read32_mask(rtwdev, direct_addr, mask);
  917 
  918         return val;
  919 }
  920 EXPORT_SYMBOL(rtw_phy_read_rf);
  921 
  922 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  923                          u32 addr, u32 mask)
  924 {
  925         struct rtw_hal *hal = &rtwdev->hal;
  926         struct rtw_chip_info *chip = rtwdev->chip;
  927         const struct rtw_rf_sipi_addr *rf_sipi_addr;
  928         const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
  929         u32 val32;
  930         u32 en_pi;
  931         u32 r_addr;
  932         u32 shift;
  933 
  934         if (rf_path >= hal->rf_phy_num) {
  935                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
  936                 return INV_RF_DATA;
  937         }
  938 
  939         if (!chip->rf_sipi_read_addr) {
  940                 rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
  941                 return INV_RF_DATA;
  942         }
  943 
  944         rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
  945         rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
  946 
  947         addr &= 0xff;
  948 
  949         val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
  950         val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
  951         rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
  952 
  953         /* toggle read edge of path A */
  954         val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
  955         rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
  956         rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
  957 
  958         udelay(120);
  959 
  960         en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
  961         r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
  962 
  963         val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
  964 
  965         shift = __ffs(mask);
  966 
  967         return (val32 & mask) >> shift;
  968 }
  969 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
  970 
  971 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
  972                                u32 addr, u32 mask, u32 data)
  973 {
  974         struct rtw_hal *hal = &rtwdev->hal;
  975         struct rtw_chip_info *chip = rtwdev->chip;
  976         u32 *sipi_addr = chip->rf_sipi_addr;
  977         u32 data_and_addr;
  978         u32 old_data = 0;
  979         u32 shift;
  980 
  981         if (rf_path >= hal->rf_phy_num) {
  982                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
  983                 return false;
  984         }
  985 
  986         addr &= 0xff;
  987         mask &= RFREG_MASK;
  988 
  989         if (mask != RFREG_MASK) {
  990                 old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
  991 
  992                 if (old_data == INV_RF_DATA) {
  993                         rtw_err(rtwdev, "Write fail, rf is disabled\n");
  994                         return false;
  995                 }
  996 
  997                 shift = __ffs(mask);
  998                 data = ((old_data) & (~mask)) | (data << shift);
  999         }
 1000 
 1001         data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
 1002 
 1003         rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
 1004 
 1005         udelay(13);
 1006 
 1007         return true;
 1008 }
 1009 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
 1010 
 1011 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 1012                           u32 addr, u32 mask, u32 data)
 1013 {
 1014         struct rtw_hal *hal = &rtwdev->hal;
 1015         struct rtw_chip_info *chip = rtwdev->chip;
 1016         const u32 *base_addr = chip->rf_base_addr;
 1017         u32 direct_addr;
 1018 
 1019         if (rf_path >= hal->rf_phy_num) {
 1020                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
 1021                 return false;
 1022         }
 1023 
 1024         addr &= 0xff;
 1025         direct_addr = base_addr[rf_path] + (addr << 2);
 1026         mask &= RFREG_MASK;
 1027 
 1028         rtw_write32_mask(rtwdev, direct_addr, mask, data);
 1029 
 1030         udelay(1);
 1031 
 1032         return true;
 1033 }
 1034 
 1035 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 1036                               u32 addr, u32 mask, u32 data)
 1037 {
 1038         if (addr != 0x00)
 1039                 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
 1040 
 1041         return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
 1042 }
 1043 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
 1044 
 1045 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
 1046 {
 1047         struct rtw_hal *hal = &rtwdev->hal;
 1048         struct rtw_efuse *efuse = &rtwdev->efuse;
 1049         struct rtw_phy_cond cond = {0};
 1050 
 1051         cond.cut = hal->cut_version ? hal->cut_version : 15;
 1052         cond.pkg = pkg ? pkg : 15;
 1053         cond.plat = 0x04;
 1054         cond.rfe = efuse->rfe_option;
 1055 
 1056         switch (rtw_hci_type(rtwdev)) {
 1057         case RTW_HCI_TYPE_USB:
 1058                 cond.intf = INTF_USB;
 1059                 break;
 1060         case RTW_HCI_TYPE_SDIO:
 1061                 cond.intf = INTF_SDIO;
 1062                 break;
 1063         case RTW_HCI_TYPE_PCIE:
 1064         default:
 1065                 cond.intf = INTF_PCIE;
 1066                 break;
 1067         }
 1068 
 1069         hal->phy_cond = cond;
 1070 
 1071         rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
 1072 }
 1073 
 1074 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
 1075 {
 1076         struct rtw_hal *hal = &rtwdev->hal;
 1077         struct rtw_phy_cond drv_cond = hal->phy_cond;
 1078 
 1079         if (cond.cut && cond.cut != drv_cond.cut)
 1080                 return false;
 1081 
 1082         if (cond.pkg && cond.pkg != drv_cond.pkg)
 1083                 return false;
 1084 
 1085         if (cond.intf && cond.intf != drv_cond.intf)
 1086                 return false;
 1087 
 1088         if (cond.rfe != drv_cond.rfe)
 1089                 return false;
 1090 
 1091         return true;
 1092 }
 1093 
 1094 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
 1095 {
 1096         const union phy_table_tile *p = tbl->data;
 1097         const union phy_table_tile *end = p + tbl->size / 2;
 1098         struct rtw_phy_cond pos_cond = {0};
 1099         bool is_matched = true, is_skipped = false;
 1100 
 1101         BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
 1102 
 1103         for (; p < end; p++) {
 1104                 if (p->cond.pos) {
 1105                         switch (p->cond.branch) {
 1106                         case BRANCH_ENDIF:
 1107                                 is_matched = true;
 1108                                 is_skipped = false;
 1109                                 break;
 1110                         case BRANCH_ELSE:
 1111                                 is_matched = is_skipped ? false : true;
 1112                                 break;
 1113                         case BRANCH_IF:
 1114                         case BRANCH_ELIF:
 1115                         default:
 1116                                 pos_cond = p->cond;
 1117                                 break;
 1118                         }
 1119                 } else if (p->cond.neg) {
 1120                         if (!is_skipped) {
 1121                                 if (check_positive(rtwdev, pos_cond)) {
 1122                                         is_matched = true;
 1123                                         is_skipped = true;
 1124                                 } else {
 1125                                         is_matched = false;
 1126                                         is_skipped = false;
 1127                                 }
 1128                         } else {
 1129                                 is_matched = false;
 1130                         }
 1131                 } else if (is_matched) {
 1132                         (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
 1133                 }
 1134         }
 1135 }
 1136 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
 1137 
 1138 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
 1139 
 1140 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
 1141 {
 1142         if (rtwdev->chip->is_pwr_by_rate_dec)
 1143                 return bcd_to_dec_pwr_by_rate(hex, i);
 1144 
 1145         return (hex >> (i * 8)) & 0xFF;
 1146 }
 1147 
 1148 static void
 1149 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
 1150                                          u32 addr, u32 mask, u32 val, u8 *rate,
 1151                                          u8 *pwr_by_rate, u8 *rate_num)
 1152 {
 1153         int i;
 1154 
 1155         switch (addr) {
 1156         case 0xE00:
 1157         case 0x830:
 1158                 rate[0] = DESC_RATE6M;
 1159                 rate[1] = DESC_RATE9M;
 1160                 rate[2] = DESC_RATE12M;
 1161                 rate[3] = DESC_RATE18M;
 1162                 for (i = 0; i < 4; ++i)
 1163                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1164                 *rate_num = 4;
 1165                 break;
 1166         case 0xE04:
 1167         case 0x834:
 1168                 rate[0] = DESC_RATE24M;
 1169                 rate[1] = DESC_RATE36M;
 1170                 rate[2] = DESC_RATE48M;
 1171                 rate[3] = DESC_RATE54M;
 1172                 for (i = 0; i < 4; ++i)
 1173                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1174                 *rate_num = 4;
 1175                 break;
 1176         case 0xE08:
 1177                 rate[0] = DESC_RATE1M;
 1178                 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
 1179                 *rate_num = 1;
 1180                 break;
 1181         case 0x86C:
 1182                 if (mask == 0xffffff00) {
 1183                         rate[0] = DESC_RATE2M;
 1184                         rate[1] = DESC_RATE5_5M;
 1185                         rate[2] = DESC_RATE11M;
 1186                         for (i = 1; i < 4; ++i)
 1187                                 pwr_by_rate[i - 1] =
 1188                                         tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1189                         *rate_num = 3;
 1190                 } else if (mask == 0x000000ff) {
 1191                         rate[0] = DESC_RATE11M;
 1192                         pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
 1193                         *rate_num = 1;
 1194                 }
 1195                 break;
 1196         case 0xE10:
 1197         case 0x83C:
 1198                 rate[0] = DESC_RATEMCS0;
 1199                 rate[1] = DESC_RATEMCS1;
 1200                 rate[2] = DESC_RATEMCS2;
 1201                 rate[3] = DESC_RATEMCS3;
 1202                 for (i = 0; i < 4; ++i)
 1203                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1204                 *rate_num = 4;
 1205                 break;
 1206         case 0xE14:
 1207         case 0x848:
 1208                 rate[0] = DESC_RATEMCS4;
 1209                 rate[1] = DESC_RATEMCS5;
 1210                 rate[2] = DESC_RATEMCS6;
 1211                 rate[3] = DESC_RATEMCS7;
 1212                 for (i = 0; i < 4; ++i)
 1213                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1214                 *rate_num = 4;
 1215                 break;
 1216         case 0xE18:
 1217         case 0x84C:
 1218                 rate[0] = DESC_RATEMCS8;
 1219                 rate[1] = DESC_RATEMCS9;
 1220                 rate[2] = DESC_RATEMCS10;
 1221                 rate[3] = DESC_RATEMCS11;
 1222                 for (i = 0; i < 4; ++i)
 1223                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1224                 *rate_num = 4;
 1225                 break;
 1226         case 0xE1C:
 1227         case 0x868:
 1228                 rate[0] = DESC_RATEMCS12;
 1229                 rate[1] = DESC_RATEMCS13;
 1230                 rate[2] = DESC_RATEMCS14;
 1231                 rate[3] = DESC_RATEMCS15;
 1232                 for (i = 0; i < 4; ++i)
 1233                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1234                 *rate_num = 4;
 1235                 break;
 1236         case 0x838:
 1237                 rate[0] = DESC_RATE1M;
 1238                 rate[1] = DESC_RATE2M;
 1239                 rate[2] = DESC_RATE5_5M;
 1240                 for (i = 1; i < 4; ++i)
 1241                         pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
 1242                                                                     val, i);
 1243                 *rate_num = 3;
 1244                 break;
 1245         case 0xC20:
 1246         case 0xE20:
 1247         case 0x1820:
 1248         case 0x1A20:
 1249                 rate[0] = DESC_RATE1M;
 1250                 rate[1] = DESC_RATE2M;
 1251                 rate[2] = DESC_RATE5_5M;
 1252                 rate[3] = DESC_RATE11M;
 1253                 for (i = 0; i < 4; ++i)
 1254                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1255                 *rate_num = 4;
 1256                 break;
 1257         case 0xC24:
 1258         case 0xE24:
 1259         case 0x1824:
 1260         case 0x1A24:
 1261                 rate[0] = DESC_RATE6M;
 1262                 rate[1] = DESC_RATE9M;
 1263                 rate[2] = DESC_RATE12M;
 1264                 rate[3] = DESC_RATE18M;
 1265                 for (i = 0; i < 4; ++i)
 1266                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1267                 *rate_num = 4;
 1268                 break;
 1269         case 0xC28:
 1270         case 0xE28:
 1271         case 0x1828:
 1272         case 0x1A28:
 1273                 rate[0] = DESC_RATE24M;
 1274                 rate[1] = DESC_RATE36M;
 1275                 rate[2] = DESC_RATE48M;
 1276                 rate[3] = DESC_RATE54M;
 1277                 for (i = 0; i < 4; ++i)
 1278                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1279                 *rate_num = 4;
 1280                 break;
 1281         case 0xC2C:
 1282         case 0xE2C:
 1283         case 0x182C:
 1284         case 0x1A2C:
 1285                 rate[0] = DESC_RATEMCS0;
 1286                 rate[1] = DESC_RATEMCS1;
 1287                 rate[2] = DESC_RATEMCS2;
 1288                 rate[3] = DESC_RATEMCS3;
 1289                 for (i = 0; i < 4; ++i)
 1290                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1291                 *rate_num = 4;
 1292                 break;
 1293         case 0xC30:
 1294         case 0xE30:
 1295         case 0x1830:
 1296         case 0x1A30:
 1297                 rate[0] = DESC_RATEMCS4;
 1298                 rate[1] = DESC_RATEMCS5;
 1299                 rate[2] = DESC_RATEMCS6;
 1300                 rate[3] = DESC_RATEMCS7;
 1301                 for (i = 0; i < 4; ++i)
 1302                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1303                 *rate_num = 4;
 1304                 break;
 1305         case 0xC34:
 1306         case 0xE34:
 1307         case 0x1834:
 1308         case 0x1A34:
 1309                 rate[0] = DESC_RATEMCS8;
 1310                 rate[1] = DESC_RATEMCS9;
 1311                 rate[2] = DESC_RATEMCS10;
 1312                 rate[3] = DESC_RATEMCS11;
 1313                 for (i = 0; i < 4; ++i)
 1314                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1315                 *rate_num = 4;
 1316                 break;
 1317         case 0xC38:
 1318         case 0xE38:
 1319         case 0x1838:
 1320         case 0x1A38:
 1321                 rate[0] = DESC_RATEMCS12;
 1322                 rate[1] = DESC_RATEMCS13;
 1323                 rate[2] = DESC_RATEMCS14;
 1324                 rate[3] = DESC_RATEMCS15;
 1325                 for (i = 0; i < 4; ++i)
 1326                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1327                 *rate_num = 4;
 1328                 break;
 1329         case 0xC3C:
 1330         case 0xE3C:
 1331         case 0x183C:
 1332         case 0x1A3C:
 1333                 rate[0] = DESC_RATEVHT1SS_MCS0;
 1334                 rate[1] = DESC_RATEVHT1SS_MCS1;
 1335                 rate[2] = DESC_RATEVHT1SS_MCS2;
 1336                 rate[3] = DESC_RATEVHT1SS_MCS3;
 1337                 for (i = 0; i < 4; ++i)
 1338                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1339                 *rate_num = 4;
 1340                 break;
 1341         case 0xC40:
 1342         case 0xE40:
 1343         case 0x1840:
 1344         case 0x1A40:
 1345                 rate[0] = DESC_RATEVHT1SS_MCS4;
 1346                 rate[1] = DESC_RATEVHT1SS_MCS5;
 1347                 rate[2] = DESC_RATEVHT1SS_MCS6;
 1348                 rate[3] = DESC_RATEVHT1SS_MCS7;
 1349                 for (i = 0; i < 4; ++i)
 1350                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1351                 *rate_num = 4;
 1352                 break;
 1353         case 0xC44:
 1354         case 0xE44:
 1355         case 0x1844:
 1356         case 0x1A44:
 1357                 rate[0] = DESC_RATEVHT1SS_MCS8;
 1358                 rate[1] = DESC_RATEVHT1SS_MCS9;
 1359                 rate[2] = DESC_RATEVHT2SS_MCS0;
 1360                 rate[3] = DESC_RATEVHT2SS_MCS1;
 1361                 for (i = 0; i < 4; ++i)
 1362                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1363                 *rate_num = 4;
 1364                 break;
 1365         case 0xC48:
 1366         case 0xE48:
 1367         case 0x1848:
 1368         case 0x1A48:
 1369                 rate[0] = DESC_RATEVHT2SS_MCS2;
 1370                 rate[1] = DESC_RATEVHT2SS_MCS3;
 1371                 rate[2] = DESC_RATEVHT2SS_MCS4;
 1372                 rate[3] = DESC_RATEVHT2SS_MCS5;
 1373                 for (i = 0; i < 4; ++i)
 1374                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1375                 *rate_num = 4;
 1376                 break;
 1377         case 0xC4C:
 1378         case 0xE4C:
 1379         case 0x184C:
 1380         case 0x1A4C:
 1381                 rate[0] = DESC_RATEVHT2SS_MCS6;
 1382                 rate[1] = DESC_RATEVHT2SS_MCS7;
 1383                 rate[2] = DESC_RATEVHT2SS_MCS8;
 1384                 rate[3] = DESC_RATEVHT2SS_MCS9;
 1385                 for (i = 0; i < 4; ++i)
 1386                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1387                 *rate_num = 4;
 1388                 break;
 1389         case 0xCD8:
 1390         case 0xED8:
 1391         case 0x18D8:
 1392         case 0x1AD8:
 1393                 rate[0] = DESC_RATEMCS16;
 1394                 rate[1] = DESC_RATEMCS17;
 1395                 rate[2] = DESC_RATEMCS18;
 1396                 rate[3] = DESC_RATEMCS19;
 1397                 for (i = 0; i < 4; ++i)
 1398                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1399                 *rate_num = 4;
 1400                 break;
 1401         case 0xCDC:
 1402         case 0xEDC:
 1403         case 0x18DC:
 1404         case 0x1ADC:
 1405                 rate[0] = DESC_RATEMCS20;
 1406                 rate[1] = DESC_RATEMCS21;
 1407                 rate[2] = DESC_RATEMCS22;
 1408                 rate[3] = DESC_RATEMCS23;
 1409                 for (i = 0; i < 4; ++i)
 1410                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1411                 *rate_num = 4;
 1412                 break;
 1413         case 0xCE0:
 1414         case 0xEE0:
 1415         case 0x18E0:
 1416         case 0x1AE0:
 1417                 rate[0] = DESC_RATEVHT3SS_MCS0;
 1418                 rate[1] = DESC_RATEVHT3SS_MCS1;
 1419                 rate[2] = DESC_RATEVHT3SS_MCS2;
 1420                 rate[3] = DESC_RATEVHT3SS_MCS3;
 1421                 for (i = 0; i < 4; ++i)
 1422                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1423                 *rate_num = 4;
 1424                 break;
 1425         case 0xCE4:
 1426         case 0xEE4:
 1427         case 0x18E4:
 1428         case 0x1AE4:
 1429                 rate[0] = DESC_RATEVHT3SS_MCS4;
 1430                 rate[1] = DESC_RATEVHT3SS_MCS5;
 1431                 rate[2] = DESC_RATEVHT3SS_MCS6;
 1432                 rate[3] = DESC_RATEVHT3SS_MCS7;
 1433                 for (i = 0; i < 4; ++i)
 1434                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1435                 *rate_num = 4;
 1436                 break;
 1437         case 0xCE8:
 1438         case 0xEE8:
 1439         case 0x18E8:
 1440         case 0x1AE8:
 1441                 rate[0] = DESC_RATEVHT3SS_MCS8;
 1442                 rate[1] = DESC_RATEVHT3SS_MCS9;
 1443                 for (i = 0; i < 2; ++i)
 1444                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 1445                 *rate_num = 2;
 1446                 break;
 1447         default:
 1448                 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
 1449                 break;
 1450         }
 1451 }
 1452 
 1453 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
 1454                                            u32 band, u32 rfpath, u32 txnum,
 1455                                            u32 regaddr, u32 bitmask, u32 data)
 1456 {
 1457         struct rtw_hal *hal = &rtwdev->hal;
 1458         u8 rate_num = 0;
 1459         u8 rate;
 1460         u8 rates[RTW_RF_PATH_MAX] = {0};
 1461         s8 offset;
 1462         s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
 1463         int i;
 1464 
 1465         rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
 1466                                                  rates, pwr_by_rate, &rate_num);
 1467 
 1468         if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
 1469                     (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
 1470                     rate_num > RTW_RF_PATH_MAX))
 1471                 return;
 1472 
 1473         for (i = 0; i < rate_num; i++) {
 1474                 offset = pwr_by_rate[i];
 1475                 rate = rates[i];
 1476                 if (band == PHY_BAND_2G)
 1477                         hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
 1478                 else if (band == PHY_BAND_5G)
 1479                         hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
 1480                 else
 1481                         continue;
 1482         }
 1483 }
 1484 
 1485 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
 1486 {
 1487         const struct rtw_phy_pg_cfg_pair *p = tbl->data;
 1488         const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
 1489 
 1490         for (; p < end; p++) {
 1491                 if (p->addr == 0xfe || p->addr == 0xffe) {
 1492                         msleep(50);
 1493                         continue;
 1494                 }
 1495                 rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
 1496                                                p->tx_num, p->addr, p->bitmask,
 1497                                                p->data);
 1498         }
 1499 }
 1500 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
 1501 
 1502 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
 1503         36,  38,  40,  42,  44,  46,  48, /* Band 1 */
 1504         52,  54,  56,  58,  60,  62,  64, /* Band 2 */
 1505         100, 102, 104, 106, 108, 110, 112, /* Band 3 */
 1506         116, 118, 120, 122, 124, 126, 128, /* Band 3 */
 1507         132, 134, 136, 138, 140, 142, 144, /* Band 3 */
 1508         149, 151, 153, 155, 157, 159, 161, /* Band 4 */
 1509         165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
 1510 
 1511 static int rtw_channel_to_idx(u8 band, u8 channel)
 1512 {
 1513         int ch_idx;
 1514         u8 n_channel;
 1515 
 1516         if (band == PHY_BAND_2G) {
 1517                 ch_idx = channel - 1;
 1518                 n_channel = RTW_MAX_CHANNEL_NUM_2G;
 1519         } else if (band == PHY_BAND_5G) {
 1520                 n_channel = RTW_MAX_CHANNEL_NUM_5G;
 1521                 for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
 1522                         if (rtw_channel_idx_5g[ch_idx] == channel)
 1523                                 break;
 1524         } else {
 1525                 return -1;
 1526         }
 1527 
 1528         if (ch_idx >= n_channel)
 1529                 return -1;
 1530 
 1531         return ch_idx;
 1532 }
 1533 
 1534 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
 1535                                        u8 bw, u8 rs, u8 ch, s8 pwr_limit)
 1536 {
 1537         struct rtw_hal *hal = &rtwdev->hal;
 1538         u8 max_power_index = rtwdev->chip->max_power_index;
 1539         s8 ww;
 1540         int ch_idx;
 1541 
 1542         pwr_limit = clamp_t(s8, pwr_limit,
 1543                             -max_power_index, max_power_index);
 1544         ch_idx = rtw_channel_to_idx(band, ch);
 1545 
 1546         if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
 1547             rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
 1548                 WARN(1,
 1549                      "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
 1550                      regd, band, bw, rs, ch_idx, pwr_limit);
 1551                 return;
 1552         }
 1553 
 1554         if (band == PHY_BAND_2G) {
 1555                 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
 1556                 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
 1557                 ww = min_t(s8, ww, pwr_limit);
 1558                 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
 1559         } else if (band == PHY_BAND_5G) {
 1560                 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
 1561                 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
 1562                 ww = min_t(s8, ww, pwr_limit);
 1563                 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
 1564         }
 1565 }
 1566 
 1567 /* cross-reference 5G power limits if values are not assigned */
 1568 static void
 1569 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
 1570                       u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
 1571 {
 1572         struct rtw_hal *hal = &rtwdev->hal;
 1573         u8 max_power_index = rtwdev->chip->max_power_index;
 1574         s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
 1575         s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
 1576 
 1577         if (lmt_ht == lmt_vht)
 1578                 return;
 1579 
 1580         if (lmt_ht == max_power_index)
 1581                 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
 1582 
 1583         else if (lmt_vht == max_power_index)
 1584                 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
 1585 }
 1586 
 1587 /* cross-reference power limits for ht and vht */
 1588 static void
 1589 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
 1590 {
 1591         u8 rs_idx, rs_ht, rs_vht;
 1592         u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
 1593                            {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
 1594 
 1595         for (rs_idx = 0; rs_idx < 2; rs_idx++) {
 1596                 rs_ht = rs_cmp[rs_idx][0];
 1597                 rs_vht = rs_cmp[rs_idx][1];
 1598 
 1599                 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
 1600         }
 1601 }
 1602 
 1603 /* cross-reference power limits for 5G channels */
 1604 static void
 1605 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
 1606 {
 1607         u8 ch_idx;
 1608 
 1609         for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
 1610                 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
 1611 }
 1612 
 1613 /* cross-reference power limits for 20/40M bandwidth */
 1614 static void
 1615 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
 1616 {
 1617         u8 bw;
 1618 
 1619         for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
 1620                 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
 1621 }
 1622 
 1623 /* cross-reference power limits */
 1624 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
 1625 {
 1626         u8 regd;
 1627 
 1628         for (regd = 0; regd < RTW_REGD_MAX; regd++)
 1629                 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
 1630 }
 1631 
 1632 static void
 1633 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
 1634 {
 1635         u8 ch;
 1636 
 1637         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
 1638                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
 1639                         hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
 1640 
 1641         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
 1642                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
 1643                         hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
 1644 }
 1645 
 1646 static void
 1647 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
 1648 {
 1649         u8 bw, rs;
 1650 
 1651         for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
 1652                 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
 1653                         __cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
 1654                                                bw, rs);
 1655 }
 1656 
 1657 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
 1658                              const struct rtw_table *tbl)
 1659 {
 1660         const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
 1661         const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
 1662         u32 regd_cfg_flag = 0;
 1663         u8 regd_alt;
 1664         u8 i;
 1665 
 1666         for (; p < end; p++) {
 1667                 regd_cfg_flag |= BIT(p->regd);
 1668                 rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
 1669                                            p->bw, p->rs, p->ch, p->txpwr_lmt);
 1670         }
 1671 
 1672         for (i = 0; i < RTW_REGD_MAX; i++) {
 1673                 if (i == RTW_REGD_WW)
 1674                         continue;
 1675 
 1676                 if (regd_cfg_flag & BIT(i))
 1677                         continue;
 1678 
 1679                 rtw_dbg(rtwdev, RTW_DBG_REGD,
 1680                         "txpwr regd %d does not be configured\n", i);
 1681 
 1682                 if (rtw_regd_has_alt(i, &regd_alt) &&
 1683                     regd_cfg_flag & BIT(regd_alt)) {
 1684                         rtw_dbg(rtwdev, RTW_DBG_REGD,
 1685                                 "cfg txpwr regd %d by regd %d as alternative\n",
 1686                                 i, regd_alt);
 1687 
 1688                         rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
 1689                         continue;
 1690                 }
 1691 
 1692                 rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
 1693                 rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
 1694         }
 1695 
 1696         rtw_xref_txpwr_lmt(rtwdev);
 1697 }
 1698 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
 1699 
 1700 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
 1701                      u32 addr, u32 data)
 1702 {
 1703         rtw_write8(rtwdev, addr, data);
 1704 }
 1705 EXPORT_SYMBOL(rtw_phy_cfg_mac);
 1706 
 1707 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
 1708                      u32 addr, u32 data)
 1709 {
 1710         rtw_write32(rtwdev, addr, data);
 1711 }
 1712 EXPORT_SYMBOL(rtw_phy_cfg_agc);
 1713 
 1714 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
 1715                     u32 addr, u32 data)
 1716 {
 1717         if (addr == 0xfe)
 1718                 msleep(50);
 1719         else if (addr == 0xfd)
 1720                 mdelay(5);
 1721         else if (addr == 0xfc)
 1722                 mdelay(1);
 1723         else if (addr == 0xfb)
 1724                 usleep_range(50, 60);
 1725         else if (addr == 0xfa)
 1726                 udelay(5);
 1727         else if (addr == 0xf9)
 1728                 udelay(1);
 1729         else
 1730                 rtw_write32(rtwdev, addr, data);
 1731 }
 1732 EXPORT_SYMBOL(rtw_phy_cfg_bb);
 1733 
 1734 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
 1735                     u32 addr, u32 data)
 1736 {
 1737         if (addr == 0xffe) {
 1738                 msleep(50);
 1739         } else if (addr == 0xfe) {
 1740                 usleep_range(100, 110);
 1741         } else {
 1742                 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
 1743                 udelay(1);
 1744         }
 1745 }
 1746 EXPORT_SYMBOL(rtw_phy_cfg_rf);
 1747 
 1748 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
 1749 {
 1750         struct rtw_chip_info *chip = rtwdev->chip;
 1751         struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
 1752 
 1753         if (!chip->rfk_init_tbl)
 1754                 return;
 1755 
 1756         rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
 1757         rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
 1758         rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
 1759         rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
 1760         rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
 1761 
 1762         rtw_load_table(rtwdev, chip->rfk_init_tbl);
 1763 
 1764         dpk_info->is_dpk_pwr_on = true;
 1765 }
 1766 
 1767 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
 1768 {
 1769         struct rtw_chip_info *chip = rtwdev->chip;
 1770         u8 rf_path;
 1771 
 1772         rtw_load_table(rtwdev, chip->mac_tbl);
 1773         rtw_load_table(rtwdev, chip->bb_tbl);
 1774         rtw_load_table(rtwdev, chip->agc_tbl);
 1775         rtw_load_rfk_table(rtwdev);
 1776 
 1777         for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
 1778                 const struct rtw_table *tbl;
 1779 
 1780                 tbl = chip->rf_tbl[rf_path];
 1781                 rtw_load_table(rtwdev, tbl);
 1782         }
 1783 }
 1784 EXPORT_SYMBOL(rtw_phy_load_tables);
 1785 
 1786 static u8 rtw_get_channel_group(u8 channel, u8 rate)
 1787 {
 1788         switch (channel) {
 1789         default:
 1790                 WARN_ON(1);
 1791                 fallthrough;
 1792         case 1:
 1793         case 2:
 1794         case 36:
 1795         case 38:
 1796         case 40:
 1797         case 42:
 1798                 return 0;
 1799         case 3:
 1800         case 4:
 1801         case 5:
 1802         case 44:
 1803         case 46:
 1804         case 48:
 1805         case 50:
 1806                 return 1;
 1807         case 6:
 1808         case 7:
 1809         case 8:
 1810         case 52:
 1811         case 54:
 1812         case 56:
 1813         case 58:
 1814                 return 2;
 1815         case 9:
 1816         case 10:
 1817         case 11:
 1818         case 60:
 1819         case 62:
 1820         case 64:
 1821                 return 3;
 1822         case 12:
 1823         case 13:
 1824         case 100:
 1825         case 102:
 1826         case 104:
 1827         case 106:
 1828                 return 4;
 1829         case 14:
 1830                 return rate <= DESC_RATE11M ? 5 : 4;
 1831         case 108:
 1832         case 110:
 1833         case 112:
 1834         case 114:
 1835                 return 5;
 1836         case 116:
 1837         case 118:
 1838         case 120:
 1839         case 122:
 1840                 return 6;
 1841         case 124:
 1842         case 126:
 1843         case 128:
 1844         case 130:
 1845                 return 7;
 1846         case 132:
 1847         case 134:
 1848         case 136:
 1849         case 138:
 1850                 return 8;
 1851         case 140:
 1852         case 142:
 1853         case 144:
 1854                 return 9;
 1855         case 149:
 1856         case 151:
 1857         case 153:
 1858         case 155:
 1859                 return 10;
 1860         case 157:
 1861         case 159:
 1862         case 161:
 1863                 return 11;
 1864         case 165:
 1865         case 167:
 1866         case 169:
 1867         case 171:
 1868                 return 12;
 1869         case 173:
 1870         case 175:
 1871         case 177:
 1872                 return 13;
 1873         }
 1874 }
 1875 
 1876 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
 1877 {
 1878         struct rtw_chip_info *chip = rtwdev->chip;
 1879         s8 dpd_diff = 0;
 1880 
 1881         if (!chip->en_dis_dpd)
 1882                 return 0;
 1883 
 1884 #define RTW_DPD_RATE_CHECK(_rate)                                       \
 1885         case DESC_RATE ## _rate:                                        \
 1886         if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)                 \
 1887                 dpd_diff = -6 * chip->txgi_factor;                      \
 1888         break
 1889 
 1890         switch (rate) {
 1891         RTW_DPD_RATE_CHECK(6M);
 1892         RTW_DPD_RATE_CHECK(9M);
 1893         RTW_DPD_RATE_CHECK(MCS0);
 1894         RTW_DPD_RATE_CHECK(MCS1);
 1895         RTW_DPD_RATE_CHECK(MCS8);
 1896         RTW_DPD_RATE_CHECK(MCS9);
 1897         RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
 1898         RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
 1899         RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
 1900         RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
 1901         }
 1902 #undef RTW_DPD_RATE_CHECK
 1903 
 1904         return dpd_diff;
 1905 }
 1906 
 1907 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
 1908                                         struct rtw_2g_txpwr_idx *pwr_idx_2g,
 1909                                         enum rtw_bandwidth bandwidth,
 1910                                         u8 rate, u8 group)
 1911 {
 1912         struct rtw_chip_info *chip = rtwdev->chip;
 1913         u8 tx_power;
 1914         bool mcs_rate;
 1915         bool above_2ss;
 1916         u8 factor = chip->txgi_factor;
 1917 
 1918         if (rate <= DESC_RATE11M)
 1919                 tx_power = pwr_idx_2g->cck_base[group];
 1920         else
 1921                 tx_power = pwr_idx_2g->bw40_base[group];
 1922 
 1923         if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
 1924                 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
 1925 
 1926         mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
 1927                    (rate >= DESC_RATEVHT1SS_MCS0 &&
 1928                     rate <= DESC_RATEVHT2SS_MCS9);
 1929         above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
 1930                     (rate >= DESC_RATEVHT2SS_MCS0);
 1931 
 1932         if (!mcs_rate)
 1933                 return tx_power;
 1934 
 1935         switch (bandwidth) {
 1936         default:
 1937                 WARN_ON(1);
 1938                 fallthrough;
 1939         case RTW_CHANNEL_WIDTH_20:
 1940                 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
 1941                 if (above_2ss)
 1942                         tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
 1943                 break;
 1944         case RTW_CHANNEL_WIDTH_40:
 1945                 /* bw40 is the base power */
 1946                 if (above_2ss)
 1947                         tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
 1948                 break;
 1949         }
 1950 
 1951         return tx_power;
 1952 }
 1953 
 1954 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
 1955                                         struct rtw_5g_txpwr_idx *pwr_idx_5g,
 1956                                         enum rtw_bandwidth bandwidth,
 1957                                         u8 rate, u8 group)
 1958 {
 1959         struct rtw_chip_info *chip = rtwdev->chip;
 1960         u8 tx_power;
 1961         u8 upper, lower;
 1962         bool mcs_rate;
 1963         bool above_2ss;
 1964         u8 factor = chip->txgi_factor;
 1965 
 1966         tx_power = pwr_idx_5g->bw40_base[group];
 1967 
 1968         mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
 1969                    (rate >= DESC_RATEVHT1SS_MCS0 &&
 1970                     rate <= DESC_RATEVHT2SS_MCS9);
 1971         above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
 1972                     (rate >= DESC_RATEVHT2SS_MCS0);
 1973 
 1974         if (!mcs_rate) {
 1975                 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
 1976                 return tx_power;
 1977         }
 1978 
 1979         switch (bandwidth) {
 1980         default:
 1981                 WARN_ON(1);
 1982                 fallthrough;
 1983         case RTW_CHANNEL_WIDTH_20:
 1984                 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
 1985                 if (above_2ss)
 1986                         tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
 1987                 break;
 1988         case RTW_CHANNEL_WIDTH_40:
 1989                 /* bw40 is the base power */
 1990                 if (above_2ss)
 1991                         tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
 1992                 break;
 1993         case RTW_CHANNEL_WIDTH_80:
 1994                 /* the base idx of bw80 is the average of bw40+/bw40- */
 1995                 lower = pwr_idx_5g->bw40_base[group];
 1996                 upper = pwr_idx_5g->bw40_base[group + 1];
 1997 
 1998                 tx_power = (lower + upper) / 2;
 1999                 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
 2000                 if (above_2ss)
 2001                         tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
 2002                 break;
 2003         }
 2004 
 2005         return tx_power;
 2006 }
 2007 
 2008 /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
 2009 static u8 rtw_phy_rate_to_rate_section(u8 rate)
 2010 {
 2011         if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
 2012                 return RTW_RATE_SECTION_CCK;
 2013         else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
 2014                 return RTW_RATE_SECTION_OFDM;
 2015         else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
 2016                 return RTW_RATE_SECTION_HT_1S;
 2017         else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
 2018                 return RTW_RATE_SECTION_HT_2S;
 2019         else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
 2020                 return RTW_RATE_SECTION_VHT_1S;
 2021         else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
 2022                 return RTW_RATE_SECTION_VHT_2S;
 2023         else
 2024                 return RTW_RATE_SECTION_MAX;
 2025 }
 2026 
 2027 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
 2028                                      enum rtw_bandwidth bw, u8 rf_path,
 2029                                      u8 rate, u8 channel, u8 regd)
 2030 {
 2031         struct rtw_hal *hal = &rtwdev->hal;
 2032         u8 *cch_by_bw = hal->cch_by_bw;
 2033         s8 power_limit = (s8)rtwdev->chip->max_power_index;
 2034         u8 rs = rtw_phy_rate_to_rate_section(rate);
 2035         int ch_idx;
 2036         u8 cur_bw, cur_ch;
 2037         s8 cur_lmt;
 2038 
 2039         if (regd > RTW_REGD_WW)
 2040                 return power_limit;
 2041 
 2042         if (rs == RTW_RATE_SECTION_MAX)
 2043                 goto err;
 2044 
 2045         /* only 20M BW with cck and ofdm */
 2046         if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
 2047                 bw = RTW_CHANNEL_WIDTH_20;
 2048 
 2049         /* only 20/40M BW with ht */
 2050         if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
 2051                 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
 2052 
 2053         /* select min power limit among [20M BW ~ current BW] */
 2054         for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
 2055                 cur_ch = cch_by_bw[cur_bw];
 2056 
 2057                 ch_idx = rtw_channel_to_idx(band, cur_ch);
 2058                 if (ch_idx < 0)
 2059                         goto err;
 2060 
 2061                 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
 2062                         hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
 2063                         hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
 2064 
 2065                 power_limit = min_t(s8, cur_lmt, power_limit);
 2066         }
 2067 
 2068         return power_limit;
 2069 
 2070 err:
 2071         WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
 2072              band, bw, rf_path, rate, channel);
 2073         return (s8)rtwdev->chip->max_power_index;
 2074 }
 2075 
 2076 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
 2077                                    u8 rf_path, u8 rate)
 2078 {
 2079         u8 rs = rtw_phy_rate_to_rate_section(rate);
 2080         struct rtw_sar_arg arg = {
 2081                 .sar_band = sar_band,
 2082                 .path = rf_path,
 2083                 .rs = rs,
 2084         };
 2085 
 2086         if (rs == RTW_RATE_SECTION_MAX)
 2087                 goto err;
 2088 
 2089         return rtw_query_sar(rtwdev, &arg);
 2090 
 2091 err:
 2092         WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
 2093              sar_band, rf_path, rate);
 2094         return (s8)rtwdev->chip->max_power_index;
 2095 }
 2096 
 2097 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
 2098                              u8 ch, u8 regd, struct rtw_power_params *pwr_param)
 2099 {
 2100         struct rtw_hal *hal = &rtwdev->hal;
 2101         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 2102         struct rtw_txpwr_idx *pwr_idx;
 2103         u8 group, band;
 2104         u8 *base = &pwr_param->pwr_base;
 2105         s8 *offset = &pwr_param->pwr_offset;
 2106         s8 *limit = &pwr_param->pwr_limit;
 2107         s8 *remnant = &pwr_param->pwr_remnant;
 2108         s8 *sar = &pwr_param->pwr_sar;
 2109 
 2110         pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
 2111         group = rtw_get_channel_group(ch, rate);
 2112 
 2113         /* base power index for 2.4G/5G */
 2114         if (IS_CH_2G_BAND(ch)) {
 2115                 band = PHY_BAND_2G;
 2116                 *base = rtw_phy_get_2g_tx_power_index(rtwdev,
 2117                                                       &pwr_idx->pwr_idx_2g,
 2118                                                       bw, rate, group);
 2119                 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
 2120         } else {
 2121                 band = PHY_BAND_5G;
 2122                 *base = rtw_phy_get_5g_tx_power_index(rtwdev,
 2123                                                       &pwr_idx->pwr_idx_5g,
 2124                                                       bw, rate, group);
 2125                 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
 2126         }
 2127 
 2128         *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
 2129                                             rate, ch, regd);
 2130         *remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
 2131                     dm_info->txagc_remnant_ofdm);
 2132         *sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
 2133 }
 2134 
 2135 u8
 2136 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
 2137                            enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
 2138 {
 2139         struct rtw_power_params pwr_param = {0};
 2140         u8 tx_power;
 2141         s8 offset;
 2142 
 2143         rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
 2144                                 channel, regd, &pwr_param);
 2145 
 2146         tx_power = pwr_param.pwr_base;
 2147         offset = min3(pwr_param.pwr_offset,
 2148                       pwr_param.pwr_limit,
 2149                       pwr_param.pwr_sar);
 2150 
 2151         if (rtwdev->chip->en_dis_dpd)
 2152                 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
 2153 
 2154         tx_power += offset + pwr_param.pwr_remnant;
 2155 
 2156         if (tx_power > rtwdev->chip->max_power_index)
 2157                 tx_power = rtwdev->chip->max_power_index;
 2158 
 2159         return tx_power;
 2160 }
 2161 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
 2162 
 2163 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
 2164                                              u8 ch, u8 path, u8 rs)
 2165 {
 2166         struct rtw_hal *hal = &rtwdev->hal;
 2167         u8 regd = rtw_regd_get(rtwdev);
 2168         u8 *rates;
 2169         u8 size;
 2170         u8 rate;
 2171         u8 pwr_idx;
 2172         u8 bw;
 2173         int i;
 2174 
 2175         if (rs >= RTW_RATE_SECTION_MAX)
 2176                 return;
 2177 
 2178         rates = rtw_rate_section[rs];
 2179         size = rtw_rate_size[rs];
 2180         bw = hal->current_band_width;
 2181         for (i = 0; i < size; i++) {
 2182                 rate = rates[i];
 2183                 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
 2184                                                      bw, ch, regd);
 2185                 hal->tx_pwr_tbl[path][rate] = pwr_idx;
 2186         }
 2187 }
 2188 
 2189 /* set tx power level by path for each rates, note that the order of the rates
 2190  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
 2191  * power index into a four-byte power index register, and calls set_tx_agc to
 2192  * write these values into hardware
 2193  */
 2194 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
 2195                                                u8 ch, u8 path)
 2196 {
 2197         struct rtw_hal *hal = &rtwdev->hal;
 2198         u8 rs;
 2199 
 2200         /* do not need cck rates if we are not in 2.4G */
 2201         if (hal->current_band_type == RTW_BAND_2G)
 2202                 rs = RTW_RATE_SECTION_CCK;
 2203         else
 2204                 rs = RTW_RATE_SECTION_OFDM;
 2205 
 2206         for (; rs < RTW_RATE_SECTION_MAX; rs++)
 2207                 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
 2208 }
 2209 
 2210 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
 2211 {
 2212         struct rtw_chip_info *chip = rtwdev->chip;
 2213         struct rtw_hal *hal = &rtwdev->hal;
 2214         u8 path;
 2215 
 2216         mutex_lock(&hal->tx_power_mutex);
 2217 
 2218         for (path = 0; path < hal->rf_path_num; path++)
 2219                 rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
 2220 
 2221         chip->ops->set_tx_power_index(rtwdev);
 2222         mutex_unlock(&hal->tx_power_mutex);
 2223 }
 2224 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
 2225 
 2226 static void
 2227 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
 2228                                         u8 rs, u8 size, u8 *rates)
 2229 {
 2230         u8 rate;
 2231         u8 base_idx, rate_idx;
 2232         s8 base_2g, base_5g;
 2233 
 2234         if (rs >= RTW_RATE_SECTION_VHT_1S)
 2235                 base_idx = rates[size - 3];
 2236         else
 2237                 base_idx = rates[size - 1];
 2238         base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
 2239         base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
 2240         hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
 2241         hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
 2242         for (rate = 0; rate < size; rate++) {
 2243                 rate_idx = rates[rate];
 2244                 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
 2245                 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
 2246         }
 2247 }
 2248 
 2249 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
 2250 {
 2251         u8 path;
 2252 
 2253         for (path = 0; path < RTW_RF_PATH_MAX; path++) {
 2254                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
 2255                                 RTW_RATE_SECTION_CCK,
 2256                                 rtw_cck_size, rtw_cck_rates);
 2257                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
 2258                                 RTW_RATE_SECTION_OFDM,
 2259                                 rtw_ofdm_size, rtw_ofdm_rates);
 2260                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
 2261                                 RTW_RATE_SECTION_HT_1S,
 2262                                 rtw_ht_1s_size, rtw_ht_1s_rates);
 2263                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
 2264                                 RTW_RATE_SECTION_HT_2S,
 2265                                 rtw_ht_2s_size, rtw_ht_2s_rates);
 2266                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
 2267                                 RTW_RATE_SECTION_VHT_1S,
 2268                                 rtw_vht_1s_size, rtw_vht_1s_rates);
 2269                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
 2270                                 RTW_RATE_SECTION_VHT_2S,
 2271                                 rtw_vht_2s_size, rtw_vht_2s_rates);
 2272         }
 2273 }
 2274 
 2275 static void
 2276 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
 2277 {
 2278         s8 base;
 2279         u8 ch;
 2280 
 2281         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
 2282                 base = hal->tx_pwr_by_rate_base_2g[0][rs];
 2283                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
 2284         }
 2285 
 2286         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
 2287                 base = hal->tx_pwr_by_rate_base_5g[0][rs];
 2288                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
 2289         }
 2290 }
 2291 
 2292 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
 2293 {
 2294         u8 regd, bw, rs;
 2295 
 2296         /* default at channel 1 */
 2297         hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
 2298 
 2299         for (regd = 0; regd < RTW_REGD_MAX; regd++)
 2300                 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
 2301                         for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
 2302                                 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
 2303 }
 2304 
 2305 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
 2306                                         u8 regd, u8 bw, u8 rs)
 2307 {
 2308         struct rtw_hal *hal = &rtwdev->hal;
 2309         s8 max_power_index = (s8)rtwdev->chip->max_power_index;
 2310         u8 ch;
 2311 
 2312         /* 2.4G channels */
 2313         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
 2314                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
 2315 
 2316         /* 5G channels */
 2317         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
 2318                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
 2319 }
 2320 
 2321 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
 2322 {
 2323         struct rtw_hal *hal = &rtwdev->hal;
 2324         u8 regd, path, rate, rs, bw;
 2325 
 2326         /* init tx power by rate offset */
 2327         for (path = 0; path < RTW_RF_PATH_MAX; path++) {
 2328                 for (rate = 0; rate < DESC_RATE_MAX; rate++) {
 2329                         hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
 2330                         hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
 2331                 }
 2332         }
 2333 
 2334         /* init tx power limit */
 2335         for (regd = 0; regd < RTW_REGD_MAX; regd++)
 2336                 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
 2337                         for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
 2338                                 rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
 2339                                                             rs);
 2340 }
 2341 
 2342 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
 2343                                 struct rtw_swing_table *swing_table)
 2344 {
 2345         const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
 2346         u8 channel = rtwdev->hal.current_channel;
 2347 
 2348         if (IS_CH_2G_BAND(channel)) {
 2349                 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
 2350                         swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
 2351                         swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
 2352                         swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
 2353                         swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
 2354                 } else {
 2355                         swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
 2356                         swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
 2357                         swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
 2358                         swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
 2359                 }
 2360         } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
 2361                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
 2362                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
 2363                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
 2364                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
 2365         } else if (IS_CH_5G_BAND_3(channel)) {
 2366                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
 2367                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
 2368                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
 2369                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
 2370         } else if (IS_CH_5G_BAND_4(channel)) {
 2371                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
 2372                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
 2373                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
 2374                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
 2375         } else {
 2376                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
 2377                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
 2378                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
 2379                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
 2380         }
 2381 }
 2382 EXPORT_SYMBOL(rtw_phy_config_swing_table);
 2383 
 2384 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
 2385 {
 2386         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 2387 
 2388         ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
 2389         dm_info->thermal_avg[path] =
 2390                 ewma_thermal_read(&dm_info->avg_thermal[path]);
 2391 }
 2392 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
 2393 
 2394 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
 2395                                       u8 path)
 2396 {
 2397         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 2398         u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
 2399 
 2400         if (avg == thermal)
 2401                 return false;
 2402 
 2403         return true;
 2404 }
 2405 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
 2406 
 2407 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
 2408 {
 2409         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 2410         u8 therm_avg, therm_efuse, therm_delta;
 2411 
 2412         therm_avg = dm_info->thermal_avg[path];
 2413         therm_efuse = rtwdev->efuse.thermal_meter[path];
 2414         therm_delta = abs(therm_avg - therm_efuse);
 2415 
 2416         return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
 2417 }
 2418 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
 2419 
 2420 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
 2421                                struct rtw_swing_table *swing_table,
 2422                                u8 tbl_path, u8 therm_path, u8 delta)
 2423 {
 2424         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 2425         const u8 *delta_swing_table_idx_pos;
 2426         const u8 *delta_swing_table_idx_neg;
 2427 
 2428         if (delta >= RTW_PWR_TRK_TBL_SZ) {
 2429                 rtw_warn(rtwdev, "power track table overflow\n");
 2430                 return 0;
 2431         }
 2432 
 2433         if (!swing_table) {
 2434                 rtw_warn(rtwdev, "swing table not configured\n");
 2435                 return 0;
 2436         }
 2437 
 2438         delta_swing_table_idx_pos = swing_table->p[tbl_path];
 2439         delta_swing_table_idx_neg = swing_table->n[tbl_path];
 2440 
 2441         if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
 2442                 rtw_warn(rtwdev, "invalid swing table index\n");
 2443                 return 0;
 2444         }
 2445 
 2446         if (dm_info->thermal_avg[therm_path] >
 2447             rtwdev->efuse.thermal_meter[therm_path])
 2448                 return delta_swing_table_idx_pos[delta];
 2449         else
 2450                 return -delta_swing_table_idx_neg[delta];
 2451 }
 2452 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
 2453 
 2454 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
 2455 {
 2456         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 2457         u8 delta_lck;
 2458 
 2459         delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
 2460         if (delta_lck >= rtwdev->chip->lck_threshold) {
 2461                 dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
 2462                 return true;
 2463         }
 2464         return false;
 2465 }
 2466 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
 2467 
 2468 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
 2469 {
 2470         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 2471         u8 delta_iqk;
 2472 
 2473         delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
 2474         if (delta_iqk >= rtwdev->chip->iqk_threshold) {
 2475                 dm_info->thermal_meter_k = dm_info->thermal_avg[0];
 2476                 return true;
 2477         }
 2478         return false;
 2479 }
 2480 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
 2481 
 2482 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
 2483                                        enum rtw_bb_path tx_path_sel_1ss)
 2484 {
 2485         struct rtw_path_div *path_div = &rtwdev->dm_path_div;
 2486         enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
 2487         struct rtw_chip_info *chip = rtwdev->chip;
 2488 
 2489         if (tx_path_sel_1ss == path_div->current_tx_path)
 2490                 return;
 2491 
 2492         path_div->current_tx_path = tx_path_sel_1ss;
 2493         rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
 2494                 tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
 2495         chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
 2496                                   tx_path_sel_1ss, tx_path_sel_cck, false);
 2497 }
 2498 
 2499 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
 2500 {
 2501         struct rtw_path_div *path_div = &rtwdev->dm_path_div;
 2502         enum rtw_bb_path path = path_div->current_tx_path;
 2503         s32 rssi_a = 0, rssi_b = 0;
 2504 
 2505         if (path_div->path_a_cnt)
 2506                 rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
 2507         else
 2508                 rssi_a = 0;
 2509         if (path_div->path_b_cnt)
 2510                 rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
 2511         else
 2512                 rssi_b = 0;
 2513 
 2514         if (rssi_a != rssi_b)
 2515                 path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
 2516 
 2517         path_div->path_a_cnt = 0;
 2518         path_div->path_a_sum = 0;
 2519         path_div->path_b_cnt = 0;
 2520         path_div->path_b_sum = 0;
 2521         rtw_phy_set_tx_path_by_reg(rtwdev, path);
 2522 }
 2523 
 2524 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
 2525 {
 2526         if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
 2527                 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
 2528                         "[Return] tx_Path_en=%d, rx_Path_en=%d\n",
 2529                         rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
 2530                 return;
 2531         }
 2532         if (rtwdev->sta_cnt == 0) {
 2533                 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
 2534                 return;
 2535         }
 2536 
 2537         rtw_phy_tx_path_div_select(rtwdev);
 2538 }
 2539 
 2540 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
 2541 {
 2542         struct rtw_chip_info *chip = rtwdev->chip;
 2543 
 2544         if (!chip->path_div_supported)
 2545                 return;
 2546 
 2547         rtw_phy_tx_path_diversity_2ss(rtwdev);
 2548 }

Cache object: dbb929ae338fcf7be45d4a964a24685d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.