1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
31 *
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 */
37
38 #include <stdio.h>
39 #include <unistd.h>
40 #include <stdlib.h>
41 #include <ctype.h>
42 #include <getopt.h>
43 #include <sys/zfs_context.h>
44 #include <sys/spa.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dmu.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/zfs_znode.h>
50 #include <sys/zfs_sa.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/vdev.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/metaslab_impl.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_dataset.h>
59 #include <sys/dsl_pool.h>
60 #include <sys/dsl_bookmark.h>
61 #include <sys/dbuf.h>
62 #include <sys/zil.h>
63 #include <sys/zil_impl.h>
64 #include <sys/stat.h>
65 #include <sys/resource.h>
66 #include <sys/dmu_send.h>
67 #include <sys/dmu_traverse.h>
68 #include <sys/zio_checksum.h>
69 #include <sys/zio_compress.h>
70 #include <sys/zfs_fuid.h>
71 #include <sys/arc.h>
72 #include <sys/arc_impl.h>
73 #include <sys/ddt.h>
74 #include <sys/zfeature.h>
75 #include <sys/abd.h>
76 #include <sys/blkptr.h>
77 #include <sys/dsl_crypt.h>
78 #include <sys/dsl_scan.h>
79 #include <sys/btree.h>
80 #include <zfs_comutil.h>
81 #include <sys/zstd/zstd.h>
82
83 #include <libnvpair.h>
84 #include <libzutil.h>
85
86 #include "zdb.h"
87
88 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \
89 zio_compress_table[(idx)].ci_name : "UNKNOWN")
90 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \
91 zio_checksum_table[(idx)].ci_name : "UNKNOWN")
92 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \
93 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \
94 DMU_OT_ZAP_OTHER : \
95 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
96 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
97
98 /* Some platforms require part of inode IDs to be remapped */
99 #ifdef __APPLE__
100 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
101 #else
102 #define ZDB_MAP_OBJECT_ID(obj) (obj)
103 #endif
104
105 static const char *
106 zdb_ot_name(dmu_object_type_t type)
107 {
108 if (type < DMU_OT_NUMTYPES)
109 return (dmu_ot[type].ot_name);
110 else if ((type & DMU_OT_NEWTYPE) &&
111 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
112 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
113 else
114 return ("UNKNOWN");
115 }
116
117 extern int reference_tracking_enable;
118 extern int zfs_recover;
119 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit;
120 extern uint_t zfs_vdev_async_read_max_active;
121 extern boolean_t spa_load_verify_dryrun;
122 extern boolean_t spa_mode_readable_spacemaps;
123 extern uint_t zfs_reconstruct_indirect_combinations_max;
124 extern uint_t zfs_btree_verify_intensity;
125
126 static const char cmdname[] = "zdb";
127 uint8_t dump_opt[256];
128
129 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
130
131 static uint64_t *zopt_metaslab = NULL;
132 static unsigned zopt_metaslab_args = 0;
133
134 typedef struct zopt_object_range {
135 uint64_t zor_obj_start;
136 uint64_t zor_obj_end;
137 uint64_t zor_flags;
138 } zopt_object_range_t;
139
140 static zopt_object_range_t *zopt_object_ranges = NULL;
141 static unsigned zopt_object_args = 0;
142
143 static int flagbits[256];
144
145 #define ZOR_FLAG_PLAIN_FILE 0x0001
146 #define ZOR_FLAG_DIRECTORY 0x0002
147 #define ZOR_FLAG_SPACE_MAP 0x0004
148 #define ZOR_FLAG_ZAP 0x0008
149 #define ZOR_FLAG_ALL_TYPES -1
150 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \
151 ZOR_FLAG_DIRECTORY | \
152 ZOR_FLAG_SPACE_MAP | \
153 ZOR_FLAG_ZAP)
154
155 #define ZDB_FLAG_CHECKSUM 0x0001
156 #define ZDB_FLAG_DECOMPRESS 0x0002
157 #define ZDB_FLAG_BSWAP 0x0004
158 #define ZDB_FLAG_GBH 0x0008
159 #define ZDB_FLAG_INDIRECT 0x0010
160 #define ZDB_FLAG_RAW 0x0020
161 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
162 #define ZDB_FLAG_VERBOSE 0x0080
163
164 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
165 static int leaked_objects = 0;
166 static range_tree_t *mos_refd_objs;
167
168 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
169 boolean_t);
170 static void mos_obj_refd(uint64_t);
171 static void mos_obj_refd_multiple(uint64_t);
172 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
173 dmu_tx_t *tx);
174
175 typedef struct sublivelist_verify {
176 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
177 zfs_btree_t sv_pair;
178
179 /* ALLOC's without a matching FREE, accumulates across sub-livelists */
180 zfs_btree_t sv_leftover;
181 } sublivelist_verify_t;
182
183 static int
184 livelist_compare(const void *larg, const void *rarg)
185 {
186 const blkptr_t *l = larg;
187 const blkptr_t *r = rarg;
188
189 /* Sort them according to dva[0] */
190 uint64_t l_dva0_vdev, r_dva0_vdev;
191 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
192 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
193 if (l_dva0_vdev < r_dva0_vdev)
194 return (-1);
195 else if (l_dva0_vdev > r_dva0_vdev)
196 return (+1);
197
198 /* if vdevs are equal, sort by offsets. */
199 uint64_t l_dva0_offset;
200 uint64_t r_dva0_offset;
201 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
202 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
203 if (l_dva0_offset < r_dva0_offset) {
204 return (-1);
205 } else if (l_dva0_offset > r_dva0_offset) {
206 return (+1);
207 }
208
209 /*
210 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
211 * it's possible the offsets are equal. In that case, sort by txg
212 */
213 if (l->blk_birth < r->blk_birth) {
214 return (-1);
215 } else if (l->blk_birth > r->blk_birth) {
216 return (+1);
217 }
218 return (0);
219 }
220
221 typedef struct sublivelist_verify_block {
222 dva_t svb_dva;
223
224 /*
225 * We need this to check if the block marked as allocated
226 * in the livelist was freed (and potentially reallocated)
227 * in the metaslab spacemaps at a later TXG.
228 */
229 uint64_t svb_allocated_txg;
230 } sublivelist_verify_block_t;
231
232 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
233
234 typedef struct sublivelist_verify_block_refcnt {
235 /* block pointer entry in livelist being verified */
236 blkptr_t svbr_blk;
237
238 /*
239 * Refcount gets incremented to 1 when we encounter the first
240 * FREE entry for the svfbr block pointer and a node for it
241 * is created in our ZDB verification/tracking metadata.
242 *
243 * As we encounter more FREE entries we increment this counter
244 * and similarly decrement it whenever we find the respective
245 * ALLOC entries for this block.
246 *
247 * When the refcount gets to 0 it means that all the FREE and
248 * ALLOC entries of this block have paired up and we no longer
249 * need to track it in our verification logic (e.g. the node
250 * containing this struct in our verification data structure
251 * should be freed).
252 *
253 * [refer to sublivelist_verify_blkptr() for the actual code]
254 */
255 uint32_t svbr_refcnt;
256 } sublivelist_verify_block_refcnt_t;
257
258 static int
259 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
260 {
261 const sublivelist_verify_block_refcnt_t *l = larg;
262 const sublivelist_verify_block_refcnt_t *r = rarg;
263 return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
264 }
265
266 static int
267 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
268 dmu_tx_t *tx)
269 {
270 ASSERT3P(tx, ==, NULL);
271 struct sublivelist_verify *sv = arg;
272 sublivelist_verify_block_refcnt_t current = {
273 .svbr_blk = *bp,
274
275 /*
276 * Start with 1 in case this is the first free entry.
277 * This field is not used for our B-Tree comparisons
278 * anyway.
279 */
280 .svbr_refcnt = 1,
281 };
282
283 zfs_btree_index_t where;
284 sublivelist_verify_block_refcnt_t *pair =
285 zfs_btree_find(&sv->sv_pair, ¤t, &where);
286 if (free) {
287 if (pair == NULL) {
288 /* first free entry for this block pointer */
289 zfs_btree_add(&sv->sv_pair, ¤t);
290 } else {
291 pair->svbr_refcnt++;
292 }
293 } else {
294 if (pair == NULL) {
295 /* block that is currently marked as allocated */
296 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
297 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
298 break;
299 sublivelist_verify_block_t svb = {
300 .svb_dva = bp->blk_dva[i],
301 .svb_allocated_txg = bp->blk_birth
302 };
303
304 if (zfs_btree_find(&sv->sv_leftover, &svb,
305 &where) == NULL) {
306 zfs_btree_add_idx(&sv->sv_leftover,
307 &svb, &where);
308 }
309 }
310 } else {
311 /* alloc matches a free entry */
312 pair->svbr_refcnt--;
313 if (pair->svbr_refcnt == 0) {
314 /* all allocs and frees have been matched */
315 zfs_btree_remove_idx(&sv->sv_pair, &where);
316 }
317 }
318 }
319
320 return (0);
321 }
322
323 static int
324 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
325 {
326 int err;
327 struct sublivelist_verify *sv = args;
328
329 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare,
330 sizeof (sublivelist_verify_block_refcnt_t));
331
332 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
333 sv, NULL);
334
335 sublivelist_verify_block_refcnt_t *e;
336 zfs_btree_index_t *cookie = NULL;
337 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
338 char blkbuf[BP_SPRINTF_LEN];
339 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
340 &e->svbr_blk, B_TRUE);
341 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
342 e->svbr_refcnt, blkbuf);
343 }
344 zfs_btree_destroy(&sv->sv_pair);
345
346 return (err);
347 }
348
349 static int
350 livelist_block_compare(const void *larg, const void *rarg)
351 {
352 const sublivelist_verify_block_t *l = larg;
353 const sublivelist_verify_block_t *r = rarg;
354
355 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
356 return (-1);
357 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
358 return (+1);
359
360 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
361 return (-1);
362 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
363 return (+1);
364
365 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
366 return (-1);
367 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
368 return (+1);
369
370 return (0);
371 }
372
373 /*
374 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
375 * sublivelist_verify_t: sv->sv_leftover
376 */
377 static void
378 livelist_verify(dsl_deadlist_t *dl, void *arg)
379 {
380 sublivelist_verify_t *sv = arg;
381 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
382 }
383
384 /*
385 * Check for errors in the livelist entry and discard the intermediary
386 * data structures
387 */
388 static int
389 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
390 {
391 (void) args;
392 sublivelist_verify_t sv;
393 zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
394 sizeof (sublivelist_verify_block_t));
395 int err = sublivelist_verify_func(&sv, dle);
396 zfs_btree_clear(&sv.sv_leftover);
397 zfs_btree_destroy(&sv.sv_leftover);
398 return (err);
399 }
400
401 typedef struct metaslab_verify {
402 /*
403 * Tree containing all the leftover ALLOCs from the livelists
404 * that are part of this metaslab.
405 */
406 zfs_btree_t mv_livelist_allocs;
407
408 /*
409 * Metaslab information.
410 */
411 uint64_t mv_vdid;
412 uint64_t mv_msid;
413 uint64_t mv_start;
414 uint64_t mv_end;
415
416 /*
417 * What's currently allocated for this metaslab.
418 */
419 range_tree_t *mv_allocated;
420 } metaslab_verify_t;
421
422 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
423
424 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
425 void *arg);
426
427 typedef struct unflushed_iter_cb_arg {
428 spa_t *uic_spa;
429 uint64_t uic_txg;
430 void *uic_arg;
431 zdb_log_sm_cb_t uic_cb;
432 } unflushed_iter_cb_arg_t;
433
434 static int
435 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
436 {
437 unflushed_iter_cb_arg_t *uic = arg;
438 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
439 }
440
441 static void
442 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
443 {
444 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
445 return;
446
447 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
448 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
449 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
450 space_map_t *sm = NULL;
451 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
452 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
453
454 unflushed_iter_cb_arg_t uic = {
455 .uic_spa = spa,
456 .uic_txg = sls->sls_txg,
457 .uic_arg = arg,
458 .uic_cb = cb
459 };
460 VERIFY0(space_map_iterate(sm, space_map_length(sm),
461 iterate_through_spacemap_logs_cb, &uic));
462 space_map_close(sm);
463 }
464 spa_config_exit(spa, SCL_CONFIG, FTAG);
465 }
466
467 static void
468 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
469 uint64_t offset, uint64_t size)
470 {
471 sublivelist_verify_block_t svb = {{{0}}};
472 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
473 DVA_SET_OFFSET(&svb.svb_dva, offset);
474 DVA_SET_ASIZE(&svb.svb_dva, size);
475 zfs_btree_index_t where;
476 uint64_t end_offset = offset + size;
477
478 /*
479 * Look for an exact match for spacemap entry in the livelist entries.
480 * Then, look for other livelist entries that fall within the range
481 * of the spacemap entry as it may have been condensed
482 */
483 sublivelist_verify_block_t *found =
484 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
485 if (found == NULL) {
486 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
487 }
488 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
489 DVA_GET_OFFSET(&found->svb_dva) < end_offset;
490 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
491 if (found->svb_allocated_txg <= txg) {
492 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
493 "from TXG %llx FREED at TXG %llx\n",
494 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
495 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
496 (u_longlong_t)found->svb_allocated_txg,
497 (u_longlong_t)txg);
498 }
499 }
500 }
501
502 static int
503 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
504 {
505 metaslab_verify_t *mv = arg;
506 uint64_t offset = sme->sme_offset;
507 uint64_t size = sme->sme_run;
508 uint64_t txg = sme->sme_txg;
509
510 if (sme->sme_type == SM_ALLOC) {
511 if (range_tree_contains(mv->mv_allocated,
512 offset, size)) {
513 (void) printf("ERROR: DOUBLE ALLOC: "
514 "%llu [%llx:%llx] "
515 "%llu:%llu LOG_SM\n",
516 (u_longlong_t)txg, (u_longlong_t)offset,
517 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
518 (u_longlong_t)mv->mv_msid);
519 } else {
520 range_tree_add(mv->mv_allocated,
521 offset, size);
522 }
523 } else {
524 if (!range_tree_contains(mv->mv_allocated,
525 offset, size)) {
526 (void) printf("ERROR: DOUBLE FREE: "
527 "%llu [%llx:%llx] "
528 "%llu:%llu LOG_SM\n",
529 (u_longlong_t)txg, (u_longlong_t)offset,
530 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
531 (u_longlong_t)mv->mv_msid);
532 } else {
533 range_tree_remove(mv->mv_allocated,
534 offset, size);
535 }
536 }
537
538 if (sme->sme_type != SM_ALLOC) {
539 /*
540 * If something is freed in the spacemap, verify that
541 * it is not listed as allocated in the livelist.
542 */
543 verify_livelist_allocs(mv, txg, offset, size);
544 }
545 return (0);
546 }
547
548 static int
549 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
550 uint64_t txg, void *arg)
551 {
552 metaslab_verify_t *mv = arg;
553 uint64_t offset = sme->sme_offset;
554 uint64_t vdev_id = sme->sme_vdev;
555
556 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
557
558 /* skip indirect vdevs */
559 if (!vdev_is_concrete(vd))
560 return (0);
561
562 if (vdev_id != mv->mv_vdid)
563 return (0);
564
565 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
566 if (ms->ms_id != mv->mv_msid)
567 return (0);
568
569 if (txg < metaslab_unflushed_txg(ms))
570 return (0);
571
572
573 ASSERT3U(txg, ==, sme->sme_txg);
574 return (metaslab_spacemap_validation_cb(sme, mv));
575 }
576
577 static void
578 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
579 {
580 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
581 }
582
583 static void
584 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
585 {
586 if (sm == NULL)
587 return;
588
589 VERIFY0(space_map_iterate(sm, space_map_length(sm),
590 metaslab_spacemap_validation_cb, mv));
591 }
592
593 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
594
595 /*
596 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
597 * they are part of that metaslab (mv_msid).
598 */
599 static void
600 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
601 {
602 zfs_btree_index_t where;
603 sublivelist_verify_block_t *svb;
604 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
605 for (svb = zfs_btree_first(&sv->sv_leftover, &where);
606 svb != NULL;
607 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
608 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
609 continue;
610
611 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
612 (DVA_GET_OFFSET(&svb->svb_dva) +
613 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
614 (void) printf("ERROR: Found block that crosses "
615 "metaslab boundary: <%llu:%llx:%llx>\n",
616 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
617 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
618 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
619 continue;
620 }
621
622 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
623 continue;
624
625 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
626 continue;
627
628 if ((DVA_GET_OFFSET(&svb->svb_dva) +
629 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
630 (void) printf("ERROR: Found block that crosses "
631 "metaslab boundary: <%llu:%llx:%llx>\n",
632 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
633 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
634 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
635 continue;
636 }
637
638 zfs_btree_add(&mv->mv_livelist_allocs, svb);
639 }
640
641 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
642 svb != NULL;
643 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
644 zfs_btree_remove(&sv->sv_leftover, svb);
645 }
646 }
647
648 /*
649 * [Livelist Check]
650 * Iterate through all the sublivelists and:
651 * - report leftover frees (**)
652 * - record leftover ALLOCs together with their TXG [see Cross Check]
653 *
654 * (**) Note: Double ALLOCs are valid in datasets that have dedup
655 * enabled. Similarly double FREEs are allowed as well but
656 * only if they pair up with a corresponding ALLOC entry once
657 * we our done with our sublivelist iteration.
658 *
659 * [Spacemap Check]
660 * for each metaslab:
661 * - iterate over spacemap and then the metaslab's entries in the
662 * spacemap log, then report any double FREEs and ALLOCs (do not
663 * blow up).
664 *
665 * [Cross Check]
666 * After finishing the Livelist Check phase and while being in the
667 * Spacemap Check phase, we find all the recorded leftover ALLOCs
668 * of the livelist check that are part of the metaslab that we are
669 * currently looking at in the Spacemap Check. We report any entries
670 * that are marked as ALLOCs in the livelists but have been actually
671 * freed (and potentially allocated again) after their TXG stamp in
672 * the spacemaps. Also report any ALLOCs from the livelists that
673 * belong to indirect vdevs (e.g. their vdev completed removal).
674 *
675 * Note that this will miss Log Spacemap entries that cancelled each other
676 * out before being flushed to the metaslab, so we are not guaranteed
677 * to match all erroneous ALLOCs.
678 */
679 static void
680 livelist_metaslab_validate(spa_t *spa)
681 {
682 (void) printf("Verifying deleted livelist entries\n");
683
684 sublivelist_verify_t sv;
685 zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
686 sizeof (sublivelist_verify_block_t));
687 iterate_deleted_livelists(spa, livelist_verify, &sv);
688
689 (void) printf("Verifying metaslab entries\n");
690 vdev_t *rvd = spa->spa_root_vdev;
691 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
692 vdev_t *vd = rvd->vdev_child[c];
693
694 if (!vdev_is_concrete(vd))
695 continue;
696
697 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
698 metaslab_t *m = vd->vdev_ms[mid];
699
700 (void) fprintf(stderr,
701 "\rverifying concrete vdev %llu, "
702 "metaslab %llu of %llu ...",
703 (longlong_t)vd->vdev_id,
704 (longlong_t)mid,
705 (longlong_t)vd->vdev_ms_count);
706
707 uint64_t shift, start;
708 range_seg_type_t type =
709 metaslab_calculate_range_tree_type(vd, m,
710 &start, &shift);
711 metaslab_verify_t mv;
712 mv.mv_allocated = range_tree_create(NULL,
713 type, NULL, start, shift);
714 mv.mv_vdid = vd->vdev_id;
715 mv.mv_msid = m->ms_id;
716 mv.mv_start = m->ms_start;
717 mv.mv_end = m->ms_start + m->ms_size;
718 zfs_btree_create(&mv.mv_livelist_allocs,
719 livelist_block_compare,
720 sizeof (sublivelist_verify_block_t));
721
722 mv_populate_livelist_allocs(&mv, &sv);
723
724 spacemap_check_ms_sm(m->ms_sm, &mv);
725 spacemap_check_sm_log(spa, &mv);
726
727 range_tree_vacate(mv.mv_allocated, NULL, NULL);
728 range_tree_destroy(mv.mv_allocated);
729 zfs_btree_clear(&mv.mv_livelist_allocs);
730 zfs_btree_destroy(&mv.mv_livelist_allocs);
731 }
732 }
733 (void) fprintf(stderr, "\n");
734
735 /*
736 * If there are any segments in the leftover tree after we walked
737 * through all the metaslabs in the concrete vdevs then this means
738 * that we have segments in the livelists that belong to indirect
739 * vdevs and are marked as allocated.
740 */
741 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
742 zfs_btree_destroy(&sv.sv_leftover);
743 return;
744 }
745 (void) printf("ERROR: Found livelist blocks marked as allocated "
746 "for indirect vdevs:\n");
747
748 zfs_btree_index_t *where = NULL;
749 sublivelist_verify_block_t *svb;
750 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
751 NULL) {
752 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
753 ASSERT3U(vdev_id, <, rvd->vdev_children);
754 vdev_t *vd = rvd->vdev_child[vdev_id];
755 ASSERT(!vdev_is_concrete(vd));
756 (void) printf("<%d:%llx:%llx> TXG %llx\n",
757 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
758 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
759 (u_longlong_t)svb->svb_allocated_txg);
760 }
761 (void) printf("\n");
762 zfs_btree_destroy(&sv.sv_leftover);
763 }
764
765 /*
766 * These libumem hooks provide a reasonable set of defaults for the allocator's
767 * debugging facilities.
768 */
769 const char *
770 _umem_debug_init(void)
771 {
772 return ("default,verbose"); /* $UMEM_DEBUG setting */
773 }
774
775 const char *
776 _umem_logging_init(void)
777 {
778 return ("fail,contents"); /* $UMEM_LOGGING setting */
779 }
780
781 static void
782 usage(void)
783 {
784 (void) fprintf(stderr,
785 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
786 "[-I <inflight I/Os>]\n"
787 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
788 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
789 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
790 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
791 "\t%s [-v] <bookmark>\n"
792 "\t%s -C [-A] [-U <cache>]\n"
793 "\t%s -l [-Aqu] <device>\n"
794 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
795 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
796 "\t%s -O <dataset> <path>\n"
797 "\t%s -r <dataset> <path> <destination>\n"
798 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
799 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
800 "\t%s -E [-A] word0:word1:...:word15\n"
801 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
802 "<poolname>\n\n",
803 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
804 cmdname, cmdname, cmdname, cmdname);
805
806 (void) fprintf(stderr, " Dataset name must include at least one "
807 "separator character '/' or '@'\n");
808 (void) fprintf(stderr, " If dataset name is specified, only that "
809 "dataset is dumped\n");
810 (void) fprintf(stderr, " If object numbers or object number "
811 "ranges are specified, only those\n"
812 " objects or ranges are dumped.\n\n");
813 (void) fprintf(stderr,
814 " Object ranges take the form <start>:<end>[:<flags>]\n"
815 " start Starting object number\n"
816 " end Ending object number, or -1 for no upper bound\n"
817 " flags Optional flags to select object types:\n"
818 " A All objects (this is the default)\n"
819 " d ZFS directories\n"
820 " f ZFS files \n"
821 " m SPA space maps\n"
822 " z ZAPs\n"
823 " - Negate effect of next flag\n\n");
824 (void) fprintf(stderr, " Options to control amount of output:\n");
825 (void) fprintf(stderr, " -b --block-stats "
826 "block statistics\n");
827 (void) fprintf(stderr, " -c --checksum "
828 "checksum all metadata (twice for all data) blocks\n");
829 (void) fprintf(stderr, " -C --config "
830 "config (or cachefile if alone)\n");
831 (void) fprintf(stderr, " -d --datasets "
832 "dataset(s)\n");
833 (void) fprintf(stderr, " -D --dedup-stats "
834 "dedup statistics\n");
835 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
836 " decode and display block "
837 "from an embedded block pointer\n");
838 (void) fprintf(stderr, " -h --history "
839 "pool history\n");
840 (void) fprintf(stderr, " -i --intent-logs "
841 "intent logs\n");
842 (void) fprintf(stderr, " -l --label "
843 "read label contents\n");
844 (void) fprintf(stderr, " -k --checkpointed-state "
845 "examine the checkpointed state of the pool\n");
846 (void) fprintf(stderr, " -L --disable-leak-tracking "
847 "disable leak tracking (do not load spacemaps)\n");
848 (void) fprintf(stderr, " -m --metaslabs "
849 "metaslabs\n");
850 (void) fprintf(stderr, " -M --metaslab-groups "
851 "metaslab groups\n");
852 (void) fprintf(stderr, " -O --object-lookups "
853 "perform object lookups by path\n");
854 (void) fprintf(stderr, " -r --copy-object "
855 "copy an object by path to file\n");
856 (void) fprintf(stderr, " -R --read-block "
857 "read and display block from a device\n");
858 (void) fprintf(stderr, " -s --io-stats "
859 "report stats on zdb's I/O\n");
860 (void) fprintf(stderr, " -S --simulate-dedup "
861 "simulate dedup to measure effect\n");
862 (void) fprintf(stderr, " -v --verbose "
863 "verbose (applies to all others)\n");
864 (void) fprintf(stderr, " -y --livelist "
865 "perform livelist and metaslab validation on any livelists being "
866 "deleted\n\n");
867 (void) fprintf(stderr, " Below options are intended for use "
868 "with other options:\n");
869 (void) fprintf(stderr, " -A --ignore-assertions "
870 "ignore assertions (-A), enable panic recovery (-AA) or both "
871 "(-AAA)\n");
872 (void) fprintf(stderr, " -e --exported "
873 "pool is exported/destroyed/has altroot/not in a cachefile\n");
874 (void) fprintf(stderr, " -F --automatic-rewind "
875 "attempt automatic rewind within safe range of transaction "
876 "groups\n");
877 (void) fprintf(stderr, " -G --dump-debug-msg "
878 "dump zfs_dbgmsg buffer before exiting\n");
879 (void) fprintf(stderr, " -I --inflight=INTEGER "
880 "specify the maximum number of checksumming I/Os "
881 "[default is 200]\n");
882 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" "
883 "set global variable to an unsigned 32-bit integer\n");
884 (void) fprintf(stderr, " -p --path==PATH "
885 "use one or more with -e to specify path to vdev dir\n");
886 (void) fprintf(stderr, " -P --parseable "
887 "print numbers in parseable form\n");
888 (void) fprintf(stderr, " -q --skip-label "
889 "don't print label contents\n");
890 (void) fprintf(stderr, " -t --txg=INTEGER "
891 "highest txg to use when searching for uberblocks\n");
892 (void) fprintf(stderr, " -u --uberblock "
893 "uberblock\n");
894 (void) fprintf(stderr, " -U --cachefile=PATH "
895 "use alternate cachefile\n");
896 (void) fprintf(stderr, " -V --verbatim "
897 "do verbatim import\n");
898 (void) fprintf(stderr, " -x --dump-blocks=PATH "
899 "dump all read blocks into specified directory\n");
900 (void) fprintf(stderr, " -X --extreme-rewind "
901 "attempt extreme rewind (does not work with dataset)\n");
902 (void) fprintf(stderr, " -Y --all-reconstruction "
903 "attempt all reconstruction combinations for split blocks\n");
904 (void) fprintf(stderr, " -Z --zstd-headers "
905 "show ZSTD headers \n");
906 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
907 "to make only that option verbose\n");
908 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
909 exit(1);
910 }
911
912 static void
913 dump_debug_buffer(void)
914 {
915 if (dump_opt['G']) {
916 (void) printf("\n");
917 (void) fflush(stdout);
918 zfs_dbgmsg_print("zdb");
919 }
920 }
921
922 /*
923 * Called for usage errors that are discovered after a call to spa_open(),
924 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
925 */
926
927 static void
928 fatal(const char *fmt, ...)
929 {
930 va_list ap;
931
932 va_start(ap, fmt);
933 (void) fprintf(stderr, "%s: ", cmdname);
934 (void) vfprintf(stderr, fmt, ap);
935 va_end(ap);
936 (void) fprintf(stderr, "\n");
937
938 dump_debug_buffer();
939
940 exit(1);
941 }
942
943 static void
944 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
945 {
946 (void) size;
947 nvlist_t *nv;
948 size_t nvsize = *(uint64_t *)data;
949 char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
950
951 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
952
953 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
954
955 umem_free(packed, nvsize);
956
957 dump_nvlist(nv, 8);
958
959 nvlist_free(nv);
960 }
961
962 static void
963 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
964 {
965 (void) os, (void) object, (void) size;
966 spa_history_phys_t *shp = data;
967
968 if (shp == NULL)
969 return;
970
971 (void) printf("\t\tpool_create_len = %llu\n",
972 (u_longlong_t)shp->sh_pool_create_len);
973 (void) printf("\t\tphys_max_off = %llu\n",
974 (u_longlong_t)shp->sh_phys_max_off);
975 (void) printf("\t\tbof = %llu\n",
976 (u_longlong_t)shp->sh_bof);
977 (void) printf("\t\teof = %llu\n",
978 (u_longlong_t)shp->sh_eof);
979 (void) printf("\t\trecords_lost = %llu\n",
980 (u_longlong_t)shp->sh_records_lost);
981 }
982
983 static void
984 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
985 {
986 if (dump_opt['P'])
987 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
988 else
989 nicenum(num, buf, buflen);
990 }
991
992 static const char histo_stars[] = "****************************************";
993 static const uint64_t histo_width = sizeof (histo_stars) - 1;
994
995 static void
996 dump_histogram(const uint64_t *histo, int size, int offset)
997 {
998 int i;
999 int minidx = size - 1;
1000 int maxidx = 0;
1001 uint64_t max = 0;
1002
1003 for (i = 0; i < size; i++) {
1004 if (histo[i] > max)
1005 max = histo[i];
1006 if (histo[i] > 0 && i > maxidx)
1007 maxidx = i;
1008 if (histo[i] > 0 && i < minidx)
1009 minidx = i;
1010 }
1011
1012 if (max < histo_width)
1013 max = histo_width;
1014
1015 for (i = minidx; i <= maxidx; i++) {
1016 (void) printf("\t\t\t%3u: %6llu %s\n",
1017 i + offset, (u_longlong_t)histo[i],
1018 &histo_stars[(max - histo[i]) * histo_width / max]);
1019 }
1020 }
1021
1022 static void
1023 dump_zap_stats(objset_t *os, uint64_t object)
1024 {
1025 int error;
1026 zap_stats_t zs;
1027
1028 error = zap_get_stats(os, object, &zs);
1029 if (error)
1030 return;
1031
1032 if (zs.zs_ptrtbl_len == 0) {
1033 ASSERT(zs.zs_num_blocks == 1);
1034 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1035 (u_longlong_t)zs.zs_blocksize,
1036 (u_longlong_t)zs.zs_num_entries);
1037 return;
1038 }
1039
1040 (void) printf("\tFat ZAP stats:\n");
1041
1042 (void) printf("\t\tPointer table:\n");
1043 (void) printf("\t\t\t%llu elements\n",
1044 (u_longlong_t)zs.zs_ptrtbl_len);
1045 (void) printf("\t\t\tzt_blk: %llu\n",
1046 (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1047 (void) printf("\t\t\tzt_numblks: %llu\n",
1048 (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1049 (void) printf("\t\t\tzt_shift: %llu\n",
1050 (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1051 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1052 (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1053 (void) printf("\t\t\tzt_nextblk: %llu\n",
1054 (u_longlong_t)zs.zs_ptrtbl_nextblk);
1055
1056 (void) printf("\t\tZAP entries: %llu\n",
1057 (u_longlong_t)zs.zs_num_entries);
1058 (void) printf("\t\tLeaf blocks: %llu\n",
1059 (u_longlong_t)zs.zs_num_leafs);
1060 (void) printf("\t\tTotal blocks: %llu\n",
1061 (u_longlong_t)zs.zs_num_blocks);
1062 (void) printf("\t\tzap_block_type: 0x%llx\n",
1063 (u_longlong_t)zs.zs_block_type);
1064 (void) printf("\t\tzap_magic: 0x%llx\n",
1065 (u_longlong_t)zs.zs_magic);
1066 (void) printf("\t\tzap_salt: 0x%llx\n",
1067 (u_longlong_t)zs.zs_salt);
1068
1069 (void) printf("\t\tLeafs with 2^n pointers:\n");
1070 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1071
1072 (void) printf("\t\tBlocks with n*5 entries:\n");
1073 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1074
1075 (void) printf("\t\tBlocks n/10 full:\n");
1076 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1077
1078 (void) printf("\t\tEntries with n chunks:\n");
1079 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1080
1081 (void) printf("\t\tBuckets with n entries:\n");
1082 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1083 }
1084
1085 static void
1086 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1087 {
1088 (void) os, (void) object, (void) data, (void) size;
1089 }
1090
1091 static void
1092 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1093 {
1094 (void) os, (void) object, (void) data, (void) size;
1095 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1096 }
1097
1098 static void
1099 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1100 {
1101 (void) os, (void) object, (void) data, (void) size;
1102 }
1103
1104 static void
1105 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1106 {
1107 uint64_t *arr;
1108 uint64_t oursize;
1109 if (dump_opt['d'] < 6)
1110 return;
1111
1112 if (data == NULL) {
1113 dmu_object_info_t doi;
1114
1115 VERIFY0(dmu_object_info(os, object, &doi));
1116 size = doi.doi_max_offset;
1117 /*
1118 * We cap the size at 1 mebibyte here to prevent
1119 * allocation failures and nigh-infinite printing if the
1120 * object is extremely large.
1121 */
1122 oursize = MIN(size, 1 << 20);
1123 arr = kmem_alloc(oursize, KM_SLEEP);
1124
1125 int err = dmu_read(os, object, 0, oursize, arr, 0);
1126 if (err != 0) {
1127 (void) printf("got error %u from dmu_read\n", err);
1128 kmem_free(arr, oursize);
1129 return;
1130 }
1131 } else {
1132 /*
1133 * Even though the allocation is already done in this code path,
1134 * we still cap the size to prevent excessive printing.
1135 */
1136 oursize = MIN(size, 1 << 20);
1137 arr = data;
1138 }
1139
1140 if (size == 0) {
1141 if (data == NULL)
1142 kmem_free(arr, oursize);
1143 (void) printf("\t\t[]\n");
1144 return;
1145 }
1146
1147 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1148 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1149 if (i % 4 != 0)
1150 (void) printf(", %0llx", (u_longlong_t)arr[i]);
1151 else
1152 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1153 }
1154 if (oursize != size)
1155 (void) printf(", ... ");
1156 (void) printf("]\n");
1157
1158 if (data == NULL)
1159 kmem_free(arr, oursize);
1160 }
1161
1162 static void
1163 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1164 {
1165 (void) data, (void) size;
1166 zap_cursor_t zc;
1167 zap_attribute_t attr;
1168 void *prop;
1169 unsigned i;
1170
1171 dump_zap_stats(os, object);
1172 (void) printf("\n");
1173
1174 for (zap_cursor_init(&zc, os, object);
1175 zap_cursor_retrieve(&zc, &attr) == 0;
1176 zap_cursor_advance(&zc)) {
1177 (void) printf("\t\t%s = ", attr.za_name);
1178 if (attr.za_num_integers == 0) {
1179 (void) printf("\n");
1180 continue;
1181 }
1182 prop = umem_zalloc(attr.za_num_integers *
1183 attr.za_integer_length, UMEM_NOFAIL);
1184 (void) zap_lookup(os, object, attr.za_name,
1185 attr.za_integer_length, attr.za_num_integers, prop);
1186 if (attr.za_integer_length == 1) {
1187 if (strcmp(attr.za_name,
1188 DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1189 strcmp(attr.za_name,
1190 DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1191 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1192 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1193 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
1194 uint8_t *u8 = prop;
1195
1196 for (i = 0; i < attr.za_num_integers; i++) {
1197 (void) printf("%02x", u8[i]);
1198 }
1199 } else {
1200 (void) printf("%s", (char *)prop);
1201 }
1202 } else {
1203 for (i = 0; i < attr.za_num_integers; i++) {
1204 switch (attr.za_integer_length) {
1205 case 2:
1206 (void) printf("%u ",
1207 ((uint16_t *)prop)[i]);
1208 break;
1209 case 4:
1210 (void) printf("%u ",
1211 ((uint32_t *)prop)[i]);
1212 break;
1213 case 8:
1214 (void) printf("%lld ",
1215 (u_longlong_t)((int64_t *)prop)[i]);
1216 break;
1217 }
1218 }
1219 }
1220 (void) printf("\n");
1221 umem_free(prop, attr.za_num_integers * attr.za_integer_length);
1222 }
1223 zap_cursor_fini(&zc);
1224 }
1225
1226 static void
1227 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1228 {
1229 bpobj_phys_t *bpop = data;
1230 uint64_t i;
1231 char bytes[32], comp[32], uncomp[32];
1232
1233 /* make sure the output won't get truncated */
1234 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1235 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1236 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1237
1238 if (bpop == NULL)
1239 return;
1240
1241 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1242 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1243 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1244
1245 (void) printf("\t\tnum_blkptrs = %llu\n",
1246 (u_longlong_t)bpop->bpo_num_blkptrs);
1247 (void) printf("\t\tbytes = %s\n", bytes);
1248 if (size >= BPOBJ_SIZE_V1) {
1249 (void) printf("\t\tcomp = %s\n", comp);
1250 (void) printf("\t\tuncomp = %s\n", uncomp);
1251 }
1252 if (size >= BPOBJ_SIZE_V2) {
1253 (void) printf("\t\tsubobjs = %llu\n",
1254 (u_longlong_t)bpop->bpo_subobjs);
1255 (void) printf("\t\tnum_subobjs = %llu\n",
1256 (u_longlong_t)bpop->bpo_num_subobjs);
1257 }
1258 if (size >= sizeof (*bpop)) {
1259 (void) printf("\t\tnum_freed = %llu\n",
1260 (u_longlong_t)bpop->bpo_num_freed);
1261 }
1262
1263 if (dump_opt['d'] < 5)
1264 return;
1265
1266 for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1267 char blkbuf[BP_SPRINTF_LEN];
1268 blkptr_t bp;
1269
1270 int err = dmu_read(os, object,
1271 i * sizeof (bp), sizeof (bp), &bp, 0);
1272 if (err != 0) {
1273 (void) printf("got error %u from dmu_read\n", err);
1274 break;
1275 }
1276 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1277 BP_GET_FREE(&bp));
1278 (void) printf("\t%s\n", blkbuf);
1279 }
1280 }
1281
1282 static void
1283 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1284 {
1285 (void) data, (void) size;
1286 dmu_object_info_t doi;
1287 int64_t i;
1288
1289 VERIFY0(dmu_object_info(os, object, &doi));
1290 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1291
1292 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1293 if (err != 0) {
1294 (void) printf("got error %u from dmu_read\n", err);
1295 kmem_free(subobjs, doi.doi_max_offset);
1296 return;
1297 }
1298
1299 int64_t last_nonzero = -1;
1300 for (i = 0; i < doi.doi_max_offset / 8; i++) {
1301 if (subobjs[i] != 0)
1302 last_nonzero = i;
1303 }
1304
1305 for (i = 0; i <= last_nonzero; i++) {
1306 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1307 }
1308 kmem_free(subobjs, doi.doi_max_offset);
1309 }
1310
1311 static void
1312 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1313 {
1314 (void) data, (void) size;
1315 dump_zap_stats(os, object);
1316 /* contents are printed elsewhere, properly decoded */
1317 }
1318
1319 static void
1320 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1321 {
1322 (void) data, (void) size;
1323 zap_cursor_t zc;
1324 zap_attribute_t attr;
1325
1326 dump_zap_stats(os, object);
1327 (void) printf("\n");
1328
1329 for (zap_cursor_init(&zc, os, object);
1330 zap_cursor_retrieve(&zc, &attr) == 0;
1331 zap_cursor_advance(&zc)) {
1332 (void) printf("\t\t%s = ", attr.za_name);
1333 if (attr.za_num_integers == 0) {
1334 (void) printf("\n");
1335 continue;
1336 }
1337 (void) printf(" %llx : [%d:%d:%d]\n",
1338 (u_longlong_t)attr.za_first_integer,
1339 (int)ATTR_LENGTH(attr.za_first_integer),
1340 (int)ATTR_BSWAP(attr.za_first_integer),
1341 (int)ATTR_NUM(attr.za_first_integer));
1342 }
1343 zap_cursor_fini(&zc);
1344 }
1345
1346 static void
1347 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1348 {
1349 (void) data, (void) size;
1350 zap_cursor_t zc;
1351 zap_attribute_t attr;
1352 uint16_t *layout_attrs;
1353 unsigned i;
1354
1355 dump_zap_stats(os, object);
1356 (void) printf("\n");
1357
1358 for (zap_cursor_init(&zc, os, object);
1359 zap_cursor_retrieve(&zc, &attr) == 0;
1360 zap_cursor_advance(&zc)) {
1361 (void) printf("\t\t%s = [", attr.za_name);
1362 if (attr.za_num_integers == 0) {
1363 (void) printf("\n");
1364 continue;
1365 }
1366
1367 VERIFY(attr.za_integer_length == 2);
1368 layout_attrs = umem_zalloc(attr.za_num_integers *
1369 attr.za_integer_length, UMEM_NOFAIL);
1370
1371 VERIFY(zap_lookup(os, object, attr.za_name,
1372 attr.za_integer_length,
1373 attr.za_num_integers, layout_attrs) == 0);
1374
1375 for (i = 0; i != attr.za_num_integers; i++)
1376 (void) printf(" %d ", (int)layout_attrs[i]);
1377 (void) printf("]\n");
1378 umem_free(layout_attrs,
1379 attr.za_num_integers * attr.za_integer_length);
1380 }
1381 zap_cursor_fini(&zc);
1382 }
1383
1384 static void
1385 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1386 {
1387 (void) data, (void) size;
1388 zap_cursor_t zc;
1389 zap_attribute_t attr;
1390 const char *typenames[] = {
1391 /* 0 */ "not specified",
1392 /* 1 */ "FIFO",
1393 /* 2 */ "Character Device",
1394 /* 3 */ "3 (invalid)",
1395 /* 4 */ "Directory",
1396 /* 5 */ "5 (invalid)",
1397 /* 6 */ "Block Device",
1398 /* 7 */ "7 (invalid)",
1399 /* 8 */ "Regular File",
1400 /* 9 */ "9 (invalid)",
1401 /* 10 */ "Symbolic Link",
1402 /* 11 */ "11 (invalid)",
1403 /* 12 */ "Socket",
1404 /* 13 */ "Door",
1405 /* 14 */ "Event Port",
1406 /* 15 */ "15 (invalid)",
1407 };
1408
1409 dump_zap_stats(os, object);
1410 (void) printf("\n");
1411
1412 for (zap_cursor_init(&zc, os, object);
1413 zap_cursor_retrieve(&zc, &attr) == 0;
1414 zap_cursor_advance(&zc)) {
1415 (void) printf("\t\t%s = %lld (type: %s)\n",
1416 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
1417 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
1418 }
1419 zap_cursor_fini(&zc);
1420 }
1421
1422 static int
1423 get_dtl_refcount(vdev_t *vd)
1424 {
1425 int refcount = 0;
1426
1427 if (vd->vdev_ops->vdev_op_leaf) {
1428 space_map_t *sm = vd->vdev_dtl_sm;
1429
1430 if (sm != NULL &&
1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1432 return (1);
1433 return (0);
1434 }
1435
1436 for (unsigned c = 0; c < vd->vdev_children; c++)
1437 refcount += get_dtl_refcount(vd->vdev_child[c]);
1438 return (refcount);
1439 }
1440
1441 static int
1442 get_metaslab_refcount(vdev_t *vd)
1443 {
1444 int refcount = 0;
1445
1446 if (vd->vdev_top == vd) {
1447 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1448 space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1449
1450 if (sm != NULL &&
1451 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1452 refcount++;
1453 }
1454 }
1455 for (unsigned c = 0; c < vd->vdev_children; c++)
1456 refcount += get_metaslab_refcount(vd->vdev_child[c]);
1457
1458 return (refcount);
1459 }
1460
1461 static int
1462 get_obsolete_refcount(vdev_t *vd)
1463 {
1464 uint64_t obsolete_sm_object;
1465 int refcount = 0;
1466
1467 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1468 if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1469 dmu_object_info_t doi;
1470 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1471 obsolete_sm_object, &doi));
1472 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1473 refcount++;
1474 }
1475 } else {
1476 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1477 ASSERT3U(obsolete_sm_object, ==, 0);
1478 }
1479 for (unsigned c = 0; c < vd->vdev_children; c++) {
1480 refcount += get_obsolete_refcount(vd->vdev_child[c]);
1481 }
1482
1483 return (refcount);
1484 }
1485
1486 static int
1487 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1488 {
1489 uint64_t prev_obj =
1490 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1491 if (prev_obj != 0) {
1492 dmu_object_info_t doi;
1493 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1494 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1495 return (1);
1496 }
1497 }
1498 return (0);
1499 }
1500
1501 static int
1502 get_checkpoint_refcount(vdev_t *vd)
1503 {
1504 int refcount = 0;
1505
1506 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1507 zap_contains(spa_meta_objset(vd->vdev_spa),
1508 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1509 refcount++;
1510
1511 for (uint64_t c = 0; c < vd->vdev_children; c++)
1512 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1513
1514 return (refcount);
1515 }
1516
1517 static int
1518 get_log_spacemap_refcount(spa_t *spa)
1519 {
1520 return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1521 }
1522
1523 static int
1524 verify_spacemap_refcounts(spa_t *spa)
1525 {
1526 uint64_t expected_refcount = 0;
1527 uint64_t actual_refcount;
1528
1529 (void) feature_get_refcount(spa,
1530 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1531 &expected_refcount);
1532 actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1533 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1534 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1535 actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1536 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1537 actual_refcount += get_log_spacemap_refcount(spa);
1538
1539 if (expected_refcount != actual_refcount) {
1540 (void) printf("space map refcount mismatch: expected %lld != "
1541 "actual %lld\n",
1542 (longlong_t)expected_refcount,
1543 (longlong_t)actual_refcount);
1544 return (2);
1545 }
1546 return (0);
1547 }
1548
1549 static void
1550 dump_spacemap(objset_t *os, space_map_t *sm)
1551 {
1552 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1553 "INVALID", "INVALID", "INVALID", "INVALID" };
1554
1555 if (sm == NULL)
1556 return;
1557
1558 (void) printf("space map object %llu:\n",
1559 (longlong_t)sm->sm_object);
1560 (void) printf(" smp_length = 0x%llx\n",
1561 (longlong_t)sm->sm_phys->smp_length);
1562 (void) printf(" smp_alloc = 0x%llx\n",
1563 (longlong_t)sm->sm_phys->smp_alloc);
1564
1565 if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1566 return;
1567
1568 /*
1569 * Print out the freelist entries in both encoded and decoded form.
1570 */
1571 uint8_t mapshift = sm->sm_shift;
1572 int64_t alloc = 0;
1573 uint64_t word, entry_id = 0;
1574 for (uint64_t offset = 0; offset < space_map_length(sm);
1575 offset += sizeof (word)) {
1576
1577 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1578 sizeof (word), &word, DMU_READ_PREFETCH));
1579
1580 if (sm_entry_is_debug(word)) {
1581 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1582 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1583 if (de_txg == 0) {
1584 (void) printf(
1585 "\t [%6llu] PADDING\n",
1586 (u_longlong_t)entry_id);
1587 } else {
1588 (void) printf(
1589 "\t [%6llu] %s: txg %llu pass %llu\n",
1590 (u_longlong_t)entry_id,
1591 ddata[SM_DEBUG_ACTION_DECODE(word)],
1592 (u_longlong_t)de_txg,
1593 (u_longlong_t)de_sync_pass);
1594 }
1595 entry_id++;
1596 continue;
1597 }
1598
1599 uint8_t words;
1600 char entry_type;
1601 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1602
1603 if (sm_entry_is_single_word(word)) {
1604 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1605 'A' : 'F';
1606 entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1607 sm->sm_start;
1608 entry_run = SM_RUN_DECODE(word) << mapshift;
1609 words = 1;
1610 } else {
1611 /* it is a two-word entry so we read another word */
1612 ASSERT(sm_entry_is_double_word(word));
1613
1614 uint64_t extra_word;
1615 offset += sizeof (extra_word);
1616 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1617 sizeof (extra_word), &extra_word,
1618 DMU_READ_PREFETCH));
1619
1620 ASSERT3U(offset, <=, space_map_length(sm));
1621
1622 entry_run = SM2_RUN_DECODE(word) << mapshift;
1623 entry_vdev = SM2_VDEV_DECODE(word);
1624 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1625 'A' : 'F';
1626 entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1627 mapshift) + sm->sm_start;
1628 words = 2;
1629 }
1630
1631 (void) printf("\t [%6llu] %c range:"
1632 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1633 (u_longlong_t)entry_id,
1634 entry_type, (u_longlong_t)entry_off,
1635 (u_longlong_t)(entry_off + entry_run),
1636 (u_longlong_t)entry_run,
1637 (u_longlong_t)entry_vdev, words);
1638
1639 if (entry_type == 'A')
1640 alloc += entry_run;
1641 else
1642 alloc -= entry_run;
1643 entry_id++;
1644 }
1645 if (alloc != space_map_allocated(sm)) {
1646 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1647 "with space map summary (%lld)\n",
1648 (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1649 }
1650 }
1651
1652 static void
1653 dump_metaslab_stats(metaslab_t *msp)
1654 {
1655 char maxbuf[32];
1656 range_tree_t *rt = msp->ms_allocatable;
1657 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1658 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1659
1660 /* max sure nicenum has enough space */
1661 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1662
1663 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1664
1665 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1666 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1667 "freepct", free_pct);
1668 (void) printf("\tIn-memory histogram:\n");
1669 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1670 }
1671
1672 static void
1673 dump_metaslab(metaslab_t *msp)
1674 {
1675 vdev_t *vd = msp->ms_group->mg_vd;
1676 spa_t *spa = vd->vdev_spa;
1677 space_map_t *sm = msp->ms_sm;
1678 char freebuf[32];
1679
1680 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1681 sizeof (freebuf));
1682
1683 (void) printf(
1684 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1685 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1686 (u_longlong_t)space_map_object(sm), freebuf);
1687
1688 if (dump_opt['m'] > 2 && !dump_opt['L']) {
1689 mutex_enter(&msp->ms_lock);
1690 VERIFY0(metaslab_load(msp));
1691 range_tree_stat_verify(msp->ms_allocatable);
1692 dump_metaslab_stats(msp);
1693 metaslab_unload(msp);
1694 mutex_exit(&msp->ms_lock);
1695 }
1696
1697 if (dump_opt['m'] > 1 && sm != NULL &&
1698 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1699 /*
1700 * The space map histogram represents free space in chunks
1701 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1702 */
1703 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1704 (u_longlong_t)msp->ms_fragmentation);
1705 dump_histogram(sm->sm_phys->smp_histogram,
1706 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1707 }
1708
1709 if (vd->vdev_ops == &vdev_draid_ops)
1710 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1711 else
1712 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1713
1714 dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1715
1716 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1717 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1718 (u_longlong_t)metaslab_unflushed_txg(msp));
1719 }
1720 }
1721
1722 static void
1723 print_vdev_metaslab_header(vdev_t *vd)
1724 {
1725 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1726 const char *bias_str = "";
1727 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1728 bias_str = VDEV_ALLOC_BIAS_LOG;
1729 } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1730 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1731 } else if (alloc_bias == VDEV_BIAS_DEDUP) {
1732 bias_str = VDEV_ALLOC_BIAS_DEDUP;
1733 }
1734
1735 uint64_t ms_flush_data_obj = 0;
1736 if (vd->vdev_top_zap != 0) {
1737 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1738 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1739 sizeof (uint64_t), 1, &ms_flush_data_obj);
1740 if (error != ENOENT) {
1741 ASSERT0(error);
1742 }
1743 }
1744
1745 (void) printf("\tvdev %10llu %s",
1746 (u_longlong_t)vd->vdev_id, bias_str);
1747
1748 if (ms_flush_data_obj != 0) {
1749 (void) printf(" ms_unflushed_phys object %llu",
1750 (u_longlong_t)ms_flush_data_obj);
1751 }
1752
1753 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1754 "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1755 "offset", "spacemap", "free");
1756 (void) printf("\t%15s %19s %15s %12s\n",
1757 "---------------", "-------------------",
1758 "---------------", "------------");
1759 }
1760
1761 static void
1762 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1763 {
1764 vdev_t *rvd = spa->spa_root_vdev;
1765 metaslab_class_t *mc = spa_normal_class(spa);
1766 metaslab_class_t *smc = spa_special_class(spa);
1767 uint64_t fragmentation;
1768
1769 metaslab_class_histogram_verify(mc);
1770
1771 for (unsigned c = 0; c < rvd->vdev_children; c++) {
1772 vdev_t *tvd = rvd->vdev_child[c];
1773 metaslab_group_t *mg = tvd->vdev_mg;
1774
1775 if (mg == NULL || (mg->mg_class != mc &&
1776 (!show_special || mg->mg_class != smc)))
1777 continue;
1778
1779 metaslab_group_histogram_verify(mg);
1780 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1781
1782 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1783 "fragmentation",
1784 (u_longlong_t)tvd->vdev_id,
1785 (u_longlong_t)tvd->vdev_ms_count);
1786 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1787 (void) printf("%3s\n", "-");
1788 } else {
1789 (void) printf("%3llu%%\n",
1790 (u_longlong_t)mg->mg_fragmentation);
1791 }
1792 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1793 }
1794
1795 (void) printf("\tpool %s\tfragmentation", spa_name(spa));
1796 fragmentation = metaslab_class_fragmentation(mc);
1797 if (fragmentation == ZFS_FRAG_INVALID)
1798 (void) printf("\t%3s\n", "-");
1799 else
1800 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1801 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1802 }
1803
1804 static void
1805 print_vdev_indirect(vdev_t *vd)
1806 {
1807 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1808 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1809 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1810
1811 if (vim == NULL) {
1812 ASSERT3P(vib, ==, NULL);
1813 return;
1814 }
1815
1816 ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1817 vic->vic_mapping_object);
1818 ASSERT3U(vdev_indirect_births_object(vib), ==,
1819 vic->vic_births_object);
1820
1821 (void) printf("indirect births obj %llu:\n",
1822 (longlong_t)vic->vic_births_object);
1823 (void) printf(" vib_count = %llu\n",
1824 (longlong_t)vdev_indirect_births_count(vib));
1825 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1826 vdev_indirect_birth_entry_phys_t *cur_vibe =
1827 &vib->vib_entries[i];
1828 (void) printf("\toffset %llx -> txg %llu\n",
1829 (longlong_t)cur_vibe->vibe_offset,
1830 (longlong_t)cur_vibe->vibe_phys_birth_txg);
1831 }
1832 (void) printf("\n");
1833
1834 (void) printf("indirect mapping obj %llu:\n",
1835 (longlong_t)vic->vic_mapping_object);
1836 (void) printf(" vim_max_offset = 0x%llx\n",
1837 (longlong_t)vdev_indirect_mapping_max_offset(vim));
1838 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1839 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1840 (void) printf(" vim_count = %llu\n",
1841 (longlong_t)vdev_indirect_mapping_num_entries(vim));
1842
1843 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1844 return;
1845
1846 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1847
1848 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1849 vdev_indirect_mapping_entry_phys_t *vimep =
1850 &vim->vim_entries[i];
1851 (void) printf("\t<%llx:%llx:%llx> -> "
1852 "<%llx:%llx:%llx> (%x obsolete)\n",
1853 (longlong_t)vd->vdev_id,
1854 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1855 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1856 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1857 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1858 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1859 counts[i]);
1860 }
1861 (void) printf("\n");
1862
1863 uint64_t obsolete_sm_object;
1864 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1865 if (obsolete_sm_object != 0) {
1866 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1867 (void) printf("obsolete space map object %llu:\n",
1868 (u_longlong_t)obsolete_sm_object);
1869 ASSERT(vd->vdev_obsolete_sm != NULL);
1870 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1871 obsolete_sm_object);
1872 dump_spacemap(mos, vd->vdev_obsolete_sm);
1873 (void) printf("\n");
1874 }
1875 }
1876
1877 static void
1878 dump_metaslabs(spa_t *spa)
1879 {
1880 vdev_t *vd, *rvd = spa->spa_root_vdev;
1881 uint64_t m, c = 0, children = rvd->vdev_children;
1882
1883 (void) printf("\nMetaslabs:\n");
1884
1885 if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1886 c = zopt_metaslab[0];
1887
1888 if (c >= children)
1889 (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1890
1891 if (zopt_metaslab_args > 1) {
1892 vd = rvd->vdev_child[c];
1893 print_vdev_metaslab_header(vd);
1894
1895 for (m = 1; m < zopt_metaslab_args; m++) {
1896 if (zopt_metaslab[m] < vd->vdev_ms_count)
1897 dump_metaslab(
1898 vd->vdev_ms[zopt_metaslab[m]]);
1899 else
1900 (void) fprintf(stderr, "bad metaslab "
1901 "number %llu\n",
1902 (u_longlong_t)zopt_metaslab[m]);
1903 }
1904 (void) printf("\n");
1905 return;
1906 }
1907 children = c + 1;
1908 }
1909 for (; c < children; c++) {
1910 vd = rvd->vdev_child[c];
1911 print_vdev_metaslab_header(vd);
1912
1913 print_vdev_indirect(vd);
1914
1915 for (m = 0; m < vd->vdev_ms_count; m++)
1916 dump_metaslab(vd->vdev_ms[m]);
1917 (void) printf("\n");
1918 }
1919 }
1920
1921 static void
1922 dump_log_spacemaps(spa_t *spa)
1923 {
1924 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1925 return;
1926
1927 (void) printf("\nLog Space Maps in Pool:\n");
1928 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1929 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1930 space_map_t *sm = NULL;
1931 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1932 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1933
1934 (void) printf("Log Spacemap object %llu txg %llu\n",
1935 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1936 dump_spacemap(spa->spa_meta_objset, sm);
1937 space_map_close(sm);
1938 }
1939 (void) printf("\n");
1940 }
1941
1942 static void
1943 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
1944 {
1945 const ddt_phys_t *ddp = dde->dde_phys;
1946 const ddt_key_t *ddk = &dde->dde_key;
1947 const char *types[4] = { "ditto", "single", "double", "triple" };
1948 char blkbuf[BP_SPRINTF_LEN];
1949 blkptr_t blk;
1950 int p;
1951
1952 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1953 if (ddp->ddp_phys_birth == 0)
1954 continue;
1955 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
1956 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1957 (void) printf("index %llx refcnt %llu %s %s\n",
1958 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
1959 types[p], blkbuf);
1960 }
1961 }
1962
1963 static void
1964 dump_dedup_ratio(const ddt_stat_t *dds)
1965 {
1966 double rL, rP, rD, D, dedup, compress, copies;
1967
1968 if (dds->dds_blocks == 0)
1969 return;
1970
1971 rL = (double)dds->dds_ref_lsize;
1972 rP = (double)dds->dds_ref_psize;
1973 rD = (double)dds->dds_ref_dsize;
1974 D = (double)dds->dds_dsize;
1975
1976 dedup = rD / D;
1977 compress = rL / rP;
1978 copies = rD / rP;
1979
1980 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1981 "dedup * compress / copies = %.2f\n\n",
1982 dedup, compress, copies, dedup * compress / copies);
1983 }
1984
1985 static void
1986 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
1987 {
1988 char name[DDT_NAMELEN];
1989 ddt_entry_t dde;
1990 uint64_t walk = 0;
1991 dmu_object_info_t doi;
1992 uint64_t count, dspace, mspace;
1993 int error;
1994
1995 error = ddt_object_info(ddt, type, class, &doi);
1996
1997 if (error == ENOENT)
1998 return;
1999 ASSERT(error == 0);
2000
2001 error = ddt_object_count(ddt, type, class, &count);
2002 ASSERT(error == 0);
2003 if (count == 0)
2004 return;
2005
2006 dspace = doi.doi_physical_blocks_512 << 9;
2007 mspace = doi.doi_fill_count * doi.doi_data_block_size;
2008
2009 ddt_object_name(ddt, type, class, name);
2010
2011 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2012 name,
2013 (u_longlong_t)count,
2014 (u_longlong_t)(dspace / count),
2015 (u_longlong_t)(mspace / count));
2016
2017 if (dump_opt['D'] < 3)
2018 return;
2019
2020 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2021
2022 if (dump_opt['D'] < 4)
2023 return;
2024
2025 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2026 return;
2027
2028 (void) printf("%s contents:\n\n", name);
2029
2030 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
2031 dump_dde(ddt, &dde, walk);
2032
2033 ASSERT3U(error, ==, ENOENT);
2034
2035 (void) printf("\n");
2036 }
2037
2038 static void
2039 dump_all_ddts(spa_t *spa)
2040 {
2041 ddt_histogram_t ddh_total = {{{0}}};
2042 ddt_stat_t dds_total = {0};
2043
2044 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2045 ddt_t *ddt = spa->spa_ddt[c];
2046 for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
2047 for (enum ddt_class class = 0; class < DDT_CLASSES;
2048 class++) {
2049 dump_ddt(ddt, type, class);
2050 }
2051 }
2052 }
2053
2054 ddt_get_dedup_stats(spa, &dds_total);
2055
2056 if (dds_total.dds_blocks == 0) {
2057 (void) printf("All DDTs are empty\n");
2058 return;
2059 }
2060
2061 (void) printf("\n");
2062
2063 if (dump_opt['D'] > 1) {
2064 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2065 ddt_get_dedup_histogram(spa, &ddh_total);
2066 zpool_dump_ddt(&dds_total, &ddh_total);
2067 }
2068
2069 dump_dedup_ratio(&dds_total);
2070 }
2071
2072 static void
2073 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2074 {
2075 char *prefix = arg;
2076
2077 (void) printf("%s [%llu,%llu) length %llu\n",
2078 prefix,
2079 (u_longlong_t)start,
2080 (u_longlong_t)(start + size),
2081 (u_longlong_t)(size));
2082 }
2083
2084 static void
2085 dump_dtl(vdev_t *vd, int indent)
2086 {
2087 spa_t *spa = vd->vdev_spa;
2088 boolean_t required;
2089 const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2090 "outage" };
2091 char prefix[256];
2092
2093 spa_vdev_state_enter(spa, SCL_NONE);
2094 required = vdev_dtl_required(vd);
2095 (void) spa_vdev_state_exit(spa, NULL, 0);
2096
2097 if (indent == 0)
2098 (void) printf("\nDirty time logs:\n\n");
2099
2100 (void) printf("\t%*s%s [%s]\n", indent, "",
2101 vd->vdev_path ? vd->vdev_path :
2102 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2103 required ? "DTL-required" : "DTL-expendable");
2104
2105 for (int t = 0; t < DTL_TYPES; t++) {
2106 range_tree_t *rt = vd->vdev_dtl[t];
2107 if (range_tree_space(rt) == 0)
2108 continue;
2109 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2110 indent + 2, "", name[t]);
2111 range_tree_walk(rt, dump_dtl_seg, prefix);
2112 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2113 dump_spacemap(spa->spa_meta_objset,
2114 vd->vdev_dtl_sm);
2115 }
2116
2117 for (unsigned c = 0; c < vd->vdev_children; c++)
2118 dump_dtl(vd->vdev_child[c], indent + 4);
2119 }
2120
2121 static void
2122 dump_history(spa_t *spa)
2123 {
2124 nvlist_t **events = NULL;
2125 char *buf;
2126 uint64_t resid, len, off = 0;
2127 uint_t num = 0;
2128 int error;
2129 char tbuf[30];
2130
2131 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2132 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2133 __func__);
2134 return;
2135 }
2136
2137 do {
2138 len = SPA_OLD_MAXBLOCKSIZE;
2139
2140 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2141 (void) fprintf(stderr, "Unable to read history: "
2142 "error %d\n", error);
2143 free(buf);
2144 return;
2145 }
2146
2147 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2148 break;
2149
2150 off -= resid;
2151 } while (len != 0);
2152
2153 (void) printf("\nHistory:\n");
2154 for (unsigned i = 0; i < num; i++) {
2155 boolean_t printed = B_FALSE;
2156
2157 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2158 time_t tsec;
2159 struct tm t;
2160
2161 tsec = fnvlist_lookup_uint64(events[i],
2162 ZPOOL_HIST_TIME);
2163 (void) localtime_r(&tsec, &t);
2164 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2165 } else {
2166 tbuf[0] = '\0';
2167 }
2168
2169 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2170 (void) printf("%s %s\n", tbuf,
2171 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2172 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2173 uint64_t ievent;
2174
2175 ievent = fnvlist_lookup_uint64(events[i],
2176 ZPOOL_HIST_INT_EVENT);
2177 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2178 goto next;
2179
2180 (void) printf(" %s [internal %s txg:%ju] %s\n",
2181 tbuf,
2182 zfs_history_event_names[ievent],
2183 fnvlist_lookup_uint64(events[i],
2184 ZPOOL_HIST_TXG),
2185 fnvlist_lookup_string(events[i],
2186 ZPOOL_HIST_INT_STR));
2187 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2188 (void) printf("%s [txg:%ju] %s", tbuf,
2189 fnvlist_lookup_uint64(events[i],
2190 ZPOOL_HIST_TXG),
2191 fnvlist_lookup_string(events[i],
2192 ZPOOL_HIST_INT_NAME));
2193
2194 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2195 (void) printf(" %s (%llu)",
2196 fnvlist_lookup_string(events[i],
2197 ZPOOL_HIST_DSNAME),
2198 (u_longlong_t)fnvlist_lookup_uint64(
2199 events[i],
2200 ZPOOL_HIST_DSID));
2201 }
2202
2203 (void) printf(" %s\n", fnvlist_lookup_string(events[i],
2204 ZPOOL_HIST_INT_STR));
2205 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2206 (void) printf("%s ioctl %s\n", tbuf,
2207 fnvlist_lookup_string(events[i],
2208 ZPOOL_HIST_IOCTL));
2209
2210 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2211 (void) printf(" input:\n");
2212 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2213 ZPOOL_HIST_INPUT_NVL), 8);
2214 }
2215 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2216 (void) printf(" output:\n");
2217 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2218 ZPOOL_HIST_OUTPUT_NVL), 8);
2219 }
2220 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2221 (void) printf(" errno: %lld\n",
2222 (longlong_t)fnvlist_lookup_int64(events[i],
2223 ZPOOL_HIST_ERRNO));
2224 }
2225 } else {
2226 goto next;
2227 }
2228
2229 printed = B_TRUE;
2230 next:
2231 if (dump_opt['h'] > 1) {
2232 if (!printed)
2233 (void) printf("unrecognized record:\n");
2234 dump_nvlist(events[i], 2);
2235 }
2236 }
2237 free(buf);
2238 }
2239
2240 static void
2241 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2242 {
2243 (void) os, (void) object, (void) data, (void) size;
2244 }
2245
2246 static uint64_t
2247 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2248 const zbookmark_phys_t *zb)
2249 {
2250 if (dnp == NULL) {
2251 ASSERT(zb->zb_level < 0);
2252 if (zb->zb_object == 0)
2253 return (zb->zb_blkid);
2254 return (zb->zb_blkid * BP_GET_LSIZE(bp));
2255 }
2256
2257 ASSERT(zb->zb_level >= 0);
2258
2259 return ((zb->zb_blkid <<
2260 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2261 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2262 }
2263
2264 static void
2265 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2266 const blkptr_t *bp)
2267 {
2268 abd_t *pabd;
2269 void *buf;
2270 zio_t *zio;
2271 zfs_zstdhdr_t zstd_hdr;
2272 int error;
2273
2274 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2275 return;
2276
2277 if (BP_IS_HOLE(bp))
2278 return;
2279
2280 if (BP_IS_EMBEDDED(bp)) {
2281 buf = malloc(SPA_MAXBLOCKSIZE);
2282 if (buf == NULL) {
2283 (void) fprintf(stderr, "out of memory\n");
2284 exit(1);
2285 }
2286 decode_embedded_bp_compressed(bp, buf);
2287 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2288 free(buf);
2289 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2290 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2291 (void) snprintf(blkbuf + strlen(blkbuf),
2292 buflen - strlen(blkbuf),
2293 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2294 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2295 zfs_get_hdrlevel(&zstd_hdr));
2296 return;
2297 }
2298
2299 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2300 zio = zio_root(spa, NULL, NULL, 0);
2301
2302 /* Decrypt but don't decompress so we can read the compression header */
2303 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2304 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2305 NULL));
2306 error = zio_wait(zio);
2307 if (error) {
2308 (void) fprintf(stderr, "read failed: %d\n", error);
2309 return;
2310 }
2311 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2312 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2313 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2314 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2315
2316 (void) snprintf(blkbuf + strlen(blkbuf),
2317 buflen - strlen(blkbuf),
2318 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2319 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2320 zfs_get_hdrlevel(&zstd_hdr));
2321
2322 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2323 }
2324
2325 static void
2326 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2327 boolean_t bp_freed)
2328 {
2329 const dva_t *dva = bp->blk_dva;
2330 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2331 int i;
2332
2333 if (dump_opt['b'] >= 6) {
2334 snprintf_blkptr(blkbuf, buflen, bp);
2335 if (bp_freed) {
2336 (void) snprintf(blkbuf + strlen(blkbuf),
2337 buflen - strlen(blkbuf), " %s", "FREE");
2338 }
2339 return;
2340 }
2341
2342 if (BP_IS_EMBEDDED(bp)) {
2343 (void) sprintf(blkbuf,
2344 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2345 (int)BPE_GET_ETYPE(bp),
2346 (u_longlong_t)BPE_GET_LSIZE(bp),
2347 (u_longlong_t)BPE_GET_PSIZE(bp),
2348 (u_longlong_t)bp->blk_birth);
2349 return;
2350 }
2351
2352 blkbuf[0] = '\0';
2353
2354 for (i = 0; i < ndvas; i++)
2355 (void) snprintf(blkbuf + strlen(blkbuf),
2356 buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2357 (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2358 (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2359 (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2360
2361 if (BP_IS_HOLE(bp)) {
2362 (void) snprintf(blkbuf + strlen(blkbuf),
2363 buflen - strlen(blkbuf),
2364 "%llxL B=%llu",
2365 (u_longlong_t)BP_GET_LSIZE(bp),
2366 (u_longlong_t)bp->blk_birth);
2367 } else {
2368 (void) snprintf(blkbuf + strlen(blkbuf),
2369 buflen - strlen(blkbuf),
2370 "%llxL/%llxP F=%llu B=%llu/%llu",
2371 (u_longlong_t)BP_GET_LSIZE(bp),
2372 (u_longlong_t)BP_GET_PSIZE(bp),
2373 (u_longlong_t)BP_GET_FILL(bp),
2374 (u_longlong_t)bp->blk_birth,
2375 (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
2376 if (bp_freed)
2377 (void) snprintf(blkbuf + strlen(blkbuf),
2378 buflen - strlen(blkbuf), " %s", "FREE");
2379 (void) snprintf(blkbuf + strlen(blkbuf),
2380 buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx",
2381 (u_longlong_t)bp->blk_cksum.zc_word[0],
2382 (u_longlong_t)bp->blk_cksum.zc_word[1],
2383 (u_longlong_t)bp->blk_cksum.zc_word[2],
2384 (u_longlong_t)bp->blk_cksum.zc_word[3]);
2385 }
2386 }
2387
2388 static void
2389 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2390 const dnode_phys_t *dnp)
2391 {
2392 char blkbuf[BP_SPRINTF_LEN];
2393 int l;
2394
2395 if (!BP_IS_EMBEDDED(bp)) {
2396 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2397 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2398 }
2399
2400 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2401
2402 ASSERT(zb->zb_level >= 0);
2403
2404 for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2405 if (l == zb->zb_level) {
2406 (void) printf("L%llx", (u_longlong_t)zb->zb_level);
2407 } else {
2408 (void) printf(" ");
2409 }
2410 }
2411
2412 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2413 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2414 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2415 (void) printf("%s\n", blkbuf);
2416 }
2417
2418 static int
2419 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2420 blkptr_t *bp, const zbookmark_phys_t *zb)
2421 {
2422 int err = 0;
2423
2424 if (bp->blk_birth == 0)
2425 return (0);
2426
2427 print_indirect(spa, bp, zb, dnp);
2428
2429 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2430 arc_flags_t flags = ARC_FLAG_WAIT;
2431 int i;
2432 blkptr_t *cbp;
2433 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2434 arc_buf_t *buf;
2435 uint64_t fill = 0;
2436 ASSERT(!BP_IS_REDACTED(bp));
2437
2438 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2439 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2440 if (err)
2441 return (err);
2442 ASSERT(buf->b_data);
2443
2444 /* recursively visit blocks below this */
2445 cbp = buf->b_data;
2446 for (i = 0; i < epb; i++, cbp++) {
2447 zbookmark_phys_t czb;
2448
2449 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2450 zb->zb_level - 1,
2451 zb->zb_blkid * epb + i);
2452 err = visit_indirect(spa, dnp, cbp, &czb);
2453 if (err)
2454 break;
2455 fill += BP_GET_FILL(cbp);
2456 }
2457 if (!err)
2458 ASSERT3U(fill, ==, BP_GET_FILL(bp));
2459 arc_buf_destroy(buf, &buf);
2460 }
2461
2462 return (err);
2463 }
2464
2465 static void
2466 dump_indirect(dnode_t *dn)
2467 {
2468 dnode_phys_t *dnp = dn->dn_phys;
2469 zbookmark_phys_t czb;
2470
2471 (void) printf("Indirect blocks:\n");
2472
2473 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2474 dn->dn_object, dnp->dn_nlevels - 1, 0);
2475 for (int j = 0; j < dnp->dn_nblkptr; j++) {
2476 czb.zb_blkid = j;
2477 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2478 &dnp->dn_blkptr[j], &czb);
2479 }
2480
2481 (void) printf("\n");
2482 }
2483
2484 static void
2485 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2486 {
2487 (void) os, (void) object;
2488 dsl_dir_phys_t *dd = data;
2489 time_t crtime;
2490 char nice[32];
2491
2492 /* make sure nicenum has enough space */
2493 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2494
2495 if (dd == NULL)
2496 return;
2497
2498 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2499
2500 crtime = dd->dd_creation_time;
2501 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2502 (void) printf("\t\thead_dataset_obj = %llu\n",
2503 (u_longlong_t)dd->dd_head_dataset_obj);
2504 (void) printf("\t\tparent_dir_obj = %llu\n",
2505 (u_longlong_t)dd->dd_parent_obj);
2506 (void) printf("\t\torigin_obj = %llu\n",
2507 (u_longlong_t)dd->dd_origin_obj);
2508 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2509 (u_longlong_t)dd->dd_child_dir_zapobj);
2510 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2511 (void) printf("\t\tused_bytes = %s\n", nice);
2512 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2513 (void) printf("\t\tcompressed_bytes = %s\n", nice);
2514 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2515 (void) printf("\t\tuncompressed_bytes = %s\n", nice);
2516 zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2517 (void) printf("\t\tquota = %s\n", nice);
2518 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2519 (void) printf("\t\treserved = %s\n", nice);
2520 (void) printf("\t\tprops_zapobj = %llu\n",
2521 (u_longlong_t)dd->dd_props_zapobj);
2522 (void) printf("\t\tdeleg_zapobj = %llu\n",
2523 (u_longlong_t)dd->dd_deleg_zapobj);
2524 (void) printf("\t\tflags = %llx\n",
2525 (u_longlong_t)dd->dd_flags);
2526
2527 #define DO(which) \
2528 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2529 sizeof (nice)); \
2530 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2531 DO(HEAD);
2532 DO(SNAP);
2533 DO(CHILD);
2534 DO(CHILD_RSRV);
2535 DO(REFRSRV);
2536 #undef DO
2537 (void) printf("\t\tclones = %llu\n",
2538 (u_longlong_t)dd->dd_clones);
2539 }
2540
2541 static void
2542 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2543 {
2544 (void) os, (void) object;
2545 dsl_dataset_phys_t *ds = data;
2546 time_t crtime;
2547 char used[32], compressed[32], uncompressed[32], unique[32];
2548 char blkbuf[BP_SPRINTF_LEN];
2549
2550 /* make sure nicenum has enough space */
2551 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2552 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2553 "compressed truncated");
2554 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2555 "uncompressed truncated");
2556 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2557
2558 if (ds == NULL)
2559 return;
2560
2561 ASSERT(size == sizeof (*ds));
2562 crtime = ds->ds_creation_time;
2563 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2564 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2565 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2566 sizeof (uncompressed));
2567 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2568 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2569
2570 (void) printf("\t\tdir_obj = %llu\n",
2571 (u_longlong_t)ds->ds_dir_obj);
2572 (void) printf("\t\tprev_snap_obj = %llu\n",
2573 (u_longlong_t)ds->ds_prev_snap_obj);
2574 (void) printf("\t\tprev_snap_txg = %llu\n",
2575 (u_longlong_t)ds->ds_prev_snap_txg);
2576 (void) printf("\t\tnext_snap_obj = %llu\n",
2577 (u_longlong_t)ds->ds_next_snap_obj);
2578 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2579 (u_longlong_t)ds->ds_snapnames_zapobj);
2580 (void) printf("\t\tnum_children = %llu\n",
2581 (u_longlong_t)ds->ds_num_children);
2582 (void) printf("\t\tuserrefs_obj = %llu\n",
2583 (u_longlong_t)ds->ds_userrefs_obj);
2584 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2585 (void) printf("\t\tcreation_txg = %llu\n",
2586 (u_longlong_t)ds->ds_creation_txg);
2587 (void) printf("\t\tdeadlist_obj = %llu\n",
2588 (u_longlong_t)ds->ds_deadlist_obj);
2589 (void) printf("\t\tused_bytes = %s\n", used);
2590 (void) printf("\t\tcompressed_bytes = %s\n", compressed);
2591 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2592 (void) printf("\t\tunique = %s\n", unique);
2593 (void) printf("\t\tfsid_guid = %llu\n",
2594 (u_longlong_t)ds->ds_fsid_guid);
2595 (void) printf("\t\tguid = %llu\n",
2596 (u_longlong_t)ds->ds_guid);
2597 (void) printf("\t\tflags = %llx\n",
2598 (u_longlong_t)ds->ds_flags);
2599 (void) printf("\t\tnext_clones_obj = %llu\n",
2600 (u_longlong_t)ds->ds_next_clones_obj);
2601 (void) printf("\t\tprops_obj = %llu\n",
2602 (u_longlong_t)ds->ds_props_obj);
2603 (void) printf("\t\tbp = %s\n", blkbuf);
2604 }
2605
2606 static int
2607 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2608 {
2609 (void) arg, (void) tx;
2610 char blkbuf[BP_SPRINTF_LEN];
2611
2612 if (bp->blk_birth != 0) {
2613 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2614 (void) printf("\t%s\n", blkbuf);
2615 }
2616 return (0);
2617 }
2618
2619 static void
2620 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2621 {
2622 char bytes[32];
2623 bptree_phys_t *bt;
2624 dmu_buf_t *db;
2625
2626 /* make sure nicenum has enough space */
2627 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2628
2629 if (dump_opt['d'] < 3)
2630 return;
2631
2632 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2633 bt = db->db_data;
2634 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2635 (void) printf("\n %s: %llu datasets, %s\n",
2636 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2637 dmu_buf_rele(db, FTAG);
2638
2639 if (dump_opt['d'] < 5)
2640 return;
2641
2642 (void) printf("\n");
2643
2644 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2645 }
2646
2647 static int
2648 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2649 {
2650 (void) arg, (void) tx;
2651 char blkbuf[BP_SPRINTF_LEN];
2652
2653 ASSERT(bp->blk_birth != 0);
2654 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2655 (void) printf("\t%s\n", blkbuf);
2656 return (0);
2657 }
2658
2659 static void
2660 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2661 {
2662 char bytes[32];
2663 char comp[32];
2664 char uncomp[32];
2665 uint64_t i;
2666
2667 /* make sure nicenum has enough space */
2668 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2669 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2670 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2671
2672 if (dump_opt['d'] < 3)
2673 return;
2674
2675 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2676 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2677 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2678 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2679 if (bpo->bpo_havefreed) {
2680 (void) printf(" %*s: object %llu, %llu local "
2681 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2682 "%s (%s/%s comp)\n",
2683 indent * 8, name,
2684 (u_longlong_t)bpo->bpo_object,
2685 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2686 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2687 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2688 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2689 bytes, comp, uncomp);
2690 } else {
2691 (void) printf(" %*s: object %llu, %llu local "
2692 "blkptrs, %llu subobjs in object %llu, "
2693 "%s (%s/%s comp)\n",
2694 indent * 8, name,
2695 (u_longlong_t)bpo->bpo_object,
2696 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2697 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2698 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2699 bytes, comp, uncomp);
2700 }
2701
2702 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2703 uint64_t subobj;
2704 bpobj_t subbpo;
2705 int error;
2706 VERIFY0(dmu_read(bpo->bpo_os,
2707 bpo->bpo_phys->bpo_subobjs,
2708 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2709 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2710 if (error != 0) {
2711 (void) printf("ERROR %u while trying to open "
2712 "subobj id %llu\n",
2713 error, (u_longlong_t)subobj);
2714 continue;
2715 }
2716 dump_full_bpobj(&subbpo, "subobj", indent + 1);
2717 bpobj_close(&subbpo);
2718 }
2719 } else {
2720 if (bpo->bpo_havefreed) {
2721 (void) printf(" %*s: object %llu, %llu blkptrs, "
2722 "%llu freed, %s\n",
2723 indent * 8, name,
2724 (u_longlong_t)bpo->bpo_object,
2725 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2726 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2727 bytes);
2728 } else {
2729 (void) printf(" %*s: object %llu, %llu blkptrs, "
2730 "%s\n",
2731 indent * 8, name,
2732 (u_longlong_t)bpo->bpo_object,
2733 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2734 bytes);
2735 }
2736 }
2737
2738 if (dump_opt['d'] < 5)
2739 return;
2740
2741
2742 if (indent == 0) {
2743 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2744 (void) printf("\n");
2745 }
2746 }
2747
2748 static int
2749 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2750 boolean_t print_list)
2751 {
2752 int err = 0;
2753 zfs_bookmark_phys_t prop;
2754 objset_t *mos = dp->dp_spa->spa_meta_objset;
2755 err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2756
2757 if (err != 0) {
2758 return (err);
2759 }
2760
2761 (void) printf("\t#%s: ", strchr(name, '#') + 1);
2762 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2763 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2764 (u_longlong_t)prop.zbm_creation_txg,
2765 (u_longlong_t)prop.zbm_creation_time,
2766 (u_longlong_t)prop.zbm_redaction_obj);
2767
2768 IMPLY(print_list, print_redact);
2769 if (!print_redact || prop.zbm_redaction_obj == 0)
2770 return (0);
2771
2772 redaction_list_t *rl;
2773 VERIFY0(dsl_redaction_list_hold_obj(dp,
2774 prop.zbm_redaction_obj, FTAG, &rl));
2775
2776 redaction_list_phys_t *rlp = rl->rl_phys;
2777 (void) printf("\tRedacted:\n\t\tProgress: ");
2778 if (rlp->rlp_last_object != UINT64_MAX ||
2779 rlp->rlp_last_blkid != UINT64_MAX) {
2780 (void) printf("%llu %llu (incomplete)\n",
2781 (u_longlong_t)rlp->rlp_last_object,
2782 (u_longlong_t)rlp->rlp_last_blkid);
2783 } else {
2784 (void) printf("complete\n");
2785 }
2786 (void) printf("\t\tSnapshots: [");
2787 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2788 if (i > 0)
2789 (void) printf(", ");
2790 (void) printf("%0llu",
2791 (u_longlong_t)rlp->rlp_snaps[i]);
2792 }
2793 (void) printf("]\n\t\tLength: %llu\n",
2794 (u_longlong_t)rlp->rlp_num_entries);
2795
2796 if (!print_list) {
2797 dsl_redaction_list_rele(rl, FTAG);
2798 return (0);
2799 }
2800
2801 if (rlp->rlp_num_entries == 0) {
2802 dsl_redaction_list_rele(rl, FTAG);
2803 (void) printf("\t\tRedaction List: []\n\n");
2804 return (0);
2805 }
2806
2807 redact_block_phys_t *rbp_buf;
2808 uint64_t size;
2809 dmu_object_info_t doi;
2810
2811 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2812 size = doi.doi_max_offset;
2813 rbp_buf = kmem_alloc(size, KM_SLEEP);
2814
2815 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2816 rbp_buf, 0);
2817 if (err != 0) {
2818 dsl_redaction_list_rele(rl, FTAG);
2819 kmem_free(rbp_buf, size);
2820 return (err);
2821 }
2822
2823 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
2824 "%llx, blksz: %x, count: %llx}",
2825 (u_longlong_t)rbp_buf[0].rbp_object,
2826 (u_longlong_t)rbp_buf[0].rbp_blkid,
2827 (uint_t)(redact_block_get_size(&rbp_buf[0])),
2828 (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2829
2830 for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2831 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
2832 "blksz: %x, count: %llx}",
2833 (u_longlong_t)rbp_buf[i].rbp_object,
2834 (u_longlong_t)rbp_buf[i].rbp_blkid,
2835 (uint_t)(redact_block_get_size(&rbp_buf[i])),
2836 (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2837 }
2838 dsl_redaction_list_rele(rl, FTAG);
2839 kmem_free(rbp_buf, size);
2840 (void) printf("]\n\n");
2841 return (0);
2842 }
2843
2844 static void
2845 dump_bookmarks(objset_t *os, int verbosity)
2846 {
2847 zap_cursor_t zc;
2848 zap_attribute_t attr;
2849 dsl_dataset_t *ds = dmu_objset_ds(os);
2850 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2851 objset_t *mos = os->os_spa->spa_meta_objset;
2852 if (verbosity < 4)
2853 return;
2854 dsl_pool_config_enter(dp, FTAG);
2855
2856 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2857 zap_cursor_retrieve(&zc, &attr) == 0;
2858 zap_cursor_advance(&zc)) {
2859 char osname[ZFS_MAX_DATASET_NAME_LEN];
2860 char buf[ZFS_MAX_DATASET_NAME_LEN];
2861 int len;
2862 dmu_objset_name(os, osname);
2863 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
2864 attr.za_name);
2865 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
2866 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2867 }
2868 zap_cursor_fini(&zc);
2869 dsl_pool_config_exit(dp, FTAG);
2870 }
2871
2872 static void
2873 bpobj_count_refd(bpobj_t *bpo)
2874 {
2875 mos_obj_refd(bpo->bpo_object);
2876
2877 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2878 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2879 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2880 uint64_t subobj;
2881 bpobj_t subbpo;
2882 int error;
2883 VERIFY0(dmu_read(bpo->bpo_os,
2884 bpo->bpo_phys->bpo_subobjs,
2885 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2886 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2887 if (error != 0) {
2888 (void) printf("ERROR %u while trying to open "
2889 "subobj id %llu\n",
2890 error, (u_longlong_t)subobj);
2891 continue;
2892 }
2893 bpobj_count_refd(&subbpo);
2894 bpobj_close(&subbpo);
2895 }
2896 }
2897 }
2898
2899 static int
2900 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
2901 {
2902 spa_t *spa = arg;
2903 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2904 if (dle->dle_bpobj.bpo_object != empty_bpobj)
2905 bpobj_count_refd(&dle->dle_bpobj);
2906 return (0);
2907 }
2908
2909 static int
2910 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
2911 {
2912 ASSERT(arg == NULL);
2913 if (dump_opt['d'] >= 5) {
2914 char buf[128];
2915 (void) snprintf(buf, sizeof (buf),
2916 "mintxg %llu -> obj %llu",
2917 (longlong_t)dle->dle_mintxg,
2918 (longlong_t)dle->dle_bpobj.bpo_object);
2919
2920 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
2921 } else {
2922 (void) printf("mintxg %llu -> obj %llu\n",
2923 (longlong_t)dle->dle_mintxg,
2924 (longlong_t)dle->dle_bpobj.bpo_object);
2925 }
2926 return (0);
2927 }
2928
2929 static void
2930 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
2931 {
2932 char bytes[32];
2933 char comp[32];
2934 char uncomp[32];
2935 char entries[32];
2936 spa_t *spa = dmu_objset_spa(dl->dl_os);
2937 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2938
2939 if (dl->dl_oldfmt) {
2940 if (dl->dl_bpobj.bpo_object != empty_bpobj)
2941 bpobj_count_refd(&dl->dl_bpobj);
2942 } else {
2943 mos_obj_refd(dl->dl_object);
2944 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
2945 }
2946
2947 /* make sure nicenum has enough space */
2948 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2949 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2950 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2951 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
2952
2953 if (dump_opt['d'] < 3)
2954 return;
2955
2956 if (dl->dl_oldfmt) {
2957 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
2958 return;
2959 }
2960
2961 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
2962 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
2963 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
2964 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
2965 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
2966 name, bytes, comp, uncomp, entries);
2967
2968 if (dump_opt['d'] < 4)
2969 return;
2970
2971 (void) putchar('\n');
2972
2973 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
2974 }
2975
2976 static int
2977 verify_dd_livelist(objset_t *os)
2978 {
2979 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
2980 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2981 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
2982
2983 ASSERT(!dmu_objset_is_snapshot(os));
2984 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2985 return (0);
2986
2987 /* Iterate through the livelist to check for duplicates */
2988 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
2989 NULL);
2990
2991 dsl_pool_config_enter(dp, FTAG);
2992 dsl_deadlist_space(&dd->dd_livelist, &ll_used,
2993 &ll_comp, &ll_uncomp);
2994
2995 dsl_dataset_t *origin_ds;
2996 ASSERT(dsl_pool_config_held(dp));
2997 VERIFY0(dsl_dataset_hold_obj(dp,
2998 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
2999 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3000 &used, &comp, &uncomp));
3001 dsl_dataset_rele(origin_ds, FTAG);
3002 dsl_pool_config_exit(dp, FTAG);
3003 /*
3004 * It's possible that the dataset's uncomp space is larger than the
3005 * livelist's because livelists do not track embedded block pointers
3006 */
3007 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3008 char nice_used[32], nice_comp[32], nice_uncomp[32];
3009 (void) printf("Discrepancy in space accounting:\n");
3010 zdb_nicenum(used, nice_used, sizeof (nice_used));
3011 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3012 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3013 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3014 nice_used, nice_comp, nice_uncomp);
3015 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3016 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3017 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3018 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3019 nice_used, nice_comp, nice_uncomp);
3020 return (1);
3021 }
3022 return (0);
3023 }
3024
3025 static avl_tree_t idx_tree;
3026 static avl_tree_t domain_tree;
3027 static boolean_t fuid_table_loaded;
3028 static objset_t *sa_os = NULL;
3029 static sa_attr_type_t *sa_attr_table = NULL;
3030
3031 static int
3032 open_objset(const char *path, const void *tag, objset_t **osp)
3033 {
3034 int err;
3035 uint64_t sa_attrs = 0;
3036 uint64_t version = 0;
3037
3038 VERIFY3P(sa_os, ==, NULL);
3039 /*
3040 * We can't own an objset if it's redacted. Therefore, we do this
3041 * dance: hold the objset, then acquire a long hold on its dataset, then
3042 * release the pool (which is held as part of holding the objset).
3043 */
3044 err = dmu_objset_hold(path, tag, osp);
3045 if (err != 0) {
3046 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3047 path, strerror(err));
3048 return (err);
3049 }
3050 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3051 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3052
3053 if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) {
3054 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3055 8, 1, &version);
3056 if (version >= ZPL_VERSION_SA) {
3057 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3058 8, 1, &sa_attrs);
3059 }
3060 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3061 &sa_attr_table);
3062 if (err != 0) {
3063 (void) fprintf(stderr, "sa_setup failed: %s\n",
3064 strerror(err));
3065 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3066 dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3067 *osp = NULL;
3068 }
3069 }
3070 sa_os = *osp;
3071
3072 return (err);
3073 }
3074
3075 static void
3076 close_objset(objset_t *os, const void *tag)
3077 {
3078 VERIFY3P(os, ==, sa_os);
3079 if (os->os_sa != NULL)
3080 sa_tear_down(os);
3081 dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3082 dsl_dataset_rele(dmu_objset_ds(os), tag);
3083 sa_attr_table = NULL;
3084 sa_os = NULL;
3085 }
3086
3087 static void
3088 fuid_table_destroy(void)
3089 {
3090 if (fuid_table_loaded) {
3091 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3092 fuid_table_loaded = B_FALSE;
3093 }
3094 }
3095
3096 /*
3097 * print uid or gid information.
3098 * For normal POSIX id just the id is printed in decimal format.
3099 * For CIFS files with FUID the fuid is printed in hex followed by
3100 * the domain-rid string.
3101 */
3102 static void
3103 print_idstr(uint64_t id, const char *id_type)
3104 {
3105 if (FUID_INDEX(id)) {
3106 const char *domain =
3107 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3108 (void) printf("\t%s %llx [%s-%d]\n", id_type,
3109 (u_longlong_t)id, domain, (int)FUID_RID(id));
3110 } else {
3111 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3112 }
3113
3114 }
3115
3116 static void
3117 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3118 {
3119 uint32_t uid_idx, gid_idx;
3120
3121 uid_idx = FUID_INDEX(uid);
3122 gid_idx = FUID_INDEX(gid);
3123
3124 /* Load domain table, if not already loaded */
3125 if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3126 uint64_t fuid_obj;
3127
3128 /* first find the fuid object. It lives in the master node */
3129 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3130 8, 1, &fuid_obj) == 0);
3131 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3132 (void) zfs_fuid_table_load(os, fuid_obj,
3133 &idx_tree, &domain_tree);
3134 fuid_table_loaded = B_TRUE;
3135 }
3136
3137 print_idstr(uid, "uid");
3138 print_idstr(gid, "gid");
3139 }
3140
3141 static void
3142 dump_znode_sa_xattr(sa_handle_t *hdl)
3143 {
3144 nvlist_t *sa_xattr;
3145 nvpair_t *elem = NULL;
3146 int sa_xattr_size = 0;
3147 int sa_xattr_entries = 0;
3148 int error;
3149 char *sa_xattr_packed;
3150
3151 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3152 if (error || sa_xattr_size == 0)
3153 return;
3154
3155 sa_xattr_packed = malloc(sa_xattr_size);
3156 if (sa_xattr_packed == NULL)
3157 return;
3158
3159 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3160 sa_xattr_packed, sa_xattr_size);
3161 if (error) {
3162 free(sa_xattr_packed);
3163 return;
3164 }
3165
3166 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3167 if (error) {
3168 free(sa_xattr_packed);
3169 return;
3170 }
3171
3172 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3173 sa_xattr_entries++;
3174
3175 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3176 sa_xattr_size, sa_xattr_entries);
3177 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3178 uchar_t *value;
3179 uint_t cnt, idx;
3180
3181 (void) printf("\t\t%s = ", nvpair_name(elem));
3182 nvpair_value_byte_array(elem, &value, &cnt);
3183 for (idx = 0; idx < cnt; ++idx) {
3184 if (isprint(value[idx]))
3185 (void) putchar(value[idx]);
3186 else
3187 (void) printf("\\%3.3o", value[idx]);
3188 }
3189 (void) putchar('\n');
3190 }
3191
3192 nvlist_free(sa_xattr);
3193 free(sa_xattr_packed);
3194 }
3195
3196 static void
3197 dump_znode_symlink(sa_handle_t *hdl)
3198 {
3199 int sa_symlink_size = 0;
3200 char linktarget[MAXPATHLEN];
3201 int error;
3202
3203 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3204 if (error || sa_symlink_size == 0) {
3205 return;
3206 }
3207 if (sa_symlink_size >= sizeof (linktarget)) {
3208 (void) printf("symlink size %d is too large\n",
3209 sa_symlink_size);
3210 return;
3211 }
3212 linktarget[sa_symlink_size] = '\0';
3213 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3214 &linktarget, sa_symlink_size) == 0)
3215 (void) printf("\ttarget %s\n", linktarget);
3216 }
3217
3218 static void
3219 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3220 {
3221 (void) data, (void) size;
3222 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3223 sa_handle_t *hdl;
3224 uint64_t xattr, rdev, gen;
3225 uint64_t uid, gid, mode, fsize, parent, links;
3226 uint64_t pflags;
3227 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3228 time_t z_crtime, z_atime, z_mtime, z_ctime;
3229 sa_bulk_attr_t bulk[12];
3230 int idx = 0;
3231 int error;
3232
3233 VERIFY3P(os, ==, sa_os);
3234 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3235 (void) printf("Failed to get handle for SA znode\n");
3236 return;
3237 }
3238
3239 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3240 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3241 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3242 &links, 8);
3243 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3244 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3245 &mode, 8);
3246 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3247 NULL, &parent, 8);
3248 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3249 &fsize, 8);
3250 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3251 acctm, 16);
3252 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3253 modtm, 16);
3254 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3255 crtm, 16);
3256 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3257 chgtm, 16);
3258 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3259 &pflags, 8);
3260
3261 if (sa_bulk_lookup(hdl, bulk, idx)) {
3262 (void) sa_handle_destroy(hdl);
3263 return;
3264 }
3265
3266 z_crtime = (time_t)crtm[0];
3267 z_atime = (time_t)acctm[0];
3268 z_mtime = (time_t)modtm[0];
3269 z_ctime = (time_t)chgtm[0];
3270
3271 if (dump_opt['d'] > 4) {
3272 error = zfs_obj_to_path(os, object, path, sizeof (path));
3273 if (error == ESTALE) {
3274 (void) snprintf(path, sizeof (path), "on delete queue");
3275 } else if (error != 0) {
3276 leaked_objects++;
3277 (void) snprintf(path, sizeof (path),
3278 "path not found, possibly leaked");
3279 }
3280 (void) printf("\tpath %s\n", path);
3281 }
3282
3283 if (S_ISLNK(mode))
3284 dump_znode_symlink(hdl);
3285 dump_uidgid(os, uid, gid);
3286 (void) printf("\tatime %s", ctime(&z_atime));
3287 (void) printf("\tmtime %s", ctime(&z_mtime));
3288 (void) printf("\tctime %s", ctime(&z_ctime));
3289 (void) printf("\tcrtime %s", ctime(&z_crtime));
3290 (void) printf("\tgen %llu\n", (u_longlong_t)gen);
3291 (void) printf("\tmode %llo\n", (u_longlong_t)mode);
3292 (void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3293 (void) printf("\tparent %llu\n", (u_longlong_t)parent);
3294 (void) printf("\tlinks %llu\n", (u_longlong_t)links);
3295 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3296 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3297 uint64_t projid;
3298
3299 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3300 sizeof (uint64_t)) == 0)
3301 (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3302 }
3303 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3304 sizeof (uint64_t)) == 0)
3305 (void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3306 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3307 sizeof (uint64_t)) == 0)
3308 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3309 dump_znode_sa_xattr(hdl);
3310 sa_handle_destroy(hdl);
3311 }
3312
3313 static void
3314 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3315 {
3316 (void) os, (void) object, (void) data, (void) size;
3317 }
3318
3319 static void
3320 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3321 {
3322 (void) os, (void) object, (void) data, (void) size;
3323 }
3324
3325 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3326 dump_none, /* unallocated */
3327 dump_zap, /* object directory */
3328 dump_uint64, /* object array */
3329 dump_none, /* packed nvlist */
3330 dump_packed_nvlist, /* packed nvlist size */
3331 dump_none, /* bpobj */
3332 dump_bpobj, /* bpobj header */
3333 dump_none, /* SPA space map header */
3334 dump_none, /* SPA space map */
3335 dump_none, /* ZIL intent log */
3336 dump_dnode, /* DMU dnode */
3337 dump_dmu_objset, /* DMU objset */
3338 dump_dsl_dir, /* DSL directory */
3339 dump_zap, /* DSL directory child map */
3340 dump_zap, /* DSL dataset snap map */
3341 dump_zap, /* DSL props */
3342 dump_dsl_dataset, /* DSL dataset */
3343 dump_znode, /* ZFS znode */
3344 dump_acl, /* ZFS V0 ACL */
3345 dump_uint8, /* ZFS plain file */
3346 dump_zpldir, /* ZFS directory */
3347 dump_zap, /* ZFS master node */
3348 dump_zap, /* ZFS delete queue */
3349 dump_uint8, /* zvol object */
3350 dump_zap, /* zvol prop */
3351 dump_uint8, /* other uint8[] */
3352 dump_uint64, /* other uint64[] */
3353 dump_zap, /* other ZAP */
3354 dump_zap, /* persistent error log */
3355 dump_uint8, /* SPA history */
3356 dump_history_offsets, /* SPA history offsets */
3357 dump_zap, /* Pool properties */
3358 dump_zap, /* DSL permissions */
3359 dump_acl, /* ZFS ACL */
3360 dump_uint8, /* ZFS SYSACL */
3361 dump_none, /* FUID nvlist */
3362 dump_packed_nvlist, /* FUID nvlist size */
3363 dump_zap, /* DSL dataset next clones */
3364 dump_zap, /* DSL scrub queue */
3365 dump_zap, /* ZFS user/group/project used */
3366 dump_zap, /* ZFS user/group/project quota */
3367 dump_zap, /* snapshot refcount tags */
3368 dump_ddt_zap, /* DDT ZAP object */
3369 dump_zap, /* DDT statistics */
3370 dump_znode, /* SA object */
3371 dump_zap, /* SA Master Node */
3372 dump_sa_attrs, /* SA attribute registration */
3373 dump_sa_layouts, /* SA attribute layouts */
3374 dump_zap, /* DSL scrub translations */
3375 dump_none, /* fake dedup BP */
3376 dump_zap, /* deadlist */
3377 dump_none, /* deadlist hdr */
3378 dump_zap, /* dsl clones */
3379 dump_bpobj_subobjs, /* bpobj subobjs */
3380 dump_unknown, /* Unknown type, must be last */
3381 };
3382
3383 static boolean_t
3384 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3385 {
3386 boolean_t match = B_TRUE;
3387
3388 switch (obj_type) {
3389 case DMU_OT_DIRECTORY_CONTENTS:
3390 if (!(flags & ZOR_FLAG_DIRECTORY))
3391 match = B_FALSE;
3392 break;
3393 case DMU_OT_PLAIN_FILE_CONTENTS:
3394 if (!(flags & ZOR_FLAG_PLAIN_FILE))
3395 match = B_FALSE;
3396 break;
3397 case DMU_OT_SPACE_MAP:
3398 if (!(flags & ZOR_FLAG_SPACE_MAP))
3399 match = B_FALSE;
3400 break;
3401 default:
3402 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3403 if (!(flags & ZOR_FLAG_ZAP))
3404 match = B_FALSE;
3405 break;
3406 }
3407
3408 /*
3409 * If all bits except some of the supported flags are
3410 * set, the user combined the all-types flag (A) with
3411 * a negated flag to exclude some types (e.g. A-f to
3412 * show all object types except plain files).
3413 */
3414 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3415 match = B_FALSE;
3416
3417 break;
3418 }
3419
3420 return (match);
3421 }
3422
3423 static void
3424 dump_object(objset_t *os, uint64_t object, int verbosity,
3425 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3426 {
3427 dmu_buf_t *db = NULL;
3428 dmu_object_info_t doi;
3429 dnode_t *dn;
3430 boolean_t dnode_held = B_FALSE;
3431 void *bonus = NULL;
3432 size_t bsize = 0;
3433 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3434 char bonus_size[32];
3435 char aux[50];
3436 int error;
3437
3438 /* make sure nicenum has enough space */
3439 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3440 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3441 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3442 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3443 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3444 "bonus_size truncated");
3445
3446 if (*print_header) {
3447 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3448 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3449 "lsize", "%full", "type");
3450 *print_header = 0;
3451 }
3452
3453 if (object == 0) {
3454 dn = DMU_META_DNODE(os);
3455 dmu_object_info_from_dnode(dn, &doi);
3456 } else {
3457 /*
3458 * Encrypted datasets will have sensitive bonus buffers
3459 * encrypted. Therefore we cannot hold the bonus buffer and
3460 * must hold the dnode itself instead.
3461 */
3462 error = dmu_object_info(os, object, &doi);
3463 if (error)
3464 fatal("dmu_object_info() failed, errno %u", error);
3465
3466 if (os->os_encrypted &&
3467 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3468 error = dnode_hold(os, object, FTAG, &dn);
3469 if (error)
3470 fatal("dnode_hold() failed, errno %u", error);
3471 dnode_held = B_TRUE;
3472 } else {
3473 error = dmu_bonus_hold(os, object, FTAG, &db);
3474 if (error)
3475 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3476 object, error);
3477 bonus = db->db_data;
3478 bsize = db->db_size;
3479 dn = DB_DNODE((dmu_buf_impl_t *)db);
3480 }
3481 }
3482
3483 /*
3484 * Default to showing all object types if no flags were specified.
3485 */
3486 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3487 !match_object_type(doi.doi_type, flags))
3488 goto out;
3489
3490 if (dnode_slots_used)
3491 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3492
3493 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3494 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3495 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3496 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3497 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3498 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3499 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3500 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3501 DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3502
3503 aux[0] = '\0';
3504
3505 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3506 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3507 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3508 }
3509
3510 if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3511 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3512 const char *compname = NULL;
3513 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3514 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3515 &compname) == 0) {
3516 (void) snprintf(aux + strlen(aux),
3517 sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3518 compname);
3519 } else {
3520 (void) snprintf(aux + strlen(aux),
3521 sizeof (aux) - strlen(aux),
3522 " (Z=inherit=%s-unknown)",
3523 ZDB_COMPRESS_NAME(os->os_compress));
3524 }
3525 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3526 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3527 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3528 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3529 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3530 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3531 }
3532
3533 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3534 (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3535 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3536
3537 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3538 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3539 "", "", "", "", "", "", bonus_size, "bonus",
3540 zdb_ot_name(doi.doi_bonus_type));
3541 }
3542
3543 if (verbosity >= 4) {
3544 (void) printf("\tdnode flags: %s%s%s%s\n",
3545 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3546 "USED_BYTES " : "",
3547 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3548 "USERUSED_ACCOUNTED " : "",
3549 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3550 "USEROBJUSED_ACCOUNTED " : "",
3551 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3552 "SPILL_BLKPTR" : "");
3553 (void) printf("\tdnode maxblkid: %llu\n",
3554 (longlong_t)dn->dn_phys->dn_maxblkid);
3555
3556 if (!dnode_held) {
3557 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3558 object, bonus, bsize);
3559 } else {
3560 (void) printf("\t\t(bonus encrypted)\n");
3561 }
3562
3563 if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) {
3564 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3565 NULL, 0);
3566 } else {
3567 (void) printf("\t\t(object encrypted)\n");
3568 }
3569
3570 *print_header = B_TRUE;
3571 }
3572
3573 if (verbosity >= 5) {
3574 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3575 char blkbuf[BP_SPRINTF_LEN];
3576 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3577 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3578 (void) printf("\nSpill block: %s\n", blkbuf);
3579 }
3580 dump_indirect(dn);
3581 }
3582
3583 if (verbosity >= 5) {
3584 /*
3585 * Report the list of segments that comprise the object.
3586 */
3587 uint64_t start = 0;
3588 uint64_t end;
3589 uint64_t blkfill = 1;
3590 int minlvl = 1;
3591
3592 if (dn->dn_type == DMU_OT_DNODE) {
3593 minlvl = 0;
3594 blkfill = DNODES_PER_BLOCK;
3595 }
3596
3597 for (;;) {
3598 char segsize[32];
3599 /* make sure nicenum has enough space */
3600 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3601 "segsize truncated");
3602 error = dnode_next_offset(dn,
3603 0, &start, minlvl, blkfill, 0);
3604 if (error)
3605 break;
3606 end = start;
3607 error = dnode_next_offset(dn,
3608 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3609 zdb_nicenum(end - start, segsize, sizeof (segsize));
3610 (void) printf("\t\tsegment [%016llx, %016llx)"
3611 " size %5s\n", (u_longlong_t)start,
3612 (u_longlong_t)end, segsize);
3613 if (error)
3614 break;
3615 start = end;
3616 }
3617 }
3618
3619 out:
3620 if (db != NULL)
3621 dmu_buf_rele(db, FTAG);
3622 if (dnode_held)
3623 dnode_rele(dn, FTAG);
3624 }
3625
3626 static void
3627 count_dir_mos_objects(dsl_dir_t *dd)
3628 {
3629 mos_obj_refd(dd->dd_object);
3630 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3631 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3632 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3633 mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3634
3635 /*
3636 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3637 * Ignore the references after the first one.
3638 */
3639 mos_obj_refd_multiple(dd->dd_crypto_obj);
3640 }
3641
3642 static void
3643 count_ds_mos_objects(dsl_dataset_t *ds)
3644 {
3645 mos_obj_refd(ds->ds_object);
3646 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3647 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3648 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3649 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3650 mos_obj_refd(ds->ds_bookmarks_obj);
3651
3652 if (!dsl_dataset_is_snapshot(ds)) {
3653 count_dir_mos_objects(ds->ds_dir);
3654 }
3655 }
3656
3657 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3658 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3659
3660 /*
3661 * Parse a string denoting a range of object IDs of the form
3662 * <start>[:<end>[:flags]], and store the results in zor.
3663 * Return 0 on success. On error, return 1 and update the msg
3664 * pointer to point to a descriptive error message.
3665 */
3666 static int
3667 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3668 {
3669 uint64_t flags = 0;
3670 char *p, *s, *dup, *flagstr, *tmp = NULL;
3671 size_t len;
3672 int i;
3673 int rc = 0;
3674
3675 if (strchr(range, ':') == NULL) {
3676 zor->zor_obj_start = strtoull(range, &p, 0);
3677 if (*p != '\0') {
3678 *msg = "Invalid characters in object ID";
3679 rc = 1;
3680 }
3681 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3682 zor->zor_obj_end = zor->zor_obj_start;
3683 return (rc);
3684 }
3685
3686 if (strchr(range, ':') == range) {
3687 *msg = "Invalid leading colon";
3688 rc = 1;
3689 return (rc);
3690 }
3691
3692 len = strlen(range);
3693 if (range[len - 1] == ':') {
3694 *msg = "Invalid trailing colon";
3695 rc = 1;
3696 return (rc);
3697 }
3698
3699 dup = strdup(range);
3700 s = strtok_r(dup, ":", &tmp);
3701 zor->zor_obj_start = strtoull(s, &p, 0);
3702
3703 if (*p != '\0') {
3704 *msg = "Invalid characters in start object ID";
3705 rc = 1;
3706 goto out;
3707 }
3708
3709 s = strtok_r(NULL, ":", &tmp);
3710 zor->zor_obj_end = strtoull(s, &p, 0);
3711
3712 if (*p != '\0') {
3713 *msg = "Invalid characters in end object ID";
3714 rc = 1;
3715 goto out;
3716 }
3717
3718 if (zor->zor_obj_start > zor->zor_obj_end) {
3719 *msg = "Start object ID may not exceed end object ID";
3720 rc = 1;
3721 goto out;
3722 }
3723
3724 s = strtok_r(NULL, ":", &tmp);
3725 if (s == NULL) {
3726 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
3727 goto out;
3728 } else if (strtok_r(NULL, ":", &tmp) != NULL) {
3729 *msg = "Invalid colon-delimited field after flags";
3730 rc = 1;
3731 goto out;
3732 }
3733
3734 flagstr = s;
3735 for (i = 0; flagstr[i]; i++) {
3736 int bit;
3737 boolean_t negation = (flagstr[i] == '-');
3738
3739 if (negation) {
3740 i++;
3741 if (flagstr[i] == '\0') {
3742 *msg = "Invalid trailing negation operator";
3743 rc = 1;
3744 goto out;
3745 }
3746 }
3747 bit = flagbits[(uchar_t)flagstr[i]];
3748 if (bit == 0) {
3749 *msg = "Invalid flag";
3750 rc = 1;
3751 goto out;
3752 }
3753 if (negation)
3754 flags &= ~bit;
3755 else
3756 flags |= bit;
3757 }
3758 zor->zor_flags = flags;
3759
3760 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3761 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
3762
3763 out:
3764 free(dup);
3765 return (rc);
3766 }
3767
3768 static void
3769 dump_objset(objset_t *os)
3770 {
3771 dmu_objset_stats_t dds = { 0 };
3772 uint64_t object, object_count;
3773 uint64_t refdbytes, usedobjs, scratch;
3774 char numbuf[32];
3775 char blkbuf[BP_SPRINTF_LEN + 20];
3776 char osname[ZFS_MAX_DATASET_NAME_LEN];
3777 const char *type = "UNKNOWN";
3778 int verbosity = dump_opt['d'];
3779 boolean_t print_header;
3780 unsigned i;
3781 int error;
3782 uint64_t total_slots_used = 0;
3783 uint64_t max_slot_used = 0;
3784 uint64_t dnode_slots;
3785 uint64_t obj_start;
3786 uint64_t obj_end;
3787 uint64_t flags;
3788
3789 /* make sure nicenum has enough space */
3790 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
3791
3792 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
3793 dmu_objset_fast_stat(os, &dds);
3794 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
3795
3796 print_header = B_TRUE;
3797
3798 if (dds.dds_type < DMU_OST_NUMTYPES)
3799 type = objset_types[dds.dds_type];
3800
3801 if (dds.dds_type == DMU_OST_META) {
3802 dds.dds_creation_txg = TXG_INITIAL;
3803 usedobjs = BP_GET_FILL(os->os_rootbp);
3804 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
3805 dd_used_bytes;
3806 } else {
3807 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
3808 }
3809
3810 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
3811
3812 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
3813
3814 if (verbosity >= 4) {
3815 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
3816 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
3817 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
3818 } else {
3819 blkbuf[0] = '\0';
3820 }
3821
3822 dmu_objset_name(os, osname);
3823
3824 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
3825 "%s, %llu objects%s%s\n",
3826 osname, type, (u_longlong_t)dmu_objset_id(os),
3827 (u_longlong_t)dds.dds_creation_txg,
3828 numbuf, (u_longlong_t)usedobjs, blkbuf,
3829 (dds.dds_inconsistent) ? " (inconsistent)" : "");
3830
3831 for (i = 0; i < zopt_object_args; i++) {
3832 obj_start = zopt_object_ranges[i].zor_obj_start;
3833 obj_end = zopt_object_ranges[i].zor_obj_end;
3834 flags = zopt_object_ranges[i].zor_flags;
3835
3836 object = obj_start;
3837 if (object == 0 || obj_start == obj_end)
3838 dump_object(os, object, verbosity, &print_header, NULL,
3839 flags);
3840 else
3841 object--;
3842
3843 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
3844 object <= obj_end) {
3845 dump_object(os, object, verbosity, &print_header, NULL,
3846 flags);
3847 }
3848 }
3849
3850 if (zopt_object_args > 0) {
3851 (void) printf("\n");
3852 return;
3853 }
3854
3855 if (dump_opt['i'] != 0 || verbosity >= 2)
3856 dump_intent_log(dmu_objset_zil(os));
3857
3858 if (dmu_objset_ds(os) != NULL) {
3859 dsl_dataset_t *ds = dmu_objset_ds(os);
3860 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
3861 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
3862 !dmu_objset_is_snapshot(os)) {
3863 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
3864 if (verify_dd_livelist(os) != 0)
3865 fatal("livelist is incorrect");
3866 }
3867
3868 if (dsl_dataset_remap_deadlist_exists(ds)) {
3869 (void) printf("ds_remap_deadlist:\n");
3870 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
3871 }
3872 count_ds_mos_objects(ds);
3873 }
3874
3875 if (dmu_objset_ds(os) != NULL)
3876 dump_bookmarks(os, verbosity);
3877
3878 if (verbosity < 2)
3879 return;
3880
3881 if (BP_IS_HOLE(os->os_rootbp))
3882 return;
3883
3884 dump_object(os, 0, verbosity, &print_header, NULL, 0);
3885 object_count = 0;
3886 if (DMU_USERUSED_DNODE(os) != NULL &&
3887 DMU_USERUSED_DNODE(os)->dn_type != 0) {
3888 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
3889 NULL, 0);
3890 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
3891 NULL, 0);
3892 }
3893
3894 if (DMU_PROJECTUSED_DNODE(os) != NULL &&
3895 DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
3896 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
3897 &print_header, NULL, 0);
3898
3899 object = 0;
3900 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
3901 dump_object(os, object, verbosity, &print_header, &dnode_slots,
3902 0);
3903 object_count++;
3904 total_slots_used += dnode_slots;
3905 max_slot_used = object + dnode_slots - 1;
3906 }
3907
3908 (void) printf("\n");
3909
3910 (void) printf(" Dnode slots:\n");
3911 (void) printf("\tTotal used: %10llu\n",
3912 (u_longlong_t)total_slots_used);
3913 (void) printf("\tMax used: %10llu\n",
3914 (u_longlong_t)max_slot_used);
3915 (void) printf("\tPercent empty: %10lf\n",
3916 (double)(max_slot_used - total_slots_used)*100 /
3917 (double)max_slot_used);
3918 (void) printf("\n");
3919
3920 if (error != ESRCH) {
3921 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
3922 abort();
3923 }
3924
3925 ASSERT3U(object_count, ==, usedobjs);
3926
3927 if (leaked_objects != 0) {
3928 (void) printf("%d potentially leaked objects detected\n",
3929 leaked_objects);
3930 leaked_objects = 0;
3931 }
3932 }
3933
3934 static void
3935 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
3936 {
3937 time_t timestamp = ub->ub_timestamp;
3938
3939 (void) printf("%s", header ? header : "");
3940 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
3941 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
3942 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
3943 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
3944 (void) printf("\ttimestamp = %llu UTC = %s",
3945 (u_longlong_t)ub->ub_timestamp, ctime(×tamp));
3946
3947 (void) printf("\tmmp_magic = %016llx\n",
3948 (u_longlong_t)ub->ub_mmp_magic);
3949 if (MMP_VALID(ub)) {
3950 (void) printf("\tmmp_delay = %0llu\n",
3951 (u_longlong_t)ub->ub_mmp_delay);
3952 if (MMP_SEQ_VALID(ub))
3953 (void) printf("\tmmp_seq = %u\n",
3954 (unsigned int) MMP_SEQ(ub));
3955 if (MMP_FAIL_INT_VALID(ub))
3956 (void) printf("\tmmp_fail = %u\n",
3957 (unsigned int) MMP_FAIL_INT(ub));
3958 if (MMP_INTERVAL_VALID(ub))
3959 (void) printf("\tmmp_write = %u\n",
3960 (unsigned int) MMP_INTERVAL(ub));
3961 /* After MMP_* to make summarize_uberblock_mmp cleaner */
3962 (void) printf("\tmmp_valid = %x\n",
3963 (unsigned int) ub->ub_mmp_config & 0xFF);
3964 }
3965
3966 if (dump_opt['u'] >= 4) {
3967 char blkbuf[BP_SPRINTF_LEN];
3968 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
3969 (void) printf("\trootbp = %s\n", blkbuf);
3970 }
3971 (void) printf("\tcheckpoint_txg = %llu\n",
3972 (u_longlong_t)ub->ub_checkpoint_txg);
3973 (void) printf("%s", footer ? footer : "");
3974 }
3975
3976 static void
3977 dump_config(spa_t *spa)
3978 {
3979 dmu_buf_t *db;
3980 size_t nvsize = 0;
3981 int error = 0;
3982
3983
3984 error = dmu_bonus_hold(spa->spa_meta_objset,
3985 spa->spa_config_object, FTAG, &db);
3986
3987 if (error == 0) {
3988 nvsize = *(uint64_t *)db->db_data;
3989 dmu_buf_rele(db, FTAG);
3990
3991 (void) printf("\nMOS Configuration:\n");
3992 dump_packed_nvlist(spa->spa_meta_objset,
3993 spa->spa_config_object, (void *)&nvsize, 1);
3994 } else {
3995 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
3996 (u_longlong_t)spa->spa_config_object, error);
3997 }
3998 }
3999
4000 static void
4001 dump_cachefile(const char *cachefile)
4002 {
4003 int fd;
4004 struct stat64 statbuf;
4005 char *buf;
4006 nvlist_t *config;
4007
4008 if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4009 (void) printf("cannot open '%s': %s\n", cachefile,
4010 strerror(errno));
4011 exit(1);
4012 }
4013
4014 if (fstat64(fd, &statbuf) != 0) {
4015 (void) printf("failed to stat '%s': %s\n", cachefile,
4016 strerror(errno));
4017 exit(1);
4018 }
4019
4020 if ((buf = malloc(statbuf.st_size)) == NULL) {
4021 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
4022 (u_longlong_t)statbuf.st_size);
4023 exit(1);
4024 }
4025
4026 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4027 (void) fprintf(stderr, "failed to read %llu bytes\n",
4028 (u_longlong_t)statbuf.st_size);
4029 exit(1);
4030 }
4031
4032 (void) close(fd);
4033
4034 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4035 (void) fprintf(stderr, "failed to unpack nvlist\n");
4036 exit(1);
4037 }
4038
4039 free(buf);
4040
4041 dump_nvlist(config, 0);
4042
4043 nvlist_free(config);
4044 }
4045
4046 /*
4047 * ZFS label nvlist stats
4048 */
4049 typedef struct zdb_nvl_stats {
4050 int zns_list_count;
4051 int zns_leaf_count;
4052 size_t zns_leaf_largest;
4053 size_t zns_leaf_total;
4054 nvlist_t *zns_string;
4055 nvlist_t *zns_uint64;
4056 nvlist_t *zns_boolean;
4057 } zdb_nvl_stats_t;
4058
4059 static void
4060 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4061 {
4062 nvlist_t *list, **array;
4063 nvpair_t *nvp = NULL;
4064 char *name;
4065 uint_t i, items;
4066
4067 stats->zns_list_count++;
4068
4069 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4070 name = nvpair_name(nvp);
4071
4072 switch (nvpair_type(nvp)) {
4073 case DATA_TYPE_STRING:
4074 fnvlist_add_string(stats->zns_string, name,
4075 fnvpair_value_string(nvp));
4076 break;
4077 case DATA_TYPE_UINT64:
4078 fnvlist_add_uint64(stats->zns_uint64, name,
4079 fnvpair_value_uint64(nvp));
4080 break;
4081 case DATA_TYPE_BOOLEAN:
4082 fnvlist_add_boolean(stats->zns_boolean, name);
4083 break;
4084 case DATA_TYPE_NVLIST:
4085 if (nvpair_value_nvlist(nvp, &list) == 0)
4086 collect_nvlist_stats(list, stats);
4087 break;
4088 case DATA_TYPE_NVLIST_ARRAY:
4089 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4090 break;
4091
4092 for (i = 0; i < items; i++) {
4093 collect_nvlist_stats(array[i], stats);
4094
4095 /* collect stats on leaf vdev */
4096 if (strcmp(name, "children") == 0) {
4097 size_t size;
4098
4099 (void) nvlist_size(array[i], &size,
4100 NV_ENCODE_XDR);
4101 stats->zns_leaf_total += size;
4102 if (size > stats->zns_leaf_largest)
4103 stats->zns_leaf_largest = size;
4104 stats->zns_leaf_count++;
4105 }
4106 }
4107 break;
4108 default:
4109 (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4110 }
4111 }
4112 }
4113
4114 static void
4115 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4116 {
4117 zdb_nvl_stats_t stats = { 0 };
4118 size_t size, sum = 0, total;
4119 size_t noise;
4120
4121 /* requires nvlist with non-unique names for stat collection */
4122 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4123 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4124 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4125 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4126
4127 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4128
4129 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4130 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4131 (int)total, (int)(cap - total), 100.0 * total / cap);
4132
4133 collect_nvlist_stats(nvl, &stats);
4134
4135 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4136 size -= noise;
4137 sum += size;
4138 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4139 (int)fnvlist_num_pairs(stats.zns_uint64),
4140 (int)size, 100.0 * size / total);
4141
4142 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4143 size -= noise;
4144 sum += size;
4145 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4146 (int)fnvlist_num_pairs(stats.zns_string),
4147 (int)size, 100.0 * size / total);
4148
4149 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4150 size -= noise;
4151 sum += size;
4152 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4153 (int)fnvlist_num_pairs(stats.zns_boolean),
4154 (int)size, 100.0 * size / total);
4155
4156 size = total - sum; /* treat remainder as nvlist overhead */
4157 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4158 stats.zns_list_count, (int)size, 100.0 * size / total);
4159
4160 if (stats.zns_leaf_count > 0) {
4161 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4162
4163 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4164 stats.zns_leaf_count, (int)average);
4165 (void) printf("%24d bytes largest\n",
4166 (int)stats.zns_leaf_largest);
4167
4168 if (dump_opt['l'] >= 3 && average > 0)
4169 (void) printf(" space for %d additional leaf vdevs\n",
4170 (int)((cap - total) / average));
4171 }
4172 (void) printf("\n");
4173
4174 nvlist_free(stats.zns_string);
4175 nvlist_free(stats.zns_uint64);
4176 nvlist_free(stats.zns_boolean);
4177 }
4178
4179 typedef struct cksum_record {
4180 zio_cksum_t cksum;
4181 boolean_t labels[VDEV_LABELS];
4182 avl_node_t link;
4183 } cksum_record_t;
4184
4185 static int
4186 cksum_record_compare(const void *x1, const void *x2)
4187 {
4188 const cksum_record_t *l = (cksum_record_t *)x1;
4189 const cksum_record_t *r = (cksum_record_t *)x2;
4190 int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4191 int difference = 0;
4192
4193 for (int i = 0; i < arraysize; i++) {
4194 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4195 if (difference)
4196 break;
4197 }
4198
4199 return (difference);
4200 }
4201
4202 static cksum_record_t *
4203 cksum_record_alloc(zio_cksum_t *cksum, int l)
4204 {
4205 cksum_record_t *rec;
4206
4207 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4208 rec->cksum = *cksum;
4209 rec->labels[l] = B_TRUE;
4210
4211 return (rec);
4212 }
4213
4214 static cksum_record_t *
4215 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4216 {
4217 cksum_record_t lookup = { .cksum = *cksum };
4218 avl_index_t where;
4219
4220 return (avl_find(tree, &lookup, &where));
4221 }
4222
4223 static cksum_record_t *
4224 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4225 {
4226 cksum_record_t *rec;
4227
4228 rec = cksum_record_lookup(tree, cksum);
4229 if (rec) {
4230 rec->labels[l] = B_TRUE;
4231 } else {
4232 rec = cksum_record_alloc(cksum, l);
4233 avl_add(tree, rec);
4234 }
4235
4236 return (rec);
4237 }
4238
4239 static int
4240 first_label(cksum_record_t *rec)
4241 {
4242 for (int i = 0; i < VDEV_LABELS; i++)
4243 if (rec->labels[i])
4244 return (i);
4245
4246 return (-1);
4247 }
4248
4249 static void
4250 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4251 {
4252 fputs(prefix, stdout);
4253 for (int i = 0; i < VDEV_LABELS; i++)
4254 if (rec->labels[i] == B_TRUE)
4255 printf("%d ", i);
4256 putchar('\n');
4257 }
4258
4259 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4260
4261 typedef struct zdb_label {
4262 vdev_label_t label;
4263 uint64_t label_offset;
4264 nvlist_t *config_nv;
4265 cksum_record_t *config;
4266 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4267 boolean_t header_printed;
4268 boolean_t read_failed;
4269 boolean_t cksum_valid;
4270 } zdb_label_t;
4271
4272 static void
4273 print_label_header(zdb_label_t *label, int l)
4274 {
4275
4276 if (dump_opt['q'])
4277 return;
4278
4279 if (label->header_printed == B_TRUE)
4280 return;
4281
4282 (void) printf("------------------------------------\n");
4283 (void) printf("LABEL %d %s\n", l,
4284 label->cksum_valid ? "" : "(Bad label cksum)");
4285 (void) printf("------------------------------------\n");
4286
4287 label->header_printed = B_TRUE;
4288 }
4289
4290 static void
4291 print_l2arc_header(void)
4292 {
4293 (void) printf("------------------------------------\n");
4294 (void) printf("L2ARC device header\n");
4295 (void) printf("------------------------------------\n");
4296 }
4297
4298 static void
4299 print_l2arc_log_blocks(void)
4300 {
4301 (void) printf("------------------------------------\n");
4302 (void) printf("L2ARC device log blocks\n");
4303 (void) printf("------------------------------------\n");
4304 }
4305
4306 static void
4307 dump_l2arc_log_entries(uint64_t log_entries,
4308 l2arc_log_ent_phys_t *le, uint64_t i)
4309 {
4310 for (int j = 0; j < log_entries; j++) {
4311 dva_t dva = le[j].le_dva;
4312 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4313 "vdev: %llu, offset: %llu\n",
4314 (u_longlong_t)i, j + 1,
4315 (u_longlong_t)DVA_GET_ASIZE(&dva),
4316 (u_longlong_t)DVA_GET_VDEV(&dva),
4317 (u_longlong_t)DVA_GET_OFFSET(&dva));
4318 (void) printf("|\t\t\t\tbirth: %llu\n",
4319 (u_longlong_t)le[j].le_birth);
4320 (void) printf("|\t\t\t\tlsize: %llu\n",
4321 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4322 (void) printf("|\t\t\t\tpsize: %llu\n",
4323 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4324 (void) printf("|\t\t\t\tcompr: %llu\n",
4325 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4326 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4327 (u_longlong_t)(&le[j])->le_complevel);
4328 (void) printf("|\t\t\t\ttype: %llu\n",
4329 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4330 (void) printf("|\t\t\t\tprotected: %llu\n",
4331 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4332 (void) printf("|\t\t\t\tprefetch: %llu\n",
4333 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4334 (void) printf("|\t\t\t\taddress: %llu\n",
4335 (u_longlong_t)le[j].le_daddr);
4336 (void) printf("|\t\t\t\tARC state: %llu\n",
4337 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4338 (void) printf("|\n");
4339 }
4340 (void) printf("\n");
4341 }
4342
4343 static void
4344 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4345 {
4346 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4347 (void) printf("|\t\tpayload_asize: %llu\n",
4348 (u_longlong_t)lbps->lbp_payload_asize);
4349 (void) printf("|\t\tpayload_start: %llu\n",
4350 (u_longlong_t)lbps->lbp_payload_start);
4351 (void) printf("|\t\tlsize: %llu\n",
4352 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4353 (void) printf("|\t\tasize: %llu\n",
4354 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4355 (void) printf("|\t\tcompralgo: %llu\n",
4356 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4357 (void) printf("|\t\tcksumalgo: %llu\n",
4358 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4359 (void) printf("|\n\n");
4360 }
4361
4362 static void
4363 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4364 l2arc_dev_hdr_phys_t *rebuild)
4365 {
4366 l2arc_log_blk_phys_t this_lb;
4367 uint64_t asize;
4368 l2arc_log_blkptr_t lbps[2];
4369 abd_t *abd;
4370 zio_cksum_t cksum;
4371 int failed = 0;
4372 l2arc_dev_t dev;
4373
4374 if (!dump_opt['q'])
4375 print_l2arc_log_blocks();
4376 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4377
4378 dev.l2ad_evict = l2dhdr->dh_evict;
4379 dev.l2ad_start = l2dhdr->dh_start;
4380 dev.l2ad_end = l2dhdr->dh_end;
4381
4382 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4383 /* no log blocks to read */
4384 if (!dump_opt['q']) {
4385 (void) printf("No log blocks to read\n");
4386 (void) printf("\n");
4387 }
4388 return;
4389 } else {
4390 dev.l2ad_hand = lbps[0].lbp_daddr +
4391 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4392 }
4393
4394 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4395
4396 for (;;) {
4397 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4398 break;
4399
4400 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4401 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4402 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4403 if (!dump_opt['q']) {
4404 (void) printf("Error while reading next log "
4405 "block\n\n");
4406 }
4407 break;
4408 }
4409
4410 fletcher_4_native_varsize(&this_lb, asize, &cksum);
4411 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4412 failed++;
4413 if (!dump_opt['q']) {
4414 (void) printf("Invalid cksum\n");
4415 dump_l2arc_log_blkptr(&lbps[0]);
4416 }
4417 break;
4418 }
4419
4420 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4421 case ZIO_COMPRESS_OFF:
4422 break;
4423 default:
4424 abd = abd_alloc_for_io(asize, B_TRUE);
4425 abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4426 if (zio_decompress_data(L2BLK_GET_COMPRESS(
4427 (&lbps[0])->lbp_prop), abd, &this_lb,
4428 asize, sizeof (this_lb), NULL) != 0) {
4429 (void) printf("L2ARC block decompression "
4430 "failed\n");
4431 abd_free(abd);
4432 goto out;
4433 }
4434 abd_free(abd);
4435 break;
4436 }
4437
4438 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4439 byteswap_uint64_array(&this_lb, sizeof (this_lb));
4440 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4441 if (!dump_opt['q'])
4442 (void) printf("Invalid log block magic\n\n");
4443 break;
4444 }
4445
4446 rebuild->dh_lb_count++;
4447 rebuild->dh_lb_asize += asize;
4448 if (dump_opt['l'] > 1 && !dump_opt['q']) {
4449 (void) printf("lb[%4llu]\tmagic: %llu\n",
4450 (u_longlong_t)rebuild->dh_lb_count,
4451 (u_longlong_t)this_lb.lb_magic);
4452 dump_l2arc_log_blkptr(&lbps[0]);
4453 }
4454
4455 if (dump_opt['l'] > 2 && !dump_opt['q'])
4456 dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4457 this_lb.lb_entries,
4458 rebuild->dh_lb_count);
4459
4460 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4461 lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4462 !dev.l2ad_first)
4463 break;
4464
4465 lbps[0] = lbps[1];
4466 lbps[1] = this_lb.lb_prev_lbp;
4467 }
4468 out:
4469 if (!dump_opt['q']) {
4470 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4471 (u_longlong_t)rebuild->dh_lb_count);
4472 (void) printf("\t\t %d with invalid cksum\n", failed);
4473 (void) printf("log_blk_asize:\t %llu\n\n",
4474 (u_longlong_t)rebuild->dh_lb_asize);
4475 }
4476 }
4477
4478 static int
4479 dump_l2arc_header(int fd)
4480 {
4481 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4482 int error = B_FALSE;
4483
4484 if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4485 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4486 error = B_TRUE;
4487 } else {
4488 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4489 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4490
4491 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4492 error = B_TRUE;
4493 }
4494
4495 if (error) {
4496 (void) printf("L2ARC device header not found\n\n");
4497 /* Do not return an error here for backward compatibility */
4498 return (0);
4499 } else if (!dump_opt['q']) {
4500 print_l2arc_header();
4501
4502 (void) printf(" magic: %llu\n",
4503 (u_longlong_t)l2dhdr.dh_magic);
4504 (void) printf(" version: %llu\n",
4505 (u_longlong_t)l2dhdr.dh_version);
4506 (void) printf(" pool_guid: %llu\n",
4507 (u_longlong_t)l2dhdr.dh_spa_guid);
4508 (void) printf(" flags: %llu\n",
4509 (u_longlong_t)l2dhdr.dh_flags);
4510 (void) printf(" start_lbps[0]: %llu\n",
4511 (u_longlong_t)
4512 l2dhdr.dh_start_lbps[0].lbp_daddr);
4513 (void) printf(" start_lbps[1]: %llu\n",
4514 (u_longlong_t)
4515 l2dhdr.dh_start_lbps[1].lbp_daddr);
4516 (void) printf(" log_blk_ent: %llu\n",
4517 (u_longlong_t)l2dhdr.dh_log_entries);
4518 (void) printf(" start: %llu\n",
4519 (u_longlong_t)l2dhdr.dh_start);
4520 (void) printf(" end: %llu\n",
4521 (u_longlong_t)l2dhdr.dh_end);
4522 (void) printf(" evict: %llu\n",
4523 (u_longlong_t)l2dhdr.dh_evict);
4524 (void) printf(" lb_asize_refcount: %llu\n",
4525 (u_longlong_t)l2dhdr.dh_lb_asize);
4526 (void) printf(" lb_count_refcount: %llu\n",
4527 (u_longlong_t)l2dhdr.dh_lb_count);
4528 (void) printf(" trim_action_time: %llu\n",
4529 (u_longlong_t)l2dhdr.dh_trim_action_time);
4530 (void) printf(" trim_state: %llu\n\n",
4531 (u_longlong_t)l2dhdr.dh_trim_state);
4532 }
4533
4534 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4535 /*
4536 * The total aligned size of log blocks and the number of log blocks
4537 * reported in the header of the device may be less than what zdb
4538 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4539 * This happens because dump_l2arc_log_blocks() lacks the memory
4540 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4541 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4542 * and dh_lb_count will be lower to begin with than what exists on the
4543 * device. This is normal and zdb should not exit with an error. The
4544 * opposite case should never happen though, the values reported in the
4545 * header should never be higher than what dump_l2arc_log_blocks() and
4546 * l2arc_rebuild() report. If this happens there is a leak in the
4547 * accounting of log blocks.
4548 */
4549 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4550 l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4551 return (1);
4552
4553 return (0);
4554 }
4555
4556 static void
4557 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4558 {
4559 if (dump_opt['q'])
4560 return;
4561
4562 if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4563 return;
4564
4565 print_label_header(label, l);
4566 dump_nvlist(label->config_nv, 4);
4567 print_label_numbers(" labels = ", label->config);
4568
4569 if (dump_opt['l'] >= 2)
4570 dump_nvlist_stats(label->config_nv, buflen);
4571 }
4572
4573 #define ZDB_MAX_UB_HEADER_SIZE 32
4574
4575 static void
4576 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4577 {
4578
4579 vdev_t vd;
4580 char header[ZDB_MAX_UB_HEADER_SIZE];
4581
4582 vd.vdev_ashift = ashift;
4583 vd.vdev_top = &vd;
4584
4585 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4586 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4587 uberblock_t *ub = (void *)((char *)&label->label + uoff);
4588 cksum_record_t *rec = label->uberblocks[i];
4589
4590 if (rec == NULL) {
4591 if (dump_opt['u'] >= 2) {
4592 print_label_header(label, label_num);
4593 (void) printf(" Uberblock[%d] invalid\n", i);
4594 }
4595 continue;
4596 }
4597
4598 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4599 continue;
4600
4601 if ((dump_opt['u'] < 4) &&
4602 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4603 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4604 continue;
4605
4606 print_label_header(label, label_num);
4607 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4608 " Uberblock[%d]\n", i);
4609 dump_uberblock(ub, header, "");
4610 print_label_numbers(" labels = ", rec);
4611 }
4612 }
4613
4614 static char curpath[PATH_MAX];
4615
4616 /*
4617 * Iterate through the path components, recursively passing
4618 * current one's obj and remaining path until we find the obj
4619 * for the last one.
4620 */
4621 static int
4622 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4623 {
4624 int err;
4625 boolean_t header = B_TRUE;
4626 uint64_t child_obj;
4627 char *s;
4628 dmu_buf_t *db;
4629 dmu_object_info_t doi;
4630
4631 if ((s = strchr(name, '/')) != NULL)
4632 *s = '\0';
4633 err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4634
4635 (void) strlcat(curpath, name, sizeof (curpath));
4636
4637 if (err != 0) {
4638 (void) fprintf(stderr, "failed to lookup %s: %s\n",
4639 curpath, strerror(err));
4640 return (err);
4641 }
4642
4643 child_obj = ZFS_DIRENT_OBJ(child_obj);
4644 err = sa_buf_hold(os, child_obj, FTAG, &db);
4645 if (err != 0) {
4646 (void) fprintf(stderr,
4647 "failed to get SA dbuf for obj %llu: %s\n",
4648 (u_longlong_t)child_obj, strerror(err));
4649 return (EINVAL);
4650 }
4651 dmu_object_info_from_db(db, &doi);
4652 sa_buf_rele(db, FTAG);
4653
4654 if (doi.doi_bonus_type != DMU_OT_SA &&
4655 doi.doi_bonus_type != DMU_OT_ZNODE) {
4656 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4657 doi.doi_bonus_type, (u_longlong_t)child_obj);
4658 return (EINVAL);
4659 }
4660
4661 if (dump_opt['v'] > 6) {
4662 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
4663 (u_longlong_t)child_obj, curpath, doi.doi_type,
4664 doi.doi_bonus_type);
4665 }
4666
4667 (void) strlcat(curpath, "/", sizeof (curpath));
4668
4669 switch (doi.doi_type) {
4670 case DMU_OT_DIRECTORY_CONTENTS:
4671 if (s != NULL && *(s + 1) != '\0')
4672 return (dump_path_impl(os, child_obj, s + 1, retobj));
4673 zfs_fallthrough;
4674 case DMU_OT_PLAIN_FILE_CONTENTS:
4675 if (retobj != NULL) {
4676 *retobj = child_obj;
4677 } else {
4678 dump_object(os, child_obj, dump_opt['v'], &header,
4679 NULL, 0);
4680 }
4681 return (0);
4682 default:
4683 (void) fprintf(stderr, "object %llu has non-file/directory "
4684 "type %d\n", (u_longlong_t)obj, doi.doi_type);
4685 break;
4686 }
4687
4688 return (EINVAL);
4689 }
4690
4691 /*
4692 * Dump the blocks for the object specified by path inside the dataset.
4693 */
4694 static int
4695 dump_path(char *ds, char *path, uint64_t *retobj)
4696 {
4697 int err;
4698 objset_t *os;
4699 uint64_t root_obj;
4700
4701 err = open_objset(ds, FTAG, &os);
4702 if (err != 0)
4703 return (err);
4704
4705 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
4706 if (err != 0) {
4707 (void) fprintf(stderr, "can't lookup root znode: %s\n",
4708 strerror(err));
4709 close_objset(os, FTAG);
4710 return (EINVAL);
4711 }
4712
4713 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
4714
4715 err = dump_path_impl(os, root_obj, path, retobj);
4716
4717 close_objset(os, FTAG);
4718 return (err);
4719 }
4720
4721 static int
4722 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
4723 {
4724 int err = 0;
4725 uint64_t size, readsize, oursize, offset;
4726 ssize_t writesize;
4727 sa_handle_t *hdl;
4728
4729 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
4730 destfile);
4731
4732 VERIFY3P(os, ==, sa_os);
4733 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
4734 (void) printf("Failed to get handle for SA znode\n");
4735 return (err);
4736 }
4737 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
4738 (void) sa_handle_destroy(hdl);
4739 return (err);
4740 }
4741 (void) sa_handle_destroy(hdl);
4742
4743 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
4744 size);
4745 if (size == 0) {
4746 return (EINVAL);
4747 }
4748
4749 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
4750 if (fd == -1)
4751 return (errno);
4752 /*
4753 * We cap the size at 1 mebibyte here to prevent
4754 * allocation failures and nigh-infinite printing if the
4755 * object is extremely large.
4756 */
4757 oursize = MIN(size, 1 << 20);
4758 offset = 0;
4759 char *buf = kmem_alloc(oursize, KM_NOSLEEP);
4760 if (buf == NULL) {
4761 (void) close(fd);
4762 return (ENOMEM);
4763 }
4764
4765 while (offset < size) {
4766 readsize = MIN(size - offset, 1 << 20);
4767 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
4768 if (err != 0) {
4769 (void) printf("got error %u from dmu_read\n", err);
4770 kmem_free(buf, oursize);
4771 (void) close(fd);
4772 return (err);
4773 }
4774 if (dump_opt['v'] > 3) {
4775 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
4776 " error=%d\n", offset, readsize, err);
4777 }
4778
4779 writesize = write(fd, buf, readsize);
4780 if (writesize < 0) {
4781 err = errno;
4782 break;
4783 } else if (writesize != readsize) {
4784 /* Incomplete write */
4785 (void) fprintf(stderr, "Short write, only wrote %llu of"
4786 " %" PRIu64 " bytes, exiting...\n",
4787 (u_longlong_t)writesize, readsize);
4788 break;
4789 }
4790
4791 offset += readsize;
4792 }
4793
4794 (void) close(fd);
4795
4796 if (buf != NULL)
4797 kmem_free(buf, oursize);
4798
4799 return (err);
4800 }
4801
4802 static boolean_t
4803 label_cksum_valid(vdev_label_t *label, uint64_t offset)
4804 {
4805 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
4806 zio_cksum_t expected_cksum;
4807 zio_cksum_t actual_cksum;
4808 zio_cksum_t verifier;
4809 zio_eck_t *eck;
4810 int byteswap;
4811
4812 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
4813 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
4814
4815 offset += offsetof(vdev_label_t, vl_vdev_phys);
4816 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
4817
4818 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
4819 if (byteswap)
4820 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
4821
4822 expected_cksum = eck->zec_cksum;
4823 eck->zec_cksum = verifier;
4824
4825 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
4826 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
4827 abd_free(abd);
4828
4829 if (byteswap)
4830 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
4831
4832 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
4833 return (B_TRUE);
4834
4835 return (B_FALSE);
4836 }
4837
4838 static int
4839 dump_label(const char *dev)
4840 {
4841 char path[MAXPATHLEN];
4842 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
4843 uint64_t psize, ashift, l2cache;
4844 struct stat64 statbuf;
4845 boolean_t config_found = B_FALSE;
4846 boolean_t error = B_FALSE;
4847 boolean_t read_l2arc_header = B_FALSE;
4848 avl_tree_t config_tree;
4849 avl_tree_t uberblock_tree;
4850 void *node, *cookie;
4851 int fd;
4852
4853 /*
4854 * Check if we were given absolute path and use it as is.
4855 * Otherwise if the provided vdev name doesn't point to a file,
4856 * try prepending expected disk paths and partition numbers.
4857 */
4858 (void) strlcpy(path, dev, sizeof (path));
4859 if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
4860 int error;
4861
4862 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
4863 if (error == 0 && zfs_dev_is_whole_disk(path)) {
4864 if (zfs_append_partition(path, MAXPATHLEN) == -1)
4865 error = ENOENT;
4866 }
4867
4868 if (error || (stat64(path, &statbuf) != 0)) {
4869 (void) printf("failed to find device %s, try "
4870 "specifying absolute path instead\n", dev);
4871 return (1);
4872 }
4873 }
4874
4875 if ((fd = open64(path, O_RDONLY)) < 0) {
4876 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
4877 exit(1);
4878 }
4879
4880 if (fstat64_blk(fd, &statbuf) != 0) {
4881 (void) printf("failed to stat '%s': %s\n", path,
4882 strerror(errno));
4883 (void) close(fd);
4884 exit(1);
4885 }
4886
4887 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
4888 (void) printf("failed to invalidate cache '%s' : %s\n", path,
4889 strerror(errno));
4890
4891 avl_create(&config_tree, cksum_record_compare,
4892 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
4893 avl_create(&uberblock_tree, cksum_record_compare,
4894 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
4895
4896 psize = statbuf.st_size;
4897 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
4898 ashift = SPA_MINBLOCKSHIFT;
4899
4900 /*
4901 * 1. Read the label from disk
4902 * 2. Verify label cksum
4903 * 3. Unpack the configuration and insert in config tree.
4904 * 4. Traverse all uberblocks and insert in uberblock tree.
4905 */
4906 for (int l = 0; l < VDEV_LABELS; l++) {
4907 zdb_label_t *label = &labels[l];
4908 char *buf = label->label.vl_vdev_phys.vp_nvlist;
4909 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
4910 nvlist_t *config;
4911 cksum_record_t *rec;
4912 zio_cksum_t cksum;
4913 vdev_t vd;
4914
4915 label->label_offset = vdev_label_offset(psize, l, 0);
4916
4917 if (pread64(fd, &label->label, sizeof (label->label),
4918 label->label_offset) != sizeof (label->label)) {
4919 if (!dump_opt['q'])
4920 (void) printf("failed to read label %d\n", l);
4921 label->read_failed = B_TRUE;
4922 error = B_TRUE;
4923 continue;
4924 }
4925
4926 label->read_failed = B_FALSE;
4927 label->cksum_valid = label_cksum_valid(&label->label,
4928 label->label_offset);
4929
4930 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
4931 nvlist_t *vdev_tree = NULL;
4932 size_t size;
4933
4934 if ((nvlist_lookup_nvlist(config,
4935 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
4936 (nvlist_lookup_uint64(vdev_tree,
4937 ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
4938 ashift = SPA_MINBLOCKSHIFT;
4939
4940 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
4941 size = buflen;
4942
4943 /* If the device is a cache device clear the header. */
4944 if (!read_l2arc_header) {
4945 if (nvlist_lookup_uint64(config,
4946 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
4947 l2cache == POOL_STATE_L2CACHE) {
4948 read_l2arc_header = B_TRUE;
4949 }
4950 }
4951
4952 fletcher_4_native_varsize(buf, size, &cksum);
4953 rec = cksum_record_insert(&config_tree, &cksum, l);
4954
4955 label->config = rec;
4956 label->config_nv = config;
4957 config_found = B_TRUE;
4958 } else {
4959 error = B_TRUE;
4960 }
4961
4962 vd.vdev_ashift = ashift;
4963 vd.vdev_top = &vd;
4964
4965 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4966 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4967 uberblock_t *ub = (void *)((char *)label + uoff);
4968
4969 if (uberblock_verify(ub))
4970 continue;
4971
4972 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
4973 rec = cksum_record_insert(&uberblock_tree, &cksum, l);
4974
4975 label->uberblocks[i] = rec;
4976 }
4977 }
4978
4979 /*
4980 * Dump the label and uberblocks.
4981 */
4982 for (int l = 0; l < VDEV_LABELS; l++) {
4983 zdb_label_t *label = &labels[l];
4984 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
4985
4986 if (label->read_failed == B_TRUE)
4987 continue;
4988
4989 if (label->config_nv) {
4990 dump_config_from_label(label, buflen, l);
4991 } else {
4992 if (!dump_opt['q'])
4993 (void) printf("failed to unpack label %d\n", l);
4994 }
4995
4996 if (dump_opt['u'])
4997 dump_label_uberblocks(label, ashift, l);
4998
4999 nvlist_free(label->config_nv);
5000 }
5001
5002 /*
5003 * Dump the L2ARC header, if existent.
5004 */
5005 if (read_l2arc_header)
5006 error |= dump_l2arc_header(fd);
5007
5008 cookie = NULL;
5009 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5010 umem_free(node, sizeof (cksum_record_t));
5011
5012 cookie = NULL;
5013 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5014 umem_free(node, sizeof (cksum_record_t));
5015
5016 avl_destroy(&config_tree);
5017 avl_destroy(&uberblock_tree);
5018
5019 (void) close(fd);
5020
5021 return (config_found == B_FALSE ? 2 :
5022 (error == B_TRUE ? 1 : 0));
5023 }
5024
5025 static uint64_t dataset_feature_count[SPA_FEATURES];
5026 static uint64_t global_feature_count[SPA_FEATURES];
5027 static uint64_t remap_deadlist_count = 0;
5028
5029 static int
5030 dump_one_objset(const char *dsname, void *arg)
5031 {
5032 (void) arg;
5033 int error;
5034 objset_t *os;
5035 spa_feature_t f;
5036
5037 error = open_objset(dsname, FTAG, &os);
5038 if (error != 0)
5039 return (0);
5040
5041 for (f = 0; f < SPA_FEATURES; f++) {
5042 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5043 continue;
5044 ASSERT(spa_feature_table[f].fi_flags &
5045 ZFEATURE_FLAG_PER_DATASET);
5046 dataset_feature_count[f]++;
5047 }
5048
5049 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5050 remap_deadlist_count++;
5051 }
5052
5053 for (dsl_bookmark_node_t *dbn =
5054 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5055 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5056 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5057 if (dbn->dbn_phys.zbm_redaction_obj != 0)
5058 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++;
5059 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5060 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5061 }
5062
5063 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5064 !dmu_objset_is_snapshot(os)) {
5065 global_feature_count[SPA_FEATURE_LIVELIST]++;
5066 }
5067
5068 dump_objset(os);
5069 close_objset(os, FTAG);
5070 fuid_table_destroy();
5071 return (0);
5072 }
5073
5074 /*
5075 * Block statistics.
5076 */
5077 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5078 typedef struct zdb_blkstats {
5079 uint64_t zb_asize;
5080 uint64_t zb_lsize;
5081 uint64_t zb_psize;
5082 uint64_t zb_count;
5083 uint64_t zb_gangs;
5084 uint64_t zb_ditto_samevdev;
5085 uint64_t zb_ditto_same_ms;
5086 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5087 } zdb_blkstats_t;
5088
5089 /*
5090 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5091 */
5092 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5093 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5094 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5095 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5096
5097 static const char *zdb_ot_extname[] = {
5098 "deferred free",
5099 "dedup ditto",
5100 "other",
5101 "Total",
5102 };
5103
5104 #define ZB_TOTAL DN_MAX_LEVELS
5105 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5106
5107 typedef struct zdb_cb {
5108 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5109 uint64_t zcb_removing_size;
5110 uint64_t zcb_checkpoint_size;
5111 uint64_t zcb_dedup_asize;
5112 uint64_t zcb_dedup_blocks;
5113 uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5114 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5115 uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5116 uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5117 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5118 uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5119 uint64_t zcb_psize_total;
5120 uint64_t zcb_lsize_total;
5121 uint64_t zcb_asize_total;
5122 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5123 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5124 [BPE_PAYLOAD_SIZE + 1];
5125 uint64_t zcb_start;
5126 hrtime_t zcb_lastprint;
5127 uint64_t zcb_totalasize;
5128 uint64_t zcb_errors[256];
5129 int zcb_readfails;
5130 int zcb_haderrors;
5131 spa_t *zcb_spa;
5132 uint32_t **zcb_vd_obsolete_counts;
5133 } zdb_cb_t;
5134
5135 /* test if two DVA offsets from same vdev are within the same metaslab */
5136 static boolean_t
5137 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5138 {
5139 vdev_t *vd = vdev_lookup_top(spa, vdev);
5140 uint64_t ms_shift = vd->vdev_ms_shift;
5141
5142 return ((off1 >> ms_shift) == (off2 >> ms_shift));
5143 }
5144
5145 /*
5146 * Used to simplify reporting of the histogram data.
5147 */
5148 typedef struct one_histo {
5149 const char *name;
5150 uint64_t *count;
5151 uint64_t *len;
5152 uint64_t cumulative;
5153 } one_histo_t;
5154
5155 /*
5156 * The number of separate histograms processed for psize, lsize and asize.
5157 */
5158 #define NUM_HISTO 3
5159
5160 /*
5161 * This routine will create a fixed column size output of three different
5162 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5163 * the count, length and cumulative length of the psize, lsize and
5164 * asize blocks.
5165 *
5166 * All three types of blocks are listed on a single line
5167 *
5168 * By default the table is printed in nicenumber format (e.g. 123K) but
5169 * if the '-P' parameter is specified then the full raw number (parseable)
5170 * is printed out.
5171 */
5172 static void
5173 dump_size_histograms(zdb_cb_t *zcb)
5174 {
5175 /*
5176 * A temporary buffer that allows us to convert a number into
5177 * a string using zdb_nicenumber to allow either raw or human
5178 * readable numbers to be output.
5179 */
5180 char numbuf[32];
5181
5182 /*
5183 * Define titles which are used in the headers of the tables
5184 * printed by this routine.
5185 */
5186 const char blocksize_title1[] = "block";
5187 const char blocksize_title2[] = "size";
5188 const char count_title[] = "Count";
5189 const char length_title[] = "Size";
5190 const char cumulative_title[] = "Cum.";
5191
5192 /*
5193 * Setup the histogram arrays (psize, lsize, and asize).
5194 */
5195 one_histo_t parm_histo[NUM_HISTO];
5196
5197 parm_histo[0].name = "psize";
5198 parm_histo[0].count = zcb->zcb_psize_count;
5199 parm_histo[0].len = zcb->zcb_psize_len;
5200 parm_histo[0].cumulative = 0;
5201
5202 parm_histo[1].name = "lsize";
5203 parm_histo[1].count = zcb->zcb_lsize_count;
5204 parm_histo[1].len = zcb->zcb_lsize_len;
5205 parm_histo[1].cumulative = 0;
5206
5207 parm_histo[2].name = "asize";
5208 parm_histo[2].count = zcb->zcb_asize_count;
5209 parm_histo[2].len = zcb->zcb_asize_len;
5210 parm_histo[2].cumulative = 0;
5211
5212
5213 (void) printf("\nBlock Size Histogram\n");
5214 /*
5215 * Print the first line titles
5216 */
5217 if (dump_opt['P'])
5218 (void) printf("\n%s\t", blocksize_title1);
5219 else
5220 (void) printf("\n%7s ", blocksize_title1);
5221
5222 for (int j = 0; j < NUM_HISTO; j++) {
5223 if (dump_opt['P']) {
5224 if (j < NUM_HISTO - 1) {
5225 (void) printf("%s\t\t\t", parm_histo[j].name);
5226 } else {
5227 /* Don't print trailing spaces */
5228 (void) printf(" %s", parm_histo[j].name);
5229 }
5230 } else {
5231 if (j < NUM_HISTO - 1) {
5232 /* Left aligned strings in the output */
5233 (void) printf("%-7s ",
5234 parm_histo[j].name);
5235 } else {
5236 /* Don't print trailing spaces */
5237 (void) printf("%s", parm_histo[j].name);
5238 }
5239 }
5240 }
5241 (void) printf("\n");
5242
5243 /*
5244 * Print the second line titles
5245 */
5246 if (dump_opt['P']) {
5247 (void) printf("%s\t", blocksize_title2);
5248 } else {
5249 (void) printf("%7s ", blocksize_title2);
5250 }
5251
5252 for (int i = 0; i < NUM_HISTO; i++) {
5253 if (dump_opt['P']) {
5254 (void) printf("%s\t%s\t%s\t",
5255 count_title, length_title, cumulative_title);
5256 } else {
5257 (void) printf("%7s%7s%7s",
5258 count_title, length_title, cumulative_title);
5259 }
5260 }
5261 (void) printf("\n");
5262
5263 /*
5264 * Print the rows
5265 */
5266 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5267
5268 /*
5269 * Print the first column showing the blocksize
5270 */
5271 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5272
5273 if (dump_opt['P']) {
5274 printf("%s", numbuf);
5275 } else {
5276 printf("%7s:", numbuf);
5277 }
5278
5279 /*
5280 * Print the remaining set of 3 columns per size:
5281 * for psize, lsize and asize
5282 */
5283 for (int j = 0; j < NUM_HISTO; j++) {
5284 parm_histo[j].cumulative += parm_histo[j].len[i];
5285
5286 zdb_nicenum(parm_histo[j].count[i],
5287 numbuf, sizeof (numbuf));
5288 if (dump_opt['P'])
5289 (void) printf("\t%s", numbuf);
5290 else
5291 (void) printf("%7s", numbuf);
5292
5293 zdb_nicenum(parm_histo[j].len[i],
5294 numbuf, sizeof (numbuf));
5295 if (dump_opt['P'])
5296 (void) printf("\t%s", numbuf);
5297 else
5298 (void) printf("%7s", numbuf);
5299
5300 zdb_nicenum(parm_histo[j].cumulative,
5301 numbuf, sizeof (numbuf));
5302 if (dump_opt['P'])
5303 (void) printf("\t%s", numbuf);
5304 else
5305 (void) printf("%7s", numbuf);
5306 }
5307 (void) printf("\n");
5308 }
5309 }
5310
5311 static void
5312 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5313 dmu_object_type_t type)
5314 {
5315 uint64_t refcnt = 0;
5316 int i;
5317
5318 ASSERT(type < ZDB_OT_TOTAL);
5319
5320 if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5321 return;
5322
5323 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5324
5325 for (i = 0; i < 4; i++) {
5326 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5327 int t = (i & 1) ? type : ZDB_OT_TOTAL;
5328 int equal;
5329 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5330
5331 zb->zb_asize += BP_GET_ASIZE(bp);
5332 zb->zb_lsize += BP_GET_LSIZE(bp);
5333 zb->zb_psize += BP_GET_PSIZE(bp);
5334 zb->zb_count++;
5335
5336 /*
5337 * The histogram is only big enough to record blocks up to
5338 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5339 * "other", bucket.
5340 */
5341 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5342 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5343 zb->zb_psize_histogram[idx]++;
5344
5345 zb->zb_gangs += BP_COUNT_GANG(bp);
5346
5347 switch (BP_GET_NDVAS(bp)) {
5348 case 2:
5349 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5350 DVA_GET_VDEV(&bp->blk_dva[1])) {
5351 zb->zb_ditto_samevdev++;
5352
5353 if (same_metaslab(zcb->zcb_spa,
5354 DVA_GET_VDEV(&bp->blk_dva[0]),
5355 DVA_GET_OFFSET(&bp->blk_dva[0]),
5356 DVA_GET_OFFSET(&bp->blk_dva[1])))
5357 zb->zb_ditto_same_ms++;
5358 }
5359 break;
5360 case 3:
5361 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5362 DVA_GET_VDEV(&bp->blk_dva[1])) +
5363 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5364 DVA_GET_VDEV(&bp->blk_dva[2])) +
5365 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5366 DVA_GET_VDEV(&bp->blk_dva[2]));
5367 if (equal != 0) {
5368 zb->zb_ditto_samevdev++;
5369
5370 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5371 DVA_GET_VDEV(&bp->blk_dva[1]) &&
5372 same_metaslab(zcb->zcb_spa,
5373 DVA_GET_VDEV(&bp->blk_dva[0]),
5374 DVA_GET_OFFSET(&bp->blk_dva[0]),
5375 DVA_GET_OFFSET(&bp->blk_dva[1])))
5376 zb->zb_ditto_same_ms++;
5377 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5378 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5379 same_metaslab(zcb->zcb_spa,
5380 DVA_GET_VDEV(&bp->blk_dva[0]),
5381 DVA_GET_OFFSET(&bp->blk_dva[0]),
5382 DVA_GET_OFFSET(&bp->blk_dva[2])))
5383 zb->zb_ditto_same_ms++;
5384 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5385 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5386 same_metaslab(zcb->zcb_spa,
5387 DVA_GET_VDEV(&bp->blk_dva[1]),
5388 DVA_GET_OFFSET(&bp->blk_dva[1]),
5389 DVA_GET_OFFSET(&bp->blk_dva[2])))
5390 zb->zb_ditto_same_ms++;
5391 }
5392 break;
5393 }
5394 }
5395
5396 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5397
5398 if (BP_IS_EMBEDDED(bp)) {
5399 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5400 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5401 [BPE_GET_PSIZE(bp)]++;
5402 return;
5403 }
5404 /*
5405 * The binning histogram bins by powers of two up to
5406 * SPA_MAXBLOCKSIZE rather than creating bins for
5407 * every possible blocksize found in the pool.
5408 */
5409 int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5410
5411 zcb->zcb_psize_count[bin]++;
5412 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5413 zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5414
5415 bin = highbit64(BP_GET_LSIZE(bp)) - 1;
5416
5417 zcb->zcb_lsize_count[bin]++;
5418 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
5419 zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
5420
5421 bin = highbit64(BP_GET_ASIZE(bp)) - 1;
5422
5423 zcb->zcb_asize_count[bin]++;
5424 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
5425 zcb->zcb_asize_total += BP_GET_ASIZE(bp);
5426
5427 if (dump_opt['L'])
5428 return;
5429
5430 if (BP_GET_DEDUP(bp)) {
5431 ddt_t *ddt;
5432 ddt_entry_t *dde;
5433
5434 ddt = ddt_select(zcb->zcb_spa, bp);
5435 ddt_enter(ddt);
5436 dde = ddt_lookup(ddt, bp, B_FALSE);
5437
5438 if (dde == NULL) {
5439 refcnt = 0;
5440 } else {
5441 ddt_phys_t *ddp = ddt_phys_select(dde, bp);
5442 ddt_phys_decref(ddp);
5443 refcnt = ddp->ddp_refcnt;
5444 if (ddt_phys_total_refcnt(dde) == 0)
5445 ddt_remove(ddt, dde);
5446 }
5447 ddt_exit(ddt);
5448 }
5449
5450 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
5451 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
5452 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
5453 }
5454
5455 static void
5456 zdb_blkptr_done(zio_t *zio)
5457 {
5458 spa_t *spa = zio->io_spa;
5459 blkptr_t *bp = zio->io_bp;
5460 int ioerr = zio->io_error;
5461 zdb_cb_t *zcb = zio->io_private;
5462 zbookmark_phys_t *zb = &zio->io_bookmark;
5463
5464 mutex_enter(&spa->spa_scrub_lock);
5465 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
5466 cv_broadcast(&spa->spa_scrub_io_cv);
5467
5468 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5469 char blkbuf[BP_SPRINTF_LEN];
5470
5471 zcb->zcb_haderrors = 1;
5472 zcb->zcb_errors[ioerr]++;
5473
5474 if (dump_opt['b'] >= 2)
5475 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5476 else
5477 blkbuf[0] = '\0';
5478
5479 (void) printf("zdb_blkptr_cb: "
5480 "Got error %d reading "
5481 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
5482 ioerr,
5483 (u_longlong_t)zb->zb_objset,
5484 (u_longlong_t)zb->zb_object,
5485 (u_longlong_t)zb->zb_level,
5486 (u_longlong_t)zb->zb_blkid,
5487 blkbuf);
5488 }
5489 mutex_exit(&spa->spa_scrub_lock);
5490
5491 abd_free(zio->io_abd);
5492 }
5493
5494 static int
5495 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
5496 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
5497 {
5498 zdb_cb_t *zcb = arg;
5499 dmu_object_type_t type;
5500 boolean_t is_metadata;
5501
5502 if (zb->zb_level == ZB_DNODE_LEVEL)
5503 return (0);
5504
5505 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
5506 char blkbuf[BP_SPRINTF_LEN];
5507 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5508 (void) printf("objset %llu object %llu "
5509 "level %lld offset 0x%llx %s\n",
5510 (u_longlong_t)zb->zb_objset,
5511 (u_longlong_t)zb->zb_object,
5512 (longlong_t)zb->zb_level,
5513 (u_longlong_t)blkid2offset(dnp, bp, zb),
5514 blkbuf);
5515 }
5516
5517 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
5518 return (0);
5519
5520 type = BP_GET_TYPE(bp);
5521
5522 zdb_count_block(zcb, zilog, bp,
5523 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
5524
5525 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
5526
5527 if (!BP_IS_EMBEDDED(bp) &&
5528 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
5529 size_t size = BP_GET_PSIZE(bp);
5530 abd_t *abd = abd_alloc(size, B_FALSE);
5531 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
5532
5533 /* If it's an intent log block, failure is expected. */
5534 if (zb->zb_level == ZB_ZIL_LEVEL)
5535 flags |= ZIO_FLAG_SPECULATIVE;
5536
5537 mutex_enter(&spa->spa_scrub_lock);
5538 while (spa->spa_load_verify_bytes > max_inflight_bytes)
5539 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5540 spa->spa_load_verify_bytes += size;
5541 mutex_exit(&spa->spa_scrub_lock);
5542
5543 zio_nowait(zio_read(NULL, spa, bp, abd, size,
5544 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
5545 }
5546
5547 zcb->zcb_readfails = 0;
5548
5549 /* only call gethrtime() every 100 blocks */
5550 static int iters;
5551 if (++iters > 100)
5552 iters = 0;
5553 else
5554 return (0);
5555
5556 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
5557 uint64_t now = gethrtime();
5558 char buf[10];
5559 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
5560 uint64_t kb_per_sec =
5561 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
5562 uint64_t sec_remaining =
5563 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
5564
5565 /* make sure nicenum has enough space */
5566 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
5567
5568 zfs_nicebytes(bytes, buf, sizeof (buf));
5569 (void) fprintf(stderr,
5570 "\r%5s completed (%4"PRIu64"MB/s) "
5571 "estimated time remaining: "
5572 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
5573 buf, kb_per_sec / 1024,
5574 sec_remaining / 60 / 60,
5575 sec_remaining / 60 % 60,
5576 sec_remaining % 60);
5577
5578 zcb->zcb_lastprint = now;
5579 }
5580
5581 return (0);
5582 }
5583
5584 static void
5585 zdb_leak(void *arg, uint64_t start, uint64_t size)
5586 {
5587 vdev_t *vd = arg;
5588
5589 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
5590 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
5591 }
5592
5593 static metaslab_ops_t zdb_metaslab_ops = {
5594 NULL /* alloc */
5595 };
5596
5597 static int
5598 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
5599 uint64_t txg, void *arg)
5600 {
5601 spa_vdev_removal_t *svr = arg;
5602
5603 uint64_t offset = sme->sme_offset;
5604 uint64_t size = sme->sme_run;
5605
5606 /* skip vdevs we don't care about */
5607 if (sme->sme_vdev != svr->svr_vdev_id)
5608 return (0);
5609
5610 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
5611 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5612 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5613
5614 if (txg < metaslab_unflushed_txg(ms))
5615 return (0);
5616
5617 if (sme->sme_type == SM_ALLOC)
5618 range_tree_add(svr->svr_allocd_segs, offset, size);
5619 else
5620 range_tree_remove(svr->svr_allocd_segs, offset, size);
5621
5622 return (0);
5623 }
5624
5625 static void
5626 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5627 uint64_t size, void *arg)
5628 {
5629 (void) inner_offset, (void) arg;
5630
5631 /*
5632 * This callback was called through a remap from
5633 * a device being removed. Therefore, the vdev that
5634 * this callback is applied to is a concrete
5635 * vdev.
5636 */
5637 ASSERT(vdev_is_concrete(vd));
5638
5639 VERIFY0(metaslab_claim_impl(vd, offset, size,
5640 spa_min_claim_txg(vd->vdev_spa)));
5641 }
5642
5643 static void
5644 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
5645 {
5646 vdev_t *vd = arg;
5647
5648 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
5649 claim_segment_impl_cb, NULL);
5650 }
5651
5652 /*
5653 * After accounting for all allocated blocks that are directly referenced,
5654 * we might have missed a reference to a block from a partially complete
5655 * (and thus unused) indirect mapping object. We perform a secondary pass
5656 * through the metaslabs we have already mapped and claim the destination
5657 * blocks.
5658 */
5659 static void
5660 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
5661 {
5662 if (dump_opt['L'])
5663 return;
5664
5665 if (spa->spa_vdev_removal == NULL)
5666 return;
5667
5668 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5669
5670 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
5671 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
5672 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5673
5674 ASSERT0(range_tree_space(svr->svr_allocd_segs));
5675
5676 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
5677 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
5678 metaslab_t *msp = vd->vdev_ms[msi];
5679
5680 ASSERT0(range_tree_space(allocs));
5681 if (msp->ms_sm != NULL)
5682 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
5683 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
5684 }
5685 range_tree_destroy(allocs);
5686
5687 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
5688
5689 /*
5690 * Clear everything past what has been synced,
5691 * because we have not allocated mappings for
5692 * it yet.
5693 */
5694 range_tree_clear(svr->svr_allocd_segs,
5695 vdev_indirect_mapping_max_offset(vim),
5696 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
5697
5698 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
5699 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
5700
5701 spa_config_exit(spa, SCL_CONFIG, FTAG);
5702 }
5703
5704 static int
5705 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
5706 dmu_tx_t *tx)
5707 {
5708 (void) tx;
5709 zdb_cb_t *zcb = arg;
5710 spa_t *spa = zcb->zcb_spa;
5711 vdev_t *vd;
5712 const dva_t *dva = &bp->blk_dva[0];
5713
5714 ASSERT(!bp_freed);
5715 ASSERT(!dump_opt['L']);
5716 ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
5717
5718 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5719 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
5720 ASSERT3P(vd, !=, NULL);
5721 spa_config_exit(spa, SCL_VDEV, FTAG);
5722
5723 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
5724 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
5725
5726 vdev_indirect_mapping_increment_obsolete_count(
5727 vd->vdev_indirect_mapping,
5728 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
5729 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
5730
5731 return (0);
5732 }
5733
5734 static uint32_t *
5735 zdb_load_obsolete_counts(vdev_t *vd)
5736 {
5737 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5738 spa_t *spa = vd->vdev_spa;
5739 spa_condensing_indirect_phys_t *scip =
5740 &spa->spa_condensing_indirect_phys;
5741 uint64_t obsolete_sm_object;
5742 uint32_t *counts;
5743
5744 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
5745 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
5746 counts = vdev_indirect_mapping_load_obsolete_counts(vim);
5747 if (vd->vdev_obsolete_sm != NULL) {
5748 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5749 vd->vdev_obsolete_sm);
5750 }
5751 if (scip->scip_vdev == vd->vdev_id &&
5752 scip->scip_prev_obsolete_sm_object != 0) {
5753 space_map_t *prev_obsolete_sm = NULL;
5754 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
5755 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
5756 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5757 prev_obsolete_sm);
5758 space_map_close(prev_obsolete_sm);
5759 }
5760 return (counts);
5761 }
5762
5763 static void
5764 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
5765 {
5766 ddt_bookmark_t ddb = {0};
5767 ddt_entry_t dde;
5768 int error;
5769 int p;
5770
5771 ASSERT(!dump_opt['L']);
5772
5773 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
5774 blkptr_t blk;
5775 ddt_phys_t *ddp = dde.dde_phys;
5776
5777 if (ddb.ddb_class == DDT_CLASS_UNIQUE)
5778 return;
5779
5780 ASSERT(ddt_phys_total_refcnt(&dde) > 1);
5781
5782 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
5783 if (ddp->ddp_phys_birth == 0)
5784 continue;
5785 ddt_bp_create(ddb.ddb_checksum,
5786 &dde.dde_key, ddp, &blk);
5787 if (p == DDT_PHYS_DITTO) {
5788 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
5789 } else {
5790 zcb->zcb_dedup_asize +=
5791 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
5792 zcb->zcb_dedup_blocks++;
5793 }
5794 }
5795 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
5796 ddt_enter(ddt);
5797 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
5798 ddt_exit(ddt);
5799 }
5800
5801 ASSERT(error == ENOENT);
5802 }
5803
5804 typedef struct checkpoint_sm_exclude_entry_arg {
5805 vdev_t *cseea_vd;
5806 uint64_t cseea_checkpoint_size;
5807 } checkpoint_sm_exclude_entry_arg_t;
5808
5809 static int
5810 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
5811 {
5812 checkpoint_sm_exclude_entry_arg_t *cseea = arg;
5813 vdev_t *vd = cseea->cseea_vd;
5814 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
5815 uint64_t end = sme->sme_offset + sme->sme_run;
5816
5817 ASSERT(sme->sme_type == SM_FREE);
5818
5819 /*
5820 * Since the vdev_checkpoint_sm exists in the vdev level
5821 * and the ms_sm space maps exist in the metaslab level,
5822 * an entry in the checkpoint space map could theoretically
5823 * cross the boundaries of the metaslab that it belongs.
5824 *
5825 * In reality, because of the way that we populate and
5826 * manipulate the checkpoint's space maps currently,
5827 * there shouldn't be any entries that cross metaslabs.
5828 * Hence the assertion below.
5829 *
5830 * That said, there is no fundamental requirement that
5831 * the checkpoint's space map entries should not cross
5832 * metaslab boundaries. So if needed we could add code
5833 * that handles metaslab-crossing segments in the future.
5834 */
5835 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
5836 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
5837
5838 /*
5839 * By removing the entry from the allocated segments we
5840 * also verify that the entry is there to begin with.
5841 */
5842 mutex_enter(&ms->ms_lock);
5843 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
5844 mutex_exit(&ms->ms_lock);
5845
5846 cseea->cseea_checkpoint_size += sme->sme_run;
5847 return (0);
5848 }
5849
5850 static void
5851 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
5852 {
5853 spa_t *spa = vd->vdev_spa;
5854 space_map_t *checkpoint_sm = NULL;
5855 uint64_t checkpoint_sm_obj;
5856
5857 /*
5858 * If there is no vdev_top_zap, we are in a pool whose
5859 * version predates the pool checkpoint feature.
5860 */
5861 if (vd->vdev_top_zap == 0)
5862 return;
5863
5864 /*
5865 * If there is no reference of the vdev_checkpoint_sm in
5866 * the vdev_top_zap, then one of the following scenarios
5867 * is true:
5868 *
5869 * 1] There is no checkpoint
5870 * 2] There is a checkpoint, but no checkpointed blocks
5871 * have been freed yet
5872 * 3] The current vdev is indirect
5873 *
5874 * In these cases we return immediately.
5875 */
5876 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
5877 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
5878 return;
5879
5880 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
5881 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
5882 &checkpoint_sm_obj));
5883
5884 checkpoint_sm_exclude_entry_arg_t cseea;
5885 cseea.cseea_vd = vd;
5886 cseea.cseea_checkpoint_size = 0;
5887
5888 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
5889 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
5890
5891 VERIFY0(space_map_iterate(checkpoint_sm,
5892 space_map_length(checkpoint_sm),
5893 checkpoint_sm_exclude_entry_cb, &cseea));
5894 space_map_close(checkpoint_sm);
5895
5896 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
5897 }
5898
5899 static void
5900 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
5901 {
5902 ASSERT(!dump_opt['L']);
5903
5904 vdev_t *rvd = spa->spa_root_vdev;
5905 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
5906 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
5907 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
5908 }
5909 }
5910
5911 static int
5912 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
5913 uint64_t txg, void *arg)
5914 {
5915 int64_t *ualloc_space = arg;
5916
5917 uint64_t offset = sme->sme_offset;
5918 uint64_t vdev_id = sme->sme_vdev;
5919
5920 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
5921 if (!vdev_is_concrete(vd))
5922 return (0);
5923
5924 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5925 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5926
5927 if (txg < metaslab_unflushed_txg(ms))
5928 return (0);
5929
5930 if (sme->sme_type == SM_ALLOC)
5931 *ualloc_space += sme->sme_run;
5932 else
5933 *ualloc_space -= sme->sme_run;
5934
5935 return (0);
5936 }
5937
5938 static int64_t
5939 get_unflushed_alloc_space(spa_t *spa)
5940 {
5941 if (dump_opt['L'])
5942 return (0);
5943
5944 int64_t ualloc_space = 0;
5945 iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
5946 &ualloc_space);
5947 return (ualloc_space);
5948 }
5949
5950 static int
5951 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
5952 {
5953 maptype_t *uic_maptype = arg;
5954
5955 uint64_t offset = sme->sme_offset;
5956 uint64_t size = sme->sme_run;
5957 uint64_t vdev_id = sme->sme_vdev;
5958
5959 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
5960
5961 /* skip indirect vdevs */
5962 if (!vdev_is_concrete(vd))
5963 return (0);
5964
5965 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5966
5967 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5968 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
5969
5970 if (txg < metaslab_unflushed_txg(ms))
5971 return (0);
5972
5973 if (*uic_maptype == sme->sme_type)
5974 range_tree_add(ms->ms_allocatable, offset, size);
5975 else
5976 range_tree_remove(ms->ms_allocatable, offset, size);
5977
5978 return (0);
5979 }
5980
5981 static void
5982 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
5983 {
5984 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
5985 }
5986
5987 static void
5988 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
5989 {
5990 vdev_t *rvd = spa->spa_root_vdev;
5991 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5992 vdev_t *vd = rvd->vdev_child[i];
5993
5994 ASSERT3U(i, ==, vd->vdev_id);
5995
5996 if (vd->vdev_ops == &vdev_indirect_ops)
5997 continue;
5998
5999 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6000 metaslab_t *msp = vd->vdev_ms[m];
6001
6002 (void) fprintf(stderr,
6003 "\rloading concrete vdev %llu, "
6004 "metaslab %llu of %llu ...",
6005 (longlong_t)vd->vdev_id,
6006 (longlong_t)msp->ms_id,
6007 (longlong_t)vd->vdev_ms_count);
6008
6009 mutex_enter(&msp->ms_lock);
6010 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6011
6012 /*
6013 * We don't want to spend the CPU manipulating the
6014 * size-ordered tree, so clear the range_tree ops.
6015 */
6016 msp->ms_allocatable->rt_ops = NULL;
6017
6018 if (msp->ms_sm != NULL) {
6019 VERIFY0(space_map_load(msp->ms_sm,
6020 msp->ms_allocatable, maptype));
6021 }
6022 if (!msp->ms_loaded)
6023 msp->ms_loaded = B_TRUE;
6024 mutex_exit(&msp->ms_lock);
6025 }
6026 }
6027
6028 load_unflushed_to_ms_allocatables(spa, maptype);
6029 }
6030
6031 /*
6032 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6033 * index in vim_entries that has the first entry in this metaslab.
6034 * On return, it will be set to the first entry after this metaslab.
6035 */
6036 static void
6037 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6038 uint64_t *vim_idxp)
6039 {
6040 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6041
6042 mutex_enter(&msp->ms_lock);
6043 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6044
6045 /*
6046 * We don't want to spend the CPU manipulating the
6047 * size-ordered tree, so clear the range_tree ops.
6048 */
6049 msp->ms_allocatable->rt_ops = NULL;
6050
6051 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6052 (*vim_idxp)++) {
6053 vdev_indirect_mapping_entry_phys_t *vimep =
6054 &vim->vim_entries[*vim_idxp];
6055 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6056 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6057 ASSERT3U(ent_offset, >=, msp->ms_start);
6058 if (ent_offset >= msp->ms_start + msp->ms_size)
6059 break;
6060
6061 /*
6062 * Mappings do not cross metaslab boundaries,
6063 * because we create them by walking the metaslabs.
6064 */
6065 ASSERT3U(ent_offset + ent_len, <=,
6066 msp->ms_start + msp->ms_size);
6067 range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6068 }
6069
6070 if (!msp->ms_loaded)
6071 msp->ms_loaded = B_TRUE;
6072 mutex_exit(&msp->ms_lock);
6073 }
6074
6075 static void
6076 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6077 {
6078 ASSERT(!dump_opt['L']);
6079
6080 vdev_t *rvd = spa->spa_root_vdev;
6081 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6082 vdev_t *vd = rvd->vdev_child[c];
6083
6084 ASSERT3U(c, ==, vd->vdev_id);
6085
6086 if (vd->vdev_ops != &vdev_indirect_ops)
6087 continue;
6088
6089 /*
6090 * Note: we don't check for mapping leaks on
6091 * removing vdevs because their ms_allocatable's
6092 * are used to look for leaks in allocated space.
6093 */
6094 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6095
6096 /*
6097 * Normally, indirect vdevs don't have any
6098 * metaslabs. We want to set them up for
6099 * zio_claim().
6100 */
6101 vdev_metaslab_group_create(vd);
6102 VERIFY0(vdev_metaslab_init(vd, 0));
6103
6104 vdev_indirect_mapping_t *vim __maybe_unused =
6105 vd->vdev_indirect_mapping;
6106 uint64_t vim_idx = 0;
6107 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6108
6109 (void) fprintf(stderr,
6110 "\rloading indirect vdev %llu, "
6111 "metaslab %llu of %llu ...",
6112 (longlong_t)vd->vdev_id,
6113 (longlong_t)vd->vdev_ms[m]->ms_id,
6114 (longlong_t)vd->vdev_ms_count);
6115
6116 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6117 &vim_idx);
6118 }
6119 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6120 }
6121 }
6122
6123 static void
6124 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6125 {
6126 zcb->zcb_spa = spa;
6127
6128 if (dump_opt['L'])
6129 return;
6130
6131 dsl_pool_t *dp = spa->spa_dsl_pool;
6132 vdev_t *rvd = spa->spa_root_vdev;
6133
6134 /*
6135 * We are going to be changing the meaning of the metaslab's
6136 * ms_allocatable. Ensure that the allocator doesn't try to
6137 * use the tree.
6138 */
6139 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6140 spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6141 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6142
6143 zcb->zcb_vd_obsolete_counts =
6144 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6145 UMEM_NOFAIL);
6146
6147 /*
6148 * For leak detection, we overload the ms_allocatable trees
6149 * to contain allocated segments instead of free segments.
6150 * As a result, we can't use the normal metaslab_load/unload
6151 * interfaces.
6152 */
6153 zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6154 load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6155
6156 /*
6157 * On load_concrete_ms_allocatable_trees() we loaded all the
6158 * allocated entries from the ms_sm to the ms_allocatable for
6159 * each metaslab. If the pool has a checkpoint or is in the
6160 * middle of discarding a checkpoint, some of these blocks
6161 * may have been freed but their ms_sm may not have been
6162 * updated because they are referenced by the checkpoint. In
6163 * order to avoid false-positives during leak-detection, we
6164 * go through the vdev's checkpoint space map and exclude all
6165 * its entries from their relevant ms_allocatable.
6166 *
6167 * We also aggregate the space held by the checkpoint and add
6168 * it to zcb_checkpoint_size.
6169 *
6170 * Note that at this point we are also verifying that all the
6171 * entries on the checkpoint_sm are marked as allocated in
6172 * the ms_sm of their relevant metaslab.
6173 * [see comment in checkpoint_sm_exclude_entry_cb()]
6174 */
6175 zdb_leak_init_exclude_checkpoint(spa, zcb);
6176 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6177
6178 /* for cleaner progress output */
6179 (void) fprintf(stderr, "\n");
6180
6181 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6182 ASSERT(spa_feature_is_enabled(spa,
6183 SPA_FEATURE_DEVICE_REMOVAL));
6184 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6185 increment_indirect_mapping_cb, zcb, NULL);
6186 }
6187
6188 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6189 zdb_ddt_leak_init(spa, zcb);
6190 spa_config_exit(spa, SCL_CONFIG, FTAG);
6191 }
6192
6193 static boolean_t
6194 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6195 {
6196 boolean_t leaks = B_FALSE;
6197 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6198 uint64_t total_leaked = 0;
6199 boolean_t are_precise = B_FALSE;
6200
6201 ASSERT(vim != NULL);
6202
6203 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6204 vdev_indirect_mapping_entry_phys_t *vimep =
6205 &vim->vim_entries[i];
6206 uint64_t obsolete_bytes = 0;
6207 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6208 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6209
6210 /*
6211 * This is not very efficient but it's easy to
6212 * verify correctness.
6213 */
6214 for (uint64_t inner_offset = 0;
6215 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6216 inner_offset += 1ULL << vd->vdev_ashift) {
6217 if (range_tree_contains(msp->ms_allocatable,
6218 offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6219 obsolete_bytes += 1ULL << vd->vdev_ashift;
6220 }
6221 }
6222
6223 int64_t bytes_leaked = obsolete_bytes -
6224 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6225 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6226 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6227
6228 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6229 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6230 (void) printf("obsolete indirect mapping count "
6231 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6232 (u_longlong_t)vd->vdev_id,
6233 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6234 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6235 (u_longlong_t)bytes_leaked);
6236 }
6237 total_leaked += ABS(bytes_leaked);
6238 }
6239
6240 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6241 if (!are_precise && total_leaked > 0) {
6242 int pct_leaked = total_leaked * 100 /
6243 vdev_indirect_mapping_bytes_mapped(vim);
6244 (void) printf("cannot verify obsolete indirect mapping "
6245 "counts of vdev %llu because precise feature was not "
6246 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6247 "unreferenced\n",
6248 (u_longlong_t)vd->vdev_id, pct_leaked,
6249 (u_longlong_t)total_leaked);
6250 } else if (total_leaked > 0) {
6251 (void) printf("obsolete indirect mapping count mismatch "
6252 "for vdev %llu -- %llx total bytes mismatched\n",
6253 (u_longlong_t)vd->vdev_id,
6254 (u_longlong_t)total_leaked);
6255 leaks |= B_TRUE;
6256 }
6257
6258 vdev_indirect_mapping_free_obsolete_counts(vim,
6259 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6260 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6261
6262 return (leaks);
6263 }
6264
6265 static boolean_t
6266 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6267 {
6268 if (dump_opt['L'])
6269 return (B_FALSE);
6270
6271 boolean_t leaks = B_FALSE;
6272 vdev_t *rvd = spa->spa_root_vdev;
6273 for (unsigned c = 0; c < rvd->vdev_children; c++) {
6274 vdev_t *vd = rvd->vdev_child[c];
6275
6276 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6277 leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6278 }
6279
6280 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6281 metaslab_t *msp = vd->vdev_ms[m];
6282 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6283 spa_embedded_log_class(spa)) ?
6284 vd->vdev_log_mg : vd->vdev_mg);
6285
6286 /*
6287 * ms_allocatable has been overloaded
6288 * to contain allocated segments. Now that
6289 * we finished traversing all blocks, any
6290 * block that remains in the ms_allocatable
6291 * represents an allocated block that we
6292 * did not claim during the traversal.
6293 * Claimed blocks would have been removed
6294 * from the ms_allocatable. For indirect
6295 * vdevs, space remaining in the tree
6296 * represents parts of the mapping that are
6297 * not referenced, which is not a bug.
6298 */
6299 if (vd->vdev_ops == &vdev_indirect_ops) {
6300 range_tree_vacate(msp->ms_allocatable,
6301 NULL, NULL);
6302 } else {
6303 range_tree_vacate(msp->ms_allocatable,
6304 zdb_leak, vd);
6305 }
6306 if (msp->ms_loaded) {
6307 msp->ms_loaded = B_FALSE;
6308 }
6309 }
6310 }
6311
6312 umem_free(zcb->zcb_vd_obsolete_counts,
6313 rvd->vdev_children * sizeof (uint32_t *));
6314 zcb->zcb_vd_obsolete_counts = NULL;
6315
6316 return (leaks);
6317 }
6318
6319 static int
6320 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6321 {
6322 (void) tx;
6323 zdb_cb_t *zcb = arg;
6324
6325 if (dump_opt['b'] >= 5) {
6326 char blkbuf[BP_SPRINTF_LEN];
6327 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6328 (void) printf("[%s] %s\n",
6329 "deferred free", blkbuf);
6330 }
6331 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6332 return (0);
6333 }
6334
6335 /*
6336 * Iterate over livelists which have been destroyed by the user but
6337 * are still present in the MOS, waiting to be freed
6338 */
6339 static void
6340 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6341 {
6342 objset_t *mos = spa->spa_meta_objset;
6343 uint64_t zap_obj;
6344 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6345 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6346 if (err == ENOENT)
6347 return;
6348 ASSERT0(err);
6349
6350 zap_cursor_t zc;
6351 zap_attribute_t attr;
6352 dsl_deadlist_t ll;
6353 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6354 ll.dl_os = NULL;
6355 for (zap_cursor_init(&zc, mos, zap_obj);
6356 zap_cursor_retrieve(&zc, &attr) == 0;
6357 (void) zap_cursor_advance(&zc)) {
6358 dsl_deadlist_open(&ll, mos, attr.za_first_integer);
6359 func(&ll, arg);
6360 dsl_deadlist_close(&ll);
6361 }
6362 zap_cursor_fini(&zc);
6363 }
6364
6365 static int
6366 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6367 dmu_tx_t *tx)
6368 {
6369 ASSERT(!bp_freed);
6370 return (count_block_cb(arg, bp, tx));
6371 }
6372
6373 static int
6374 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6375 {
6376 zdb_cb_t *zbc = args;
6377 bplist_t blks;
6378 bplist_create(&blks);
6379 /* determine which blocks have been alloc'd but not freed */
6380 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6381 /* count those blocks */
6382 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6383 bplist_destroy(&blks);
6384 return (0);
6385 }
6386
6387 static void
6388 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6389 {
6390 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6391 }
6392
6393 /*
6394 * Count the blocks in the livelists that have been destroyed by the user
6395 * but haven't yet been freed.
6396 */
6397 static void
6398 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6399 {
6400 iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6401 }
6402
6403 static void
6404 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6405 {
6406 ASSERT3P(arg, ==, NULL);
6407 global_feature_count[SPA_FEATURE_LIVELIST]++;
6408 dump_blkptr_list(ll, "Deleted Livelist");
6409 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6410 }
6411
6412 /*
6413 * Print out, register object references to, and increment feature counts for
6414 * livelists that have been destroyed by the user but haven't yet been freed.
6415 */
6416 static void
6417 deleted_livelists_dump_mos(spa_t *spa)
6418 {
6419 uint64_t zap_obj;
6420 objset_t *mos = spa->spa_meta_objset;
6421 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6422 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6423 if (err == ENOENT)
6424 return;
6425 mos_obj_refd(zap_obj);
6426 iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6427 }
6428
6429 static int
6430 dump_block_stats(spa_t *spa)
6431 {
6432 zdb_cb_t *zcb;
6433 zdb_blkstats_t *zb, *tzb;
6434 uint64_t norm_alloc, norm_space, total_alloc, total_found;
6435 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6436 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6437 boolean_t leaks = B_FALSE;
6438 int e, c, err;
6439 bp_embedded_type_t i;
6440
6441 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6442
6443 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6444 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6445 (dump_opt['c'] == 1) ? "metadata " : "",
6446 dump_opt['c'] ? "checksums " : "",
6447 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6448 !dump_opt['L'] ? "nothing leaked " : "");
6449
6450 /*
6451 * When leak detection is enabled we load all space maps as SM_ALLOC
6452 * maps, then traverse the pool claiming each block we discover. If
6453 * the pool is perfectly consistent, the segment trees will be empty
6454 * when we're done. Anything left over is a leak; any block we can't
6455 * claim (because it's not part of any space map) is a double
6456 * allocation, reference to a freed block, or an unclaimed log block.
6457 *
6458 * When leak detection is disabled (-L option) we still traverse the
6459 * pool claiming each block we discover, but we skip opening any space
6460 * maps.
6461 */
6462 zdb_leak_init(spa, zcb);
6463
6464 /*
6465 * If there's a deferred-free bplist, process that first.
6466 */
6467 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
6468 bpobj_count_block_cb, zcb, NULL);
6469
6470 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
6471 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
6472 bpobj_count_block_cb, zcb, NULL);
6473 }
6474
6475 zdb_claim_removing(spa, zcb);
6476
6477 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
6478 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
6479 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
6480 zcb, NULL));
6481 }
6482
6483 deleted_livelists_count_blocks(spa, zcb);
6484
6485 if (dump_opt['c'] > 1)
6486 flags |= TRAVERSE_PREFETCH_DATA;
6487
6488 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
6489 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
6490 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
6491 zcb->zcb_totalasize +=
6492 metaslab_class_get_alloc(spa_embedded_log_class(spa));
6493 zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
6494 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
6495
6496 /*
6497 * If we've traversed the data blocks then we need to wait for those
6498 * I/Os to complete. We leverage "The Godfather" zio to wait on
6499 * all async I/Os to complete.
6500 */
6501 if (dump_opt['c']) {
6502 for (c = 0; c < max_ncpus; c++) {
6503 (void) zio_wait(spa->spa_async_zio_root[c]);
6504 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
6505 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6506 ZIO_FLAG_GODFATHER);
6507 }
6508 }
6509 ASSERT0(spa->spa_load_verify_bytes);
6510
6511 /*
6512 * Done after zio_wait() since zcb_haderrors is modified in
6513 * zdb_blkptr_done()
6514 */
6515 zcb->zcb_haderrors |= err;
6516
6517 if (zcb->zcb_haderrors) {
6518 (void) printf("\nError counts:\n\n");
6519 (void) printf("\t%5s %s\n", "errno", "count");
6520 for (e = 0; e < 256; e++) {
6521 if (zcb->zcb_errors[e] != 0) {
6522 (void) printf("\t%5d %llu\n",
6523 e, (u_longlong_t)zcb->zcb_errors[e]);
6524 }
6525 }
6526 }
6527
6528 /*
6529 * Report any leaked segments.
6530 */
6531 leaks |= zdb_leak_fini(spa, zcb);
6532
6533 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
6534
6535 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6536 norm_space = metaslab_class_get_space(spa_normal_class(spa));
6537
6538 total_alloc = norm_alloc +
6539 metaslab_class_get_alloc(spa_log_class(spa)) +
6540 metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
6541 metaslab_class_get_alloc(spa_special_class(spa)) +
6542 metaslab_class_get_alloc(spa_dedup_class(spa)) +
6543 get_unflushed_alloc_space(spa);
6544 total_found = tzb->zb_asize - zcb->zcb_dedup_asize +
6545 zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
6546
6547 if (total_found == total_alloc && !dump_opt['L']) {
6548 (void) printf("\n\tNo leaks (block sum matches space"
6549 " maps exactly)\n");
6550 } else if (!dump_opt['L']) {
6551 (void) printf("block traversal size %llu != alloc %llu "
6552 "(%s %lld)\n",
6553 (u_longlong_t)total_found,
6554 (u_longlong_t)total_alloc,
6555 (dump_opt['L']) ? "unreachable" : "leaked",
6556 (longlong_t)(total_alloc - total_found));
6557 leaks = B_TRUE;
6558 }
6559
6560 if (tzb->zb_count == 0) {
6561 umem_free(zcb, sizeof (zdb_cb_t));
6562 return (2);
6563 }
6564
6565 (void) printf("\n");
6566 (void) printf("\t%-16s %14llu\n", "bp count:",
6567 (u_longlong_t)tzb->zb_count);
6568 (void) printf("\t%-16s %14llu\n", "ganged count:",
6569 (longlong_t)tzb->zb_gangs);
6570 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
6571 (u_longlong_t)tzb->zb_lsize,
6572 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
6573 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
6574 "bp physical:", (u_longlong_t)tzb->zb_psize,
6575 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
6576 (double)tzb->zb_lsize / tzb->zb_psize);
6577 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
6578 "bp allocated:", (u_longlong_t)tzb->zb_asize,
6579 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
6580 (double)tzb->zb_lsize / tzb->zb_asize);
6581 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
6582 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
6583 (u_longlong_t)zcb->zcb_dedup_blocks,
6584 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
6585 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
6586 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
6587
6588 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6589 uint64_t alloc = metaslab_class_get_alloc(
6590 spa_special_class(spa));
6591 uint64_t space = metaslab_class_get_space(
6592 spa_special_class(spa));
6593
6594 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
6595 "Special class", (u_longlong_t)alloc,
6596 100.0 * alloc / space);
6597 }
6598
6599 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6600 uint64_t alloc = metaslab_class_get_alloc(
6601 spa_dedup_class(spa));
6602 uint64_t space = metaslab_class_get_space(
6603 spa_dedup_class(spa));
6604
6605 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
6606 "Dedup class", (u_longlong_t)alloc,
6607 100.0 * alloc / space);
6608 }
6609
6610 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6611 uint64_t alloc = metaslab_class_get_alloc(
6612 spa_embedded_log_class(spa));
6613 uint64_t space = metaslab_class_get_space(
6614 spa_embedded_log_class(spa));
6615
6616 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
6617 "Embedded log class", (u_longlong_t)alloc,
6618 100.0 * alloc / space);
6619 }
6620
6621 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
6622 if (zcb->zcb_embedded_blocks[i] == 0)
6623 continue;
6624 (void) printf("\n");
6625 (void) printf("\tadditional, non-pointer bps of type %u: "
6626 "%10llu\n",
6627 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
6628
6629 if (dump_opt['b'] >= 3) {
6630 (void) printf("\t number of (compressed) bytes: "
6631 "number of bps\n");
6632 dump_histogram(zcb->zcb_embedded_histogram[i],
6633 sizeof (zcb->zcb_embedded_histogram[i]) /
6634 sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
6635 }
6636 }
6637
6638 if (tzb->zb_ditto_samevdev != 0) {
6639 (void) printf("\tDittoed blocks on same vdev: %llu\n",
6640 (longlong_t)tzb->zb_ditto_samevdev);
6641 }
6642 if (tzb->zb_ditto_same_ms != 0) {
6643 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
6644 (longlong_t)tzb->zb_ditto_same_ms);
6645 }
6646
6647 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
6648 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
6649 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6650
6651 if (vim == NULL) {
6652 continue;
6653 }
6654
6655 char mem[32];
6656 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
6657 mem, vdev_indirect_mapping_size(vim));
6658
6659 (void) printf("\tindirect vdev id %llu has %llu segments "
6660 "(%s in memory)\n",
6661 (longlong_t)vd->vdev_id,
6662 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
6663 }
6664
6665 if (dump_opt['b'] >= 2) {
6666 int l, t, level;
6667 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
6668 "\t avg\t comp\t%%Total\tType\n");
6669
6670 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
6671 char csize[32], lsize[32], psize[32], asize[32];
6672 char avg[32], gang[32];
6673 const char *typename;
6674
6675 /* make sure nicenum has enough space */
6676 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
6677 "csize truncated");
6678 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
6679 "lsize truncated");
6680 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
6681 "psize truncated");
6682 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
6683 "asize truncated");
6684 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
6685 "avg truncated");
6686 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
6687 "gang truncated");
6688
6689 if (t < DMU_OT_NUMTYPES)
6690 typename = dmu_ot[t].ot_name;
6691 else
6692 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
6693
6694 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
6695 (void) printf("%6s\t%5s\t%5s\t%5s"
6696 "\t%5s\t%5s\t%6s\t%s\n",
6697 "-",
6698 "-",
6699 "-",
6700 "-",
6701 "-",
6702 "-",
6703 "-",
6704 typename);
6705 continue;
6706 }
6707
6708 for (l = ZB_TOTAL - 1; l >= -1; l--) {
6709 level = (l == -1 ? ZB_TOTAL : l);
6710 zb = &zcb->zcb_type[level][t];
6711
6712 if (zb->zb_asize == 0)
6713 continue;
6714
6715 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
6716 continue;
6717
6718 if (level == 0 && zb->zb_asize ==
6719 zcb->zcb_type[ZB_TOTAL][t].zb_asize)
6720 continue;
6721
6722 zdb_nicenum(zb->zb_count, csize,
6723 sizeof (csize));
6724 zdb_nicenum(zb->zb_lsize, lsize,
6725 sizeof (lsize));
6726 zdb_nicenum(zb->zb_psize, psize,
6727 sizeof (psize));
6728 zdb_nicenum(zb->zb_asize, asize,
6729 sizeof (asize));
6730 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
6731 sizeof (avg));
6732 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
6733
6734 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
6735 "\t%5.2f\t%6.2f\t",
6736 csize, lsize, psize, asize, avg,
6737 (double)zb->zb_lsize / zb->zb_psize,
6738 100.0 * zb->zb_asize / tzb->zb_asize);
6739
6740 if (level == ZB_TOTAL)
6741 (void) printf("%s\n", typename);
6742 else
6743 (void) printf(" L%d %s\n",
6744 level, typename);
6745
6746 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
6747 (void) printf("\t number of ganged "
6748 "blocks: %s\n", gang);
6749 }
6750
6751 if (dump_opt['b'] >= 4) {
6752 (void) printf("psize "
6753 "(in 512-byte sectors): "
6754 "number of blocks\n");
6755 dump_histogram(zb->zb_psize_histogram,
6756 PSIZE_HISTO_SIZE, 0);
6757 }
6758 }
6759 }
6760
6761 /* Output a table summarizing block sizes in the pool */
6762 if (dump_opt['b'] >= 2) {
6763 dump_size_histograms(zcb);
6764 }
6765 }
6766
6767 (void) printf("\n");
6768
6769 if (leaks) {
6770 umem_free(zcb, sizeof (zdb_cb_t));
6771 return (2);
6772 }
6773
6774 if (zcb->zcb_haderrors) {
6775 umem_free(zcb, sizeof (zdb_cb_t));
6776 return (3);
6777 }
6778
6779 umem_free(zcb, sizeof (zdb_cb_t));
6780 return (0);
6781 }
6782
6783 typedef struct zdb_ddt_entry {
6784 ddt_key_t zdde_key;
6785 uint64_t zdde_ref_blocks;
6786 uint64_t zdde_ref_lsize;
6787 uint64_t zdde_ref_psize;
6788 uint64_t zdde_ref_dsize;
6789 avl_node_t zdde_node;
6790 } zdb_ddt_entry_t;
6791
6792 static int
6793 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6794 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6795 {
6796 (void) zilog, (void) dnp;
6797 avl_tree_t *t = arg;
6798 avl_index_t where;
6799 zdb_ddt_entry_t *zdde, zdde_search;
6800
6801 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
6802 BP_IS_EMBEDDED(bp))
6803 return (0);
6804
6805 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
6806 (void) printf("traversing objset %llu, %llu objects, "
6807 "%lu blocks so far\n",
6808 (u_longlong_t)zb->zb_objset,
6809 (u_longlong_t)BP_GET_FILL(bp),
6810 avl_numnodes(t));
6811 }
6812
6813 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
6814 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
6815 return (0);
6816
6817 ddt_key_fill(&zdde_search.zdde_key, bp);
6818
6819 zdde = avl_find(t, &zdde_search, &where);
6820
6821 if (zdde == NULL) {
6822 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
6823 zdde->zdde_key = zdde_search.zdde_key;
6824 avl_insert(t, zdde, where);
6825 }
6826
6827 zdde->zdde_ref_blocks += 1;
6828 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
6829 zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
6830 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
6831
6832 return (0);
6833 }
6834
6835 static void
6836 dump_simulated_ddt(spa_t *spa)
6837 {
6838 avl_tree_t t;
6839 void *cookie = NULL;
6840 zdb_ddt_entry_t *zdde;
6841 ddt_histogram_t ddh_total = {{{0}}};
6842 ddt_stat_t dds_total = {0};
6843
6844 avl_create(&t, ddt_entry_compare,
6845 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
6846
6847 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6848
6849 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6850 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
6851
6852 spa_config_exit(spa, SCL_CONFIG, FTAG);
6853
6854 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
6855 ddt_stat_t dds;
6856 uint64_t refcnt = zdde->zdde_ref_blocks;
6857 ASSERT(refcnt != 0);
6858
6859 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
6860 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
6861 dds.dds_psize = zdde->zdde_ref_psize / refcnt;
6862 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
6863
6864 dds.dds_ref_blocks = zdde->zdde_ref_blocks;
6865 dds.dds_ref_lsize = zdde->zdde_ref_lsize;
6866 dds.dds_ref_psize = zdde->zdde_ref_psize;
6867 dds.dds_ref_dsize = zdde->zdde_ref_dsize;
6868
6869 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
6870 &dds, 0);
6871
6872 umem_free(zdde, sizeof (*zdde));
6873 }
6874
6875 avl_destroy(&t);
6876
6877 ddt_histogram_stat(&dds_total, &ddh_total);
6878
6879 (void) printf("Simulated DDT histogram:\n");
6880
6881 zpool_dump_ddt(&dds_total, &ddh_total);
6882
6883 dump_dedup_ratio(&dds_total);
6884 }
6885
6886 static int
6887 verify_device_removal_feature_counts(spa_t *spa)
6888 {
6889 uint64_t dr_feature_refcount = 0;
6890 uint64_t oc_feature_refcount = 0;
6891 uint64_t indirect_vdev_count = 0;
6892 uint64_t precise_vdev_count = 0;
6893 uint64_t obsolete_counts_object_count = 0;
6894 uint64_t obsolete_sm_count = 0;
6895 uint64_t obsolete_counts_count = 0;
6896 uint64_t scip_count = 0;
6897 uint64_t obsolete_bpobj_count = 0;
6898 int ret = 0;
6899
6900 spa_condensing_indirect_phys_t *scip =
6901 &spa->spa_condensing_indirect_phys;
6902 if (scip->scip_next_mapping_object != 0) {
6903 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
6904 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
6905 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
6906
6907 (void) printf("Condensing indirect vdev %llu: new mapping "
6908 "object %llu, prev obsolete sm %llu\n",
6909 (u_longlong_t)scip->scip_vdev,
6910 (u_longlong_t)scip->scip_next_mapping_object,
6911 (u_longlong_t)scip->scip_prev_obsolete_sm_object);
6912 if (scip->scip_prev_obsolete_sm_object != 0) {
6913 space_map_t *prev_obsolete_sm = NULL;
6914 VERIFY0(space_map_open(&prev_obsolete_sm,
6915 spa->spa_meta_objset,
6916 scip->scip_prev_obsolete_sm_object,
6917 0, vd->vdev_asize, 0));
6918 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
6919 (void) printf("\n");
6920 space_map_close(prev_obsolete_sm);
6921 }
6922
6923 scip_count += 2;
6924 }
6925
6926 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
6927 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
6928 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
6929
6930 if (vic->vic_mapping_object != 0) {
6931 ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
6932 vd->vdev_removing);
6933 indirect_vdev_count++;
6934
6935 if (vd->vdev_indirect_mapping->vim_havecounts) {
6936 obsolete_counts_count++;
6937 }
6938 }
6939
6940 boolean_t are_precise;
6941 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6942 if (are_precise) {
6943 ASSERT(vic->vic_mapping_object != 0);
6944 precise_vdev_count++;
6945 }
6946
6947 uint64_t obsolete_sm_object;
6948 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6949 if (obsolete_sm_object != 0) {
6950 ASSERT(vic->vic_mapping_object != 0);
6951 obsolete_sm_count++;
6952 }
6953 }
6954
6955 (void) feature_get_refcount(spa,
6956 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
6957 &dr_feature_refcount);
6958 (void) feature_get_refcount(spa,
6959 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
6960 &oc_feature_refcount);
6961
6962 if (dr_feature_refcount != indirect_vdev_count) {
6963 ret = 1;
6964 (void) printf("Number of indirect vdevs (%llu) " \
6965 "does not match feature count (%llu)\n",
6966 (u_longlong_t)indirect_vdev_count,
6967 (u_longlong_t)dr_feature_refcount);
6968 } else {
6969 (void) printf("Verified device_removal feature refcount " \
6970 "of %llu is correct\n",
6971 (u_longlong_t)dr_feature_refcount);
6972 }
6973
6974 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
6975 DMU_POOL_OBSOLETE_BPOBJ) == 0) {
6976 obsolete_bpobj_count++;
6977 }
6978
6979
6980 obsolete_counts_object_count = precise_vdev_count;
6981 obsolete_counts_object_count += obsolete_sm_count;
6982 obsolete_counts_object_count += obsolete_counts_count;
6983 obsolete_counts_object_count += scip_count;
6984 obsolete_counts_object_count += obsolete_bpobj_count;
6985 obsolete_counts_object_count += remap_deadlist_count;
6986
6987 if (oc_feature_refcount != obsolete_counts_object_count) {
6988 ret = 1;
6989 (void) printf("Number of obsolete counts objects (%llu) " \
6990 "does not match feature count (%llu)\n",
6991 (u_longlong_t)obsolete_counts_object_count,
6992 (u_longlong_t)oc_feature_refcount);
6993 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
6994 "ob:%llu rd:%llu\n",
6995 (u_longlong_t)precise_vdev_count,
6996 (u_longlong_t)obsolete_sm_count,
6997 (u_longlong_t)obsolete_counts_count,
6998 (u_longlong_t)scip_count,
6999 (u_longlong_t)obsolete_bpobj_count,
7000 (u_longlong_t)remap_deadlist_count);
7001 } else {
7002 (void) printf("Verified indirect_refcount feature refcount " \
7003 "of %llu is correct\n",
7004 (u_longlong_t)oc_feature_refcount);
7005 }
7006 return (ret);
7007 }
7008
7009 static void
7010 zdb_set_skip_mmp(char *target)
7011 {
7012 spa_t *spa;
7013
7014 /*
7015 * Disable the activity check to allow examination of
7016 * active pools.
7017 */
7018 mutex_enter(&spa_namespace_lock);
7019 if ((spa = spa_lookup(target)) != NULL) {
7020 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7021 }
7022 mutex_exit(&spa_namespace_lock);
7023 }
7024
7025 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7026 /*
7027 * Import the checkpointed state of the pool specified by the target
7028 * parameter as readonly. The function also accepts a pool config
7029 * as an optional parameter, else it attempts to infer the config by
7030 * the name of the target pool.
7031 *
7032 * Note that the checkpointed state's pool name will be the name of
7033 * the original pool with the above suffix appended to it. In addition,
7034 * if the target is not a pool name (e.g. a path to a dataset) then
7035 * the new_path parameter is populated with the updated path to
7036 * reflect the fact that we are looking into the checkpointed state.
7037 *
7038 * The function returns a newly-allocated copy of the name of the
7039 * pool containing the checkpointed state. When this copy is no
7040 * longer needed it should be freed with free(3C). Same thing
7041 * applies to the new_path parameter if allocated.
7042 */
7043 static char *
7044 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7045 {
7046 int error = 0;
7047 char *poolname, *bogus_name = NULL;
7048 boolean_t freecfg = B_FALSE;
7049
7050 /* If the target is not a pool, the extract the pool name */
7051 char *path_start = strchr(target, '/');
7052 if (path_start != NULL) {
7053 size_t poolname_len = path_start - target;
7054 poolname = strndup(target, poolname_len);
7055 } else {
7056 poolname = target;
7057 }
7058
7059 if (cfg == NULL) {
7060 zdb_set_skip_mmp(poolname);
7061 error = spa_get_stats(poolname, &cfg, NULL, 0);
7062 if (error != 0) {
7063 fatal("Tried to read config of pool \"%s\" but "
7064 "spa_get_stats() failed with error %d\n",
7065 poolname, error);
7066 }
7067 freecfg = B_TRUE;
7068 }
7069
7070 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7071 if (target != poolname)
7072 free(poolname);
7073 return (NULL);
7074 }
7075 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7076
7077 error = spa_import(bogus_name, cfg, NULL,
7078 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7079 ZFS_IMPORT_SKIP_MMP);
7080 if (freecfg)
7081 nvlist_free(cfg);
7082 if (error != 0) {
7083 fatal("Tried to import pool \"%s\" but spa_import() failed "
7084 "with error %d\n", bogus_name, error);
7085 }
7086
7087 if (new_path != NULL && path_start != NULL) {
7088 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7089 free(bogus_name);
7090 if (path_start != NULL)
7091 free(poolname);
7092 return (NULL);
7093 }
7094 }
7095
7096 if (target != poolname)
7097 free(poolname);
7098
7099 return (bogus_name);
7100 }
7101
7102 typedef struct verify_checkpoint_sm_entry_cb_arg {
7103 vdev_t *vcsec_vd;
7104
7105 /* the following fields are only used for printing progress */
7106 uint64_t vcsec_entryid;
7107 uint64_t vcsec_num_entries;
7108 } verify_checkpoint_sm_entry_cb_arg_t;
7109
7110 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7111
7112 static int
7113 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7114 {
7115 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7116 vdev_t *vd = vcsec->vcsec_vd;
7117 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7118 uint64_t end = sme->sme_offset + sme->sme_run;
7119
7120 ASSERT(sme->sme_type == SM_FREE);
7121
7122 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7123 (void) fprintf(stderr,
7124 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7125 (longlong_t)vd->vdev_id,
7126 (longlong_t)vcsec->vcsec_entryid,
7127 (longlong_t)vcsec->vcsec_num_entries);
7128 }
7129 vcsec->vcsec_entryid++;
7130
7131 /*
7132 * See comment in checkpoint_sm_exclude_entry_cb()
7133 */
7134 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7135 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7136
7137 /*
7138 * The entries in the vdev_checkpoint_sm should be marked as
7139 * allocated in the checkpointed state of the pool, therefore
7140 * their respective ms_allocateable trees should not contain them.
7141 */
7142 mutex_enter(&ms->ms_lock);
7143 range_tree_verify_not_present(ms->ms_allocatable,
7144 sme->sme_offset, sme->sme_run);
7145 mutex_exit(&ms->ms_lock);
7146
7147 return (0);
7148 }
7149
7150 /*
7151 * Verify that all segments in the vdev_checkpoint_sm are allocated
7152 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7153 * ms_allocatable).
7154 *
7155 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7156 * each vdev in the current state of the pool to the metaslab space maps
7157 * (ms_sm) of the checkpointed state of the pool.
7158 *
7159 * Note that the function changes the state of the ms_allocatable
7160 * trees of the current spa_t. The entries of these ms_allocatable
7161 * trees are cleared out and then repopulated from with the free
7162 * entries of their respective ms_sm space maps.
7163 */
7164 static void
7165 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7166 {
7167 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7168 vdev_t *current_rvd = current->spa_root_vdev;
7169
7170 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7171
7172 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7173 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7174 vdev_t *current_vd = current_rvd->vdev_child[c];
7175
7176 space_map_t *checkpoint_sm = NULL;
7177 uint64_t checkpoint_sm_obj;
7178
7179 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7180 /*
7181 * Since we don't allow device removal in a pool
7182 * that has a checkpoint, we expect that all removed
7183 * vdevs were removed from the pool before the
7184 * checkpoint.
7185 */
7186 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7187 continue;
7188 }
7189
7190 /*
7191 * If the checkpoint space map doesn't exist, then nothing
7192 * here is checkpointed so there's nothing to verify.
7193 */
7194 if (current_vd->vdev_top_zap == 0 ||
7195 zap_contains(spa_meta_objset(current),
7196 current_vd->vdev_top_zap,
7197 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7198 continue;
7199
7200 VERIFY0(zap_lookup(spa_meta_objset(current),
7201 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7202 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7203
7204 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7205 checkpoint_sm_obj, 0, current_vd->vdev_asize,
7206 current_vd->vdev_ashift));
7207
7208 verify_checkpoint_sm_entry_cb_arg_t vcsec;
7209 vcsec.vcsec_vd = ckpoint_vd;
7210 vcsec.vcsec_entryid = 0;
7211 vcsec.vcsec_num_entries =
7212 space_map_length(checkpoint_sm) / sizeof (uint64_t);
7213 VERIFY0(space_map_iterate(checkpoint_sm,
7214 space_map_length(checkpoint_sm),
7215 verify_checkpoint_sm_entry_cb, &vcsec));
7216 if (dump_opt['m'] > 3)
7217 dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7218 space_map_close(checkpoint_sm);
7219 }
7220
7221 /*
7222 * If we've added vdevs since we took the checkpoint, ensure
7223 * that their checkpoint space maps are empty.
7224 */
7225 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7226 for (uint64_t c = ckpoint_rvd->vdev_children;
7227 c < current_rvd->vdev_children; c++) {
7228 vdev_t *current_vd = current_rvd->vdev_child[c];
7229 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7230 }
7231 }
7232
7233 /* for cleaner progress output */
7234 (void) fprintf(stderr, "\n");
7235 }
7236
7237 /*
7238 * Verifies that all space that's allocated in the checkpoint is
7239 * still allocated in the current version, by checking that everything
7240 * in checkpoint's ms_allocatable (which is actually allocated, not
7241 * allocatable/free) is not present in current's ms_allocatable.
7242 *
7243 * Note that the function changes the state of the ms_allocatable
7244 * trees of both spas when called. The entries of all ms_allocatable
7245 * trees are cleared out and then repopulated from their respective
7246 * ms_sm space maps. In the checkpointed state we load the allocated
7247 * entries, and in the current state we load the free entries.
7248 */
7249 static void
7250 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7251 {
7252 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7253 vdev_t *current_rvd = current->spa_root_vdev;
7254
7255 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7256 load_concrete_ms_allocatable_trees(current, SM_FREE);
7257
7258 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7259 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7260 vdev_t *current_vd = current_rvd->vdev_child[i];
7261
7262 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7263 /*
7264 * See comment in verify_checkpoint_vdev_spacemaps()
7265 */
7266 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7267 continue;
7268 }
7269
7270 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7271 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7272 metaslab_t *current_msp = current_vd->vdev_ms[m];
7273
7274 (void) fprintf(stderr,
7275 "\rverifying vdev %llu of %llu, "
7276 "metaslab %llu of %llu ...",
7277 (longlong_t)current_vd->vdev_id,
7278 (longlong_t)current_rvd->vdev_children,
7279 (longlong_t)current_vd->vdev_ms[m]->ms_id,
7280 (longlong_t)current_vd->vdev_ms_count);
7281
7282 /*
7283 * We walk through the ms_allocatable trees that
7284 * are loaded with the allocated blocks from the
7285 * ms_sm spacemaps of the checkpoint. For each
7286 * one of these ranges we ensure that none of them
7287 * exists in the ms_allocatable trees of the
7288 * current state which are loaded with the ranges
7289 * that are currently free.
7290 *
7291 * This way we ensure that none of the blocks that
7292 * are part of the checkpoint were freed by mistake.
7293 */
7294 range_tree_walk(ckpoint_msp->ms_allocatable,
7295 (range_tree_func_t *)range_tree_verify_not_present,
7296 current_msp->ms_allocatable);
7297 }
7298 }
7299
7300 /* for cleaner progress output */
7301 (void) fprintf(stderr, "\n");
7302 }
7303
7304 static void
7305 verify_checkpoint_blocks(spa_t *spa)
7306 {
7307 ASSERT(!dump_opt['L']);
7308
7309 spa_t *checkpoint_spa;
7310 char *checkpoint_pool;
7311 int error = 0;
7312
7313 /*
7314 * We import the checkpointed state of the pool (under a different
7315 * name) so we can do verification on it against the current state
7316 * of the pool.
7317 */
7318 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7319 NULL);
7320 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7321
7322 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7323 if (error != 0) {
7324 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7325 "error %d\n", checkpoint_pool, error);
7326 }
7327
7328 /*
7329 * Ensure that ranges in the checkpoint space maps of each vdev
7330 * are allocated according to the checkpointed state's metaslab
7331 * space maps.
7332 */
7333 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7334
7335 /*
7336 * Ensure that allocated ranges in the checkpoint's metaslab
7337 * space maps remain allocated in the metaslab space maps of
7338 * the current state.
7339 */
7340 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7341
7342 /*
7343 * Once we are done, we get rid of the checkpointed state.
7344 */
7345 spa_close(checkpoint_spa, FTAG);
7346 free(checkpoint_pool);
7347 }
7348
7349 static void
7350 dump_leftover_checkpoint_blocks(spa_t *spa)
7351 {
7352 vdev_t *rvd = spa->spa_root_vdev;
7353
7354 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7355 vdev_t *vd = rvd->vdev_child[i];
7356
7357 space_map_t *checkpoint_sm = NULL;
7358 uint64_t checkpoint_sm_obj;
7359
7360 if (vd->vdev_top_zap == 0)
7361 continue;
7362
7363 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7364 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7365 continue;
7366
7367 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7368 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7369 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7370
7371 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7372 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7373 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7374 space_map_close(checkpoint_sm);
7375 }
7376 }
7377
7378 static int
7379 verify_checkpoint(spa_t *spa)
7380 {
7381 uberblock_t checkpoint;
7382 int error;
7383
7384 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7385 return (0);
7386
7387 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7388 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7389 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7390
7391 if (error == ENOENT && !dump_opt['L']) {
7392 /*
7393 * If the feature is active but the uberblock is missing
7394 * then we must be in the middle of discarding the
7395 * checkpoint.
7396 */
7397 (void) printf("\nPartially discarded checkpoint "
7398 "state found:\n");
7399 if (dump_opt['m'] > 3)
7400 dump_leftover_checkpoint_blocks(spa);
7401 return (0);
7402 } else if (error != 0) {
7403 (void) printf("lookup error %d when looking for "
7404 "checkpointed uberblock in MOS\n", error);
7405 return (error);
7406 }
7407 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7408
7409 if (checkpoint.ub_checkpoint_txg == 0) {
7410 (void) printf("\nub_checkpoint_txg not set in checkpointed "
7411 "uberblock\n");
7412 error = 3;
7413 }
7414
7415 if (error == 0 && !dump_opt['L'])
7416 verify_checkpoint_blocks(spa);
7417
7418 return (error);
7419 }
7420
7421 static void
7422 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
7423 {
7424 (void) arg;
7425 for (uint64_t i = start; i < size; i++) {
7426 (void) printf("MOS object %llu referenced but not allocated\n",
7427 (u_longlong_t)i);
7428 }
7429 }
7430
7431 static void
7432 mos_obj_refd(uint64_t obj)
7433 {
7434 if (obj != 0 && mos_refd_objs != NULL)
7435 range_tree_add(mos_refd_objs, obj, 1);
7436 }
7437
7438 /*
7439 * Call on a MOS object that may already have been referenced.
7440 */
7441 static void
7442 mos_obj_refd_multiple(uint64_t obj)
7443 {
7444 if (obj != 0 && mos_refd_objs != NULL &&
7445 !range_tree_contains(mos_refd_objs, obj, 1))
7446 range_tree_add(mos_refd_objs, obj, 1);
7447 }
7448
7449 static void
7450 mos_leak_vdev_top_zap(vdev_t *vd)
7451 {
7452 uint64_t ms_flush_data_obj;
7453 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
7454 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
7455 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
7456 if (error == ENOENT)
7457 return;
7458 ASSERT0(error);
7459
7460 mos_obj_refd(ms_flush_data_obj);
7461 }
7462
7463 static void
7464 mos_leak_vdev(vdev_t *vd)
7465 {
7466 mos_obj_refd(vd->vdev_dtl_object);
7467 mos_obj_refd(vd->vdev_ms_array);
7468 mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
7469 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
7470 mos_obj_refd(vd->vdev_leaf_zap);
7471 if (vd->vdev_checkpoint_sm != NULL)
7472 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
7473 if (vd->vdev_indirect_mapping != NULL) {
7474 mos_obj_refd(vd->vdev_indirect_mapping->
7475 vim_phys->vimp_counts_object);
7476 }
7477 if (vd->vdev_obsolete_sm != NULL)
7478 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
7479
7480 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7481 metaslab_t *ms = vd->vdev_ms[m];
7482 mos_obj_refd(space_map_object(ms->ms_sm));
7483 }
7484
7485 if (vd->vdev_top_zap != 0) {
7486 mos_obj_refd(vd->vdev_top_zap);
7487 mos_leak_vdev_top_zap(vd);
7488 }
7489
7490 for (uint64_t c = 0; c < vd->vdev_children; c++) {
7491 mos_leak_vdev(vd->vdev_child[c]);
7492 }
7493 }
7494
7495 static void
7496 mos_leak_log_spacemaps(spa_t *spa)
7497 {
7498 uint64_t spacemap_zap;
7499 int error = zap_lookup(spa_meta_objset(spa),
7500 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
7501 sizeof (spacemap_zap), 1, &spacemap_zap);
7502 if (error == ENOENT)
7503 return;
7504 ASSERT0(error);
7505
7506 mos_obj_refd(spacemap_zap);
7507 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
7508 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
7509 mos_obj_refd(sls->sls_sm_obj);
7510 }
7511
7512 static int
7513 dump_mos_leaks(spa_t *spa)
7514 {
7515 int rv = 0;
7516 objset_t *mos = spa->spa_meta_objset;
7517 dsl_pool_t *dp = spa->spa_dsl_pool;
7518
7519 /* Visit and mark all referenced objects in the MOS */
7520
7521 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
7522 mos_obj_refd(spa->spa_pool_props_object);
7523 mos_obj_refd(spa->spa_config_object);
7524 mos_obj_refd(spa->spa_ddt_stat_object);
7525 mos_obj_refd(spa->spa_feat_desc_obj);
7526 mos_obj_refd(spa->spa_feat_enabled_txg_obj);
7527 mos_obj_refd(spa->spa_feat_for_read_obj);
7528 mos_obj_refd(spa->spa_feat_for_write_obj);
7529 mos_obj_refd(spa->spa_history);
7530 mos_obj_refd(spa->spa_errlog_last);
7531 mos_obj_refd(spa->spa_errlog_scrub);
7532 mos_obj_refd(spa->spa_all_vdev_zaps);
7533 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
7534 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
7535 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
7536 bpobj_count_refd(&spa->spa_deferred_bpobj);
7537 mos_obj_refd(dp->dp_empty_bpobj);
7538 bpobj_count_refd(&dp->dp_obsolete_bpobj);
7539 bpobj_count_refd(&dp->dp_free_bpobj);
7540 mos_obj_refd(spa->spa_l2cache.sav_object);
7541 mos_obj_refd(spa->spa_spares.sav_object);
7542
7543 if (spa->spa_syncing_log_sm != NULL)
7544 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
7545 mos_leak_log_spacemaps(spa);
7546
7547 mos_obj_refd(spa->spa_condensing_indirect_phys.
7548 scip_next_mapping_object);
7549 mos_obj_refd(spa->spa_condensing_indirect_phys.
7550 scip_prev_obsolete_sm_object);
7551 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
7552 vdev_indirect_mapping_t *vim =
7553 vdev_indirect_mapping_open(mos,
7554 spa->spa_condensing_indirect_phys.scip_next_mapping_object);
7555 mos_obj_refd(vim->vim_phys->vimp_counts_object);
7556 vdev_indirect_mapping_close(vim);
7557 }
7558 deleted_livelists_dump_mos(spa);
7559
7560 if (dp->dp_origin_snap != NULL) {
7561 dsl_dataset_t *ds;
7562
7563 dsl_pool_config_enter(dp, FTAG);
7564 VERIFY0(dsl_dataset_hold_obj(dp,
7565 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
7566 FTAG, &ds));
7567 count_ds_mos_objects(ds);
7568 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
7569 dsl_dataset_rele(ds, FTAG);
7570 dsl_pool_config_exit(dp, FTAG);
7571
7572 count_ds_mos_objects(dp->dp_origin_snap);
7573 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
7574 }
7575 count_dir_mos_objects(dp->dp_mos_dir);
7576 if (dp->dp_free_dir != NULL)
7577 count_dir_mos_objects(dp->dp_free_dir);
7578 if (dp->dp_leak_dir != NULL)
7579 count_dir_mos_objects(dp->dp_leak_dir);
7580
7581 mos_leak_vdev(spa->spa_root_vdev);
7582
7583 for (uint64_t class = 0; class < DDT_CLASSES; class++) {
7584 for (uint64_t type = 0; type < DDT_TYPES; type++) {
7585 for (uint64_t cksum = 0;
7586 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
7587 ddt_t *ddt = spa->spa_ddt[cksum];
7588 mos_obj_refd(ddt->ddt_object[type][class]);
7589 }
7590 }
7591 }
7592
7593 /*
7594 * Visit all allocated objects and make sure they are referenced.
7595 */
7596 uint64_t object = 0;
7597 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
7598 if (range_tree_contains(mos_refd_objs, object, 1)) {
7599 range_tree_remove(mos_refd_objs, object, 1);
7600 } else {
7601 dmu_object_info_t doi;
7602 const char *name;
7603 VERIFY0(dmu_object_info(mos, object, &doi));
7604 if (doi.doi_type & DMU_OT_NEWTYPE) {
7605 dmu_object_byteswap_t bswap =
7606 DMU_OT_BYTESWAP(doi.doi_type);
7607 name = dmu_ot_byteswap[bswap].ob_name;
7608 } else {
7609 name = dmu_ot[doi.doi_type].ot_name;
7610 }
7611
7612 (void) printf("MOS object %llu (%s) leaked\n",
7613 (u_longlong_t)object, name);
7614 rv = 2;
7615 }
7616 }
7617 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
7618 if (!range_tree_is_empty(mos_refd_objs))
7619 rv = 2;
7620 range_tree_vacate(mos_refd_objs, NULL, NULL);
7621 range_tree_destroy(mos_refd_objs);
7622 return (rv);
7623 }
7624
7625 typedef struct log_sm_obsolete_stats_arg {
7626 uint64_t lsos_current_txg;
7627
7628 uint64_t lsos_total_entries;
7629 uint64_t lsos_valid_entries;
7630
7631 uint64_t lsos_sm_entries;
7632 uint64_t lsos_valid_sm_entries;
7633 } log_sm_obsolete_stats_arg_t;
7634
7635 static int
7636 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
7637 uint64_t txg, void *arg)
7638 {
7639 log_sm_obsolete_stats_arg_t *lsos = arg;
7640
7641 uint64_t offset = sme->sme_offset;
7642 uint64_t vdev_id = sme->sme_vdev;
7643
7644 if (lsos->lsos_current_txg == 0) {
7645 /* this is the first log */
7646 lsos->lsos_current_txg = txg;
7647 } else if (lsos->lsos_current_txg < txg) {
7648 /* we just changed log - print stats and reset */
7649 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7650 (u_longlong_t)lsos->lsos_valid_sm_entries,
7651 (u_longlong_t)lsos->lsos_sm_entries,
7652 (u_longlong_t)lsos->lsos_current_txg);
7653 lsos->lsos_valid_sm_entries = 0;
7654 lsos->lsos_sm_entries = 0;
7655 lsos->lsos_current_txg = txg;
7656 }
7657 ASSERT3U(lsos->lsos_current_txg, ==, txg);
7658
7659 lsos->lsos_sm_entries++;
7660 lsos->lsos_total_entries++;
7661
7662 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
7663 if (!vdev_is_concrete(vd))
7664 return (0);
7665
7666 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
7667 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
7668
7669 if (txg < metaslab_unflushed_txg(ms))
7670 return (0);
7671 lsos->lsos_valid_sm_entries++;
7672 lsos->lsos_valid_entries++;
7673 return (0);
7674 }
7675
7676 static void
7677 dump_log_spacemap_obsolete_stats(spa_t *spa)
7678 {
7679 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
7680 return;
7681
7682 log_sm_obsolete_stats_arg_t lsos = {0};
7683
7684 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
7685
7686 iterate_through_spacemap_logs(spa,
7687 log_spacemap_obsolete_stats_cb, &lsos);
7688
7689 /* print stats for latest log */
7690 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7691 (u_longlong_t)lsos.lsos_valid_sm_entries,
7692 (u_longlong_t)lsos.lsos_sm_entries,
7693 (u_longlong_t)lsos.lsos_current_txg);
7694
7695 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
7696 (u_longlong_t)lsos.lsos_valid_entries,
7697 (u_longlong_t)lsos.lsos_total_entries);
7698 }
7699
7700 static void
7701 dump_zpool(spa_t *spa)
7702 {
7703 dsl_pool_t *dp = spa_get_dsl(spa);
7704 int rc = 0;
7705
7706 if (dump_opt['y']) {
7707 livelist_metaslab_validate(spa);
7708 }
7709
7710 if (dump_opt['S']) {
7711 dump_simulated_ddt(spa);
7712 return;
7713 }
7714
7715 if (!dump_opt['e'] && dump_opt['C'] > 1) {
7716 (void) printf("\nCached configuration:\n");
7717 dump_nvlist(spa->spa_config, 8);
7718 }
7719
7720 if (dump_opt['C'])
7721 dump_config(spa);
7722
7723 if (dump_opt['u'])
7724 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
7725
7726 if (dump_opt['D'])
7727 dump_all_ddts(spa);
7728
7729 if (dump_opt['d'] > 2 || dump_opt['m'])
7730 dump_metaslabs(spa);
7731 if (dump_opt['M'])
7732 dump_metaslab_groups(spa, dump_opt['M'] > 1);
7733 if (dump_opt['d'] > 2 || dump_opt['m']) {
7734 dump_log_spacemaps(spa);
7735 dump_log_spacemap_obsolete_stats(spa);
7736 }
7737
7738 if (dump_opt['d'] || dump_opt['i']) {
7739 spa_feature_t f;
7740 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
7741 0);
7742 dump_objset(dp->dp_meta_objset);
7743
7744 if (dump_opt['d'] >= 3) {
7745 dsl_pool_t *dp = spa->spa_dsl_pool;
7746 dump_full_bpobj(&spa->spa_deferred_bpobj,
7747 "Deferred frees", 0);
7748 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7749 dump_full_bpobj(&dp->dp_free_bpobj,
7750 "Pool snapshot frees", 0);
7751 }
7752 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
7753 ASSERT(spa_feature_is_enabled(spa,
7754 SPA_FEATURE_DEVICE_REMOVAL));
7755 dump_full_bpobj(&dp->dp_obsolete_bpobj,
7756 "Pool obsolete blocks", 0);
7757 }
7758
7759 if (spa_feature_is_active(spa,
7760 SPA_FEATURE_ASYNC_DESTROY)) {
7761 dump_bptree(spa->spa_meta_objset,
7762 dp->dp_bptree_obj,
7763 "Pool dataset frees");
7764 }
7765 dump_dtl(spa->spa_root_vdev, 0);
7766 }
7767
7768 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
7769 global_feature_count[f] = UINT64_MAX;
7770 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
7771 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
7772 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
7773
7774 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
7775 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7776
7777 if (rc == 0 && !dump_opt['L'])
7778 rc = dump_mos_leaks(spa);
7779
7780 for (f = 0; f < SPA_FEATURES; f++) {
7781 uint64_t refcount;
7782
7783 uint64_t *arr;
7784 if (!(spa_feature_table[f].fi_flags &
7785 ZFEATURE_FLAG_PER_DATASET)) {
7786 if (global_feature_count[f] == UINT64_MAX)
7787 continue;
7788 if (!spa_feature_is_enabled(spa, f)) {
7789 ASSERT0(global_feature_count[f]);
7790 continue;
7791 }
7792 arr = global_feature_count;
7793 } else {
7794 if (!spa_feature_is_enabled(spa, f)) {
7795 ASSERT0(dataset_feature_count[f]);
7796 continue;
7797 }
7798 arr = dataset_feature_count;
7799 }
7800 if (feature_get_refcount(spa, &spa_feature_table[f],
7801 &refcount) == ENOTSUP)
7802 continue;
7803 if (arr[f] != refcount) {
7804 (void) printf("%s feature refcount mismatch: "
7805 "%lld consumers != %lld refcount\n",
7806 spa_feature_table[f].fi_uname,
7807 (longlong_t)arr[f], (longlong_t)refcount);
7808 rc = 2;
7809 } else {
7810 (void) printf("Verified %s feature refcount "
7811 "of %llu is correct\n",
7812 spa_feature_table[f].fi_uname,
7813 (longlong_t)refcount);
7814 }
7815 }
7816
7817 if (rc == 0)
7818 rc = verify_device_removal_feature_counts(spa);
7819 }
7820
7821 if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
7822 rc = dump_block_stats(spa);
7823
7824 if (rc == 0)
7825 rc = verify_spacemap_refcounts(spa);
7826
7827 if (dump_opt['s'])
7828 show_pool_stats(spa);
7829
7830 if (dump_opt['h'])
7831 dump_history(spa);
7832
7833 if (rc == 0)
7834 rc = verify_checkpoint(spa);
7835
7836 if (rc != 0) {
7837 dump_debug_buffer();
7838 exit(rc);
7839 }
7840 }
7841
7842 #define ZDB_FLAG_CHECKSUM 0x0001
7843 #define ZDB_FLAG_DECOMPRESS 0x0002
7844 #define ZDB_FLAG_BSWAP 0x0004
7845 #define ZDB_FLAG_GBH 0x0008
7846 #define ZDB_FLAG_INDIRECT 0x0010
7847 #define ZDB_FLAG_RAW 0x0020
7848 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
7849 #define ZDB_FLAG_VERBOSE 0x0080
7850
7851 static int flagbits[256];
7852 static char flagbitstr[16];
7853
7854 static void
7855 zdb_print_blkptr(const blkptr_t *bp, int flags)
7856 {
7857 char blkbuf[BP_SPRINTF_LEN];
7858
7859 if (flags & ZDB_FLAG_BSWAP)
7860 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
7861
7862 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
7863 (void) printf("%s\n", blkbuf);
7864 }
7865
7866 static void
7867 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
7868 {
7869 int i;
7870
7871 for (i = 0; i < nbps; i++)
7872 zdb_print_blkptr(&bp[i], flags);
7873 }
7874
7875 static void
7876 zdb_dump_gbh(void *buf, int flags)
7877 {
7878 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
7879 }
7880
7881 static void
7882 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
7883 {
7884 if (flags & ZDB_FLAG_BSWAP)
7885 byteswap_uint64_array(buf, size);
7886 VERIFY(write(fileno(stdout), buf, size) == size);
7887 }
7888
7889 static void
7890 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
7891 {
7892 uint64_t *d = (uint64_t *)buf;
7893 unsigned nwords = size / sizeof (uint64_t);
7894 int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
7895 unsigned i, j;
7896 const char *hdr;
7897 char *c;
7898
7899
7900 if (do_bswap)
7901 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
7902 else
7903 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
7904
7905 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
7906
7907 #ifdef _LITTLE_ENDIAN
7908 /* correct the endianness */
7909 do_bswap = !do_bswap;
7910 #endif
7911 for (i = 0; i < nwords; i += 2) {
7912 (void) printf("%06llx: %016llx %016llx ",
7913 (u_longlong_t)(i * sizeof (uint64_t)),
7914 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
7915 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
7916
7917 c = (char *)&d[i];
7918 for (j = 0; j < 2 * sizeof (uint64_t); j++)
7919 (void) printf("%c", isprint(c[j]) ? c[j] : '.');
7920 (void) printf("\n");
7921 }
7922 }
7923
7924 /*
7925 * There are two acceptable formats:
7926 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
7927 * child[.child]* - For example: 0.1.1
7928 *
7929 * The second form can be used to specify arbitrary vdevs anywhere
7930 * in the hierarchy. For example, in a pool with a mirror of
7931 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
7932 */
7933 static vdev_t *
7934 zdb_vdev_lookup(vdev_t *vdev, const char *path)
7935 {
7936 char *s, *p, *q;
7937 unsigned i;
7938
7939 if (vdev == NULL)
7940 return (NULL);
7941
7942 /* First, assume the x.x.x.x format */
7943 i = strtoul(path, &s, 10);
7944 if (s == path || (s && *s != '.' && *s != '\0'))
7945 goto name;
7946 if (i >= vdev->vdev_children)
7947 return (NULL);
7948
7949 vdev = vdev->vdev_child[i];
7950 if (s && *s == '\0')
7951 return (vdev);
7952 return (zdb_vdev_lookup(vdev, s+1));
7953
7954 name:
7955 for (i = 0; i < vdev->vdev_children; i++) {
7956 vdev_t *vc = vdev->vdev_child[i];
7957
7958 if (vc->vdev_path == NULL) {
7959 vc = zdb_vdev_lookup(vc, path);
7960 if (vc == NULL)
7961 continue;
7962 else
7963 return (vc);
7964 }
7965
7966 p = strrchr(vc->vdev_path, '/');
7967 p = p ? p + 1 : vc->vdev_path;
7968 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
7969
7970 if (strcmp(vc->vdev_path, path) == 0)
7971 return (vc);
7972 if (strcmp(p, path) == 0)
7973 return (vc);
7974 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
7975 return (vc);
7976 }
7977
7978 return (NULL);
7979 }
7980
7981 static int
7982 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
7983 {
7984 dsl_dataset_t *ds;
7985
7986 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
7987 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
7988 NULL, &ds);
7989 if (error != 0) {
7990 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
7991 (u_longlong_t)objset_id, strerror(error));
7992 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
7993 return (error);
7994 }
7995 dsl_dataset_name(ds, outstr);
7996 dsl_dataset_rele(ds, NULL);
7997 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
7998 return (0);
7999 }
8000
8001 static boolean_t
8002 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8003 {
8004 char *s0, *s1, *tmp = NULL;
8005
8006 if (sizes == NULL)
8007 return (B_FALSE);
8008
8009 s0 = strtok_r(sizes, "/", &tmp);
8010 if (s0 == NULL)
8011 return (B_FALSE);
8012 s1 = strtok_r(NULL, "/", &tmp);
8013 *lsize = strtoull(s0, NULL, 16);
8014 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8015 return (*lsize >= *psize && *psize > 0);
8016 }
8017
8018 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8019
8020 static boolean_t
8021 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8022 uint64_t psize, int flags)
8023 {
8024 (void) buf;
8025 boolean_t exceeded = B_FALSE;
8026 /*
8027 * We don't know how the data was compressed, so just try
8028 * every decompress function at every inflated blocksize.
8029 */
8030 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8031 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8032 int *cfuncp = cfuncs;
8033 uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8034 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8035 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8036 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
8037 *cfuncp++ = ZIO_COMPRESS_LZ4;
8038 *cfuncp++ = ZIO_COMPRESS_LZJB;
8039 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8040 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8041 if (((1ULL << c) & mask) == 0)
8042 *cfuncp++ = c;
8043
8044 /*
8045 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8046 * could take a while and we should let the user know
8047 * we are not stuck. On the other hand, printing progress
8048 * info gets old after a while. User can specify 'v' flag
8049 * to see the progression.
8050 */
8051 if (lsize == psize)
8052 lsize += SPA_MINBLOCKSIZE;
8053 else
8054 maxlsize = lsize;
8055 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8056 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8057 if (flags & ZDB_FLAG_VERBOSE) {
8058 (void) fprintf(stderr,
8059 "Trying %05llx -> %05llx (%s)\n",
8060 (u_longlong_t)psize,
8061 (u_longlong_t)lsize,
8062 zio_compress_table[*cfuncp].\
8063 ci_name);
8064 }
8065
8066 /*
8067 * We randomize lbuf2, and decompress to both
8068 * lbuf and lbuf2. This way, we will know if
8069 * decompression fill exactly to lsize.
8070 */
8071 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
8072
8073 if (zio_decompress_data(*cfuncp, pabd,
8074 lbuf, psize, lsize, NULL) == 0 &&
8075 zio_decompress_data(*cfuncp, pabd,
8076 lbuf2, psize, lsize, NULL) == 0 &&
8077 memcmp(lbuf, lbuf2, lsize) == 0)
8078 break;
8079 }
8080 if (*cfuncp != 0)
8081 break;
8082 }
8083 umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8084
8085 if (lsize > maxlsize) {
8086 exceeded = B_TRUE;
8087 }
8088 if (*cfuncp == ZIO_COMPRESS_ZLE) {
8089 printf("\nZLE decompression was selected. If you "
8090 "suspect the results are wrong,\ntry avoiding ZLE "
8091 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8092 }
8093
8094 return (exceeded);
8095 }
8096
8097 /*
8098 * Read a block from a pool and print it out. The syntax of the
8099 * block descriptor is:
8100 *
8101 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8102 *
8103 * pool - The name of the pool you wish to read from
8104 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8105 * offset - offset, in hex, in bytes
8106 * size - Amount of data to read, in hex, in bytes
8107 * flags - A string of characters specifying options
8108 * b: Decode a blkptr at given offset within block
8109 * c: Calculate and display checksums
8110 * d: Decompress data before dumping
8111 * e: Byteswap data before dumping
8112 * g: Display data as a gang block header
8113 * i: Display as an indirect block
8114 * r: Dump raw data to stdout
8115 * v: Verbose
8116 *
8117 */
8118 static void
8119 zdb_read_block(char *thing, spa_t *spa)
8120 {
8121 blkptr_t blk, *bp = &blk;
8122 dva_t *dva = bp->blk_dva;
8123 int flags = 0;
8124 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8125 zio_t *zio;
8126 vdev_t *vd;
8127 abd_t *pabd;
8128 void *lbuf, *buf;
8129 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8130 const char *vdev, *errmsg = NULL;
8131 int i, error;
8132 boolean_t borrowed = B_FALSE, found = B_FALSE;
8133
8134 dup = strdup(thing);
8135 s = strtok_r(dup, ":", &tmp);
8136 vdev = s ?: "";
8137 s = strtok_r(NULL, ":", &tmp);
8138 offset = strtoull(s ? s : "", NULL, 16);
8139 sizes = strtok_r(NULL, ":", &tmp);
8140 s = strtok_r(NULL, ":", &tmp);
8141 flagstr = strdup(s ?: "");
8142
8143 if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8144 errmsg = "invalid size(s)";
8145 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8146 errmsg = "size must be a multiple of sector size";
8147 if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8148 errmsg = "offset must be a multiple of sector size";
8149 if (errmsg) {
8150 (void) printf("Invalid block specifier: %s - %s\n",
8151 thing, errmsg);
8152 goto done;
8153 }
8154
8155 tmp = NULL;
8156 for (s = strtok_r(flagstr, ":", &tmp);
8157 s != NULL;
8158 s = strtok_r(NULL, ":", &tmp)) {
8159 for (i = 0; i < strlen(flagstr); i++) {
8160 int bit = flagbits[(uchar_t)flagstr[i]];
8161
8162 if (bit == 0) {
8163 (void) printf("***Ignoring flag: %c\n",
8164 (uchar_t)flagstr[i]);
8165 continue;
8166 }
8167 found = B_TRUE;
8168 flags |= bit;
8169
8170 p = &flagstr[i + 1];
8171 if (*p != ':' && *p != '\0') {
8172 int j = 0, nextbit = flagbits[(uchar_t)*p];
8173 char *end, offstr[8] = { 0 };
8174 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8175 (nextbit == 0)) {
8176 /* look ahead to isolate the offset */
8177 while (nextbit == 0 &&
8178 strchr(flagbitstr, *p) == NULL) {
8179 offstr[j] = *p;
8180 j++;
8181 if (i + j > strlen(flagstr))
8182 break;
8183 p++;
8184 nextbit = flagbits[(uchar_t)*p];
8185 }
8186 blkptr_offset = strtoull(offstr, &end,
8187 16);
8188 i += j;
8189 } else if (nextbit == 0) {
8190 (void) printf("***Ignoring flag arg:"
8191 " '%c'\n", (uchar_t)*p);
8192 }
8193 }
8194 }
8195 }
8196 if (blkptr_offset % sizeof (blkptr_t)) {
8197 printf("Block pointer offset 0x%llx "
8198 "must be divisible by 0x%x\n",
8199 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8200 goto done;
8201 }
8202 if (found == B_FALSE && strlen(flagstr) > 0) {
8203 printf("Invalid flag arg: '%s'\n", flagstr);
8204 goto done;
8205 }
8206
8207 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8208 if (vd == NULL) {
8209 (void) printf("***Invalid vdev: %s\n", vdev);
8210 goto done;
8211 } else {
8212 if (vd->vdev_path)
8213 (void) fprintf(stderr, "Found vdev: %s\n",
8214 vd->vdev_path);
8215 else
8216 (void) fprintf(stderr, "Found vdev type: %s\n",
8217 vd->vdev_ops->vdev_op_type);
8218 }
8219
8220 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8221 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8222
8223 BP_ZERO(bp);
8224
8225 DVA_SET_VDEV(&dva[0], vd->vdev_id);
8226 DVA_SET_OFFSET(&dva[0], offset);
8227 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8228 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8229
8230 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8231
8232 BP_SET_LSIZE(bp, lsize);
8233 BP_SET_PSIZE(bp, psize);
8234 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8235 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8236 BP_SET_TYPE(bp, DMU_OT_NONE);
8237 BP_SET_LEVEL(bp, 0);
8238 BP_SET_DEDUP(bp, 0);
8239 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8240
8241 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8242 zio = zio_root(spa, NULL, NULL, 0);
8243
8244 if (vd == vd->vdev_top) {
8245 /*
8246 * Treat this as a normal block read.
8247 */
8248 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8249 ZIO_PRIORITY_SYNC_READ,
8250 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8251 } else {
8252 /*
8253 * Treat this as a vdev child I/O.
8254 */
8255 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8256 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8257 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
8258 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8259 ZIO_FLAG_OPTIONAL, NULL, NULL));
8260 }
8261
8262 error = zio_wait(zio);
8263 spa_config_exit(spa, SCL_STATE, FTAG);
8264
8265 if (error) {
8266 (void) printf("Read of %s failed, error: %d\n", thing, error);
8267 goto out;
8268 }
8269
8270 uint64_t orig_lsize = lsize;
8271 buf = lbuf;
8272 if (flags & ZDB_FLAG_DECOMPRESS) {
8273 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
8274 lsize, psize, flags);
8275 if (failed) {
8276 (void) printf("Decompress of %s failed\n", thing);
8277 goto out;
8278 }
8279 } else {
8280 buf = abd_borrow_buf_copy(pabd, lsize);
8281 borrowed = B_TRUE;
8282 }
8283 /*
8284 * Try to detect invalid block pointer. If invalid, try
8285 * decompressing.
8286 */
8287 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8288 !(flags & ZDB_FLAG_DECOMPRESS)) {
8289 const blkptr_t *b = (const blkptr_t *)(void *)
8290 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8291 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) ==
8292 B_FALSE) {
8293 abd_return_buf_copy(pabd, buf, lsize);
8294 borrowed = B_FALSE;
8295 buf = lbuf;
8296 boolean_t failed = zdb_decompress_block(pabd, buf,
8297 lbuf, lsize, psize, flags);
8298 b = (const blkptr_t *)(void *)
8299 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8300 if (failed || zfs_blkptr_verify(spa, b, B_FALSE,
8301 BLK_VERIFY_LOG) == B_FALSE) {
8302 printf("invalid block pointer at this DVA\n");
8303 goto out;
8304 }
8305 }
8306 }
8307
8308 if (flags & ZDB_FLAG_PRINT_BLKPTR)
8309 zdb_print_blkptr((blkptr_t *)(void *)
8310 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8311 else if (flags & ZDB_FLAG_RAW)
8312 zdb_dump_block_raw(buf, lsize, flags);
8313 else if (flags & ZDB_FLAG_INDIRECT)
8314 zdb_dump_indirect((blkptr_t *)buf,
8315 orig_lsize / sizeof (blkptr_t), flags);
8316 else if (flags & ZDB_FLAG_GBH)
8317 zdb_dump_gbh(buf, flags);
8318 else
8319 zdb_dump_block(thing, buf, lsize, flags);
8320
8321 /*
8322 * If :c was specified, iterate through the checksum table to
8323 * calculate and display each checksum for our specified
8324 * DVA and length.
8325 */
8326 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
8327 !(flags & ZDB_FLAG_GBH)) {
8328 zio_t *czio;
8329 (void) printf("\n");
8330 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
8331 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
8332
8333 if ((zio_checksum_table[ck].ci_flags &
8334 ZCHECKSUM_FLAG_EMBEDDED) ||
8335 ck == ZIO_CHECKSUM_NOPARITY) {
8336 continue;
8337 }
8338 BP_SET_CHECKSUM(bp, ck);
8339 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8340 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
8341 czio->io_bp = bp;
8342
8343 if (vd == vd->vdev_top) {
8344 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
8345 NULL, NULL,
8346 ZIO_PRIORITY_SYNC_READ,
8347 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8348 ZIO_FLAG_DONT_RETRY, NULL));
8349 } else {
8350 zio_nowait(zio_vdev_child_io(czio, bp, vd,
8351 offset, pabd, psize, ZIO_TYPE_READ,
8352 ZIO_PRIORITY_SYNC_READ,
8353 ZIO_FLAG_DONT_CACHE |
8354 ZIO_FLAG_DONT_PROPAGATE |
8355 ZIO_FLAG_DONT_RETRY |
8356 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8357 ZIO_FLAG_SPECULATIVE |
8358 ZIO_FLAG_OPTIONAL, NULL, NULL));
8359 }
8360 error = zio_wait(czio);
8361 if (error == 0 || error == ECKSUM) {
8362 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0);
8363 ck_zio->io_offset =
8364 DVA_GET_OFFSET(&bp->blk_dva[0]);
8365 ck_zio->io_bp = bp;
8366 zio_checksum_compute(ck_zio, ck, pabd, lsize);
8367 printf("%12s\tcksum=%llx:%llx:%llx:%llx\n",
8368 zio_checksum_table[ck].ci_name,
8369 (u_longlong_t)bp->blk_cksum.zc_word[0],
8370 (u_longlong_t)bp->blk_cksum.zc_word[1],
8371 (u_longlong_t)bp->blk_cksum.zc_word[2],
8372 (u_longlong_t)bp->blk_cksum.zc_word[3]);
8373 zio_wait(ck_zio);
8374 } else {
8375 printf("error %d reading block\n", error);
8376 }
8377 spa_config_exit(spa, SCL_STATE, FTAG);
8378 }
8379 }
8380
8381 if (borrowed)
8382 abd_return_buf_copy(pabd, buf, lsize);
8383
8384 out:
8385 abd_free(pabd);
8386 umem_free(lbuf, SPA_MAXBLOCKSIZE);
8387 done:
8388 free(flagstr);
8389 free(dup);
8390 }
8391
8392 static void
8393 zdb_embedded_block(char *thing)
8394 {
8395 blkptr_t bp = {{{{0}}}};
8396 unsigned long long *words = (void *)&bp;
8397 char *buf;
8398 int err;
8399
8400 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
8401 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
8402 words + 0, words + 1, words + 2, words + 3,
8403 words + 4, words + 5, words + 6, words + 7,
8404 words + 8, words + 9, words + 10, words + 11,
8405 words + 12, words + 13, words + 14, words + 15);
8406 if (err != 16) {
8407 (void) fprintf(stderr, "invalid input format\n");
8408 exit(1);
8409 }
8410 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
8411 buf = malloc(SPA_MAXBLOCKSIZE);
8412 if (buf == NULL) {
8413 (void) fprintf(stderr, "out of memory\n");
8414 exit(1);
8415 }
8416 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
8417 if (err != 0) {
8418 (void) fprintf(stderr, "decode failed: %u\n", err);
8419 exit(1);
8420 }
8421 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
8422 free(buf);
8423 }
8424
8425 /* check for valid hex or decimal numeric string */
8426 static boolean_t
8427 zdb_numeric(char *str)
8428 {
8429 int i = 0;
8430
8431 if (strlen(str) == 0)
8432 return (B_FALSE);
8433 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
8434 i = 2;
8435 for (; i < strlen(str); i++) {
8436 if (!isxdigit(str[i]))
8437 return (B_FALSE);
8438 }
8439 return (B_TRUE);
8440 }
8441
8442 int
8443 main(int argc, char **argv)
8444 {
8445 int c;
8446 spa_t *spa = NULL;
8447 objset_t *os = NULL;
8448 int dump_all = 1;
8449 int verbose = 0;
8450 int error = 0;
8451 char **searchdirs = NULL;
8452 int nsearch = 0;
8453 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
8454 nvlist_t *policy = NULL;
8455 uint64_t max_txg = UINT64_MAX;
8456 int64_t objset_id = -1;
8457 uint64_t object;
8458 int flags = ZFS_IMPORT_MISSING_LOG;
8459 int rewind = ZPOOL_NEVER_REWIND;
8460 char *spa_config_path_env, *objset_str;
8461 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
8462 nvlist_t *cfg = NULL;
8463
8464 dprintf_setup(&argc, argv);
8465
8466 /*
8467 * If there is an environment variable SPA_CONFIG_PATH it overrides
8468 * default spa_config_path setting. If -U flag is specified it will
8469 * override this environment variable settings once again.
8470 */
8471 spa_config_path_env = getenv("SPA_CONFIG_PATH");
8472 if (spa_config_path_env != NULL)
8473 spa_config_path = spa_config_path_env;
8474
8475 /*
8476 * For performance reasons, we set this tunable down. We do so before
8477 * the arg parsing section so that the user can override this value if
8478 * they choose.
8479 */
8480 zfs_btree_verify_intensity = 3;
8481
8482 struct option long_options[] = {
8483 {"ignore-assertions", no_argument, NULL, 'A'},
8484 {"block-stats", no_argument, NULL, 'b'},
8485 {"checksum", no_argument, NULL, 'c'},
8486 {"config", no_argument, NULL, 'C'},
8487 {"datasets", no_argument, NULL, 'd'},
8488 {"dedup-stats", no_argument, NULL, 'D'},
8489 {"exported", no_argument, NULL, 'e'},
8490 {"embedded-block-pointer", no_argument, NULL, 'E'},
8491 {"automatic-rewind", no_argument, NULL, 'F'},
8492 {"dump-debug-msg", no_argument, NULL, 'G'},
8493 {"history", no_argument, NULL, 'h'},
8494 {"intent-logs", no_argument, NULL, 'i'},
8495 {"inflight", required_argument, NULL, 'I'},
8496 {"checkpointed-state", no_argument, NULL, 'k'},
8497 {"label", no_argument, NULL, 'l'},
8498 {"disable-leak-tracking", no_argument, NULL, 'L'},
8499 {"metaslabs", no_argument, NULL, 'm'},
8500 {"metaslab-groups", no_argument, NULL, 'M'},
8501 {"numeric", no_argument, NULL, 'N'},
8502 {"option", required_argument, NULL, 'o'},
8503 {"object-lookups", no_argument, NULL, 'O'},
8504 {"path", required_argument, NULL, 'p'},
8505 {"parseable", no_argument, NULL, 'P'},
8506 {"skip-label", no_argument, NULL, 'q'},
8507 {"copy-object", no_argument, NULL, 'r'},
8508 {"read-block", no_argument, NULL, 'R'},
8509 {"io-stats", no_argument, NULL, 's'},
8510 {"simulate-dedup", no_argument, NULL, 'S'},
8511 {"txg", required_argument, NULL, 't'},
8512 {"uberblock", no_argument, NULL, 'u'},
8513 {"cachefile", required_argument, NULL, 'U'},
8514 {"verbose", no_argument, NULL, 'v'},
8515 {"verbatim", no_argument, NULL, 'V'},
8516 {"dump-blocks", required_argument, NULL, 'x'},
8517 {"extreme-rewind", no_argument, NULL, 'X'},
8518 {"all-reconstruction", no_argument, NULL, 'Y'},
8519 {"livelist", no_argument, NULL, 'y'},
8520 {"zstd-headers", no_argument, NULL, 'Z'},
8521 {0, 0, 0, 0}
8522 };
8523
8524 while ((c = getopt_long(argc, argv,
8525 "AbcCdDeEFGhiI:klLmMNo:Op:PqrRsSt:uU:vVx:XYyZ",
8526 long_options, NULL)) != -1) {
8527 switch (c) {
8528 case 'b':
8529 case 'c':
8530 case 'C':
8531 case 'd':
8532 case 'D':
8533 case 'E':
8534 case 'G':
8535 case 'h':
8536 case 'i':
8537 case 'l':
8538 case 'm':
8539 case 'M':
8540 case 'N':
8541 case 'O':
8542 case 'r':
8543 case 'R':
8544 case 's':
8545 case 'S':
8546 case 'u':
8547 case 'y':
8548 case 'Z':
8549 dump_opt[c]++;
8550 dump_all = 0;
8551 break;
8552 case 'A':
8553 case 'e':
8554 case 'F':
8555 case 'k':
8556 case 'L':
8557 case 'P':
8558 case 'q':
8559 case 'X':
8560 dump_opt[c]++;
8561 break;
8562 case 'Y':
8563 zfs_reconstruct_indirect_combinations_max = INT_MAX;
8564 zfs_deadman_enabled = 0;
8565 break;
8566 /* NB: Sort single match options below. */
8567 case 'I':
8568 max_inflight_bytes = strtoull(optarg, NULL, 0);
8569 if (max_inflight_bytes == 0) {
8570 (void) fprintf(stderr, "maximum number "
8571 "of inflight bytes must be greater "
8572 "than 0\n");
8573 usage();
8574 }
8575 break;
8576 case 'o':
8577 error = set_global_var(optarg);
8578 if (error != 0)
8579 usage();
8580 break;
8581 case 'p':
8582 if (searchdirs == NULL) {
8583 searchdirs = umem_alloc(sizeof (char *),
8584 UMEM_NOFAIL);
8585 } else {
8586 char **tmp = umem_alloc((nsearch + 1) *
8587 sizeof (char *), UMEM_NOFAIL);
8588 memcpy(tmp, searchdirs, nsearch *
8589 sizeof (char *));
8590 umem_free(searchdirs,
8591 nsearch * sizeof (char *));
8592 searchdirs = tmp;
8593 }
8594 searchdirs[nsearch++] = optarg;
8595 break;
8596 case 't':
8597 max_txg = strtoull(optarg, NULL, 0);
8598 if (max_txg < TXG_INITIAL) {
8599 (void) fprintf(stderr, "incorrect txg "
8600 "specified: %s\n", optarg);
8601 usage();
8602 }
8603 break;
8604 case 'U':
8605 spa_config_path = optarg;
8606 if (spa_config_path[0] != '/') {
8607 (void) fprintf(stderr,
8608 "cachefile must be an absolute path "
8609 "(i.e. start with a slash)\n");
8610 usage();
8611 }
8612 break;
8613 case 'v':
8614 verbose++;
8615 break;
8616 case 'V':
8617 flags = ZFS_IMPORT_VERBATIM;
8618 break;
8619 case 'x':
8620 vn_dumpdir = optarg;
8621 break;
8622 default:
8623 usage();
8624 break;
8625 }
8626 }
8627
8628 if (!dump_opt['e'] && searchdirs != NULL) {
8629 (void) fprintf(stderr, "-p option requires use of -e\n");
8630 usage();
8631 }
8632 #if defined(_LP64)
8633 /*
8634 * ZDB does not typically re-read blocks; therefore limit the ARC
8635 * to 256 MB, which can be used entirely for metadata.
8636 */
8637 zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT;
8638 zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024;
8639 #endif
8640
8641 /*
8642 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
8643 * "zdb -b" uses traversal prefetch which uses async reads.
8644 * For good performance, let several of them be active at once.
8645 */
8646 zfs_vdev_async_read_max_active = 10;
8647
8648 /*
8649 * Disable reference tracking for better performance.
8650 */
8651 reference_tracking_enable = B_FALSE;
8652
8653 /*
8654 * Do not fail spa_load when spa_load_verify fails. This is needed
8655 * to load non-idle pools.
8656 */
8657 spa_load_verify_dryrun = B_TRUE;
8658
8659 /*
8660 * ZDB should have ability to read spacemaps.
8661 */
8662 spa_mode_readable_spacemaps = B_TRUE;
8663
8664 kernel_init(SPA_MODE_READ);
8665
8666 if (dump_all)
8667 verbose = MAX(verbose, 1);
8668
8669 for (c = 0; c < 256; c++) {
8670 if (dump_all && strchr("AeEFklLNOPrRSXy", c) == NULL)
8671 dump_opt[c] = 1;
8672 if (dump_opt[c])
8673 dump_opt[c] += verbose;
8674 }
8675
8676 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
8677 zfs_recover = (dump_opt['A'] > 1);
8678
8679 argc -= optind;
8680 argv += optind;
8681 if (argc < 2 && dump_opt['R'])
8682 usage();
8683
8684 if (dump_opt['E']) {
8685 if (argc != 1)
8686 usage();
8687 zdb_embedded_block(argv[0]);
8688 return (0);
8689 }
8690
8691 if (argc < 1) {
8692 if (!dump_opt['e'] && dump_opt['C']) {
8693 dump_cachefile(spa_config_path);
8694 return (0);
8695 }
8696 usage();
8697 }
8698
8699 if (dump_opt['l'])
8700 return (dump_label(argv[0]));
8701
8702 if (dump_opt['O']) {
8703 if (argc != 2)
8704 usage();
8705 dump_opt['v'] = verbose + 3;
8706 return (dump_path(argv[0], argv[1], NULL));
8707 }
8708 if (dump_opt['r']) {
8709 target_is_spa = B_FALSE;
8710 if (argc != 3)
8711 usage();
8712 dump_opt['v'] = verbose;
8713 error = dump_path(argv[0], argv[1], &object);
8714 if (error != 0)
8715 fatal("internal error: %s", strerror(error));
8716 }
8717
8718 if (dump_opt['X'] || dump_opt['F'])
8719 rewind = ZPOOL_DO_REWIND |
8720 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
8721
8722 /* -N implies -d */
8723 if (dump_opt['N'] && dump_opt['d'] == 0)
8724 dump_opt['d'] = dump_opt['N'];
8725
8726 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
8727 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
8728 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
8729 fatal("internal error: %s", strerror(ENOMEM));
8730
8731 error = 0;
8732 target = argv[0];
8733
8734 if (strpbrk(target, "/@") != NULL) {
8735 size_t targetlen;
8736
8737 target_pool = strdup(target);
8738 *strpbrk(target_pool, "/@") = '\0';
8739
8740 target_is_spa = B_FALSE;
8741 targetlen = strlen(target);
8742 if (targetlen && target[targetlen - 1] == '/')
8743 target[targetlen - 1] = '\0';
8744
8745 /*
8746 * See if an objset ID was supplied (-d <pool>/<objset ID>).
8747 * To disambiguate tank/100, consider the 100 as objsetID
8748 * if -N was given, otherwise 100 is an objsetID iff
8749 * tank/100 as a named dataset fails on lookup.
8750 */
8751 objset_str = strchr(target, '/');
8752 if (objset_str && strlen(objset_str) > 1 &&
8753 zdb_numeric(objset_str + 1)) {
8754 char *endptr;
8755 errno = 0;
8756 objset_str++;
8757 objset_id = strtoull(objset_str, &endptr, 0);
8758 /* dataset 0 is the same as opening the pool */
8759 if (errno == 0 && endptr != objset_str &&
8760 objset_id != 0) {
8761 if (dump_opt['N'])
8762 dataset_lookup = B_TRUE;
8763 }
8764 /* normal dataset name not an objset ID */
8765 if (endptr == objset_str) {
8766 objset_id = -1;
8767 }
8768 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
8769 dump_opt['N']) {
8770 printf("Supply a numeric objset ID with -N\n");
8771 exit(1);
8772 }
8773 } else {
8774 target_pool = target;
8775 }
8776
8777 if (dump_opt['e']) {
8778 importargs_t args = { 0 };
8779
8780 args.paths = nsearch;
8781 args.path = searchdirs;
8782 args.can_be_active = B_TRUE;
8783
8784 libpc_handle_t lpch = {
8785 .lpc_lib_handle = NULL,
8786 .lpc_ops = &libzpool_config_ops,
8787 .lpc_printerr = B_TRUE
8788 };
8789 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
8790
8791 if (error == 0) {
8792
8793 if (nvlist_add_nvlist(cfg,
8794 ZPOOL_LOAD_POLICY, policy) != 0) {
8795 fatal("can't open '%s': %s",
8796 target, strerror(ENOMEM));
8797 }
8798
8799 if (dump_opt['C'] > 1) {
8800 (void) printf("\nConfiguration for import:\n");
8801 dump_nvlist(cfg, 8);
8802 }
8803
8804 /*
8805 * Disable the activity check to allow examination of
8806 * active pools.
8807 */
8808 error = spa_import(target_pool, cfg, NULL,
8809 flags | ZFS_IMPORT_SKIP_MMP);
8810 }
8811 }
8812
8813 if (searchdirs != NULL) {
8814 umem_free(searchdirs, nsearch * sizeof (char *));
8815 searchdirs = NULL;
8816 }
8817
8818 /*
8819 * import_checkpointed_state makes the assumption that the
8820 * target pool that we pass it is already part of the spa
8821 * namespace. Because of that we need to make sure to call
8822 * it always after the -e option has been processed, which
8823 * imports the pool to the namespace if it's not in the
8824 * cachefile.
8825 */
8826 char *checkpoint_pool = NULL;
8827 char *checkpoint_target = NULL;
8828 if (dump_opt['k']) {
8829 checkpoint_pool = import_checkpointed_state(target, cfg,
8830 &checkpoint_target);
8831
8832 if (checkpoint_target != NULL)
8833 target = checkpoint_target;
8834 }
8835
8836 if (cfg != NULL) {
8837 nvlist_free(cfg);
8838 cfg = NULL;
8839 }
8840
8841 if (target_pool != target)
8842 free(target_pool);
8843
8844 if (error == 0) {
8845 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
8846 ASSERT(checkpoint_pool != NULL);
8847 ASSERT(checkpoint_target == NULL);
8848
8849 error = spa_open(checkpoint_pool, &spa, FTAG);
8850 if (error != 0) {
8851 fatal("Tried to open pool \"%s\" but "
8852 "spa_open() failed with error %d\n",
8853 checkpoint_pool, error);
8854 }
8855
8856 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) {
8857 zdb_set_skip_mmp(target);
8858 error = spa_open_rewind(target, &spa, FTAG, policy,
8859 NULL);
8860 if (error) {
8861 /*
8862 * If we're missing the log device then
8863 * try opening the pool after clearing the
8864 * log state.
8865 */
8866 mutex_enter(&spa_namespace_lock);
8867 if ((spa = spa_lookup(target)) != NULL &&
8868 spa->spa_log_state == SPA_LOG_MISSING) {
8869 spa->spa_log_state = SPA_LOG_CLEAR;
8870 error = 0;
8871 }
8872 mutex_exit(&spa_namespace_lock);
8873
8874 if (!error) {
8875 error = spa_open_rewind(target, &spa,
8876 FTAG, policy, NULL);
8877 }
8878 }
8879 } else if (strpbrk(target, "#") != NULL) {
8880 dsl_pool_t *dp;
8881 error = dsl_pool_hold(target, FTAG, &dp);
8882 if (error != 0) {
8883 fatal("can't dump '%s': %s", target,
8884 strerror(error));
8885 }
8886 error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
8887 dsl_pool_rele(dp, FTAG);
8888 if (error != 0) {
8889 fatal("can't dump '%s': %s", target,
8890 strerror(error));
8891 }
8892 return (error);
8893 } else {
8894 target_pool = strdup(target);
8895 if (strpbrk(target, "/@") != NULL)
8896 *strpbrk(target_pool, "/@") = '\0';
8897
8898 zdb_set_skip_mmp(target);
8899 /*
8900 * If -N was supplied, the user has indicated that
8901 * zdb -d <pool>/<objsetID> is in effect. Otherwise
8902 * we first assume that the dataset string is the
8903 * dataset name. If dmu_objset_hold fails with the
8904 * dataset string, and we have an objset_id, retry the
8905 * lookup with the objsetID.
8906 */
8907 boolean_t retry = B_TRUE;
8908 retry_lookup:
8909 if (dataset_lookup == B_TRUE) {
8910 /*
8911 * Use the supplied id to get the name
8912 * for open_objset.
8913 */
8914 error = spa_open(target_pool, &spa, FTAG);
8915 if (error == 0) {
8916 error = name_from_objset_id(spa,
8917 objset_id, dsname);
8918 spa_close(spa, FTAG);
8919 if (error == 0)
8920 target = dsname;
8921 }
8922 }
8923 if (error == 0) {
8924 if (objset_id > 0 && retry) {
8925 int err = dmu_objset_hold(target, FTAG,
8926 &os);
8927 if (err) {
8928 dataset_lookup = B_TRUE;
8929 retry = B_FALSE;
8930 goto retry_lookup;
8931 } else {
8932 dmu_objset_rele(os, FTAG);
8933 }
8934 }
8935 error = open_objset(target, FTAG, &os);
8936 }
8937 if (error == 0)
8938 spa = dmu_objset_spa(os);
8939 free(target_pool);
8940 }
8941 }
8942 nvlist_free(policy);
8943
8944 if (error)
8945 fatal("can't open '%s': %s", target, strerror(error));
8946
8947 /*
8948 * Set the pool failure mode to panic in order to prevent the pool
8949 * from suspending. A suspended I/O will have no way to resume and
8950 * can prevent the zdb(8) command from terminating as expected.
8951 */
8952 if (spa != NULL)
8953 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
8954
8955 argv++;
8956 argc--;
8957 if (dump_opt['r']) {
8958 error = zdb_copy_object(os, object, argv[1]);
8959 } else if (!dump_opt['R']) {
8960 flagbits['d'] = ZOR_FLAG_DIRECTORY;
8961 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
8962 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
8963 flagbits['z'] = ZOR_FLAG_ZAP;
8964 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
8965
8966 if (argc > 0 && dump_opt['d']) {
8967 zopt_object_args = argc;
8968 zopt_object_ranges = calloc(zopt_object_args,
8969 sizeof (zopt_object_range_t));
8970 for (unsigned i = 0; i < zopt_object_args; i++) {
8971 int err;
8972 const char *msg = NULL;
8973
8974 err = parse_object_range(argv[i],
8975 &zopt_object_ranges[i], &msg);
8976 if (err != 0)
8977 fatal("Bad object or range: '%s': %s\n",
8978 argv[i], msg ?: "");
8979 }
8980 } else if (argc > 0 && dump_opt['m']) {
8981 zopt_metaslab_args = argc;
8982 zopt_metaslab = calloc(zopt_metaslab_args,
8983 sizeof (uint64_t));
8984 for (unsigned i = 0; i < zopt_metaslab_args; i++) {
8985 errno = 0;
8986 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
8987 if (zopt_metaslab[i] == 0 && errno != 0)
8988 fatal("bad number %s: %s", argv[i],
8989 strerror(errno));
8990 }
8991 }
8992 if (os != NULL) {
8993 dump_objset(os);
8994 } else if (zopt_object_args > 0 && !dump_opt['m']) {
8995 dump_objset(spa->spa_meta_objset);
8996 } else {
8997 dump_zpool(spa);
8998 }
8999 } else {
9000 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9001 flagbits['c'] = ZDB_FLAG_CHECKSUM;
9002 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9003 flagbits['e'] = ZDB_FLAG_BSWAP;
9004 flagbits['g'] = ZDB_FLAG_GBH;
9005 flagbits['i'] = ZDB_FLAG_INDIRECT;
9006 flagbits['r'] = ZDB_FLAG_RAW;
9007 flagbits['v'] = ZDB_FLAG_VERBOSE;
9008
9009 for (int i = 0; i < argc; i++)
9010 zdb_read_block(argv[i], spa);
9011 }
9012
9013 if (dump_opt['k']) {
9014 free(checkpoint_pool);
9015 if (!target_is_spa)
9016 free(checkpoint_target);
9017 }
9018
9019 if (os != NULL) {
9020 close_objset(os, FTAG);
9021 } else {
9022 spa_close(spa, FTAG);
9023 }
9024
9025 fuid_table_destroy();
9026
9027 dump_debug_buffer();
9028
9029 kernel_fini();
9030
9031 return (error);
9032 }
Cache object: 24ae4e8ee0755a38e0eeba423b97d353
|