1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2016, 2017 Intel Corporation.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
27 */
28
29 /*
30 * Functions to convert between a list of vdevs and an nvlist representing the
31 * configuration. Each entry in the list can be one of:
32 *
33 * Device vdevs
34 * disk=(path=..., devid=...)
35 * file=(path=...)
36 *
37 * Group vdevs
38 * raidz[1|2]=(...)
39 * mirror=(...)
40 *
41 * Hot spares
42 *
43 * While the underlying implementation supports it, group vdevs cannot contain
44 * other group vdevs. All userland verification of devices is contained within
45 * this file. If successful, the nvlist returned can be passed directly to the
46 * kernel; we've done as much verification as possible in userland.
47 *
48 * Hot spares are a special case, and passed down as an array of disk vdevs, at
49 * the same level as the root of the vdev tree.
50 *
51 * The only function exported by this file is 'make_root_vdev'. The
52 * function performs several passes:
53 *
54 * 1. Construct the vdev specification. Performs syntax validation and
55 * makes sure each device is valid.
56 * 2. Check for devices in use. Using libblkid to make sure that no
57 * devices are also in use. Some can be overridden using the 'force'
58 * flag, others cannot.
59 * 3. Check for replication errors if the 'force' flag is not specified.
60 * validates that the replication level is consistent across the
61 * entire pool.
62 * 4. Call libzfs to label any whole disks with an EFI label.
63 */
64
65 #include <assert.h>
66 #include <ctype.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <libzutil.h>
72 #include <limits.h>
73 #include <sys/spa.h>
74 #include <stdio.h>
75 #include <string.h>
76 #include <unistd.h>
77 #include "zpool_util.h"
78 #include <sys/zfs_context.h>
79 #include <sys/stat.h>
80
81 /*
82 * For any given vdev specification, we can have multiple errors. The
83 * vdev_error() function keeps track of whether we have seen an error yet, and
84 * prints out a header if its the first error we've seen.
85 */
86 boolean_t error_seen;
87 boolean_t is_force;
88
89 void
90 vdev_error(const char *fmt, ...)
91 {
92 va_list ap;
93
94 if (!error_seen) {
95 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
96 if (!is_force)
97 (void) fprintf(stderr, gettext("use '-f' to override "
98 "the following errors:\n"));
99 else
100 (void) fprintf(stderr, gettext("the following errors "
101 "must be manually repaired:\n"));
102 error_seen = B_TRUE;
103 }
104
105 va_start(ap, fmt);
106 (void) vfprintf(stderr, fmt, ap);
107 va_end(ap);
108 }
109
110 /*
111 * Check that a file is valid. All we can do in this case is check that it's
112 * not in use by another pool, and not in use by swap.
113 */
114 int
115 check_file_generic(const char *file, boolean_t force, boolean_t isspare)
116 {
117 char *name;
118 int fd;
119 int ret = 0;
120 pool_state_t state;
121 boolean_t inuse;
122
123 if ((fd = open(file, O_RDONLY)) < 0)
124 return (0);
125
126 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
127 const char *desc;
128
129 switch (state) {
130 case POOL_STATE_ACTIVE:
131 desc = gettext("active");
132 break;
133
134 case POOL_STATE_EXPORTED:
135 desc = gettext("exported");
136 break;
137
138 case POOL_STATE_POTENTIALLY_ACTIVE:
139 desc = gettext("potentially active");
140 break;
141
142 default:
143 desc = gettext("unknown");
144 break;
145 }
146
147 /*
148 * Allow hot spares to be shared between pools.
149 */
150 if (state == POOL_STATE_SPARE && isspare) {
151 free(name);
152 (void) close(fd);
153 return (0);
154 }
155
156 if (state == POOL_STATE_ACTIVE ||
157 state == POOL_STATE_SPARE || !force) {
158 switch (state) {
159 case POOL_STATE_SPARE:
160 vdev_error(gettext("%s is reserved as a hot "
161 "spare for pool %s\n"), file, name);
162 break;
163 default:
164 vdev_error(gettext("%s is part of %s pool "
165 "'%s'\n"), file, desc, name);
166 break;
167 }
168 ret = -1;
169 }
170
171 free(name);
172 }
173
174 (void) close(fd);
175 return (ret);
176 }
177
178 /*
179 * This may be a shorthand device path or it could be total gibberish.
180 * Check to see if it is a known device available in zfs_vdev_paths.
181 * As part of this check, see if we've been given an entire disk
182 * (minus the slice number).
183 */
184 static int
185 is_shorthand_path(const char *arg, char *path, size_t path_size,
186 struct stat64 *statbuf, boolean_t *wholedisk)
187 {
188 int error;
189
190 error = zfs_resolve_shortname(arg, path, path_size);
191 if (error == 0) {
192 *wholedisk = zfs_dev_is_whole_disk(path);
193 if (*wholedisk || (stat64(path, statbuf) == 0))
194 return (0);
195 }
196
197 strlcpy(path, arg, path_size);
198 memset(statbuf, 0, sizeof (*statbuf));
199 *wholedisk = B_FALSE;
200
201 return (error);
202 }
203
204 /*
205 * Determine if the given path is a hot spare within the given configuration.
206 * If no configuration is given we rely solely on the label.
207 */
208 static boolean_t
209 is_spare(nvlist_t *config, const char *path)
210 {
211 int fd;
212 pool_state_t state;
213 char *name = NULL;
214 nvlist_t *label;
215 uint64_t guid, spareguid;
216 nvlist_t *nvroot;
217 nvlist_t **spares;
218 uint_t i, nspares;
219 boolean_t inuse;
220
221 if (zpool_is_draid_spare(path))
222 return (B_TRUE);
223
224 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
225 return (B_FALSE);
226
227 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
228 !inuse ||
229 state != POOL_STATE_SPARE ||
230 zpool_read_label(fd, &label, NULL) != 0) {
231 free(name);
232 (void) close(fd);
233 return (B_FALSE);
234 }
235 free(name);
236 (void) close(fd);
237
238 if (config == NULL) {
239 nvlist_free(label);
240 return (B_TRUE);
241 }
242
243 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
244 nvlist_free(label);
245
246 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
247 &nvroot) == 0);
248 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
249 &spares, &nspares) == 0) {
250 for (i = 0; i < nspares; i++) {
251 verify(nvlist_lookup_uint64(spares[i],
252 ZPOOL_CONFIG_GUID, &spareguid) == 0);
253 if (spareguid == guid)
254 return (B_TRUE);
255 }
256 }
257
258 return (B_FALSE);
259 }
260
261 /*
262 * Create a leaf vdev. Determine if this is a file or a device. If it's a
263 * device, fill in the device id to make a complete nvlist. Valid forms for a
264 * leaf vdev are:
265 *
266 * /dev/xxx Complete disk path
267 * /xxx Full path to file
268 * xxx Shorthand for <zfs_vdev_paths>/xxx
269 * draid* Virtual dRAID spare
270 */
271 static nvlist_t *
272 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
273 {
274 char path[MAXPATHLEN];
275 struct stat64 statbuf;
276 nvlist_t *vdev = NULL;
277 const char *type = NULL;
278 boolean_t wholedisk = B_FALSE;
279 uint64_t ashift = 0;
280 int err;
281
282 /*
283 * Determine what type of vdev this is, and put the full path into
284 * 'path'. We detect whether this is a device of file afterwards by
285 * checking the st_mode of the file.
286 */
287 if (arg[0] == '/') {
288 /*
289 * Complete device or file path. Exact type is determined by
290 * examining the file descriptor afterwards. Symbolic links
291 * are resolved to their real paths to determine whole disk
292 * and S_ISBLK/S_ISREG type checks. However, we are careful
293 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
294 * can leverage udev's persistent device labels.
295 */
296 if (realpath(arg, path) == NULL) {
297 (void) fprintf(stderr,
298 gettext("cannot resolve path '%s'\n"), arg);
299 return (NULL);
300 }
301
302 wholedisk = zfs_dev_is_whole_disk(path);
303 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
304 (void) fprintf(stderr,
305 gettext("cannot open '%s': %s\n"),
306 path, strerror(errno));
307 return (NULL);
308 }
309
310 /* After whole disk check restore original passed path */
311 strlcpy(path, arg, sizeof (path));
312 } else if (zpool_is_draid_spare(arg)) {
313 if (!is_primary) {
314 (void) fprintf(stderr,
315 gettext("cannot open '%s': dRAID spares can only "
316 "be used to replace primary vdevs\n"), arg);
317 return (NULL);
318 }
319
320 wholedisk = B_TRUE;
321 strlcpy(path, arg, sizeof (path));
322 type = VDEV_TYPE_DRAID_SPARE;
323 } else {
324 err = is_shorthand_path(arg, path, sizeof (path),
325 &statbuf, &wholedisk);
326 if (err != 0) {
327 /*
328 * If we got ENOENT, then the user gave us
329 * gibberish, so try to direct them with a
330 * reasonable error message. Otherwise,
331 * regurgitate strerror() since it's the best we
332 * can do.
333 */
334 if (err == ENOENT) {
335 (void) fprintf(stderr,
336 gettext("cannot open '%s': no such "
337 "device in %s\n"), arg, DISK_ROOT);
338 (void) fprintf(stderr,
339 gettext("must be a full path or "
340 "shorthand device name\n"));
341 return (NULL);
342 } else {
343 (void) fprintf(stderr,
344 gettext("cannot open '%s': %s\n"),
345 path, strerror(errno));
346 return (NULL);
347 }
348 }
349 }
350
351 if (type == NULL) {
352 /*
353 * Determine whether this is a device or a file.
354 */
355 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
356 type = VDEV_TYPE_DISK;
357 } else if (S_ISREG(statbuf.st_mode)) {
358 type = VDEV_TYPE_FILE;
359 } else {
360 fprintf(stderr, gettext("cannot use '%s': must "
361 "be a block device or regular file\n"), path);
362 return (NULL);
363 }
364 }
365
366 /*
367 * Finally, we have the complete device or file, and we know that it is
368 * acceptable to use. Construct the nvlist to describe this vdev. All
369 * vdevs have a 'path' element, and devices also have a 'devid' element.
370 */
371 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
372 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
373 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
374
375 if (strcmp(type, VDEV_TYPE_DISK) == 0)
376 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
377 (uint64_t)wholedisk) == 0);
378
379 /*
380 * Override defaults if custom properties are provided.
381 */
382 if (props != NULL) {
383 char *value = NULL;
384
385 if (nvlist_lookup_string(props,
386 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
387 if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
388 (void) fprintf(stderr,
389 gettext("ashift must be a number.\n"));
390 return (NULL);
391 }
392 if (ashift != 0 &&
393 (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
394 (void) fprintf(stderr,
395 gettext("invalid 'ashift=%" PRIu64 "' "
396 "property: only values between %" PRId32 " "
397 "and %" PRId32 " are allowed.\n"),
398 ashift, ASHIFT_MIN, ASHIFT_MAX);
399 return (NULL);
400 }
401 }
402 }
403
404 /*
405 * If the device is known to incorrectly report its physical sector
406 * size explicitly provide the known correct value.
407 */
408 if (ashift == 0) {
409 int sector_size;
410
411 if (check_sector_size_database(path, §or_size) == B_TRUE)
412 ashift = highbit64(sector_size) - 1;
413 }
414
415 if (ashift > 0)
416 (void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
417
418 return (vdev);
419 }
420
421 /*
422 * Go through and verify the replication level of the pool is consistent.
423 * Performs the following checks:
424 *
425 * For the new spec, verifies that devices in mirrors and raidz are the
426 * same size.
427 *
428 * If the current configuration already has inconsistent replication
429 * levels, ignore any other potential problems in the new spec.
430 *
431 * Otherwise, make sure that the current spec (if there is one) and the new
432 * spec have consistent replication levels.
433 *
434 * If there is no current spec (create), make sure new spec has at least
435 * one general purpose vdev.
436 */
437 typedef struct replication_level {
438 char *zprl_type;
439 uint64_t zprl_children;
440 uint64_t zprl_parity;
441 } replication_level_t;
442
443 #define ZPOOL_FUZZ (16 * 1024 * 1024)
444
445 /*
446 * N.B. For the purposes of comparing replication levels dRAID can be
447 * considered functionally equivalent to raidz.
448 */
449 static boolean_t
450 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
451 replication_level_t **raidz, replication_level_t **mirror)
452 {
453 if ((strcmp(a->zprl_type, "raidz") == 0 ||
454 strcmp(a->zprl_type, "draid") == 0) &&
455 strcmp(b->zprl_type, "mirror") == 0) {
456 *raidz = a;
457 *mirror = b;
458 return (B_TRUE);
459 }
460 return (B_FALSE);
461 }
462
463 /*
464 * Comparison for determining if dRAID and raidz where passed in either order.
465 */
466 static boolean_t
467 is_raidz_draid(replication_level_t *a, replication_level_t *b)
468 {
469 if ((strcmp(a->zprl_type, "raidz") == 0 ||
470 strcmp(a->zprl_type, "draid") == 0) &&
471 (strcmp(b->zprl_type, "raidz") == 0 ||
472 strcmp(b->zprl_type, "draid") == 0)) {
473 return (B_TRUE);
474 }
475
476 return (B_FALSE);
477 }
478
479 /*
480 * Given a list of toplevel vdevs, return the current replication level. If
481 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
482 * an error message will be displayed for each self-inconsistent vdev.
483 */
484 static replication_level_t *
485 get_replication(nvlist_t *nvroot, boolean_t fatal)
486 {
487 nvlist_t **top;
488 uint_t t, toplevels;
489 nvlist_t **child;
490 uint_t c, children;
491 nvlist_t *nv;
492 char *type;
493 replication_level_t lastrep = {0};
494 replication_level_t rep;
495 replication_level_t *ret;
496 replication_level_t *raidz, *mirror;
497 boolean_t dontreport;
498
499 ret = safe_malloc(sizeof (replication_level_t));
500
501 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
502 &top, &toplevels) == 0);
503
504 for (t = 0; t < toplevels; t++) {
505 uint64_t is_log = B_FALSE;
506
507 nv = top[t];
508
509 /*
510 * For separate logs we ignore the top level vdev replication
511 * constraints.
512 */
513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
514 if (is_log)
515 continue;
516
517 /*
518 * Ignore holes introduced by removing aux devices, along
519 * with indirect vdevs introduced by previously removed
520 * vdevs.
521 */
522 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
523 if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
524 strcmp(type, VDEV_TYPE_INDIRECT) == 0)
525 continue;
526
527 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
528 &child, &children) != 0) {
529 /*
530 * This is a 'file' or 'disk' vdev.
531 */
532 rep.zprl_type = type;
533 rep.zprl_children = 1;
534 rep.zprl_parity = 0;
535 } else {
536 int64_t vdev_size;
537
538 /*
539 * This is a mirror or RAID-Z vdev. Go through and make
540 * sure the contents are all the same (files vs. disks),
541 * keeping track of the number of elements in the
542 * process.
543 *
544 * We also check that the size of each vdev (if it can
545 * be determined) is the same.
546 */
547 rep.zprl_type = type;
548 rep.zprl_children = 0;
549
550 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
551 strcmp(type, VDEV_TYPE_DRAID) == 0) {
552 verify(nvlist_lookup_uint64(nv,
553 ZPOOL_CONFIG_NPARITY,
554 &rep.zprl_parity) == 0);
555 assert(rep.zprl_parity != 0);
556 } else {
557 rep.zprl_parity = 0;
558 }
559
560 /*
561 * The 'dontreport' variable indicates that we've
562 * already reported an error for this spec, so don't
563 * bother doing it again.
564 */
565 type = NULL;
566 dontreport = 0;
567 vdev_size = -1LL;
568 for (c = 0; c < children; c++) {
569 nvlist_t *cnv = child[c];
570 char *path;
571 struct stat64 statbuf;
572 int64_t size = -1LL;
573 char *childtype;
574 int fd, err;
575
576 rep.zprl_children++;
577
578 verify(nvlist_lookup_string(cnv,
579 ZPOOL_CONFIG_TYPE, &childtype) == 0);
580
581 /*
582 * If this is a replacing or spare vdev, then
583 * get the real first child of the vdev: do this
584 * in a loop because replacing and spare vdevs
585 * can be nested.
586 */
587 while (strcmp(childtype,
588 VDEV_TYPE_REPLACING) == 0 ||
589 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
590 nvlist_t **rchild;
591 uint_t rchildren;
592
593 verify(nvlist_lookup_nvlist_array(cnv,
594 ZPOOL_CONFIG_CHILDREN, &rchild,
595 &rchildren) == 0);
596 assert(rchildren == 2);
597 cnv = rchild[0];
598
599 verify(nvlist_lookup_string(cnv,
600 ZPOOL_CONFIG_TYPE,
601 &childtype) == 0);
602 }
603
604 verify(nvlist_lookup_string(cnv,
605 ZPOOL_CONFIG_PATH, &path) == 0);
606
607 /*
608 * If we have a raidz/mirror that combines disks
609 * with files, report it as an error.
610 */
611 if (!dontreport && type != NULL &&
612 strcmp(type, childtype) != 0) {
613 if (ret != NULL)
614 free(ret);
615 ret = NULL;
616 if (fatal)
617 vdev_error(gettext(
618 "mismatched replication "
619 "level: %s contains both "
620 "files and devices\n"),
621 rep.zprl_type);
622 else
623 return (NULL);
624 dontreport = B_TRUE;
625 }
626
627 /*
628 * According to stat(2), the value of 'st_size'
629 * is undefined for block devices and character
630 * devices. But there is no effective way to
631 * determine the real size in userland.
632 *
633 * Instead, we'll take advantage of an
634 * implementation detail of spec_size(). If the
635 * device is currently open, then we (should)
636 * return a valid size.
637 *
638 * If we still don't get a valid size (indicated
639 * by a size of 0 or MAXOFFSET_T), then ignore
640 * this device altogether.
641 */
642 if ((fd = open(path, O_RDONLY)) >= 0) {
643 err = fstat64_blk(fd, &statbuf);
644 (void) close(fd);
645 } else {
646 err = stat64(path, &statbuf);
647 }
648
649 if (err != 0 ||
650 statbuf.st_size == 0 ||
651 statbuf.st_size == MAXOFFSET_T)
652 continue;
653
654 size = statbuf.st_size;
655
656 /*
657 * Also make sure that devices and
658 * slices have a consistent size. If
659 * they differ by a significant amount
660 * (~16MB) then report an error.
661 */
662 if (!dontreport &&
663 (vdev_size != -1LL &&
664 (llabs(size - vdev_size) >
665 ZPOOL_FUZZ))) {
666 if (ret != NULL)
667 free(ret);
668 ret = NULL;
669 if (fatal)
670 vdev_error(gettext(
671 "%s contains devices of "
672 "different sizes\n"),
673 rep.zprl_type);
674 else
675 return (NULL);
676 dontreport = B_TRUE;
677 }
678
679 type = childtype;
680 vdev_size = size;
681 }
682 }
683
684 /*
685 * At this point, we have the replication of the last toplevel
686 * vdev in 'rep'. Compare it to 'lastrep' to see if it is
687 * different.
688 */
689 if (lastrep.zprl_type != NULL) {
690 if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
691 is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
692 /*
693 * Accepted raidz and mirror when they can
694 * handle the same number of disk failures.
695 */
696 if (raidz->zprl_parity !=
697 mirror->zprl_children - 1) {
698 if (ret != NULL)
699 free(ret);
700 ret = NULL;
701 if (fatal)
702 vdev_error(gettext(
703 "mismatched replication "
704 "level: "
705 "%s and %s vdevs with "
706 "different redundancy, "
707 "%llu vs. %llu (%llu-way) "
708 "are present\n"),
709 raidz->zprl_type,
710 mirror->zprl_type,
711 (u_longlong_t)
712 raidz->zprl_parity,
713 (u_longlong_t)
714 mirror->zprl_children - 1,
715 (u_longlong_t)
716 mirror->zprl_children);
717 else
718 return (NULL);
719 }
720 } else if (is_raidz_draid(&lastrep, &rep)) {
721 /*
722 * Accepted raidz and draid when they can
723 * handle the same number of disk failures.
724 */
725 if (lastrep.zprl_parity != rep.zprl_parity) {
726 if (ret != NULL)
727 free(ret);
728 ret = NULL;
729 if (fatal)
730 vdev_error(gettext(
731 "mismatched replication "
732 "level: %s and %s vdevs "
733 "with different "
734 "redundancy, %llu vs. "
735 "%llu are present\n"),
736 lastrep.zprl_type,
737 rep.zprl_type,
738 (u_longlong_t)
739 lastrep.zprl_parity,
740 (u_longlong_t)
741 rep.zprl_parity);
742 else
743 return (NULL);
744 }
745 } else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
746 0) {
747 if (ret != NULL)
748 free(ret);
749 ret = NULL;
750 if (fatal)
751 vdev_error(gettext(
752 "mismatched replication level: "
753 "both %s and %s vdevs are "
754 "present\n"),
755 lastrep.zprl_type, rep.zprl_type);
756 else
757 return (NULL);
758 } else if (lastrep.zprl_parity != rep.zprl_parity) {
759 if (ret)
760 free(ret);
761 ret = NULL;
762 if (fatal)
763 vdev_error(gettext(
764 "mismatched replication level: "
765 "both %llu and %llu device parity "
766 "%s vdevs are present\n"),
767 (u_longlong_t)
768 lastrep.zprl_parity,
769 (u_longlong_t)rep.zprl_parity,
770 rep.zprl_type);
771 else
772 return (NULL);
773 } else if (lastrep.zprl_children != rep.zprl_children) {
774 if (ret)
775 free(ret);
776 ret = NULL;
777 if (fatal)
778 vdev_error(gettext(
779 "mismatched replication level: "
780 "both %llu-way and %llu-way %s "
781 "vdevs are present\n"),
782 (u_longlong_t)
783 lastrep.zprl_children,
784 (u_longlong_t)
785 rep.zprl_children,
786 rep.zprl_type);
787 else
788 return (NULL);
789 }
790 }
791 lastrep = rep;
792 }
793
794 if (ret != NULL)
795 *ret = rep;
796
797 return (ret);
798 }
799
800 /*
801 * Check the replication level of the vdev spec against the current pool. Calls
802 * get_replication() to make sure the new spec is self-consistent. If the pool
803 * has a consistent replication level, then we ignore any errors. Otherwise,
804 * report any difference between the two.
805 */
806 static int
807 check_replication(nvlist_t *config, nvlist_t *newroot)
808 {
809 nvlist_t **child;
810 uint_t children;
811 replication_level_t *current = NULL, *new;
812 replication_level_t *raidz, *mirror;
813 int ret;
814
815 /*
816 * If we have a current pool configuration, check to see if it's
817 * self-consistent. If not, simply return success.
818 */
819 if (config != NULL) {
820 nvlist_t *nvroot;
821
822 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
823 &nvroot) == 0);
824 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
825 return (0);
826 }
827 /*
828 * for spares there may be no children, and therefore no
829 * replication level to check
830 */
831 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
832 &child, &children) != 0) || (children == 0)) {
833 free(current);
834 return (0);
835 }
836
837 /*
838 * If all we have is logs then there's no replication level to check.
839 */
840 if (num_logs(newroot) == children) {
841 free(current);
842 return (0);
843 }
844
845 /*
846 * Get the replication level of the new vdev spec, reporting any
847 * inconsistencies found.
848 */
849 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
850 free(current);
851 return (-1);
852 }
853
854 /*
855 * Check to see if the new vdev spec matches the replication level of
856 * the current pool.
857 */
858 ret = 0;
859 if (current != NULL) {
860 if (is_raidz_mirror(current, new, &raidz, &mirror) ||
861 is_raidz_mirror(new, current, &raidz, &mirror)) {
862 if (raidz->zprl_parity != mirror->zprl_children - 1) {
863 vdev_error(gettext(
864 "mismatched replication level: pool and "
865 "new vdev with different redundancy, %s "
866 "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
867 raidz->zprl_type,
868 mirror->zprl_type,
869 (u_longlong_t)raidz->zprl_parity,
870 (u_longlong_t)mirror->zprl_children - 1,
871 (u_longlong_t)mirror->zprl_children);
872 ret = -1;
873 }
874 } else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
875 vdev_error(gettext(
876 "mismatched replication level: pool uses %s "
877 "and new vdev is %s\n"),
878 current->zprl_type, new->zprl_type);
879 ret = -1;
880 } else if (current->zprl_parity != new->zprl_parity) {
881 vdev_error(gettext(
882 "mismatched replication level: pool uses %llu "
883 "device parity and new vdev uses %llu\n"),
884 (u_longlong_t)current->zprl_parity,
885 (u_longlong_t)new->zprl_parity);
886 ret = -1;
887 } else if (current->zprl_children != new->zprl_children) {
888 vdev_error(gettext(
889 "mismatched replication level: pool uses %llu-way "
890 "%s and new vdev uses %llu-way %s\n"),
891 (u_longlong_t)current->zprl_children,
892 current->zprl_type,
893 (u_longlong_t)new->zprl_children,
894 new->zprl_type);
895 ret = -1;
896 }
897 }
898
899 free(new);
900 if (current != NULL)
901 free(current);
902
903 return (ret);
904 }
905
906 static int
907 zero_label(char *path)
908 {
909 const int size = 4096;
910 char buf[size];
911 int err, fd;
912
913 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
914 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
915 path, strerror(errno));
916 return (-1);
917 }
918
919 memset(buf, 0, size);
920 err = write(fd, buf, size);
921 (void) fdatasync(fd);
922 (void) close(fd);
923
924 if (err == -1) {
925 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
926 "of '%s': %s\n"), size, path, strerror(errno));
927 return (-1);
928 }
929
930 if (err != size) {
931 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
932 "of '%s'\n"), err, size, path);
933 return (-1);
934 }
935
936 return (0);
937 }
938
939 /*
940 * Go through and find any whole disks in the vdev specification, labelling them
941 * as appropriate. When constructing the vdev spec, we were unable to open this
942 * device in order to provide a devid. Now that we have labelled the disk and
943 * know that slice 0 is valid, we can construct the devid now.
944 *
945 * If the disk was already labeled with an EFI label, we will have gotten the
946 * devid already (because we were able to open the whole disk). Otherwise, we
947 * need to get the devid after we label the disk.
948 */
949 static int
950 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
951 {
952 nvlist_t **child;
953 uint_t c, children;
954 char *type, *path;
955 char devpath[MAXPATHLEN];
956 char udevpath[MAXPATHLEN];
957 uint64_t wholedisk;
958 struct stat64 statbuf;
959 int is_exclusive = 0;
960 int fd;
961 int ret;
962
963 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
964
965 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
966 &child, &children) != 0) {
967
968 if (strcmp(type, VDEV_TYPE_DISK) != 0)
969 return (0);
970
971 /*
972 * We have a disk device. If this is a whole disk write
973 * out the efi partition table, otherwise write zero's to
974 * the first 4k of the partition. This is to ensure that
975 * libblkid will not misidentify the partition due to a
976 * magic value left by the previous filesystem.
977 */
978 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
979 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
980 &wholedisk));
981
982 if (!wholedisk) {
983 /*
984 * Update device id string for mpath nodes (Linux only)
985 */
986 if (is_mpath_whole_disk(path))
987 update_vdev_config_dev_strs(nv);
988
989 if (!is_spare(NULL, path))
990 (void) zero_label(path);
991 return (0);
992 }
993
994 if (realpath(path, devpath) == NULL) {
995 ret = errno;
996 (void) fprintf(stderr,
997 gettext("cannot resolve path '%s'\n"), path);
998 return (ret);
999 }
1000
1001 /*
1002 * Remove any previously existing symlink from a udev path to
1003 * the device before labeling the disk. This ensures that
1004 * only newly created links are used. Otherwise there is a
1005 * window between when udev deletes and recreates the link
1006 * during which access attempts will fail with ENOENT.
1007 */
1008 strlcpy(udevpath, path, MAXPATHLEN);
1009 (void) zfs_append_partition(udevpath, MAXPATHLEN);
1010
1011 fd = open(devpath, O_RDWR|O_EXCL);
1012 if (fd == -1) {
1013 if (errno == EBUSY)
1014 is_exclusive = 1;
1015 #ifdef __FreeBSD__
1016 if (errno == EPERM)
1017 is_exclusive = 1;
1018 #endif
1019 } else {
1020 (void) close(fd);
1021 }
1022
1023 /*
1024 * If the partition exists, contains a valid spare label,
1025 * and is opened exclusively there is no need to partition
1026 * it. Hot spares have already been partitioned and are
1027 * held open exclusively by the kernel as a safety measure.
1028 *
1029 * If the provided path is for a /dev/disk/ device its
1030 * symbolic link will be removed, partition table created,
1031 * and then block until udev creates the new link.
1032 */
1033 if (!is_exclusive && !is_spare(NULL, udevpath)) {
1034 char *devnode = strrchr(devpath, '/') + 1;
1035
1036 ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1037 if (ret == 0) {
1038 ret = lstat64(udevpath, &statbuf);
1039 if (ret == 0 && S_ISLNK(statbuf.st_mode))
1040 (void) unlink(udevpath);
1041 }
1042
1043 /*
1044 * When labeling a pool the raw device node name
1045 * is provided as it appears under /dev/.
1046 */
1047 if (zpool_label_disk(g_zfs, zhp, devnode) == -1)
1048 return (-1);
1049
1050 /*
1051 * Wait for udev to signal the device is available
1052 * by the provided path.
1053 */
1054 ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1055 if (ret) {
1056 (void) fprintf(stderr,
1057 gettext("missing link: %s was "
1058 "partitioned but %s is missing\n"),
1059 devnode, udevpath);
1060 return (ret);
1061 }
1062
1063 ret = zero_label(udevpath);
1064 if (ret)
1065 return (ret);
1066 }
1067
1068 /*
1069 * Update the path to refer to the partition. The presence of
1070 * the 'whole_disk' field indicates to the CLI that we should
1071 * chop off the partition number when displaying the device in
1072 * future output.
1073 */
1074 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1075
1076 /*
1077 * Update device id strings for whole disks (Linux only)
1078 */
1079 update_vdev_config_dev_strs(nv);
1080
1081 return (0);
1082 }
1083
1084 for (c = 0; c < children; c++)
1085 if ((ret = make_disks(zhp, child[c])) != 0)
1086 return (ret);
1087
1088 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1089 &child, &children) == 0)
1090 for (c = 0; c < children; c++)
1091 if ((ret = make_disks(zhp, child[c])) != 0)
1092 return (ret);
1093
1094 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1095 &child, &children) == 0)
1096 for (c = 0; c < children; c++)
1097 if ((ret = make_disks(zhp, child[c])) != 0)
1098 return (ret);
1099
1100 return (0);
1101 }
1102
1103 /*
1104 * Go through and find any devices that are in use. We rely on libdiskmgt for
1105 * the majority of this task.
1106 */
1107 static boolean_t
1108 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1109 boolean_t replacing, boolean_t isspare)
1110 {
1111 nvlist_t **child;
1112 uint_t c, children;
1113 char *type, *path;
1114 int ret = 0;
1115 char buf[MAXPATHLEN];
1116 uint64_t wholedisk = B_FALSE;
1117 boolean_t anyinuse = B_FALSE;
1118
1119 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1120
1121 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1122 &child, &children) != 0) {
1123
1124 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1125 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1126 verify(!nvlist_lookup_uint64(nv,
1127 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1128
1129 /*
1130 * As a generic check, we look to see if this is a replace of a
1131 * hot spare within the same pool. If so, we allow it
1132 * regardless of what libblkid or zpool_in_use() says.
1133 */
1134 if (replacing) {
1135 (void) strlcpy(buf, path, sizeof (buf));
1136 if (wholedisk) {
1137 ret = zfs_append_partition(buf, sizeof (buf));
1138 if (ret == -1)
1139 return (-1);
1140 }
1141
1142 if (is_spare(config, buf))
1143 return (B_FALSE);
1144 }
1145
1146 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1147 ret = check_device(path, force, isspare, wholedisk);
1148
1149 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1150 ret = check_file(path, force, isspare);
1151
1152 return (ret != 0);
1153 }
1154
1155 for (c = 0; c < children; c++)
1156 if (is_device_in_use(config, child[c], force, replacing,
1157 B_FALSE))
1158 anyinuse = B_TRUE;
1159
1160 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1161 &child, &children) == 0)
1162 for (c = 0; c < children; c++)
1163 if (is_device_in_use(config, child[c], force, replacing,
1164 B_TRUE))
1165 anyinuse = B_TRUE;
1166
1167 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1168 &child, &children) == 0)
1169 for (c = 0; c < children; c++)
1170 if (is_device_in_use(config, child[c], force, replacing,
1171 B_FALSE))
1172 anyinuse = B_TRUE;
1173
1174 return (anyinuse);
1175 }
1176
1177 /*
1178 * Returns the parity level extracted from a raidz or draid type.
1179 * If the parity cannot be determined zero is returned.
1180 */
1181 static int
1182 get_parity(const char *type)
1183 {
1184 long parity = 0;
1185 const char *p;
1186
1187 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1188 p = type + strlen(VDEV_TYPE_RAIDZ);
1189
1190 if (*p == '\0') {
1191 /* when unspecified default to single parity */
1192 return (1);
1193 } else if (*p == '') {
1194 /* no zero prefixes allowed */
1195 return (0);
1196 } else {
1197 /* 0-3, no suffixes allowed */
1198 char *end;
1199 errno = 0;
1200 parity = strtol(p, &end, 10);
1201 if (errno != 0 || *end != '\0' ||
1202 parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1203 return (0);
1204 }
1205 }
1206 } else if (strncmp(type, VDEV_TYPE_DRAID,
1207 strlen(VDEV_TYPE_DRAID)) == 0) {
1208 p = type + strlen(VDEV_TYPE_DRAID);
1209
1210 if (*p == '\0' || *p == ':') {
1211 /* when unspecified default to single parity */
1212 return (1);
1213 } else if (*p == '') {
1214 /* no zero prefixes allowed */
1215 return (0);
1216 } else {
1217 /* 0-3, allowed suffixes: '\0' or ':' */
1218 char *end;
1219 errno = 0;
1220 parity = strtol(p, &end, 10);
1221 if (errno != 0 ||
1222 parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1223 (*end != '\0' && *end != ':')) {
1224 return (0);
1225 }
1226 }
1227 }
1228
1229 return ((int)parity);
1230 }
1231
1232 /*
1233 * Assign the minimum and maximum number of devices allowed for
1234 * the specified type. On error NULL is returned, otherwise the
1235 * type prefix is returned (raidz, mirror, etc).
1236 */
1237 static const char *
1238 is_grouping(const char *type, int *mindev, int *maxdev)
1239 {
1240 int nparity;
1241
1242 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1243 strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1244 nparity = get_parity(type);
1245 if (nparity == 0)
1246 return (NULL);
1247 if (mindev != NULL)
1248 *mindev = nparity + 1;
1249 if (maxdev != NULL)
1250 *maxdev = 255;
1251
1252 if (strncmp(type, VDEV_TYPE_RAIDZ,
1253 strlen(VDEV_TYPE_RAIDZ)) == 0) {
1254 return (VDEV_TYPE_RAIDZ);
1255 } else {
1256 return (VDEV_TYPE_DRAID);
1257 }
1258 }
1259
1260 if (maxdev != NULL)
1261 *maxdev = INT_MAX;
1262
1263 if (strcmp(type, "mirror") == 0) {
1264 if (mindev != NULL)
1265 *mindev = 2;
1266 return (VDEV_TYPE_MIRROR);
1267 }
1268
1269 if (strcmp(type, "spare") == 0) {
1270 if (mindev != NULL)
1271 *mindev = 1;
1272 return (VDEV_TYPE_SPARE);
1273 }
1274
1275 if (strcmp(type, "log") == 0) {
1276 if (mindev != NULL)
1277 *mindev = 1;
1278 return (VDEV_TYPE_LOG);
1279 }
1280
1281 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1282 strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1283 if (mindev != NULL)
1284 *mindev = 1;
1285 return (type);
1286 }
1287
1288 if (strcmp(type, "cache") == 0) {
1289 if (mindev != NULL)
1290 *mindev = 1;
1291 return (VDEV_TYPE_L2CACHE);
1292 }
1293
1294 return (NULL);
1295 }
1296
1297 /*
1298 * Extract the configuration parameters encoded in the dRAID type and
1299 * use them to generate a dRAID configuration. The expected format is:
1300 *
1301 * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1302 *
1303 * The intent is to be able to generate a good configuration when no
1304 * additional information is provided. The only mandatory component
1305 * of the 'type' is the 'draid' prefix. If a value is not provided
1306 * then reasonable defaults are used. The optional components may
1307 * appear in any order but the d/s/c suffix is required.
1308 *
1309 * Valid inputs:
1310 * - data: number of data devices per group (1-255)
1311 * - parity: number of parity blocks per group (1-3)
1312 * - spares: number of distributed spare (0-100)
1313 * - children: total number of devices (1-255)
1314 *
1315 * Examples:
1316 * - zpool create tank draid <devices...>
1317 * - zpool create tank draid2:8d:51c:2s <devices...>
1318 */
1319 static int
1320 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1321 {
1322 uint64_t nparity = 1;
1323 uint64_t nspares = 0;
1324 uint64_t ndata = UINT64_MAX;
1325 uint64_t ngroups = 1;
1326 long value;
1327
1328 if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1329 return (EINVAL);
1330
1331 nparity = (uint64_t)get_parity(type);
1332 if (nparity == 0)
1333 return (EINVAL);
1334
1335 char *p = (char *)type;
1336 while ((p = strchr(p, ':')) != NULL) {
1337 char *end;
1338
1339 p = p + 1;
1340 errno = 0;
1341
1342 if (!isdigit(p[0])) {
1343 (void) fprintf(stderr, gettext("invalid dRAID "
1344 "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1345 type);
1346 return (EINVAL);
1347 }
1348
1349 /* Expected non-zero value with c/d/s suffix */
1350 value = strtol(p, &end, 10);
1351 char suffix = tolower(*end);
1352 if (errno != 0 ||
1353 (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1354 (void) fprintf(stderr, gettext("invalid dRAID "
1355 "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1356 type);
1357 return (EINVAL);
1358 }
1359
1360 if (suffix == 'c') {
1361 if ((uint64_t)value != children) {
1362 fprintf(stderr,
1363 gettext("invalid number of dRAID children; "
1364 "%llu required but %llu provided\n"),
1365 (u_longlong_t)value,
1366 (u_longlong_t)children);
1367 return (EINVAL);
1368 }
1369 } else if (suffix == 'd') {
1370 ndata = (uint64_t)value;
1371 } else if (suffix == 's') {
1372 nspares = (uint64_t)value;
1373 } else {
1374 verify(0); /* Unreachable */
1375 }
1376 }
1377
1378 /*
1379 * When a specific number of data disks is not provided limit a
1380 * redundancy group to 8 data disks. This value was selected to
1381 * provide a reasonable tradeoff between capacity and performance.
1382 */
1383 if (ndata == UINT64_MAX) {
1384 if (children > nspares + nparity) {
1385 ndata = MIN(children - nspares - nparity, 8);
1386 } else {
1387 fprintf(stderr, gettext("request number of "
1388 "distributed spares %llu and parity level %llu\n"
1389 "leaves no disks available for data\n"),
1390 (u_longlong_t)nspares, (u_longlong_t)nparity);
1391 return (EINVAL);
1392 }
1393 }
1394
1395 /* Verify the maximum allowed group size is never exceeded. */
1396 if (ndata == 0 || (ndata + nparity > children - nspares)) {
1397 fprintf(stderr, gettext("requested number of dRAID data "
1398 "disks per group %llu is too high,\nat most %llu disks "
1399 "are available for data\n"), (u_longlong_t)ndata,
1400 (u_longlong_t)(children - nspares - nparity));
1401 return (EINVAL);
1402 }
1403
1404 if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1405 fprintf(stderr,
1406 gettext("invalid dRAID parity level %llu; must be "
1407 "between 1 and %d\n"), (u_longlong_t)nparity,
1408 VDEV_DRAID_MAXPARITY);
1409 return (EINVAL);
1410 }
1411
1412 /*
1413 * Verify the requested number of spares can be satisfied.
1414 * An arbitrary limit of 100 distributed spares is applied.
1415 */
1416 if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1417 fprintf(stderr,
1418 gettext("invalid number of dRAID spares %llu; additional "
1419 "disks would be required\n"), (u_longlong_t)nspares);
1420 return (EINVAL);
1421 }
1422
1423 /* Verify the requested number children is sufficient. */
1424 if (children < (ndata + nparity + nspares)) {
1425 fprintf(stderr, gettext("%llu disks were provided, but at "
1426 "least %llu disks are required for this config\n"),
1427 (u_longlong_t)children,
1428 (u_longlong_t)(ndata + nparity + nspares));
1429 }
1430
1431 if (children > VDEV_DRAID_MAX_CHILDREN) {
1432 fprintf(stderr, gettext("%llu disks were provided, but "
1433 "dRAID only supports up to %u disks"),
1434 (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1435 }
1436
1437 /*
1438 * Calculate the minimum number of groups required to fill a slice.
1439 * This is the LCM of the stripe width (ndata + nparity) and the
1440 * number of data drives (children - nspares).
1441 */
1442 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1443 ngroups++;
1444
1445 /* Store the basic dRAID configuration. */
1446 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1447 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1448 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1449 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1450
1451 return (0);
1452 }
1453
1454 /*
1455 * Construct a syntactically valid vdev specification,
1456 * and ensure that all devices and files exist and can be opened.
1457 * Note: we don't bother freeing anything in the error paths
1458 * because the program is just going to exit anyway.
1459 */
1460 static nvlist_t *
1461 construct_spec(nvlist_t *props, int argc, char **argv)
1462 {
1463 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1464 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1465 const char *type, *fulltype;
1466 boolean_t is_log, is_special, is_dedup, is_spare;
1467 boolean_t seen_logs;
1468
1469 top = NULL;
1470 toplevels = 0;
1471 spares = NULL;
1472 l2cache = NULL;
1473 nspares = 0;
1474 nlogs = 0;
1475 nl2cache = 0;
1476 is_log = is_special = is_dedup = is_spare = B_FALSE;
1477 seen_logs = B_FALSE;
1478 nvroot = NULL;
1479
1480 while (argc > 0) {
1481 fulltype = argv[0];
1482 nv = NULL;
1483
1484 /*
1485 * If it's a mirror, raidz, or draid the subsequent arguments
1486 * are its leaves -- until we encounter the next mirror,
1487 * raidz or draid.
1488 */
1489 if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1490 nvlist_t **child = NULL;
1491 int c, children = 0;
1492
1493 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1494 if (spares != NULL) {
1495 (void) fprintf(stderr,
1496 gettext("invalid vdev "
1497 "specification: 'spare' can be "
1498 "specified only once\n"));
1499 goto spec_out;
1500 }
1501 is_spare = B_TRUE;
1502 is_log = is_special = is_dedup = B_FALSE;
1503 }
1504
1505 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1506 if (seen_logs) {
1507 (void) fprintf(stderr,
1508 gettext("invalid vdev "
1509 "specification: 'log' can be "
1510 "specified only once\n"));
1511 goto spec_out;
1512 }
1513 seen_logs = B_TRUE;
1514 is_log = B_TRUE;
1515 is_special = is_dedup = is_spare = B_FALSE;
1516 argc--;
1517 argv++;
1518 /*
1519 * A log is not a real grouping device.
1520 * We just set is_log and continue.
1521 */
1522 continue;
1523 }
1524
1525 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1526 is_special = B_TRUE;
1527 is_log = is_dedup = is_spare = B_FALSE;
1528 argc--;
1529 argv++;
1530 continue;
1531 }
1532
1533 if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1534 is_dedup = B_TRUE;
1535 is_log = is_special = is_spare = B_FALSE;
1536 argc--;
1537 argv++;
1538 continue;
1539 }
1540
1541 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1542 if (l2cache != NULL) {
1543 (void) fprintf(stderr,
1544 gettext("invalid vdev "
1545 "specification: 'cache' can be "
1546 "specified only once\n"));
1547 goto spec_out;
1548 }
1549 is_log = is_special = B_FALSE;
1550 is_dedup = is_spare = B_FALSE;
1551 }
1552
1553 if (is_log || is_special || is_dedup) {
1554 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1555 (void) fprintf(stderr,
1556 gettext("invalid vdev "
1557 "specification: unsupported '%s' "
1558 "device: %s\n"), is_log ? "log" :
1559 "special", type);
1560 goto spec_out;
1561 }
1562 nlogs++;
1563 }
1564
1565 for (c = 1; c < argc; c++) {
1566 if (is_grouping(argv[c], NULL, NULL) != NULL)
1567 break;
1568
1569 children++;
1570 child = realloc(child,
1571 children * sizeof (nvlist_t *));
1572 if (child == NULL)
1573 zpool_no_memory();
1574 if ((nv = make_leaf_vdev(props, argv[c],
1575 !(is_log || is_special || is_dedup ||
1576 is_spare))) == NULL) {
1577 for (c = 0; c < children - 1; c++)
1578 nvlist_free(child[c]);
1579 free(child);
1580 goto spec_out;
1581 }
1582
1583 child[children - 1] = nv;
1584 }
1585
1586 if (children < mindev) {
1587 (void) fprintf(stderr, gettext("invalid vdev "
1588 "specification: %s requires at least %d "
1589 "devices\n"), argv[0], mindev);
1590 for (c = 0; c < children; c++)
1591 nvlist_free(child[c]);
1592 free(child);
1593 goto spec_out;
1594 }
1595
1596 if (children > maxdev) {
1597 (void) fprintf(stderr, gettext("invalid vdev "
1598 "specification: %s supports no more than "
1599 "%d devices\n"), argv[0], maxdev);
1600 for (c = 0; c < children; c++)
1601 nvlist_free(child[c]);
1602 free(child);
1603 goto spec_out;
1604 }
1605
1606 argc -= c;
1607 argv += c;
1608
1609 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1610 spares = child;
1611 nspares = children;
1612 continue;
1613 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1614 l2cache = child;
1615 nl2cache = children;
1616 continue;
1617 } else {
1618 /* create a top-level vdev with children */
1619 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1620 0) == 0);
1621 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1622 type) == 0);
1623 verify(nvlist_add_uint64(nv,
1624 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1625 if (is_log) {
1626 verify(nvlist_add_string(nv,
1627 ZPOOL_CONFIG_ALLOCATION_BIAS,
1628 VDEV_ALLOC_BIAS_LOG) == 0);
1629 }
1630 if (is_special) {
1631 verify(nvlist_add_string(nv,
1632 ZPOOL_CONFIG_ALLOCATION_BIAS,
1633 VDEV_ALLOC_BIAS_SPECIAL) == 0);
1634 }
1635 if (is_dedup) {
1636 verify(nvlist_add_string(nv,
1637 ZPOOL_CONFIG_ALLOCATION_BIAS,
1638 VDEV_ALLOC_BIAS_DEDUP) == 0);
1639 }
1640 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1641 verify(nvlist_add_uint64(nv,
1642 ZPOOL_CONFIG_NPARITY,
1643 mindev - 1) == 0);
1644 }
1645 if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1646 if (draid_config_by_type(nv,
1647 fulltype, children) != 0) {
1648 for (c = 0; c < children; c++)
1649 nvlist_free(child[c]);
1650 free(child);
1651 goto spec_out;
1652 }
1653 }
1654 verify(nvlist_add_nvlist_array(nv,
1655 ZPOOL_CONFIG_CHILDREN,
1656 (const nvlist_t **)child, children) == 0);
1657
1658 for (c = 0; c < children; c++)
1659 nvlist_free(child[c]);
1660 free(child);
1661 }
1662 } else {
1663 /*
1664 * We have a device. Pass off to make_leaf_vdev() to
1665 * construct the appropriate nvlist describing the vdev.
1666 */
1667 if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1668 is_special || is_dedup || is_spare))) == NULL)
1669 goto spec_out;
1670
1671 verify(nvlist_add_uint64(nv,
1672 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1673 if (is_log) {
1674 verify(nvlist_add_string(nv,
1675 ZPOOL_CONFIG_ALLOCATION_BIAS,
1676 VDEV_ALLOC_BIAS_LOG) == 0);
1677 nlogs++;
1678 }
1679
1680 if (is_special) {
1681 verify(nvlist_add_string(nv,
1682 ZPOOL_CONFIG_ALLOCATION_BIAS,
1683 VDEV_ALLOC_BIAS_SPECIAL) == 0);
1684 }
1685 if (is_dedup) {
1686 verify(nvlist_add_string(nv,
1687 ZPOOL_CONFIG_ALLOCATION_BIAS,
1688 VDEV_ALLOC_BIAS_DEDUP) == 0);
1689 }
1690 argc--;
1691 argv++;
1692 }
1693
1694 toplevels++;
1695 top = realloc(top, toplevels * sizeof (nvlist_t *));
1696 if (top == NULL)
1697 zpool_no_memory();
1698 top[toplevels - 1] = nv;
1699 }
1700
1701 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1702 (void) fprintf(stderr, gettext("invalid vdev "
1703 "specification: at least one toplevel vdev must be "
1704 "specified\n"));
1705 goto spec_out;
1706 }
1707
1708 if (seen_logs && nlogs == 0) {
1709 (void) fprintf(stderr, gettext("invalid vdev specification: "
1710 "log requires at least 1 device\n"));
1711 goto spec_out;
1712 }
1713
1714 /*
1715 * Finally, create nvroot and add all top-level vdevs to it.
1716 */
1717 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1718 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1719 VDEV_TYPE_ROOT) == 0);
1720 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1721 (const nvlist_t **)top, toplevels) == 0);
1722 if (nspares != 0)
1723 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1724 (const nvlist_t **)spares, nspares) == 0);
1725 if (nl2cache != 0)
1726 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1727 (const nvlist_t **)l2cache, nl2cache) == 0);
1728
1729 spec_out:
1730 for (t = 0; t < toplevels; t++)
1731 nvlist_free(top[t]);
1732 for (t = 0; t < nspares; t++)
1733 nvlist_free(spares[t]);
1734 for (t = 0; t < nl2cache; t++)
1735 nvlist_free(l2cache[t]);
1736
1737 free(spares);
1738 free(l2cache);
1739 free(top);
1740
1741 return (nvroot);
1742 }
1743
1744 nvlist_t *
1745 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1746 splitflags_t flags, int argc, char **argv)
1747 {
1748 nvlist_t *newroot = NULL, **child;
1749 uint_t c, children;
1750
1751 if (argc > 0) {
1752 if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1753 (void) fprintf(stderr, gettext("Unable to build a "
1754 "pool from the specified devices\n"));
1755 return (NULL);
1756 }
1757
1758 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1759 nvlist_free(newroot);
1760 return (NULL);
1761 }
1762
1763 /* avoid any tricks in the spec */
1764 verify(nvlist_lookup_nvlist_array(newroot,
1765 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1766 for (c = 0; c < children; c++) {
1767 char *path;
1768 const char *type;
1769 int min, max;
1770
1771 verify(nvlist_lookup_string(child[c],
1772 ZPOOL_CONFIG_PATH, &path) == 0);
1773 if ((type = is_grouping(path, &min, &max)) != NULL) {
1774 (void) fprintf(stderr, gettext("Cannot use "
1775 "'%s' as a device for splitting\n"), type);
1776 nvlist_free(newroot);
1777 return (NULL);
1778 }
1779 }
1780 }
1781
1782 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1783 nvlist_free(newroot);
1784 return (NULL);
1785 }
1786
1787 return (newroot);
1788 }
1789
1790 static int
1791 num_normal_vdevs(nvlist_t *nvroot)
1792 {
1793 nvlist_t **top;
1794 uint_t t, toplevels, normal = 0;
1795
1796 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1797 &top, &toplevels) == 0);
1798
1799 for (t = 0; t < toplevels; t++) {
1800 uint64_t log = B_FALSE;
1801
1802 (void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1803 if (log)
1804 continue;
1805 if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1806 continue;
1807
1808 normal++;
1809 }
1810
1811 return (normal);
1812 }
1813
1814 /*
1815 * Get and validate the contents of the given vdev specification. This ensures
1816 * that the nvlist returned is well-formed, that all the devices exist, and that
1817 * they are not currently in use by any other known consumer. The 'poolconfig'
1818 * parameter is the current configuration of the pool when adding devices
1819 * existing pool, and is used to perform additional checks, such as changing the
1820 * replication level of the pool. It can be 'NULL' to indicate that this is a
1821 * new pool. The 'force' flag controls whether devices should be forcefully
1822 * added, even if they appear in use.
1823 */
1824 nvlist_t *
1825 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1826 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1827 {
1828 nvlist_t *newroot;
1829 nvlist_t *poolconfig = NULL;
1830 is_force = force;
1831
1832 /*
1833 * Construct the vdev specification. If this is successful, we know
1834 * that we have a valid specification, and that all devices can be
1835 * opened.
1836 */
1837 if ((newroot = construct_spec(props, argc, argv)) == NULL)
1838 return (NULL);
1839
1840 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1841 nvlist_free(newroot);
1842 return (NULL);
1843 }
1844
1845 /*
1846 * Validate each device to make sure that it's not shared with another
1847 * subsystem. We do this even if 'force' is set, because there are some
1848 * uses (such as a dedicated dump device) that even '-f' cannot
1849 * override.
1850 */
1851 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1852 nvlist_free(newroot);
1853 return (NULL);
1854 }
1855
1856 /*
1857 * Check the replication level of the given vdevs and report any errors
1858 * found. We include the existing pool spec, if any, as we need to
1859 * catch changes against the existing replication level.
1860 */
1861 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1862 nvlist_free(newroot);
1863 return (NULL);
1864 }
1865
1866 /*
1867 * On pool create the new vdev spec must have one normal vdev.
1868 */
1869 if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1870 vdev_error(gettext("at least one general top-level vdev must "
1871 "be specified\n"));
1872 nvlist_free(newroot);
1873 return (NULL);
1874 }
1875
1876 /*
1877 * Run through the vdev specification and label any whole disks found.
1878 */
1879 if (!dryrun && make_disks(zhp, newroot) != 0) {
1880 nvlist_free(newroot);
1881 return (NULL);
1882 }
1883
1884 return (newroot);
1885 }
Cache object: b4505677bd2944b27bd2d03baca1de94
|