1 # SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 %YAML 1.2
3 ---
4 $id: http://devicetree.org/schemas/cpu/idle-states.yaml#
5 $schema: http://devicetree.org/meta-schemas/core.yaml#
6
7 title: Idle states binding description
8
9 maintainers:
10 - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
11 - Anup Patel <anup@brainfault.org>
12
13 description: |+
14 ==========================================
15 1 - Introduction
16 ==========================================
17
18 ARM and RISC-V systems contain HW capable of managing power consumption
19 dynamically, where cores can be put in different low-power states (ranging
20 from simple wfi to power gating) according to OS PM policies. The CPU states
21 representing the range of dynamic idle states that a processor can enter at
22 run-time, can be specified through device tree bindings representing the
23 parameters required to enter/exit specific idle states on a given processor.
24
25 ==========================================
26 2 - ARM idle states
27 ==========================================
28
29 According to the Server Base System Architecture document (SBSA, [3]), the
30 power states an ARM CPU can be put into are identified by the following list:
31
32 - Running
33 - Idle_standby
34 - Idle_retention
35 - Sleep
36 - Off
37
38 The power states described in the SBSA document define the basic CPU states on
39 top of which ARM platforms implement power management schemes that allow an OS
40 PM implementation to put the processor in different idle states (which include
41 states listed above; "off" state is not an idle state since it does not have
42 wake-up capabilities, hence it is not considered in this document).
43
44 Idle state parameters (e.g. entry latency) are platform specific and need to
45 be characterized with bindings that provide the required information to OS PM
46 code so that it can build the required tables and use them at runtime.
47
48 The device tree binding definition for ARM idle states is the subject of this
49 document.
50
51 ==========================================
52 3 - RISC-V idle states
53 ==========================================
54
55 On RISC-V systems, the HARTs (or CPUs) [6] can be put in platform specific
56 suspend (or idle) states (ranging from simple WFI, power gating, etc). The
57 RISC-V SBI v0.3 (or higher) [7] hart state management extension provides a
58 standard mechanism for OS to request HART state transitions.
59
60 The platform specific suspend (or idle) states of a hart can be either
61 retentive or non-rententive in nature. A retentive suspend state will
62 preserve HART registers and CSR values for all privilege modes whereas
63 a non-retentive suspend state will not preserve HART registers and CSR
64 values.
65
66 ===========================================
67 4 - idle-states definitions
68 ===========================================
69
70 Idle states are characterized for a specific system through a set of
71 timing and energy related properties, that underline the HW behaviour
72 triggered upon idle states entry and exit.
73
74 The following diagram depicts the CPU execution phases and related timing
75 properties required to enter and exit an idle state:
76
77 ..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__..
78 | | | | |
79
80 |<------ entry ------->|
81 | latency |
82 |<- exit ->|
83 | latency |
84 |<-------- min-residency -------->|
85 |<------- wakeup-latency ------->|
86
87 Diagram 1: CPU idle state execution phases
88
89 EXEC: Normal CPU execution.
90
91 PREP: Preparation phase before committing the hardware to idle mode
92 like cache flushing. This is abortable on pending wake-up
93 event conditions. The abort latency is assumed to be negligible
94 (i.e. less than the ENTRY + EXIT duration). If aborted, CPU
95 goes back to EXEC. This phase is optional. If not abortable,
96 this should be included in the ENTRY phase instead.
97
98 ENTRY: The hardware is committed to idle mode. This period must run
99 to completion up to IDLE before anything else can happen.
100
101 IDLE: This is the actual energy-saving idle period. This may last
102 between 0 and infinite time, until a wake-up event occurs.
103
104 EXIT: Period during which the CPU is brought back to operational
105 mode (EXEC).
106
107 entry-latency: Worst case latency required to enter the idle state. The
108 exit-latency may be guaranteed only after entry-latency has passed.
109
110 min-residency: Minimum period, including preparation and entry, for a given
111 idle state to be worthwhile energywise.
112
113 wakeup-latency: Maximum delay between the signaling of a wake-up event and the
114 CPU being able to execute normal code again. If not specified, this is assumed
115 to be entry-latency + exit-latency.
116
117 These timing parameters can be used by an OS in different circumstances.
118
119 An idle CPU requires the expected min-residency time to select the most
120 appropriate idle state based on the expected expiry time of the next IRQ
121 (i.e. wake-up) that causes the CPU to return to the EXEC phase.
122
123 An operating system scheduler may need to compute the shortest wake-up delay
124 for CPUs in the system by detecting how long will it take to get a CPU out
125 of an idle state, e.g.:
126
127 wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0)
128
129 In other words, the scheduler can make its scheduling decision by selecting
130 (e.g. waking-up) the CPU with the shortest wake-up delay.
131 The wake-up delay must take into account the entry latency if that period
132 has not expired. The abortable nature of the PREP period can be ignored
133 if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than
134 the worst case since it depends on the CPU operating conditions, i.e. caches
135 state).
136
137 An OS has to reliably probe the wakeup-latency since some devices can enforce
138 latency constraint guarantees to work properly, so the OS has to detect the
139 worst case wake-up latency it can incur if a CPU is allowed to enter an
140 idle state, and possibly to prevent that to guarantee reliable device
141 functioning.
142
143 The min-residency time parameter deserves further explanation since it is
144 expressed in time units but must factor in energy consumption coefficients.
145
146 The energy consumption of a cpu when it enters a power state can be roughly
147 characterised by the following graph:
148
149 |
150 |
151 |
152 e |
153 n | /---
154 e | /------
155 r | /------
156 g | /-----
157 y | /------
158 | ----
159 | /|
160 | / |
161 | / |
162 | / |
163 | / |
164 | / |
165 |/ |
166 -----|-------+----------------------------------
167 0| 1 time(ms)
168
169 Graph 1: Energy vs time example
170
171 The graph is split in two parts delimited by time 1ms on the X-axis.
172 The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope
173 and denotes the energy costs incurred while entering and leaving the idle
174 state.
175 The graph curve in the area delimited by X-axis values = {x | x > 1ms } has
176 shallower slope and essentially represents the energy consumption of the idle
177 state.
178
179 min-residency is defined for a given idle state as the minimum expected
180 residency time for a state (inclusive of preparation and entry) after
181 which choosing that state become the most energy efficient option. A good
182 way to visualise this, is by taking the same graph above and comparing some
183 states energy consumptions plots.
184
185 For sake of simplicity, let's consider a system with two idle states IDLE1,
186 and IDLE2:
187
188 |
189 |
190 |
191 | /-- IDLE1
192 e | /---
193 n | /----
194 e | /---
195 r | /-----/--------- IDLE2
196 g | /-------/---------
197 y | ------------ /---|
198 | / /---- |
199 | / /--- |
200 | / /---- |
201 | / /--- |
202 | --- |
203 | / |
204 | / |
205 |/ | time
206 ---/----------------------------+------------------------
207 |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy
208 |
209 IDLE2-min-residency
210
211 Graph 2: idle states min-residency example
212
213 In graph 2 above, that takes into account idle states entry/exit energy
214 costs, it is clear that if the idle state residency time (i.e. time till next
215 wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state
216 choice energywise.
217
218 This is mainly down to the fact that IDLE1 entry/exit energy costs are lower
219 than IDLE2.
220
221 However, the lower power consumption (i.e. shallower energy curve slope) of
222 idle state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
223 efficient.
224
225 The time at which IDLE2 becomes more energy efficient than IDLE1 (and other
226 shallower states in a system with multiple idle states) is defined
227 IDLE2-min-residency and corresponds to the time when energy consumption of
228 IDLE1 and IDLE2 states breaks even.
229
230 The definitions provided in this section underpin the idle states
231 properties specification that is the subject of the following sections.
232
233 ===========================================
234 5 - idle-states node
235 ===========================================
236
237 The processor idle states are defined within the idle-states node, which is
238 a direct child of the cpus node [1] and provides a container where the
239 processor idle states, defined as device tree nodes, are listed.
240
241 On ARM systems, it is a container of processor idle states nodes. If the
242 system does not provide CPU power management capabilities, or the processor
243 just supports idle_standby, an idle-states node is not required.
244
245 ===========================================
246 6 - References
247 ===========================================
248
249 [1] ARM Linux Kernel documentation - CPUs bindings
250 Documentation/devicetree/bindings/arm/cpus.yaml
251
252 [2] ARM Linux Kernel documentation - PSCI bindings
253 Documentation/devicetree/bindings/arm/psci.yaml
254
255 [3] ARM Server Base System Architecture (SBSA)
256 http://infocenter.arm.com/help/index.jsp
257
258 [4] ARM Architecture Reference Manuals
259 http://infocenter.arm.com/help/index.jsp
260
261 [5] ARM Linux Kernel documentation - Booting AArch64 Linux
262 Documentation/arm64/booting.rst
263
264 [6] RISC-V Linux Kernel documentation - CPUs bindings
265 Documentation/devicetree/bindings/riscv/cpus.yaml
266
267 [7] RISC-V Supervisor Binary Interface (SBI)
268 http://github.com/riscv/riscv-sbi-doc/riscv-sbi.adoc
269
270 properties:
271 $nodename:
272 const: idle-states
273
274 entry-method:
275 description: |
276 Usage and definition depend on ARM architecture version.
277
278 On ARM v8 64-bit this property is required.
279 On ARM 32-bit systems this property is optional
280
281 This assumes that the "enable-method" property is set to "psci" in the cpu
282 node[5] that is responsible for setting up CPU idle management in the OS
283 implementation.
284 const: psci
285
286 patternProperties:
287 "^(cpu|cluster)-":
288 type: object
289 description: |
290 Each state node represents an idle state description and must be defined
291 as follows.
292
293 The idle state entered by executing the wfi instruction (idle_standby
294 SBSA,[3][4]) is considered standard on all ARM and RISC-V platforms and
295 therefore must not be listed.
296
297 In addition to the properties listed above, a state node may require
298 additional properties specific to the entry-method defined in the
299 idle-states node. Please refer to the entry-method bindings
300 documentation for properties definitions.
301
302 properties:
303 compatible:
304 enum:
305 - arm,idle-state
306 - riscv,idle-state
307
308 arm,psci-suspend-param:
309 $ref: /schemas/types.yaml#/definitions/uint32
310 description: |
311 power_state parameter to pass to the ARM PSCI suspend call.
312
313 Device tree nodes that require usage of PSCI CPU_SUSPEND function
314 (i.e. idle states node with entry-method property is set to "psci")
315 must specify this property.
316
317 riscv,sbi-suspend-param:
318 $ref: /schemas/types.yaml#/definitions/uint32
319 description: |
320 suspend_type parameter to pass to the RISC-V SBI HSM suspend call.
321
322 This property is required in idle state nodes of device tree meant
323 for RISC-V systems. For more details on the suspend_type parameter
324 refer the SBI specifiation v0.3 (or higher) [7].
325
326 local-timer-stop:
327 description:
328 If present the CPU local timer control logic is
329 lost on state entry, otherwise it is retained.
330 type: boolean
331
332 entry-latency-us:
333 description:
334 Worst case latency in microseconds required to enter the idle state.
335
336 exit-latency-us:
337 description:
338 Worst case latency in microseconds required to exit the idle state.
339 The exit-latency-us duration may be guaranteed only after
340 entry-latency-us has passed.
341
342 min-residency-us:
343 description:
344 Minimum residency duration in microseconds, inclusive of preparation
345 and entry, for this idle state to be considered worthwhile energy wise
346 (refer to section 2 of this document for a complete description).
347
348 wakeup-latency-us:
349 description: |
350 Maximum delay between the signaling of a wake-up event and the CPU
351 being able to execute normal code again. If omitted, this is assumed
352 to be equal to:
353
354 entry-latency-us + exit-latency-us
355
356 It is important to supply this value on systems where the duration of
357 PREP phase (see diagram 1, section 2) is non-neglibigle. In such
358 systems entry-latency-us + exit-latency-us will exceed
359 wakeup-latency-us by this duration.
360
361 idle-state-name:
362 $ref: /schemas/types.yaml#/definitions/string
363 description:
364 A string used as a descriptive name for the idle state.
365
366 additionalProperties: false
367
368 required:
369 - compatible
370 - entry-latency-us
371 - exit-latency-us
372 - min-residency-us
373
374 additionalProperties: false
375
376 examples:
377 - |
378
379 cpus {
380 #size-cells = <0>;
381 #address-cells = <2>;
382
383 cpu@0 {
384 device_type = "cpu";
385 compatible = "arm,cortex-a57";
386 reg = <0x0 0x0>;
387 enable-method = "psci";
388 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
389 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
390 };
391
392 cpu@1 {
393 device_type = "cpu";
394 compatible = "arm,cortex-a57";
395 reg = <0x0 0x1>;
396 enable-method = "psci";
397 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
398 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
399 };
400
401 cpu@100 {
402 device_type = "cpu";
403 compatible = "arm,cortex-a57";
404 reg = <0x0 0x100>;
405 enable-method = "psci";
406 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
407 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
408 };
409
410 cpu@101 {
411 device_type = "cpu";
412 compatible = "arm,cortex-a57";
413 reg = <0x0 0x101>;
414 enable-method = "psci";
415 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
416 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
417 };
418
419 cpu@10000 {
420 device_type = "cpu";
421 compatible = "arm,cortex-a57";
422 reg = <0x0 0x10000>;
423 enable-method = "psci";
424 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
425 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
426 };
427
428 cpu@10001 {
429 device_type = "cpu";
430 compatible = "arm,cortex-a57";
431 reg = <0x0 0x10001>;
432 enable-method = "psci";
433 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
434 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
435 };
436
437 cpu@10100 {
438 device_type = "cpu";
439 compatible = "arm,cortex-a57";
440 reg = <0x0 0x10100>;
441 enable-method = "psci";
442 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
443 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
444 };
445
446 cpu@10101 {
447 device_type = "cpu";
448 compatible = "arm,cortex-a57";
449 reg = <0x0 0x10101>;
450 enable-method = "psci";
451 cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
452 <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
453 };
454
455 cpu@100000000 {
456 device_type = "cpu";
457 compatible = "arm,cortex-a53";
458 reg = <0x1 0x0>;
459 enable-method = "psci";
460 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
461 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
462 };
463
464 cpu@100000001 {
465 device_type = "cpu";
466 compatible = "arm,cortex-a53";
467 reg = <0x1 0x1>;
468 enable-method = "psci";
469 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
470 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
471 };
472
473 cpu@100000100 {
474 device_type = "cpu";
475 compatible = "arm,cortex-a53";
476 reg = <0x1 0x100>;
477 enable-method = "psci";
478 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
479 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
480 };
481
482 cpu@100000101 {
483 device_type = "cpu";
484 compatible = "arm,cortex-a53";
485 reg = <0x1 0x101>;
486 enable-method = "psci";
487 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
488 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
489 };
490
491 cpu@100010000 {
492 device_type = "cpu";
493 compatible = "arm,cortex-a53";
494 reg = <0x1 0x10000>;
495 enable-method = "psci";
496 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
497 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
498 };
499
500 cpu@100010001 {
501 device_type = "cpu";
502 compatible = "arm,cortex-a53";
503 reg = <0x1 0x10001>;
504 enable-method = "psci";
505 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
506 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
507 };
508
509 cpu@100010100 {
510 device_type = "cpu";
511 compatible = "arm,cortex-a53";
512 reg = <0x1 0x10100>;
513 enable-method = "psci";
514 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
515 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
516 };
517
518 cpu@100010101 {
519 device_type = "cpu";
520 compatible = "arm,cortex-a53";
521 reg = <0x1 0x10101>;
522 enable-method = "psci";
523 cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
524 <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
525 };
526
527 idle-states {
528 entry-method = "psci";
529
530 CPU_RETENTION_0_0: cpu-retention-0-0 {
531 compatible = "arm,idle-state";
532 arm,psci-suspend-param = <0x0010000>;
533 entry-latency-us = <20>;
534 exit-latency-us = <40>;
535 min-residency-us = <80>;
536 };
537
538 CLUSTER_RETENTION_0: cluster-retention-0 {
539 compatible = "arm,idle-state";
540 local-timer-stop;
541 arm,psci-suspend-param = <0x1010000>;
542 entry-latency-us = <50>;
543 exit-latency-us = <100>;
544 min-residency-us = <250>;
545 wakeup-latency-us = <130>;
546 };
547
548 CPU_SLEEP_0_0: cpu-sleep-0-0 {
549 compatible = "arm,idle-state";
550 local-timer-stop;
551 arm,psci-suspend-param = <0x0010000>;
552 entry-latency-us = <250>;
553 exit-latency-us = <500>;
554 min-residency-us = <950>;
555 };
556
557 CLUSTER_SLEEP_0: cluster-sleep-0 {
558 compatible = "arm,idle-state";
559 local-timer-stop;
560 arm,psci-suspend-param = <0x1010000>;
561 entry-latency-us = <600>;
562 exit-latency-us = <1100>;
563 min-residency-us = <2700>;
564 wakeup-latency-us = <1500>;
565 };
566
567 CPU_RETENTION_1_0: cpu-retention-1-0 {
568 compatible = "arm,idle-state";
569 arm,psci-suspend-param = <0x0010000>;
570 entry-latency-us = <20>;
571 exit-latency-us = <40>;
572 min-residency-us = <90>;
573 };
574
575 CLUSTER_RETENTION_1: cluster-retention-1 {
576 compatible = "arm,idle-state";
577 local-timer-stop;
578 arm,psci-suspend-param = <0x1010000>;
579 entry-latency-us = <50>;
580 exit-latency-us = <100>;
581 min-residency-us = <270>;
582 wakeup-latency-us = <100>;
583 };
584
585 CPU_SLEEP_1_0: cpu-sleep-1-0 {
586 compatible = "arm,idle-state";
587 local-timer-stop;
588 arm,psci-suspend-param = <0x0010000>;
589 entry-latency-us = <70>;
590 exit-latency-us = <100>;
591 min-residency-us = <300>;
592 wakeup-latency-us = <150>;
593 };
594
595 CLUSTER_SLEEP_1: cluster-sleep-1 {
596 compatible = "arm,idle-state";
597 local-timer-stop;
598 arm,psci-suspend-param = <0x1010000>;
599 entry-latency-us = <500>;
600 exit-latency-us = <1200>;
601 min-residency-us = <3500>;
602 wakeup-latency-us = <1300>;
603 };
604 };
605 };
606
607 - |
608 // Example 2 (ARM 32-bit, 8-cpu system, two clusters):
609
610 cpus {
611 #size-cells = <0>;
612 #address-cells = <1>;
613
614 cpu@0 {
615 device_type = "cpu";
616 compatible = "arm,cortex-a15";
617 reg = <0x0>;
618 cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
619 };
620
621 cpu@1 {
622 device_type = "cpu";
623 compatible = "arm,cortex-a15";
624 reg = <0x1>;
625 cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
626 };
627
628 cpu@2 {
629 device_type = "cpu";
630 compatible = "arm,cortex-a15";
631 reg = <0x2>;
632 cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
633 };
634
635 cpu@3 {
636 device_type = "cpu";
637 compatible = "arm,cortex-a15";
638 reg = <0x3>;
639 cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
640 };
641
642 cpu@100 {
643 device_type = "cpu";
644 compatible = "arm,cortex-a7";
645 reg = <0x100>;
646 cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
647 };
648
649 cpu@101 {
650 device_type = "cpu";
651 compatible = "arm,cortex-a7";
652 reg = <0x101>;
653 cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
654 };
655
656 cpu@102 {
657 device_type = "cpu";
658 compatible = "arm,cortex-a7";
659 reg = <0x102>;
660 cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
661 };
662
663 cpu@103 {
664 device_type = "cpu";
665 compatible = "arm,cortex-a7";
666 reg = <0x103>;
667 cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
668 };
669
670 idle-states {
671 cpu_sleep_0_0: cpu-sleep-0-0 {
672 compatible = "arm,idle-state";
673 local-timer-stop;
674 entry-latency-us = <200>;
675 exit-latency-us = <100>;
676 min-residency-us = <400>;
677 wakeup-latency-us = <250>;
678 };
679
680 cluster_sleep_0: cluster-sleep-0 {
681 compatible = "arm,idle-state";
682 local-timer-stop;
683 entry-latency-us = <500>;
684 exit-latency-us = <1500>;
685 min-residency-us = <2500>;
686 wakeup-latency-us = <1700>;
687 };
688
689 cpu_sleep_1_0: cpu-sleep-1-0 {
690 compatible = "arm,idle-state";
691 local-timer-stop;
692 entry-latency-us = <300>;
693 exit-latency-us = <500>;
694 min-residency-us = <900>;
695 wakeup-latency-us = <600>;
696 };
697
698 cluster_sleep_1: cluster-sleep-1 {
699 compatible = "arm,idle-state";
700 local-timer-stop;
701 entry-latency-us = <800>;
702 exit-latency-us = <2000>;
703 min-residency-us = <6500>;
704 wakeup-latency-us = <2300>;
705 };
706 };
707 };
708
709 - |
710 // Example 3 (RISC-V 64-bit, 4-cpu systems, two clusters):
711
712 cpus {
713 #size-cells = <0>;
714 #address-cells = <1>;
715
716 cpu@0 {
717 device_type = "cpu";
718 compatible = "riscv";
719 reg = <0x0>;
720 riscv,isa = "rv64imafdc";
721 mmu-type = "riscv,sv48";
722 cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>,
723 <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>;
724
725 cpu_intc0: interrupt-controller {
726 #interrupt-cells = <1>;
727 compatible = "riscv,cpu-intc";
728 interrupt-controller;
729 };
730 };
731
732 cpu@1 {
733 device_type = "cpu";
734 compatible = "riscv";
735 reg = <0x1>;
736 riscv,isa = "rv64imafdc";
737 mmu-type = "riscv,sv48";
738 cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>,
739 <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>;
740
741 cpu_intc1: interrupt-controller {
742 #interrupt-cells = <1>;
743 compatible = "riscv,cpu-intc";
744 interrupt-controller;
745 };
746 };
747
748 cpu@10 {
749 device_type = "cpu";
750 compatible = "riscv";
751 reg = <0x10>;
752 riscv,isa = "rv64imafdc";
753 mmu-type = "riscv,sv48";
754 cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>,
755 <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>;
756
757 cpu_intc10: interrupt-controller {
758 #interrupt-cells = <1>;
759 compatible = "riscv,cpu-intc";
760 interrupt-controller;
761 };
762 };
763
764 cpu@11 {
765 device_type = "cpu";
766 compatible = "riscv";
767 reg = <0x11>;
768 riscv,isa = "rv64imafdc";
769 mmu-type = "riscv,sv48";
770 cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>,
771 <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>;
772
773 cpu_intc11: interrupt-controller {
774 #interrupt-cells = <1>;
775 compatible = "riscv,cpu-intc";
776 interrupt-controller;
777 };
778 };
779
780 idle-states {
781 CPU_RET_0_0: cpu-retentive-0-0 {
782 compatible = "riscv,idle-state";
783 riscv,sbi-suspend-param = <0x10000000>;
784 entry-latency-us = <20>;
785 exit-latency-us = <40>;
786 min-residency-us = <80>;
787 };
788
789 CPU_NONRET_0_0: cpu-nonretentive-0-0 {
790 compatible = "riscv,idle-state";
791 riscv,sbi-suspend-param = <0x90000000>;
792 entry-latency-us = <250>;
793 exit-latency-us = <500>;
794 min-residency-us = <950>;
795 };
796
797 CLUSTER_RET_0: cluster-retentive-0 {
798 compatible = "riscv,idle-state";
799 riscv,sbi-suspend-param = <0x11000000>;
800 local-timer-stop;
801 entry-latency-us = <50>;
802 exit-latency-us = <100>;
803 min-residency-us = <250>;
804 wakeup-latency-us = <130>;
805 };
806
807 CLUSTER_NONRET_0: cluster-nonretentive-0 {
808 compatible = "riscv,idle-state";
809 riscv,sbi-suspend-param = <0x91000000>;
810 local-timer-stop;
811 entry-latency-us = <600>;
812 exit-latency-us = <1100>;
813 min-residency-us = <2700>;
814 wakeup-latency-us = <1500>;
815 };
816
817 CPU_RET_1_0: cpu-retentive-1-0 {
818 compatible = "riscv,idle-state";
819 riscv,sbi-suspend-param = <0x10000010>;
820 entry-latency-us = <20>;
821 exit-latency-us = <40>;
822 min-residency-us = <80>;
823 };
824
825 CPU_NONRET_1_0: cpu-nonretentive-1-0 {
826 compatible = "riscv,idle-state";
827 riscv,sbi-suspend-param = <0x90000010>;
828 entry-latency-us = <250>;
829 exit-latency-us = <500>;
830 min-residency-us = <950>;
831 };
832
833 CLUSTER_RET_1: cluster-retentive-1 {
834 compatible = "riscv,idle-state";
835 riscv,sbi-suspend-param = <0x11000010>;
836 local-timer-stop;
837 entry-latency-us = <50>;
838 exit-latency-us = <100>;
839 min-residency-us = <250>;
840 wakeup-latency-us = <130>;
841 };
842
843 CLUSTER_NONRET_1: cluster-nonretentive-1 {
844 compatible = "riscv,idle-state";
845 riscv,sbi-suspend-param = <0x91000010>;
846 local-timer-stop;
847 entry-latency-us = <600>;
848 exit-latency-us = <1100>;
849 min-residency-us = <2700>;
850 wakeup-latency-us = <1500>;
851 };
852 };
853 };
854
855 ...
Cache object: d5ae7cf7f306ec17443ba7c2343cce31
|