The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/device-tree/Bindings/opp/opp.txt

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 Generic OPP (Operating Performance Points) Bindings
    2 ----------------------------------------------------
    3 
    4 Devices work at voltage-current-frequency combinations and some implementations
    5 have the liberty of choosing these. These combinations are called Operating
    6 Performance Points aka OPPs. This document defines bindings for these OPPs
    7 applicable across wide range of devices. For illustration purpose, this document
    8 uses CPU as a device.
    9 
   10 This document contain multiple versions of OPP binding and only one of them
   11 should be used per device.
   12 
   13 Binding 1: operating-points
   14 ============================
   15 
   16 This binding only supports voltage-frequency pairs.
   17 
   18 Properties:
   19 - operating-points: An array of 2-tuples items, and each item consists
   20   of frequency and voltage like <freq-kHz vol-uV>.
   21         freq: clock frequency in kHz
   22         vol: voltage in microvolt
   23 
   24 Examples:
   25 
   26 cpu@0 {
   27         compatible = "arm,cortex-a9";
   28         reg = <0>;
   29         next-level-cache = <&L2>;
   30         operating-points = <
   31                 /* kHz    uV */
   32                 792000  1100000
   33                 396000  950000
   34                 198000  850000
   35         >;
   36 };
   37 
   38 
   39 Binding 2: operating-points-v2
   40 ============================
   41 
   42 * Property: operating-points-v2
   43 
   44 Devices supporting OPPs must set their "operating-points-v2" property with
   45 phandle to a OPP table in their DT node. The OPP core will use this phandle to
   46 find the operating points for the device.
   47 
   48 This can contain more than one phandle for power domain providers that provide
   49 multiple power domains. That is, one phandle for each power domain. If only one
   50 phandle is available, then the same OPP table will be used for all power domains
   51 provided by the power domain provider.
   52 
   53 If required, this can be extended for SoC vendor specific bindings. Such bindings
   54 should be documented as Documentation/devicetree/bindings/power/<vendor>-opp.txt
   55 and should have a compatible description like: "operating-points-v2-<vendor>".
   56 
   57 * OPP Table Node
   58 
   59 This describes the OPPs belonging to a device. This node can have following
   60 properties:
   61 
   62 Required properties:
   63 - compatible: Allow OPPs to express their compatibility. It should be:
   64   "operating-points-v2".
   65 
   66 - OPP nodes: One or more OPP nodes describing voltage-current-frequency
   67   combinations. Their name isn't significant but their phandle can be used to
   68   reference an OPP. These are mandatory except for the case where the OPP table
   69   is present only to indicate dependency between devices using the opp-shared
   70   property.
   71 
   72 Optional properties:
   73 - opp-shared: Indicates that device nodes using this OPP Table Node's phandle
   74   switch their DVFS state together, i.e. they share clock/voltage/current lines.
   75   Missing property means devices have independent clock/voltage/current lines,
   76   but they share OPP tables.
   77 
   78 - status: Marks the OPP table enabled/disabled.
   79 
   80 
   81 * OPP Node
   82 
   83 This defines voltage-current-frequency combinations along with other related
   84 properties.
   85 
   86 Required properties:
   87 - opp-hz: Frequency in Hz, expressed as a 64-bit big-endian integer. This is a
   88   required property for all device nodes, unless another "required" property to
   89   uniquely identify the OPP nodes exists. Devices like power domains must have
   90   another (implementation dependent) property.
   91 
   92 - opp-peak-kBps: Peak bandwidth in kilobytes per second, expressed as an array
   93   of 32-bit big-endian integers. Each element of the array represents the
   94   peak bandwidth value of each interconnect path. The number of elements should
   95   match the number of interconnect paths.
   96 
   97 Optional properties:
   98 - opp-microvolt: voltage in micro Volts.
   99 
  100   A single regulator's voltage is specified with an array of size one or three.
  101   Single entry is for target voltage and three entries are for <target min max>
  102   voltages.
  103 
  104   Entries for multiple regulators shall be provided in the same field separated
  105   by angular brackets <>. The OPP binding doesn't provide any provisions to
  106   relate the values to their power supplies or the order in which the supplies
  107   need to be configured and that is left for the implementation specific
  108   binding.
  109 
  110   Entries for all regulators shall be of the same size, i.e. either all use a
  111   single value or triplets.
  112 
  113 - opp-microvolt-<name>: Named opp-microvolt property. This is exactly similar to
  114   the above opp-microvolt property, but allows multiple voltage ranges to be
  115   provided for the same OPP. At runtime, the platform can pick a <name> and
  116   matching opp-microvolt-<name> property will be enabled for all OPPs. If the
  117   platform doesn't pick a specific <name> or the <name> doesn't match with any
  118   opp-microvolt-<name> properties, then opp-microvolt property shall be used, if
  119   present.
  120 
  121 - opp-microamp: The maximum current drawn by the device in microamperes
  122   considering system specific parameters (such as transients, process, aging,
  123   maximum operating temperature range etc.) as necessary. This may be used to
  124   set the most efficient regulator operating mode.
  125 
  126   Should only be set if opp-microvolt is set for the OPP.
  127 
  128   Entries for multiple regulators shall be provided in the same field separated
  129   by angular brackets <>. If current values aren't required for a regulator,
  130   then it shall be filled with 0. If current values aren't required for any of
  131   the regulators, then this field is not required. The OPP binding doesn't
  132   provide any provisions to relate the values to their power supplies or the
  133   order in which the supplies need to be configured and that is left for the
  134   implementation specific binding.
  135 
  136 - opp-microamp-<name>: Named opp-microamp property. Similar to
  137   opp-microvolt-<name> property, but for microamp instead.
  138 
  139 - opp-level: A value representing the performance level of the device,
  140   expressed as a 32-bit integer.
  141 
  142 - opp-avg-kBps: Average bandwidth in kilobytes per second, expressed as an array
  143   of 32-bit big-endian integers. Each element of the array represents the
  144   average bandwidth value of each interconnect path. The number of elements
  145   should match the number of interconnect paths. This property is only
  146   meaningful in OPP tables where opp-peak-kBps is present.
  147 
  148 - clock-latency-ns: Specifies the maximum possible transition latency (in
  149   nanoseconds) for switching to this OPP from any other OPP.
  150 
  151 - turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is
  152   available on some platforms, where the device can run over its operating
  153   frequency for a short duration of time limited by the device's power, current
  154   and thermal limits.
  155 
  156 - opp-suspend: Marks the OPP to be used during device suspend. If multiple OPPs
  157   in the table have this, the OPP with highest opp-hz will be used.
  158 
  159 - opp-supported-hw: This property allows a platform to enable only a subset of
  160   the OPPs from the larger set present in the OPP table, based on the current
  161   version of the hardware (already known to the operating system).
  162 
  163   Each block present in the array of blocks in this property, represents a
  164   sub-group of hardware versions supported by the OPP. i.e. <sub-group A>,
  165   <sub-group B>, etc. The OPP will be enabled if _any_ of these sub-groups match
  166   the hardware's version.
  167 
  168   Each sub-group is a platform defined array representing the hierarchy of
  169   hardware versions supported by the platform. For a platform with three
  170   hierarchical levels of version (X.Y.Z), this field shall look like
  171 
  172   opp-supported-hw = <X1 Y1 Z1>, <X2 Y2 Z2>, <X3 Y3 Z3>.
  173 
  174   Each level (eg. X1) in version hierarchy is represented by a 32 bit value, one
  175   bit per version and so there can be maximum 32 versions per level. Logical AND
  176   (&) operation is performed for each level with the hardware's level version
  177   and a non-zero output for _all_ the levels in a sub-group means the OPP is
  178   supported by hardware. A value of 0xFFFFFFFF for each level in the sub-group
  179   will enable the OPP for all versions for the hardware.
  180 
  181 - status: Marks the node enabled/disabled.
  182 
  183 - required-opps: This contains phandle to an OPP node in another device's OPP
  184   table. It may contain an array of phandles, where each phandle points to an
  185   OPP of a different device. It should not contain multiple phandles to the OPP
  186   nodes in the same OPP table. This specifies the minimum required OPP of the
  187   device(s), whose OPP's phandle is present in this property, for the
  188   functioning of the current device at the current OPP (where this property is
  189   present).
  190 
  191 Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together.
  192 
  193 / {
  194         cpus {
  195                 #address-cells = <1>;
  196                 #size-cells = <0>;
  197 
  198                 cpu@0 {
  199                         compatible = "arm,cortex-a9";
  200                         reg = <0>;
  201                         next-level-cache = <&L2>;
  202                         clocks = <&clk_controller 0>;
  203                         clock-names = "cpu";
  204                         cpu-supply = <&cpu_supply0>;
  205                         operating-points-v2 = <&cpu0_opp_table>;
  206                 };
  207 
  208                 cpu@1 {
  209                         compatible = "arm,cortex-a9";
  210                         reg = <1>;
  211                         next-level-cache = <&L2>;
  212                         clocks = <&clk_controller 0>;
  213                         clock-names = "cpu";
  214                         cpu-supply = <&cpu_supply0>;
  215                         operating-points-v2 = <&cpu0_opp_table>;
  216                 };
  217         };
  218 
  219         cpu0_opp_table: opp_table0 {
  220                 compatible = "operating-points-v2";
  221                 opp-shared;
  222 
  223                 opp-1000000000 {
  224                         opp-hz = /bits/ 64 <1000000000>;
  225                         opp-microvolt = <975000 970000 985000>;
  226                         opp-microamp = <70000>;
  227                         clock-latency-ns = <300000>;
  228                         opp-suspend;
  229                 };
  230                 opp-1100000000 {
  231                         opp-hz = /bits/ 64 <1100000000>;
  232                         opp-microvolt = <1000000 980000 1010000>;
  233                         opp-microamp = <80000>;
  234                         clock-latency-ns = <310000>;
  235                 };
  236                 opp-1200000000 {
  237                         opp-hz = /bits/ 64 <1200000000>;
  238                         opp-microvolt = <1025000>;
  239                         clock-latency-ns = <290000>;
  240                         turbo-mode;
  241                 };
  242         };
  243 };
  244 
  245 Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
  246 independently.
  247 
  248 / {
  249         cpus {
  250                 #address-cells = <1>;
  251                 #size-cells = <0>;
  252 
  253                 cpu@0 {
  254                         compatible = "qcom,krait";
  255                         reg = <0>;
  256                         next-level-cache = <&L2>;
  257                         clocks = <&clk_controller 0>;
  258                         clock-names = "cpu";
  259                         cpu-supply = <&cpu_supply0>;
  260                         operating-points-v2 = <&cpu_opp_table>;
  261                 };
  262 
  263                 cpu@1 {
  264                         compatible = "qcom,krait";
  265                         reg = <1>;
  266                         next-level-cache = <&L2>;
  267                         clocks = <&clk_controller 1>;
  268                         clock-names = "cpu";
  269                         cpu-supply = <&cpu_supply1>;
  270                         operating-points-v2 = <&cpu_opp_table>;
  271                 };
  272 
  273                 cpu@2 {
  274                         compatible = "qcom,krait";
  275                         reg = <2>;
  276                         next-level-cache = <&L2>;
  277                         clocks = <&clk_controller 2>;
  278                         clock-names = "cpu";
  279                         cpu-supply = <&cpu_supply2>;
  280                         operating-points-v2 = <&cpu_opp_table>;
  281                 };
  282 
  283                 cpu@3 {
  284                         compatible = "qcom,krait";
  285                         reg = <3>;
  286                         next-level-cache = <&L2>;
  287                         clocks = <&clk_controller 3>;
  288                         clock-names = "cpu";
  289                         cpu-supply = <&cpu_supply3>;
  290                         operating-points-v2 = <&cpu_opp_table>;
  291                 };
  292         };
  293 
  294         cpu_opp_table: opp_table {
  295                 compatible = "operating-points-v2";
  296 
  297                 /*
  298                  * Missing opp-shared property means CPUs switch DVFS states
  299                  * independently.
  300                  */
  301 
  302                 opp-1000000000 {
  303                         opp-hz = /bits/ 64 <1000000000>;
  304                         opp-microvolt = <975000 970000 985000>;
  305                         opp-microamp = <70000>;
  306                         clock-latency-ns = <300000>;
  307                         opp-suspend;
  308                 };
  309                 opp-1100000000 {
  310                         opp-hz = /bits/ 64 <1100000000>;
  311                         opp-microvolt = <1000000 980000 1010000>;
  312                         opp-microamp = <80000>;
  313                         clock-latency-ns = <310000>;
  314                 };
  315                 opp-1200000000 {
  316                         opp-hz = /bits/ 64 <1200000000>;
  317                         opp-microvolt = <1025000>;
  318                         opp-microamp = <90000;
  319                         lock-latency-ns = <290000>;
  320                         turbo-mode;
  321                 };
  322         };
  323 };
  324 
  325 Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
  326 DVFS state together.
  327 
  328 / {
  329         cpus {
  330                 #address-cells = <1>;
  331                 #size-cells = <0>;
  332 
  333                 cpu@0 {
  334                         compatible = "arm,cortex-a7";
  335                         reg = <0>;
  336                         next-level-cache = <&L2>;
  337                         clocks = <&clk_controller 0>;
  338                         clock-names = "cpu";
  339                         cpu-supply = <&cpu_supply0>;
  340                         operating-points-v2 = <&cluster0_opp>;
  341                 };
  342 
  343                 cpu@1 {
  344                         compatible = "arm,cortex-a7";
  345                         reg = <1>;
  346                         next-level-cache = <&L2>;
  347                         clocks = <&clk_controller 0>;
  348                         clock-names = "cpu";
  349                         cpu-supply = <&cpu_supply0>;
  350                         operating-points-v2 = <&cluster0_opp>;
  351                 };
  352 
  353                 cpu@100 {
  354                         compatible = "arm,cortex-a15";
  355                         reg = <100>;
  356                         next-level-cache = <&L2>;
  357                         clocks = <&clk_controller 1>;
  358                         clock-names = "cpu";
  359                         cpu-supply = <&cpu_supply1>;
  360                         operating-points-v2 = <&cluster1_opp>;
  361                 };
  362 
  363                 cpu@101 {
  364                         compatible = "arm,cortex-a15";
  365                         reg = <101>;
  366                         next-level-cache = <&L2>;
  367                         clocks = <&clk_controller 1>;
  368                         clock-names = "cpu";
  369                         cpu-supply = <&cpu_supply1>;
  370                         operating-points-v2 = <&cluster1_opp>;
  371                 };
  372         };
  373 
  374         cluster0_opp: opp_table0 {
  375                 compatible = "operating-points-v2";
  376                 opp-shared;
  377 
  378                 opp-1000000000 {
  379                         opp-hz = /bits/ 64 <1000000000>;
  380                         opp-microvolt = <975000 970000 985000>;
  381                         opp-microamp = <70000>;
  382                         clock-latency-ns = <300000>;
  383                         opp-suspend;
  384                 };
  385                 opp-1100000000 {
  386                         opp-hz = /bits/ 64 <1100000000>;
  387                         opp-microvolt = <1000000 980000 1010000>;
  388                         opp-microamp = <80000>;
  389                         clock-latency-ns = <310000>;
  390                 };
  391                 opp-1200000000 {
  392                         opp-hz = /bits/ 64 <1200000000>;
  393                         opp-microvolt = <1025000>;
  394                         opp-microamp = <90000>;
  395                         clock-latency-ns = <290000>;
  396                         turbo-mode;
  397                 };
  398         };
  399 
  400         cluster1_opp: opp_table1 {
  401                 compatible = "operating-points-v2";
  402                 opp-shared;
  403 
  404                 opp-1300000000 {
  405                         opp-hz = /bits/ 64 <1300000000>;
  406                         opp-microvolt = <1050000 1045000 1055000>;
  407                         opp-microamp = <95000>;
  408                         clock-latency-ns = <400000>;
  409                         opp-suspend;
  410                 };
  411                 opp-1400000000 {
  412                         opp-hz = /bits/ 64 <1400000000>;
  413                         opp-microvolt = <1075000>;
  414                         opp-microamp = <100000>;
  415                         clock-latency-ns = <400000>;
  416                 };
  417                 opp-1500000000 {
  418                         opp-hz = /bits/ 64 <1500000000>;
  419                         opp-microvolt = <1100000 1010000 1110000>;
  420                         opp-microamp = <95000>;
  421                         clock-latency-ns = <400000>;
  422                         turbo-mode;
  423                 };
  424         };
  425 };
  426 
  427 Example 4: Handling multiple regulators
  428 
  429 / {
  430         cpus {
  431                 cpu@0 {
  432                         compatible = "vendor,cpu-type";
  433                         ...
  434 
  435                         vcc0-supply = <&cpu_supply0>;
  436                         vcc1-supply = <&cpu_supply1>;
  437                         vcc2-supply = <&cpu_supply2>;
  438                         operating-points-v2 = <&cpu0_opp_table>;
  439                 };
  440         };
  441 
  442         cpu0_opp_table: opp_table0 {
  443                 compatible = "operating-points-v2";
  444                 opp-shared;
  445 
  446                 opp-1000000000 {
  447                         opp-hz = /bits/ 64 <1000000000>;
  448                         opp-microvolt = <970000>, /* Supply 0 */
  449                                         <960000>, /* Supply 1 */
  450                                         <960000>; /* Supply 2 */
  451                         opp-microamp =  <70000>,  /* Supply 0 */
  452                                         <70000>,  /* Supply 1 */
  453                                         <70000>;  /* Supply 2 */
  454                         clock-latency-ns = <300000>;
  455                 };
  456 
  457                 /* OR */
  458 
  459                 opp-1000000000 {
  460                         opp-hz = /bits/ 64 <1000000000>;
  461                         opp-microvolt = <975000 970000 985000>, /* Supply 0 */
  462                                         <965000 960000 975000>, /* Supply 1 */
  463                                         <965000 960000 975000>; /* Supply 2 */
  464                         opp-microamp =  <70000>,                /* Supply 0 */
  465                                         <70000>,                /* Supply 1 */
  466                                         <70000>;                /* Supply 2 */
  467                         clock-latency-ns = <300000>;
  468                 };
  469 
  470                 /* OR */
  471 
  472                 opp-1000000000 {
  473                         opp-hz = /bits/ 64 <1000000000>;
  474                         opp-microvolt = <975000 970000 985000>, /* Supply 0 */
  475                                         <965000 960000 975000>, /* Supply 1 */
  476                                         <965000 960000 975000>; /* Supply 2 */
  477                         opp-microamp =  <70000>,                /* Supply 0 */
  478                                         <0>,                    /* Supply 1 doesn't need this */
  479                                         <70000>;                /* Supply 2 */
  480                         clock-latency-ns = <300000>;
  481                 };
  482         };
  483 };
  484 
  485 Example 5: opp-supported-hw
  486 (example: three level hierarchy of versions: cuts, substrate and process)
  487 
  488 / {
  489         cpus {
  490                 cpu@0 {
  491                         compatible = "arm,cortex-a7";
  492                         ...
  493 
  494                         cpu-supply = <&cpu_supply>
  495                         operating-points-v2 = <&cpu0_opp_table_slow>;
  496                 };
  497         };
  498 
  499         opp_table {
  500                 compatible = "operating-points-v2";
  501                 opp-shared;
  502 
  503                 opp-600000000 {
  504                         /*
  505                          * Supports all substrate and process versions for 0xF
  506                          * cuts, i.e. only first four cuts.
  507                          */
  508                         opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>
  509                         opp-hz = /bits/ 64 <600000000>;
  510                         ...
  511                 };
  512 
  513                 opp-800000000 {
  514                         /*
  515                          * Supports:
  516                          * - cuts: only one, 6th cut (represented by 6th bit).
  517                          * - substrate: supports 16 different substrate versions
  518                          * - process: supports 9 different process versions
  519                          */
  520                         opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>
  521                         opp-hz = /bits/ 64 <800000000>;
  522                         ...
  523                 };
  524 
  525                 opp-900000000 {
  526                         /*
  527                          * Supports:
  528                          * - All cuts and substrate where process version is 0x2.
  529                          * - All cuts and process where substrate version is 0x2.
  530                          */
  531                         opp-supported-hw = <0xFFFFFFFF 0xFFFFFFFF 0x02>, <0xFFFFFFFF 0x01 0xFFFFFFFF>
  532                         opp-hz = /bits/ 64 <900000000>;
  533                         ...
  534                 };
  535         };
  536 };
  537 
  538 Example 6: opp-microvolt-<name>, opp-microamp-<name>:
  539 (example: device with two possible microvolt ranges: slow and fast)
  540 
  541 / {
  542         cpus {
  543                 cpu@0 {
  544                         compatible = "arm,cortex-a7";
  545                         ...
  546 
  547                         operating-points-v2 = <&cpu0_opp_table>;
  548                 };
  549         };
  550 
  551         cpu0_opp_table: opp_table0 {
  552                 compatible = "operating-points-v2";
  553                 opp-shared;
  554 
  555                 opp-1000000000 {
  556                         opp-hz = /bits/ 64 <1000000000>;
  557                         opp-microvolt-slow = <915000 900000 925000>;
  558                         opp-microvolt-fast = <975000 970000 985000>;
  559                         opp-microamp-slow =  <70000>;
  560                         opp-microamp-fast =  <71000>;
  561                 };
  562 
  563                 opp-1200000000 {
  564                         opp-hz = /bits/ 64 <1200000000>;
  565                         opp-microvolt-slow = <915000 900000 925000>, /* Supply vcc0 */
  566                                               <925000 910000 935000>; /* Supply vcc1 */
  567                         opp-microvolt-fast = <975000 970000 985000>, /* Supply vcc0 */
  568                                              <965000 960000 975000>; /* Supply vcc1 */
  569                         opp-microamp =  <70000>; /* Will be used for both slow/fast */
  570                 };
  571         };
  572 };
  573 
  574 Example 7: Single cluster Quad-core ARM cortex A53, OPP points from firmware,
  575 distinct clock controls but two sets of clock/voltage/current lines.
  576 
  577 / {
  578         cpus {
  579                 #address-cells = <2>;
  580                 #size-cells = <0>;
  581 
  582                 cpu@0 {
  583                         compatible = "arm,cortex-a53";
  584                         reg = <0x0 0x100>;
  585                         next-level-cache = <&A53_L2>;
  586                         clocks = <&dvfs_controller 0>;
  587                         operating-points-v2 = <&cpu_opp0_table>;
  588                 };
  589                 cpu@1 {
  590                         compatible = "arm,cortex-a53";
  591                         reg = <0x0 0x101>;
  592                         next-level-cache = <&A53_L2>;
  593                         clocks = <&dvfs_controller 1>;
  594                         operating-points-v2 = <&cpu_opp0_table>;
  595                 };
  596                 cpu@2 {
  597                         compatible = "arm,cortex-a53";
  598                         reg = <0x0 0x102>;
  599                         next-level-cache = <&A53_L2>;
  600                         clocks = <&dvfs_controller 2>;
  601                         operating-points-v2 = <&cpu_opp1_table>;
  602                 };
  603                 cpu@3 {
  604                         compatible = "arm,cortex-a53";
  605                         reg = <0x0 0x103>;
  606                         next-level-cache = <&A53_L2>;
  607                         clocks = <&dvfs_controller 3>;
  608                         operating-points-v2 = <&cpu_opp1_table>;
  609                 };
  610 
  611         };
  612 
  613         cpu_opp0_table: opp0_table {
  614                 compatible = "operating-points-v2";
  615                 opp-shared;
  616         };
  617 
  618         cpu_opp1_table: opp1_table {
  619                 compatible = "operating-points-v2";
  620                 opp-shared;
  621         };
  622 };

Cache object: cc1a5bacad2e32744b5794c30ae0c939


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.