The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/cmd/zdb/zdb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
   25  * Copyright (c) 2014 Integros [integros.com]
   26  * Copyright 2016 Nexenta Systems, Inc.
   27  * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
   28  * Copyright (c) 2015, 2017, Intel Corporation.
   29  * Copyright (c) 2020 Datto Inc.
   30  * Copyright (c) 2020, The FreeBSD Foundation [1]
   31  *
   32  * [1] Portions of this software were developed by Allan Jude
   33  *     under sponsorship from the FreeBSD Foundation.
   34  * Copyright (c) 2021 Allan Jude
   35  * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
   36  */
   37 
   38 #include <stdio.h>
   39 #include <unistd.h>
   40 #include <stdlib.h>
   41 #include <ctype.h>
   42 #include <getopt.h>
   43 #include <sys/zfs_context.h>
   44 #include <sys/spa.h>
   45 #include <sys/spa_impl.h>
   46 #include <sys/dmu.h>
   47 #include <sys/zap.h>
   48 #include <sys/fs/zfs.h>
   49 #include <sys/zfs_znode.h>
   50 #include <sys/zfs_sa.h>
   51 #include <sys/sa.h>
   52 #include <sys/sa_impl.h>
   53 #include <sys/vdev.h>
   54 #include <sys/vdev_impl.h>
   55 #include <sys/metaslab_impl.h>
   56 #include <sys/dmu_objset.h>
   57 #include <sys/dsl_dir.h>
   58 #include <sys/dsl_dataset.h>
   59 #include <sys/dsl_pool.h>
   60 #include <sys/dsl_bookmark.h>
   61 #include <sys/dbuf.h>
   62 #include <sys/zil.h>
   63 #include <sys/zil_impl.h>
   64 #include <sys/stat.h>
   65 #include <sys/resource.h>
   66 #include <sys/dmu_send.h>
   67 #include <sys/dmu_traverse.h>
   68 #include <sys/zio_checksum.h>
   69 #include <sys/zio_compress.h>
   70 #include <sys/zfs_fuid.h>
   71 #include <sys/arc.h>
   72 #include <sys/arc_impl.h>
   73 #include <sys/ddt.h>
   74 #include <sys/zfeature.h>
   75 #include <sys/abd.h>
   76 #include <sys/blkptr.h>
   77 #include <sys/dsl_crypt.h>
   78 #include <sys/dsl_scan.h>
   79 #include <sys/btree.h>
   80 #include <zfs_comutil.h>
   81 #include <sys/zstd/zstd.h>
   82 
   83 #include <libnvpair.h>
   84 #include <libzutil.h>
   85 
   86 #include "zdb.h"
   87 
   88 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ?        \
   89         zio_compress_table[(idx)].ci_name : "UNKNOWN")
   90 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ?        \
   91         zio_checksum_table[(idx)].ci_name : "UNKNOWN")
   92 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) :             \
   93         (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ?    \
   94         DMU_OT_ZAP_OTHER : \
   95         (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
   96         DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
   97 
   98 /* Some platforms require part of inode IDs to be remapped */
   99 #ifdef __APPLE__
  100 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
  101 #else
  102 #define ZDB_MAP_OBJECT_ID(obj) (obj)
  103 #endif
  104 
  105 static const char *
  106 zdb_ot_name(dmu_object_type_t type)
  107 {
  108         if (type < DMU_OT_NUMTYPES)
  109                 return (dmu_ot[type].ot_name);
  110         else if ((type & DMU_OT_NEWTYPE) &&
  111             ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
  112                 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
  113         else
  114                 return ("UNKNOWN");
  115 }
  116 
  117 extern int reference_tracking_enable;
  118 extern int zfs_recover;
  119 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit;
  120 extern uint_t zfs_vdev_async_read_max_active;
  121 extern boolean_t spa_load_verify_dryrun;
  122 extern boolean_t spa_mode_readable_spacemaps;
  123 extern uint_t zfs_reconstruct_indirect_combinations_max;
  124 extern uint_t zfs_btree_verify_intensity;
  125 
  126 static const char cmdname[] = "zdb";
  127 uint8_t dump_opt[256];
  128 
  129 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
  130 
  131 static uint64_t *zopt_metaslab = NULL;
  132 static unsigned zopt_metaslab_args = 0;
  133 
  134 typedef struct zopt_object_range {
  135         uint64_t zor_obj_start;
  136         uint64_t zor_obj_end;
  137         uint64_t zor_flags;
  138 } zopt_object_range_t;
  139 
  140 static zopt_object_range_t *zopt_object_ranges = NULL;
  141 static unsigned zopt_object_args = 0;
  142 
  143 static int flagbits[256];
  144 
  145 #define ZOR_FLAG_PLAIN_FILE     0x0001
  146 #define ZOR_FLAG_DIRECTORY      0x0002
  147 #define ZOR_FLAG_SPACE_MAP      0x0004
  148 #define ZOR_FLAG_ZAP            0x0008
  149 #define ZOR_FLAG_ALL_TYPES      -1
  150 #define ZOR_SUPPORTED_FLAGS     (ZOR_FLAG_PLAIN_FILE    | \
  151                                 ZOR_FLAG_DIRECTORY      | \
  152                                 ZOR_FLAG_SPACE_MAP      | \
  153                                 ZOR_FLAG_ZAP)
  154 
  155 #define ZDB_FLAG_CHECKSUM       0x0001
  156 #define ZDB_FLAG_DECOMPRESS     0x0002
  157 #define ZDB_FLAG_BSWAP          0x0004
  158 #define ZDB_FLAG_GBH            0x0008
  159 #define ZDB_FLAG_INDIRECT       0x0010
  160 #define ZDB_FLAG_RAW            0x0020
  161 #define ZDB_FLAG_PRINT_BLKPTR   0x0040
  162 #define ZDB_FLAG_VERBOSE        0x0080
  163 
  164 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
  165 static int leaked_objects = 0;
  166 static range_tree_t *mos_refd_objs;
  167 
  168 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
  169     boolean_t);
  170 static void mos_obj_refd(uint64_t);
  171 static void mos_obj_refd_multiple(uint64_t);
  172 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
  173     dmu_tx_t *tx);
  174 
  175 typedef struct sublivelist_verify {
  176         /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
  177         zfs_btree_t sv_pair;
  178 
  179         /* ALLOC's without a matching FREE, accumulates across sub-livelists */
  180         zfs_btree_t sv_leftover;
  181 } sublivelist_verify_t;
  182 
  183 static int
  184 livelist_compare(const void *larg, const void *rarg)
  185 {
  186         const blkptr_t *l = larg;
  187         const blkptr_t *r = rarg;
  188 
  189         /* Sort them according to dva[0] */
  190         uint64_t l_dva0_vdev, r_dva0_vdev;
  191         l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
  192         r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
  193         if (l_dva0_vdev < r_dva0_vdev)
  194                 return (-1);
  195         else if (l_dva0_vdev > r_dva0_vdev)
  196                 return (+1);
  197 
  198         /* if vdevs are equal, sort by offsets. */
  199         uint64_t l_dva0_offset;
  200         uint64_t r_dva0_offset;
  201         l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
  202         r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
  203         if (l_dva0_offset < r_dva0_offset) {
  204                 return (-1);
  205         } else if (l_dva0_offset > r_dva0_offset) {
  206                 return (+1);
  207         }
  208 
  209         /*
  210          * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
  211          * it's possible the offsets are equal. In that case, sort by txg
  212          */
  213         if (l->blk_birth < r->blk_birth) {
  214                 return (-1);
  215         } else if (l->blk_birth > r->blk_birth) {
  216                 return (+1);
  217         }
  218         return (0);
  219 }
  220 
  221 typedef struct sublivelist_verify_block {
  222         dva_t svb_dva;
  223 
  224         /*
  225          * We need this to check if the block marked as allocated
  226          * in the livelist was freed (and potentially reallocated)
  227          * in the metaslab spacemaps at a later TXG.
  228          */
  229         uint64_t svb_allocated_txg;
  230 } sublivelist_verify_block_t;
  231 
  232 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
  233 
  234 typedef struct sublivelist_verify_block_refcnt {
  235         /* block pointer entry in livelist being verified */
  236         blkptr_t svbr_blk;
  237 
  238         /*
  239          * Refcount gets incremented to 1 when we encounter the first
  240          * FREE entry for the svfbr block pointer and a node for it
  241          * is created in our ZDB verification/tracking metadata.
  242          *
  243          * As we encounter more FREE entries we increment this counter
  244          * and similarly decrement it whenever we find the respective
  245          * ALLOC entries for this block.
  246          *
  247          * When the refcount gets to 0 it means that all the FREE and
  248          * ALLOC entries of this block have paired up and we no longer
  249          * need to track it in our verification logic (e.g. the node
  250          * containing this struct in our verification data structure
  251          * should be freed).
  252          *
  253          * [refer to sublivelist_verify_blkptr() for the actual code]
  254          */
  255         uint32_t svbr_refcnt;
  256 } sublivelist_verify_block_refcnt_t;
  257 
  258 static int
  259 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
  260 {
  261         const sublivelist_verify_block_refcnt_t *l = larg;
  262         const sublivelist_verify_block_refcnt_t *r = rarg;
  263         return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
  264 }
  265 
  266 static int
  267 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
  268     dmu_tx_t *tx)
  269 {
  270         ASSERT3P(tx, ==, NULL);
  271         struct sublivelist_verify *sv = arg;
  272         sublivelist_verify_block_refcnt_t current = {
  273                         .svbr_blk = *bp,
  274 
  275                         /*
  276                          * Start with 1 in case this is the first free entry.
  277                          * This field is not used for our B-Tree comparisons
  278                          * anyway.
  279                          */
  280                         .svbr_refcnt = 1,
  281         };
  282 
  283         zfs_btree_index_t where;
  284         sublivelist_verify_block_refcnt_t *pair =
  285             zfs_btree_find(&sv->sv_pair, &current, &where);
  286         if (free) {
  287                 if (pair == NULL) {
  288                         /* first free entry for this block pointer */
  289                         zfs_btree_add(&sv->sv_pair, &current);
  290                 } else {
  291                         pair->svbr_refcnt++;
  292                 }
  293         } else {
  294                 if (pair == NULL) {
  295                         /* block that is currently marked as allocated */
  296                         for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
  297                                 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
  298                                         break;
  299                                 sublivelist_verify_block_t svb = {
  300                                     .svb_dva = bp->blk_dva[i],
  301                                     .svb_allocated_txg = bp->blk_birth
  302                                 };
  303 
  304                                 if (zfs_btree_find(&sv->sv_leftover, &svb,
  305                                     &where) == NULL) {
  306                                         zfs_btree_add_idx(&sv->sv_leftover,
  307                                             &svb, &where);
  308                                 }
  309                         }
  310                 } else {
  311                         /* alloc matches a free entry */
  312                         pair->svbr_refcnt--;
  313                         if (pair->svbr_refcnt == 0) {
  314                                 /* all allocs and frees have been matched */
  315                                 zfs_btree_remove_idx(&sv->sv_pair, &where);
  316                         }
  317                 }
  318         }
  319 
  320         return (0);
  321 }
  322 
  323 static int
  324 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
  325 {
  326         int err;
  327         struct sublivelist_verify *sv = args;
  328 
  329         zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare,
  330             sizeof (sublivelist_verify_block_refcnt_t));
  331 
  332         err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
  333             sv, NULL);
  334 
  335         sublivelist_verify_block_refcnt_t *e;
  336         zfs_btree_index_t *cookie = NULL;
  337         while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
  338                 char blkbuf[BP_SPRINTF_LEN];
  339                 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
  340                     &e->svbr_blk, B_TRUE);
  341                 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
  342                     e->svbr_refcnt, blkbuf);
  343         }
  344         zfs_btree_destroy(&sv->sv_pair);
  345 
  346         return (err);
  347 }
  348 
  349 static int
  350 livelist_block_compare(const void *larg, const void *rarg)
  351 {
  352         const sublivelist_verify_block_t *l = larg;
  353         const sublivelist_verify_block_t *r = rarg;
  354 
  355         if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
  356                 return (-1);
  357         else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
  358                 return (+1);
  359 
  360         if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
  361                 return (-1);
  362         else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
  363                 return (+1);
  364 
  365         if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
  366                 return (-1);
  367         else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
  368                 return (+1);
  369 
  370         return (0);
  371 }
  372 
  373 /*
  374  * Check for errors in a livelist while tracking all unfreed ALLOCs in the
  375  * sublivelist_verify_t: sv->sv_leftover
  376  */
  377 static void
  378 livelist_verify(dsl_deadlist_t *dl, void *arg)
  379 {
  380         sublivelist_verify_t *sv = arg;
  381         dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
  382 }
  383 
  384 /*
  385  * Check for errors in the livelist entry and discard the intermediary
  386  * data structures
  387  */
  388 static int
  389 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
  390 {
  391         (void) args;
  392         sublivelist_verify_t sv;
  393         zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
  394             sizeof (sublivelist_verify_block_t));
  395         int err = sublivelist_verify_func(&sv, dle);
  396         zfs_btree_clear(&sv.sv_leftover);
  397         zfs_btree_destroy(&sv.sv_leftover);
  398         return (err);
  399 }
  400 
  401 typedef struct metaslab_verify {
  402         /*
  403          * Tree containing all the leftover ALLOCs from the livelists
  404          * that are part of this metaslab.
  405          */
  406         zfs_btree_t mv_livelist_allocs;
  407 
  408         /*
  409          * Metaslab information.
  410          */
  411         uint64_t mv_vdid;
  412         uint64_t mv_msid;
  413         uint64_t mv_start;
  414         uint64_t mv_end;
  415 
  416         /*
  417          * What's currently allocated for this metaslab.
  418          */
  419         range_tree_t *mv_allocated;
  420 } metaslab_verify_t;
  421 
  422 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
  423 
  424 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
  425     void *arg);
  426 
  427 typedef struct unflushed_iter_cb_arg {
  428         spa_t *uic_spa;
  429         uint64_t uic_txg;
  430         void *uic_arg;
  431         zdb_log_sm_cb_t uic_cb;
  432 } unflushed_iter_cb_arg_t;
  433 
  434 static int
  435 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
  436 {
  437         unflushed_iter_cb_arg_t *uic = arg;
  438         return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
  439 }
  440 
  441 static void
  442 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
  443 {
  444         if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
  445                 return;
  446 
  447         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
  448         for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
  449             sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
  450                 space_map_t *sm = NULL;
  451                 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
  452                     sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
  453 
  454                 unflushed_iter_cb_arg_t uic = {
  455                         .uic_spa = spa,
  456                         .uic_txg = sls->sls_txg,
  457                         .uic_arg = arg,
  458                         .uic_cb = cb
  459                 };
  460                 VERIFY0(space_map_iterate(sm, space_map_length(sm),
  461                     iterate_through_spacemap_logs_cb, &uic));
  462                 space_map_close(sm);
  463         }
  464         spa_config_exit(spa, SCL_CONFIG, FTAG);
  465 }
  466 
  467 static void
  468 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
  469     uint64_t offset, uint64_t size)
  470 {
  471         sublivelist_verify_block_t svb = {{{0}}};
  472         DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
  473         DVA_SET_OFFSET(&svb.svb_dva, offset);
  474         DVA_SET_ASIZE(&svb.svb_dva, size);
  475         zfs_btree_index_t where;
  476         uint64_t end_offset = offset + size;
  477 
  478         /*
  479          *  Look for an exact match for spacemap entry in the livelist entries.
  480          *  Then, look for other livelist entries that fall within the range
  481          *  of the spacemap entry as it may have been condensed
  482          */
  483         sublivelist_verify_block_t *found =
  484             zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
  485         if (found == NULL) {
  486                 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
  487         }
  488         for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
  489             DVA_GET_OFFSET(&found->svb_dva) < end_offset;
  490             found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
  491                 if (found->svb_allocated_txg <= txg) {
  492                         (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
  493                             "from TXG %llx FREED at TXG %llx\n",
  494                             (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
  495                             (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
  496                             (u_longlong_t)found->svb_allocated_txg,
  497                             (u_longlong_t)txg);
  498                 }
  499         }
  500 }
  501 
  502 static int
  503 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
  504 {
  505         metaslab_verify_t *mv = arg;
  506         uint64_t offset = sme->sme_offset;
  507         uint64_t size = sme->sme_run;
  508         uint64_t txg = sme->sme_txg;
  509 
  510         if (sme->sme_type == SM_ALLOC) {
  511                 if (range_tree_contains(mv->mv_allocated,
  512                     offset, size)) {
  513                         (void) printf("ERROR: DOUBLE ALLOC: "
  514                             "%llu [%llx:%llx] "
  515                             "%llu:%llu LOG_SM\n",
  516                             (u_longlong_t)txg, (u_longlong_t)offset,
  517                             (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
  518                             (u_longlong_t)mv->mv_msid);
  519                 } else {
  520                         range_tree_add(mv->mv_allocated,
  521                             offset, size);
  522                 }
  523         } else {
  524                 if (!range_tree_contains(mv->mv_allocated,
  525                     offset, size)) {
  526                         (void) printf("ERROR: DOUBLE FREE: "
  527                             "%llu [%llx:%llx] "
  528                             "%llu:%llu LOG_SM\n",
  529                             (u_longlong_t)txg, (u_longlong_t)offset,
  530                             (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
  531                             (u_longlong_t)mv->mv_msid);
  532                 } else {
  533                         range_tree_remove(mv->mv_allocated,
  534                             offset, size);
  535                 }
  536         }
  537 
  538         if (sme->sme_type != SM_ALLOC) {
  539                 /*
  540                  * If something is freed in the spacemap, verify that
  541                  * it is not listed as allocated in the livelist.
  542                  */
  543                 verify_livelist_allocs(mv, txg, offset, size);
  544         }
  545         return (0);
  546 }
  547 
  548 static int
  549 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
  550     uint64_t txg, void *arg)
  551 {
  552         metaslab_verify_t *mv = arg;
  553         uint64_t offset = sme->sme_offset;
  554         uint64_t vdev_id = sme->sme_vdev;
  555 
  556         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
  557 
  558         /* skip indirect vdevs */
  559         if (!vdev_is_concrete(vd))
  560                 return (0);
  561 
  562         if (vdev_id != mv->mv_vdid)
  563                 return (0);
  564 
  565         metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
  566         if (ms->ms_id != mv->mv_msid)
  567                 return (0);
  568 
  569         if (txg < metaslab_unflushed_txg(ms))
  570                 return (0);
  571 
  572 
  573         ASSERT3U(txg, ==, sme->sme_txg);
  574         return (metaslab_spacemap_validation_cb(sme, mv));
  575 }
  576 
  577 static void
  578 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
  579 {
  580         iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
  581 }
  582 
  583 static void
  584 spacemap_check_ms_sm(space_map_t  *sm, metaslab_verify_t *mv)
  585 {
  586         if (sm == NULL)
  587                 return;
  588 
  589         VERIFY0(space_map_iterate(sm, space_map_length(sm),
  590             metaslab_spacemap_validation_cb, mv));
  591 }
  592 
  593 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
  594 
  595 /*
  596  * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
  597  * they are part of that metaslab (mv_msid).
  598  */
  599 static void
  600 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
  601 {
  602         zfs_btree_index_t where;
  603         sublivelist_verify_block_t *svb;
  604         ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
  605         for (svb = zfs_btree_first(&sv->sv_leftover, &where);
  606             svb != NULL;
  607             svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
  608                 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
  609                         continue;
  610 
  611                 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
  612                     (DVA_GET_OFFSET(&svb->svb_dva) +
  613                     DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
  614                         (void) printf("ERROR: Found block that crosses "
  615                             "metaslab boundary: <%llu:%llx:%llx>\n",
  616                             (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
  617                             (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
  618                             (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
  619                         continue;
  620                 }
  621 
  622                 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
  623                         continue;
  624 
  625                 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
  626                         continue;
  627 
  628                 if ((DVA_GET_OFFSET(&svb->svb_dva) +
  629                     DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
  630                         (void) printf("ERROR: Found block that crosses "
  631                             "metaslab boundary: <%llu:%llx:%llx>\n",
  632                             (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
  633                             (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
  634                             (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
  635                         continue;
  636                 }
  637 
  638                 zfs_btree_add(&mv->mv_livelist_allocs, svb);
  639         }
  640 
  641         for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
  642             svb != NULL;
  643             svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
  644                 zfs_btree_remove(&sv->sv_leftover, svb);
  645         }
  646 }
  647 
  648 /*
  649  * [Livelist Check]
  650  * Iterate through all the sublivelists and:
  651  * - report leftover frees (**)
  652  * - record leftover ALLOCs together with their TXG [see Cross Check]
  653  *
  654  * (**) Note: Double ALLOCs are valid in datasets that have dedup
  655  *      enabled. Similarly double FREEs are allowed as well but
  656  *      only if they pair up with a corresponding ALLOC entry once
  657  *      we our done with our sublivelist iteration.
  658  *
  659  * [Spacemap Check]
  660  * for each metaslab:
  661  * - iterate over spacemap and then the metaslab's entries in the
  662  *   spacemap log, then report any double FREEs and ALLOCs (do not
  663  *   blow up).
  664  *
  665  * [Cross Check]
  666  * After finishing the Livelist Check phase and while being in the
  667  * Spacemap Check phase, we find all the recorded leftover ALLOCs
  668  * of the livelist check that are part of the metaslab that we are
  669  * currently looking at in the Spacemap Check. We report any entries
  670  * that are marked as ALLOCs in the livelists but have been actually
  671  * freed (and potentially allocated again) after their TXG stamp in
  672  * the spacemaps. Also report any ALLOCs from the livelists that
  673  * belong to indirect vdevs (e.g. their vdev completed removal).
  674  *
  675  * Note that this will miss Log Spacemap entries that cancelled each other
  676  * out before being flushed to the metaslab, so we are not guaranteed
  677  * to match all erroneous ALLOCs.
  678  */
  679 static void
  680 livelist_metaslab_validate(spa_t *spa)
  681 {
  682         (void) printf("Verifying deleted livelist entries\n");
  683 
  684         sublivelist_verify_t sv;
  685         zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
  686             sizeof (sublivelist_verify_block_t));
  687         iterate_deleted_livelists(spa, livelist_verify, &sv);
  688 
  689         (void) printf("Verifying metaslab entries\n");
  690         vdev_t *rvd = spa->spa_root_vdev;
  691         for (uint64_t c = 0; c < rvd->vdev_children; c++) {
  692                 vdev_t *vd = rvd->vdev_child[c];
  693 
  694                 if (!vdev_is_concrete(vd))
  695                         continue;
  696 
  697                 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
  698                         metaslab_t *m = vd->vdev_ms[mid];
  699 
  700                         (void) fprintf(stderr,
  701                             "\rverifying concrete vdev %llu, "
  702                             "metaslab %llu of %llu ...",
  703                             (longlong_t)vd->vdev_id,
  704                             (longlong_t)mid,
  705                             (longlong_t)vd->vdev_ms_count);
  706 
  707                         uint64_t shift, start;
  708                         range_seg_type_t type =
  709                             metaslab_calculate_range_tree_type(vd, m,
  710                             &start, &shift);
  711                         metaslab_verify_t mv;
  712                         mv.mv_allocated = range_tree_create(NULL,
  713                             type, NULL, start, shift);
  714                         mv.mv_vdid = vd->vdev_id;
  715                         mv.mv_msid = m->ms_id;
  716                         mv.mv_start = m->ms_start;
  717                         mv.mv_end = m->ms_start + m->ms_size;
  718                         zfs_btree_create(&mv.mv_livelist_allocs,
  719                             livelist_block_compare,
  720                             sizeof (sublivelist_verify_block_t));
  721 
  722                         mv_populate_livelist_allocs(&mv, &sv);
  723 
  724                         spacemap_check_ms_sm(m->ms_sm, &mv);
  725                         spacemap_check_sm_log(spa, &mv);
  726 
  727                         range_tree_vacate(mv.mv_allocated, NULL, NULL);
  728                         range_tree_destroy(mv.mv_allocated);
  729                         zfs_btree_clear(&mv.mv_livelist_allocs);
  730                         zfs_btree_destroy(&mv.mv_livelist_allocs);
  731                 }
  732         }
  733         (void) fprintf(stderr, "\n");
  734 
  735         /*
  736          * If there are any segments in the leftover tree after we walked
  737          * through all the metaslabs in the concrete vdevs then this means
  738          * that we have segments in the livelists that belong to indirect
  739          * vdevs and are marked as allocated.
  740          */
  741         if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
  742                 zfs_btree_destroy(&sv.sv_leftover);
  743                 return;
  744         }
  745         (void) printf("ERROR: Found livelist blocks marked as allocated "
  746             "for indirect vdevs:\n");
  747 
  748         zfs_btree_index_t *where = NULL;
  749         sublivelist_verify_block_t *svb;
  750         while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
  751             NULL) {
  752                 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
  753                 ASSERT3U(vdev_id, <, rvd->vdev_children);
  754                 vdev_t *vd = rvd->vdev_child[vdev_id];
  755                 ASSERT(!vdev_is_concrete(vd));
  756                 (void) printf("<%d:%llx:%llx> TXG %llx\n",
  757                     vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
  758                     (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
  759                     (u_longlong_t)svb->svb_allocated_txg);
  760         }
  761         (void) printf("\n");
  762         zfs_btree_destroy(&sv.sv_leftover);
  763 }
  764 
  765 /*
  766  * These libumem hooks provide a reasonable set of defaults for the allocator's
  767  * debugging facilities.
  768  */
  769 const char *
  770 _umem_debug_init(void)
  771 {
  772         return ("default,verbose"); /* $UMEM_DEBUG setting */
  773 }
  774 
  775 const char *
  776 _umem_logging_init(void)
  777 {
  778         return ("fail,contents"); /* $UMEM_LOGGING setting */
  779 }
  780 
  781 static void
  782 usage(void)
  783 {
  784         (void) fprintf(stderr,
  785             "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
  786             "[-I <inflight I/Os>]\n"
  787             "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
  788             "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
  789             "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
  790             "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
  791             "\t%s [-v] <bookmark>\n"
  792             "\t%s -C [-A] [-U <cache>]\n"
  793             "\t%s -l [-Aqu] <device>\n"
  794             "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
  795             "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
  796             "\t%s -O <dataset> <path>\n"
  797             "\t%s -r <dataset> <path> <destination>\n"
  798             "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
  799             "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
  800             "\t%s -E [-A] word0:word1:...:word15\n"
  801             "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
  802             "<poolname>\n\n",
  803             cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
  804             cmdname, cmdname, cmdname, cmdname);
  805 
  806         (void) fprintf(stderr, "    Dataset name must include at least one "
  807             "separator character '/' or '@'\n");
  808         (void) fprintf(stderr, "    If dataset name is specified, only that "
  809             "dataset is dumped\n");
  810         (void) fprintf(stderr,  "    If object numbers or object number "
  811             "ranges are specified, only those\n"
  812             "    objects or ranges are dumped.\n\n");
  813         (void) fprintf(stderr,
  814             "    Object ranges take the form <start>:<end>[:<flags>]\n"
  815             "        start    Starting object number\n"
  816             "        end      Ending object number, or -1 for no upper bound\n"
  817             "        flags    Optional flags to select object types:\n"
  818             "            A     All objects (this is the default)\n"
  819             "            d     ZFS directories\n"
  820             "            f     ZFS files \n"
  821             "            m     SPA space maps\n"
  822             "            z     ZAPs\n"
  823             "            -     Negate effect of next flag\n\n");
  824         (void) fprintf(stderr, "    Options to control amount of output:\n");
  825         (void) fprintf(stderr, "        -b --block-stats             "
  826             "block statistics\n");
  827         (void) fprintf(stderr, "        -c --checksum                "
  828             "checksum all metadata (twice for all data) blocks\n");
  829         (void) fprintf(stderr, "        -C --config                  "
  830             "config (or cachefile if alone)\n");
  831         (void) fprintf(stderr, "        -d --datasets                "
  832             "dataset(s)\n");
  833         (void) fprintf(stderr, "        -D --dedup-stats             "
  834             "dedup statistics\n");
  835         (void) fprintf(stderr, "        -E --embedded-block-pointer=INTEGER\n"
  836             "                                     decode and display block "
  837             "from an embedded block pointer\n");
  838         (void) fprintf(stderr, "        -h --history                 "
  839             "pool history\n");
  840         (void) fprintf(stderr, "        -i --intent-logs             "
  841             "intent logs\n");
  842         (void) fprintf(stderr, "        -l --label                   "
  843             "read label contents\n");
  844         (void) fprintf(stderr, "        -k --checkpointed-state      "
  845             "examine the checkpointed state of the pool\n");
  846         (void) fprintf(stderr, "        -L --disable-leak-tracking   "
  847             "disable leak tracking (do not load spacemaps)\n");
  848         (void) fprintf(stderr, "        -m --metaslabs               "
  849             "metaslabs\n");
  850         (void) fprintf(stderr, "        -M --metaslab-groups         "
  851             "metaslab groups\n");
  852         (void) fprintf(stderr, "        -O --object-lookups          "
  853             "perform object lookups by path\n");
  854         (void) fprintf(stderr, "        -r --copy-object             "
  855             "copy an object by path to file\n");
  856         (void) fprintf(stderr, "        -R --read-block              "
  857             "read and display block from a device\n");
  858         (void) fprintf(stderr, "        -s --io-stats                "
  859             "report stats on zdb's I/O\n");
  860         (void) fprintf(stderr, "        -S --simulate-dedup          "
  861             "simulate dedup to measure effect\n");
  862         (void) fprintf(stderr, "        -v --verbose                 "
  863             "verbose (applies to all others)\n");
  864         (void) fprintf(stderr, "        -y --livelist                "
  865             "perform livelist and metaslab validation on any livelists being "
  866             "deleted\n\n");
  867         (void) fprintf(stderr, "    Below options are intended for use "
  868             "with other options:\n");
  869         (void) fprintf(stderr, "        -A --ignore-assertions       "
  870             "ignore assertions (-A), enable panic recovery (-AA) or both "
  871             "(-AAA)\n");
  872         (void) fprintf(stderr, "        -e --exported                "
  873             "pool is exported/destroyed/has altroot/not in a cachefile\n");
  874         (void) fprintf(stderr, "        -F --automatic-rewind        "
  875             "attempt automatic rewind within safe range of transaction "
  876             "groups\n");
  877         (void) fprintf(stderr, "        -G --dump-debug-msg          "
  878             "dump zfs_dbgmsg buffer before exiting\n");
  879         (void) fprintf(stderr, "        -I --inflight=INTEGER        "
  880             "specify the maximum number of checksumming I/Os "
  881             "[default is 200]\n");
  882         (void) fprintf(stderr, "        -o --option=\"OPTION=INTEGER\" "
  883             "set global variable to an unsigned 32-bit integer\n");
  884         (void) fprintf(stderr, "        -p --path==PATH              "
  885             "use one or more with -e to specify path to vdev dir\n");
  886         (void) fprintf(stderr, "        -P --parseable               "
  887             "print numbers in parseable form\n");
  888         (void) fprintf(stderr, "        -q --skip-label              "
  889             "don't print label contents\n");
  890         (void) fprintf(stderr, "        -t --txg=INTEGER             "
  891             "highest txg to use when searching for uberblocks\n");
  892         (void) fprintf(stderr, "        -u --uberblock               "
  893             "uberblock\n");
  894         (void) fprintf(stderr, "        -U --cachefile=PATH          "
  895             "use alternate cachefile\n");
  896         (void) fprintf(stderr, "        -V --verbatim                "
  897             "do verbatim import\n");
  898         (void) fprintf(stderr, "        -x --dump-blocks=PATH        "
  899             "dump all read blocks into specified directory\n");
  900         (void) fprintf(stderr, "        -X --extreme-rewind          "
  901             "attempt extreme rewind (does not work with dataset)\n");
  902         (void) fprintf(stderr, "        -Y --all-reconstruction      "
  903             "attempt all reconstruction combinations for split blocks\n");
  904         (void) fprintf(stderr, "        -Z --zstd-headers            "
  905             "show ZSTD headers \n");
  906         (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
  907             "to make only that option verbose\n");
  908         (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
  909         exit(1);
  910 }
  911 
  912 static void
  913 dump_debug_buffer(void)
  914 {
  915         if (dump_opt['G']) {
  916                 (void) printf("\n");
  917                 (void) fflush(stdout);
  918                 zfs_dbgmsg_print("zdb");
  919         }
  920 }
  921 
  922 /*
  923  * Called for usage errors that are discovered after a call to spa_open(),
  924  * dmu_bonus_hold(), or pool_match().  abort() is called for other errors.
  925  */
  926 
  927 static void
  928 fatal(const char *fmt, ...)
  929 {
  930         va_list ap;
  931 
  932         va_start(ap, fmt);
  933         (void) fprintf(stderr, "%s: ", cmdname);
  934         (void) vfprintf(stderr, fmt, ap);
  935         va_end(ap);
  936         (void) fprintf(stderr, "\n");
  937 
  938         dump_debug_buffer();
  939 
  940         exit(1);
  941 }
  942 
  943 static void
  944 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
  945 {
  946         (void) size;
  947         nvlist_t *nv;
  948         size_t nvsize = *(uint64_t *)data;
  949         char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
  950 
  951         VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
  952 
  953         VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
  954 
  955         umem_free(packed, nvsize);
  956 
  957         dump_nvlist(nv, 8);
  958 
  959         nvlist_free(nv);
  960 }
  961 
  962 static void
  963 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
  964 {
  965         (void) os, (void) object, (void) size;
  966         spa_history_phys_t *shp = data;
  967 
  968         if (shp == NULL)
  969                 return;
  970 
  971         (void) printf("\t\tpool_create_len = %llu\n",
  972             (u_longlong_t)shp->sh_pool_create_len);
  973         (void) printf("\t\tphys_max_off = %llu\n",
  974             (u_longlong_t)shp->sh_phys_max_off);
  975         (void) printf("\t\tbof = %llu\n",
  976             (u_longlong_t)shp->sh_bof);
  977         (void) printf("\t\teof = %llu\n",
  978             (u_longlong_t)shp->sh_eof);
  979         (void) printf("\t\trecords_lost = %llu\n",
  980             (u_longlong_t)shp->sh_records_lost);
  981 }
  982 
  983 static void
  984 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
  985 {
  986         if (dump_opt['P'])
  987                 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
  988         else
  989                 nicenum(num, buf, buflen);
  990 }
  991 
  992 static const char histo_stars[] = "****************************************";
  993 static const uint64_t histo_width = sizeof (histo_stars) - 1;
  994 
  995 static void
  996 dump_histogram(const uint64_t *histo, int size, int offset)
  997 {
  998         int i;
  999         int minidx = size - 1;
 1000         int maxidx = 0;
 1001         uint64_t max = 0;
 1002 
 1003         for (i = 0; i < size; i++) {
 1004                 if (histo[i] > max)
 1005                         max = histo[i];
 1006                 if (histo[i] > 0 && i > maxidx)
 1007                         maxidx = i;
 1008                 if (histo[i] > 0 && i < minidx)
 1009                         minidx = i;
 1010         }
 1011 
 1012         if (max < histo_width)
 1013                 max = histo_width;
 1014 
 1015         for (i = minidx; i <= maxidx; i++) {
 1016                 (void) printf("\t\t\t%3u: %6llu %s\n",
 1017                     i + offset, (u_longlong_t)histo[i],
 1018                     &histo_stars[(max - histo[i]) * histo_width / max]);
 1019         }
 1020 }
 1021 
 1022 static void
 1023 dump_zap_stats(objset_t *os, uint64_t object)
 1024 {
 1025         int error;
 1026         zap_stats_t zs;
 1027 
 1028         error = zap_get_stats(os, object, &zs);
 1029         if (error)
 1030                 return;
 1031 
 1032         if (zs.zs_ptrtbl_len == 0) {
 1033                 ASSERT(zs.zs_num_blocks == 1);
 1034                 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
 1035                     (u_longlong_t)zs.zs_blocksize,
 1036                     (u_longlong_t)zs.zs_num_entries);
 1037                 return;
 1038         }
 1039 
 1040         (void) printf("\tFat ZAP stats:\n");
 1041 
 1042         (void) printf("\t\tPointer table:\n");
 1043         (void) printf("\t\t\t%llu elements\n",
 1044             (u_longlong_t)zs.zs_ptrtbl_len);
 1045         (void) printf("\t\t\tzt_blk: %llu\n",
 1046             (u_longlong_t)zs.zs_ptrtbl_zt_blk);
 1047         (void) printf("\t\t\tzt_numblks: %llu\n",
 1048             (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
 1049         (void) printf("\t\t\tzt_shift: %llu\n",
 1050             (u_longlong_t)zs.zs_ptrtbl_zt_shift);
 1051         (void) printf("\t\t\tzt_blks_copied: %llu\n",
 1052             (u_longlong_t)zs.zs_ptrtbl_blks_copied);
 1053         (void) printf("\t\t\tzt_nextblk: %llu\n",
 1054             (u_longlong_t)zs.zs_ptrtbl_nextblk);
 1055 
 1056         (void) printf("\t\tZAP entries: %llu\n",
 1057             (u_longlong_t)zs.zs_num_entries);
 1058         (void) printf("\t\tLeaf blocks: %llu\n",
 1059             (u_longlong_t)zs.zs_num_leafs);
 1060         (void) printf("\t\tTotal blocks: %llu\n",
 1061             (u_longlong_t)zs.zs_num_blocks);
 1062         (void) printf("\t\tzap_block_type: 0x%llx\n",
 1063             (u_longlong_t)zs.zs_block_type);
 1064         (void) printf("\t\tzap_magic: 0x%llx\n",
 1065             (u_longlong_t)zs.zs_magic);
 1066         (void) printf("\t\tzap_salt: 0x%llx\n",
 1067             (u_longlong_t)zs.zs_salt);
 1068 
 1069         (void) printf("\t\tLeafs with 2^n pointers:\n");
 1070         dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
 1071 
 1072         (void) printf("\t\tBlocks with n*5 entries:\n");
 1073         dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
 1074 
 1075         (void) printf("\t\tBlocks n/10 full:\n");
 1076         dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
 1077 
 1078         (void) printf("\t\tEntries with n chunks:\n");
 1079         dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
 1080 
 1081         (void) printf("\t\tBuckets with n entries:\n");
 1082         dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
 1083 }
 1084 
 1085 static void
 1086 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
 1087 {
 1088         (void) os, (void) object, (void) data, (void) size;
 1089 }
 1090 
 1091 static void
 1092 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
 1093 {
 1094         (void) os, (void) object, (void) data, (void) size;
 1095         (void) printf("\tUNKNOWN OBJECT TYPE\n");
 1096 }
 1097 
 1098 static void
 1099 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
 1100 {
 1101         (void) os, (void) object, (void) data, (void) size;
 1102 }
 1103 
 1104 static void
 1105 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
 1106 {
 1107         uint64_t *arr;
 1108         uint64_t oursize;
 1109         if (dump_opt['d'] < 6)
 1110                 return;
 1111 
 1112         if (data == NULL) {
 1113                 dmu_object_info_t doi;
 1114 
 1115                 VERIFY0(dmu_object_info(os, object, &doi));
 1116                 size = doi.doi_max_offset;
 1117                 /*
 1118                  * We cap the size at 1 mebibyte here to prevent
 1119                  * allocation failures and nigh-infinite printing if the
 1120                  * object is extremely large.
 1121                  */
 1122                 oursize = MIN(size, 1 << 20);
 1123                 arr = kmem_alloc(oursize, KM_SLEEP);
 1124 
 1125                 int err = dmu_read(os, object, 0, oursize, arr, 0);
 1126                 if (err != 0) {
 1127                         (void) printf("got error %u from dmu_read\n", err);
 1128                         kmem_free(arr, oursize);
 1129                         return;
 1130                 }
 1131         } else {
 1132                 /*
 1133                  * Even though the allocation is already done in this code path,
 1134                  * we still cap the size to prevent excessive printing.
 1135                  */
 1136                 oursize = MIN(size, 1 << 20);
 1137                 arr = data;
 1138         }
 1139 
 1140         if (size == 0) {
 1141                 if (data == NULL)
 1142                         kmem_free(arr, oursize);
 1143                 (void) printf("\t\t[]\n");
 1144                 return;
 1145         }
 1146 
 1147         (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
 1148         for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
 1149                 if (i % 4 != 0)
 1150                         (void) printf(", %0llx", (u_longlong_t)arr[i]);
 1151                 else
 1152                         (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
 1153         }
 1154         if (oursize != size)
 1155                 (void) printf(", ... ");
 1156         (void) printf("]\n");
 1157 
 1158         if (data == NULL)
 1159                 kmem_free(arr, oursize);
 1160 }
 1161 
 1162 static void
 1163 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
 1164 {
 1165         (void) data, (void) size;
 1166         zap_cursor_t zc;
 1167         zap_attribute_t attr;
 1168         void *prop;
 1169         unsigned i;
 1170 
 1171         dump_zap_stats(os, object);
 1172         (void) printf("\n");
 1173 
 1174         for (zap_cursor_init(&zc, os, object);
 1175             zap_cursor_retrieve(&zc, &attr) == 0;
 1176             zap_cursor_advance(&zc)) {
 1177                 (void) printf("\t\t%s = ", attr.za_name);
 1178                 if (attr.za_num_integers == 0) {
 1179                         (void) printf("\n");
 1180                         continue;
 1181                 }
 1182                 prop = umem_zalloc(attr.za_num_integers *
 1183                     attr.za_integer_length, UMEM_NOFAIL);
 1184                 (void) zap_lookup(os, object, attr.za_name,
 1185                     attr.za_integer_length, attr.za_num_integers, prop);
 1186                 if (attr.za_integer_length == 1) {
 1187                         if (strcmp(attr.za_name,
 1188                             DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
 1189                             strcmp(attr.za_name,
 1190                             DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
 1191                             strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
 1192                             strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
 1193                             strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
 1194                                 uint8_t *u8 = prop;
 1195 
 1196                                 for (i = 0; i < attr.za_num_integers; i++) {
 1197                                         (void) printf("%02x", u8[i]);
 1198                                 }
 1199                         } else {
 1200                                 (void) printf("%s", (char *)prop);
 1201                         }
 1202                 } else {
 1203                         for (i = 0; i < attr.za_num_integers; i++) {
 1204                                 switch (attr.za_integer_length) {
 1205                                 case 2:
 1206                                         (void) printf("%u ",
 1207                                             ((uint16_t *)prop)[i]);
 1208                                         break;
 1209                                 case 4:
 1210                                         (void) printf("%u ",
 1211                                             ((uint32_t *)prop)[i]);
 1212                                         break;
 1213                                 case 8:
 1214                                         (void) printf("%lld ",
 1215                                             (u_longlong_t)((int64_t *)prop)[i]);
 1216                                         break;
 1217                                 }
 1218                         }
 1219                 }
 1220                 (void) printf("\n");
 1221                 umem_free(prop, attr.za_num_integers * attr.za_integer_length);
 1222         }
 1223         zap_cursor_fini(&zc);
 1224 }
 1225 
 1226 static void
 1227 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
 1228 {
 1229         bpobj_phys_t *bpop = data;
 1230         uint64_t i;
 1231         char bytes[32], comp[32], uncomp[32];
 1232 
 1233         /* make sure the output won't get truncated */
 1234         _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
 1235         _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
 1236         _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
 1237 
 1238         if (bpop == NULL)
 1239                 return;
 1240 
 1241         zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
 1242         zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
 1243         zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
 1244 
 1245         (void) printf("\t\tnum_blkptrs = %llu\n",
 1246             (u_longlong_t)bpop->bpo_num_blkptrs);
 1247         (void) printf("\t\tbytes = %s\n", bytes);
 1248         if (size >= BPOBJ_SIZE_V1) {
 1249                 (void) printf("\t\tcomp = %s\n", comp);
 1250                 (void) printf("\t\tuncomp = %s\n", uncomp);
 1251         }
 1252         if (size >= BPOBJ_SIZE_V2) {
 1253                 (void) printf("\t\tsubobjs = %llu\n",
 1254                     (u_longlong_t)bpop->bpo_subobjs);
 1255                 (void) printf("\t\tnum_subobjs = %llu\n",
 1256                     (u_longlong_t)bpop->bpo_num_subobjs);
 1257         }
 1258         if (size >= sizeof (*bpop)) {
 1259                 (void) printf("\t\tnum_freed = %llu\n",
 1260                     (u_longlong_t)bpop->bpo_num_freed);
 1261         }
 1262 
 1263         if (dump_opt['d'] < 5)
 1264                 return;
 1265 
 1266         for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
 1267                 char blkbuf[BP_SPRINTF_LEN];
 1268                 blkptr_t bp;
 1269 
 1270                 int err = dmu_read(os, object,
 1271                     i * sizeof (bp), sizeof (bp), &bp, 0);
 1272                 if (err != 0) {
 1273                         (void) printf("got error %u from dmu_read\n", err);
 1274                         break;
 1275                 }
 1276                 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
 1277                     BP_GET_FREE(&bp));
 1278                 (void) printf("\t%s\n", blkbuf);
 1279         }
 1280 }
 1281 
 1282 static void
 1283 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
 1284 {
 1285         (void) data, (void) size;
 1286         dmu_object_info_t doi;
 1287         int64_t i;
 1288 
 1289         VERIFY0(dmu_object_info(os, object, &doi));
 1290         uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
 1291 
 1292         int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
 1293         if (err != 0) {
 1294                 (void) printf("got error %u from dmu_read\n", err);
 1295                 kmem_free(subobjs, doi.doi_max_offset);
 1296                 return;
 1297         }
 1298 
 1299         int64_t last_nonzero = -1;
 1300         for (i = 0; i < doi.doi_max_offset / 8; i++) {
 1301                 if (subobjs[i] != 0)
 1302                         last_nonzero = i;
 1303         }
 1304 
 1305         for (i = 0; i <= last_nonzero; i++) {
 1306                 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
 1307         }
 1308         kmem_free(subobjs, doi.doi_max_offset);
 1309 }
 1310 
 1311 static void
 1312 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
 1313 {
 1314         (void) data, (void) size;
 1315         dump_zap_stats(os, object);
 1316         /* contents are printed elsewhere, properly decoded */
 1317 }
 1318 
 1319 static void
 1320 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
 1321 {
 1322         (void) data, (void) size;
 1323         zap_cursor_t zc;
 1324         zap_attribute_t attr;
 1325 
 1326         dump_zap_stats(os, object);
 1327         (void) printf("\n");
 1328 
 1329         for (zap_cursor_init(&zc, os, object);
 1330             zap_cursor_retrieve(&zc, &attr) == 0;
 1331             zap_cursor_advance(&zc)) {
 1332                 (void) printf("\t\t%s = ", attr.za_name);
 1333                 if (attr.za_num_integers == 0) {
 1334                         (void) printf("\n");
 1335                         continue;
 1336                 }
 1337                 (void) printf(" %llx : [%d:%d:%d]\n",
 1338                     (u_longlong_t)attr.za_first_integer,
 1339                     (int)ATTR_LENGTH(attr.za_first_integer),
 1340                     (int)ATTR_BSWAP(attr.za_first_integer),
 1341                     (int)ATTR_NUM(attr.za_first_integer));
 1342         }
 1343         zap_cursor_fini(&zc);
 1344 }
 1345 
 1346 static void
 1347 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
 1348 {
 1349         (void) data, (void) size;
 1350         zap_cursor_t zc;
 1351         zap_attribute_t attr;
 1352         uint16_t *layout_attrs;
 1353         unsigned i;
 1354 
 1355         dump_zap_stats(os, object);
 1356         (void) printf("\n");
 1357 
 1358         for (zap_cursor_init(&zc, os, object);
 1359             zap_cursor_retrieve(&zc, &attr) == 0;
 1360             zap_cursor_advance(&zc)) {
 1361                 (void) printf("\t\t%s = [", attr.za_name);
 1362                 if (attr.za_num_integers == 0) {
 1363                         (void) printf("\n");
 1364                         continue;
 1365                 }
 1366 
 1367                 VERIFY(attr.za_integer_length == 2);
 1368                 layout_attrs = umem_zalloc(attr.za_num_integers *
 1369                     attr.za_integer_length, UMEM_NOFAIL);
 1370 
 1371                 VERIFY(zap_lookup(os, object, attr.za_name,
 1372                     attr.za_integer_length,
 1373                     attr.za_num_integers, layout_attrs) == 0);
 1374 
 1375                 for (i = 0; i != attr.za_num_integers; i++)
 1376                         (void) printf(" %d ", (int)layout_attrs[i]);
 1377                 (void) printf("]\n");
 1378                 umem_free(layout_attrs,
 1379                     attr.za_num_integers * attr.za_integer_length);
 1380         }
 1381         zap_cursor_fini(&zc);
 1382 }
 1383 
 1384 static void
 1385 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
 1386 {
 1387         (void) data, (void) size;
 1388         zap_cursor_t zc;
 1389         zap_attribute_t attr;
 1390         const char *typenames[] = {
 1391                 /* 0 */ "not specified",
 1392                 /* 1 */ "FIFO",
 1393                 /* 2 */ "Character Device",
 1394                 /* 3 */ "3 (invalid)",
 1395                 /* 4 */ "Directory",
 1396                 /* 5 */ "5 (invalid)",
 1397                 /* 6 */ "Block Device",
 1398                 /* 7 */ "7 (invalid)",
 1399                 /* 8 */ "Regular File",
 1400                 /* 9 */ "9 (invalid)",
 1401                 /* 10 */ "Symbolic Link",
 1402                 /* 11 */ "11 (invalid)",
 1403                 /* 12 */ "Socket",
 1404                 /* 13 */ "Door",
 1405                 /* 14 */ "Event Port",
 1406                 /* 15 */ "15 (invalid)",
 1407         };
 1408 
 1409         dump_zap_stats(os, object);
 1410         (void) printf("\n");
 1411 
 1412         for (zap_cursor_init(&zc, os, object);
 1413             zap_cursor_retrieve(&zc, &attr) == 0;
 1414             zap_cursor_advance(&zc)) {
 1415                 (void) printf("\t\t%s = %lld (type: %s)\n",
 1416                     attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
 1417                     typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
 1418         }
 1419         zap_cursor_fini(&zc);
 1420 }
 1421 
 1422 static int
 1423 get_dtl_refcount(vdev_t *vd)
 1424 {
 1425         int refcount = 0;
 1426 
 1427         if (vd->vdev_ops->vdev_op_leaf) {
 1428                 space_map_t *sm = vd->vdev_dtl_sm;
 1429 
 1430                 if (sm != NULL &&
 1431                     sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
 1432                         return (1);
 1433                 return (0);
 1434         }
 1435 
 1436         for (unsigned c = 0; c < vd->vdev_children; c++)
 1437                 refcount += get_dtl_refcount(vd->vdev_child[c]);
 1438         return (refcount);
 1439 }
 1440 
 1441 static int
 1442 get_metaslab_refcount(vdev_t *vd)
 1443 {
 1444         int refcount = 0;
 1445 
 1446         if (vd->vdev_top == vd) {
 1447                 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
 1448                         space_map_t *sm = vd->vdev_ms[m]->ms_sm;
 1449 
 1450                         if (sm != NULL &&
 1451                             sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
 1452                                 refcount++;
 1453                 }
 1454         }
 1455         for (unsigned c = 0; c < vd->vdev_children; c++)
 1456                 refcount += get_metaslab_refcount(vd->vdev_child[c]);
 1457 
 1458         return (refcount);
 1459 }
 1460 
 1461 static int
 1462 get_obsolete_refcount(vdev_t *vd)
 1463 {
 1464         uint64_t obsolete_sm_object;
 1465         int refcount = 0;
 1466 
 1467         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
 1468         if (vd->vdev_top == vd && obsolete_sm_object != 0) {
 1469                 dmu_object_info_t doi;
 1470                 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
 1471                     obsolete_sm_object, &doi));
 1472                 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
 1473                         refcount++;
 1474                 }
 1475         } else {
 1476                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
 1477                 ASSERT3U(obsolete_sm_object, ==, 0);
 1478         }
 1479         for (unsigned c = 0; c < vd->vdev_children; c++) {
 1480                 refcount += get_obsolete_refcount(vd->vdev_child[c]);
 1481         }
 1482 
 1483         return (refcount);
 1484 }
 1485 
 1486 static int
 1487 get_prev_obsolete_spacemap_refcount(spa_t *spa)
 1488 {
 1489         uint64_t prev_obj =
 1490             spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
 1491         if (prev_obj != 0) {
 1492                 dmu_object_info_t doi;
 1493                 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
 1494                 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
 1495                         return (1);
 1496                 }
 1497         }
 1498         return (0);
 1499 }
 1500 
 1501 static int
 1502 get_checkpoint_refcount(vdev_t *vd)
 1503 {
 1504         int refcount = 0;
 1505 
 1506         if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
 1507             zap_contains(spa_meta_objset(vd->vdev_spa),
 1508             vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
 1509                 refcount++;
 1510 
 1511         for (uint64_t c = 0; c < vd->vdev_children; c++)
 1512                 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
 1513 
 1514         return (refcount);
 1515 }
 1516 
 1517 static int
 1518 get_log_spacemap_refcount(spa_t *spa)
 1519 {
 1520         return (avl_numnodes(&spa->spa_sm_logs_by_txg));
 1521 }
 1522 
 1523 static int
 1524 verify_spacemap_refcounts(spa_t *spa)
 1525 {
 1526         uint64_t expected_refcount = 0;
 1527         uint64_t actual_refcount;
 1528 
 1529         (void) feature_get_refcount(spa,
 1530             &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
 1531             &expected_refcount);
 1532         actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
 1533         actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
 1534         actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
 1535         actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
 1536         actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
 1537         actual_refcount += get_log_spacemap_refcount(spa);
 1538 
 1539         if (expected_refcount != actual_refcount) {
 1540                 (void) printf("space map refcount mismatch: expected %lld != "
 1541                     "actual %lld\n",
 1542                     (longlong_t)expected_refcount,
 1543                     (longlong_t)actual_refcount);
 1544                 return (2);
 1545         }
 1546         return (0);
 1547 }
 1548 
 1549 static void
 1550 dump_spacemap(objset_t *os, space_map_t *sm)
 1551 {
 1552         const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
 1553             "INVALID", "INVALID", "INVALID", "INVALID" };
 1554 
 1555         if (sm == NULL)
 1556                 return;
 1557 
 1558         (void) printf("space map object %llu:\n",
 1559             (longlong_t)sm->sm_object);
 1560         (void) printf("  smp_length = 0x%llx\n",
 1561             (longlong_t)sm->sm_phys->smp_length);
 1562         (void) printf("  smp_alloc = 0x%llx\n",
 1563             (longlong_t)sm->sm_phys->smp_alloc);
 1564 
 1565         if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
 1566                 return;
 1567 
 1568         /*
 1569          * Print out the freelist entries in both encoded and decoded form.
 1570          */
 1571         uint8_t mapshift = sm->sm_shift;
 1572         int64_t alloc = 0;
 1573         uint64_t word, entry_id = 0;
 1574         for (uint64_t offset = 0; offset < space_map_length(sm);
 1575             offset += sizeof (word)) {
 1576 
 1577                 VERIFY0(dmu_read(os, space_map_object(sm), offset,
 1578                     sizeof (word), &word, DMU_READ_PREFETCH));
 1579 
 1580                 if (sm_entry_is_debug(word)) {
 1581                         uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
 1582                         uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
 1583                         if (de_txg == 0) {
 1584                                 (void) printf(
 1585                                     "\t    [%6llu] PADDING\n",
 1586                                     (u_longlong_t)entry_id);
 1587                         } else {
 1588                                 (void) printf(
 1589                                     "\t    [%6llu] %s: txg %llu pass %llu\n",
 1590                                     (u_longlong_t)entry_id,
 1591                                     ddata[SM_DEBUG_ACTION_DECODE(word)],
 1592                                     (u_longlong_t)de_txg,
 1593                                     (u_longlong_t)de_sync_pass);
 1594                         }
 1595                         entry_id++;
 1596                         continue;
 1597                 }
 1598 
 1599                 uint8_t words;
 1600                 char entry_type;
 1601                 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
 1602 
 1603                 if (sm_entry_is_single_word(word)) {
 1604                         entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
 1605                             'A' : 'F';
 1606                         entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
 1607                             sm->sm_start;
 1608                         entry_run = SM_RUN_DECODE(word) << mapshift;
 1609                         words = 1;
 1610                 } else {
 1611                         /* it is a two-word entry so we read another word */
 1612                         ASSERT(sm_entry_is_double_word(word));
 1613 
 1614                         uint64_t extra_word;
 1615                         offset += sizeof (extra_word);
 1616                         VERIFY0(dmu_read(os, space_map_object(sm), offset,
 1617                             sizeof (extra_word), &extra_word,
 1618                             DMU_READ_PREFETCH));
 1619 
 1620                         ASSERT3U(offset, <=, space_map_length(sm));
 1621 
 1622                         entry_run = SM2_RUN_DECODE(word) << mapshift;
 1623                         entry_vdev = SM2_VDEV_DECODE(word);
 1624                         entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
 1625                             'A' : 'F';
 1626                         entry_off = (SM2_OFFSET_DECODE(extra_word) <<
 1627                             mapshift) + sm->sm_start;
 1628                         words = 2;
 1629                 }
 1630 
 1631                 (void) printf("\t    [%6llu]    %c  range:"
 1632                     " %010llx-%010llx  size: %06llx vdev: %06llu words: %u\n",
 1633                     (u_longlong_t)entry_id,
 1634                     entry_type, (u_longlong_t)entry_off,
 1635                     (u_longlong_t)(entry_off + entry_run),
 1636                     (u_longlong_t)entry_run,
 1637                     (u_longlong_t)entry_vdev, words);
 1638 
 1639                 if (entry_type == 'A')
 1640                         alloc += entry_run;
 1641                 else
 1642                         alloc -= entry_run;
 1643                 entry_id++;
 1644         }
 1645         if (alloc != space_map_allocated(sm)) {
 1646                 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
 1647                     "with space map summary (%lld)\n",
 1648                     (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
 1649         }
 1650 }
 1651 
 1652 static void
 1653 dump_metaslab_stats(metaslab_t *msp)
 1654 {
 1655         char maxbuf[32];
 1656         range_tree_t *rt = msp->ms_allocatable;
 1657         zfs_btree_t *t = &msp->ms_allocatable_by_size;
 1658         int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
 1659 
 1660         /* max sure nicenum has enough space */
 1661         _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
 1662 
 1663         zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
 1664 
 1665         (void) printf("\t %25s %10lu   %7s  %6s   %4s %4d%%\n",
 1666             "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
 1667             "freepct", free_pct);
 1668         (void) printf("\tIn-memory histogram:\n");
 1669         dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
 1670 }
 1671 
 1672 static void
 1673 dump_metaslab(metaslab_t *msp)
 1674 {
 1675         vdev_t *vd = msp->ms_group->mg_vd;
 1676         spa_t *spa = vd->vdev_spa;
 1677         space_map_t *sm = msp->ms_sm;
 1678         char freebuf[32];
 1679 
 1680         zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
 1681             sizeof (freebuf));
 1682 
 1683         (void) printf(
 1684             "\tmetaslab %6llu   offset %12llx   spacemap %6llu   free    %5s\n",
 1685             (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
 1686             (u_longlong_t)space_map_object(sm), freebuf);
 1687 
 1688         if (dump_opt['m'] > 2 && !dump_opt['L']) {
 1689                 mutex_enter(&msp->ms_lock);
 1690                 VERIFY0(metaslab_load(msp));
 1691                 range_tree_stat_verify(msp->ms_allocatable);
 1692                 dump_metaslab_stats(msp);
 1693                 metaslab_unload(msp);
 1694                 mutex_exit(&msp->ms_lock);
 1695         }
 1696 
 1697         if (dump_opt['m'] > 1 && sm != NULL &&
 1698             spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 1699                 /*
 1700                  * The space map histogram represents free space in chunks
 1701                  * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
 1702                  */
 1703                 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
 1704                     (u_longlong_t)msp->ms_fragmentation);
 1705                 dump_histogram(sm->sm_phys->smp_histogram,
 1706                     SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
 1707         }
 1708 
 1709         if (vd->vdev_ops == &vdev_draid_ops)
 1710                 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
 1711         else
 1712                 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
 1713 
 1714         dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
 1715 
 1716         if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
 1717                 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
 1718                     (u_longlong_t)metaslab_unflushed_txg(msp));
 1719         }
 1720 }
 1721 
 1722 static void
 1723 print_vdev_metaslab_header(vdev_t *vd)
 1724 {
 1725         vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
 1726         const char *bias_str = "";
 1727         if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
 1728                 bias_str = VDEV_ALLOC_BIAS_LOG;
 1729         } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
 1730                 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
 1731         } else if (alloc_bias == VDEV_BIAS_DEDUP) {
 1732                 bias_str = VDEV_ALLOC_BIAS_DEDUP;
 1733         }
 1734 
 1735         uint64_t ms_flush_data_obj = 0;
 1736         if (vd->vdev_top_zap != 0) {
 1737                 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
 1738                     vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
 1739                     sizeof (uint64_t), 1, &ms_flush_data_obj);
 1740                 if (error != ENOENT) {
 1741                         ASSERT0(error);
 1742                 }
 1743         }
 1744 
 1745         (void) printf("\tvdev %10llu   %s",
 1746             (u_longlong_t)vd->vdev_id, bias_str);
 1747 
 1748         if (ms_flush_data_obj != 0) {
 1749                 (void) printf("   ms_unflushed_phys object %llu",
 1750                     (u_longlong_t)ms_flush_data_obj);
 1751         }
 1752 
 1753         (void) printf("\n\t%-10s%5llu   %-19s   %-15s   %-12s\n",
 1754             "metaslabs", (u_longlong_t)vd->vdev_ms_count,
 1755             "offset", "spacemap", "free");
 1756         (void) printf("\t%15s   %19s   %15s   %12s\n",
 1757             "---------------", "-------------------",
 1758             "---------------", "------------");
 1759 }
 1760 
 1761 static void
 1762 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
 1763 {
 1764         vdev_t *rvd = spa->spa_root_vdev;
 1765         metaslab_class_t *mc = spa_normal_class(spa);
 1766         metaslab_class_t *smc = spa_special_class(spa);
 1767         uint64_t fragmentation;
 1768 
 1769         metaslab_class_histogram_verify(mc);
 1770 
 1771         for (unsigned c = 0; c < rvd->vdev_children; c++) {
 1772                 vdev_t *tvd = rvd->vdev_child[c];
 1773                 metaslab_group_t *mg = tvd->vdev_mg;
 1774 
 1775                 if (mg == NULL || (mg->mg_class != mc &&
 1776                     (!show_special || mg->mg_class != smc)))
 1777                         continue;
 1778 
 1779                 metaslab_group_histogram_verify(mg);
 1780                 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
 1781 
 1782                 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
 1783                     "fragmentation",
 1784                     (u_longlong_t)tvd->vdev_id,
 1785                     (u_longlong_t)tvd->vdev_ms_count);
 1786                 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
 1787                         (void) printf("%3s\n", "-");
 1788                 } else {
 1789                         (void) printf("%3llu%%\n",
 1790                             (u_longlong_t)mg->mg_fragmentation);
 1791                 }
 1792                 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
 1793         }
 1794 
 1795         (void) printf("\tpool %s\tfragmentation", spa_name(spa));
 1796         fragmentation = metaslab_class_fragmentation(mc);
 1797         if (fragmentation == ZFS_FRAG_INVALID)
 1798                 (void) printf("\t%3s\n", "-");
 1799         else
 1800                 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
 1801         dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
 1802 }
 1803 
 1804 static void
 1805 print_vdev_indirect(vdev_t *vd)
 1806 {
 1807         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 1808         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 1809         vdev_indirect_births_t *vib = vd->vdev_indirect_births;
 1810 
 1811         if (vim == NULL) {
 1812                 ASSERT3P(vib, ==, NULL);
 1813                 return;
 1814         }
 1815 
 1816         ASSERT3U(vdev_indirect_mapping_object(vim), ==,
 1817             vic->vic_mapping_object);
 1818         ASSERT3U(vdev_indirect_births_object(vib), ==,
 1819             vic->vic_births_object);
 1820 
 1821         (void) printf("indirect births obj %llu:\n",
 1822             (longlong_t)vic->vic_births_object);
 1823         (void) printf("    vib_count = %llu\n",
 1824             (longlong_t)vdev_indirect_births_count(vib));
 1825         for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
 1826                 vdev_indirect_birth_entry_phys_t *cur_vibe =
 1827                     &vib->vib_entries[i];
 1828                 (void) printf("\toffset %llx -> txg %llu\n",
 1829                     (longlong_t)cur_vibe->vibe_offset,
 1830                     (longlong_t)cur_vibe->vibe_phys_birth_txg);
 1831         }
 1832         (void) printf("\n");
 1833 
 1834         (void) printf("indirect mapping obj %llu:\n",
 1835             (longlong_t)vic->vic_mapping_object);
 1836         (void) printf("    vim_max_offset = 0x%llx\n",
 1837             (longlong_t)vdev_indirect_mapping_max_offset(vim));
 1838         (void) printf("    vim_bytes_mapped = 0x%llx\n",
 1839             (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
 1840         (void) printf("    vim_count = %llu\n",
 1841             (longlong_t)vdev_indirect_mapping_num_entries(vim));
 1842 
 1843         if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
 1844                 return;
 1845 
 1846         uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
 1847 
 1848         for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
 1849                 vdev_indirect_mapping_entry_phys_t *vimep =
 1850                     &vim->vim_entries[i];
 1851                 (void) printf("\t<%llx:%llx:%llx> -> "
 1852                     "<%llx:%llx:%llx> (%x obsolete)\n",
 1853                     (longlong_t)vd->vdev_id,
 1854                     (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
 1855                     (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
 1856                     (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
 1857                     (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
 1858                     (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
 1859                     counts[i]);
 1860         }
 1861         (void) printf("\n");
 1862 
 1863         uint64_t obsolete_sm_object;
 1864         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
 1865         if (obsolete_sm_object != 0) {
 1866                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
 1867                 (void) printf("obsolete space map object %llu:\n",
 1868                     (u_longlong_t)obsolete_sm_object);
 1869                 ASSERT(vd->vdev_obsolete_sm != NULL);
 1870                 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
 1871                     obsolete_sm_object);
 1872                 dump_spacemap(mos, vd->vdev_obsolete_sm);
 1873                 (void) printf("\n");
 1874         }
 1875 }
 1876 
 1877 static void
 1878 dump_metaslabs(spa_t *spa)
 1879 {
 1880         vdev_t *vd, *rvd = spa->spa_root_vdev;
 1881         uint64_t m, c = 0, children = rvd->vdev_children;
 1882 
 1883         (void) printf("\nMetaslabs:\n");
 1884 
 1885         if (!dump_opt['d'] && zopt_metaslab_args > 0) {
 1886                 c = zopt_metaslab[0];
 1887 
 1888                 if (c >= children)
 1889                         (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
 1890 
 1891                 if (zopt_metaslab_args > 1) {
 1892                         vd = rvd->vdev_child[c];
 1893                         print_vdev_metaslab_header(vd);
 1894 
 1895                         for (m = 1; m < zopt_metaslab_args; m++) {
 1896                                 if (zopt_metaslab[m] < vd->vdev_ms_count)
 1897                                         dump_metaslab(
 1898                                             vd->vdev_ms[zopt_metaslab[m]]);
 1899                                 else
 1900                                         (void) fprintf(stderr, "bad metaslab "
 1901                                             "number %llu\n",
 1902                                             (u_longlong_t)zopt_metaslab[m]);
 1903                         }
 1904                         (void) printf("\n");
 1905                         return;
 1906                 }
 1907                 children = c + 1;
 1908         }
 1909         for (; c < children; c++) {
 1910                 vd = rvd->vdev_child[c];
 1911                 print_vdev_metaslab_header(vd);
 1912 
 1913                 print_vdev_indirect(vd);
 1914 
 1915                 for (m = 0; m < vd->vdev_ms_count; m++)
 1916                         dump_metaslab(vd->vdev_ms[m]);
 1917                 (void) printf("\n");
 1918         }
 1919 }
 1920 
 1921 static void
 1922 dump_log_spacemaps(spa_t *spa)
 1923 {
 1924         if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
 1925                 return;
 1926 
 1927         (void) printf("\nLog Space Maps in Pool:\n");
 1928         for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
 1929             sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
 1930                 space_map_t *sm = NULL;
 1931                 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
 1932                     sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
 1933 
 1934                 (void) printf("Log Spacemap object %llu txg %llu\n",
 1935                     (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
 1936                 dump_spacemap(spa->spa_meta_objset, sm);
 1937                 space_map_close(sm);
 1938         }
 1939         (void) printf("\n");
 1940 }
 1941 
 1942 static void
 1943 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
 1944 {
 1945         const ddt_phys_t *ddp = dde->dde_phys;
 1946         const ddt_key_t *ddk = &dde->dde_key;
 1947         const char *types[4] = { "ditto", "single", "double", "triple" };
 1948         char blkbuf[BP_SPRINTF_LEN];
 1949         blkptr_t blk;
 1950         int p;
 1951 
 1952         for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
 1953                 if (ddp->ddp_phys_birth == 0)
 1954                         continue;
 1955                 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
 1956                 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
 1957                 (void) printf("index %llx refcnt %llu %s %s\n",
 1958                     (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
 1959                     types[p], blkbuf);
 1960         }
 1961 }
 1962 
 1963 static void
 1964 dump_dedup_ratio(const ddt_stat_t *dds)
 1965 {
 1966         double rL, rP, rD, D, dedup, compress, copies;
 1967 
 1968         if (dds->dds_blocks == 0)
 1969                 return;
 1970 
 1971         rL = (double)dds->dds_ref_lsize;
 1972         rP = (double)dds->dds_ref_psize;
 1973         rD = (double)dds->dds_ref_dsize;
 1974         D = (double)dds->dds_dsize;
 1975 
 1976         dedup = rD / D;
 1977         compress = rL / rP;
 1978         copies = rD / rP;
 1979 
 1980         (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
 1981             "dedup * compress / copies = %.2f\n\n",
 1982             dedup, compress, copies, dedup * compress / copies);
 1983 }
 1984 
 1985 static void
 1986 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
 1987 {
 1988         char name[DDT_NAMELEN];
 1989         ddt_entry_t dde;
 1990         uint64_t walk = 0;
 1991         dmu_object_info_t doi;
 1992         uint64_t count, dspace, mspace;
 1993         int error;
 1994 
 1995         error = ddt_object_info(ddt, type, class, &doi);
 1996 
 1997         if (error == ENOENT)
 1998                 return;
 1999         ASSERT(error == 0);
 2000 
 2001         error = ddt_object_count(ddt, type, class, &count);
 2002         ASSERT(error == 0);
 2003         if (count == 0)
 2004                 return;
 2005 
 2006         dspace = doi.doi_physical_blocks_512 << 9;
 2007         mspace = doi.doi_fill_count * doi.doi_data_block_size;
 2008 
 2009         ddt_object_name(ddt, type, class, name);
 2010 
 2011         (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
 2012             name,
 2013             (u_longlong_t)count,
 2014             (u_longlong_t)(dspace / count),
 2015             (u_longlong_t)(mspace / count));
 2016 
 2017         if (dump_opt['D'] < 3)
 2018                 return;
 2019 
 2020         zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
 2021 
 2022         if (dump_opt['D'] < 4)
 2023                 return;
 2024 
 2025         if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
 2026                 return;
 2027 
 2028         (void) printf("%s contents:\n\n", name);
 2029 
 2030         while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
 2031                 dump_dde(ddt, &dde, walk);
 2032 
 2033         ASSERT3U(error, ==, ENOENT);
 2034 
 2035         (void) printf("\n");
 2036 }
 2037 
 2038 static void
 2039 dump_all_ddts(spa_t *spa)
 2040 {
 2041         ddt_histogram_t ddh_total = {{{0}}};
 2042         ddt_stat_t dds_total = {0};
 2043 
 2044         for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
 2045                 ddt_t *ddt = spa->spa_ddt[c];
 2046                 for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
 2047                         for (enum ddt_class class = 0; class < DDT_CLASSES;
 2048                             class++) {
 2049                                 dump_ddt(ddt, type, class);
 2050                         }
 2051                 }
 2052         }
 2053 
 2054         ddt_get_dedup_stats(spa, &dds_total);
 2055 
 2056         if (dds_total.dds_blocks == 0) {
 2057                 (void) printf("All DDTs are empty\n");
 2058                 return;
 2059         }
 2060 
 2061         (void) printf("\n");
 2062 
 2063         if (dump_opt['D'] > 1) {
 2064                 (void) printf("DDT histogram (aggregated over all DDTs):\n");
 2065                 ddt_get_dedup_histogram(spa, &ddh_total);
 2066                 zpool_dump_ddt(&dds_total, &ddh_total);
 2067         }
 2068 
 2069         dump_dedup_ratio(&dds_total);
 2070 }
 2071 
 2072 static void
 2073 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
 2074 {
 2075         char *prefix = arg;
 2076 
 2077         (void) printf("%s [%llu,%llu) length %llu\n",
 2078             prefix,
 2079             (u_longlong_t)start,
 2080             (u_longlong_t)(start + size),
 2081             (u_longlong_t)(size));
 2082 }
 2083 
 2084 static void
 2085 dump_dtl(vdev_t *vd, int indent)
 2086 {
 2087         spa_t *spa = vd->vdev_spa;
 2088         boolean_t required;
 2089         const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
 2090                 "outage" };
 2091         char prefix[256];
 2092 
 2093         spa_vdev_state_enter(spa, SCL_NONE);
 2094         required = vdev_dtl_required(vd);
 2095         (void) spa_vdev_state_exit(spa, NULL, 0);
 2096 
 2097         if (indent == 0)
 2098                 (void) printf("\nDirty time logs:\n\n");
 2099 
 2100         (void) printf("\t%*s%s [%s]\n", indent, "",
 2101             vd->vdev_path ? vd->vdev_path :
 2102             vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
 2103             required ? "DTL-required" : "DTL-expendable");
 2104 
 2105         for (int t = 0; t < DTL_TYPES; t++) {
 2106                 range_tree_t *rt = vd->vdev_dtl[t];
 2107                 if (range_tree_space(rt) == 0)
 2108                         continue;
 2109                 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
 2110                     indent + 2, "", name[t]);
 2111                 range_tree_walk(rt, dump_dtl_seg, prefix);
 2112                 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
 2113                         dump_spacemap(spa->spa_meta_objset,
 2114                             vd->vdev_dtl_sm);
 2115         }
 2116 
 2117         for (unsigned c = 0; c < vd->vdev_children; c++)
 2118                 dump_dtl(vd->vdev_child[c], indent + 4);
 2119 }
 2120 
 2121 static void
 2122 dump_history(spa_t *spa)
 2123 {
 2124         nvlist_t **events = NULL;
 2125         char *buf;
 2126         uint64_t resid, len, off = 0;
 2127         uint_t num = 0;
 2128         int error;
 2129         char tbuf[30];
 2130 
 2131         if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
 2132                 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
 2133                     __func__);
 2134                 return;
 2135         }
 2136 
 2137         do {
 2138                 len = SPA_OLD_MAXBLOCKSIZE;
 2139 
 2140                 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
 2141                         (void) fprintf(stderr, "Unable to read history: "
 2142                             "error %d\n", error);
 2143                         free(buf);
 2144                         return;
 2145                 }
 2146 
 2147                 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
 2148                         break;
 2149 
 2150                 off -= resid;
 2151         } while (len != 0);
 2152 
 2153         (void) printf("\nHistory:\n");
 2154         for (unsigned i = 0; i < num; i++) {
 2155                 boolean_t printed = B_FALSE;
 2156 
 2157                 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
 2158                         time_t tsec;
 2159                         struct tm t;
 2160 
 2161                         tsec = fnvlist_lookup_uint64(events[i],
 2162                             ZPOOL_HIST_TIME);
 2163                         (void) localtime_r(&tsec, &t);
 2164                         (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
 2165                 } else {
 2166                         tbuf[0] = '\0';
 2167                 }
 2168 
 2169                 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
 2170                         (void) printf("%s %s\n", tbuf,
 2171                             fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
 2172                 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
 2173                         uint64_t ievent;
 2174 
 2175                         ievent = fnvlist_lookup_uint64(events[i],
 2176                             ZPOOL_HIST_INT_EVENT);
 2177                         if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
 2178                                 goto next;
 2179 
 2180                         (void) printf(" %s [internal %s txg:%ju] %s\n",
 2181                             tbuf,
 2182                             zfs_history_event_names[ievent],
 2183                             fnvlist_lookup_uint64(events[i],
 2184                             ZPOOL_HIST_TXG),
 2185                             fnvlist_lookup_string(events[i],
 2186                             ZPOOL_HIST_INT_STR));
 2187                 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
 2188                         (void) printf("%s [txg:%ju] %s", tbuf,
 2189                             fnvlist_lookup_uint64(events[i],
 2190                             ZPOOL_HIST_TXG),
 2191                             fnvlist_lookup_string(events[i],
 2192                             ZPOOL_HIST_INT_NAME));
 2193 
 2194                         if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
 2195                                 (void) printf(" %s (%llu)",
 2196                                     fnvlist_lookup_string(events[i],
 2197                                     ZPOOL_HIST_DSNAME),
 2198                                     (u_longlong_t)fnvlist_lookup_uint64(
 2199                                     events[i],
 2200                                     ZPOOL_HIST_DSID));
 2201                         }
 2202 
 2203                         (void) printf(" %s\n", fnvlist_lookup_string(events[i],
 2204                             ZPOOL_HIST_INT_STR));
 2205                 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
 2206                         (void) printf("%s ioctl %s\n", tbuf,
 2207                             fnvlist_lookup_string(events[i],
 2208                             ZPOOL_HIST_IOCTL));
 2209 
 2210                         if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
 2211                                 (void) printf("    input:\n");
 2212                                 dump_nvlist(fnvlist_lookup_nvlist(events[i],
 2213                                     ZPOOL_HIST_INPUT_NVL), 8);
 2214                         }
 2215                         if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
 2216                                 (void) printf("    output:\n");
 2217                                 dump_nvlist(fnvlist_lookup_nvlist(events[i],
 2218                                     ZPOOL_HIST_OUTPUT_NVL), 8);
 2219                         }
 2220                         if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
 2221                                 (void) printf("    errno: %lld\n",
 2222                                     (longlong_t)fnvlist_lookup_int64(events[i],
 2223                                     ZPOOL_HIST_ERRNO));
 2224                         }
 2225                 } else {
 2226                         goto next;
 2227                 }
 2228 
 2229                 printed = B_TRUE;
 2230 next:
 2231                 if (dump_opt['h'] > 1) {
 2232                         if (!printed)
 2233                                 (void) printf("unrecognized record:\n");
 2234                         dump_nvlist(events[i], 2);
 2235                 }
 2236         }
 2237         free(buf);
 2238 }
 2239 
 2240 static void
 2241 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
 2242 {
 2243         (void) os, (void) object, (void) data, (void) size;
 2244 }
 2245 
 2246 static uint64_t
 2247 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
 2248     const zbookmark_phys_t *zb)
 2249 {
 2250         if (dnp == NULL) {
 2251                 ASSERT(zb->zb_level < 0);
 2252                 if (zb->zb_object == 0)
 2253                         return (zb->zb_blkid);
 2254                 return (zb->zb_blkid * BP_GET_LSIZE(bp));
 2255         }
 2256 
 2257         ASSERT(zb->zb_level >= 0);
 2258 
 2259         return ((zb->zb_blkid <<
 2260             (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
 2261             dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 2262 }
 2263 
 2264 static void
 2265 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
 2266     const blkptr_t *bp)
 2267 {
 2268         abd_t *pabd;
 2269         void *buf;
 2270         zio_t *zio;
 2271         zfs_zstdhdr_t zstd_hdr;
 2272         int error;
 2273 
 2274         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
 2275                 return;
 2276 
 2277         if (BP_IS_HOLE(bp))
 2278                 return;
 2279 
 2280         if (BP_IS_EMBEDDED(bp)) {
 2281                 buf = malloc(SPA_MAXBLOCKSIZE);
 2282                 if (buf == NULL) {
 2283                         (void) fprintf(stderr, "out of memory\n");
 2284                         exit(1);
 2285                 }
 2286                 decode_embedded_bp_compressed(bp, buf);
 2287                 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
 2288                 free(buf);
 2289                 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
 2290                 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
 2291                 (void) snprintf(blkbuf + strlen(blkbuf),
 2292                     buflen - strlen(blkbuf),
 2293                     " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
 2294                     zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
 2295                     zfs_get_hdrlevel(&zstd_hdr));
 2296                 return;
 2297         }
 2298 
 2299         pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
 2300         zio = zio_root(spa, NULL, NULL, 0);
 2301 
 2302         /* Decrypt but don't decompress so we can read the compression header */
 2303         zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
 2304             ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
 2305             NULL));
 2306         error = zio_wait(zio);
 2307         if (error) {
 2308                 (void) fprintf(stderr, "read failed: %d\n", error);
 2309                 return;
 2310         }
 2311         buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
 2312         memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
 2313         zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
 2314         zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
 2315 
 2316         (void) snprintf(blkbuf + strlen(blkbuf),
 2317             buflen - strlen(blkbuf),
 2318             " ZSTD:size=%u:version=%u:level=%u:NORMAL",
 2319             zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
 2320             zfs_get_hdrlevel(&zstd_hdr));
 2321 
 2322         abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
 2323 }
 2324 
 2325 static void
 2326 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
 2327     boolean_t bp_freed)
 2328 {
 2329         const dva_t *dva = bp->blk_dva;
 2330         int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
 2331         int i;
 2332 
 2333         if (dump_opt['b'] >= 6) {
 2334                 snprintf_blkptr(blkbuf, buflen, bp);
 2335                 if (bp_freed) {
 2336                         (void) snprintf(blkbuf + strlen(blkbuf),
 2337                             buflen - strlen(blkbuf), " %s", "FREE");
 2338                 }
 2339                 return;
 2340         }
 2341 
 2342         if (BP_IS_EMBEDDED(bp)) {
 2343                 (void) sprintf(blkbuf,
 2344                     "EMBEDDED et=%u %llxL/%llxP B=%llu",
 2345                     (int)BPE_GET_ETYPE(bp),
 2346                     (u_longlong_t)BPE_GET_LSIZE(bp),
 2347                     (u_longlong_t)BPE_GET_PSIZE(bp),
 2348                     (u_longlong_t)bp->blk_birth);
 2349                 return;
 2350         }
 2351 
 2352         blkbuf[0] = '\0';
 2353 
 2354         for (i = 0; i < ndvas; i++)
 2355                 (void) snprintf(blkbuf + strlen(blkbuf),
 2356                     buflen - strlen(blkbuf), "%llu:%llx:%llx ",
 2357                     (u_longlong_t)DVA_GET_VDEV(&dva[i]),
 2358                     (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
 2359                     (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
 2360 
 2361         if (BP_IS_HOLE(bp)) {
 2362                 (void) snprintf(blkbuf + strlen(blkbuf),
 2363                     buflen - strlen(blkbuf),
 2364                     "%llxL B=%llu",
 2365                     (u_longlong_t)BP_GET_LSIZE(bp),
 2366                     (u_longlong_t)bp->blk_birth);
 2367         } else {
 2368                 (void) snprintf(blkbuf + strlen(blkbuf),
 2369                     buflen - strlen(blkbuf),
 2370                     "%llxL/%llxP F=%llu B=%llu/%llu",
 2371                     (u_longlong_t)BP_GET_LSIZE(bp),
 2372                     (u_longlong_t)BP_GET_PSIZE(bp),
 2373                     (u_longlong_t)BP_GET_FILL(bp),
 2374                     (u_longlong_t)bp->blk_birth,
 2375                     (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
 2376                 if (bp_freed)
 2377                         (void) snprintf(blkbuf + strlen(blkbuf),
 2378                             buflen - strlen(blkbuf), " %s", "FREE");
 2379                 (void) snprintf(blkbuf + strlen(blkbuf),
 2380                     buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx",
 2381                     (u_longlong_t)bp->blk_cksum.zc_word[0],
 2382                     (u_longlong_t)bp->blk_cksum.zc_word[1],
 2383                     (u_longlong_t)bp->blk_cksum.zc_word[2],
 2384                     (u_longlong_t)bp->blk_cksum.zc_word[3]);
 2385         }
 2386 }
 2387 
 2388 static void
 2389 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
 2390     const dnode_phys_t *dnp)
 2391 {
 2392         char blkbuf[BP_SPRINTF_LEN];
 2393         int l;
 2394 
 2395         if (!BP_IS_EMBEDDED(bp)) {
 2396                 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
 2397                 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
 2398         }
 2399 
 2400         (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
 2401 
 2402         ASSERT(zb->zb_level >= 0);
 2403 
 2404         for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
 2405                 if (l == zb->zb_level) {
 2406                         (void) printf("L%llx", (u_longlong_t)zb->zb_level);
 2407                 } else {
 2408                         (void) printf(" ");
 2409                 }
 2410         }
 2411 
 2412         snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
 2413         if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
 2414                 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
 2415         (void) printf("%s\n", blkbuf);
 2416 }
 2417 
 2418 static int
 2419 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
 2420     blkptr_t *bp, const zbookmark_phys_t *zb)
 2421 {
 2422         int err = 0;
 2423 
 2424         if (bp->blk_birth == 0)
 2425                 return (0);
 2426 
 2427         print_indirect(spa, bp, zb, dnp);
 2428 
 2429         if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
 2430                 arc_flags_t flags = ARC_FLAG_WAIT;
 2431                 int i;
 2432                 blkptr_t *cbp;
 2433                 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
 2434                 arc_buf_t *buf;
 2435                 uint64_t fill = 0;
 2436                 ASSERT(!BP_IS_REDACTED(bp));
 2437 
 2438                 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
 2439                     ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
 2440                 if (err)
 2441                         return (err);
 2442                 ASSERT(buf->b_data);
 2443 
 2444                 /* recursively visit blocks below this */
 2445                 cbp = buf->b_data;
 2446                 for (i = 0; i < epb; i++, cbp++) {
 2447                         zbookmark_phys_t czb;
 2448 
 2449                         SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
 2450                             zb->zb_level - 1,
 2451                             zb->zb_blkid * epb + i);
 2452                         err = visit_indirect(spa, dnp, cbp, &czb);
 2453                         if (err)
 2454                                 break;
 2455                         fill += BP_GET_FILL(cbp);
 2456                 }
 2457                 if (!err)
 2458                         ASSERT3U(fill, ==, BP_GET_FILL(bp));
 2459                 arc_buf_destroy(buf, &buf);
 2460         }
 2461 
 2462         return (err);
 2463 }
 2464 
 2465 static void
 2466 dump_indirect(dnode_t *dn)
 2467 {
 2468         dnode_phys_t *dnp = dn->dn_phys;
 2469         zbookmark_phys_t czb;
 2470 
 2471         (void) printf("Indirect blocks:\n");
 2472 
 2473         SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
 2474             dn->dn_object, dnp->dn_nlevels - 1, 0);
 2475         for (int j = 0; j < dnp->dn_nblkptr; j++) {
 2476                 czb.zb_blkid = j;
 2477                 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
 2478                     &dnp->dn_blkptr[j], &czb);
 2479         }
 2480 
 2481         (void) printf("\n");
 2482 }
 2483 
 2484 static void
 2485 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
 2486 {
 2487         (void) os, (void) object;
 2488         dsl_dir_phys_t *dd = data;
 2489         time_t crtime;
 2490         char nice[32];
 2491 
 2492         /* make sure nicenum has enough space */
 2493         _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
 2494 
 2495         if (dd == NULL)
 2496                 return;
 2497 
 2498         ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
 2499 
 2500         crtime = dd->dd_creation_time;
 2501         (void) printf("\t\tcreation_time = %s", ctime(&crtime));
 2502         (void) printf("\t\thead_dataset_obj = %llu\n",
 2503             (u_longlong_t)dd->dd_head_dataset_obj);
 2504         (void) printf("\t\tparent_dir_obj = %llu\n",
 2505             (u_longlong_t)dd->dd_parent_obj);
 2506         (void) printf("\t\torigin_obj = %llu\n",
 2507             (u_longlong_t)dd->dd_origin_obj);
 2508         (void) printf("\t\tchild_dir_zapobj = %llu\n",
 2509             (u_longlong_t)dd->dd_child_dir_zapobj);
 2510         zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
 2511         (void) printf("\t\tused_bytes = %s\n", nice);
 2512         zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
 2513         (void) printf("\t\tcompressed_bytes = %s\n", nice);
 2514         zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
 2515         (void) printf("\t\tuncompressed_bytes = %s\n", nice);
 2516         zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
 2517         (void) printf("\t\tquota = %s\n", nice);
 2518         zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
 2519         (void) printf("\t\treserved = %s\n", nice);
 2520         (void) printf("\t\tprops_zapobj = %llu\n",
 2521             (u_longlong_t)dd->dd_props_zapobj);
 2522         (void) printf("\t\tdeleg_zapobj = %llu\n",
 2523             (u_longlong_t)dd->dd_deleg_zapobj);
 2524         (void) printf("\t\tflags = %llx\n",
 2525             (u_longlong_t)dd->dd_flags);
 2526 
 2527 #define DO(which) \
 2528         zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
 2529             sizeof (nice)); \
 2530         (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
 2531         DO(HEAD);
 2532         DO(SNAP);
 2533         DO(CHILD);
 2534         DO(CHILD_RSRV);
 2535         DO(REFRSRV);
 2536 #undef DO
 2537         (void) printf("\t\tclones = %llu\n",
 2538             (u_longlong_t)dd->dd_clones);
 2539 }
 2540 
 2541 static void
 2542 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
 2543 {
 2544         (void) os, (void) object;
 2545         dsl_dataset_phys_t *ds = data;
 2546         time_t crtime;
 2547         char used[32], compressed[32], uncompressed[32], unique[32];
 2548         char blkbuf[BP_SPRINTF_LEN];
 2549 
 2550         /* make sure nicenum has enough space */
 2551         _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
 2552         _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
 2553             "compressed truncated");
 2554         _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
 2555             "uncompressed truncated");
 2556         _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
 2557 
 2558         if (ds == NULL)
 2559                 return;
 2560 
 2561         ASSERT(size == sizeof (*ds));
 2562         crtime = ds->ds_creation_time;
 2563         zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
 2564         zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
 2565         zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
 2566             sizeof (uncompressed));
 2567         zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
 2568         snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
 2569 
 2570         (void) printf("\t\tdir_obj = %llu\n",
 2571             (u_longlong_t)ds->ds_dir_obj);
 2572         (void) printf("\t\tprev_snap_obj = %llu\n",
 2573             (u_longlong_t)ds->ds_prev_snap_obj);
 2574         (void) printf("\t\tprev_snap_txg = %llu\n",
 2575             (u_longlong_t)ds->ds_prev_snap_txg);
 2576         (void) printf("\t\tnext_snap_obj = %llu\n",
 2577             (u_longlong_t)ds->ds_next_snap_obj);
 2578         (void) printf("\t\tsnapnames_zapobj = %llu\n",
 2579             (u_longlong_t)ds->ds_snapnames_zapobj);
 2580         (void) printf("\t\tnum_children = %llu\n",
 2581             (u_longlong_t)ds->ds_num_children);
 2582         (void) printf("\t\tuserrefs_obj = %llu\n",
 2583             (u_longlong_t)ds->ds_userrefs_obj);
 2584         (void) printf("\t\tcreation_time = %s", ctime(&crtime));
 2585         (void) printf("\t\tcreation_txg = %llu\n",
 2586             (u_longlong_t)ds->ds_creation_txg);
 2587         (void) printf("\t\tdeadlist_obj = %llu\n",
 2588             (u_longlong_t)ds->ds_deadlist_obj);
 2589         (void) printf("\t\tused_bytes = %s\n", used);
 2590         (void) printf("\t\tcompressed_bytes = %s\n", compressed);
 2591         (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
 2592         (void) printf("\t\tunique = %s\n", unique);
 2593         (void) printf("\t\tfsid_guid = %llu\n",
 2594             (u_longlong_t)ds->ds_fsid_guid);
 2595         (void) printf("\t\tguid = %llu\n",
 2596             (u_longlong_t)ds->ds_guid);
 2597         (void) printf("\t\tflags = %llx\n",
 2598             (u_longlong_t)ds->ds_flags);
 2599         (void) printf("\t\tnext_clones_obj = %llu\n",
 2600             (u_longlong_t)ds->ds_next_clones_obj);
 2601         (void) printf("\t\tprops_obj = %llu\n",
 2602             (u_longlong_t)ds->ds_props_obj);
 2603         (void) printf("\t\tbp = %s\n", blkbuf);
 2604 }
 2605 
 2606 static int
 2607 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 2608 {
 2609         (void) arg, (void) tx;
 2610         char blkbuf[BP_SPRINTF_LEN];
 2611 
 2612         if (bp->blk_birth != 0) {
 2613                 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
 2614                 (void) printf("\t%s\n", blkbuf);
 2615         }
 2616         return (0);
 2617 }
 2618 
 2619 static void
 2620 dump_bptree(objset_t *os, uint64_t obj, const char *name)
 2621 {
 2622         char bytes[32];
 2623         bptree_phys_t *bt;
 2624         dmu_buf_t *db;
 2625 
 2626         /* make sure nicenum has enough space */
 2627         _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
 2628 
 2629         if (dump_opt['d'] < 3)
 2630                 return;
 2631 
 2632         VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
 2633         bt = db->db_data;
 2634         zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
 2635         (void) printf("\n    %s: %llu datasets, %s\n",
 2636             name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
 2637         dmu_buf_rele(db, FTAG);
 2638 
 2639         if (dump_opt['d'] < 5)
 2640                 return;
 2641 
 2642         (void) printf("\n");
 2643 
 2644         (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
 2645 }
 2646 
 2647 static int
 2648 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
 2649 {
 2650         (void) arg, (void) tx;
 2651         char blkbuf[BP_SPRINTF_LEN];
 2652 
 2653         ASSERT(bp->blk_birth != 0);
 2654         snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
 2655         (void) printf("\t%s\n", blkbuf);
 2656         return (0);
 2657 }
 2658 
 2659 static void
 2660 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
 2661 {
 2662         char bytes[32];
 2663         char comp[32];
 2664         char uncomp[32];
 2665         uint64_t i;
 2666 
 2667         /* make sure nicenum has enough space */
 2668         _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
 2669         _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
 2670         _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
 2671 
 2672         if (dump_opt['d'] < 3)
 2673                 return;
 2674 
 2675         zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
 2676         if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
 2677                 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
 2678                 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
 2679                 if (bpo->bpo_havefreed) {
 2680                         (void) printf("    %*s: object %llu, %llu local "
 2681                             "blkptrs, %llu freed, %llu subobjs in object %llu, "
 2682                             "%s (%s/%s comp)\n",
 2683                             indent * 8, name,
 2684                             (u_longlong_t)bpo->bpo_object,
 2685                             (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
 2686                             (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
 2687                             (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
 2688                             (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
 2689                             bytes, comp, uncomp);
 2690                 } else {
 2691                         (void) printf("    %*s: object %llu, %llu local "
 2692                             "blkptrs, %llu subobjs in object %llu, "
 2693                             "%s (%s/%s comp)\n",
 2694                             indent * 8, name,
 2695                             (u_longlong_t)bpo->bpo_object,
 2696                             (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
 2697                             (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
 2698                             (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
 2699                             bytes, comp, uncomp);
 2700                 }
 2701 
 2702                 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
 2703                         uint64_t subobj;
 2704                         bpobj_t subbpo;
 2705                         int error;
 2706                         VERIFY0(dmu_read(bpo->bpo_os,
 2707                             bpo->bpo_phys->bpo_subobjs,
 2708                             i * sizeof (subobj), sizeof (subobj), &subobj, 0));
 2709                         error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
 2710                         if (error != 0) {
 2711                                 (void) printf("ERROR %u while trying to open "
 2712                                     "subobj id %llu\n",
 2713                                     error, (u_longlong_t)subobj);
 2714                                 continue;
 2715                         }
 2716                         dump_full_bpobj(&subbpo, "subobj", indent + 1);
 2717                         bpobj_close(&subbpo);
 2718                 }
 2719         } else {
 2720                 if (bpo->bpo_havefreed) {
 2721                         (void) printf("    %*s: object %llu, %llu blkptrs, "
 2722                             "%llu freed, %s\n",
 2723                             indent * 8, name,
 2724                             (u_longlong_t)bpo->bpo_object,
 2725                             (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
 2726                             (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
 2727                             bytes);
 2728                 } else {
 2729                         (void) printf("    %*s: object %llu, %llu blkptrs, "
 2730                             "%s\n",
 2731                             indent * 8, name,
 2732                             (u_longlong_t)bpo->bpo_object,
 2733                             (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
 2734                             bytes);
 2735                 }
 2736         }
 2737 
 2738         if (dump_opt['d'] < 5)
 2739                 return;
 2740 
 2741 
 2742         if (indent == 0) {
 2743                 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
 2744                 (void) printf("\n");
 2745         }
 2746 }
 2747 
 2748 static int
 2749 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
 2750     boolean_t print_list)
 2751 {
 2752         int err = 0;
 2753         zfs_bookmark_phys_t prop;
 2754         objset_t *mos = dp->dp_spa->spa_meta_objset;
 2755         err = dsl_bookmark_lookup(dp, name, NULL, &prop);
 2756 
 2757         if (err != 0) {
 2758                 return (err);
 2759         }
 2760 
 2761         (void) printf("\t#%s: ", strchr(name, '#') + 1);
 2762         (void) printf("{guid: %llx creation_txg: %llu creation_time: "
 2763             "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
 2764             (u_longlong_t)prop.zbm_creation_txg,
 2765             (u_longlong_t)prop.zbm_creation_time,
 2766             (u_longlong_t)prop.zbm_redaction_obj);
 2767 
 2768         IMPLY(print_list, print_redact);
 2769         if (!print_redact || prop.zbm_redaction_obj == 0)
 2770                 return (0);
 2771 
 2772         redaction_list_t *rl;
 2773         VERIFY0(dsl_redaction_list_hold_obj(dp,
 2774             prop.zbm_redaction_obj, FTAG, &rl));
 2775 
 2776         redaction_list_phys_t *rlp = rl->rl_phys;
 2777         (void) printf("\tRedacted:\n\t\tProgress: ");
 2778         if (rlp->rlp_last_object != UINT64_MAX ||
 2779             rlp->rlp_last_blkid != UINT64_MAX) {
 2780                 (void) printf("%llu %llu (incomplete)\n",
 2781                     (u_longlong_t)rlp->rlp_last_object,
 2782                     (u_longlong_t)rlp->rlp_last_blkid);
 2783         } else {
 2784                 (void) printf("complete\n");
 2785         }
 2786         (void) printf("\t\tSnapshots: [");
 2787         for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
 2788                 if (i > 0)
 2789                         (void) printf(", ");
 2790                 (void) printf("%0llu",
 2791                     (u_longlong_t)rlp->rlp_snaps[i]);
 2792         }
 2793         (void) printf("]\n\t\tLength: %llu\n",
 2794             (u_longlong_t)rlp->rlp_num_entries);
 2795 
 2796         if (!print_list) {
 2797                 dsl_redaction_list_rele(rl, FTAG);
 2798                 return (0);
 2799         }
 2800 
 2801         if (rlp->rlp_num_entries == 0) {
 2802                 dsl_redaction_list_rele(rl, FTAG);
 2803                 (void) printf("\t\tRedaction List: []\n\n");
 2804                 return (0);
 2805         }
 2806 
 2807         redact_block_phys_t *rbp_buf;
 2808         uint64_t size;
 2809         dmu_object_info_t doi;
 2810 
 2811         VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
 2812         size = doi.doi_max_offset;
 2813         rbp_buf = kmem_alloc(size, KM_SLEEP);
 2814 
 2815         err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
 2816             rbp_buf, 0);
 2817         if (err != 0) {
 2818                 dsl_redaction_list_rele(rl, FTAG);
 2819                 kmem_free(rbp_buf, size);
 2820                 return (err);
 2821         }
 2822 
 2823         (void) printf("\t\tRedaction List: [{object: %llx, offset: "
 2824             "%llx, blksz: %x, count: %llx}",
 2825             (u_longlong_t)rbp_buf[0].rbp_object,
 2826             (u_longlong_t)rbp_buf[0].rbp_blkid,
 2827             (uint_t)(redact_block_get_size(&rbp_buf[0])),
 2828             (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
 2829 
 2830         for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
 2831                 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
 2832                     "blksz: %x, count: %llx}",
 2833                     (u_longlong_t)rbp_buf[i].rbp_object,
 2834                     (u_longlong_t)rbp_buf[i].rbp_blkid,
 2835                     (uint_t)(redact_block_get_size(&rbp_buf[i])),
 2836                     (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
 2837         }
 2838         dsl_redaction_list_rele(rl, FTAG);
 2839         kmem_free(rbp_buf, size);
 2840         (void) printf("]\n\n");
 2841         return (0);
 2842 }
 2843 
 2844 static void
 2845 dump_bookmarks(objset_t *os, int verbosity)
 2846 {
 2847         zap_cursor_t zc;
 2848         zap_attribute_t attr;
 2849         dsl_dataset_t *ds = dmu_objset_ds(os);
 2850         dsl_pool_t *dp = spa_get_dsl(os->os_spa);
 2851         objset_t *mos = os->os_spa->spa_meta_objset;
 2852         if (verbosity < 4)
 2853                 return;
 2854         dsl_pool_config_enter(dp, FTAG);
 2855 
 2856         for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
 2857             zap_cursor_retrieve(&zc, &attr) == 0;
 2858             zap_cursor_advance(&zc)) {
 2859                 char osname[ZFS_MAX_DATASET_NAME_LEN];
 2860                 char buf[ZFS_MAX_DATASET_NAME_LEN];
 2861                 int len;
 2862                 dmu_objset_name(os, osname);
 2863                 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
 2864                     attr.za_name);
 2865                 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
 2866                 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
 2867         }
 2868         zap_cursor_fini(&zc);
 2869         dsl_pool_config_exit(dp, FTAG);
 2870 }
 2871 
 2872 static void
 2873 bpobj_count_refd(bpobj_t *bpo)
 2874 {
 2875         mos_obj_refd(bpo->bpo_object);
 2876 
 2877         if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
 2878                 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
 2879                 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
 2880                         uint64_t subobj;
 2881                         bpobj_t subbpo;
 2882                         int error;
 2883                         VERIFY0(dmu_read(bpo->bpo_os,
 2884                             bpo->bpo_phys->bpo_subobjs,
 2885                             i * sizeof (subobj), sizeof (subobj), &subobj, 0));
 2886                         error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
 2887                         if (error != 0) {
 2888                                 (void) printf("ERROR %u while trying to open "
 2889                                     "subobj id %llu\n",
 2890                                     error, (u_longlong_t)subobj);
 2891                                 continue;
 2892                         }
 2893                         bpobj_count_refd(&subbpo);
 2894                         bpobj_close(&subbpo);
 2895                 }
 2896         }
 2897 }
 2898 
 2899 static int
 2900 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
 2901 {
 2902         spa_t *spa = arg;
 2903         uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
 2904         if (dle->dle_bpobj.bpo_object != empty_bpobj)
 2905                 bpobj_count_refd(&dle->dle_bpobj);
 2906         return (0);
 2907 }
 2908 
 2909 static int
 2910 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
 2911 {
 2912         ASSERT(arg == NULL);
 2913         if (dump_opt['d'] >= 5) {
 2914                 char buf[128];
 2915                 (void) snprintf(buf, sizeof (buf),
 2916                     "mintxg %llu -> obj %llu",
 2917                     (longlong_t)dle->dle_mintxg,
 2918                     (longlong_t)dle->dle_bpobj.bpo_object);
 2919 
 2920                 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
 2921         } else {
 2922                 (void) printf("mintxg %llu -> obj %llu\n",
 2923                     (longlong_t)dle->dle_mintxg,
 2924                     (longlong_t)dle->dle_bpobj.bpo_object);
 2925         }
 2926         return (0);
 2927 }
 2928 
 2929 static void
 2930 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
 2931 {
 2932         char bytes[32];
 2933         char comp[32];
 2934         char uncomp[32];
 2935         char entries[32];
 2936         spa_t *spa = dmu_objset_spa(dl->dl_os);
 2937         uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
 2938 
 2939         if (dl->dl_oldfmt) {
 2940                 if (dl->dl_bpobj.bpo_object != empty_bpobj)
 2941                         bpobj_count_refd(&dl->dl_bpobj);
 2942         } else {
 2943                 mos_obj_refd(dl->dl_object);
 2944                 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
 2945         }
 2946 
 2947         /* make sure nicenum has enough space */
 2948         _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
 2949         _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
 2950         _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
 2951         _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
 2952 
 2953         if (dump_opt['d'] < 3)
 2954                 return;
 2955 
 2956         if (dl->dl_oldfmt) {
 2957                 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
 2958                 return;
 2959         }
 2960 
 2961         zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
 2962         zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
 2963         zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
 2964         zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
 2965         (void) printf("\n    %s: %s (%s/%s comp), %s entries\n",
 2966             name, bytes, comp, uncomp, entries);
 2967 
 2968         if (dump_opt['d'] < 4)
 2969                 return;
 2970 
 2971         (void) putchar('\n');
 2972 
 2973         dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
 2974 }
 2975 
 2976 static int
 2977 verify_dd_livelist(objset_t *os)
 2978 {
 2979         uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
 2980         dsl_pool_t *dp = spa_get_dsl(os->os_spa);
 2981         dsl_dir_t  *dd = os->os_dsl_dataset->ds_dir;
 2982 
 2983         ASSERT(!dmu_objset_is_snapshot(os));
 2984         if (!dsl_deadlist_is_open(&dd->dd_livelist))
 2985                 return (0);
 2986 
 2987         /* Iterate through the livelist to check for duplicates */
 2988         dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
 2989             NULL);
 2990 
 2991         dsl_pool_config_enter(dp, FTAG);
 2992         dsl_deadlist_space(&dd->dd_livelist, &ll_used,
 2993             &ll_comp, &ll_uncomp);
 2994 
 2995         dsl_dataset_t *origin_ds;
 2996         ASSERT(dsl_pool_config_held(dp));
 2997         VERIFY0(dsl_dataset_hold_obj(dp,
 2998             dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
 2999         VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
 3000             &used, &comp, &uncomp));
 3001         dsl_dataset_rele(origin_ds, FTAG);
 3002         dsl_pool_config_exit(dp, FTAG);
 3003         /*
 3004          *  It's possible that the dataset's uncomp space is larger than the
 3005          *  livelist's because livelists do not track embedded block pointers
 3006          */
 3007         if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
 3008                 char nice_used[32], nice_comp[32], nice_uncomp[32];
 3009                 (void) printf("Discrepancy in space accounting:\n");
 3010                 zdb_nicenum(used, nice_used, sizeof (nice_used));
 3011                 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
 3012                 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
 3013                 (void) printf("dir: used %s, comp %s, uncomp %s\n",
 3014                     nice_used, nice_comp, nice_uncomp);
 3015                 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
 3016                 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
 3017                 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
 3018                 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
 3019                     nice_used, nice_comp, nice_uncomp);
 3020                 return (1);
 3021         }
 3022         return (0);
 3023 }
 3024 
 3025 static avl_tree_t idx_tree;
 3026 static avl_tree_t domain_tree;
 3027 static boolean_t fuid_table_loaded;
 3028 static objset_t *sa_os = NULL;
 3029 static sa_attr_type_t *sa_attr_table = NULL;
 3030 
 3031 static int
 3032 open_objset(const char *path, const void *tag, objset_t **osp)
 3033 {
 3034         int err;
 3035         uint64_t sa_attrs = 0;
 3036         uint64_t version = 0;
 3037 
 3038         VERIFY3P(sa_os, ==, NULL);
 3039         /*
 3040          * We can't own an objset if it's redacted.  Therefore, we do this
 3041          * dance: hold the objset, then acquire a long hold on its dataset, then
 3042          * release the pool (which is held as part of holding the objset).
 3043          */
 3044         err = dmu_objset_hold(path, tag, osp);
 3045         if (err != 0) {
 3046                 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
 3047                     path, strerror(err));
 3048                 return (err);
 3049         }
 3050         dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
 3051         dsl_pool_rele(dmu_objset_pool(*osp), tag);
 3052 
 3053         if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) {
 3054                 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
 3055                     8, 1, &version);
 3056                 if (version >= ZPL_VERSION_SA) {
 3057                         (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
 3058                             8, 1, &sa_attrs);
 3059                 }
 3060                 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
 3061                     &sa_attr_table);
 3062                 if (err != 0) {
 3063                         (void) fprintf(stderr, "sa_setup failed: %s\n",
 3064                             strerror(err));
 3065                         dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
 3066                         dsl_dataset_rele(dmu_objset_ds(*osp), tag);
 3067                         *osp = NULL;
 3068                 }
 3069         }
 3070         sa_os = *osp;
 3071 
 3072         return (err);
 3073 }
 3074 
 3075 static void
 3076 close_objset(objset_t *os, const void *tag)
 3077 {
 3078         VERIFY3P(os, ==, sa_os);
 3079         if (os->os_sa != NULL)
 3080                 sa_tear_down(os);
 3081         dsl_dataset_long_rele(dmu_objset_ds(os), tag);
 3082         dsl_dataset_rele(dmu_objset_ds(os), tag);
 3083         sa_attr_table = NULL;
 3084         sa_os = NULL;
 3085 }
 3086 
 3087 static void
 3088 fuid_table_destroy(void)
 3089 {
 3090         if (fuid_table_loaded) {
 3091                 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
 3092                 fuid_table_loaded = B_FALSE;
 3093         }
 3094 }
 3095 
 3096 /*
 3097  * print uid or gid information.
 3098  * For normal POSIX id just the id is printed in decimal format.
 3099  * For CIFS files with FUID the fuid is printed in hex followed by
 3100  * the domain-rid string.
 3101  */
 3102 static void
 3103 print_idstr(uint64_t id, const char *id_type)
 3104 {
 3105         if (FUID_INDEX(id)) {
 3106                 const char *domain =
 3107                     zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
 3108                 (void) printf("\t%s     %llx [%s-%d]\n", id_type,
 3109                     (u_longlong_t)id, domain, (int)FUID_RID(id));
 3110         } else {
 3111                 (void) printf("\t%s     %llu\n", id_type, (u_longlong_t)id);
 3112         }
 3113 
 3114 }
 3115 
 3116 static void
 3117 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
 3118 {
 3119         uint32_t uid_idx, gid_idx;
 3120 
 3121         uid_idx = FUID_INDEX(uid);
 3122         gid_idx = FUID_INDEX(gid);
 3123 
 3124         /* Load domain table, if not already loaded */
 3125         if (!fuid_table_loaded && (uid_idx || gid_idx)) {
 3126                 uint64_t fuid_obj;
 3127 
 3128                 /* first find the fuid object.  It lives in the master node */
 3129                 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
 3130                     8, 1, &fuid_obj) == 0);
 3131                 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
 3132                 (void) zfs_fuid_table_load(os, fuid_obj,
 3133                     &idx_tree, &domain_tree);
 3134                 fuid_table_loaded = B_TRUE;
 3135         }
 3136 
 3137         print_idstr(uid, "uid");
 3138         print_idstr(gid, "gid");
 3139 }
 3140 
 3141 static void
 3142 dump_znode_sa_xattr(sa_handle_t *hdl)
 3143 {
 3144         nvlist_t *sa_xattr;
 3145         nvpair_t *elem = NULL;
 3146         int sa_xattr_size = 0;
 3147         int sa_xattr_entries = 0;
 3148         int error;
 3149         char *sa_xattr_packed;
 3150 
 3151         error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
 3152         if (error || sa_xattr_size == 0)
 3153                 return;
 3154 
 3155         sa_xattr_packed = malloc(sa_xattr_size);
 3156         if (sa_xattr_packed == NULL)
 3157                 return;
 3158 
 3159         error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
 3160             sa_xattr_packed, sa_xattr_size);
 3161         if (error) {
 3162                 free(sa_xattr_packed);
 3163                 return;
 3164         }
 3165 
 3166         error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
 3167         if (error) {
 3168                 free(sa_xattr_packed);
 3169                 return;
 3170         }
 3171 
 3172         while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
 3173                 sa_xattr_entries++;
 3174 
 3175         (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
 3176             sa_xattr_size, sa_xattr_entries);
 3177         while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
 3178                 uchar_t *value;
 3179                 uint_t cnt, idx;
 3180 
 3181                 (void) printf("\t\t%s = ", nvpair_name(elem));
 3182                 nvpair_value_byte_array(elem, &value, &cnt);
 3183                 for (idx = 0; idx < cnt; ++idx) {
 3184                         if (isprint(value[idx]))
 3185                                 (void) putchar(value[idx]);
 3186                         else
 3187                                 (void) printf("\\%3.3o", value[idx]);
 3188                 }
 3189                 (void) putchar('\n');
 3190         }
 3191 
 3192         nvlist_free(sa_xattr);
 3193         free(sa_xattr_packed);
 3194 }
 3195 
 3196 static void
 3197 dump_znode_symlink(sa_handle_t *hdl)
 3198 {
 3199         int sa_symlink_size = 0;
 3200         char linktarget[MAXPATHLEN];
 3201         int error;
 3202 
 3203         error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
 3204         if (error || sa_symlink_size == 0) {
 3205                 return;
 3206         }
 3207         if (sa_symlink_size >= sizeof (linktarget)) {
 3208                 (void) printf("symlink size %d is too large\n",
 3209                     sa_symlink_size);
 3210                 return;
 3211         }
 3212         linktarget[sa_symlink_size] = '\0';
 3213         if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
 3214             &linktarget, sa_symlink_size) == 0)
 3215                 (void) printf("\ttarget %s\n", linktarget);
 3216 }
 3217 
 3218 static void
 3219 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
 3220 {
 3221         (void) data, (void) size;
 3222         char path[MAXPATHLEN * 2];      /* allow for xattr and failure prefix */
 3223         sa_handle_t *hdl;
 3224         uint64_t xattr, rdev, gen;
 3225         uint64_t uid, gid, mode, fsize, parent, links;
 3226         uint64_t pflags;
 3227         uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
 3228         time_t z_crtime, z_atime, z_mtime, z_ctime;
 3229         sa_bulk_attr_t bulk[12];
 3230         int idx = 0;
 3231         int error;
 3232 
 3233         VERIFY3P(os, ==, sa_os);
 3234         if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
 3235                 (void) printf("Failed to get handle for SA znode\n");
 3236                 return;
 3237         }
 3238 
 3239         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
 3240         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
 3241         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
 3242             &links, 8);
 3243         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
 3244         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
 3245             &mode, 8);
 3246         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
 3247             NULL, &parent, 8);
 3248         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
 3249             &fsize, 8);
 3250         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
 3251             acctm, 16);
 3252         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
 3253             modtm, 16);
 3254         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
 3255             crtm, 16);
 3256         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
 3257             chgtm, 16);
 3258         SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
 3259             &pflags, 8);
 3260 
 3261         if (sa_bulk_lookup(hdl, bulk, idx)) {
 3262                 (void) sa_handle_destroy(hdl);
 3263                 return;
 3264         }
 3265 
 3266         z_crtime = (time_t)crtm[0];
 3267         z_atime = (time_t)acctm[0];
 3268         z_mtime = (time_t)modtm[0];
 3269         z_ctime = (time_t)chgtm[0];
 3270 
 3271         if (dump_opt['d'] > 4) {
 3272                 error = zfs_obj_to_path(os, object, path, sizeof (path));
 3273                 if (error == ESTALE) {
 3274                         (void) snprintf(path, sizeof (path), "on delete queue");
 3275                 } else if (error != 0) {
 3276                         leaked_objects++;
 3277                         (void) snprintf(path, sizeof (path),
 3278                             "path not found, possibly leaked");
 3279                 }
 3280                 (void) printf("\tpath   %s\n", path);
 3281         }
 3282 
 3283         if (S_ISLNK(mode))
 3284                 dump_znode_symlink(hdl);
 3285         dump_uidgid(os, uid, gid);
 3286         (void) printf("\tatime  %s", ctime(&z_atime));
 3287         (void) printf("\tmtime  %s", ctime(&z_mtime));
 3288         (void) printf("\tctime  %s", ctime(&z_ctime));
 3289         (void) printf("\tcrtime %s", ctime(&z_crtime));
 3290         (void) printf("\tgen    %llu\n", (u_longlong_t)gen);
 3291         (void) printf("\tmode   %llo\n", (u_longlong_t)mode);
 3292         (void) printf("\tsize   %llu\n", (u_longlong_t)fsize);
 3293         (void) printf("\tparent %llu\n", (u_longlong_t)parent);
 3294         (void) printf("\tlinks  %llu\n", (u_longlong_t)links);
 3295         (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
 3296         if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
 3297                 uint64_t projid;
 3298 
 3299                 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
 3300                     sizeof (uint64_t)) == 0)
 3301                         (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
 3302         }
 3303         if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
 3304             sizeof (uint64_t)) == 0)
 3305                 (void) printf("\txattr  %llu\n", (u_longlong_t)xattr);
 3306         if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
 3307             sizeof (uint64_t)) == 0)
 3308                 (void) printf("\trdev   0x%016llx\n", (u_longlong_t)rdev);
 3309         dump_znode_sa_xattr(hdl);
 3310         sa_handle_destroy(hdl);
 3311 }
 3312 
 3313 static void
 3314 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
 3315 {
 3316         (void) os, (void) object, (void) data, (void) size;
 3317 }
 3318 
 3319 static void
 3320 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
 3321 {
 3322         (void) os, (void) object, (void) data, (void) size;
 3323 }
 3324 
 3325 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
 3326         dump_none,              /* unallocated                  */
 3327         dump_zap,               /* object directory             */
 3328         dump_uint64,            /* object array                 */
 3329         dump_none,              /* packed nvlist                */
 3330         dump_packed_nvlist,     /* packed nvlist size           */
 3331         dump_none,              /* bpobj                        */
 3332         dump_bpobj,             /* bpobj header                 */
 3333         dump_none,              /* SPA space map header         */
 3334         dump_none,              /* SPA space map                */
 3335         dump_none,              /* ZIL intent log               */
 3336         dump_dnode,             /* DMU dnode                    */
 3337         dump_dmu_objset,        /* DMU objset                   */
 3338         dump_dsl_dir,           /* DSL directory                */
 3339         dump_zap,               /* DSL directory child map      */
 3340         dump_zap,               /* DSL dataset snap map         */
 3341         dump_zap,               /* DSL props                    */
 3342         dump_dsl_dataset,       /* DSL dataset                  */
 3343         dump_znode,             /* ZFS znode                    */
 3344         dump_acl,               /* ZFS V0 ACL                   */
 3345         dump_uint8,             /* ZFS plain file               */
 3346         dump_zpldir,            /* ZFS directory                */
 3347         dump_zap,               /* ZFS master node              */
 3348         dump_zap,               /* ZFS delete queue             */
 3349         dump_uint8,             /* zvol object                  */
 3350         dump_zap,               /* zvol prop                    */
 3351         dump_uint8,             /* other uint8[]                */
 3352         dump_uint64,            /* other uint64[]               */
 3353         dump_zap,               /* other ZAP                    */
 3354         dump_zap,               /* persistent error log         */
 3355         dump_uint8,             /* SPA history                  */
 3356         dump_history_offsets,   /* SPA history offsets          */
 3357         dump_zap,               /* Pool properties              */
 3358         dump_zap,               /* DSL permissions              */
 3359         dump_acl,               /* ZFS ACL                      */
 3360         dump_uint8,             /* ZFS SYSACL                   */
 3361         dump_none,              /* FUID nvlist                  */
 3362         dump_packed_nvlist,     /* FUID nvlist size             */
 3363         dump_zap,               /* DSL dataset next clones      */
 3364         dump_zap,               /* DSL scrub queue              */
 3365         dump_zap,               /* ZFS user/group/project used  */
 3366         dump_zap,               /* ZFS user/group/project quota */
 3367         dump_zap,               /* snapshot refcount tags       */
 3368         dump_ddt_zap,           /* DDT ZAP object               */
 3369         dump_zap,               /* DDT statistics               */
 3370         dump_znode,             /* SA object                    */
 3371         dump_zap,               /* SA Master Node               */
 3372         dump_sa_attrs,          /* SA attribute registration    */
 3373         dump_sa_layouts,        /* SA attribute layouts         */
 3374         dump_zap,               /* DSL scrub translations       */
 3375         dump_none,              /* fake dedup BP                */
 3376         dump_zap,               /* deadlist                     */
 3377         dump_none,              /* deadlist hdr                 */
 3378         dump_zap,               /* dsl clones                   */
 3379         dump_bpobj_subobjs,     /* bpobj subobjs                */
 3380         dump_unknown,           /* Unknown type, must be last   */
 3381 };
 3382 
 3383 static boolean_t
 3384 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
 3385 {
 3386         boolean_t match = B_TRUE;
 3387 
 3388         switch (obj_type) {
 3389         case DMU_OT_DIRECTORY_CONTENTS:
 3390                 if (!(flags & ZOR_FLAG_DIRECTORY))
 3391                         match = B_FALSE;
 3392                 break;
 3393         case DMU_OT_PLAIN_FILE_CONTENTS:
 3394                 if (!(flags & ZOR_FLAG_PLAIN_FILE))
 3395                         match = B_FALSE;
 3396                 break;
 3397         case DMU_OT_SPACE_MAP:
 3398                 if (!(flags & ZOR_FLAG_SPACE_MAP))
 3399                         match = B_FALSE;
 3400                 break;
 3401         default:
 3402                 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
 3403                         if (!(flags & ZOR_FLAG_ZAP))
 3404                                 match = B_FALSE;
 3405                         break;
 3406                 }
 3407 
 3408                 /*
 3409                  * If all bits except some of the supported flags are
 3410                  * set, the user combined the all-types flag (A) with
 3411                  * a negated flag to exclude some types (e.g. A-f to
 3412                  * show all object types except plain files).
 3413                  */
 3414                 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
 3415                         match = B_FALSE;
 3416 
 3417                 break;
 3418         }
 3419 
 3420         return (match);
 3421 }
 3422 
 3423 static void
 3424 dump_object(objset_t *os, uint64_t object, int verbosity,
 3425     boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
 3426 {
 3427         dmu_buf_t *db = NULL;
 3428         dmu_object_info_t doi;
 3429         dnode_t *dn;
 3430         boolean_t dnode_held = B_FALSE;
 3431         void *bonus = NULL;
 3432         size_t bsize = 0;
 3433         char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
 3434         char bonus_size[32];
 3435         char aux[50];
 3436         int error;
 3437 
 3438         /* make sure nicenum has enough space */
 3439         _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
 3440         _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
 3441         _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
 3442         _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
 3443         _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
 3444             "bonus_size truncated");
 3445 
 3446         if (*print_header) {
 3447                 (void) printf("\n%10s  %3s  %5s  %5s  %5s  %6s  %5s  %6s  %s\n",
 3448                     "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
 3449                     "lsize", "%full", "type");
 3450                 *print_header = 0;
 3451         }
 3452 
 3453         if (object == 0) {
 3454                 dn = DMU_META_DNODE(os);
 3455                 dmu_object_info_from_dnode(dn, &doi);
 3456         } else {
 3457                 /*
 3458                  * Encrypted datasets will have sensitive bonus buffers
 3459                  * encrypted. Therefore we cannot hold the bonus buffer and
 3460                  * must hold the dnode itself instead.
 3461                  */
 3462                 error = dmu_object_info(os, object, &doi);
 3463                 if (error)
 3464                         fatal("dmu_object_info() failed, errno %u", error);
 3465 
 3466                 if (os->os_encrypted &&
 3467                     DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
 3468                         error = dnode_hold(os, object, FTAG, &dn);
 3469                         if (error)
 3470                                 fatal("dnode_hold() failed, errno %u", error);
 3471                         dnode_held = B_TRUE;
 3472                 } else {
 3473                         error = dmu_bonus_hold(os, object, FTAG, &db);
 3474                         if (error)
 3475                                 fatal("dmu_bonus_hold(%llu) failed, errno %u",
 3476                                     object, error);
 3477                         bonus = db->db_data;
 3478                         bsize = db->db_size;
 3479                         dn = DB_DNODE((dmu_buf_impl_t *)db);
 3480                 }
 3481         }
 3482 
 3483         /*
 3484          * Default to showing all object types if no flags were specified.
 3485          */
 3486         if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
 3487             !match_object_type(doi.doi_type, flags))
 3488                 goto out;
 3489 
 3490         if (dnode_slots_used)
 3491                 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
 3492 
 3493         zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
 3494         zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
 3495         zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
 3496         zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
 3497         zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
 3498         zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
 3499         (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
 3500             doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
 3501             DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
 3502 
 3503         aux[0] = '\0';
 3504 
 3505         if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
 3506                 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
 3507                     " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
 3508         }
 3509 
 3510         if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
 3511             ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
 3512                 const char *compname = NULL;
 3513                 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
 3514                     ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
 3515                     &compname) == 0) {
 3516                         (void) snprintf(aux + strlen(aux),
 3517                             sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
 3518                             compname);
 3519                 } else {
 3520                         (void) snprintf(aux + strlen(aux),
 3521                             sizeof (aux) - strlen(aux),
 3522                             " (Z=inherit=%s-unknown)",
 3523                             ZDB_COMPRESS_NAME(os->os_compress));
 3524                 }
 3525         } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
 3526                 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
 3527                     " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
 3528         } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
 3529                 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
 3530                     " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
 3531         }
 3532 
 3533         (void) printf("%10lld  %3u  %5s  %5s  %5s  %6s  %5s  %6s  %s%s\n",
 3534             (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
 3535             asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
 3536 
 3537         if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
 3538                 (void) printf("%10s  %3s  %5s  %5s  %5s  %5s  %5s  %6s  %s\n",
 3539                     "", "", "", "", "", "", bonus_size, "bonus",
 3540                     zdb_ot_name(doi.doi_bonus_type));
 3541         }
 3542 
 3543         if (verbosity >= 4) {
 3544                 (void) printf("\tdnode flags: %s%s%s%s\n",
 3545                     (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
 3546                     "USED_BYTES " : "",
 3547                     (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
 3548                     "USERUSED_ACCOUNTED " : "",
 3549                     (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
 3550                     "USEROBJUSED_ACCOUNTED " : "",
 3551                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
 3552                     "SPILL_BLKPTR" : "");
 3553                 (void) printf("\tdnode maxblkid: %llu\n",
 3554                     (longlong_t)dn->dn_phys->dn_maxblkid);
 3555 
 3556                 if (!dnode_held) {
 3557                         object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
 3558                             object, bonus, bsize);
 3559                 } else {
 3560                         (void) printf("\t\t(bonus encrypted)\n");
 3561                 }
 3562 
 3563                 if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) {
 3564                         object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
 3565                             NULL, 0);
 3566                 } else {
 3567                         (void) printf("\t\t(object encrypted)\n");
 3568                 }
 3569 
 3570                 *print_header = B_TRUE;
 3571         }
 3572 
 3573         if (verbosity >= 5) {
 3574                 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 3575                         char blkbuf[BP_SPRINTF_LEN];
 3576                         snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
 3577                             DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
 3578                         (void) printf("\nSpill block: %s\n", blkbuf);
 3579                 }
 3580                 dump_indirect(dn);
 3581         }
 3582 
 3583         if (verbosity >= 5) {
 3584                 /*
 3585                  * Report the list of segments that comprise the object.
 3586                  */
 3587                 uint64_t start = 0;
 3588                 uint64_t end;
 3589                 uint64_t blkfill = 1;
 3590                 int minlvl = 1;
 3591 
 3592                 if (dn->dn_type == DMU_OT_DNODE) {
 3593                         minlvl = 0;
 3594                         blkfill = DNODES_PER_BLOCK;
 3595                 }
 3596 
 3597                 for (;;) {
 3598                         char segsize[32];
 3599                         /* make sure nicenum has enough space */
 3600                         _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
 3601                             "segsize truncated");
 3602                         error = dnode_next_offset(dn,
 3603                             0, &start, minlvl, blkfill, 0);
 3604                         if (error)
 3605                                 break;
 3606                         end = start;
 3607                         error = dnode_next_offset(dn,
 3608                             DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
 3609                         zdb_nicenum(end - start, segsize, sizeof (segsize));
 3610                         (void) printf("\t\tsegment [%016llx, %016llx)"
 3611                             " size %5s\n", (u_longlong_t)start,
 3612                             (u_longlong_t)end, segsize);
 3613                         if (error)
 3614                                 break;
 3615                         start = end;
 3616                 }
 3617         }
 3618 
 3619 out:
 3620         if (db != NULL)
 3621                 dmu_buf_rele(db, FTAG);
 3622         if (dnode_held)
 3623                 dnode_rele(dn, FTAG);
 3624 }
 3625 
 3626 static void
 3627 count_dir_mos_objects(dsl_dir_t *dd)
 3628 {
 3629         mos_obj_refd(dd->dd_object);
 3630         mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
 3631         mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
 3632         mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
 3633         mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
 3634 
 3635         /*
 3636          * The dd_crypto_obj can be referenced by multiple dsl_dir's.
 3637          * Ignore the references after the first one.
 3638          */
 3639         mos_obj_refd_multiple(dd->dd_crypto_obj);
 3640 }
 3641 
 3642 static void
 3643 count_ds_mos_objects(dsl_dataset_t *ds)
 3644 {
 3645         mos_obj_refd(ds->ds_object);
 3646         mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
 3647         mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
 3648         mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
 3649         mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
 3650         mos_obj_refd(ds->ds_bookmarks_obj);
 3651 
 3652         if (!dsl_dataset_is_snapshot(ds)) {
 3653                 count_dir_mos_objects(ds->ds_dir);
 3654         }
 3655 }
 3656 
 3657 static const char *const objset_types[DMU_OST_NUMTYPES] = {
 3658         "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
 3659 
 3660 /*
 3661  * Parse a string denoting a range of object IDs of the form
 3662  * <start>[:<end>[:flags]], and store the results in zor.
 3663  * Return 0 on success. On error, return 1 and update the msg
 3664  * pointer to point to a descriptive error message.
 3665  */
 3666 static int
 3667 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
 3668 {
 3669         uint64_t flags = 0;
 3670         char *p, *s, *dup, *flagstr, *tmp = NULL;
 3671         size_t len;
 3672         int i;
 3673         int rc = 0;
 3674 
 3675         if (strchr(range, ':') == NULL) {
 3676                 zor->zor_obj_start = strtoull(range, &p, 0);
 3677                 if (*p != '\0') {
 3678                         *msg = "Invalid characters in object ID";
 3679                         rc = 1;
 3680                 }
 3681                 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
 3682                 zor->zor_obj_end = zor->zor_obj_start;
 3683                 return (rc);
 3684         }
 3685 
 3686         if (strchr(range, ':') == range) {
 3687                 *msg = "Invalid leading colon";
 3688                 rc = 1;
 3689                 return (rc);
 3690         }
 3691 
 3692         len = strlen(range);
 3693         if (range[len - 1] == ':') {
 3694                 *msg = "Invalid trailing colon";
 3695                 rc = 1;
 3696                 return (rc);
 3697         }
 3698 
 3699         dup = strdup(range);
 3700         s = strtok_r(dup, ":", &tmp);
 3701         zor->zor_obj_start = strtoull(s, &p, 0);
 3702 
 3703         if (*p != '\0') {
 3704                 *msg = "Invalid characters in start object ID";
 3705                 rc = 1;
 3706                 goto out;
 3707         }
 3708 
 3709         s = strtok_r(NULL, ":", &tmp);
 3710         zor->zor_obj_end = strtoull(s, &p, 0);
 3711 
 3712         if (*p != '\0') {
 3713                 *msg = "Invalid characters in end object ID";
 3714                 rc = 1;
 3715                 goto out;
 3716         }
 3717 
 3718         if (zor->zor_obj_start > zor->zor_obj_end) {
 3719                 *msg = "Start object ID may not exceed end object ID";
 3720                 rc = 1;
 3721                 goto out;
 3722         }
 3723 
 3724         s = strtok_r(NULL, ":", &tmp);
 3725         if (s == NULL) {
 3726                 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
 3727                 goto out;
 3728         } else if (strtok_r(NULL, ":", &tmp) != NULL) {
 3729                 *msg = "Invalid colon-delimited field after flags";
 3730                 rc = 1;
 3731                 goto out;
 3732         }
 3733 
 3734         flagstr = s;
 3735         for (i = 0; flagstr[i]; i++) {
 3736                 int bit;
 3737                 boolean_t negation = (flagstr[i] == '-');
 3738 
 3739                 if (negation) {
 3740                         i++;
 3741                         if (flagstr[i] == '\0') {
 3742                                 *msg = "Invalid trailing negation operator";
 3743                                 rc = 1;
 3744                                 goto out;
 3745                         }
 3746                 }
 3747                 bit = flagbits[(uchar_t)flagstr[i]];
 3748                 if (bit == 0) {
 3749                         *msg = "Invalid flag";
 3750                         rc = 1;
 3751                         goto out;
 3752                 }
 3753                 if (negation)
 3754                         flags &= ~bit;
 3755                 else
 3756                         flags |= bit;
 3757         }
 3758         zor->zor_flags = flags;
 3759 
 3760         zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
 3761         zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
 3762 
 3763 out:
 3764         free(dup);
 3765         return (rc);
 3766 }
 3767 
 3768 static void
 3769 dump_objset(objset_t *os)
 3770 {
 3771         dmu_objset_stats_t dds = { 0 };
 3772         uint64_t object, object_count;
 3773         uint64_t refdbytes, usedobjs, scratch;
 3774         char numbuf[32];
 3775         char blkbuf[BP_SPRINTF_LEN + 20];
 3776         char osname[ZFS_MAX_DATASET_NAME_LEN];
 3777         const char *type = "UNKNOWN";
 3778         int verbosity = dump_opt['d'];
 3779         boolean_t print_header;
 3780         unsigned i;
 3781         int error;
 3782         uint64_t total_slots_used = 0;
 3783         uint64_t max_slot_used = 0;
 3784         uint64_t dnode_slots;
 3785         uint64_t obj_start;
 3786         uint64_t obj_end;
 3787         uint64_t flags;
 3788 
 3789         /* make sure nicenum has enough space */
 3790         _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
 3791 
 3792         dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
 3793         dmu_objset_fast_stat(os, &dds);
 3794         dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
 3795 
 3796         print_header = B_TRUE;
 3797 
 3798         if (dds.dds_type < DMU_OST_NUMTYPES)
 3799                 type = objset_types[dds.dds_type];
 3800 
 3801         if (dds.dds_type == DMU_OST_META) {
 3802                 dds.dds_creation_txg = TXG_INITIAL;
 3803                 usedobjs = BP_GET_FILL(os->os_rootbp);
 3804                 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
 3805                     dd_used_bytes;
 3806         } else {
 3807                 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
 3808         }
 3809 
 3810         ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
 3811 
 3812         zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
 3813 
 3814         if (verbosity >= 4) {
 3815                 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
 3816                 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
 3817                     sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
 3818         } else {
 3819                 blkbuf[0] = '\0';
 3820         }
 3821 
 3822         dmu_objset_name(os, osname);
 3823 
 3824         (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
 3825             "%s, %llu objects%s%s\n",
 3826             osname, type, (u_longlong_t)dmu_objset_id(os),
 3827             (u_longlong_t)dds.dds_creation_txg,
 3828             numbuf, (u_longlong_t)usedobjs, blkbuf,
 3829             (dds.dds_inconsistent) ? " (inconsistent)" : "");
 3830 
 3831         for (i = 0; i < zopt_object_args; i++) {
 3832                 obj_start = zopt_object_ranges[i].zor_obj_start;
 3833                 obj_end = zopt_object_ranges[i].zor_obj_end;
 3834                 flags = zopt_object_ranges[i].zor_flags;
 3835 
 3836                 object = obj_start;
 3837                 if (object == 0 || obj_start == obj_end)
 3838                         dump_object(os, object, verbosity, &print_header, NULL,
 3839                             flags);
 3840                 else
 3841                         object--;
 3842 
 3843                 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
 3844                     object <= obj_end) {
 3845                         dump_object(os, object, verbosity, &print_header, NULL,
 3846                             flags);
 3847                 }
 3848         }
 3849 
 3850         if (zopt_object_args > 0) {
 3851                 (void) printf("\n");
 3852                 return;
 3853         }
 3854 
 3855         if (dump_opt['i'] != 0 || verbosity >= 2)
 3856                 dump_intent_log(dmu_objset_zil(os));
 3857 
 3858         if (dmu_objset_ds(os) != NULL) {
 3859                 dsl_dataset_t *ds = dmu_objset_ds(os);
 3860                 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
 3861                 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
 3862                     !dmu_objset_is_snapshot(os)) {
 3863                         dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
 3864                         if (verify_dd_livelist(os) != 0)
 3865                                 fatal("livelist is incorrect");
 3866                 }
 3867 
 3868                 if (dsl_dataset_remap_deadlist_exists(ds)) {
 3869                         (void) printf("ds_remap_deadlist:\n");
 3870                         dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
 3871                 }
 3872                 count_ds_mos_objects(ds);
 3873         }
 3874 
 3875         if (dmu_objset_ds(os) != NULL)
 3876                 dump_bookmarks(os, verbosity);
 3877 
 3878         if (verbosity < 2)
 3879                 return;
 3880 
 3881         if (BP_IS_HOLE(os->os_rootbp))
 3882                 return;
 3883 
 3884         dump_object(os, 0, verbosity, &print_header, NULL, 0);
 3885         object_count = 0;
 3886         if (DMU_USERUSED_DNODE(os) != NULL &&
 3887             DMU_USERUSED_DNODE(os)->dn_type != 0) {
 3888                 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
 3889                     NULL, 0);
 3890                 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
 3891                     NULL, 0);
 3892         }
 3893 
 3894         if (DMU_PROJECTUSED_DNODE(os) != NULL &&
 3895             DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
 3896                 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
 3897                     &print_header, NULL, 0);
 3898 
 3899         object = 0;
 3900         while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
 3901                 dump_object(os, object, verbosity, &print_header, &dnode_slots,
 3902                     0);
 3903                 object_count++;
 3904                 total_slots_used += dnode_slots;
 3905                 max_slot_used = object + dnode_slots - 1;
 3906         }
 3907 
 3908         (void) printf("\n");
 3909 
 3910         (void) printf("    Dnode slots:\n");
 3911         (void) printf("\tTotal used:    %10llu\n",
 3912             (u_longlong_t)total_slots_used);
 3913         (void) printf("\tMax used:      %10llu\n",
 3914             (u_longlong_t)max_slot_used);
 3915         (void) printf("\tPercent empty: %10lf\n",
 3916             (double)(max_slot_used - total_slots_used)*100 /
 3917             (double)max_slot_used);
 3918         (void) printf("\n");
 3919 
 3920         if (error != ESRCH) {
 3921                 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
 3922                 abort();
 3923         }
 3924 
 3925         ASSERT3U(object_count, ==, usedobjs);
 3926 
 3927         if (leaked_objects != 0) {
 3928                 (void) printf("%d potentially leaked objects detected\n",
 3929                     leaked_objects);
 3930                 leaked_objects = 0;
 3931         }
 3932 }
 3933 
 3934 static void
 3935 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
 3936 {
 3937         time_t timestamp = ub->ub_timestamp;
 3938 
 3939         (void) printf("%s", header ? header : "");
 3940         (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
 3941         (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
 3942         (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
 3943         (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
 3944         (void) printf("\ttimestamp = %llu UTC = %s",
 3945             (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
 3946 
 3947         (void) printf("\tmmp_magic = %016llx\n",
 3948             (u_longlong_t)ub->ub_mmp_magic);
 3949         if (MMP_VALID(ub)) {
 3950                 (void) printf("\tmmp_delay = %0llu\n",
 3951                     (u_longlong_t)ub->ub_mmp_delay);
 3952                 if (MMP_SEQ_VALID(ub))
 3953                         (void) printf("\tmmp_seq = %u\n",
 3954                             (unsigned int) MMP_SEQ(ub));
 3955                 if (MMP_FAIL_INT_VALID(ub))
 3956                         (void) printf("\tmmp_fail = %u\n",
 3957                             (unsigned int) MMP_FAIL_INT(ub));
 3958                 if (MMP_INTERVAL_VALID(ub))
 3959                         (void) printf("\tmmp_write = %u\n",
 3960                             (unsigned int) MMP_INTERVAL(ub));
 3961                 /* After MMP_* to make summarize_uberblock_mmp cleaner */
 3962                 (void) printf("\tmmp_valid = %x\n",
 3963                     (unsigned int) ub->ub_mmp_config & 0xFF);
 3964         }
 3965 
 3966         if (dump_opt['u'] >= 4) {
 3967                 char blkbuf[BP_SPRINTF_LEN];
 3968                 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
 3969                 (void) printf("\trootbp = %s\n", blkbuf);
 3970         }
 3971         (void) printf("\tcheckpoint_txg = %llu\n",
 3972             (u_longlong_t)ub->ub_checkpoint_txg);
 3973         (void) printf("%s", footer ? footer : "");
 3974 }
 3975 
 3976 static void
 3977 dump_config(spa_t *spa)
 3978 {
 3979         dmu_buf_t *db;
 3980         size_t nvsize = 0;
 3981         int error = 0;
 3982 
 3983 
 3984         error = dmu_bonus_hold(spa->spa_meta_objset,
 3985             spa->spa_config_object, FTAG, &db);
 3986 
 3987         if (error == 0) {
 3988                 nvsize = *(uint64_t *)db->db_data;
 3989                 dmu_buf_rele(db, FTAG);
 3990 
 3991                 (void) printf("\nMOS Configuration:\n");
 3992                 dump_packed_nvlist(spa->spa_meta_objset,
 3993                     spa->spa_config_object, (void *)&nvsize, 1);
 3994         } else {
 3995                 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
 3996                     (u_longlong_t)spa->spa_config_object, error);
 3997         }
 3998 }
 3999 
 4000 static void
 4001 dump_cachefile(const char *cachefile)
 4002 {
 4003         int fd;
 4004         struct stat64 statbuf;
 4005         char *buf;
 4006         nvlist_t *config;
 4007 
 4008         if ((fd = open64(cachefile, O_RDONLY)) < 0) {
 4009                 (void) printf("cannot open '%s': %s\n", cachefile,
 4010                     strerror(errno));
 4011                 exit(1);
 4012         }
 4013 
 4014         if (fstat64(fd, &statbuf) != 0) {
 4015                 (void) printf("failed to stat '%s': %s\n", cachefile,
 4016                     strerror(errno));
 4017                 exit(1);
 4018         }
 4019 
 4020         if ((buf = malloc(statbuf.st_size)) == NULL) {
 4021                 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
 4022                     (u_longlong_t)statbuf.st_size);
 4023                 exit(1);
 4024         }
 4025 
 4026         if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
 4027                 (void) fprintf(stderr, "failed to read %llu bytes\n",
 4028                     (u_longlong_t)statbuf.st_size);
 4029                 exit(1);
 4030         }
 4031 
 4032         (void) close(fd);
 4033 
 4034         if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
 4035                 (void) fprintf(stderr, "failed to unpack nvlist\n");
 4036                 exit(1);
 4037         }
 4038 
 4039         free(buf);
 4040 
 4041         dump_nvlist(config, 0);
 4042 
 4043         nvlist_free(config);
 4044 }
 4045 
 4046 /*
 4047  * ZFS label nvlist stats
 4048  */
 4049 typedef struct zdb_nvl_stats {
 4050         int             zns_list_count;
 4051         int             zns_leaf_count;
 4052         size_t          zns_leaf_largest;
 4053         size_t          zns_leaf_total;
 4054         nvlist_t        *zns_string;
 4055         nvlist_t        *zns_uint64;
 4056         nvlist_t        *zns_boolean;
 4057 } zdb_nvl_stats_t;
 4058 
 4059 static void
 4060 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
 4061 {
 4062         nvlist_t *list, **array;
 4063         nvpair_t *nvp = NULL;
 4064         char *name;
 4065         uint_t i, items;
 4066 
 4067         stats->zns_list_count++;
 4068 
 4069         while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
 4070                 name = nvpair_name(nvp);
 4071 
 4072                 switch (nvpair_type(nvp)) {
 4073                 case DATA_TYPE_STRING:
 4074                         fnvlist_add_string(stats->zns_string, name,
 4075                             fnvpair_value_string(nvp));
 4076                         break;
 4077                 case DATA_TYPE_UINT64:
 4078                         fnvlist_add_uint64(stats->zns_uint64, name,
 4079                             fnvpair_value_uint64(nvp));
 4080                         break;
 4081                 case DATA_TYPE_BOOLEAN:
 4082                         fnvlist_add_boolean(stats->zns_boolean, name);
 4083                         break;
 4084                 case DATA_TYPE_NVLIST:
 4085                         if (nvpair_value_nvlist(nvp, &list) == 0)
 4086                                 collect_nvlist_stats(list, stats);
 4087                         break;
 4088                 case DATA_TYPE_NVLIST_ARRAY:
 4089                         if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
 4090                                 break;
 4091 
 4092                         for (i = 0; i < items; i++) {
 4093                                 collect_nvlist_stats(array[i], stats);
 4094 
 4095                                 /* collect stats on leaf vdev */
 4096                                 if (strcmp(name, "children") == 0) {
 4097                                         size_t size;
 4098 
 4099                                         (void) nvlist_size(array[i], &size,
 4100                                             NV_ENCODE_XDR);
 4101                                         stats->zns_leaf_total += size;
 4102                                         if (size > stats->zns_leaf_largest)
 4103                                                 stats->zns_leaf_largest = size;
 4104                                         stats->zns_leaf_count++;
 4105                                 }
 4106                         }
 4107                         break;
 4108                 default:
 4109                         (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
 4110                 }
 4111         }
 4112 }
 4113 
 4114 static void
 4115 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
 4116 {
 4117         zdb_nvl_stats_t stats = { 0 };
 4118         size_t size, sum = 0, total;
 4119         size_t noise;
 4120 
 4121         /* requires nvlist with non-unique names for stat collection */
 4122         VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
 4123         VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
 4124         VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
 4125         VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
 4126 
 4127         (void) printf("\n\nZFS Label NVList Config Stats:\n");
 4128 
 4129         VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
 4130         (void) printf("  %d bytes used, %d bytes free (using %4.1f%%)\n\n",
 4131             (int)total, (int)(cap - total), 100.0 * total / cap);
 4132 
 4133         collect_nvlist_stats(nvl, &stats);
 4134 
 4135         VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
 4136         size -= noise;
 4137         sum += size;
 4138         (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
 4139             (int)fnvlist_num_pairs(stats.zns_uint64),
 4140             (int)size, 100.0 * size / total);
 4141 
 4142         VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
 4143         size -= noise;
 4144         sum += size;
 4145         (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
 4146             (int)fnvlist_num_pairs(stats.zns_string),
 4147             (int)size, 100.0 * size / total);
 4148 
 4149         VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
 4150         size -= noise;
 4151         sum += size;
 4152         (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
 4153             (int)fnvlist_num_pairs(stats.zns_boolean),
 4154             (int)size, 100.0 * size / total);
 4155 
 4156         size = total - sum;     /* treat remainder as nvlist overhead */
 4157         (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
 4158             stats.zns_list_count, (int)size, 100.0 * size / total);
 4159 
 4160         if (stats.zns_leaf_count > 0) {
 4161                 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
 4162 
 4163                 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
 4164                     stats.zns_leaf_count, (int)average);
 4165                 (void) printf("%24d bytes largest\n",
 4166                     (int)stats.zns_leaf_largest);
 4167 
 4168                 if (dump_opt['l'] >= 3 && average > 0)
 4169                         (void) printf("  space for %d additional leaf vdevs\n",
 4170                             (int)((cap - total) / average));
 4171         }
 4172         (void) printf("\n");
 4173 
 4174         nvlist_free(stats.zns_string);
 4175         nvlist_free(stats.zns_uint64);
 4176         nvlist_free(stats.zns_boolean);
 4177 }
 4178 
 4179 typedef struct cksum_record {
 4180         zio_cksum_t cksum;
 4181         boolean_t labels[VDEV_LABELS];
 4182         avl_node_t link;
 4183 } cksum_record_t;
 4184 
 4185 static int
 4186 cksum_record_compare(const void *x1, const void *x2)
 4187 {
 4188         const cksum_record_t *l = (cksum_record_t *)x1;
 4189         const cksum_record_t *r = (cksum_record_t *)x2;
 4190         int arraysize = ARRAY_SIZE(l->cksum.zc_word);
 4191         int difference = 0;
 4192 
 4193         for (int i = 0; i < arraysize; i++) {
 4194                 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
 4195                 if (difference)
 4196                         break;
 4197         }
 4198 
 4199         return (difference);
 4200 }
 4201 
 4202 static cksum_record_t *
 4203 cksum_record_alloc(zio_cksum_t *cksum, int l)
 4204 {
 4205         cksum_record_t *rec;
 4206 
 4207         rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
 4208         rec->cksum = *cksum;
 4209         rec->labels[l] = B_TRUE;
 4210 
 4211         return (rec);
 4212 }
 4213 
 4214 static cksum_record_t *
 4215 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
 4216 {
 4217         cksum_record_t lookup = { .cksum = *cksum };
 4218         avl_index_t where;
 4219 
 4220         return (avl_find(tree, &lookup, &where));
 4221 }
 4222 
 4223 static cksum_record_t *
 4224 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
 4225 {
 4226         cksum_record_t *rec;
 4227 
 4228         rec = cksum_record_lookup(tree, cksum);
 4229         if (rec) {
 4230                 rec->labels[l] = B_TRUE;
 4231         } else {
 4232                 rec = cksum_record_alloc(cksum, l);
 4233                 avl_add(tree, rec);
 4234         }
 4235 
 4236         return (rec);
 4237 }
 4238 
 4239 static int
 4240 first_label(cksum_record_t *rec)
 4241 {
 4242         for (int i = 0; i < VDEV_LABELS; i++)
 4243                 if (rec->labels[i])
 4244                         return (i);
 4245 
 4246         return (-1);
 4247 }
 4248 
 4249 static void
 4250 print_label_numbers(const char *prefix, const cksum_record_t *rec)
 4251 {
 4252         fputs(prefix, stdout);
 4253         for (int i = 0; i < VDEV_LABELS; i++)
 4254                 if (rec->labels[i] == B_TRUE)
 4255                         printf("%d ", i);
 4256         putchar('\n');
 4257 }
 4258 
 4259 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
 4260 
 4261 typedef struct zdb_label {
 4262         vdev_label_t label;
 4263         uint64_t label_offset;
 4264         nvlist_t *config_nv;
 4265         cksum_record_t *config;
 4266         cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
 4267         boolean_t header_printed;
 4268         boolean_t read_failed;
 4269         boolean_t cksum_valid;
 4270 } zdb_label_t;
 4271 
 4272 static void
 4273 print_label_header(zdb_label_t *label, int l)
 4274 {
 4275 
 4276         if (dump_opt['q'])
 4277                 return;
 4278 
 4279         if (label->header_printed == B_TRUE)
 4280                 return;
 4281 
 4282         (void) printf("------------------------------------\n");
 4283         (void) printf("LABEL %d %s\n", l,
 4284             label->cksum_valid ? "" : "(Bad label cksum)");
 4285         (void) printf("------------------------------------\n");
 4286 
 4287         label->header_printed = B_TRUE;
 4288 }
 4289 
 4290 static void
 4291 print_l2arc_header(void)
 4292 {
 4293         (void) printf("------------------------------------\n");
 4294         (void) printf("L2ARC device header\n");
 4295         (void) printf("------------------------------------\n");
 4296 }
 4297 
 4298 static void
 4299 print_l2arc_log_blocks(void)
 4300 {
 4301         (void) printf("------------------------------------\n");
 4302         (void) printf("L2ARC device log blocks\n");
 4303         (void) printf("------------------------------------\n");
 4304 }
 4305 
 4306 static void
 4307 dump_l2arc_log_entries(uint64_t log_entries,
 4308     l2arc_log_ent_phys_t *le, uint64_t i)
 4309 {
 4310         for (int j = 0; j < log_entries; j++) {
 4311                 dva_t dva = le[j].le_dva;
 4312                 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
 4313                     "vdev: %llu, offset: %llu\n",
 4314                     (u_longlong_t)i, j + 1,
 4315                     (u_longlong_t)DVA_GET_ASIZE(&dva),
 4316                     (u_longlong_t)DVA_GET_VDEV(&dva),
 4317                     (u_longlong_t)DVA_GET_OFFSET(&dva));
 4318                 (void) printf("|\t\t\t\tbirth: %llu\n",
 4319                     (u_longlong_t)le[j].le_birth);
 4320                 (void) printf("|\t\t\t\tlsize: %llu\n",
 4321                     (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
 4322                 (void) printf("|\t\t\t\tpsize: %llu\n",
 4323                     (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
 4324                 (void) printf("|\t\t\t\tcompr: %llu\n",
 4325                     (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
 4326                 (void) printf("|\t\t\t\tcomplevel: %llu\n",
 4327                     (u_longlong_t)(&le[j])->le_complevel);
 4328                 (void) printf("|\t\t\t\ttype: %llu\n",
 4329                     (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
 4330                 (void) printf("|\t\t\t\tprotected: %llu\n",
 4331                     (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
 4332                 (void) printf("|\t\t\t\tprefetch: %llu\n",
 4333                     (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
 4334                 (void) printf("|\t\t\t\taddress: %llu\n",
 4335                     (u_longlong_t)le[j].le_daddr);
 4336                 (void) printf("|\t\t\t\tARC state: %llu\n",
 4337                     (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
 4338                 (void) printf("|\n");
 4339         }
 4340         (void) printf("\n");
 4341 }
 4342 
 4343 static void
 4344 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
 4345 {
 4346         (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
 4347         (void) printf("|\t\tpayload_asize: %llu\n",
 4348             (u_longlong_t)lbps->lbp_payload_asize);
 4349         (void) printf("|\t\tpayload_start: %llu\n",
 4350             (u_longlong_t)lbps->lbp_payload_start);
 4351         (void) printf("|\t\tlsize: %llu\n",
 4352             (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
 4353         (void) printf("|\t\tasize: %llu\n",
 4354             (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
 4355         (void) printf("|\t\tcompralgo: %llu\n",
 4356             (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
 4357         (void) printf("|\t\tcksumalgo: %llu\n",
 4358             (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
 4359         (void) printf("|\n\n");
 4360 }
 4361 
 4362 static void
 4363 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
 4364     l2arc_dev_hdr_phys_t *rebuild)
 4365 {
 4366         l2arc_log_blk_phys_t this_lb;
 4367         uint64_t asize;
 4368         l2arc_log_blkptr_t lbps[2];
 4369         abd_t *abd;
 4370         zio_cksum_t cksum;
 4371         int failed = 0;
 4372         l2arc_dev_t dev;
 4373 
 4374         if (!dump_opt['q'])
 4375                 print_l2arc_log_blocks();
 4376         memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
 4377 
 4378         dev.l2ad_evict = l2dhdr->dh_evict;
 4379         dev.l2ad_start = l2dhdr->dh_start;
 4380         dev.l2ad_end = l2dhdr->dh_end;
 4381 
 4382         if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
 4383                 /* no log blocks to read */
 4384                 if (!dump_opt['q']) {
 4385                         (void) printf("No log blocks to read\n");
 4386                         (void) printf("\n");
 4387                 }
 4388                 return;
 4389         } else {
 4390                 dev.l2ad_hand = lbps[0].lbp_daddr +
 4391                     L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
 4392         }
 4393 
 4394         dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
 4395 
 4396         for (;;) {
 4397                 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
 4398                         break;
 4399 
 4400                 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
 4401                 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
 4402                 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
 4403                         if (!dump_opt['q']) {
 4404                                 (void) printf("Error while reading next log "
 4405                                     "block\n\n");
 4406                         }
 4407                         break;
 4408                 }
 4409 
 4410                 fletcher_4_native_varsize(&this_lb, asize, &cksum);
 4411                 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
 4412                         failed++;
 4413                         if (!dump_opt['q']) {
 4414                                 (void) printf("Invalid cksum\n");
 4415                                 dump_l2arc_log_blkptr(&lbps[0]);
 4416                         }
 4417                         break;
 4418                 }
 4419 
 4420                 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
 4421                 case ZIO_COMPRESS_OFF:
 4422                         break;
 4423                 default:
 4424                         abd = abd_alloc_for_io(asize, B_TRUE);
 4425                         abd_copy_from_buf_off(abd, &this_lb, 0, asize);
 4426                         if (zio_decompress_data(L2BLK_GET_COMPRESS(
 4427                             (&lbps[0])->lbp_prop), abd, &this_lb,
 4428                             asize, sizeof (this_lb), NULL) != 0) {
 4429                                 (void) printf("L2ARC block decompression "
 4430                                     "failed\n");
 4431                                 abd_free(abd);
 4432                                 goto out;
 4433                         }
 4434                         abd_free(abd);
 4435                         break;
 4436                 }
 4437 
 4438                 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
 4439                         byteswap_uint64_array(&this_lb, sizeof (this_lb));
 4440                 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
 4441                         if (!dump_opt['q'])
 4442                                 (void) printf("Invalid log block magic\n\n");
 4443                         break;
 4444                 }
 4445 
 4446                 rebuild->dh_lb_count++;
 4447                 rebuild->dh_lb_asize += asize;
 4448                 if (dump_opt['l'] > 1 && !dump_opt['q']) {
 4449                         (void) printf("lb[%4llu]\tmagic: %llu\n",
 4450                             (u_longlong_t)rebuild->dh_lb_count,
 4451                             (u_longlong_t)this_lb.lb_magic);
 4452                         dump_l2arc_log_blkptr(&lbps[0]);
 4453                 }
 4454 
 4455                 if (dump_opt['l'] > 2 && !dump_opt['q'])
 4456                         dump_l2arc_log_entries(l2dhdr->dh_log_entries,
 4457                             this_lb.lb_entries,
 4458                             rebuild->dh_lb_count);
 4459 
 4460                 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
 4461                     lbps[0].lbp_payload_start, dev.l2ad_evict) &&
 4462                     !dev.l2ad_first)
 4463                         break;
 4464 
 4465                 lbps[0] = lbps[1];
 4466                 lbps[1] = this_lb.lb_prev_lbp;
 4467         }
 4468 out:
 4469         if (!dump_opt['q']) {
 4470                 (void) printf("log_blk_count:\t %llu with valid cksum\n",
 4471                     (u_longlong_t)rebuild->dh_lb_count);
 4472                 (void) printf("\t\t %d with invalid cksum\n", failed);
 4473                 (void) printf("log_blk_asize:\t %llu\n\n",
 4474                     (u_longlong_t)rebuild->dh_lb_asize);
 4475         }
 4476 }
 4477 
 4478 static int
 4479 dump_l2arc_header(int fd)
 4480 {
 4481         l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
 4482         int error = B_FALSE;
 4483 
 4484         if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
 4485             VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
 4486                 error = B_TRUE;
 4487         } else {
 4488                 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
 4489                         byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
 4490 
 4491                 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
 4492                         error = B_TRUE;
 4493         }
 4494 
 4495         if (error) {
 4496                 (void) printf("L2ARC device header not found\n\n");
 4497                 /* Do not return an error here for backward compatibility */
 4498                 return (0);
 4499         } else if (!dump_opt['q']) {
 4500                 print_l2arc_header();
 4501 
 4502                 (void) printf("    magic: %llu\n",
 4503                     (u_longlong_t)l2dhdr.dh_magic);
 4504                 (void) printf("    version: %llu\n",
 4505                     (u_longlong_t)l2dhdr.dh_version);
 4506                 (void) printf("    pool_guid: %llu\n",
 4507                     (u_longlong_t)l2dhdr.dh_spa_guid);
 4508                 (void) printf("    flags: %llu\n",
 4509                     (u_longlong_t)l2dhdr.dh_flags);
 4510                 (void) printf("    start_lbps[0]: %llu\n",
 4511                     (u_longlong_t)
 4512                     l2dhdr.dh_start_lbps[0].lbp_daddr);
 4513                 (void) printf("    start_lbps[1]: %llu\n",
 4514                     (u_longlong_t)
 4515                     l2dhdr.dh_start_lbps[1].lbp_daddr);
 4516                 (void) printf("    log_blk_ent: %llu\n",
 4517                     (u_longlong_t)l2dhdr.dh_log_entries);
 4518                 (void) printf("    start: %llu\n",
 4519                     (u_longlong_t)l2dhdr.dh_start);
 4520                 (void) printf("    end: %llu\n",
 4521                     (u_longlong_t)l2dhdr.dh_end);
 4522                 (void) printf("    evict: %llu\n",
 4523                     (u_longlong_t)l2dhdr.dh_evict);
 4524                 (void) printf("    lb_asize_refcount: %llu\n",
 4525                     (u_longlong_t)l2dhdr.dh_lb_asize);
 4526                 (void) printf("    lb_count_refcount: %llu\n",
 4527                     (u_longlong_t)l2dhdr.dh_lb_count);
 4528                 (void) printf("    trim_action_time: %llu\n",
 4529                     (u_longlong_t)l2dhdr.dh_trim_action_time);
 4530                 (void) printf("    trim_state: %llu\n\n",
 4531                     (u_longlong_t)l2dhdr.dh_trim_state);
 4532         }
 4533 
 4534         dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
 4535         /*
 4536          * The total aligned size of log blocks and the number of log blocks
 4537          * reported in the header of the device may be less than what zdb
 4538          * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
 4539          * This happens because dump_l2arc_log_blocks() lacks the memory
 4540          * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
 4541          * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
 4542          * and dh_lb_count will be lower to begin with than what exists on the
 4543          * device. This is normal and zdb should not exit with an error. The
 4544          * opposite case should never happen though, the values reported in the
 4545          * header should never be higher than what dump_l2arc_log_blocks() and
 4546          * l2arc_rebuild() report. If this happens there is a leak in the
 4547          * accounting of log blocks.
 4548          */
 4549         if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
 4550             l2dhdr.dh_lb_count > rebuild.dh_lb_count)
 4551                 return (1);
 4552 
 4553         return (0);
 4554 }
 4555 
 4556 static void
 4557 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
 4558 {
 4559         if (dump_opt['q'])
 4560                 return;
 4561 
 4562         if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
 4563                 return;
 4564 
 4565         print_label_header(label, l);
 4566         dump_nvlist(label->config_nv, 4);
 4567         print_label_numbers("    labels = ", label->config);
 4568 
 4569         if (dump_opt['l'] >= 2)
 4570                 dump_nvlist_stats(label->config_nv, buflen);
 4571 }
 4572 
 4573 #define ZDB_MAX_UB_HEADER_SIZE 32
 4574 
 4575 static void
 4576 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
 4577 {
 4578 
 4579         vdev_t vd;
 4580         char header[ZDB_MAX_UB_HEADER_SIZE];
 4581 
 4582         vd.vdev_ashift = ashift;
 4583         vd.vdev_top = &vd;
 4584 
 4585         for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
 4586                 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
 4587                 uberblock_t *ub = (void *)((char *)&label->label + uoff);
 4588                 cksum_record_t *rec = label->uberblocks[i];
 4589 
 4590                 if (rec == NULL) {
 4591                         if (dump_opt['u'] >= 2) {
 4592                                 print_label_header(label, label_num);
 4593                                 (void) printf("    Uberblock[%d] invalid\n", i);
 4594                         }
 4595                         continue;
 4596                 }
 4597 
 4598                 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
 4599                         continue;
 4600 
 4601                 if ((dump_opt['u'] < 4) &&
 4602                     (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
 4603                     (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
 4604                         continue;
 4605 
 4606                 print_label_header(label, label_num);
 4607                 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
 4608                     "    Uberblock[%d]\n", i);
 4609                 dump_uberblock(ub, header, "");
 4610                 print_label_numbers("        labels = ", rec);
 4611         }
 4612 }
 4613 
 4614 static char curpath[PATH_MAX];
 4615 
 4616 /*
 4617  * Iterate through the path components, recursively passing
 4618  * current one's obj and remaining path until we find the obj
 4619  * for the last one.
 4620  */
 4621 static int
 4622 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
 4623 {
 4624         int err;
 4625         boolean_t header = B_TRUE;
 4626         uint64_t child_obj;
 4627         char *s;
 4628         dmu_buf_t *db;
 4629         dmu_object_info_t doi;
 4630 
 4631         if ((s = strchr(name, '/')) != NULL)
 4632                 *s = '\0';
 4633         err = zap_lookup(os, obj, name, 8, 1, &child_obj);
 4634 
 4635         (void) strlcat(curpath, name, sizeof (curpath));
 4636 
 4637         if (err != 0) {
 4638                 (void) fprintf(stderr, "failed to lookup %s: %s\n",
 4639                     curpath, strerror(err));
 4640                 return (err);
 4641         }
 4642 
 4643         child_obj = ZFS_DIRENT_OBJ(child_obj);
 4644         err = sa_buf_hold(os, child_obj, FTAG, &db);
 4645         if (err != 0) {
 4646                 (void) fprintf(stderr,
 4647                     "failed to get SA dbuf for obj %llu: %s\n",
 4648                     (u_longlong_t)child_obj, strerror(err));
 4649                 return (EINVAL);
 4650         }
 4651         dmu_object_info_from_db(db, &doi);
 4652         sa_buf_rele(db, FTAG);
 4653 
 4654         if (doi.doi_bonus_type != DMU_OT_SA &&
 4655             doi.doi_bonus_type != DMU_OT_ZNODE) {
 4656                 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
 4657                     doi.doi_bonus_type, (u_longlong_t)child_obj);
 4658                 return (EINVAL);
 4659         }
 4660 
 4661         if (dump_opt['v'] > 6) {
 4662                 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
 4663                     (u_longlong_t)child_obj, curpath, doi.doi_type,
 4664                     doi.doi_bonus_type);
 4665         }
 4666 
 4667         (void) strlcat(curpath, "/", sizeof (curpath));
 4668 
 4669         switch (doi.doi_type) {
 4670         case DMU_OT_DIRECTORY_CONTENTS:
 4671                 if (s != NULL && *(s + 1) != '\0')
 4672                         return (dump_path_impl(os, child_obj, s + 1, retobj));
 4673                 zfs_fallthrough;
 4674         case DMU_OT_PLAIN_FILE_CONTENTS:
 4675                 if (retobj != NULL) {
 4676                         *retobj = child_obj;
 4677                 } else {
 4678                         dump_object(os, child_obj, dump_opt['v'], &header,
 4679                             NULL, 0);
 4680                 }
 4681                 return (0);
 4682         default:
 4683                 (void) fprintf(stderr, "object %llu has non-file/directory "
 4684                     "type %d\n", (u_longlong_t)obj, doi.doi_type);
 4685                 break;
 4686         }
 4687 
 4688         return (EINVAL);
 4689 }
 4690 
 4691 /*
 4692  * Dump the blocks for the object specified by path inside the dataset.
 4693  */
 4694 static int
 4695 dump_path(char *ds, char *path, uint64_t *retobj)
 4696 {
 4697         int err;
 4698         objset_t *os;
 4699         uint64_t root_obj;
 4700 
 4701         err = open_objset(ds, FTAG, &os);
 4702         if (err != 0)
 4703                 return (err);
 4704 
 4705         err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
 4706         if (err != 0) {
 4707                 (void) fprintf(stderr, "can't lookup root znode: %s\n",
 4708                     strerror(err));
 4709                 close_objset(os, FTAG);
 4710                 return (EINVAL);
 4711         }
 4712 
 4713         (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
 4714 
 4715         err = dump_path_impl(os, root_obj, path, retobj);
 4716 
 4717         close_objset(os, FTAG);
 4718         return (err);
 4719 }
 4720 
 4721 static int
 4722 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
 4723 {
 4724         int err = 0;
 4725         uint64_t size, readsize, oursize, offset;
 4726         ssize_t writesize;
 4727         sa_handle_t *hdl;
 4728 
 4729         (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
 4730             destfile);
 4731 
 4732         VERIFY3P(os, ==, sa_os);
 4733         if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
 4734                 (void) printf("Failed to get handle for SA znode\n");
 4735                 return (err);
 4736         }
 4737         if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
 4738                 (void) sa_handle_destroy(hdl);
 4739                 return (err);
 4740         }
 4741         (void) sa_handle_destroy(hdl);
 4742 
 4743         (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
 4744             size);
 4745         if (size == 0) {
 4746                 return (EINVAL);
 4747         }
 4748 
 4749         int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 4750         if (fd == -1)
 4751                 return (errno);
 4752         /*
 4753          * We cap the size at 1 mebibyte here to prevent
 4754          * allocation failures and nigh-infinite printing if the
 4755          * object is extremely large.
 4756          */
 4757         oursize = MIN(size, 1 << 20);
 4758         offset = 0;
 4759         char *buf = kmem_alloc(oursize, KM_NOSLEEP);
 4760         if (buf == NULL) {
 4761                 (void) close(fd);
 4762                 return (ENOMEM);
 4763         }
 4764 
 4765         while (offset < size) {
 4766                 readsize = MIN(size - offset, 1 << 20);
 4767                 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
 4768                 if (err != 0) {
 4769                         (void) printf("got error %u from dmu_read\n", err);
 4770                         kmem_free(buf, oursize);
 4771                         (void) close(fd);
 4772                         return (err);
 4773                 }
 4774                 if (dump_opt['v'] > 3) {
 4775                         (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
 4776                             " error=%d\n", offset, readsize, err);
 4777                 }
 4778 
 4779                 writesize = write(fd, buf, readsize);
 4780                 if (writesize < 0) {
 4781                         err = errno;
 4782                         break;
 4783                 } else if (writesize != readsize) {
 4784                         /* Incomplete write */
 4785                         (void) fprintf(stderr, "Short write, only wrote %llu of"
 4786                             " %" PRIu64 " bytes, exiting...\n",
 4787                             (u_longlong_t)writesize, readsize);
 4788                         break;
 4789                 }
 4790 
 4791                 offset += readsize;
 4792         }
 4793 
 4794         (void) close(fd);
 4795 
 4796         if (buf != NULL)
 4797                 kmem_free(buf, oursize);
 4798 
 4799         return (err);
 4800 }
 4801 
 4802 static boolean_t
 4803 label_cksum_valid(vdev_label_t *label, uint64_t offset)
 4804 {
 4805         zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
 4806         zio_cksum_t expected_cksum;
 4807         zio_cksum_t actual_cksum;
 4808         zio_cksum_t verifier;
 4809         zio_eck_t *eck;
 4810         int byteswap;
 4811 
 4812         void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
 4813         eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
 4814 
 4815         offset += offsetof(vdev_label_t, vl_vdev_phys);
 4816         ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
 4817 
 4818         byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
 4819         if (byteswap)
 4820                 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
 4821 
 4822         expected_cksum = eck->zec_cksum;
 4823         eck->zec_cksum = verifier;
 4824 
 4825         abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
 4826         ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
 4827         abd_free(abd);
 4828 
 4829         if (byteswap)
 4830                 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
 4831 
 4832         if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
 4833                 return (B_TRUE);
 4834 
 4835         return (B_FALSE);
 4836 }
 4837 
 4838 static int
 4839 dump_label(const char *dev)
 4840 {
 4841         char path[MAXPATHLEN];
 4842         zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
 4843         uint64_t psize, ashift, l2cache;
 4844         struct stat64 statbuf;
 4845         boolean_t config_found = B_FALSE;
 4846         boolean_t error = B_FALSE;
 4847         boolean_t read_l2arc_header = B_FALSE;
 4848         avl_tree_t config_tree;
 4849         avl_tree_t uberblock_tree;
 4850         void *node, *cookie;
 4851         int fd;
 4852 
 4853         /*
 4854          * Check if we were given absolute path and use it as is.
 4855          * Otherwise if the provided vdev name doesn't point to a file,
 4856          * try prepending expected disk paths and partition numbers.
 4857          */
 4858         (void) strlcpy(path, dev, sizeof (path));
 4859         if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
 4860                 int error;
 4861 
 4862                 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
 4863                 if (error == 0 && zfs_dev_is_whole_disk(path)) {
 4864                         if (zfs_append_partition(path, MAXPATHLEN) == -1)
 4865                                 error = ENOENT;
 4866                 }
 4867 
 4868                 if (error || (stat64(path, &statbuf) != 0)) {
 4869                         (void) printf("failed to find device %s, try "
 4870                             "specifying absolute path instead\n", dev);
 4871                         return (1);
 4872                 }
 4873         }
 4874 
 4875         if ((fd = open64(path, O_RDONLY)) < 0) {
 4876                 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
 4877                 exit(1);
 4878         }
 4879 
 4880         if (fstat64_blk(fd, &statbuf) != 0) {
 4881                 (void) printf("failed to stat '%s': %s\n", path,
 4882                     strerror(errno));
 4883                 (void) close(fd);
 4884                 exit(1);
 4885         }
 4886 
 4887         if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
 4888                 (void) printf("failed to invalidate cache '%s' : %s\n", path,
 4889                     strerror(errno));
 4890 
 4891         avl_create(&config_tree, cksum_record_compare,
 4892             sizeof (cksum_record_t), offsetof(cksum_record_t, link));
 4893         avl_create(&uberblock_tree, cksum_record_compare,
 4894             sizeof (cksum_record_t), offsetof(cksum_record_t, link));
 4895 
 4896         psize = statbuf.st_size;
 4897         psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
 4898         ashift = SPA_MINBLOCKSHIFT;
 4899 
 4900         /*
 4901          * 1. Read the label from disk
 4902          * 2. Verify label cksum
 4903          * 3. Unpack the configuration and insert in config tree.
 4904          * 4. Traverse all uberblocks and insert in uberblock tree.
 4905          */
 4906         for (int l = 0; l < VDEV_LABELS; l++) {
 4907                 zdb_label_t *label = &labels[l];
 4908                 char *buf = label->label.vl_vdev_phys.vp_nvlist;
 4909                 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
 4910                 nvlist_t *config;
 4911                 cksum_record_t *rec;
 4912                 zio_cksum_t cksum;
 4913                 vdev_t vd;
 4914 
 4915                 label->label_offset = vdev_label_offset(psize, l, 0);
 4916 
 4917                 if (pread64(fd, &label->label, sizeof (label->label),
 4918                     label->label_offset) != sizeof (label->label)) {
 4919                         if (!dump_opt['q'])
 4920                                 (void) printf("failed to read label %d\n", l);
 4921                         label->read_failed = B_TRUE;
 4922                         error = B_TRUE;
 4923                         continue;
 4924                 }
 4925 
 4926                 label->read_failed = B_FALSE;
 4927                 label->cksum_valid = label_cksum_valid(&label->label,
 4928                     label->label_offset);
 4929 
 4930                 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
 4931                         nvlist_t *vdev_tree = NULL;
 4932                         size_t size;
 4933 
 4934                         if ((nvlist_lookup_nvlist(config,
 4935                             ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
 4936                             (nvlist_lookup_uint64(vdev_tree,
 4937                             ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
 4938                                 ashift = SPA_MINBLOCKSHIFT;
 4939 
 4940                         if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
 4941                                 size = buflen;
 4942 
 4943                         /* If the device is a cache device clear the header. */
 4944                         if (!read_l2arc_header) {
 4945                                 if (nvlist_lookup_uint64(config,
 4946                                     ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
 4947                                     l2cache == POOL_STATE_L2CACHE) {
 4948                                         read_l2arc_header = B_TRUE;
 4949                                 }
 4950                         }
 4951 
 4952                         fletcher_4_native_varsize(buf, size, &cksum);
 4953                         rec = cksum_record_insert(&config_tree, &cksum, l);
 4954 
 4955                         label->config = rec;
 4956                         label->config_nv = config;
 4957                         config_found = B_TRUE;
 4958                 } else {
 4959                         error = B_TRUE;
 4960                 }
 4961 
 4962                 vd.vdev_ashift = ashift;
 4963                 vd.vdev_top = &vd;
 4964 
 4965                 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
 4966                         uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
 4967                         uberblock_t *ub = (void *)((char *)label + uoff);
 4968 
 4969                         if (uberblock_verify(ub))
 4970                                 continue;
 4971 
 4972                         fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
 4973                         rec = cksum_record_insert(&uberblock_tree, &cksum, l);
 4974 
 4975                         label->uberblocks[i] = rec;
 4976                 }
 4977         }
 4978 
 4979         /*
 4980          * Dump the label and uberblocks.
 4981          */
 4982         for (int l = 0; l < VDEV_LABELS; l++) {
 4983                 zdb_label_t *label = &labels[l];
 4984                 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
 4985 
 4986                 if (label->read_failed == B_TRUE)
 4987                         continue;
 4988 
 4989                 if (label->config_nv) {
 4990                         dump_config_from_label(label, buflen, l);
 4991                 } else {
 4992                         if (!dump_opt['q'])
 4993                                 (void) printf("failed to unpack label %d\n", l);
 4994                 }
 4995 
 4996                 if (dump_opt['u'])
 4997                         dump_label_uberblocks(label, ashift, l);
 4998 
 4999                 nvlist_free(label->config_nv);
 5000         }
 5001 
 5002         /*
 5003          * Dump the L2ARC header, if existent.
 5004          */
 5005         if (read_l2arc_header)
 5006                 error |= dump_l2arc_header(fd);
 5007 
 5008         cookie = NULL;
 5009         while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
 5010                 umem_free(node, sizeof (cksum_record_t));
 5011 
 5012         cookie = NULL;
 5013         while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
 5014                 umem_free(node, sizeof (cksum_record_t));
 5015 
 5016         avl_destroy(&config_tree);
 5017         avl_destroy(&uberblock_tree);
 5018 
 5019         (void) close(fd);
 5020 
 5021         return (config_found == B_FALSE ? 2 :
 5022             (error == B_TRUE ? 1 : 0));
 5023 }
 5024 
 5025 static uint64_t dataset_feature_count[SPA_FEATURES];
 5026 static uint64_t global_feature_count[SPA_FEATURES];
 5027 static uint64_t remap_deadlist_count = 0;
 5028 
 5029 static int
 5030 dump_one_objset(const char *dsname, void *arg)
 5031 {
 5032         (void) arg;
 5033         int error;
 5034         objset_t *os;
 5035         spa_feature_t f;
 5036 
 5037         error = open_objset(dsname, FTAG, &os);
 5038         if (error != 0)
 5039                 return (0);
 5040 
 5041         for (f = 0; f < SPA_FEATURES; f++) {
 5042                 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
 5043                         continue;
 5044                 ASSERT(spa_feature_table[f].fi_flags &
 5045                     ZFEATURE_FLAG_PER_DATASET);
 5046                 dataset_feature_count[f]++;
 5047         }
 5048 
 5049         if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
 5050                 remap_deadlist_count++;
 5051         }
 5052 
 5053         for (dsl_bookmark_node_t *dbn =
 5054             avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
 5055             dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
 5056                 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
 5057                 if (dbn->dbn_phys.zbm_redaction_obj != 0)
 5058                         global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++;
 5059                 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
 5060                         global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
 5061         }
 5062 
 5063         if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
 5064             !dmu_objset_is_snapshot(os)) {
 5065                 global_feature_count[SPA_FEATURE_LIVELIST]++;
 5066         }
 5067 
 5068         dump_objset(os);
 5069         close_objset(os, FTAG);
 5070         fuid_table_destroy();
 5071         return (0);
 5072 }
 5073 
 5074 /*
 5075  * Block statistics.
 5076  */
 5077 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
 5078 typedef struct zdb_blkstats {
 5079         uint64_t zb_asize;
 5080         uint64_t zb_lsize;
 5081         uint64_t zb_psize;
 5082         uint64_t zb_count;
 5083         uint64_t zb_gangs;
 5084         uint64_t zb_ditto_samevdev;
 5085         uint64_t zb_ditto_same_ms;
 5086         uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
 5087 } zdb_blkstats_t;
 5088 
 5089 /*
 5090  * Extended object types to report deferred frees and dedup auto-ditto blocks.
 5091  */
 5092 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
 5093 #define ZDB_OT_DITTO    (DMU_OT_NUMTYPES + 1)
 5094 #define ZDB_OT_OTHER    (DMU_OT_NUMTYPES + 2)
 5095 #define ZDB_OT_TOTAL    (DMU_OT_NUMTYPES + 3)
 5096 
 5097 static const char *zdb_ot_extname[] = {
 5098         "deferred free",
 5099         "dedup ditto",
 5100         "other",
 5101         "Total",
 5102 };
 5103 
 5104 #define ZB_TOTAL        DN_MAX_LEVELS
 5105 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
 5106 
 5107 typedef struct zdb_cb {
 5108         zdb_blkstats_t  zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
 5109         uint64_t        zcb_removing_size;
 5110         uint64_t        zcb_checkpoint_size;
 5111         uint64_t        zcb_dedup_asize;
 5112         uint64_t        zcb_dedup_blocks;
 5113         uint64_t        zcb_psize_count[SPA_MAX_FOR_16M];
 5114         uint64_t        zcb_lsize_count[SPA_MAX_FOR_16M];
 5115         uint64_t        zcb_asize_count[SPA_MAX_FOR_16M];
 5116         uint64_t        zcb_psize_len[SPA_MAX_FOR_16M];
 5117         uint64_t        zcb_lsize_len[SPA_MAX_FOR_16M];
 5118         uint64_t        zcb_asize_len[SPA_MAX_FOR_16M];
 5119         uint64_t        zcb_psize_total;
 5120         uint64_t        zcb_lsize_total;
 5121         uint64_t        zcb_asize_total;
 5122         uint64_t        zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
 5123         uint64_t        zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
 5124             [BPE_PAYLOAD_SIZE + 1];
 5125         uint64_t        zcb_start;
 5126         hrtime_t        zcb_lastprint;
 5127         uint64_t        zcb_totalasize;
 5128         uint64_t        zcb_errors[256];
 5129         int             zcb_readfails;
 5130         int             zcb_haderrors;
 5131         spa_t           *zcb_spa;
 5132         uint32_t        **zcb_vd_obsolete_counts;
 5133 } zdb_cb_t;
 5134 
 5135 /* test if two DVA offsets from same vdev are within the same metaslab */
 5136 static boolean_t
 5137 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
 5138 {
 5139         vdev_t *vd = vdev_lookup_top(spa, vdev);
 5140         uint64_t ms_shift = vd->vdev_ms_shift;
 5141 
 5142         return ((off1 >> ms_shift) == (off2 >> ms_shift));
 5143 }
 5144 
 5145 /*
 5146  * Used to simplify reporting of the histogram data.
 5147  */
 5148 typedef struct one_histo {
 5149         const char *name;
 5150         uint64_t *count;
 5151         uint64_t *len;
 5152         uint64_t cumulative;
 5153 } one_histo_t;
 5154 
 5155 /*
 5156  * The number of separate histograms processed for psize, lsize and asize.
 5157  */
 5158 #define NUM_HISTO 3
 5159 
 5160 /*
 5161  * This routine will create a fixed column size output of three different
 5162  * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
 5163  * the count, length and cumulative length of the psize, lsize and
 5164  * asize blocks.
 5165  *
 5166  * All three types of blocks are listed on a single line
 5167  *
 5168  * By default the table is printed in nicenumber format (e.g. 123K) but
 5169  * if the '-P' parameter is specified then the full raw number (parseable)
 5170  * is printed out.
 5171  */
 5172 static void
 5173 dump_size_histograms(zdb_cb_t *zcb)
 5174 {
 5175         /*
 5176          * A temporary buffer that allows us to convert a number into
 5177          * a string using zdb_nicenumber to allow either raw or human
 5178          * readable numbers to be output.
 5179          */
 5180         char numbuf[32];
 5181 
 5182         /*
 5183          * Define titles which are used in the headers of the tables
 5184          * printed by this routine.
 5185          */
 5186         const char blocksize_title1[] = "block";
 5187         const char blocksize_title2[] = "size";
 5188         const char count_title[] = "Count";
 5189         const char length_title[] = "Size";
 5190         const char cumulative_title[] = "Cum.";
 5191 
 5192         /*
 5193          * Setup the histogram arrays (psize, lsize, and asize).
 5194          */
 5195         one_histo_t parm_histo[NUM_HISTO];
 5196 
 5197         parm_histo[0].name = "psize";
 5198         parm_histo[0].count = zcb->zcb_psize_count;
 5199         parm_histo[0].len = zcb->zcb_psize_len;
 5200         parm_histo[0].cumulative = 0;
 5201 
 5202         parm_histo[1].name = "lsize";
 5203         parm_histo[1].count = zcb->zcb_lsize_count;
 5204         parm_histo[1].len = zcb->zcb_lsize_len;
 5205         parm_histo[1].cumulative = 0;
 5206 
 5207         parm_histo[2].name = "asize";
 5208         parm_histo[2].count = zcb->zcb_asize_count;
 5209         parm_histo[2].len = zcb->zcb_asize_len;
 5210         parm_histo[2].cumulative = 0;
 5211 
 5212 
 5213         (void) printf("\nBlock Size Histogram\n");
 5214         /*
 5215          * Print the first line titles
 5216          */
 5217         if (dump_opt['P'])
 5218                 (void) printf("\n%s\t", blocksize_title1);
 5219         else
 5220                 (void) printf("\n%7s   ", blocksize_title1);
 5221 
 5222         for (int j = 0; j < NUM_HISTO; j++) {
 5223                 if (dump_opt['P']) {
 5224                         if (j < NUM_HISTO - 1) {
 5225                                 (void) printf("%s\t\t\t", parm_histo[j].name);
 5226                         } else {
 5227                                 /* Don't print trailing spaces */
 5228                                 (void) printf("  %s", parm_histo[j].name);
 5229                         }
 5230                 } else {
 5231                         if (j < NUM_HISTO - 1) {
 5232                                 /* Left aligned strings in the output */
 5233                                 (void) printf("%-7s              ",
 5234                                     parm_histo[j].name);
 5235                         } else {
 5236                                 /* Don't print trailing spaces */
 5237                                 (void) printf("%s", parm_histo[j].name);
 5238                         }
 5239                 }
 5240         }
 5241         (void) printf("\n");
 5242 
 5243         /*
 5244          * Print the second line titles
 5245          */
 5246         if (dump_opt['P']) {
 5247                 (void) printf("%s\t", blocksize_title2);
 5248         } else {
 5249                 (void) printf("%7s ", blocksize_title2);
 5250         }
 5251 
 5252         for (int i = 0; i < NUM_HISTO; i++) {
 5253                 if (dump_opt['P']) {
 5254                         (void) printf("%s\t%s\t%s\t",
 5255                             count_title, length_title, cumulative_title);
 5256                 } else {
 5257                         (void) printf("%7s%7s%7s",
 5258                             count_title, length_title, cumulative_title);
 5259                 }
 5260         }
 5261         (void) printf("\n");
 5262 
 5263         /*
 5264          * Print the rows
 5265          */
 5266         for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
 5267 
 5268                 /*
 5269                  * Print the first column showing the blocksize
 5270                  */
 5271                 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
 5272 
 5273                 if (dump_opt['P']) {
 5274                         printf("%s", numbuf);
 5275                 } else {
 5276                         printf("%7s:", numbuf);
 5277                 }
 5278 
 5279                 /*
 5280                  * Print the remaining set of 3 columns per size:
 5281                  * for psize, lsize and asize
 5282                  */
 5283                 for (int j = 0; j < NUM_HISTO; j++) {
 5284                         parm_histo[j].cumulative += parm_histo[j].len[i];
 5285 
 5286                         zdb_nicenum(parm_histo[j].count[i],
 5287                             numbuf, sizeof (numbuf));
 5288                         if (dump_opt['P'])
 5289                                 (void) printf("\t%s", numbuf);
 5290                         else
 5291                                 (void) printf("%7s", numbuf);
 5292 
 5293                         zdb_nicenum(parm_histo[j].len[i],
 5294                             numbuf, sizeof (numbuf));
 5295                         if (dump_opt['P'])
 5296                                 (void) printf("\t%s", numbuf);
 5297                         else
 5298                                 (void) printf("%7s", numbuf);
 5299 
 5300                         zdb_nicenum(parm_histo[j].cumulative,
 5301                             numbuf, sizeof (numbuf));
 5302                         if (dump_opt['P'])
 5303                                 (void) printf("\t%s", numbuf);
 5304                         else
 5305                                 (void) printf("%7s", numbuf);
 5306                 }
 5307                 (void) printf("\n");
 5308         }
 5309 }
 5310 
 5311 static void
 5312 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
 5313     dmu_object_type_t type)
 5314 {
 5315         uint64_t refcnt = 0;
 5316         int i;
 5317 
 5318         ASSERT(type < ZDB_OT_TOTAL);
 5319 
 5320         if (zilog && zil_bp_tree_add(zilog, bp) != 0)
 5321                 return;
 5322 
 5323         spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
 5324 
 5325         for (i = 0; i < 4; i++) {
 5326                 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
 5327                 int t = (i & 1) ? type : ZDB_OT_TOTAL;
 5328                 int equal;
 5329                 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
 5330 
 5331                 zb->zb_asize += BP_GET_ASIZE(bp);
 5332                 zb->zb_lsize += BP_GET_LSIZE(bp);
 5333                 zb->zb_psize += BP_GET_PSIZE(bp);
 5334                 zb->zb_count++;
 5335 
 5336                 /*
 5337                  * The histogram is only big enough to record blocks up to
 5338                  * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
 5339                  * "other", bucket.
 5340                  */
 5341                 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
 5342                 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
 5343                 zb->zb_psize_histogram[idx]++;
 5344 
 5345                 zb->zb_gangs += BP_COUNT_GANG(bp);
 5346 
 5347                 switch (BP_GET_NDVAS(bp)) {
 5348                 case 2:
 5349                         if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 5350                             DVA_GET_VDEV(&bp->blk_dva[1])) {
 5351                                 zb->zb_ditto_samevdev++;
 5352 
 5353                                 if (same_metaslab(zcb->zcb_spa,
 5354                                     DVA_GET_VDEV(&bp->blk_dva[0]),
 5355                                     DVA_GET_OFFSET(&bp->blk_dva[0]),
 5356                                     DVA_GET_OFFSET(&bp->blk_dva[1])))
 5357                                         zb->zb_ditto_same_ms++;
 5358                         }
 5359                         break;
 5360                 case 3:
 5361                         equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 5362                             DVA_GET_VDEV(&bp->blk_dva[1])) +
 5363                             (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 5364                             DVA_GET_VDEV(&bp->blk_dva[2])) +
 5365                             (DVA_GET_VDEV(&bp->blk_dva[1]) ==
 5366                             DVA_GET_VDEV(&bp->blk_dva[2]));
 5367                         if (equal != 0) {
 5368                                 zb->zb_ditto_samevdev++;
 5369 
 5370                                 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 5371                                     DVA_GET_VDEV(&bp->blk_dva[1]) &&
 5372                                     same_metaslab(zcb->zcb_spa,
 5373                                     DVA_GET_VDEV(&bp->blk_dva[0]),
 5374                                     DVA_GET_OFFSET(&bp->blk_dva[0]),
 5375                                     DVA_GET_OFFSET(&bp->blk_dva[1])))
 5376                                         zb->zb_ditto_same_ms++;
 5377                                 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 5378                                     DVA_GET_VDEV(&bp->blk_dva[2]) &&
 5379                                     same_metaslab(zcb->zcb_spa,
 5380                                     DVA_GET_VDEV(&bp->blk_dva[0]),
 5381                                     DVA_GET_OFFSET(&bp->blk_dva[0]),
 5382                                     DVA_GET_OFFSET(&bp->blk_dva[2])))
 5383                                         zb->zb_ditto_same_ms++;
 5384                                 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
 5385                                     DVA_GET_VDEV(&bp->blk_dva[2]) &&
 5386                                     same_metaslab(zcb->zcb_spa,
 5387                                     DVA_GET_VDEV(&bp->blk_dva[1]),
 5388                                     DVA_GET_OFFSET(&bp->blk_dva[1]),
 5389                                     DVA_GET_OFFSET(&bp->blk_dva[2])))
 5390                                         zb->zb_ditto_same_ms++;
 5391                         }
 5392                         break;
 5393                 }
 5394         }
 5395 
 5396         spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
 5397 
 5398         if (BP_IS_EMBEDDED(bp)) {
 5399                 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
 5400                 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
 5401                     [BPE_GET_PSIZE(bp)]++;
 5402                 return;
 5403         }
 5404         /*
 5405          * The binning histogram bins by powers of two up to
 5406          * SPA_MAXBLOCKSIZE rather than creating bins for
 5407          * every possible blocksize found in the pool.
 5408          */
 5409         int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
 5410 
 5411         zcb->zcb_psize_count[bin]++;
 5412         zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
 5413         zcb->zcb_psize_total += BP_GET_PSIZE(bp);
 5414 
 5415         bin = highbit64(BP_GET_LSIZE(bp)) - 1;
 5416 
 5417         zcb->zcb_lsize_count[bin]++;
 5418         zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
 5419         zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
 5420 
 5421         bin = highbit64(BP_GET_ASIZE(bp)) - 1;
 5422 
 5423         zcb->zcb_asize_count[bin]++;
 5424         zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
 5425         zcb->zcb_asize_total += BP_GET_ASIZE(bp);
 5426 
 5427         if (dump_opt['L'])
 5428                 return;
 5429 
 5430         if (BP_GET_DEDUP(bp)) {
 5431                 ddt_t *ddt;
 5432                 ddt_entry_t *dde;
 5433 
 5434                 ddt = ddt_select(zcb->zcb_spa, bp);
 5435                 ddt_enter(ddt);
 5436                 dde = ddt_lookup(ddt, bp, B_FALSE);
 5437 
 5438                 if (dde == NULL) {
 5439                         refcnt = 0;
 5440                 } else {
 5441                         ddt_phys_t *ddp = ddt_phys_select(dde, bp);
 5442                         ddt_phys_decref(ddp);
 5443                         refcnt = ddp->ddp_refcnt;
 5444                         if (ddt_phys_total_refcnt(dde) == 0)
 5445                                 ddt_remove(ddt, dde);
 5446                 }
 5447                 ddt_exit(ddt);
 5448         }
 5449 
 5450         VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
 5451             refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
 5452             bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
 5453 }
 5454 
 5455 static void
 5456 zdb_blkptr_done(zio_t *zio)
 5457 {
 5458         spa_t *spa = zio->io_spa;
 5459         blkptr_t *bp = zio->io_bp;
 5460         int ioerr = zio->io_error;
 5461         zdb_cb_t *zcb = zio->io_private;
 5462         zbookmark_phys_t *zb = &zio->io_bookmark;
 5463 
 5464         mutex_enter(&spa->spa_scrub_lock);
 5465         spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
 5466         cv_broadcast(&spa->spa_scrub_io_cv);
 5467 
 5468         if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
 5469                 char blkbuf[BP_SPRINTF_LEN];
 5470 
 5471                 zcb->zcb_haderrors = 1;
 5472                 zcb->zcb_errors[ioerr]++;
 5473 
 5474                 if (dump_opt['b'] >= 2)
 5475                         snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
 5476                 else
 5477                         blkbuf[0] = '\0';
 5478 
 5479                 (void) printf("zdb_blkptr_cb: "
 5480                     "Got error %d reading "
 5481                     "<%llu, %llu, %lld, %llx> %s -- skipping\n",
 5482                     ioerr,
 5483                     (u_longlong_t)zb->zb_objset,
 5484                     (u_longlong_t)zb->zb_object,
 5485                     (u_longlong_t)zb->zb_level,
 5486                     (u_longlong_t)zb->zb_blkid,
 5487                     blkbuf);
 5488         }
 5489         mutex_exit(&spa->spa_scrub_lock);
 5490 
 5491         abd_free(zio->io_abd);
 5492 }
 5493 
 5494 static int
 5495 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
 5496     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
 5497 {
 5498         zdb_cb_t *zcb = arg;
 5499         dmu_object_type_t type;
 5500         boolean_t is_metadata;
 5501 
 5502         if (zb->zb_level == ZB_DNODE_LEVEL)
 5503                 return (0);
 5504 
 5505         if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
 5506                 char blkbuf[BP_SPRINTF_LEN];
 5507                 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
 5508                 (void) printf("objset %llu object %llu "
 5509                     "level %lld offset 0x%llx %s\n",
 5510                     (u_longlong_t)zb->zb_objset,
 5511                     (u_longlong_t)zb->zb_object,
 5512                     (longlong_t)zb->zb_level,
 5513                     (u_longlong_t)blkid2offset(dnp, bp, zb),
 5514                     blkbuf);
 5515         }
 5516 
 5517         if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
 5518                 return (0);
 5519 
 5520         type = BP_GET_TYPE(bp);
 5521 
 5522         zdb_count_block(zcb, zilog, bp,
 5523             (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
 5524 
 5525         is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
 5526 
 5527         if (!BP_IS_EMBEDDED(bp) &&
 5528             (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
 5529                 size_t size = BP_GET_PSIZE(bp);
 5530                 abd_t *abd = abd_alloc(size, B_FALSE);
 5531                 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
 5532 
 5533                 /* If it's an intent log block, failure is expected. */
 5534                 if (zb->zb_level == ZB_ZIL_LEVEL)
 5535                         flags |= ZIO_FLAG_SPECULATIVE;
 5536 
 5537                 mutex_enter(&spa->spa_scrub_lock);
 5538                 while (spa->spa_load_verify_bytes > max_inflight_bytes)
 5539                         cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
 5540                 spa->spa_load_verify_bytes += size;
 5541                 mutex_exit(&spa->spa_scrub_lock);
 5542 
 5543                 zio_nowait(zio_read(NULL, spa, bp, abd, size,
 5544                     zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
 5545         }
 5546 
 5547         zcb->zcb_readfails = 0;
 5548 
 5549         /* only call gethrtime() every 100 blocks */
 5550         static int iters;
 5551         if (++iters > 100)
 5552                 iters = 0;
 5553         else
 5554                 return (0);
 5555 
 5556         if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
 5557                 uint64_t now = gethrtime();
 5558                 char buf[10];
 5559                 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
 5560                 uint64_t kb_per_sec =
 5561                     1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
 5562                 uint64_t sec_remaining =
 5563                     (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
 5564 
 5565                 /* make sure nicenum has enough space */
 5566                 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
 5567 
 5568                 zfs_nicebytes(bytes, buf, sizeof (buf));
 5569                 (void) fprintf(stderr,
 5570                     "\r%5s completed (%4"PRIu64"MB/s) "
 5571                     "estimated time remaining: "
 5572                     "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec        ",
 5573                     buf, kb_per_sec / 1024,
 5574                     sec_remaining / 60 / 60,
 5575                     sec_remaining / 60 % 60,
 5576                     sec_remaining % 60);
 5577 
 5578                 zcb->zcb_lastprint = now;
 5579         }
 5580 
 5581         return (0);
 5582 }
 5583 
 5584 static void
 5585 zdb_leak(void *arg, uint64_t start, uint64_t size)
 5586 {
 5587         vdev_t *vd = arg;
 5588 
 5589         (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
 5590             (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
 5591 }
 5592 
 5593 static metaslab_ops_t zdb_metaslab_ops = {
 5594         NULL    /* alloc */
 5595 };
 5596 
 5597 static int
 5598 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
 5599     uint64_t txg, void *arg)
 5600 {
 5601         spa_vdev_removal_t *svr = arg;
 5602 
 5603         uint64_t offset = sme->sme_offset;
 5604         uint64_t size = sme->sme_run;
 5605 
 5606         /* skip vdevs we don't care about */
 5607         if (sme->sme_vdev != svr->svr_vdev_id)
 5608                 return (0);
 5609 
 5610         vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
 5611         metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 5612         ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
 5613 
 5614         if (txg < metaslab_unflushed_txg(ms))
 5615                 return (0);
 5616 
 5617         if (sme->sme_type == SM_ALLOC)
 5618                 range_tree_add(svr->svr_allocd_segs, offset, size);
 5619         else
 5620                 range_tree_remove(svr->svr_allocd_segs, offset, size);
 5621 
 5622         return (0);
 5623 }
 5624 
 5625 static void
 5626 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
 5627     uint64_t size, void *arg)
 5628 {
 5629         (void) inner_offset, (void) arg;
 5630 
 5631         /*
 5632          * This callback was called through a remap from
 5633          * a device being removed. Therefore, the vdev that
 5634          * this callback is applied to is a concrete
 5635          * vdev.
 5636          */
 5637         ASSERT(vdev_is_concrete(vd));
 5638 
 5639         VERIFY0(metaslab_claim_impl(vd, offset, size,
 5640             spa_min_claim_txg(vd->vdev_spa)));
 5641 }
 5642 
 5643 static void
 5644 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
 5645 {
 5646         vdev_t *vd = arg;
 5647 
 5648         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
 5649             claim_segment_impl_cb, NULL);
 5650 }
 5651 
 5652 /*
 5653  * After accounting for all allocated blocks that are directly referenced,
 5654  * we might have missed a reference to a block from a partially complete
 5655  * (and thus unused) indirect mapping object. We perform a secondary pass
 5656  * through the metaslabs we have already mapped and claim the destination
 5657  * blocks.
 5658  */
 5659 static void
 5660 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
 5661 {
 5662         if (dump_opt['L'])
 5663                 return;
 5664 
 5665         if (spa->spa_vdev_removal == NULL)
 5666                 return;
 5667 
 5668         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 5669 
 5670         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 5671         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 5672         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 5673 
 5674         ASSERT0(range_tree_space(svr->svr_allocd_segs));
 5675 
 5676         range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
 5677         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
 5678                 metaslab_t *msp = vd->vdev_ms[msi];
 5679 
 5680                 ASSERT0(range_tree_space(allocs));
 5681                 if (msp->ms_sm != NULL)
 5682                         VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
 5683                 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
 5684         }
 5685         range_tree_destroy(allocs);
 5686 
 5687         iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
 5688 
 5689         /*
 5690          * Clear everything past what has been synced,
 5691          * because we have not allocated mappings for
 5692          * it yet.
 5693          */
 5694         range_tree_clear(svr->svr_allocd_segs,
 5695             vdev_indirect_mapping_max_offset(vim),
 5696             vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
 5697 
 5698         zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
 5699         range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
 5700 
 5701         spa_config_exit(spa, SCL_CONFIG, FTAG);
 5702 }
 5703 
 5704 static int
 5705 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
 5706     dmu_tx_t *tx)
 5707 {
 5708         (void) tx;
 5709         zdb_cb_t *zcb = arg;
 5710         spa_t *spa = zcb->zcb_spa;
 5711         vdev_t *vd;
 5712         const dva_t *dva = &bp->blk_dva[0];
 5713 
 5714         ASSERT(!bp_freed);
 5715         ASSERT(!dump_opt['L']);
 5716         ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
 5717 
 5718         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 5719         vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
 5720         ASSERT3P(vd, !=, NULL);
 5721         spa_config_exit(spa, SCL_VDEV, FTAG);
 5722 
 5723         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
 5724         ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
 5725 
 5726         vdev_indirect_mapping_increment_obsolete_count(
 5727             vd->vdev_indirect_mapping,
 5728             DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
 5729             zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
 5730 
 5731         return (0);
 5732 }
 5733 
 5734 static uint32_t *
 5735 zdb_load_obsolete_counts(vdev_t *vd)
 5736 {
 5737         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 5738         spa_t *spa = vd->vdev_spa;
 5739         spa_condensing_indirect_phys_t *scip =
 5740             &spa->spa_condensing_indirect_phys;
 5741         uint64_t obsolete_sm_object;
 5742         uint32_t *counts;
 5743 
 5744         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
 5745         EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
 5746         counts = vdev_indirect_mapping_load_obsolete_counts(vim);
 5747         if (vd->vdev_obsolete_sm != NULL) {
 5748                 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
 5749                     vd->vdev_obsolete_sm);
 5750         }
 5751         if (scip->scip_vdev == vd->vdev_id &&
 5752             scip->scip_prev_obsolete_sm_object != 0) {
 5753                 space_map_t *prev_obsolete_sm = NULL;
 5754                 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
 5755                     scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
 5756                 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
 5757                     prev_obsolete_sm);
 5758                 space_map_close(prev_obsolete_sm);
 5759         }
 5760         return (counts);
 5761 }
 5762 
 5763 static void
 5764 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
 5765 {
 5766         ddt_bookmark_t ddb = {0};
 5767         ddt_entry_t dde;
 5768         int error;
 5769         int p;
 5770 
 5771         ASSERT(!dump_opt['L']);
 5772 
 5773         while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
 5774                 blkptr_t blk;
 5775                 ddt_phys_t *ddp = dde.dde_phys;
 5776 
 5777                 if (ddb.ddb_class == DDT_CLASS_UNIQUE)
 5778                         return;
 5779 
 5780                 ASSERT(ddt_phys_total_refcnt(&dde) > 1);
 5781 
 5782                 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
 5783                         if (ddp->ddp_phys_birth == 0)
 5784                                 continue;
 5785                         ddt_bp_create(ddb.ddb_checksum,
 5786                             &dde.dde_key, ddp, &blk);
 5787                         if (p == DDT_PHYS_DITTO) {
 5788                                 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
 5789                         } else {
 5790                                 zcb->zcb_dedup_asize +=
 5791                                     BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
 5792                                 zcb->zcb_dedup_blocks++;
 5793                         }
 5794                 }
 5795                 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
 5796                 ddt_enter(ddt);
 5797                 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
 5798                 ddt_exit(ddt);
 5799         }
 5800 
 5801         ASSERT(error == ENOENT);
 5802 }
 5803 
 5804 typedef struct checkpoint_sm_exclude_entry_arg {
 5805         vdev_t *cseea_vd;
 5806         uint64_t cseea_checkpoint_size;
 5807 } checkpoint_sm_exclude_entry_arg_t;
 5808 
 5809 static int
 5810 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
 5811 {
 5812         checkpoint_sm_exclude_entry_arg_t *cseea = arg;
 5813         vdev_t *vd = cseea->cseea_vd;
 5814         metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
 5815         uint64_t end = sme->sme_offset + sme->sme_run;
 5816 
 5817         ASSERT(sme->sme_type == SM_FREE);
 5818 
 5819         /*
 5820          * Since the vdev_checkpoint_sm exists in the vdev level
 5821          * and the ms_sm space maps exist in the metaslab level,
 5822          * an entry in the checkpoint space map could theoretically
 5823          * cross the boundaries of the metaslab that it belongs.
 5824          *
 5825          * In reality, because of the way that we populate and
 5826          * manipulate the checkpoint's space maps currently,
 5827          * there shouldn't be any entries that cross metaslabs.
 5828          * Hence the assertion below.
 5829          *
 5830          * That said, there is no fundamental requirement that
 5831          * the checkpoint's space map entries should not cross
 5832          * metaslab boundaries. So if needed we could add code
 5833          * that handles metaslab-crossing segments in the future.
 5834          */
 5835         VERIFY3U(sme->sme_offset, >=, ms->ms_start);
 5836         VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
 5837 
 5838         /*
 5839          * By removing the entry from the allocated segments we
 5840          * also verify that the entry is there to begin with.
 5841          */
 5842         mutex_enter(&ms->ms_lock);
 5843         range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
 5844         mutex_exit(&ms->ms_lock);
 5845 
 5846         cseea->cseea_checkpoint_size += sme->sme_run;
 5847         return (0);
 5848 }
 5849 
 5850 static void
 5851 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
 5852 {
 5853         spa_t *spa = vd->vdev_spa;
 5854         space_map_t *checkpoint_sm = NULL;
 5855         uint64_t checkpoint_sm_obj;
 5856 
 5857         /*
 5858          * If there is no vdev_top_zap, we are in a pool whose
 5859          * version predates the pool checkpoint feature.
 5860          */
 5861         if (vd->vdev_top_zap == 0)
 5862                 return;
 5863 
 5864         /*
 5865          * If there is no reference of the vdev_checkpoint_sm in
 5866          * the vdev_top_zap, then one of the following scenarios
 5867          * is true:
 5868          *
 5869          * 1] There is no checkpoint
 5870          * 2] There is a checkpoint, but no checkpointed blocks
 5871          *    have been freed yet
 5872          * 3] The current vdev is indirect
 5873          *
 5874          * In these cases we return immediately.
 5875          */
 5876         if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
 5877             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
 5878                 return;
 5879 
 5880         VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
 5881             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
 5882             &checkpoint_sm_obj));
 5883 
 5884         checkpoint_sm_exclude_entry_arg_t cseea;
 5885         cseea.cseea_vd = vd;
 5886         cseea.cseea_checkpoint_size = 0;
 5887 
 5888         VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
 5889             checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
 5890 
 5891         VERIFY0(space_map_iterate(checkpoint_sm,
 5892             space_map_length(checkpoint_sm),
 5893             checkpoint_sm_exclude_entry_cb, &cseea));
 5894         space_map_close(checkpoint_sm);
 5895 
 5896         zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
 5897 }
 5898 
 5899 static void
 5900 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
 5901 {
 5902         ASSERT(!dump_opt['L']);
 5903 
 5904         vdev_t *rvd = spa->spa_root_vdev;
 5905         for (uint64_t c = 0; c < rvd->vdev_children; c++) {
 5906                 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
 5907                 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
 5908         }
 5909 }
 5910 
 5911 static int
 5912 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
 5913     uint64_t txg, void *arg)
 5914 {
 5915         int64_t *ualloc_space = arg;
 5916 
 5917         uint64_t offset = sme->sme_offset;
 5918         uint64_t vdev_id = sme->sme_vdev;
 5919 
 5920         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
 5921         if (!vdev_is_concrete(vd))
 5922                 return (0);
 5923 
 5924         metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 5925         ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
 5926 
 5927         if (txg < metaslab_unflushed_txg(ms))
 5928                 return (0);
 5929 
 5930         if (sme->sme_type == SM_ALLOC)
 5931                 *ualloc_space += sme->sme_run;
 5932         else
 5933                 *ualloc_space -= sme->sme_run;
 5934 
 5935         return (0);
 5936 }
 5937 
 5938 static int64_t
 5939 get_unflushed_alloc_space(spa_t *spa)
 5940 {
 5941         if (dump_opt['L'])
 5942                 return (0);
 5943 
 5944         int64_t ualloc_space = 0;
 5945         iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
 5946             &ualloc_space);
 5947         return (ualloc_space);
 5948 }
 5949 
 5950 static int
 5951 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
 5952 {
 5953         maptype_t *uic_maptype = arg;
 5954 
 5955         uint64_t offset = sme->sme_offset;
 5956         uint64_t size = sme->sme_run;
 5957         uint64_t vdev_id = sme->sme_vdev;
 5958 
 5959         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
 5960 
 5961         /* skip indirect vdevs */
 5962         if (!vdev_is_concrete(vd))
 5963                 return (0);
 5964 
 5965         metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 5966 
 5967         ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
 5968         ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
 5969 
 5970         if (txg < metaslab_unflushed_txg(ms))
 5971                 return (0);
 5972 
 5973         if (*uic_maptype == sme->sme_type)
 5974                 range_tree_add(ms->ms_allocatable, offset, size);
 5975         else
 5976                 range_tree_remove(ms->ms_allocatable, offset, size);
 5977 
 5978         return (0);
 5979 }
 5980 
 5981 static void
 5982 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
 5983 {
 5984         iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
 5985 }
 5986 
 5987 static void
 5988 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
 5989 {
 5990         vdev_t *rvd = spa->spa_root_vdev;
 5991         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
 5992                 vdev_t *vd = rvd->vdev_child[i];
 5993 
 5994                 ASSERT3U(i, ==, vd->vdev_id);
 5995 
 5996                 if (vd->vdev_ops == &vdev_indirect_ops)
 5997                         continue;
 5998 
 5999                 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
 6000                         metaslab_t *msp = vd->vdev_ms[m];
 6001 
 6002                         (void) fprintf(stderr,
 6003                             "\rloading concrete vdev %llu, "
 6004                             "metaslab %llu of %llu ...",
 6005                             (longlong_t)vd->vdev_id,
 6006                             (longlong_t)msp->ms_id,
 6007                             (longlong_t)vd->vdev_ms_count);
 6008 
 6009                         mutex_enter(&msp->ms_lock);
 6010                         range_tree_vacate(msp->ms_allocatable, NULL, NULL);
 6011 
 6012                         /*
 6013                          * We don't want to spend the CPU manipulating the
 6014                          * size-ordered tree, so clear the range_tree ops.
 6015                          */
 6016                         msp->ms_allocatable->rt_ops = NULL;
 6017 
 6018                         if (msp->ms_sm != NULL) {
 6019                                 VERIFY0(space_map_load(msp->ms_sm,
 6020                                     msp->ms_allocatable, maptype));
 6021                         }
 6022                         if (!msp->ms_loaded)
 6023                                 msp->ms_loaded = B_TRUE;
 6024                         mutex_exit(&msp->ms_lock);
 6025                 }
 6026         }
 6027 
 6028         load_unflushed_to_ms_allocatables(spa, maptype);
 6029 }
 6030 
 6031 /*
 6032  * vm_idxp is an in-out parameter which (for indirect vdevs) is the
 6033  * index in vim_entries that has the first entry in this metaslab.
 6034  * On return, it will be set to the first entry after this metaslab.
 6035  */
 6036 static void
 6037 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
 6038     uint64_t *vim_idxp)
 6039 {
 6040         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 6041 
 6042         mutex_enter(&msp->ms_lock);
 6043         range_tree_vacate(msp->ms_allocatable, NULL, NULL);
 6044 
 6045         /*
 6046          * We don't want to spend the CPU manipulating the
 6047          * size-ordered tree, so clear the range_tree ops.
 6048          */
 6049         msp->ms_allocatable->rt_ops = NULL;
 6050 
 6051         for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
 6052             (*vim_idxp)++) {
 6053                 vdev_indirect_mapping_entry_phys_t *vimep =
 6054                     &vim->vim_entries[*vim_idxp];
 6055                 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
 6056                 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
 6057                 ASSERT3U(ent_offset, >=, msp->ms_start);
 6058                 if (ent_offset >= msp->ms_start + msp->ms_size)
 6059                         break;
 6060 
 6061                 /*
 6062                  * Mappings do not cross metaslab boundaries,
 6063                  * because we create them by walking the metaslabs.
 6064                  */
 6065                 ASSERT3U(ent_offset + ent_len, <=,
 6066                     msp->ms_start + msp->ms_size);
 6067                 range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
 6068         }
 6069 
 6070         if (!msp->ms_loaded)
 6071                 msp->ms_loaded = B_TRUE;
 6072         mutex_exit(&msp->ms_lock);
 6073 }
 6074 
 6075 static void
 6076 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
 6077 {
 6078         ASSERT(!dump_opt['L']);
 6079 
 6080         vdev_t *rvd = spa->spa_root_vdev;
 6081         for (uint64_t c = 0; c < rvd->vdev_children; c++) {
 6082                 vdev_t *vd = rvd->vdev_child[c];
 6083 
 6084                 ASSERT3U(c, ==, vd->vdev_id);
 6085 
 6086                 if (vd->vdev_ops != &vdev_indirect_ops)
 6087                         continue;
 6088 
 6089                 /*
 6090                  * Note: we don't check for mapping leaks on
 6091                  * removing vdevs because their ms_allocatable's
 6092                  * are used to look for leaks in allocated space.
 6093                  */
 6094                 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
 6095 
 6096                 /*
 6097                  * Normally, indirect vdevs don't have any
 6098                  * metaslabs.  We want to set them up for
 6099                  * zio_claim().
 6100                  */
 6101                 vdev_metaslab_group_create(vd);
 6102                 VERIFY0(vdev_metaslab_init(vd, 0));
 6103 
 6104                 vdev_indirect_mapping_t *vim __maybe_unused =
 6105                     vd->vdev_indirect_mapping;
 6106                 uint64_t vim_idx = 0;
 6107                 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
 6108 
 6109                         (void) fprintf(stderr,
 6110                             "\rloading indirect vdev %llu, "
 6111                             "metaslab %llu of %llu ...",
 6112                             (longlong_t)vd->vdev_id,
 6113                             (longlong_t)vd->vdev_ms[m]->ms_id,
 6114                             (longlong_t)vd->vdev_ms_count);
 6115 
 6116                         load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
 6117                             &vim_idx);
 6118                 }
 6119                 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
 6120         }
 6121 }
 6122 
 6123 static void
 6124 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
 6125 {
 6126         zcb->zcb_spa = spa;
 6127 
 6128         if (dump_opt['L'])
 6129                 return;
 6130 
 6131         dsl_pool_t *dp = spa->spa_dsl_pool;
 6132         vdev_t *rvd = spa->spa_root_vdev;
 6133 
 6134         /*
 6135          * We are going to be changing the meaning of the metaslab's
 6136          * ms_allocatable.  Ensure that the allocator doesn't try to
 6137          * use the tree.
 6138          */
 6139         spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
 6140         spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
 6141         spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
 6142 
 6143         zcb->zcb_vd_obsolete_counts =
 6144             umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
 6145             UMEM_NOFAIL);
 6146 
 6147         /*
 6148          * For leak detection, we overload the ms_allocatable trees
 6149          * to contain allocated segments instead of free segments.
 6150          * As a result, we can't use the normal metaslab_load/unload
 6151          * interfaces.
 6152          */
 6153         zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
 6154         load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
 6155 
 6156         /*
 6157          * On load_concrete_ms_allocatable_trees() we loaded all the
 6158          * allocated entries from the ms_sm to the ms_allocatable for
 6159          * each metaslab. If the pool has a checkpoint or is in the
 6160          * middle of discarding a checkpoint, some of these blocks
 6161          * may have been freed but their ms_sm may not have been
 6162          * updated because they are referenced by the checkpoint. In
 6163          * order to avoid false-positives during leak-detection, we
 6164          * go through the vdev's checkpoint space map and exclude all
 6165          * its entries from their relevant ms_allocatable.
 6166          *
 6167          * We also aggregate the space held by the checkpoint and add
 6168          * it to zcb_checkpoint_size.
 6169          *
 6170          * Note that at this point we are also verifying that all the
 6171          * entries on the checkpoint_sm are marked as allocated in
 6172          * the ms_sm of their relevant metaslab.
 6173          * [see comment in checkpoint_sm_exclude_entry_cb()]
 6174          */
 6175         zdb_leak_init_exclude_checkpoint(spa, zcb);
 6176         ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
 6177 
 6178         /* for cleaner progress output */
 6179         (void) fprintf(stderr, "\n");
 6180 
 6181         if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
 6182                 ASSERT(spa_feature_is_enabled(spa,
 6183                     SPA_FEATURE_DEVICE_REMOVAL));
 6184                 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
 6185                     increment_indirect_mapping_cb, zcb, NULL);
 6186         }
 6187 
 6188         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 6189         zdb_ddt_leak_init(spa, zcb);
 6190         spa_config_exit(spa, SCL_CONFIG, FTAG);
 6191 }
 6192 
 6193 static boolean_t
 6194 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
 6195 {
 6196         boolean_t leaks = B_FALSE;
 6197         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 6198         uint64_t total_leaked = 0;
 6199         boolean_t are_precise = B_FALSE;
 6200 
 6201         ASSERT(vim != NULL);
 6202 
 6203         for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
 6204                 vdev_indirect_mapping_entry_phys_t *vimep =
 6205                     &vim->vim_entries[i];
 6206                 uint64_t obsolete_bytes = 0;
 6207                 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
 6208                 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 6209 
 6210                 /*
 6211                  * This is not very efficient but it's easy to
 6212                  * verify correctness.
 6213                  */
 6214                 for (uint64_t inner_offset = 0;
 6215                     inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
 6216                     inner_offset += 1ULL << vd->vdev_ashift) {
 6217                         if (range_tree_contains(msp->ms_allocatable,
 6218                             offset + inner_offset, 1ULL << vd->vdev_ashift)) {
 6219                                 obsolete_bytes += 1ULL << vd->vdev_ashift;
 6220                         }
 6221                 }
 6222 
 6223                 int64_t bytes_leaked = obsolete_bytes -
 6224                     zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
 6225                 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
 6226                     zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
 6227 
 6228                 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
 6229                 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
 6230                         (void) printf("obsolete indirect mapping count "
 6231                             "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
 6232                             (u_longlong_t)vd->vdev_id,
 6233                             (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
 6234                             (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
 6235                             (u_longlong_t)bytes_leaked);
 6236                 }
 6237                 total_leaked += ABS(bytes_leaked);
 6238         }
 6239 
 6240         VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
 6241         if (!are_precise && total_leaked > 0) {
 6242                 int pct_leaked = total_leaked * 100 /
 6243                     vdev_indirect_mapping_bytes_mapped(vim);
 6244                 (void) printf("cannot verify obsolete indirect mapping "
 6245                     "counts of vdev %llu because precise feature was not "
 6246                     "enabled when it was removed: %d%% (%llx bytes) of mapping"
 6247                     "unreferenced\n",
 6248                     (u_longlong_t)vd->vdev_id, pct_leaked,
 6249                     (u_longlong_t)total_leaked);
 6250         } else if (total_leaked > 0) {
 6251                 (void) printf("obsolete indirect mapping count mismatch "
 6252                     "for vdev %llu -- %llx total bytes mismatched\n",
 6253                     (u_longlong_t)vd->vdev_id,
 6254                     (u_longlong_t)total_leaked);
 6255                 leaks |= B_TRUE;
 6256         }
 6257 
 6258         vdev_indirect_mapping_free_obsolete_counts(vim,
 6259             zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
 6260         zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
 6261 
 6262         return (leaks);
 6263 }
 6264 
 6265 static boolean_t
 6266 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
 6267 {
 6268         if (dump_opt['L'])
 6269                 return (B_FALSE);
 6270 
 6271         boolean_t leaks = B_FALSE;
 6272         vdev_t *rvd = spa->spa_root_vdev;
 6273         for (unsigned c = 0; c < rvd->vdev_children; c++) {
 6274                 vdev_t *vd = rvd->vdev_child[c];
 6275 
 6276                 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
 6277                         leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
 6278                 }
 6279 
 6280                 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
 6281                         metaslab_t *msp = vd->vdev_ms[m];
 6282                         ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
 6283                             spa_embedded_log_class(spa)) ?
 6284                             vd->vdev_log_mg : vd->vdev_mg);
 6285 
 6286                         /*
 6287                          * ms_allocatable has been overloaded
 6288                          * to contain allocated segments. Now that
 6289                          * we finished traversing all blocks, any
 6290                          * block that remains in the ms_allocatable
 6291                          * represents an allocated block that we
 6292                          * did not claim during the traversal.
 6293                          * Claimed blocks would have been removed
 6294                          * from the ms_allocatable.  For indirect
 6295                          * vdevs, space remaining in the tree
 6296                          * represents parts of the mapping that are
 6297                          * not referenced, which is not a bug.
 6298                          */
 6299                         if (vd->vdev_ops == &vdev_indirect_ops) {
 6300                                 range_tree_vacate(msp->ms_allocatable,
 6301                                     NULL, NULL);
 6302                         } else {
 6303                                 range_tree_vacate(msp->ms_allocatable,
 6304                                     zdb_leak, vd);
 6305                         }
 6306                         if (msp->ms_loaded) {
 6307                                 msp->ms_loaded = B_FALSE;
 6308                         }
 6309                 }
 6310         }
 6311 
 6312         umem_free(zcb->zcb_vd_obsolete_counts,
 6313             rvd->vdev_children * sizeof (uint32_t *));
 6314         zcb->zcb_vd_obsolete_counts = NULL;
 6315 
 6316         return (leaks);
 6317 }
 6318 
 6319 static int
 6320 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 6321 {
 6322         (void) tx;
 6323         zdb_cb_t *zcb = arg;
 6324 
 6325         if (dump_opt['b'] >= 5) {
 6326                 char blkbuf[BP_SPRINTF_LEN];
 6327                 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
 6328                 (void) printf("[%s] %s\n",
 6329                     "deferred free", blkbuf);
 6330         }
 6331         zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
 6332         return (0);
 6333 }
 6334 
 6335 /*
 6336  * Iterate over livelists which have been destroyed by the user but
 6337  * are still present in the MOS, waiting to be freed
 6338  */
 6339 static void
 6340 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
 6341 {
 6342         objset_t *mos = spa->spa_meta_objset;
 6343         uint64_t zap_obj;
 6344         int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
 6345             DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
 6346         if (err == ENOENT)
 6347                 return;
 6348         ASSERT0(err);
 6349 
 6350         zap_cursor_t zc;
 6351         zap_attribute_t attr;
 6352         dsl_deadlist_t ll;
 6353         /* NULL out os prior to dsl_deadlist_open in case it's garbage */
 6354         ll.dl_os = NULL;
 6355         for (zap_cursor_init(&zc, mos, zap_obj);
 6356             zap_cursor_retrieve(&zc, &attr) == 0;
 6357             (void) zap_cursor_advance(&zc)) {
 6358                 dsl_deadlist_open(&ll, mos, attr.za_first_integer);
 6359                 func(&ll, arg);
 6360                 dsl_deadlist_close(&ll);
 6361         }
 6362         zap_cursor_fini(&zc);
 6363 }
 6364 
 6365 static int
 6366 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
 6367     dmu_tx_t *tx)
 6368 {
 6369         ASSERT(!bp_freed);
 6370         return (count_block_cb(arg, bp, tx));
 6371 }
 6372 
 6373 static int
 6374 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
 6375 {
 6376         zdb_cb_t *zbc = args;
 6377         bplist_t blks;
 6378         bplist_create(&blks);
 6379         /* determine which blocks have been alloc'd but not freed */
 6380         VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
 6381         /* count those blocks */
 6382         (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
 6383         bplist_destroy(&blks);
 6384         return (0);
 6385 }
 6386 
 6387 static void
 6388 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
 6389 {
 6390         dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
 6391 }
 6392 
 6393 /*
 6394  * Count the blocks in the livelists that have been destroyed by the user
 6395  * but haven't yet been freed.
 6396  */
 6397 static void
 6398 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
 6399 {
 6400         iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
 6401 }
 6402 
 6403 static void
 6404 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
 6405 {
 6406         ASSERT3P(arg, ==, NULL);
 6407         global_feature_count[SPA_FEATURE_LIVELIST]++;
 6408         dump_blkptr_list(ll, "Deleted Livelist");
 6409         dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
 6410 }
 6411 
 6412 /*
 6413  * Print out, register object references to, and increment feature counts for
 6414  * livelists that have been destroyed by the user but haven't yet been freed.
 6415  */
 6416 static void
 6417 deleted_livelists_dump_mos(spa_t *spa)
 6418 {
 6419         uint64_t zap_obj;
 6420         objset_t *mos = spa->spa_meta_objset;
 6421         int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
 6422             DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
 6423         if (err == ENOENT)
 6424                 return;
 6425         mos_obj_refd(zap_obj);
 6426         iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
 6427 }
 6428 
 6429 static int
 6430 dump_block_stats(spa_t *spa)
 6431 {
 6432         zdb_cb_t *zcb;
 6433         zdb_blkstats_t *zb, *tzb;
 6434         uint64_t norm_alloc, norm_space, total_alloc, total_found;
 6435         int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
 6436             TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
 6437         boolean_t leaks = B_FALSE;
 6438         int e, c, err;
 6439         bp_embedded_type_t i;
 6440 
 6441         zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
 6442 
 6443         (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
 6444             (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
 6445             (dump_opt['c'] == 1) ? "metadata " : "",
 6446             dump_opt['c'] ? "checksums " : "",
 6447             (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
 6448             !dump_opt['L'] ? "nothing leaked " : "");
 6449 
 6450         /*
 6451          * When leak detection is enabled we load all space maps as SM_ALLOC
 6452          * maps, then traverse the pool claiming each block we discover. If
 6453          * the pool is perfectly consistent, the segment trees will be empty
 6454          * when we're done. Anything left over is a leak; any block we can't
 6455          * claim (because it's not part of any space map) is a double
 6456          * allocation, reference to a freed block, or an unclaimed log block.
 6457          *
 6458          * When leak detection is disabled (-L option) we still traverse the
 6459          * pool claiming each block we discover, but we skip opening any space
 6460          * maps.
 6461          */
 6462         zdb_leak_init(spa, zcb);
 6463 
 6464         /*
 6465          * If there's a deferred-free bplist, process that first.
 6466          */
 6467         (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
 6468             bpobj_count_block_cb, zcb, NULL);
 6469 
 6470         if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
 6471                 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
 6472                     bpobj_count_block_cb, zcb, NULL);
 6473         }
 6474 
 6475         zdb_claim_removing(spa, zcb);
 6476 
 6477         if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
 6478                 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
 6479                     spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
 6480                     zcb, NULL));
 6481         }
 6482 
 6483         deleted_livelists_count_blocks(spa, zcb);
 6484 
 6485         if (dump_opt['c'] > 1)
 6486                 flags |= TRAVERSE_PREFETCH_DATA;
 6487 
 6488         zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
 6489         zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
 6490         zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
 6491         zcb->zcb_totalasize +=
 6492             metaslab_class_get_alloc(spa_embedded_log_class(spa));
 6493         zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
 6494         err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
 6495 
 6496         /*
 6497          * If we've traversed the data blocks then we need to wait for those
 6498          * I/Os to complete. We leverage "The Godfather" zio to wait on
 6499          * all async I/Os to complete.
 6500          */
 6501         if (dump_opt['c']) {
 6502                 for (c = 0; c < max_ncpus; c++) {
 6503                         (void) zio_wait(spa->spa_async_zio_root[c]);
 6504                         spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
 6505                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
 6506                             ZIO_FLAG_GODFATHER);
 6507                 }
 6508         }
 6509         ASSERT0(spa->spa_load_verify_bytes);
 6510 
 6511         /*
 6512          * Done after zio_wait() since zcb_haderrors is modified in
 6513          * zdb_blkptr_done()
 6514          */
 6515         zcb->zcb_haderrors |= err;
 6516 
 6517         if (zcb->zcb_haderrors) {
 6518                 (void) printf("\nError counts:\n\n");
 6519                 (void) printf("\t%5s  %s\n", "errno", "count");
 6520                 for (e = 0; e < 256; e++) {
 6521                         if (zcb->zcb_errors[e] != 0) {
 6522                                 (void) printf("\t%5d  %llu\n",
 6523                                     e, (u_longlong_t)zcb->zcb_errors[e]);
 6524                         }
 6525                 }
 6526         }
 6527 
 6528         /*
 6529          * Report any leaked segments.
 6530          */
 6531         leaks |= zdb_leak_fini(spa, zcb);
 6532 
 6533         tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
 6534 
 6535         norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 6536         norm_space = metaslab_class_get_space(spa_normal_class(spa));
 6537 
 6538         total_alloc = norm_alloc +
 6539             metaslab_class_get_alloc(spa_log_class(spa)) +
 6540             metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
 6541             metaslab_class_get_alloc(spa_special_class(spa)) +
 6542             metaslab_class_get_alloc(spa_dedup_class(spa)) +
 6543             get_unflushed_alloc_space(spa);
 6544         total_found = tzb->zb_asize - zcb->zcb_dedup_asize +
 6545             zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
 6546 
 6547         if (total_found == total_alloc && !dump_opt['L']) {
 6548                 (void) printf("\n\tNo leaks (block sum matches space"
 6549                     " maps exactly)\n");
 6550         } else if (!dump_opt['L']) {
 6551                 (void) printf("block traversal size %llu != alloc %llu "
 6552                     "(%s %lld)\n",
 6553                     (u_longlong_t)total_found,
 6554                     (u_longlong_t)total_alloc,
 6555                     (dump_opt['L']) ? "unreachable" : "leaked",
 6556                     (longlong_t)(total_alloc - total_found));
 6557                 leaks = B_TRUE;
 6558         }
 6559 
 6560         if (tzb->zb_count == 0) {
 6561                 umem_free(zcb, sizeof (zdb_cb_t));
 6562                 return (2);
 6563         }
 6564 
 6565         (void) printf("\n");
 6566         (void) printf("\t%-16s %14llu\n", "bp count:",
 6567             (u_longlong_t)tzb->zb_count);
 6568         (void) printf("\t%-16s %14llu\n", "ganged count:",
 6569             (longlong_t)tzb->zb_gangs);
 6570         (void) printf("\t%-16s %14llu      avg: %6llu\n", "bp logical:",
 6571             (u_longlong_t)tzb->zb_lsize,
 6572             (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
 6573         (void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
 6574             "bp physical:", (u_longlong_t)tzb->zb_psize,
 6575             (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
 6576             (double)tzb->zb_lsize / tzb->zb_psize);
 6577         (void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
 6578             "bp allocated:", (u_longlong_t)tzb->zb_asize,
 6579             (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
 6580             (double)tzb->zb_lsize / tzb->zb_asize);
 6581         (void) printf("\t%-16s %14llu    ref>1: %6llu   deduplication: %6.2f\n",
 6582             "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
 6583             (u_longlong_t)zcb->zcb_dedup_blocks,
 6584             (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
 6585         (void) printf("\t%-16s %14llu     used: %5.2f%%\n", "Normal class:",
 6586             (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
 6587 
 6588         if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
 6589                 uint64_t alloc = metaslab_class_get_alloc(
 6590                     spa_special_class(spa));
 6591                 uint64_t space = metaslab_class_get_space(
 6592                     spa_special_class(spa));
 6593 
 6594                 (void) printf("\t%-16s %14llu     used: %5.2f%%\n",
 6595                     "Special class", (u_longlong_t)alloc,
 6596                     100.0 * alloc / space);
 6597         }
 6598 
 6599         if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
 6600                 uint64_t alloc = metaslab_class_get_alloc(
 6601                     spa_dedup_class(spa));
 6602                 uint64_t space = metaslab_class_get_space(
 6603                     spa_dedup_class(spa));
 6604 
 6605                 (void) printf("\t%-16s %14llu     used: %5.2f%%\n",
 6606                     "Dedup class", (u_longlong_t)alloc,
 6607                     100.0 * alloc / space);
 6608         }
 6609 
 6610         if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
 6611                 uint64_t alloc = metaslab_class_get_alloc(
 6612                     spa_embedded_log_class(spa));
 6613                 uint64_t space = metaslab_class_get_space(
 6614                     spa_embedded_log_class(spa));
 6615 
 6616                 (void) printf("\t%-16s %14llu     used: %5.2f%%\n",
 6617                     "Embedded log class", (u_longlong_t)alloc,
 6618                     100.0 * alloc / space);
 6619         }
 6620 
 6621         for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
 6622                 if (zcb->zcb_embedded_blocks[i] == 0)
 6623                         continue;
 6624                 (void) printf("\n");
 6625                 (void) printf("\tadditional, non-pointer bps of type %u: "
 6626                     "%10llu\n",
 6627                     i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
 6628 
 6629                 if (dump_opt['b'] >= 3) {
 6630                         (void) printf("\t number of (compressed) bytes:  "
 6631                             "number of bps\n");
 6632                         dump_histogram(zcb->zcb_embedded_histogram[i],
 6633                             sizeof (zcb->zcb_embedded_histogram[i]) /
 6634                             sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
 6635                 }
 6636         }
 6637 
 6638         if (tzb->zb_ditto_samevdev != 0) {
 6639                 (void) printf("\tDittoed blocks on same vdev: %llu\n",
 6640                     (longlong_t)tzb->zb_ditto_samevdev);
 6641         }
 6642         if (tzb->zb_ditto_same_ms != 0) {
 6643                 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
 6644                     (longlong_t)tzb->zb_ditto_same_ms);
 6645         }
 6646 
 6647         for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
 6648                 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
 6649                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 6650 
 6651                 if (vim == NULL) {
 6652                         continue;
 6653                 }
 6654 
 6655                 char mem[32];
 6656                 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
 6657                     mem, vdev_indirect_mapping_size(vim));
 6658 
 6659                 (void) printf("\tindirect vdev id %llu has %llu segments "
 6660                     "(%s in memory)\n",
 6661                     (longlong_t)vd->vdev_id,
 6662                     (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
 6663         }
 6664 
 6665         if (dump_opt['b'] >= 2) {
 6666                 int l, t, level;
 6667                 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
 6668                     "\t  avg\t comp\t%%Total\tType\n");
 6669 
 6670                 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
 6671                         char csize[32], lsize[32], psize[32], asize[32];
 6672                         char avg[32], gang[32];
 6673                         const char *typename;
 6674 
 6675                         /* make sure nicenum has enough space */
 6676                         _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
 6677                             "csize truncated");
 6678                         _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
 6679                             "lsize truncated");
 6680                         _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
 6681                             "psize truncated");
 6682                         _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
 6683                             "asize truncated");
 6684                         _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
 6685                             "avg truncated");
 6686                         _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
 6687                             "gang truncated");
 6688 
 6689                         if (t < DMU_OT_NUMTYPES)
 6690                                 typename = dmu_ot[t].ot_name;
 6691                         else
 6692                                 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
 6693 
 6694                         if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
 6695                                 (void) printf("%6s\t%5s\t%5s\t%5s"
 6696                                     "\t%5s\t%5s\t%6s\t%s\n",
 6697                                     "-",
 6698                                     "-",
 6699                                     "-",
 6700                                     "-",
 6701                                     "-",
 6702                                     "-",
 6703                                     "-",
 6704                                     typename);
 6705                                 continue;
 6706                         }
 6707 
 6708                         for (l = ZB_TOTAL - 1; l >= -1; l--) {
 6709                                 level = (l == -1 ? ZB_TOTAL : l);
 6710                                 zb = &zcb->zcb_type[level][t];
 6711 
 6712                                 if (zb->zb_asize == 0)
 6713                                         continue;
 6714 
 6715                                 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
 6716                                         continue;
 6717 
 6718                                 if (level == 0 && zb->zb_asize ==
 6719                                     zcb->zcb_type[ZB_TOTAL][t].zb_asize)
 6720                                         continue;
 6721 
 6722                                 zdb_nicenum(zb->zb_count, csize,
 6723                                     sizeof (csize));
 6724                                 zdb_nicenum(zb->zb_lsize, lsize,
 6725                                     sizeof (lsize));
 6726                                 zdb_nicenum(zb->zb_psize, psize,
 6727                                     sizeof (psize));
 6728                                 zdb_nicenum(zb->zb_asize, asize,
 6729                                     sizeof (asize));
 6730                                 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
 6731                                     sizeof (avg));
 6732                                 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
 6733 
 6734                                 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
 6735                                     "\t%5.2f\t%6.2f\t",
 6736                                     csize, lsize, psize, asize, avg,
 6737                                     (double)zb->zb_lsize / zb->zb_psize,
 6738                                     100.0 * zb->zb_asize / tzb->zb_asize);
 6739 
 6740                                 if (level == ZB_TOTAL)
 6741                                         (void) printf("%s\n", typename);
 6742                                 else
 6743                                         (void) printf("    L%d %s\n",
 6744                                             level, typename);
 6745 
 6746                                 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
 6747                                         (void) printf("\t number of ganged "
 6748                                             "blocks: %s\n", gang);
 6749                                 }
 6750 
 6751                                 if (dump_opt['b'] >= 4) {
 6752                                         (void) printf("psize "
 6753                                             "(in 512-byte sectors): "
 6754                                             "number of blocks\n");
 6755                                         dump_histogram(zb->zb_psize_histogram,
 6756                                             PSIZE_HISTO_SIZE, 0);
 6757                                 }
 6758                         }
 6759                 }
 6760 
 6761                 /* Output a table summarizing block sizes in the pool */
 6762                 if (dump_opt['b'] >= 2) {
 6763                         dump_size_histograms(zcb);
 6764                 }
 6765         }
 6766 
 6767         (void) printf("\n");
 6768 
 6769         if (leaks) {
 6770                 umem_free(zcb, sizeof (zdb_cb_t));
 6771                 return (2);
 6772         }
 6773 
 6774         if (zcb->zcb_haderrors) {
 6775                 umem_free(zcb, sizeof (zdb_cb_t));
 6776                 return (3);
 6777         }
 6778 
 6779         umem_free(zcb, sizeof (zdb_cb_t));
 6780         return (0);
 6781 }
 6782 
 6783 typedef struct zdb_ddt_entry {
 6784         ddt_key_t       zdde_key;
 6785         uint64_t        zdde_ref_blocks;
 6786         uint64_t        zdde_ref_lsize;
 6787         uint64_t        zdde_ref_psize;
 6788         uint64_t        zdde_ref_dsize;
 6789         avl_node_t      zdde_node;
 6790 } zdb_ddt_entry_t;
 6791 
 6792 static int
 6793 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
 6794     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
 6795 {
 6796         (void) zilog, (void) dnp;
 6797         avl_tree_t *t = arg;
 6798         avl_index_t where;
 6799         zdb_ddt_entry_t *zdde, zdde_search;
 6800 
 6801         if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
 6802             BP_IS_EMBEDDED(bp))
 6803                 return (0);
 6804 
 6805         if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
 6806                 (void) printf("traversing objset %llu, %llu objects, "
 6807                     "%lu blocks so far\n",
 6808                     (u_longlong_t)zb->zb_objset,
 6809                     (u_longlong_t)BP_GET_FILL(bp),
 6810                     avl_numnodes(t));
 6811         }
 6812 
 6813         if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
 6814             BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
 6815                 return (0);
 6816 
 6817         ddt_key_fill(&zdde_search.zdde_key, bp);
 6818 
 6819         zdde = avl_find(t, &zdde_search, &where);
 6820 
 6821         if (zdde == NULL) {
 6822                 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
 6823                 zdde->zdde_key = zdde_search.zdde_key;
 6824                 avl_insert(t, zdde, where);
 6825         }
 6826 
 6827         zdde->zdde_ref_blocks += 1;
 6828         zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
 6829         zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
 6830         zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
 6831 
 6832         return (0);
 6833 }
 6834 
 6835 static void
 6836 dump_simulated_ddt(spa_t *spa)
 6837 {
 6838         avl_tree_t t;
 6839         void *cookie = NULL;
 6840         zdb_ddt_entry_t *zdde;
 6841         ddt_histogram_t ddh_total = {{{0}}};
 6842         ddt_stat_t dds_total = {0};
 6843 
 6844         avl_create(&t, ddt_entry_compare,
 6845             sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
 6846 
 6847         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 6848 
 6849         (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
 6850             TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
 6851 
 6852         spa_config_exit(spa, SCL_CONFIG, FTAG);
 6853 
 6854         while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
 6855                 ddt_stat_t dds;
 6856                 uint64_t refcnt = zdde->zdde_ref_blocks;
 6857                 ASSERT(refcnt != 0);
 6858 
 6859                 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
 6860                 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
 6861                 dds.dds_psize = zdde->zdde_ref_psize / refcnt;
 6862                 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
 6863 
 6864                 dds.dds_ref_blocks = zdde->zdde_ref_blocks;
 6865                 dds.dds_ref_lsize = zdde->zdde_ref_lsize;
 6866                 dds.dds_ref_psize = zdde->zdde_ref_psize;
 6867                 dds.dds_ref_dsize = zdde->zdde_ref_dsize;
 6868 
 6869                 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
 6870                     &dds, 0);
 6871 
 6872                 umem_free(zdde, sizeof (*zdde));
 6873         }
 6874 
 6875         avl_destroy(&t);
 6876 
 6877         ddt_histogram_stat(&dds_total, &ddh_total);
 6878 
 6879         (void) printf("Simulated DDT histogram:\n");
 6880 
 6881         zpool_dump_ddt(&dds_total, &ddh_total);
 6882 
 6883         dump_dedup_ratio(&dds_total);
 6884 }
 6885 
 6886 static int
 6887 verify_device_removal_feature_counts(spa_t *spa)
 6888 {
 6889         uint64_t dr_feature_refcount = 0;
 6890         uint64_t oc_feature_refcount = 0;
 6891         uint64_t indirect_vdev_count = 0;
 6892         uint64_t precise_vdev_count = 0;
 6893         uint64_t obsolete_counts_object_count = 0;
 6894         uint64_t obsolete_sm_count = 0;
 6895         uint64_t obsolete_counts_count = 0;
 6896         uint64_t scip_count = 0;
 6897         uint64_t obsolete_bpobj_count = 0;
 6898         int ret = 0;
 6899 
 6900         spa_condensing_indirect_phys_t *scip =
 6901             &spa->spa_condensing_indirect_phys;
 6902         if (scip->scip_next_mapping_object != 0) {
 6903                 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
 6904                 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
 6905                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 6906 
 6907                 (void) printf("Condensing indirect vdev %llu: new mapping "
 6908                     "object %llu, prev obsolete sm %llu\n",
 6909                     (u_longlong_t)scip->scip_vdev,
 6910                     (u_longlong_t)scip->scip_next_mapping_object,
 6911                     (u_longlong_t)scip->scip_prev_obsolete_sm_object);
 6912                 if (scip->scip_prev_obsolete_sm_object != 0) {
 6913                         space_map_t *prev_obsolete_sm = NULL;
 6914                         VERIFY0(space_map_open(&prev_obsolete_sm,
 6915                             spa->spa_meta_objset,
 6916                             scip->scip_prev_obsolete_sm_object,
 6917                             0, vd->vdev_asize, 0));
 6918                         dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
 6919                         (void) printf("\n");
 6920                         space_map_close(prev_obsolete_sm);
 6921                 }
 6922 
 6923                 scip_count += 2;
 6924         }
 6925 
 6926         for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
 6927                 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
 6928                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 6929 
 6930                 if (vic->vic_mapping_object != 0) {
 6931                         ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
 6932                             vd->vdev_removing);
 6933                         indirect_vdev_count++;
 6934 
 6935                         if (vd->vdev_indirect_mapping->vim_havecounts) {
 6936                                 obsolete_counts_count++;
 6937                         }
 6938                 }
 6939 
 6940                 boolean_t are_precise;
 6941                 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
 6942                 if (are_precise) {
 6943                         ASSERT(vic->vic_mapping_object != 0);
 6944                         precise_vdev_count++;
 6945                 }
 6946 
 6947                 uint64_t obsolete_sm_object;
 6948                 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
 6949                 if (obsolete_sm_object != 0) {
 6950                         ASSERT(vic->vic_mapping_object != 0);
 6951                         obsolete_sm_count++;
 6952                 }
 6953         }
 6954 
 6955         (void) feature_get_refcount(spa,
 6956             &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
 6957             &dr_feature_refcount);
 6958         (void) feature_get_refcount(spa,
 6959             &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
 6960             &oc_feature_refcount);
 6961 
 6962         if (dr_feature_refcount != indirect_vdev_count) {
 6963                 ret = 1;
 6964                 (void) printf("Number of indirect vdevs (%llu) " \
 6965                     "does not match feature count (%llu)\n",
 6966                     (u_longlong_t)indirect_vdev_count,
 6967                     (u_longlong_t)dr_feature_refcount);
 6968         } else {
 6969                 (void) printf("Verified device_removal feature refcount " \
 6970                     "of %llu is correct\n",
 6971                     (u_longlong_t)dr_feature_refcount);
 6972         }
 6973 
 6974         if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
 6975             DMU_POOL_OBSOLETE_BPOBJ) == 0) {
 6976                 obsolete_bpobj_count++;
 6977         }
 6978 
 6979 
 6980         obsolete_counts_object_count = precise_vdev_count;
 6981         obsolete_counts_object_count += obsolete_sm_count;
 6982         obsolete_counts_object_count += obsolete_counts_count;
 6983         obsolete_counts_object_count += scip_count;
 6984         obsolete_counts_object_count += obsolete_bpobj_count;
 6985         obsolete_counts_object_count += remap_deadlist_count;
 6986 
 6987         if (oc_feature_refcount != obsolete_counts_object_count) {
 6988                 ret = 1;
 6989                 (void) printf("Number of obsolete counts objects (%llu) " \
 6990                     "does not match feature count (%llu)\n",
 6991                     (u_longlong_t)obsolete_counts_object_count,
 6992                     (u_longlong_t)oc_feature_refcount);
 6993                 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
 6994                     "ob:%llu rd:%llu\n",
 6995                     (u_longlong_t)precise_vdev_count,
 6996                     (u_longlong_t)obsolete_sm_count,
 6997                     (u_longlong_t)obsolete_counts_count,
 6998                     (u_longlong_t)scip_count,
 6999                     (u_longlong_t)obsolete_bpobj_count,
 7000                     (u_longlong_t)remap_deadlist_count);
 7001         } else {
 7002                 (void) printf("Verified indirect_refcount feature refcount " \
 7003                     "of %llu is correct\n",
 7004                     (u_longlong_t)oc_feature_refcount);
 7005         }
 7006         return (ret);
 7007 }
 7008 
 7009 static void
 7010 zdb_set_skip_mmp(char *target)
 7011 {
 7012         spa_t *spa;
 7013 
 7014         /*
 7015          * Disable the activity check to allow examination of
 7016          * active pools.
 7017          */
 7018         mutex_enter(&spa_namespace_lock);
 7019         if ((spa = spa_lookup(target)) != NULL) {
 7020                 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
 7021         }
 7022         mutex_exit(&spa_namespace_lock);
 7023 }
 7024 
 7025 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
 7026 /*
 7027  * Import the checkpointed state of the pool specified by the target
 7028  * parameter as readonly. The function also accepts a pool config
 7029  * as an optional parameter, else it attempts to infer the config by
 7030  * the name of the target pool.
 7031  *
 7032  * Note that the checkpointed state's pool name will be the name of
 7033  * the original pool with the above suffix appended to it. In addition,
 7034  * if the target is not a pool name (e.g. a path to a dataset) then
 7035  * the new_path parameter is populated with the updated path to
 7036  * reflect the fact that we are looking into the checkpointed state.
 7037  *
 7038  * The function returns a newly-allocated copy of the name of the
 7039  * pool containing the checkpointed state. When this copy is no
 7040  * longer needed it should be freed with free(3C). Same thing
 7041  * applies to the new_path parameter if allocated.
 7042  */
 7043 static char *
 7044 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
 7045 {
 7046         int error = 0;
 7047         char *poolname, *bogus_name = NULL;
 7048         boolean_t freecfg = B_FALSE;
 7049 
 7050         /* If the target is not a pool, the extract the pool name */
 7051         char *path_start = strchr(target, '/');
 7052         if (path_start != NULL) {
 7053                 size_t poolname_len = path_start - target;
 7054                 poolname = strndup(target, poolname_len);
 7055         } else {
 7056                 poolname = target;
 7057         }
 7058 
 7059         if (cfg == NULL) {
 7060                 zdb_set_skip_mmp(poolname);
 7061                 error = spa_get_stats(poolname, &cfg, NULL, 0);
 7062                 if (error != 0) {
 7063                         fatal("Tried to read config of pool \"%s\" but "
 7064                             "spa_get_stats() failed with error %d\n",
 7065                             poolname, error);
 7066                 }
 7067                 freecfg = B_TRUE;
 7068         }
 7069 
 7070         if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
 7071                 if (target != poolname)
 7072                         free(poolname);
 7073                 return (NULL);
 7074         }
 7075         fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
 7076 
 7077         error = spa_import(bogus_name, cfg, NULL,
 7078             ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
 7079             ZFS_IMPORT_SKIP_MMP);
 7080         if (freecfg)
 7081                 nvlist_free(cfg);
 7082         if (error != 0) {
 7083                 fatal("Tried to import pool \"%s\" but spa_import() failed "
 7084                     "with error %d\n", bogus_name, error);
 7085         }
 7086 
 7087         if (new_path != NULL && path_start != NULL) {
 7088                 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
 7089                         free(bogus_name);
 7090                         if (path_start != NULL)
 7091                                 free(poolname);
 7092                         return (NULL);
 7093                 }
 7094         }
 7095 
 7096         if (target != poolname)
 7097                 free(poolname);
 7098 
 7099         return (bogus_name);
 7100 }
 7101 
 7102 typedef struct verify_checkpoint_sm_entry_cb_arg {
 7103         vdev_t *vcsec_vd;
 7104 
 7105         /* the following fields are only used for printing progress */
 7106         uint64_t vcsec_entryid;
 7107         uint64_t vcsec_num_entries;
 7108 } verify_checkpoint_sm_entry_cb_arg_t;
 7109 
 7110 #define ENTRIES_PER_PROGRESS_UPDATE 10000
 7111 
 7112 static int
 7113 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
 7114 {
 7115         verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
 7116         vdev_t *vd = vcsec->vcsec_vd;
 7117         metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
 7118         uint64_t end = sme->sme_offset + sme->sme_run;
 7119 
 7120         ASSERT(sme->sme_type == SM_FREE);
 7121 
 7122         if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
 7123                 (void) fprintf(stderr,
 7124                     "\rverifying vdev %llu, space map entry %llu of %llu ...",
 7125                     (longlong_t)vd->vdev_id,
 7126                     (longlong_t)vcsec->vcsec_entryid,
 7127                     (longlong_t)vcsec->vcsec_num_entries);
 7128         }
 7129         vcsec->vcsec_entryid++;
 7130 
 7131         /*
 7132          * See comment in checkpoint_sm_exclude_entry_cb()
 7133          */
 7134         VERIFY3U(sme->sme_offset, >=, ms->ms_start);
 7135         VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
 7136 
 7137         /*
 7138          * The entries in the vdev_checkpoint_sm should be marked as
 7139          * allocated in the checkpointed state of the pool, therefore
 7140          * their respective ms_allocateable trees should not contain them.
 7141          */
 7142         mutex_enter(&ms->ms_lock);
 7143         range_tree_verify_not_present(ms->ms_allocatable,
 7144             sme->sme_offset, sme->sme_run);
 7145         mutex_exit(&ms->ms_lock);
 7146 
 7147         return (0);
 7148 }
 7149 
 7150 /*
 7151  * Verify that all segments in the vdev_checkpoint_sm are allocated
 7152  * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
 7153  * ms_allocatable).
 7154  *
 7155  * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
 7156  * each vdev in the current state of the pool to the metaslab space maps
 7157  * (ms_sm) of the checkpointed state of the pool.
 7158  *
 7159  * Note that the function changes the state of the ms_allocatable
 7160  * trees of the current spa_t. The entries of these ms_allocatable
 7161  * trees are cleared out and then repopulated from with the free
 7162  * entries of their respective ms_sm space maps.
 7163  */
 7164 static void
 7165 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
 7166 {
 7167         vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
 7168         vdev_t *current_rvd = current->spa_root_vdev;
 7169 
 7170         load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
 7171 
 7172         for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
 7173                 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
 7174                 vdev_t *current_vd = current_rvd->vdev_child[c];
 7175 
 7176                 space_map_t *checkpoint_sm = NULL;
 7177                 uint64_t checkpoint_sm_obj;
 7178 
 7179                 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
 7180                         /*
 7181                          * Since we don't allow device removal in a pool
 7182                          * that has a checkpoint, we expect that all removed
 7183                          * vdevs were removed from the pool before the
 7184                          * checkpoint.
 7185                          */
 7186                         ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
 7187                         continue;
 7188                 }
 7189 
 7190                 /*
 7191                  * If the checkpoint space map doesn't exist, then nothing
 7192                  * here is checkpointed so there's nothing to verify.
 7193                  */
 7194                 if (current_vd->vdev_top_zap == 0 ||
 7195                     zap_contains(spa_meta_objset(current),
 7196                     current_vd->vdev_top_zap,
 7197                     VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
 7198                         continue;
 7199 
 7200                 VERIFY0(zap_lookup(spa_meta_objset(current),
 7201                     current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
 7202                     sizeof (uint64_t), 1, &checkpoint_sm_obj));
 7203 
 7204                 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
 7205                     checkpoint_sm_obj, 0, current_vd->vdev_asize,
 7206                     current_vd->vdev_ashift));
 7207 
 7208                 verify_checkpoint_sm_entry_cb_arg_t vcsec;
 7209                 vcsec.vcsec_vd = ckpoint_vd;
 7210                 vcsec.vcsec_entryid = 0;
 7211                 vcsec.vcsec_num_entries =
 7212                     space_map_length(checkpoint_sm) / sizeof (uint64_t);
 7213                 VERIFY0(space_map_iterate(checkpoint_sm,
 7214                     space_map_length(checkpoint_sm),
 7215                     verify_checkpoint_sm_entry_cb, &vcsec));
 7216                 if (dump_opt['m'] > 3)
 7217                         dump_spacemap(current->spa_meta_objset, checkpoint_sm);
 7218                 space_map_close(checkpoint_sm);
 7219         }
 7220 
 7221         /*
 7222          * If we've added vdevs since we took the checkpoint, ensure
 7223          * that their checkpoint space maps are empty.
 7224          */
 7225         if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
 7226                 for (uint64_t c = ckpoint_rvd->vdev_children;
 7227                     c < current_rvd->vdev_children; c++) {
 7228                         vdev_t *current_vd = current_rvd->vdev_child[c];
 7229                         VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
 7230                 }
 7231         }
 7232 
 7233         /* for cleaner progress output */
 7234         (void) fprintf(stderr, "\n");
 7235 }
 7236 
 7237 /*
 7238  * Verifies that all space that's allocated in the checkpoint is
 7239  * still allocated in the current version, by checking that everything
 7240  * in checkpoint's ms_allocatable (which is actually allocated, not
 7241  * allocatable/free) is not present in current's ms_allocatable.
 7242  *
 7243  * Note that the function changes the state of the ms_allocatable
 7244  * trees of both spas when called. The entries of all ms_allocatable
 7245  * trees are cleared out and then repopulated from their respective
 7246  * ms_sm space maps. In the checkpointed state we load the allocated
 7247  * entries, and in the current state we load the free entries.
 7248  */
 7249 static void
 7250 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
 7251 {
 7252         vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
 7253         vdev_t *current_rvd = current->spa_root_vdev;
 7254 
 7255         load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
 7256         load_concrete_ms_allocatable_trees(current, SM_FREE);
 7257 
 7258         for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
 7259                 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
 7260                 vdev_t *current_vd = current_rvd->vdev_child[i];
 7261 
 7262                 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
 7263                         /*
 7264                          * See comment in verify_checkpoint_vdev_spacemaps()
 7265                          */
 7266                         ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
 7267                         continue;
 7268                 }
 7269 
 7270                 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
 7271                         metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
 7272                         metaslab_t *current_msp = current_vd->vdev_ms[m];
 7273 
 7274                         (void) fprintf(stderr,
 7275                             "\rverifying vdev %llu of %llu, "
 7276                             "metaslab %llu of %llu ...",
 7277                             (longlong_t)current_vd->vdev_id,
 7278                             (longlong_t)current_rvd->vdev_children,
 7279                             (longlong_t)current_vd->vdev_ms[m]->ms_id,
 7280                             (longlong_t)current_vd->vdev_ms_count);
 7281 
 7282                         /*
 7283                          * We walk through the ms_allocatable trees that
 7284                          * are loaded with the allocated blocks from the
 7285                          * ms_sm spacemaps of the checkpoint. For each
 7286                          * one of these ranges we ensure that none of them
 7287                          * exists in the ms_allocatable trees of the
 7288                          * current state which are loaded with the ranges
 7289                          * that are currently free.
 7290                          *
 7291                          * This way we ensure that none of the blocks that
 7292                          * are part of the checkpoint were freed by mistake.
 7293                          */
 7294                         range_tree_walk(ckpoint_msp->ms_allocatable,
 7295                             (range_tree_func_t *)range_tree_verify_not_present,
 7296                             current_msp->ms_allocatable);
 7297                 }
 7298         }
 7299 
 7300         /* for cleaner progress output */
 7301         (void) fprintf(stderr, "\n");
 7302 }
 7303 
 7304 static void
 7305 verify_checkpoint_blocks(spa_t *spa)
 7306 {
 7307         ASSERT(!dump_opt['L']);
 7308 
 7309         spa_t *checkpoint_spa;
 7310         char *checkpoint_pool;
 7311         int error = 0;
 7312 
 7313         /*
 7314          * We import the checkpointed state of the pool (under a different
 7315          * name) so we can do verification on it against the current state
 7316          * of the pool.
 7317          */
 7318         checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
 7319             NULL);
 7320         ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
 7321 
 7322         error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
 7323         if (error != 0) {
 7324                 fatal("Tried to open pool \"%s\" but spa_open() failed with "
 7325                     "error %d\n", checkpoint_pool, error);
 7326         }
 7327 
 7328         /*
 7329          * Ensure that ranges in the checkpoint space maps of each vdev
 7330          * are allocated according to the checkpointed state's metaslab
 7331          * space maps.
 7332          */
 7333         verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
 7334 
 7335         /*
 7336          * Ensure that allocated ranges in the checkpoint's metaslab
 7337          * space maps remain allocated in the metaslab space maps of
 7338          * the current state.
 7339          */
 7340         verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
 7341 
 7342         /*
 7343          * Once we are done, we get rid of the checkpointed state.
 7344          */
 7345         spa_close(checkpoint_spa, FTAG);
 7346         free(checkpoint_pool);
 7347 }
 7348 
 7349 static void
 7350 dump_leftover_checkpoint_blocks(spa_t *spa)
 7351 {
 7352         vdev_t *rvd = spa->spa_root_vdev;
 7353 
 7354         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
 7355                 vdev_t *vd = rvd->vdev_child[i];
 7356 
 7357                 space_map_t *checkpoint_sm = NULL;
 7358                 uint64_t checkpoint_sm_obj;
 7359 
 7360                 if (vd->vdev_top_zap == 0)
 7361                         continue;
 7362 
 7363                 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
 7364                     VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
 7365                         continue;
 7366 
 7367                 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
 7368                     VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
 7369                     sizeof (uint64_t), 1, &checkpoint_sm_obj));
 7370 
 7371                 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
 7372                     checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
 7373                 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
 7374                 space_map_close(checkpoint_sm);
 7375         }
 7376 }
 7377 
 7378 static int
 7379 verify_checkpoint(spa_t *spa)
 7380 {
 7381         uberblock_t checkpoint;
 7382         int error;
 7383 
 7384         if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
 7385                 return (0);
 7386 
 7387         error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 7388             DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
 7389             sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
 7390 
 7391         if (error == ENOENT && !dump_opt['L']) {
 7392                 /*
 7393                  * If the feature is active but the uberblock is missing
 7394                  * then we must be in the middle of discarding the
 7395                  * checkpoint.
 7396                  */
 7397                 (void) printf("\nPartially discarded checkpoint "
 7398                     "state found:\n");
 7399                 if (dump_opt['m'] > 3)
 7400                         dump_leftover_checkpoint_blocks(spa);
 7401                 return (0);
 7402         } else if (error != 0) {
 7403                 (void) printf("lookup error %d when looking for "
 7404                     "checkpointed uberblock in MOS\n", error);
 7405                 return (error);
 7406         }
 7407         dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
 7408 
 7409         if (checkpoint.ub_checkpoint_txg == 0) {
 7410                 (void) printf("\nub_checkpoint_txg not set in checkpointed "
 7411                     "uberblock\n");
 7412                 error = 3;
 7413         }
 7414 
 7415         if (error == 0 && !dump_opt['L'])
 7416                 verify_checkpoint_blocks(spa);
 7417 
 7418         return (error);
 7419 }
 7420 
 7421 static void
 7422 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
 7423 {
 7424         (void) arg;
 7425         for (uint64_t i = start; i < size; i++) {
 7426                 (void) printf("MOS object %llu referenced but not allocated\n",
 7427                     (u_longlong_t)i);
 7428         }
 7429 }
 7430 
 7431 static void
 7432 mos_obj_refd(uint64_t obj)
 7433 {
 7434         if (obj != 0 && mos_refd_objs != NULL)
 7435                 range_tree_add(mos_refd_objs, obj, 1);
 7436 }
 7437 
 7438 /*
 7439  * Call on a MOS object that may already have been referenced.
 7440  */
 7441 static void
 7442 mos_obj_refd_multiple(uint64_t obj)
 7443 {
 7444         if (obj != 0 && mos_refd_objs != NULL &&
 7445             !range_tree_contains(mos_refd_objs, obj, 1))
 7446                 range_tree_add(mos_refd_objs, obj, 1);
 7447 }
 7448 
 7449 static void
 7450 mos_leak_vdev_top_zap(vdev_t *vd)
 7451 {
 7452         uint64_t ms_flush_data_obj;
 7453         int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
 7454             vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
 7455             sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
 7456         if (error == ENOENT)
 7457                 return;
 7458         ASSERT0(error);
 7459 
 7460         mos_obj_refd(ms_flush_data_obj);
 7461 }
 7462 
 7463 static void
 7464 mos_leak_vdev(vdev_t *vd)
 7465 {
 7466         mos_obj_refd(vd->vdev_dtl_object);
 7467         mos_obj_refd(vd->vdev_ms_array);
 7468         mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
 7469         mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
 7470         mos_obj_refd(vd->vdev_leaf_zap);
 7471         if (vd->vdev_checkpoint_sm != NULL)
 7472                 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
 7473         if (vd->vdev_indirect_mapping != NULL) {
 7474                 mos_obj_refd(vd->vdev_indirect_mapping->
 7475                     vim_phys->vimp_counts_object);
 7476         }
 7477         if (vd->vdev_obsolete_sm != NULL)
 7478                 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
 7479 
 7480         for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
 7481                 metaslab_t *ms = vd->vdev_ms[m];
 7482                 mos_obj_refd(space_map_object(ms->ms_sm));
 7483         }
 7484 
 7485         if (vd->vdev_top_zap != 0) {
 7486                 mos_obj_refd(vd->vdev_top_zap);
 7487                 mos_leak_vdev_top_zap(vd);
 7488         }
 7489 
 7490         for (uint64_t c = 0; c < vd->vdev_children; c++) {
 7491                 mos_leak_vdev(vd->vdev_child[c]);
 7492         }
 7493 }
 7494 
 7495 static void
 7496 mos_leak_log_spacemaps(spa_t *spa)
 7497 {
 7498         uint64_t spacemap_zap;
 7499         int error = zap_lookup(spa_meta_objset(spa),
 7500             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
 7501             sizeof (spacemap_zap), 1, &spacemap_zap);
 7502         if (error == ENOENT)
 7503                 return;
 7504         ASSERT0(error);
 7505 
 7506         mos_obj_refd(spacemap_zap);
 7507         for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
 7508             sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
 7509                 mos_obj_refd(sls->sls_sm_obj);
 7510 }
 7511 
 7512 static int
 7513 dump_mos_leaks(spa_t *spa)
 7514 {
 7515         int rv = 0;
 7516         objset_t *mos = spa->spa_meta_objset;
 7517         dsl_pool_t *dp = spa->spa_dsl_pool;
 7518 
 7519         /* Visit and mark all referenced objects in the MOS */
 7520 
 7521         mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
 7522         mos_obj_refd(spa->spa_pool_props_object);
 7523         mos_obj_refd(spa->spa_config_object);
 7524         mos_obj_refd(spa->spa_ddt_stat_object);
 7525         mos_obj_refd(spa->spa_feat_desc_obj);
 7526         mos_obj_refd(spa->spa_feat_enabled_txg_obj);
 7527         mos_obj_refd(spa->spa_feat_for_read_obj);
 7528         mos_obj_refd(spa->spa_feat_for_write_obj);
 7529         mos_obj_refd(spa->spa_history);
 7530         mos_obj_refd(spa->spa_errlog_last);
 7531         mos_obj_refd(spa->spa_errlog_scrub);
 7532         mos_obj_refd(spa->spa_all_vdev_zaps);
 7533         mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
 7534         mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
 7535         mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
 7536         bpobj_count_refd(&spa->spa_deferred_bpobj);
 7537         mos_obj_refd(dp->dp_empty_bpobj);
 7538         bpobj_count_refd(&dp->dp_obsolete_bpobj);
 7539         bpobj_count_refd(&dp->dp_free_bpobj);
 7540         mos_obj_refd(spa->spa_l2cache.sav_object);
 7541         mos_obj_refd(spa->spa_spares.sav_object);
 7542 
 7543         if (spa->spa_syncing_log_sm != NULL)
 7544                 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
 7545         mos_leak_log_spacemaps(spa);
 7546 
 7547         mos_obj_refd(spa->spa_condensing_indirect_phys.
 7548             scip_next_mapping_object);
 7549         mos_obj_refd(spa->spa_condensing_indirect_phys.
 7550             scip_prev_obsolete_sm_object);
 7551         if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
 7552                 vdev_indirect_mapping_t *vim =
 7553                     vdev_indirect_mapping_open(mos,
 7554                     spa->spa_condensing_indirect_phys.scip_next_mapping_object);
 7555                 mos_obj_refd(vim->vim_phys->vimp_counts_object);
 7556                 vdev_indirect_mapping_close(vim);
 7557         }
 7558         deleted_livelists_dump_mos(spa);
 7559 
 7560         if (dp->dp_origin_snap != NULL) {
 7561                 dsl_dataset_t *ds;
 7562 
 7563                 dsl_pool_config_enter(dp, FTAG);
 7564                 VERIFY0(dsl_dataset_hold_obj(dp,
 7565                     dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
 7566                     FTAG, &ds));
 7567                 count_ds_mos_objects(ds);
 7568                 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
 7569                 dsl_dataset_rele(ds, FTAG);
 7570                 dsl_pool_config_exit(dp, FTAG);
 7571 
 7572                 count_ds_mos_objects(dp->dp_origin_snap);
 7573                 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
 7574         }
 7575         count_dir_mos_objects(dp->dp_mos_dir);
 7576         if (dp->dp_free_dir != NULL)
 7577                 count_dir_mos_objects(dp->dp_free_dir);
 7578         if (dp->dp_leak_dir != NULL)
 7579                 count_dir_mos_objects(dp->dp_leak_dir);
 7580 
 7581         mos_leak_vdev(spa->spa_root_vdev);
 7582 
 7583         for (uint64_t class = 0; class < DDT_CLASSES; class++) {
 7584                 for (uint64_t type = 0; type < DDT_TYPES; type++) {
 7585                         for (uint64_t cksum = 0;
 7586                             cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
 7587                                 ddt_t *ddt = spa->spa_ddt[cksum];
 7588                                 mos_obj_refd(ddt->ddt_object[type][class]);
 7589                         }
 7590                 }
 7591         }
 7592 
 7593         /*
 7594          * Visit all allocated objects and make sure they are referenced.
 7595          */
 7596         uint64_t object = 0;
 7597         while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
 7598                 if (range_tree_contains(mos_refd_objs, object, 1)) {
 7599                         range_tree_remove(mos_refd_objs, object, 1);
 7600                 } else {
 7601                         dmu_object_info_t doi;
 7602                         const char *name;
 7603                         VERIFY0(dmu_object_info(mos, object, &doi));
 7604                         if (doi.doi_type & DMU_OT_NEWTYPE) {
 7605                                 dmu_object_byteswap_t bswap =
 7606                                     DMU_OT_BYTESWAP(doi.doi_type);
 7607                                 name = dmu_ot_byteswap[bswap].ob_name;
 7608                         } else {
 7609                                 name = dmu_ot[doi.doi_type].ot_name;
 7610                         }
 7611 
 7612                         (void) printf("MOS object %llu (%s) leaked\n",
 7613                             (u_longlong_t)object, name);
 7614                         rv = 2;
 7615                 }
 7616         }
 7617         (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
 7618         if (!range_tree_is_empty(mos_refd_objs))
 7619                 rv = 2;
 7620         range_tree_vacate(mos_refd_objs, NULL, NULL);
 7621         range_tree_destroy(mos_refd_objs);
 7622         return (rv);
 7623 }
 7624 
 7625 typedef struct log_sm_obsolete_stats_arg {
 7626         uint64_t lsos_current_txg;
 7627 
 7628         uint64_t lsos_total_entries;
 7629         uint64_t lsos_valid_entries;
 7630 
 7631         uint64_t lsos_sm_entries;
 7632         uint64_t lsos_valid_sm_entries;
 7633 } log_sm_obsolete_stats_arg_t;
 7634 
 7635 static int
 7636 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
 7637     uint64_t txg, void *arg)
 7638 {
 7639         log_sm_obsolete_stats_arg_t *lsos = arg;
 7640 
 7641         uint64_t offset = sme->sme_offset;
 7642         uint64_t vdev_id = sme->sme_vdev;
 7643 
 7644         if (lsos->lsos_current_txg == 0) {
 7645                 /* this is the first log */
 7646                 lsos->lsos_current_txg = txg;
 7647         } else if (lsos->lsos_current_txg < txg) {
 7648                 /* we just changed log - print stats and reset */
 7649                 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
 7650                     (u_longlong_t)lsos->lsos_valid_sm_entries,
 7651                     (u_longlong_t)lsos->lsos_sm_entries,
 7652                     (u_longlong_t)lsos->lsos_current_txg);
 7653                 lsos->lsos_valid_sm_entries = 0;
 7654                 lsos->lsos_sm_entries = 0;
 7655                 lsos->lsos_current_txg = txg;
 7656         }
 7657         ASSERT3U(lsos->lsos_current_txg, ==, txg);
 7658 
 7659         lsos->lsos_sm_entries++;
 7660         lsos->lsos_total_entries++;
 7661 
 7662         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
 7663         if (!vdev_is_concrete(vd))
 7664                 return (0);
 7665 
 7666         metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 7667         ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
 7668 
 7669         if (txg < metaslab_unflushed_txg(ms))
 7670                 return (0);
 7671         lsos->lsos_valid_sm_entries++;
 7672         lsos->lsos_valid_entries++;
 7673         return (0);
 7674 }
 7675 
 7676 static void
 7677 dump_log_spacemap_obsolete_stats(spa_t *spa)
 7678 {
 7679         if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
 7680                 return;
 7681 
 7682         log_sm_obsolete_stats_arg_t lsos = {0};
 7683 
 7684         (void) printf("Log Space Map Obsolete Entry Statistics:\n");
 7685 
 7686         iterate_through_spacemap_logs(spa,
 7687             log_spacemap_obsolete_stats_cb, &lsos);
 7688 
 7689         /* print stats for latest log */
 7690         (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
 7691             (u_longlong_t)lsos.lsos_valid_sm_entries,
 7692             (u_longlong_t)lsos.lsos_sm_entries,
 7693             (u_longlong_t)lsos.lsos_current_txg);
 7694 
 7695         (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
 7696             (u_longlong_t)lsos.lsos_valid_entries,
 7697             (u_longlong_t)lsos.lsos_total_entries);
 7698 }
 7699 
 7700 static void
 7701 dump_zpool(spa_t *spa)
 7702 {
 7703         dsl_pool_t *dp = spa_get_dsl(spa);
 7704         int rc = 0;
 7705 
 7706         if (dump_opt['y']) {
 7707                 livelist_metaslab_validate(spa);
 7708         }
 7709 
 7710         if (dump_opt['S']) {
 7711                 dump_simulated_ddt(spa);
 7712                 return;
 7713         }
 7714 
 7715         if (!dump_opt['e'] && dump_opt['C'] > 1) {
 7716                 (void) printf("\nCached configuration:\n");
 7717                 dump_nvlist(spa->spa_config, 8);
 7718         }
 7719 
 7720         if (dump_opt['C'])
 7721                 dump_config(spa);
 7722 
 7723         if (dump_opt['u'])
 7724                 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
 7725 
 7726         if (dump_opt['D'])
 7727                 dump_all_ddts(spa);
 7728 
 7729         if (dump_opt['d'] > 2 || dump_opt['m'])
 7730                 dump_metaslabs(spa);
 7731         if (dump_opt['M'])
 7732                 dump_metaslab_groups(spa, dump_opt['M'] > 1);
 7733         if (dump_opt['d'] > 2 || dump_opt['m']) {
 7734                 dump_log_spacemaps(spa);
 7735                 dump_log_spacemap_obsolete_stats(spa);
 7736         }
 7737 
 7738         if (dump_opt['d'] || dump_opt['i']) {
 7739                 spa_feature_t f;
 7740                 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
 7741                     0);
 7742                 dump_objset(dp->dp_meta_objset);
 7743 
 7744                 if (dump_opt['d'] >= 3) {
 7745                         dsl_pool_t *dp = spa->spa_dsl_pool;
 7746                         dump_full_bpobj(&spa->spa_deferred_bpobj,
 7747                             "Deferred frees", 0);
 7748                         if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
 7749                                 dump_full_bpobj(&dp->dp_free_bpobj,
 7750                                     "Pool snapshot frees", 0);
 7751                         }
 7752                         if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
 7753                                 ASSERT(spa_feature_is_enabled(spa,
 7754                                     SPA_FEATURE_DEVICE_REMOVAL));
 7755                                 dump_full_bpobj(&dp->dp_obsolete_bpobj,
 7756                                     "Pool obsolete blocks", 0);
 7757                         }
 7758 
 7759                         if (spa_feature_is_active(spa,
 7760                             SPA_FEATURE_ASYNC_DESTROY)) {
 7761                                 dump_bptree(spa->spa_meta_objset,
 7762                                     dp->dp_bptree_obj,
 7763                                     "Pool dataset frees");
 7764                         }
 7765                         dump_dtl(spa->spa_root_vdev, 0);
 7766                 }
 7767 
 7768                 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
 7769                         global_feature_count[f] = UINT64_MAX;
 7770                 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
 7771                 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
 7772                 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
 7773 
 7774                 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
 7775                     NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
 7776 
 7777                 if (rc == 0 && !dump_opt['L'])
 7778                         rc = dump_mos_leaks(spa);
 7779 
 7780                 for (f = 0; f < SPA_FEATURES; f++) {
 7781                         uint64_t refcount;
 7782 
 7783                         uint64_t *arr;
 7784                         if (!(spa_feature_table[f].fi_flags &
 7785                             ZFEATURE_FLAG_PER_DATASET)) {
 7786                                 if (global_feature_count[f] == UINT64_MAX)
 7787                                         continue;
 7788                                 if (!spa_feature_is_enabled(spa, f)) {
 7789                                         ASSERT0(global_feature_count[f]);
 7790                                         continue;
 7791                                 }
 7792                                 arr = global_feature_count;
 7793                         } else {
 7794                                 if (!spa_feature_is_enabled(spa, f)) {
 7795                                         ASSERT0(dataset_feature_count[f]);
 7796                                         continue;
 7797                                 }
 7798                                 arr = dataset_feature_count;
 7799                         }
 7800                         if (feature_get_refcount(spa, &spa_feature_table[f],
 7801                             &refcount) == ENOTSUP)
 7802                                 continue;
 7803                         if (arr[f] != refcount) {
 7804                                 (void) printf("%s feature refcount mismatch: "
 7805                                     "%lld consumers != %lld refcount\n",
 7806                                     spa_feature_table[f].fi_uname,
 7807                                     (longlong_t)arr[f], (longlong_t)refcount);
 7808                                 rc = 2;
 7809                         } else {
 7810                                 (void) printf("Verified %s feature refcount "
 7811                                     "of %llu is correct\n",
 7812                                     spa_feature_table[f].fi_uname,
 7813                                     (longlong_t)refcount);
 7814                         }
 7815                 }
 7816 
 7817                 if (rc == 0)
 7818                         rc = verify_device_removal_feature_counts(spa);
 7819         }
 7820 
 7821         if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
 7822                 rc = dump_block_stats(spa);
 7823 
 7824         if (rc == 0)
 7825                 rc = verify_spacemap_refcounts(spa);
 7826 
 7827         if (dump_opt['s'])
 7828                 show_pool_stats(spa);
 7829 
 7830         if (dump_opt['h'])
 7831                 dump_history(spa);
 7832 
 7833         if (rc == 0)
 7834                 rc = verify_checkpoint(spa);
 7835 
 7836         if (rc != 0) {
 7837                 dump_debug_buffer();
 7838                 exit(rc);
 7839         }
 7840 }
 7841 
 7842 #define ZDB_FLAG_CHECKSUM       0x0001
 7843 #define ZDB_FLAG_DECOMPRESS     0x0002
 7844 #define ZDB_FLAG_BSWAP          0x0004
 7845 #define ZDB_FLAG_GBH            0x0008
 7846 #define ZDB_FLAG_INDIRECT       0x0010
 7847 #define ZDB_FLAG_RAW            0x0020
 7848 #define ZDB_FLAG_PRINT_BLKPTR   0x0040
 7849 #define ZDB_FLAG_VERBOSE        0x0080
 7850 
 7851 static int flagbits[256];
 7852 static char flagbitstr[16];
 7853 
 7854 static void
 7855 zdb_print_blkptr(const blkptr_t *bp, int flags)
 7856 {
 7857         char blkbuf[BP_SPRINTF_LEN];
 7858 
 7859         if (flags & ZDB_FLAG_BSWAP)
 7860                 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
 7861 
 7862         snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
 7863         (void) printf("%s\n", blkbuf);
 7864 }
 7865 
 7866 static void
 7867 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
 7868 {
 7869         int i;
 7870 
 7871         for (i = 0; i < nbps; i++)
 7872                 zdb_print_blkptr(&bp[i], flags);
 7873 }
 7874 
 7875 static void
 7876 zdb_dump_gbh(void *buf, int flags)
 7877 {
 7878         zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
 7879 }
 7880 
 7881 static void
 7882 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
 7883 {
 7884         if (flags & ZDB_FLAG_BSWAP)
 7885                 byteswap_uint64_array(buf, size);
 7886         VERIFY(write(fileno(stdout), buf, size) == size);
 7887 }
 7888 
 7889 static void
 7890 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
 7891 {
 7892         uint64_t *d = (uint64_t *)buf;
 7893         unsigned nwords = size / sizeof (uint64_t);
 7894         int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
 7895         unsigned i, j;
 7896         const char *hdr;
 7897         char *c;
 7898 
 7899 
 7900         if (do_bswap)
 7901                 hdr = " 7 6 5 4 3 2 1 0   f e d c b a 9 8";
 7902         else
 7903                 hdr = " 0 1 2 3 4 5 6 7   8 9 a b c d e f";
 7904 
 7905         (void) printf("\n%s\n%6s   %s  0123456789abcdef\n", label, "", hdr);
 7906 
 7907 #ifdef _LITTLE_ENDIAN
 7908         /* correct the endianness */
 7909         do_bswap = !do_bswap;
 7910 #endif
 7911         for (i = 0; i < nwords; i += 2) {
 7912                 (void) printf("%06llx:  %016llx  %016llx  ",
 7913                     (u_longlong_t)(i * sizeof (uint64_t)),
 7914                     (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
 7915                     (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
 7916 
 7917                 c = (char *)&d[i];
 7918                 for (j = 0; j < 2 * sizeof (uint64_t); j++)
 7919                         (void) printf("%c", isprint(c[j]) ? c[j] : '.');
 7920                 (void) printf("\n");
 7921         }
 7922 }
 7923 
 7924 /*
 7925  * There are two acceptable formats:
 7926  *      leaf_name         - For example: c1t0d0 or /tmp/ztest.0a
 7927  *      child[.child]*    - For example: 0.1.1
 7928  *
 7929  * The second form can be used to specify arbitrary vdevs anywhere
 7930  * in the hierarchy.  For example, in a pool with a mirror of
 7931  * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
 7932  */
 7933 static vdev_t *
 7934 zdb_vdev_lookup(vdev_t *vdev, const char *path)
 7935 {
 7936         char *s, *p, *q;
 7937         unsigned i;
 7938 
 7939         if (vdev == NULL)
 7940                 return (NULL);
 7941 
 7942         /* First, assume the x.x.x.x format */
 7943         i = strtoul(path, &s, 10);
 7944         if (s == path || (s && *s != '.' && *s != '\0'))
 7945                 goto name;
 7946         if (i >= vdev->vdev_children)
 7947                 return (NULL);
 7948 
 7949         vdev = vdev->vdev_child[i];
 7950         if (s && *s == '\0')
 7951                 return (vdev);
 7952         return (zdb_vdev_lookup(vdev, s+1));
 7953 
 7954 name:
 7955         for (i = 0; i < vdev->vdev_children; i++) {
 7956                 vdev_t *vc = vdev->vdev_child[i];
 7957 
 7958                 if (vc->vdev_path == NULL) {
 7959                         vc = zdb_vdev_lookup(vc, path);
 7960                         if (vc == NULL)
 7961                                 continue;
 7962                         else
 7963                                 return (vc);
 7964                 }
 7965 
 7966                 p = strrchr(vc->vdev_path, '/');
 7967                 p = p ? p + 1 : vc->vdev_path;
 7968                 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
 7969 
 7970                 if (strcmp(vc->vdev_path, path) == 0)
 7971                         return (vc);
 7972                 if (strcmp(p, path) == 0)
 7973                         return (vc);
 7974                 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
 7975                         return (vc);
 7976         }
 7977 
 7978         return (NULL);
 7979 }
 7980 
 7981 static int
 7982 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
 7983 {
 7984         dsl_dataset_t *ds;
 7985 
 7986         dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
 7987         int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
 7988             NULL, &ds);
 7989         if (error != 0) {
 7990                 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
 7991                     (u_longlong_t)objset_id, strerror(error));
 7992                 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
 7993                 return (error);
 7994         }
 7995         dsl_dataset_name(ds, outstr);
 7996         dsl_dataset_rele(ds, NULL);
 7997         dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
 7998         return (0);
 7999 }
 8000 
 8001 static boolean_t
 8002 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
 8003 {
 8004         char *s0, *s1, *tmp = NULL;
 8005 
 8006         if (sizes == NULL)
 8007                 return (B_FALSE);
 8008 
 8009         s0 = strtok_r(sizes, "/", &tmp);
 8010         if (s0 == NULL)
 8011                 return (B_FALSE);
 8012         s1 = strtok_r(NULL, "/", &tmp);
 8013         *lsize = strtoull(s0, NULL, 16);
 8014         *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
 8015         return (*lsize >= *psize && *psize > 0);
 8016 }
 8017 
 8018 #define ZIO_COMPRESS_MASK(alg)  (1ULL << (ZIO_COMPRESS_##alg))
 8019 
 8020 static boolean_t
 8021 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
 8022     uint64_t psize, int flags)
 8023 {
 8024         (void) buf;
 8025         boolean_t exceeded = B_FALSE;
 8026         /*
 8027          * We don't know how the data was compressed, so just try
 8028          * every decompress function at every inflated blocksize.
 8029          */
 8030         void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
 8031         int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
 8032         int *cfuncp = cfuncs;
 8033         uint64_t maxlsize = SPA_MAXBLOCKSIZE;
 8034         uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
 8035             ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
 8036             (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
 8037         *cfuncp++ = ZIO_COMPRESS_LZ4;
 8038         *cfuncp++ = ZIO_COMPRESS_LZJB;
 8039         mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
 8040         for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
 8041                 if (((1ULL << c) & mask) == 0)
 8042                         *cfuncp++ = c;
 8043 
 8044         /*
 8045          * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
 8046          * could take a while and we should let the user know
 8047          * we are not stuck.  On the other hand, printing progress
 8048          * info gets old after a while.  User can specify 'v' flag
 8049          * to see the progression.
 8050          */
 8051         if (lsize == psize)
 8052                 lsize += SPA_MINBLOCKSIZE;
 8053         else
 8054                 maxlsize = lsize;
 8055         for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
 8056                 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
 8057                         if (flags & ZDB_FLAG_VERBOSE) {
 8058                                 (void) fprintf(stderr,
 8059                                     "Trying %05llx -> %05llx (%s)\n",
 8060                                     (u_longlong_t)psize,
 8061                                     (u_longlong_t)lsize,
 8062                                     zio_compress_table[*cfuncp].\
 8063                                     ci_name);
 8064                         }
 8065 
 8066                         /*
 8067                          * We randomize lbuf2, and decompress to both
 8068                          * lbuf and lbuf2. This way, we will know if
 8069                          * decompression fill exactly to lsize.
 8070                          */
 8071                         VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
 8072 
 8073                         if (zio_decompress_data(*cfuncp, pabd,
 8074                             lbuf, psize, lsize, NULL) == 0 &&
 8075                             zio_decompress_data(*cfuncp, pabd,
 8076                             lbuf2, psize, lsize, NULL) == 0 &&
 8077                             memcmp(lbuf, lbuf2, lsize) == 0)
 8078                                 break;
 8079                 }
 8080                 if (*cfuncp != 0)
 8081                         break;
 8082         }
 8083         umem_free(lbuf2, SPA_MAXBLOCKSIZE);
 8084 
 8085         if (lsize > maxlsize) {
 8086                 exceeded = B_TRUE;
 8087         }
 8088         if (*cfuncp == ZIO_COMPRESS_ZLE) {
 8089                 printf("\nZLE decompression was selected. If you "
 8090                     "suspect the results are wrong,\ntry avoiding ZLE "
 8091                     "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
 8092         }
 8093 
 8094         return (exceeded);
 8095 }
 8096 
 8097 /*
 8098  * Read a block from a pool and print it out.  The syntax of the
 8099  * block descriptor is:
 8100  *
 8101  *      pool:vdev_specifier:offset:[lsize/]psize[:flags]
 8102  *
 8103  *      pool           - The name of the pool you wish to read from
 8104  *      vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
 8105  *      offset         - offset, in hex, in bytes
 8106  *      size           - Amount of data to read, in hex, in bytes
 8107  *      flags          - A string of characters specifying options
 8108  *               b: Decode a blkptr at given offset within block
 8109  *               c: Calculate and display checksums
 8110  *               d: Decompress data before dumping
 8111  *               e: Byteswap data before dumping
 8112  *               g: Display data as a gang block header
 8113  *               i: Display as an indirect block
 8114  *               r: Dump raw data to stdout
 8115  *               v: Verbose
 8116  *
 8117  */
 8118 static void
 8119 zdb_read_block(char *thing, spa_t *spa)
 8120 {
 8121         blkptr_t blk, *bp = &blk;
 8122         dva_t *dva = bp->blk_dva;
 8123         int flags = 0;
 8124         uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
 8125         zio_t *zio;
 8126         vdev_t *vd;
 8127         abd_t *pabd;
 8128         void *lbuf, *buf;
 8129         char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
 8130         const char *vdev, *errmsg = NULL;
 8131         int i, error;
 8132         boolean_t borrowed = B_FALSE, found = B_FALSE;
 8133 
 8134         dup = strdup(thing);
 8135         s = strtok_r(dup, ":", &tmp);
 8136         vdev = s ?: "";
 8137         s = strtok_r(NULL, ":", &tmp);
 8138         offset = strtoull(s ? s : "", NULL, 16);
 8139         sizes = strtok_r(NULL, ":", &tmp);
 8140         s = strtok_r(NULL, ":", &tmp);
 8141         flagstr = strdup(s ?: "");
 8142 
 8143         if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
 8144                 errmsg = "invalid size(s)";
 8145         if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
 8146                 errmsg = "size must be a multiple of sector size";
 8147         if (!IS_P2ALIGNED(offset, DEV_BSIZE))
 8148                 errmsg = "offset must be a multiple of sector size";
 8149         if (errmsg) {
 8150                 (void) printf("Invalid block specifier: %s  - %s\n",
 8151                     thing, errmsg);
 8152                 goto done;
 8153         }
 8154 
 8155         tmp = NULL;
 8156         for (s = strtok_r(flagstr, ":", &tmp);
 8157             s != NULL;
 8158             s = strtok_r(NULL, ":", &tmp)) {
 8159                 for (i = 0; i < strlen(flagstr); i++) {
 8160                         int bit = flagbits[(uchar_t)flagstr[i]];
 8161 
 8162                         if (bit == 0) {
 8163                                 (void) printf("***Ignoring flag: %c\n",
 8164                                     (uchar_t)flagstr[i]);
 8165                                 continue;
 8166                         }
 8167                         found = B_TRUE;
 8168                         flags |= bit;
 8169 
 8170                         p = &flagstr[i + 1];
 8171                         if (*p != ':' && *p != '\0') {
 8172                                 int j = 0, nextbit = flagbits[(uchar_t)*p];
 8173                                 char *end, offstr[8] = { 0 };
 8174                                 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
 8175                                     (nextbit == 0)) {
 8176                                         /* look ahead to isolate the offset */
 8177                                         while (nextbit == 0 &&
 8178                                             strchr(flagbitstr, *p) == NULL) {
 8179                                                 offstr[j] = *p;
 8180                                                 j++;
 8181                                                 if (i + j > strlen(flagstr))
 8182                                                         break;
 8183                                                 p++;
 8184                                                 nextbit = flagbits[(uchar_t)*p];
 8185                                         }
 8186                                         blkptr_offset = strtoull(offstr, &end,
 8187                                             16);
 8188                                         i += j;
 8189                                 } else if (nextbit == 0) {
 8190                                         (void) printf("***Ignoring flag arg:"
 8191                                             " '%c'\n", (uchar_t)*p);
 8192                                 }
 8193                         }
 8194                 }
 8195         }
 8196         if (blkptr_offset % sizeof (blkptr_t)) {
 8197                 printf("Block pointer offset 0x%llx "
 8198                     "must be divisible by 0x%x\n",
 8199                     (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
 8200                 goto done;
 8201         }
 8202         if (found == B_FALSE && strlen(flagstr) > 0) {
 8203                 printf("Invalid flag arg: '%s'\n", flagstr);
 8204                 goto done;
 8205         }
 8206 
 8207         vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
 8208         if (vd == NULL) {
 8209                 (void) printf("***Invalid vdev: %s\n", vdev);
 8210                 goto done;
 8211         } else {
 8212                 if (vd->vdev_path)
 8213                         (void) fprintf(stderr, "Found vdev: %s\n",
 8214                             vd->vdev_path);
 8215                 else
 8216                         (void) fprintf(stderr, "Found vdev type: %s\n",
 8217                             vd->vdev_ops->vdev_op_type);
 8218         }
 8219 
 8220         pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
 8221         lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
 8222 
 8223         BP_ZERO(bp);
 8224 
 8225         DVA_SET_VDEV(&dva[0], vd->vdev_id);
 8226         DVA_SET_OFFSET(&dva[0], offset);
 8227         DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
 8228         DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
 8229 
 8230         BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
 8231 
 8232         BP_SET_LSIZE(bp, lsize);
 8233         BP_SET_PSIZE(bp, psize);
 8234         BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
 8235         BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
 8236         BP_SET_TYPE(bp, DMU_OT_NONE);
 8237         BP_SET_LEVEL(bp, 0);
 8238         BP_SET_DEDUP(bp, 0);
 8239         BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
 8240 
 8241         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 8242         zio = zio_root(spa, NULL, NULL, 0);
 8243 
 8244         if (vd == vd->vdev_top) {
 8245                 /*
 8246                  * Treat this as a normal block read.
 8247                  */
 8248                 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
 8249                     ZIO_PRIORITY_SYNC_READ,
 8250                     ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
 8251         } else {
 8252                 /*
 8253                  * Treat this as a vdev child I/O.
 8254                  */
 8255                 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
 8256                     psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
 8257                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
 8258                     ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
 8259                     ZIO_FLAG_OPTIONAL, NULL, NULL));
 8260         }
 8261 
 8262         error = zio_wait(zio);
 8263         spa_config_exit(spa, SCL_STATE, FTAG);
 8264 
 8265         if (error) {
 8266                 (void) printf("Read of %s failed, error: %d\n", thing, error);
 8267                 goto out;
 8268         }
 8269 
 8270         uint64_t orig_lsize = lsize;
 8271         buf = lbuf;
 8272         if (flags & ZDB_FLAG_DECOMPRESS) {
 8273                 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
 8274                     lsize, psize, flags);
 8275                 if (failed) {
 8276                         (void) printf("Decompress of %s failed\n", thing);
 8277                         goto out;
 8278                 }
 8279         } else {
 8280                 buf = abd_borrow_buf_copy(pabd, lsize);
 8281                 borrowed = B_TRUE;
 8282         }
 8283         /*
 8284          * Try to detect invalid block pointer.  If invalid, try
 8285          * decompressing.
 8286          */
 8287         if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
 8288             !(flags & ZDB_FLAG_DECOMPRESS)) {
 8289                 const blkptr_t *b = (const blkptr_t *)(void *)
 8290                     ((uintptr_t)buf + (uintptr_t)blkptr_offset);
 8291                 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) ==
 8292                     B_FALSE) {
 8293                         abd_return_buf_copy(pabd, buf, lsize);
 8294                         borrowed = B_FALSE;
 8295                         buf = lbuf;
 8296                         boolean_t failed = zdb_decompress_block(pabd, buf,
 8297                             lbuf, lsize, psize, flags);
 8298                         b = (const blkptr_t *)(void *)
 8299                             ((uintptr_t)buf + (uintptr_t)blkptr_offset);
 8300                         if (failed || zfs_blkptr_verify(spa, b, B_FALSE,
 8301                             BLK_VERIFY_LOG) == B_FALSE) {
 8302                                 printf("invalid block pointer at this DVA\n");
 8303                                 goto out;
 8304                         }
 8305                 }
 8306         }
 8307 
 8308         if (flags & ZDB_FLAG_PRINT_BLKPTR)
 8309                 zdb_print_blkptr((blkptr_t *)(void *)
 8310                     ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
 8311         else if (flags & ZDB_FLAG_RAW)
 8312                 zdb_dump_block_raw(buf, lsize, flags);
 8313         else if (flags & ZDB_FLAG_INDIRECT)
 8314                 zdb_dump_indirect((blkptr_t *)buf,
 8315                     orig_lsize / sizeof (blkptr_t), flags);
 8316         else if (flags & ZDB_FLAG_GBH)
 8317                 zdb_dump_gbh(buf, flags);
 8318         else
 8319                 zdb_dump_block(thing, buf, lsize, flags);
 8320 
 8321         /*
 8322          * If :c was specified, iterate through the checksum table to
 8323          * calculate and display each checksum for our specified
 8324          * DVA and length.
 8325          */
 8326         if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
 8327             !(flags & ZDB_FLAG_GBH)) {
 8328                 zio_t *czio;
 8329                 (void) printf("\n");
 8330                 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
 8331                     ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
 8332 
 8333                         if ((zio_checksum_table[ck].ci_flags &
 8334                             ZCHECKSUM_FLAG_EMBEDDED) ||
 8335                             ck == ZIO_CHECKSUM_NOPARITY) {
 8336                                 continue;
 8337                         }
 8338                         BP_SET_CHECKSUM(bp, ck);
 8339                         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 8340                         czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
 8341                         czio->io_bp = bp;
 8342 
 8343                         if (vd == vd->vdev_top) {
 8344                                 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
 8345                                     NULL, NULL,
 8346                                     ZIO_PRIORITY_SYNC_READ,
 8347                                     ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
 8348                                     ZIO_FLAG_DONT_RETRY, NULL));
 8349                         } else {
 8350                                 zio_nowait(zio_vdev_child_io(czio, bp, vd,
 8351                                     offset, pabd, psize, ZIO_TYPE_READ,
 8352                                     ZIO_PRIORITY_SYNC_READ,
 8353                                     ZIO_FLAG_DONT_CACHE |
 8354                                     ZIO_FLAG_DONT_PROPAGATE |
 8355                                     ZIO_FLAG_DONT_RETRY |
 8356                                     ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
 8357                                     ZIO_FLAG_SPECULATIVE |
 8358                                     ZIO_FLAG_OPTIONAL, NULL, NULL));
 8359                         }
 8360                         error = zio_wait(czio);
 8361                         if (error == 0 || error == ECKSUM) {
 8362                                 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0);
 8363                                 ck_zio->io_offset =
 8364                                     DVA_GET_OFFSET(&bp->blk_dva[0]);
 8365                                 ck_zio->io_bp = bp;
 8366                                 zio_checksum_compute(ck_zio, ck, pabd, lsize);
 8367                                 printf("%12s\tcksum=%llx:%llx:%llx:%llx\n",
 8368                                     zio_checksum_table[ck].ci_name,
 8369                                     (u_longlong_t)bp->blk_cksum.zc_word[0],
 8370                                     (u_longlong_t)bp->blk_cksum.zc_word[1],
 8371                                     (u_longlong_t)bp->blk_cksum.zc_word[2],
 8372                                     (u_longlong_t)bp->blk_cksum.zc_word[3]);
 8373                                 zio_wait(ck_zio);
 8374                         } else {
 8375                                 printf("error %d reading block\n", error);
 8376                         }
 8377                         spa_config_exit(spa, SCL_STATE, FTAG);
 8378                 }
 8379         }
 8380 
 8381         if (borrowed)
 8382                 abd_return_buf_copy(pabd, buf, lsize);
 8383 
 8384 out:
 8385         abd_free(pabd);
 8386         umem_free(lbuf, SPA_MAXBLOCKSIZE);
 8387 done:
 8388         free(flagstr);
 8389         free(dup);
 8390 }
 8391 
 8392 static void
 8393 zdb_embedded_block(char *thing)
 8394 {
 8395         blkptr_t bp = {{{{0}}}};
 8396         unsigned long long *words = (void *)&bp;
 8397         char *buf;
 8398         int err;
 8399 
 8400         err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
 8401             "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
 8402             words + 0, words + 1, words + 2, words + 3,
 8403             words + 4, words + 5, words + 6, words + 7,
 8404             words + 8, words + 9, words + 10, words + 11,
 8405             words + 12, words + 13, words + 14, words + 15);
 8406         if (err != 16) {
 8407                 (void) fprintf(stderr, "invalid input format\n");
 8408                 exit(1);
 8409         }
 8410         ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
 8411         buf = malloc(SPA_MAXBLOCKSIZE);
 8412         if (buf == NULL) {
 8413                 (void) fprintf(stderr, "out of memory\n");
 8414                 exit(1);
 8415         }
 8416         err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
 8417         if (err != 0) {
 8418                 (void) fprintf(stderr, "decode failed: %u\n", err);
 8419                 exit(1);
 8420         }
 8421         zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
 8422         free(buf);
 8423 }
 8424 
 8425 /* check for valid hex or decimal numeric string */
 8426 static boolean_t
 8427 zdb_numeric(char *str)
 8428 {
 8429         int i = 0;
 8430 
 8431         if (strlen(str) == 0)
 8432                 return (B_FALSE);
 8433         if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
 8434                 i = 2;
 8435         for (; i < strlen(str); i++) {
 8436                 if (!isxdigit(str[i]))
 8437                         return (B_FALSE);
 8438         }
 8439         return (B_TRUE);
 8440 }
 8441 
 8442 int
 8443 main(int argc, char **argv)
 8444 {
 8445         int c;
 8446         spa_t *spa = NULL;
 8447         objset_t *os = NULL;
 8448         int dump_all = 1;
 8449         int verbose = 0;
 8450         int error = 0;
 8451         char **searchdirs = NULL;
 8452         int nsearch = 0;
 8453         char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
 8454         nvlist_t *policy = NULL;
 8455         uint64_t max_txg = UINT64_MAX;
 8456         int64_t objset_id = -1;
 8457         uint64_t object;
 8458         int flags = ZFS_IMPORT_MISSING_LOG;
 8459         int rewind = ZPOOL_NEVER_REWIND;
 8460         char *spa_config_path_env, *objset_str;
 8461         boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
 8462         nvlist_t *cfg = NULL;
 8463 
 8464         dprintf_setup(&argc, argv);
 8465 
 8466         /*
 8467          * If there is an environment variable SPA_CONFIG_PATH it overrides
 8468          * default spa_config_path setting. If -U flag is specified it will
 8469          * override this environment variable settings once again.
 8470          */
 8471         spa_config_path_env = getenv("SPA_CONFIG_PATH");
 8472         if (spa_config_path_env != NULL)
 8473                 spa_config_path = spa_config_path_env;
 8474 
 8475         /*
 8476          * For performance reasons, we set this tunable down. We do so before
 8477          * the arg parsing section so that the user can override this value if
 8478          * they choose.
 8479          */
 8480         zfs_btree_verify_intensity = 3;
 8481 
 8482         struct option long_options[] = {
 8483                 {"ignore-assertions",   no_argument,            NULL, 'A'},
 8484                 {"block-stats",         no_argument,            NULL, 'b'},
 8485                 {"checksum",            no_argument,            NULL, 'c'},
 8486                 {"config",              no_argument,            NULL, 'C'},
 8487                 {"datasets",            no_argument,            NULL, 'd'},
 8488                 {"dedup-stats",         no_argument,            NULL, 'D'},
 8489                 {"exported",            no_argument,            NULL, 'e'},
 8490                 {"embedded-block-pointer",      no_argument,    NULL, 'E'},
 8491                 {"automatic-rewind",    no_argument,            NULL, 'F'},
 8492                 {"dump-debug-msg",      no_argument,            NULL, 'G'},
 8493                 {"history",             no_argument,            NULL, 'h'},
 8494                 {"intent-logs",         no_argument,            NULL, 'i'},
 8495                 {"inflight",            required_argument,      NULL, 'I'},
 8496                 {"checkpointed-state",  no_argument,            NULL, 'k'},
 8497                 {"label",               no_argument,            NULL, 'l'},
 8498                 {"disable-leak-tracking",       no_argument,    NULL, 'L'},
 8499                 {"metaslabs",           no_argument,            NULL, 'm'},
 8500                 {"metaslab-groups",     no_argument,            NULL, 'M'},
 8501                 {"numeric",             no_argument,            NULL, 'N'},
 8502                 {"option",              required_argument,      NULL, 'o'},
 8503                 {"object-lookups",      no_argument,            NULL, 'O'},
 8504                 {"path",                required_argument,      NULL, 'p'},
 8505                 {"parseable",           no_argument,            NULL, 'P'},
 8506                 {"skip-label",          no_argument,            NULL, 'q'},
 8507                 {"copy-object",         no_argument,            NULL, 'r'},
 8508                 {"read-block",          no_argument,            NULL, 'R'},
 8509                 {"io-stats",            no_argument,            NULL, 's'},
 8510                 {"simulate-dedup",      no_argument,            NULL, 'S'},
 8511                 {"txg",                 required_argument,      NULL, 't'},
 8512                 {"uberblock",           no_argument,            NULL, 'u'},
 8513                 {"cachefile",           required_argument,      NULL, 'U'},
 8514                 {"verbose",             no_argument,            NULL, 'v'},
 8515                 {"verbatim",            no_argument,            NULL, 'V'},
 8516                 {"dump-blocks",         required_argument,      NULL, 'x'},
 8517                 {"extreme-rewind",      no_argument,            NULL, 'X'},
 8518                 {"all-reconstruction",  no_argument,            NULL, 'Y'},
 8519                 {"livelist",            no_argument,            NULL, 'y'},
 8520                 {"zstd-headers",        no_argument,            NULL, 'Z'},
 8521                 {0, 0, 0, 0}
 8522         };
 8523 
 8524         while ((c = getopt_long(argc, argv,
 8525             "AbcCdDeEFGhiI:klLmMNo:Op:PqrRsSt:uU:vVx:XYyZ",
 8526             long_options, NULL)) != -1) {
 8527                 switch (c) {
 8528                 case 'b':
 8529                 case 'c':
 8530                 case 'C':
 8531                 case 'd':
 8532                 case 'D':
 8533                 case 'E':
 8534                 case 'G':
 8535                 case 'h':
 8536                 case 'i':
 8537                 case 'l':
 8538                 case 'm':
 8539                 case 'M':
 8540                 case 'N':
 8541                 case 'O':
 8542                 case 'r':
 8543                 case 'R':
 8544                 case 's':
 8545                 case 'S':
 8546                 case 'u':
 8547                 case 'y':
 8548                 case 'Z':
 8549                         dump_opt[c]++;
 8550                         dump_all = 0;
 8551                         break;
 8552                 case 'A':
 8553                 case 'e':
 8554                 case 'F':
 8555                 case 'k':
 8556                 case 'L':
 8557                 case 'P':
 8558                 case 'q':
 8559                 case 'X':
 8560                         dump_opt[c]++;
 8561                         break;
 8562                 case 'Y':
 8563                         zfs_reconstruct_indirect_combinations_max = INT_MAX;
 8564                         zfs_deadman_enabled = 0;
 8565                         break;
 8566                 /* NB: Sort single match options below. */
 8567                 case 'I':
 8568                         max_inflight_bytes = strtoull(optarg, NULL, 0);
 8569                         if (max_inflight_bytes == 0) {
 8570                                 (void) fprintf(stderr, "maximum number "
 8571                                     "of inflight bytes must be greater "
 8572                                     "than 0\n");
 8573                                 usage();
 8574                         }
 8575                         break;
 8576                 case 'o':
 8577                         error = set_global_var(optarg);
 8578                         if (error != 0)
 8579                                 usage();
 8580                         break;
 8581                 case 'p':
 8582                         if (searchdirs == NULL) {
 8583                                 searchdirs = umem_alloc(sizeof (char *),
 8584                                     UMEM_NOFAIL);
 8585                         } else {
 8586                                 char **tmp = umem_alloc((nsearch + 1) *
 8587                                     sizeof (char *), UMEM_NOFAIL);
 8588                                 memcpy(tmp, searchdirs, nsearch *
 8589                                     sizeof (char *));
 8590                                 umem_free(searchdirs,
 8591                                     nsearch * sizeof (char *));
 8592                                 searchdirs = tmp;
 8593                         }
 8594                         searchdirs[nsearch++] = optarg;
 8595                         break;
 8596                 case 't':
 8597                         max_txg = strtoull(optarg, NULL, 0);
 8598                         if (max_txg < TXG_INITIAL) {
 8599                                 (void) fprintf(stderr, "incorrect txg "
 8600                                     "specified: %s\n", optarg);
 8601                                 usage();
 8602                         }
 8603                         break;
 8604                 case 'U':
 8605                         spa_config_path = optarg;
 8606                         if (spa_config_path[0] != '/') {
 8607                                 (void) fprintf(stderr,
 8608                                     "cachefile must be an absolute path "
 8609                                     "(i.e. start with a slash)\n");
 8610                                 usage();
 8611                         }
 8612                         break;
 8613                 case 'v':
 8614                         verbose++;
 8615                         break;
 8616                 case 'V':
 8617                         flags = ZFS_IMPORT_VERBATIM;
 8618                         break;
 8619                 case 'x':
 8620                         vn_dumpdir = optarg;
 8621                         break;
 8622                 default:
 8623                         usage();
 8624                         break;
 8625                 }
 8626         }
 8627 
 8628         if (!dump_opt['e'] && searchdirs != NULL) {
 8629                 (void) fprintf(stderr, "-p option requires use of -e\n");
 8630                 usage();
 8631         }
 8632 #if defined(_LP64)
 8633         /*
 8634          * ZDB does not typically re-read blocks; therefore limit the ARC
 8635          * to 256 MB, which can be used entirely for metadata.
 8636          */
 8637         zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT;
 8638         zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024;
 8639 #endif
 8640 
 8641         /*
 8642          * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
 8643          * "zdb -b" uses traversal prefetch which uses async reads.
 8644          * For good performance, let several of them be active at once.
 8645          */
 8646         zfs_vdev_async_read_max_active = 10;
 8647 
 8648         /*
 8649          * Disable reference tracking for better performance.
 8650          */
 8651         reference_tracking_enable = B_FALSE;
 8652 
 8653         /*
 8654          * Do not fail spa_load when spa_load_verify fails. This is needed
 8655          * to load non-idle pools.
 8656          */
 8657         spa_load_verify_dryrun = B_TRUE;
 8658 
 8659         /*
 8660          * ZDB should have ability to read spacemaps.
 8661          */
 8662         spa_mode_readable_spacemaps = B_TRUE;
 8663 
 8664         kernel_init(SPA_MODE_READ);
 8665 
 8666         if (dump_all)
 8667                 verbose = MAX(verbose, 1);
 8668 
 8669         for (c = 0; c < 256; c++) {
 8670                 if (dump_all && strchr("AeEFklLNOPrRSXy", c) == NULL)
 8671                         dump_opt[c] = 1;
 8672                 if (dump_opt[c])
 8673                         dump_opt[c] += verbose;
 8674         }
 8675 
 8676         libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
 8677         zfs_recover = (dump_opt['A'] > 1);
 8678 
 8679         argc -= optind;
 8680         argv += optind;
 8681         if (argc < 2 && dump_opt['R'])
 8682                 usage();
 8683 
 8684         if (dump_opt['E']) {
 8685                 if (argc != 1)
 8686                         usage();
 8687                 zdb_embedded_block(argv[0]);
 8688                 return (0);
 8689         }
 8690 
 8691         if (argc < 1) {
 8692                 if (!dump_opt['e'] && dump_opt['C']) {
 8693                         dump_cachefile(spa_config_path);
 8694                         return (0);
 8695                 }
 8696                 usage();
 8697         }
 8698 
 8699         if (dump_opt['l'])
 8700                 return (dump_label(argv[0]));
 8701 
 8702         if (dump_opt['O']) {
 8703                 if (argc != 2)
 8704                         usage();
 8705                 dump_opt['v'] = verbose + 3;
 8706                 return (dump_path(argv[0], argv[1], NULL));
 8707         }
 8708         if (dump_opt['r']) {
 8709                 target_is_spa = B_FALSE;
 8710                 if (argc != 3)
 8711                         usage();
 8712                 dump_opt['v'] = verbose;
 8713                 error = dump_path(argv[0], argv[1], &object);
 8714                 if (error != 0)
 8715                         fatal("internal error: %s", strerror(error));
 8716         }
 8717 
 8718         if (dump_opt['X'] || dump_opt['F'])
 8719                 rewind = ZPOOL_DO_REWIND |
 8720                     (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
 8721 
 8722         /* -N implies -d */
 8723         if (dump_opt['N'] && dump_opt['d'] == 0)
 8724                 dump_opt['d'] = dump_opt['N'];
 8725 
 8726         if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
 8727             nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
 8728             nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
 8729                 fatal("internal error: %s", strerror(ENOMEM));
 8730 
 8731         error = 0;
 8732         target = argv[0];
 8733 
 8734         if (strpbrk(target, "/@") != NULL) {
 8735                 size_t targetlen;
 8736 
 8737                 target_pool = strdup(target);
 8738                 *strpbrk(target_pool, "/@") = '\0';
 8739 
 8740                 target_is_spa = B_FALSE;
 8741                 targetlen = strlen(target);
 8742                 if (targetlen && target[targetlen - 1] == '/')
 8743                         target[targetlen - 1] = '\0';
 8744 
 8745                 /*
 8746                  * See if an objset ID was supplied (-d <pool>/<objset ID>).
 8747                  * To disambiguate tank/100, consider the 100 as objsetID
 8748                  * if -N was given, otherwise 100 is an objsetID iff
 8749                  * tank/100 as a named dataset fails on lookup.
 8750                  */
 8751                 objset_str = strchr(target, '/');
 8752                 if (objset_str && strlen(objset_str) > 1 &&
 8753                     zdb_numeric(objset_str + 1)) {
 8754                         char *endptr;
 8755                         errno = 0;
 8756                         objset_str++;
 8757                         objset_id = strtoull(objset_str, &endptr, 0);
 8758                         /* dataset 0 is the same as opening the pool */
 8759                         if (errno == 0 && endptr != objset_str &&
 8760                             objset_id != 0) {
 8761                                 if (dump_opt['N'])
 8762                                         dataset_lookup = B_TRUE;
 8763                         }
 8764                         /* normal dataset name not an objset ID */
 8765                         if (endptr == objset_str) {
 8766                                 objset_id = -1;
 8767                         }
 8768                 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
 8769                     dump_opt['N']) {
 8770                         printf("Supply a numeric objset ID with -N\n");
 8771                         exit(1);
 8772                 }
 8773         } else {
 8774                 target_pool = target;
 8775         }
 8776 
 8777         if (dump_opt['e']) {
 8778                 importargs_t args = { 0 };
 8779 
 8780                 args.paths = nsearch;
 8781                 args.path = searchdirs;
 8782                 args.can_be_active = B_TRUE;
 8783 
 8784                 libpc_handle_t lpch = {
 8785                         .lpc_lib_handle = NULL,
 8786                         .lpc_ops = &libzpool_config_ops,
 8787                         .lpc_printerr = B_TRUE
 8788                 };
 8789                 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
 8790 
 8791                 if (error == 0) {
 8792 
 8793                         if (nvlist_add_nvlist(cfg,
 8794                             ZPOOL_LOAD_POLICY, policy) != 0) {
 8795                                 fatal("can't open '%s': %s",
 8796                                     target, strerror(ENOMEM));
 8797                         }
 8798 
 8799                         if (dump_opt['C'] > 1) {
 8800                                 (void) printf("\nConfiguration for import:\n");
 8801                                 dump_nvlist(cfg, 8);
 8802                         }
 8803 
 8804                         /*
 8805                          * Disable the activity check to allow examination of
 8806                          * active pools.
 8807                          */
 8808                         error = spa_import(target_pool, cfg, NULL,
 8809                             flags | ZFS_IMPORT_SKIP_MMP);
 8810                 }
 8811         }
 8812 
 8813         if (searchdirs != NULL) {
 8814                 umem_free(searchdirs, nsearch * sizeof (char *));
 8815                 searchdirs = NULL;
 8816         }
 8817 
 8818         /*
 8819          * import_checkpointed_state makes the assumption that the
 8820          * target pool that we pass it is already part of the spa
 8821          * namespace. Because of that we need to make sure to call
 8822          * it always after the -e option has been processed, which
 8823          * imports the pool to the namespace if it's not in the
 8824          * cachefile.
 8825          */
 8826         char *checkpoint_pool = NULL;
 8827         char *checkpoint_target = NULL;
 8828         if (dump_opt['k']) {
 8829                 checkpoint_pool = import_checkpointed_state(target, cfg,
 8830                     &checkpoint_target);
 8831 
 8832                 if (checkpoint_target != NULL)
 8833                         target = checkpoint_target;
 8834         }
 8835 
 8836         if (cfg != NULL) {
 8837                 nvlist_free(cfg);
 8838                 cfg = NULL;
 8839         }
 8840 
 8841         if (target_pool != target)
 8842                 free(target_pool);
 8843 
 8844         if (error == 0) {
 8845                 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
 8846                         ASSERT(checkpoint_pool != NULL);
 8847                         ASSERT(checkpoint_target == NULL);
 8848 
 8849                         error = spa_open(checkpoint_pool, &spa, FTAG);
 8850                         if (error != 0) {
 8851                                 fatal("Tried to open pool \"%s\" but "
 8852                                     "spa_open() failed with error %d\n",
 8853                                     checkpoint_pool, error);
 8854                         }
 8855 
 8856                 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) {
 8857                         zdb_set_skip_mmp(target);
 8858                         error = spa_open_rewind(target, &spa, FTAG, policy,
 8859                             NULL);
 8860                         if (error) {
 8861                                 /*
 8862                                  * If we're missing the log device then
 8863                                  * try opening the pool after clearing the
 8864                                  * log state.
 8865                                  */
 8866                                 mutex_enter(&spa_namespace_lock);
 8867                                 if ((spa = spa_lookup(target)) != NULL &&
 8868                                     spa->spa_log_state == SPA_LOG_MISSING) {
 8869                                         spa->spa_log_state = SPA_LOG_CLEAR;
 8870                                         error = 0;
 8871                                 }
 8872                                 mutex_exit(&spa_namespace_lock);
 8873 
 8874                                 if (!error) {
 8875                                         error = spa_open_rewind(target, &spa,
 8876                                             FTAG, policy, NULL);
 8877                                 }
 8878                         }
 8879                 } else if (strpbrk(target, "#") != NULL) {
 8880                         dsl_pool_t *dp;
 8881                         error = dsl_pool_hold(target, FTAG, &dp);
 8882                         if (error != 0) {
 8883                                 fatal("can't dump '%s': %s", target,
 8884                                     strerror(error));
 8885                         }
 8886                         error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
 8887                         dsl_pool_rele(dp, FTAG);
 8888                         if (error != 0) {
 8889                                 fatal("can't dump '%s': %s", target,
 8890                                     strerror(error));
 8891                         }
 8892                         return (error);
 8893                 } else {
 8894                         target_pool = strdup(target);
 8895                         if (strpbrk(target, "/@") != NULL)
 8896                                 *strpbrk(target_pool, "/@") = '\0';
 8897 
 8898                         zdb_set_skip_mmp(target);
 8899                         /*
 8900                          * If -N was supplied, the user has indicated that
 8901                          * zdb -d <pool>/<objsetID> is in effect.  Otherwise
 8902                          * we first assume that the dataset string is the
 8903                          * dataset name.  If dmu_objset_hold fails with the
 8904                          * dataset string, and we have an objset_id, retry the
 8905                          * lookup with the objsetID.
 8906                          */
 8907                         boolean_t retry = B_TRUE;
 8908 retry_lookup:
 8909                         if (dataset_lookup == B_TRUE) {
 8910                                 /*
 8911                                  * Use the supplied id to get the name
 8912                                  * for open_objset.
 8913                                  */
 8914                                 error = spa_open(target_pool, &spa, FTAG);
 8915                                 if (error == 0) {
 8916                                         error = name_from_objset_id(spa,
 8917                                             objset_id, dsname);
 8918                                         spa_close(spa, FTAG);
 8919                                         if (error == 0)
 8920                                                 target = dsname;
 8921                                 }
 8922                         }
 8923                         if (error == 0) {
 8924                                 if (objset_id > 0 && retry) {
 8925                                         int err = dmu_objset_hold(target, FTAG,
 8926                                             &os);
 8927                                         if (err) {
 8928                                                 dataset_lookup = B_TRUE;
 8929                                                 retry = B_FALSE;
 8930                                                 goto retry_lookup;
 8931                                         } else {
 8932                                                 dmu_objset_rele(os, FTAG);
 8933                                         }
 8934                                 }
 8935                                 error = open_objset(target, FTAG, &os);
 8936                         }
 8937                         if (error == 0)
 8938                                 spa = dmu_objset_spa(os);
 8939                         free(target_pool);
 8940                 }
 8941         }
 8942         nvlist_free(policy);
 8943 
 8944         if (error)
 8945                 fatal("can't open '%s': %s", target, strerror(error));
 8946 
 8947         /*
 8948          * Set the pool failure mode to panic in order to prevent the pool
 8949          * from suspending.  A suspended I/O will have no way to resume and
 8950          * can prevent the zdb(8) command from terminating as expected.
 8951          */
 8952         if (spa != NULL)
 8953                 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
 8954 
 8955         argv++;
 8956         argc--;
 8957         if (dump_opt['r']) {
 8958                 error = zdb_copy_object(os, object, argv[1]);
 8959         } else if (!dump_opt['R']) {
 8960                 flagbits['d'] = ZOR_FLAG_DIRECTORY;
 8961                 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
 8962                 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
 8963                 flagbits['z'] = ZOR_FLAG_ZAP;
 8964                 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
 8965 
 8966                 if (argc > 0 && dump_opt['d']) {
 8967                         zopt_object_args = argc;
 8968                         zopt_object_ranges = calloc(zopt_object_args,
 8969                             sizeof (zopt_object_range_t));
 8970                         for (unsigned i = 0; i < zopt_object_args; i++) {
 8971                                 int err;
 8972                                 const char *msg = NULL;
 8973 
 8974                                 err = parse_object_range(argv[i],
 8975                                     &zopt_object_ranges[i], &msg);
 8976                                 if (err != 0)
 8977                                         fatal("Bad object or range: '%s': %s\n",
 8978                                             argv[i], msg ?: "");
 8979                         }
 8980                 } else if (argc > 0 && dump_opt['m']) {
 8981                         zopt_metaslab_args = argc;
 8982                         zopt_metaslab = calloc(zopt_metaslab_args,
 8983                             sizeof (uint64_t));
 8984                         for (unsigned i = 0; i < zopt_metaslab_args; i++) {
 8985                                 errno = 0;
 8986                                 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
 8987                                 if (zopt_metaslab[i] == 0 && errno != 0)
 8988                                         fatal("bad number %s: %s", argv[i],
 8989                                             strerror(errno));
 8990                         }
 8991                 }
 8992                 if (os != NULL) {
 8993                         dump_objset(os);
 8994                 } else if (zopt_object_args > 0 && !dump_opt['m']) {
 8995                         dump_objset(spa->spa_meta_objset);
 8996                 } else {
 8997                         dump_zpool(spa);
 8998                 }
 8999         } else {
 9000                 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
 9001                 flagbits['c'] = ZDB_FLAG_CHECKSUM;
 9002                 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
 9003                 flagbits['e'] = ZDB_FLAG_BSWAP;
 9004                 flagbits['g'] = ZDB_FLAG_GBH;
 9005                 flagbits['i'] = ZDB_FLAG_INDIRECT;
 9006                 flagbits['r'] = ZDB_FLAG_RAW;
 9007                 flagbits['v'] = ZDB_FLAG_VERBOSE;
 9008 
 9009                 for (int i = 0; i < argc; i++)
 9010                         zdb_read_block(argv[i], spa);
 9011         }
 9012 
 9013         if (dump_opt['k']) {
 9014                 free(checkpoint_pool);
 9015                 if (!target_is_spa)
 9016                         free(checkpoint_target);
 9017         }
 9018 
 9019         if (os != NULL) {
 9020                 close_objset(os, FTAG);
 9021         } else {
 9022                 spa_close(spa, FTAG);
 9023         }
 9024 
 9025         fuid_table_destroy();
 9026 
 9027         dump_debug_buffer();
 9028 
 9029         kernel_fini();
 9030 
 9031         return (error);
 9032 }

Cache object: 24ae4e8ee0755a38e0eeba423b97d353


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.