The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/cmd/ztest.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
   24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
   25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
   26  * Copyright (c) 2014 Integros [integros.com]
   27  * Copyright 2017 Joyent, Inc.
   28  * Copyright (c) 2017, Intel Corporation.
   29  */
   30 
   31 /*
   32  * The objective of this program is to provide a DMU/ZAP/SPA stress test
   33  * that runs entirely in userland, is easy to use, and easy to extend.
   34  *
   35  * The overall design of the ztest program is as follows:
   36  *
   37  * (1) For each major functional area (e.g. adding vdevs to a pool,
   38  *     creating and destroying datasets, reading and writing objects, etc)
   39  *     we have a simple routine to test that functionality.  These
   40  *     individual routines do not have to do anything "stressful".
   41  *
   42  * (2) We turn these simple functionality tests into a stress test by
   43  *     running them all in parallel, with as many threads as desired,
   44  *     and spread across as many datasets, objects, and vdevs as desired.
   45  *
   46  * (3) While all this is happening, we inject faults into the pool to
   47  *     verify that self-healing data really works.
   48  *
   49  * (4) Every time we open a dataset, we change its checksum and compression
   50  *     functions.  Thus even individual objects vary from block to block
   51  *     in which checksum they use and whether they're compressed.
   52  *
   53  * (5) To verify that we never lose on-disk consistency after a crash,
   54  *     we run the entire test in a child of the main process.
   55  *     At random times, the child self-immolates with a SIGKILL.
   56  *     This is the software equivalent of pulling the power cord.
   57  *     The parent then runs the test again, using the existing
   58  *     storage pool, as many times as desired. If backwards compatibility
   59  *     testing is enabled ztest will sometimes run the "older" version
   60  *     of ztest after a SIGKILL.
   61  *
   62  * (6) To verify that we don't have future leaks or temporal incursions,
   63  *     many of the functional tests record the transaction group number
   64  *     as part of their data.  When reading old data, they verify that
   65  *     the transaction group number is less than the current, open txg.
   66  *     If you add a new test, please do this if applicable.
   67  *
   68  * (7) Threads are created with a reduced stack size, for sanity checking.
   69  *     Therefore, it's important not to allocate huge buffers on the stack.
   70  *
   71  * When run with no arguments, ztest runs for about five minutes and
   72  * produces no output if successful.  To get a little bit of information,
   73  * specify -V.  To get more information, specify -VV, and so on.
   74  *
   75  * To turn this into an overnight stress test, use -T to specify run time.
   76  *
   77  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
   78  * to increase the pool capacity, fanout, and overall stress level.
   79  *
   80  * Use the -k option to set the desired frequency of kills.
   81  *
   82  * When ztest invokes itself it passes all relevant information through a
   83  * temporary file which is mmap-ed in the child process. This allows shared
   84  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
   85  * stored at offset 0 of this file and contains information on the size and
   86  * number of shared structures in the file. The information stored in this file
   87  * must remain backwards compatible with older versions of ztest so that
   88  * ztest can invoke them during backwards compatibility testing (-B).
   89  */
   90 
   91 #include <sys/zfs_context.h>
   92 #include <sys/spa.h>
   93 #include <sys/dmu.h>
   94 #include <sys/txg.h>
   95 #include <sys/dbuf.h>
   96 #include <sys/zap.h>
   97 #include <sys/dmu_objset.h>
   98 #include <sys/poll.h>
   99 #include <sys/stat.h>
  100 #include <sys/time.h>
  101 #include <sys/wait.h>
  102 #include <sys/mman.h>
  103 #include <sys/resource.h>
  104 #include <sys/zio.h>
  105 #include <sys/zil.h>
  106 #include <sys/zil_impl.h>
  107 #include <sys/vdev_draid.h>
  108 #include <sys/vdev_impl.h>
  109 #include <sys/vdev_file.h>
  110 #include <sys/vdev_initialize.h>
  111 #include <sys/vdev_raidz.h>
  112 #include <sys/vdev_trim.h>
  113 #include <sys/spa_impl.h>
  114 #include <sys/metaslab_impl.h>
  115 #include <sys/dsl_prop.h>
  116 #include <sys/dsl_dataset.h>
  117 #include <sys/dsl_destroy.h>
  118 #include <sys/dsl_scan.h>
  119 #include <sys/zio_checksum.h>
  120 #include <sys/zfs_refcount.h>
  121 #include <sys/zfeature.h>
  122 #include <sys/dsl_userhold.h>
  123 #include <sys/abd.h>
  124 #include <sys/blake3.h>
  125 #include <stdio.h>
  126 #include <stdlib.h>
  127 #include <unistd.h>
  128 #include <getopt.h>
  129 #include <signal.h>
  130 #include <umem.h>
  131 #include <ctype.h>
  132 #include <math.h>
  133 #include <sys/fs/zfs.h>
  134 #include <zfs_fletcher.h>
  135 #include <libnvpair.h>
  136 #include <libzutil.h>
  137 #include <sys/crypto/icp.h>
  138 #if (__GLIBC__ && !__UCLIBC__)
  139 #include <execinfo.h> /* for backtrace() */
  140 #endif
  141 
  142 static int ztest_fd_data = -1;
  143 static int ztest_fd_rand = -1;
  144 
  145 typedef struct ztest_shared_hdr {
  146         uint64_t        zh_hdr_size;
  147         uint64_t        zh_opts_size;
  148         uint64_t        zh_size;
  149         uint64_t        zh_stats_size;
  150         uint64_t        zh_stats_count;
  151         uint64_t        zh_ds_size;
  152         uint64_t        zh_ds_count;
  153 } ztest_shared_hdr_t;
  154 
  155 static ztest_shared_hdr_t *ztest_shared_hdr;
  156 
  157 enum ztest_class_state {
  158         ZTEST_VDEV_CLASS_OFF,
  159         ZTEST_VDEV_CLASS_ON,
  160         ZTEST_VDEV_CLASS_RND
  161 };
  162 
  163 #define ZO_GVARS_MAX_ARGLEN     ((size_t)64)
  164 #define ZO_GVARS_MAX_COUNT      ((size_t)10)
  165 
  166 typedef struct ztest_shared_opts {
  167         char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
  168         char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
  169         char zo_alt_ztest[MAXNAMELEN];
  170         char zo_alt_libpath[MAXNAMELEN];
  171         uint64_t zo_vdevs;
  172         uint64_t zo_vdevtime;
  173         size_t zo_vdev_size;
  174         int zo_ashift;
  175         int zo_mirrors;
  176         int zo_raid_children;
  177         int zo_raid_parity;
  178         char zo_raid_type[8];
  179         int zo_draid_data;
  180         int zo_draid_spares;
  181         int zo_datasets;
  182         int zo_threads;
  183         uint64_t zo_passtime;
  184         uint64_t zo_killrate;
  185         int zo_verbose;
  186         int zo_init;
  187         uint64_t zo_time;
  188         uint64_t zo_maxloops;
  189         uint64_t zo_metaslab_force_ganging;
  190         int zo_mmp_test;
  191         int zo_special_vdevs;
  192         int zo_dump_dbgmsg;
  193         int zo_gvars_count;
  194         char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
  195 } ztest_shared_opts_t;
  196 
  197 /* Default values for command line options. */
  198 #define DEFAULT_POOL "ztest"
  199 #define DEFAULT_VDEV_DIR "/tmp"
  200 #define DEFAULT_VDEV_COUNT 5
  201 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)  /* 256m default size */
  202 #define DEFAULT_VDEV_SIZE_STR "256M"
  203 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
  204 #define DEFAULT_MIRRORS 2
  205 #define DEFAULT_RAID_CHILDREN 4
  206 #define DEFAULT_RAID_PARITY 1
  207 #define DEFAULT_DRAID_DATA 4
  208 #define DEFAULT_DRAID_SPARES 1
  209 #define DEFAULT_DATASETS_COUNT 7
  210 #define DEFAULT_THREADS 23
  211 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
  212 #define DEFAULT_RUN_TIME_STR "300 sec"
  213 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
  214 #define DEFAULT_PASS_TIME_STR "60 sec"
  215 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
  216 #define DEFAULT_KILLRATE_STR "70%"
  217 #define DEFAULT_INITS 1
  218 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
  219 #define DEFAULT_FORCE_GANGING (64 << 10)
  220 #define DEFAULT_FORCE_GANGING_STR "64K"
  221 
  222 /* Simplifying assumption: -1 is not a valid default. */
  223 #define NO_DEFAULT -1
  224 
  225 static const ztest_shared_opts_t ztest_opts_defaults = {
  226         .zo_pool = DEFAULT_POOL,
  227         .zo_dir = DEFAULT_VDEV_DIR,
  228         .zo_alt_ztest = { '\0' },
  229         .zo_alt_libpath = { '\0' },
  230         .zo_vdevs = DEFAULT_VDEV_COUNT,
  231         .zo_ashift = DEFAULT_ASHIFT,
  232         .zo_mirrors = DEFAULT_MIRRORS,
  233         .zo_raid_children = DEFAULT_RAID_CHILDREN,
  234         .zo_raid_parity = DEFAULT_RAID_PARITY,
  235         .zo_raid_type = VDEV_TYPE_RAIDZ,
  236         .zo_vdev_size = DEFAULT_VDEV_SIZE,
  237         .zo_draid_data = DEFAULT_DRAID_DATA,    /* data drives */
  238         .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
  239         .zo_datasets = DEFAULT_DATASETS_COUNT,
  240         .zo_threads = DEFAULT_THREADS,
  241         .zo_passtime = DEFAULT_PASS_TIME,
  242         .zo_killrate = DEFAULT_KILL_RATE,
  243         .zo_verbose = 0,
  244         .zo_mmp_test = 0,
  245         .zo_init = DEFAULT_INITS,
  246         .zo_time = DEFAULT_RUN_TIME,
  247         .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
  248         .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
  249         .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
  250         .zo_gvars_count = 0,
  251 };
  252 
  253 extern uint64_t metaslab_force_ganging;
  254 extern uint64_t metaslab_df_alloc_threshold;
  255 extern uint64_t zfs_deadman_synctime_ms;
  256 extern uint_t metaslab_preload_limit;
  257 extern int zfs_compressed_arc_enabled;
  258 extern int zfs_abd_scatter_enabled;
  259 extern uint_t dmu_object_alloc_chunk_shift;
  260 extern boolean_t zfs_force_some_double_word_sm_entries;
  261 extern unsigned long zio_decompress_fail_fraction;
  262 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
  263 
  264 
  265 static ztest_shared_opts_t *ztest_shared_opts;
  266 static ztest_shared_opts_t ztest_opts;
  267 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
  268 
  269 typedef struct ztest_shared_ds {
  270         uint64_t        zd_seq;
  271 } ztest_shared_ds_t;
  272 
  273 static ztest_shared_ds_t *ztest_shared_ds;
  274 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
  275 
  276 #define BT_MAGIC        0x123456789abcdefULL
  277 #define MAXFAULTS(zs) \
  278         (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
  279 
  280 enum ztest_io_type {
  281         ZTEST_IO_WRITE_TAG,
  282         ZTEST_IO_WRITE_PATTERN,
  283         ZTEST_IO_WRITE_ZEROES,
  284         ZTEST_IO_TRUNCATE,
  285         ZTEST_IO_SETATTR,
  286         ZTEST_IO_REWRITE,
  287         ZTEST_IO_TYPES
  288 };
  289 
  290 typedef struct ztest_block_tag {
  291         uint64_t        bt_magic;
  292         uint64_t        bt_objset;
  293         uint64_t        bt_object;
  294         uint64_t        bt_dnodesize;
  295         uint64_t        bt_offset;
  296         uint64_t        bt_gen;
  297         uint64_t        bt_txg;
  298         uint64_t        bt_crtxg;
  299 } ztest_block_tag_t;
  300 
  301 typedef struct bufwad {
  302         uint64_t        bw_index;
  303         uint64_t        bw_txg;
  304         uint64_t        bw_data;
  305 } bufwad_t;
  306 
  307 /*
  308  * It would be better to use a rangelock_t per object.  Unfortunately
  309  * the rangelock_t is not a drop-in replacement for rl_t, because we
  310  * still need to map from object ID to rangelock_t.
  311  */
  312 typedef enum {
  313         RL_READER,
  314         RL_WRITER,
  315         RL_APPEND
  316 } rl_type_t;
  317 
  318 typedef struct rll {
  319         void            *rll_writer;
  320         int             rll_readers;
  321         kmutex_t        rll_lock;
  322         kcondvar_t      rll_cv;
  323 } rll_t;
  324 
  325 typedef struct rl {
  326         uint64_t        rl_object;
  327         uint64_t        rl_offset;
  328         uint64_t        rl_size;
  329         rll_t           *rl_lock;
  330 } rl_t;
  331 
  332 #define ZTEST_RANGE_LOCKS       64
  333 #define ZTEST_OBJECT_LOCKS      64
  334 
  335 /*
  336  * Object descriptor.  Used as a template for object lookup/create/remove.
  337  */
  338 typedef struct ztest_od {
  339         uint64_t        od_dir;
  340         uint64_t        od_object;
  341         dmu_object_type_t od_type;
  342         dmu_object_type_t od_crtype;
  343         uint64_t        od_blocksize;
  344         uint64_t        od_crblocksize;
  345         uint64_t        od_crdnodesize;
  346         uint64_t        od_gen;
  347         uint64_t        od_crgen;
  348         char            od_name[ZFS_MAX_DATASET_NAME_LEN];
  349 } ztest_od_t;
  350 
  351 /*
  352  * Per-dataset state.
  353  */
  354 typedef struct ztest_ds {
  355         ztest_shared_ds_t *zd_shared;
  356         objset_t        *zd_os;
  357         pthread_rwlock_t zd_zilog_lock;
  358         zilog_t         *zd_zilog;
  359         ztest_od_t      *zd_od;         /* debugging aid */
  360         char            zd_name[ZFS_MAX_DATASET_NAME_LEN];
  361         kmutex_t        zd_dirobj_lock;
  362         rll_t           zd_object_lock[ZTEST_OBJECT_LOCKS];
  363         rll_t           zd_range_lock[ZTEST_RANGE_LOCKS];
  364 } ztest_ds_t;
  365 
  366 /*
  367  * Per-iteration state.
  368  */
  369 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
  370 
  371 typedef struct ztest_info {
  372         ztest_func_t    *zi_func;       /* test function */
  373         uint64_t        zi_iters;       /* iterations per execution */
  374         uint64_t        *zi_interval;   /* execute every <interval> seconds */
  375         const char      *zi_funcname;   /* name of test function */
  376 } ztest_info_t;
  377 
  378 typedef struct ztest_shared_callstate {
  379         uint64_t        zc_count;       /* per-pass count */
  380         uint64_t        zc_time;        /* per-pass time */
  381         uint64_t        zc_next;        /* next time to call this function */
  382 } ztest_shared_callstate_t;
  383 
  384 static ztest_shared_callstate_t *ztest_shared_callstate;
  385 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
  386 
  387 ztest_func_t ztest_dmu_read_write;
  388 ztest_func_t ztest_dmu_write_parallel;
  389 ztest_func_t ztest_dmu_object_alloc_free;
  390 ztest_func_t ztest_dmu_object_next_chunk;
  391 ztest_func_t ztest_dmu_commit_callbacks;
  392 ztest_func_t ztest_zap;
  393 ztest_func_t ztest_zap_parallel;
  394 ztest_func_t ztest_zil_commit;
  395 ztest_func_t ztest_zil_remount;
  396 ztest_func_t ztest_dmu_read_write_zcopy;
  397 ztest_func_t ztest_dmu_objset_create_destroy;
  398 ztest_func_t ztest_dmu_prealloc;
  399 ztest_func_t ztest_fzap;
  400 ztest_func_t ztest_dmu_snapshot_create_destroy;
  401 ztest_func_t ztest_dsl_prop_get_set;
  402 ztest_func_t ztest_spa_prop_get_set;
  403 ztest_func_t ztest_spa_create_destroy;
  404 ztest_func_t ztest_fault_inject;
  405 ztest_func_t ztest_dmu_snapshot_hold;
  406 ztest_func_t ztest_mmp_enable_disable;
  407 ztest_func_t ztest_scrub;
  408 ztest_func_t ztest_dsl_dataset_promote_busy;
  409 ztest_func_t ztest_vdev_attach_detach;
  410 ztest_func_t ztest_vdev_LUN_growth;
  411 ztest_func_t ztest_vdev_add_remove;
  412 ztest_func_t ztest_vdev_class_add;
  413 ztest_func_t ztest_vdev_aux_add_remove;
  414 ztest_func_t ztest_split_pool;
  415 ztest_func_t ztest_reguid;
  416 ztest_func_t ztest_spa_upgrade;
  417 ztest_func_t ztest_device_removal;
  418 ztest_func_t ztest_spa_checkpoint_create_discard;
  419 ztest_func_t ztest_initialize;
  420 ztest_func_t ztest_trim;
  421 ztest_func_t ztest_blake3;
  422 ztest_func_t ztest_fletcher;
  423 ztest_func_t ztest_fletcher_incr;
  424 ztest_func_t ztest_verify_dnode_bt;
  425 
  426 static uint64_t zopt_always = 0ULL * NANOSEC;           /* all the time */
  427 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;   /* every 1/10 second */
  428 static uint64_t zopt_often = 1ULL * NANOSEC;            /* every second */
  429 static uint64_t zopt_sometimes = 10ULL * NANOSEC;       /* every 10 seconds */
  430 static uint64_t zopt_rarely = 60ULL * NANOSEC;          /* every 60 seconds */
  431 
  432 #define ZTI_INIT(func, iters, interval) \
  433         {   .zi_func = (func), \
  434             .zi_iters = (iters), \
  435             .zi_interval = (interval), \
  436             .zi_funcname = # func }
  437 
  438 static ztest_info_t ztest_info[] = {
  439         ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
  440         ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
  441         ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
  442         ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
  443         ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
  444         ZTI_INIT(ztest_zap, 30, &zopt_always),
  445         ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
  446         ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
  447         ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
  448         ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
  449         ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
  450         ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
  451         ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
  452         ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
  453 #if 0
  454         ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
  455 #endif
  456         ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
  457         ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
  458         ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
  459         ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
  460         ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
  461         ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
  462         ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
  463         ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
  464         ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
  465         ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
  466         ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
  467         ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
  468         ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
  469         ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
  470         ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
  471         ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
  472         ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
  473         ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
  474         ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
  475         ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
  476         ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
  477         ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
  478         ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
  479 };
  480 
  481 #define ZTEST_FUNCS     (sizeof (ztest_info) / sizeof (ztest_info_t))
  482 
  483 /*
  484  * The following struct is used to hold a list of uncalled commit callbacks.
  485  * The callbacks are ordered by txg number.
  486  */
  487 typedef struct ztest_cb_list {
  488         kmutex_t        zcl_callbacks_lock;
  489         list_t          zcl_callbacks;
  490 } ztest_cb_list_t;
  491 
  492 /*
  493  * Stuff we need to share writably between parent and child.
  494  */
  495 typedef struct ztest_shared {
  496         boolean_t       zs_do_init;
  497         hrtime_t        zs_proc_start;
  498         hrtime_t        zs_proc_stop;
  499         hrtime_t        zs_thread_start;
  500         hrtime_t        zs_thread_stop;
  501         hrtime_t        zs_thread_kill;
  502         uint64_t        zs_enospc_count;
  503         uint64_t        zs_vdev_next_leaf;
  504         uint64_t        zs_vdev_aux;
  505         uint64_t        zs_alloc;
  506         uint64_t        zs_space;
  507         uint64_t        zs_splits;
  508         uint64_t        zs_mirrors;
  509         uint64_t        zs_metaslab_sz;
  510         uint64_t        zs_metaslab_df_alloc_threshold;
  511         uint64_t        zs_guid;
  512 } ztest_shared_t;
  513 
  514 #define ID_PARALLEL     -1ULL
  515 
  516 static char ztest_dev_template[] = "%s/%s.%llua";
  517 static char ztest_aux_template[] = "%s/%s.%s.%llu";
  518 static ztest_shared_t *ztest_shared;
  519 
  520 static spa_t *ztest_spa = NULL;
  521 static ztest_ds_t *ztest_ds;
  522 
  523 static kmutex_t ztest_vdev_lock;
  524 static boolean_t ztest_device_removal_active = B_FALSE;
  525 static boolean_t ztest_pool_scrubbed = B_FALSE;
  526 static kmutex_t ztest_checkpoint_lock;
  527 
  528 /*
  529  * The ztest_name_lock protects the pool and dataset namespace used by
  530  * the individual tests. To modify the namespace, consumers must grab
  531  * this lock as writer. Grabbing the lock as reader will ensure that the
  532  * namespace does not change while the lock is held.
  533  */
  534 static pthread_rwlock_t ztest_name_lock;
  535 
  536 static boolean_t ztest_dump_core = B_TRUE;
  537 static boolean_t ztest_exiting;
  538 
  539 /* Global commit callback list */
  540 static ztest_cb_list_t zcl;
  541 /* Commit cb delay */
  542 static uint64_t zc_min_txg_delay = UINT64_MAX;
  543 static int zc_cb_counter = 0;
  544 
  545 /*
  546  * Minimum number of commit callbacks that need to be registered for us to check
  547  * whether the minimum txg delay is acceptable.
  548  */
  549 #define ZTEST_COMMIT_CB_MIN_REG 100
  550 
  551 /*
  552  * If a number of txgs equal to this threshold have been created after a commit
  553  * callback has been registered but not called, then we assume there is an
  554  * implementation bug.
  555  */
  556 #define ZTEST_COMMIT_CB_THRESH  (TXG_CONCURRENT_STATES + 1000)
  557 
  558 enum ztest_object {
  559         ZTEST_META_DNODE = 0,
  560         ZTEST_DIROBJ,
  561         ZTEST_OBJECTS
  562 };
  563 
  564 static __attribute__((noreturn)) void usage(boolean_t requested);
  565 static int ztest_scrub_impl(spa_t *spa);
  566 
  567 /*
  568  * These libumem hooks provide a reasonable set of defaults for the allocator's
  569  * debugging facilities.
  570  */
  571 const char *
  572 _umem_debug_init(void)
  573 {
  574         return ("default,verbose"); /* $UMEM_DEBUG setting */
  575 }
  576 
  577 const char *
  578 _umem_logging_init(void)
  579 {
  580         return ("fail,contents"); /* $UMEM_LOGGING setting */
  581 }
  582 
  583 static void
  584 dump_debug_buffer(void)
  585 {
  586         ssize_t ret __attribute__((unused));
  587 
  588         if (!ztest_opts.zo_dump_dbgmsg)
  589                 return;
  590 
  591         /*
  592          * We use write() instead of printf() so that this function
  593          * is safe to call from a signal handler.
  594          */
  595         ret = write(STDOUT_FILENO, "\n", 1);
  596         zfs_dbgmsg_print("ztest");
  597 }
  598 
  599 #define BACKTRACE_SZ    100
  600 
  601 static void sig_handler(int signo)
  602 {
  603         struct sigaction action;
  604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
  605         int nptrs;
  606         void *buffer[BACKTRACE_SZ];
  607 
  608         nptrs = backtrace(buffer, BACKTRACE_SZ);
  609         backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
  610 #endif
  611         dump_debug_buffer();
  612 
  613         /*
  614          * Restore default action and re-raise signal so SIGSEGV and
  615          * SIGABRT can trigger a core dump.
  616          */
  617         action.sa_handler = SIG_DFL;
  618         sigemptyset(&action.sa_mask);
  619         action.sa_flags = 0;
  620         (void) sigaction(signo, &action, NULL);
  621         raise(signo);
  622 }
  623 
  624 #define FATAL_MSG_SZ    1024
  625 
  626 static const char *fatal_msg;
  627 
  628 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
  629 fatal(int do_perror, const char *message, ...)
  630 {
  631         va_list args;
  632         int save_errno = errno;
  633         char *buf;
  634 
  635         (void) fflush(stdout);
  636         buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
  637         if (buf == NULL)
  638                 goto out;
  639 
  640         va_start(args, message);
  641         (void) sprintf(buf, "ztest: ");
  642         /* LINTED */
  643         (void) vsprintf(buf + strlen(buf), message, args);
  644         va_end(args);
  645         if (do_perror) {
  646                 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
  647                     ": %s", strerror(save_errno));
  648         }
  649         (void) fprintf(stderr, "%s\n", buf);
  650         fatal_msg = buf;                        /* to ease debugging */
  651 
  652 out:
  653         if (ztest_dump_core)
  654                 abort();
  655         else
  656                 dump_debug_buffer();
  657 
  658         exit(3);
  659 }
  660 
  661 static int
  662 str2shift(const char *buf)
  663 {
  664         const char *ends = "BKMGTPEZ";
  665         int i;
  666 
  667         if (buf[0] == '\0')
  668                 return (0);
  669         for (i = 0; i < strlen(ends); i++) {
  670                 if (toupper(buf[0]) == ends[i])
  671                         break;
  672         }
  673         if (i == strlen(ends)) {
  674                 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
  675                     buf);
  676                 usage(B_FALSE);
  677         }
  678         if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
  679                 return (10*i);
  680         }
  681         (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
  682         usage(B_FALSE);
  683 }
  684 
  685 static uint64_t
  686 nicenumtoull(const char *buf)
  687 {
  688         char *end;
  689         uint64_t val;
  690 
  691         val = strtoull(buf, &end, 0);
  692         if (end == buf) {
  693                 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
  694                 usage(B_FALSE);
  695         } else if (end[0] == '.') {
  696                 double fval = strtod(buf, &end);
  697                 fval *= pow(2, str2shift(end));
  698                 /*
  699                  * UINT64_MAX is not exactly representable as a double.
  700                  * The closest representation is UINT64_MAX + 1, so we
  701                  * use a >= comparison instead of > for the bounds check.
  702                  */
  703                 if (fval >= (double)UINT64_MAX) {
  704                         (void) fprintf(stderr, "ztest: value too large: %s\n",
  705                             buf);
  706                         usage(B_FALSE);
  707                 }
  708                 val = (uint64_t)fval;
  709         } else {
  710                 int shift = str2shift(end);
  711                 if (shift >= 64 || (val << shift) >> shift != val) {
  712                         (void) fprintf(stderr, "ztest: value too large: %s\n",
  713                             buf);
  714                         usage(B_FALSE);
  715                 }
  716                 val <<= shift;
  717         }
  718         return (val);
  719 }
  720 
  721 typedef struct ztest_option {
  722         const char      short_opt;
  723         const char      *long_opt;
  724         const char      *long_opt_param;
  725         const char      *comment;
  726         unsigned int    default_int;
  727         const char      *default_str;
  728 } ztest_option_t;
  729 
  730 /*
  731  * The following option_table is used for generating the usage info as well as
  732  * the long and short option information for calling getopt_long().
  733  */
  734 static ztest_option_t option_table[] = {
  735         { 'v',  "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
  736             NULL},
  737         { 's',  "vdev-size", "INTEGER", "Size of each vdev",
  738             NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
  739         { 'a',  "alignment-shift", "INTEGER",
  740             "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
  741         { 'm',  "mirror-copies", "INTEGER", "Number of mirror copies",
  742             DEFAULT_MIRRORS, NULL},
  743         { 'r',  "raid-disks", "INTEGER", "Number of raidz/draid disks",
  744             DEFAULT_RAID_CHILDREN, NULL},
  745         { 'R',  "raid-parity", "INTEGER", "Raid parity",
  746             DEFAULT_RAID_PARITY, NULL},
  747         { 'K',  "raid-kind", "raidz|draid|random", "Raid kind",
  748             NO_DEFAULT, "random"},
  749         { 'D',  "draid-data", "INTEGER", "Number of draid data drives",
  750             DEFAULT_DRAID_DATA, NULL},
  751         { 'S',  "draid-spares", "INTEGER", "Number of draid spares",
  752             DEFAULT_DRAID_SPARES, NULL},
  753         { 'd',  "datasets", "INTEGER", "Number of datasets",
  754             DEFAULT_DATASETS_COUNT, NULL},
  755         { 't',  "threads", "INTEGER", "Number of ztest threads",
  756             DEFAULT_THREADS, NULL},
  757         { 'g',  "gang-block-threshold", "INTEGER",
  758             "Metaslab gang block threshold",
  759             NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
  760         { 'i',  "init-count", "INTEGER", "Number of times to initialize pool",
  761             DEFAULT_INITS, NULL},
  762         { 'k',  "kill-percentage", "INTEGER", "Kill percentage",
  763             NO_DEFAULT, DEFAULT_KILLRATE_STR},
  764         { 'p',  "pool-name", "STRING", "Pool name",
  765             NO_DEFAULT, DEFAULT_POOL},
  766         { 'f',  "vdev-file-directory", "PATH", "File directory for vdev files",
  767             NO_DEFAULT, DEFAULT_VDEV_DIR},
  768         { 'M',  "multi-host", NULL,
  769             "Multi-host; simulate pool imported on remote host",
  770             NO_DEFAULT, NULL},
  771         { 'E',  "use-existing-pool", NULL,
  772             "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
  773         { 'T',  "run-time", "INTEGER", "Total run time",
  774             NO_DEFAULT, DEFAULT_RUN_TIME_STR},
  775         { 'P',  "pass-time", "INTEGER", "Time per pass",
  776             NO_DEFAULT, DEFAULT_PASS_TIME_STR},
  777         { 'F',  "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
  778             DEFAULT_MAX_LOOPS, NULL},
  779         { 'B',  "alt-ztest", "PATH", "Alternate ztest path",
  780             NO_DEFAULT, NULL},
  781         { 'C',  "vdev-class-state", "on|off|random", "vdev class state",
  782             NO_DEFAULT, "random"},
  783         { 'o',  "option", "\"OPTION=INTEGER\"",
  784             "Set global variable to an unsigned 32-bit integer value",
  785             NO_DEFAULT, NULL},
  786         { 'G',  "dump-debug-msg", NULL,
  787             "Dump zfs_dbgmsg buffer before exiting due to an error",
  788             NO_DEFAULT, NULL},
  789         { 'V',  "verbose", NULL,
  790             "Verbose (use multiple times for ever more verbosity)",
  791             NO_DEFAULT, NULL},
  792         { 'h',  "help", NULL, "Show this help",
  793             NO_DEFAULT, NULL},
  794         {0, 0, 0, 0, 0, 0}
  795 };
  796 
  797 static struct option *long_opts = NULL;
  798 static char *short_opts = NULL;
  799 
  800 static void
  801 init_options(void)
  802 {
  803         ASSERT3P(long_opts, ==, NULL);
  804         ASSERT3P(short_opts, ==, NULL);
  805 
  806         int count = sizeof (option_table) / sizeof (option_table[0]);
  807         long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
  808 
  809         short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
  810         int short_opt_index = 0;
  811 
  812         for (int i = 0; i < count; i++) {
  813                 long_opts[i].val = option_table[i].short_opt;
  814                 long_opts[i].name = option_table[i].long_opt;
  815                 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
  816                     ? required_argument : no_argument;
  817                 long_opts[i].flag = NULL;
  818                 short_opts[short_opt_index++] = option_table[i].short_opt;
  819                 if (option_table[i].long_opt_param != NULL) {
  820                         short_opts[short_opt_index++] = ':';
  821                 }
  822         }
  823 }
  824 
  825 static void
  826 fini_options(void)
  827 {
  828         int count = sizeof (option_table) / sizeof (option_table[0]);
  829 
  830         umem_free(long_opts, sizeof (struct option) * count);
  831         umem_free(short_opts, sizeof (char) * 2 * count);
  832 
  833         long_opts = NULL;
  834         short_opts = NULL;
  835 }
  836 
  837 static __attribute__((noreturn)) void
  838 usage(boolean_t requested)
  839 {
  840         char option[80];
  841         FILE *fp = requested ? stdout : stderr;
  842 
  843         (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
  844         for (int i = 0; option_table[i].short_opt != 0; i++) {
  845                 if (option_table[i].long_opt_param != NULL) {
  846                         (void) sprintf(option, "  -%c --%s=%s",
  847                             option_table[i].short_opt,
  848                             option_table[i].long_opt,
  849                             option_table[i].long_opt_param);
  850                 } else {
  851                         (void) sprintf(option, "  -%c --%s",
  852                             option_table[i].short_opt,
  853                             option_table[i].long_opt);
  854                 }
  855                 (void) fprintf(fp, "  %-40s%s", option,
  856                     option_table[i].comment);
  857 
  858                 if (option_table[i].long_opt_param != NULL) {
  859                         if (option_table[i].default_str != NULL) {
  860                                 (void) fprintf(fp, " (default: %s)",
  861                                     option_table[i].default_str);
  862                         } else if (option_table[i].default_int != NO_DEFAULT) {
  863                                 (void) fprintf(fp, " (default: %u)",
  864                                     option_table[i].default_int);
  865                         }
  866                 }
  867                 (void) fprintf(fp, "\n");
  868         }
  869         exit(requested ? 0 : 1);
  870 }
  871 
  872 static uint64_t
  873 ztest_random(uint64_t range)
  874 {
  875         uint64_t r;
  876 
  877         ASSERT3S(ztest_fd_rand, >=, 0);
  878 
  879         if (range == 0)
  880                 return (0);
  881 
  882         if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
  883                 fatal(B_TRUE, "short read from /dev/urandom");
  884 
  885         return (r % range);
  886 }
  887 
  888 static void
  889 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
  890 {
  891         char name[32];
  892         char *value;
  893         int state = ZTEST_VDEV_CLASS_RND;
  894 
  895         (void) strlcpy(name, input, sizeof (name));
  896 
  897         value = strchr(name, '=');
  898         if (value == NULL) {
  899                 (void) fprintf(stderr, "missing value in property=value "
  900                     "'-C' argument (%s)\n", input);
  901                 usage(B_FALSE);
  902         }
  903         *(value) = '\0';
  904         value++;
  905 
  906         if (strcmp(value, "on") == 0) {
  907                 state = ZTEST_VDEV_CLASS_ON;
  908         } else if (strcmp(value, "off") == 0) {
  909                 state = ZTEST_VDEV_CLASS_OFF;
  910         } else if (strcmp(value, "random") == 0) {
  911                 state = ZTEST_VDEV_CLASS_RND;
  912         } else {
  913                 (void) fprintf(stderr, "invalid property value '%s'\n", value);
  914                 usage(B_FALSE);
  915         }
  916 
  917         if (strcmp(name, "special") == 0) {
  918                 zo->zo_special_vdevs = state;
  919         } else {
  920                 (void) fprintf(stderr, "invalid property name '%s'\n", name);
  921                 usage(B_FALSE);
  922         }
  923         if (zo->zo_verbose >= 3)
  924                 (void) printf("%s vdev state is '%s'\n", name, value);
  925 }
  926 
  927 static void
  928 process_options(int argc, char **argv)
  929 {
  930         char *path;
  931         ztest_shared_opts_t *zo = &ztest_opts;
  932 
  933         int opt;
  934         uint64_t value;
  935         const char *raid_kind = "random";
  936 
  937         memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
  938 
  939         init_options();
  940 
  941         while ((opt = getopt_long(argc, argv, short_opts, long_opts,
  942             NULL)) != EOF) {
  943                 value = 0;
  944                 switch (opt) {
  945                 case 'v':
  946                 case 's':
  947                 case 'a':
  948                 case 'm':
  949                 case 'r':
  950                 case 'R':
  951                 case 'D':
  952                 case 'S':
  953                 case 'd':
  954                 case 't':
  955                 case 'g':
  956                 case 'i':
  957                 case 'k':
  958                 case 'T':
  959                 case 'P':
  960                 case 'F':
  961                         value = nicenumtoull(optarg);
  962                 }
  963                 switch (opt) {
  964                 case 'v':
  965                         zo->zo_vdevs = value;
  966                         break;
  967                 case 's':
  968                         zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
  969                         break;
  970                 case 'a':
  971                         zo->zo_ashift = value;
  972                         break;
  973                 case 'm':
  974                         zo->zo_mirrors = value;
  975                         break;
  976                 case 'r':
  977                         zo->zo_raid_children = MAX(1, value);
  978                         break;
  979                 case 'R':
  980                         zo->zo_raid_parity = MIN(MAX(value, 1), 3);
  981                         break;
  982                 case 'K':
  983                         raid_kind = optarg;
  984                         break;
  985                 case 'D':
  986                         zo->zo_draid_data = MAX(1, value);
  987                         break;
  988                 case 'S':
  989                         zo->zo_draid_spares = MAX(1, value);
  990                         break;
  991                 case 'd':
  992                         zo->zo_datasets = MAX(1, value);
  993                         break;
  994                 case 't':
  995                         zo->zo_threads = MAX(1, value);
  996                         break;
  997                 case 'g':
  998                         zo->zo_metaslab_force_ganging =
  999                             MAX(SPA_MINBLOCKSIZE << 1, value);
 1000                         break;
 1001                 case 'i':
 1002                         zo->zo_init = value;
 1003                         break;
 1004                 case 'k':
 1005                         zo->zo_killrate = value;
 1006                         break;
 1007                 case 'p':
 1008                         (void) strlcpy(zo->zo_pool, optarg,
 1009                             sizeof (zo->zo_pool));
 1010                         break;
 1011                 case 'f':
 1012                         path = realpath(optarg, NULL);
 1013                         if (path == NULL) {
 1014                                 (void) fprintf(stderr, "error: %s: %s\n",
 1015                                     optarg, strerror(errno));
 1016                                 usage(B_FALSE);
 1017                         } else {
 1018                                 (void) strlcpy(zo->zo_dir, path,
 1019                                     sizeof (zo->zo_dir));
 1020                                 free(path);
 1021                         }
 1022                         break;
 1023                 case 'M':
 1024                         zo->zo_mmp_test = 1;
 1025                         break;
 1026                 case 'V':
 1027                         zo->zo_verbose++;
 1028                         break;
 1029                 case 'E':
 1030                         zo->zo_init = 0;
 1031                         break;
 1032                 case 'T':
 1033                         zo->zo_time = value;
 1034                         break;
 1035                 case 'P':
 1036                         zo->zo_passtime = MAX(1, value);
 1037                         break;
 1038                 case 'F':
 1039                         zo->zo_maxloops = MAX(1, value);
 1040                         break;
 1041                 case 'B':
 1042                         (void) strlcpy(zo->zo_alt_ztest, optarg,
 1043                             sizeof (zo->zo_alt_ztest));
 1044                         break;
 1045                 case 'C':
 1046                         ztest_parse_name_value(optarg, zo);
 1047                         break;
 1048                 case 'o':
 1049                         if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
 1050                                 (void) fprintf(stderr,
 1051                                     "max global var count (%zu) exceeded\n",
 1052                                     ZO_GVARS_MAX_COUNT);
 1053                                 usage(B_FALSE);
 1054                         }
 1055                         char *v = zo->zo_gvars[zo->zo_gvars_count];
 1056                         if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
 1057                             ZO_GVARS_MAX_ARGLEN) {
 1058                                 (void) fprintf(stderr,
 1059                                     "global var option '%s' is too long\n",
 1060                                     optarg);
 1061                                 usage(B_FALSE);
 1062                         }
 1063                         zo->zo_gvars_count++;
 1064                         break;
 1065                 case 'G':
 1066                         zo->zo_dump_dbgmsg = 1;
 1067                         break;
 1068                 case 'h':
 1069                         usage(B_TRUE);
 1070                         break;
 1071                 case '?':
 1072                 default:
 1073                         usage(B_FALSE);
 1074                         break;
 1075                 }
 1076         }
 1077 
 1078         fini_options();
 1079 
 1080         /* When raid choice is 'random' add a draid pool 50% of the time */
 1081         if (strcmp(raid_kind, "random") == 0) {
 1082                 raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz";
 1083 
 1084                 if (ztest_opts.zo_verbose >= 3)
 1085                         (void) printf("choosing RAID type '%s'\n", raid_kind);
 1086         }
 1087 
 1088         if (strcmp(raid_kind, "draid") == 0) {
 1089                 uint64_t min_devsize;
 1090 
 1091                 /* With fewer disk use 256M, otherwise 128M is OK */
 1092                 min_devsize = (ztest_opts.zo_raid_children < 16) ?
 1093                     (256ULL << 20) : (128ULL << 20);
 1094 
 1095                 /* No top-level mirrors with dRAID for now */
 1096                 zo->zo_mirrors = 0;
 1097 
 1098                 /* Use more appropriate defaults for dRAID */
 1099                 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
 1100                         zo->zo_vdevs = 1;
 1101                 if (zo->zo_raid_children ==
 1102                     ztest_opts_defaults.zo_raid_children)
 1103                         zo->zo_raid_children = 16;
 1104                 if (zo->zo_ashift < 12)
 1105                         zo->zo_ashift = 12;
 1106                 if (zo->zo_vdev_size < min_devsize)
 1107                         zo->zo_vdev_size = min_devsize;
 1108 
 1109                 if (zo->zo_draid_data + zo->zo_raid_parity >
 1110                     zo->zo_raid_children - zo->zo_draid_spares) {
 1111                         (void) fprintf(stderr, "error: too few draid "
 1112                             "children (%d) for stripe width (%d)\n",
 1113                             zo->zo_raid_children,
 1114                             zo->zo_draid_data + zo->zo_raid_parity);
 1115                         usage(B_FALSE);
 1116                 }
 1117 
 1118                 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
 1119                     sizeof (zo->zo_raid_type));
 1120 
 1121         } else /* using raidz */ {
 1122                 ASSERT0(strcmp(raid_kind, "raidz"));
 1123 
 1124                 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
 1125                     zo->zo_raid_children - 1);
 1126         }
 1127 
 1128         zo->zo_vdevtime =
 1129             (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
 1130             UINT64_MAX >> 2);
 1131 
 1132         if (*zo->zo_alt_ztest) {
 1133                 const char *invalid_what = "ztest";
 1134                 char *val = zo->zo_alt_ztest;
 1135                 if (0 != access(val, X_OK) ||
 1136                     (strrchr(val, '/') == NULL && (errno == EINVAL)))
 1137                         goto invalid;
 1138 
 1139                 int dirlen = strrchr(val, '/') - val;
 1140                 strlcpy(zo->zo_alt_libpath, val,
 1141                     MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
 1142                 invalid_what = "library path", val = zo->zo_alt_libpath;
 1143                 if (strrchr(val, '/') == NULL && (errno == EINVAL))
 1144                         goto invalid;
 1145                 *strrchr(val, '/') = '\0';
 1146                 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
 1147 
 1148                 if (0 != access(zo->zo_alt_libpath, X_OK))
 1149                         goto invalid;
 1150                 return;
 1151 
 1152 invalid:
 1153                 ztest_dump_core = B_FALSE;
 1154                 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
 1155         }
 1156 }
 1157 
 1158 static void
 1159 ztest_kill(ztest_shared_t *zs)
 1160 {
 1161         zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
 1162         zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
 1163 
 1164         /*
 1165          * Before we kill ourselves, make sure that the config is updated.
 1166          * See comment above spa_write_cachefile().
 1167          */
 1168         mutex_enter(&spa_namespace_lock);
 1169         spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
 1170         mutex_exit(&spa_namespace_lock);
 1171 
 1172         (void) raise(SIGKILL);
 1173 }
 1174 
 1175 static void
 1176 ztest_record_enospc(const char *s)
 1177 {
 1178         (void) s;
 1179         ztest_shared->zs_enospc_count++;
 1180 }
 1181 
 1182 static uint64_t
 1183 ztest_get_ashift(void)
 1184 {
 1185         if (ztest_opts.zo_ashift == 0)
 1186                 return (SPA_MINBLOCKSHIFT + ztest_random(5));
 1187         return (ztest_opts.zo_ashift);
 1188 }
 1189 
 1190 static boolean_t
 1191 ztest_is_draid_spare(const char *name)
 1192 {
 1193         uint64_t spare_id = 0, parity = 0, vdev_id = 0;
 1194 
 1195         if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
 1196             &parity, &vdev_id, &spare_id) == 3) {
 1197                 return (B_TRUE);
 1198         }
 1199 
 1200         return (B_FALSE);
 1201 }
 1202 
 1203 static nvlist_t *
 1204 make_vdev_file(const char *path, const char *aux, const char *pool,
 1205     size_t size, uint64_t ashift)
 1206 {
 1207         char *pathbuf = NULL;
 1208         uint64_t vdev;
 1209         nvlist_t *file;
 1210         boolean_t draid_spare = B_FALSE;
 1211 
 1212 
 1213         if (ashift == 0)
 1214                 ashift = ztest_get_ashift();
 1215 
 1216         if (path == NULL) {
 1217                 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 1218                 path = pathbuf;
 1219 
 1220                 if (aux != NULL) {
 1221                         vdev = ztest_shared->zs_vdev_aux;
 1222                         (void) snprintf(pathbuf, MAXPATHLEN,
 1223                             ztest_aux_template, ztest_opts.zo_dir,
 1224                             pool == NULL ? ztest_opts.zo_pool : pool,
 1225                             aux, vdev);
 1226                 } else {
 1227                         vdev = ztest_shared->zs_vdev_next_leaf++;
 1228                         (void) snprintf(pathbuf, MAXPATHLEN,
 1229                             ztest_dev_template, ztest_opts.zo_dir,
 1230                             pool == NULL ? ztest_opts.zo_pool : pool, vdev);
 1231                 }
 1232         } else {
 1233                 draid_spare = ztest_is_draid_spare(path);
 1234         }
 1235 
 1236         if (size != 0 && !draid_spare) {
 1237                 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
 1238                 if (fd == -1)
 1239                         fatal(B_TRUE, "can't open %s", path);
 1240                 if (ftruncate(fd, size) != 0)
 1241                         fatal(B_TRUE, "can't ftruncate %s", path);
 1242                 (void) close(fd);
 1243         }
 1244 
 1245         file = fnvlist_alloc();
 1246         fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
 1247             draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
 1248         fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
 1249         fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
 1250         umem_free(pathbuf, MAXPATHLEN);
 1251 
 1252         return (file);
 1253 }
 1254 
 1255 static nvlist_t *
 1256 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
 1257     uint64_t ashift, int r)
 1258 {
 1259         nvlist_t *raid, **child;
 1260         int c;
 1261 
 1262         if (r < 2)
 1263                 return (make_vdev_file(path, aux, pool, size, ashift));
 1264         child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
 1265 
 1266         for (c = 0; c < r; c++)
 1267                 child[c] = make_vdev_file(path, aux, pool, size, ashift);
 1268 
 1269         raid = fnvlist_alloc();
 1270         fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
 1271             ztest_opts.zo_raid_type);
 1272         fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
 1273             ztest_opts.zo_raid_parity);
 1274         fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
 1275             (const nvlist_t **)child, r);
 1276 
 1277         if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
 1278                 uint64_t ndata = ztest_opts.zo_draid_data;
 1279                 uint64_t nparity = ztest_opts.zo_raid_parity;
 1280                 uint64_t nspares = ztest_opts.zo_draid_spares;
 1281                 uint64_t children = ztest_opts.zo_raid_children;
 1282                 uint64_t ngroups = 1;
 1283 
 1284                 /*
 1285                  * Calculate the minimum number of groups required to fill a
 1286                  * slice. This is the LCM of the stripe width (data + parity)
 1287                  * and the number of data drives (children - spares).
 1288                  */
 1289                 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
 1290                         ngroups++;
 1291 
 1292                 /* Store the basic dRAID configuration. */
 1293                 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
 1294                 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
 1295                 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
 1296         }
 1297 
 1298         for (c = 0; c < r; c++)
 1299                 fnvlist_free(child[c]);
 1300 
 1301         umem_free(child, r * sizeof (nvlist_t *));
 1302 
 1303         return (raid);
 1304 }
 1305 
 1306 static nvlist_t *
 1307 make_vdev_mirror(const char *path, const char *aux, const char *pool,
 1308     size_t size, uint64_t ashift, int r, int m)
 1309 {
 1310         nvlist_t *mirror, **child;
 1311         int c;
 1312 
 1313         if (m < 1)
 1314                 return (make_vdev_raid(path, aux, pool, size, ashift, r));
 1315 
 1316         child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
 1317 
 1318         for (c = 0; c < m; c++)
 1319                 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
 1320 
 1321         mirror = fnvlist_alloc();
 1322         fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
 1323         fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
 1324             (const nvlist_t **)child, m);
 1325 
 1326         for (c = 0; c < m; c++)
 1327                 fnvlist_free(child[c]);
 1328 
 1329         umem_free(child, m * sizeof (nvlist_t *));
 1330 
 1331         return (mirror);
 1332 }
 1333 
 1334 static nvlist_t *
 1335 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
 1336     uint64_t ashift, const char *class, int r, int m, int t)
 1337 {
 1338         nvlist_t *root, **child;
 1339         int c;
 1340         boolean_t log;
 1341 
 1342         ASSERT3S(t, >, 0);
 1343 
 1344         log = (class != NULL && strcmp(class, "log") == 0);
 1345 
 1346         child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
 1347 
 1348         for (c = 0; c < t; c++) {
 1349                 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
 1350                     r, m);
 1351                 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
 1352 
 1353                 if (class != NULL && class[0] != '\0') {
 1354                         ASSERT(m > 1 || log);   /* expecting a mirror */
 1355                         fnvlist_add_string(child[c],
 1356                             ZPOOL_CONFIG_ALLOCATION_BIAS, class);
 1357                 }
 1358         }
 1359 
 1360         root = fnvlist_alloc();
 1361         fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
 1362         fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
 1363             (const nvlist_t **)child, t);
 1364 
 1365         for (c = 0; c < t; c++)
 1366                 fnvlist_free(child[c]);
 1367 
 1368         umem_free(child, t * sizeof (nvlist_t *));
 1369 
 1370         return (root);
 1371 }
 1372 
 1373 /*
 1374  * Find a random spa version. Returns back a random spa version in the
 1375  * range [initial_version, SPA_VERSION_FEATURES].
 1376  */
 1377 static uint64_t
 1378 ztest_random_spa_version(uint64_t initial_version)
 1379 {
 1380         uint64_t version = initial_version;
 1381 
 1382         if (version <= SPA_VERSION_BEFORE_FEATURES) {
 1383                 version = version +
 1384                     ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
 1385         }
 1386 
 1387         if (version > SPA_VERSION_BEFORE_FEATURES)
 1388                 version = SPA_VERSION_FEATURES;
 1389 
 1390         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
 1391         return (version);
 1392 }
 1393 
 1394 static int
 1395 ztest_random_blocksize(void)
 1396 {
 1397         ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
 1398 
 1399         /*
 1400          * Choose a block size >= the ashift.
 1401          * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
 1402          */
 1403         int maxbs = SPA_OLD_MAXBLOCKSHIFT;
 1404         if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
 1405                 maxbs = 20;
 1406         uint64_t block_shift =
 1407             ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
 1408         return (1 << (SPA_MINBLOCKSHIFT + block_shift));
 1409 }
 1410 
 1411 static int
 1412 ztest_random_dnodesize(void)
 1413 {
 1414         int slots;
 1415         int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
 1416 
 1417         if (max_slots == DNODE_MIN_SLOTS)
 1418                 return (DNODE_MIN_SIZE);
 1419 
 1420         /*
 1421          * Weight the random distribution more heavily toward smaller
 1422          * dnode sizes since that is more likely to reflect real-world
 1423          * usage.
 1424          */
 1425         ASSERT3U(max_slots, >, 4);
 1426         switch (ztest_random(10)) {
 1427         case 0:
 1428                 slots = 5 + ztest_random(max_slots - 4);
 1429                 break;
 1430         case 1 ... 4:
 1431                 slots = 2 + ztest_random(3);
 1432                 break;
 1433         default:
 1434                 slots = 1;
 1435                 break;
 1436         }
 1437 
 1438         return (slots << DNODE_SHIFT);
 1439 }
 1440 
 1441 static int
 1442 ztest_random_ibshift(void)
 1443 {
 1444         return (DN_MIN_INDBLKSHIFT +
 1445             ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
 1446 }
 1447 
 1448 static uint64_t
 1449 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
 1450 {
 1451         uint64_t top;
 1452         vdev_t *rvd = spa->spa_root_vdev;
 1453         vdev_t *tvd;
 1454 
 1455         ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 1456 
 1457         do {
 1458                 top = ztest_random(rvd->vdev_children);
 1459                 tvd = rvd->vdev_child[top];
 1460         } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
 1461             tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
 1462 
 1463         return (top);
 1464 }
 1465 
 1466 static uint64_t
 1467 ztest_random_dsl_prop(zfs_prop_t prop)
 1468 {
 1469         uint64_t value;
 1470 
 1471         do {
 1472                 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
 1473         } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
 1474 
 1475         return (value);
 1476 }
 1477 
 1478 static int
 1479 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
 1480     boolean_t inherit)
 1481 {
 1482         const char *propname = zfs_prop_to_name(prop);
 1483         const char *valname;
 1484         char *setpoint;
 1485         uint64_t curval;
 1486         int error;
 1487 
 1488         error = dsl_prop_set_int(osname, propname,
 1489             (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
 1490 
 1491         if (error == ENOSPC) {
 1492                 ztest_record_enospc(FTAG);
 1493                 return (error);
 1494         }
 1495         ASSERT0(error);
 1496 
 1497         setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 1498         VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
 1499 
 1500         if (ztest_opts.zo_verbose >= 6) {
 1501                 int err;
 1502 
 1503                 err = zfs_prop_index_to_string(prop, curval, &valname);
 1504                 if (err)
 1505                         (void) printf("%s %s = %llu at '%s'\n", osname,
 1506                             propname, (unsigned long long)curval, setpoint);
 1507                 else
 1508                         (void) printf("%s %s = %s at '%s'\n",
 1509                             osname, propname, valname, setpoint);
 1510         }
 1511         umem_free(setpoint, MAXPATHLEN);
 1512 
 1513         return (error);
 1514 }
 1515 
 1516 static int
 1517 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
 1518 {
 1519         spa_t *spa = ztest_spa;
 1520         nvlist_t *props = NULL;
 1521         int error;
 1522 
 1523         props = fnvlist_alloc();
 1524         fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
 1525 
 1526         error = spa_prop_set(spa, props);
 1527 
 1528         fnvlist_free(props);
 1529 
 1530         if (error == ENOSPC) {
 1531                 ztest_record_enospc(FTAG);
 1532                 return (error);
 1533         }
 1534         ASSERT0(error);
 1535 
 1536         return (error);
 1537 }
 1538 
 1539 static int
 1540 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
 1541     boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
 1542 {
 1543         int err;
 1544         char *cp = NULL;
 1545         char ddname[ZFS_MAX_DATASET_NAME_LEN];
 1546 
 1547         strlcpy(ddname, name, sizeof (ddname));
 1548         cp = strchr(ddname, '@');
 1549         if (cp != NULL)
 1550                 *cp = '\0';
 1551 
 1552         err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
 1553         while (decrypt && err == EACCES) {
 1554                 dsl_crypto_params_t *dcp;
 1555                 nvlist_t *crypto_args = fnvlist_alloc();
 1556 
 1557                 fnvlist_add_uint8_array(crypto_args, "wkeydata",
 1558                     (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
 1559                 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
 1560                     crypto_args, &dcp));
 1561                 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
 1562                 /*
 1563                  * Note: if there was an error loading, the wkey was not
 1564                  * consumed, and needs to be freed.
 1565                  */
 1566                 dsl_crypto_params_free(dcp, (err != 0));
 1567                 fnvlist_free(crypto_args);
 1568 
 1569                 if (err == EINVAL) {
 1570                         /*
 1571                          * We couldn't load a key for this dataset so try
 1572                          * the parent. This loop will eventually hit the
 1573                          * encryption root since ztest only makes clones
 1574                          * as children of their origin datasets.
 1575                          */
 1576                         cp = strrchr(ddname, '/');
 1577                         if (cp == NULL)
 1578                                 return (err);
 1579 
 1580                         *cp = '\0';
 1581                         err = EACCES;
 1582                         continue;
 1583                 } else if (err != 0) {
 1584                         break;
 1585                 }
 1586 
 1587                 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
 1588                 break;
 1589         }
 1590 
 1591         return (err);
 1592 }
 1593 
 1594 static void
 1595 ztest_rll_init(rll_t *rll)
 1596 {
 1597         rll->rll_writer = NULL;
 1598         rll->rll_readers = 0;
 1599         mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
 1600         cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
 1601 }
 1602 
 1603 static void
 1604 ztest_rll_destroy(rll_t *rll)
 1605 {
 1606         ASSERT3P(rll->rll_writer, ==, NULL);
 1607         ASSERT0(rll->rll_readers);
 1608         mutex_destroy(&rll->rll_lock);
 1609         cv_destroy(&rll->rll_cv);
 1610 }
 1611 
 1612 static void
 1613 ztest_rll_lock(rll_t *rll, rl_type_t type)
 1614 {
 1615         mutex_enter(&rll->rll_lock);
 1616 
 1617         if (type == RL_READER) {
 1618                 while (rll->rll_writer != NULL)
 1619                         (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
 1620                 rll->rll_readers++;
 1621         } else {
 1622                 while (rll->rll_writer != NULL || rll->rll_readers)
 1623                         (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
 1624                 rll->rll_writer = curthread;
 1625         }
 1626 
 1627         mutex_exit(&rll->rll_lock);
 1628 }
 1629 
 1630 static void
 1631 ztest_rll_unlock(rll_t *rll)
 1632 {
 1633         mutex_enter(&rll->rll_lock);
 1634 
 1635         if (rll->rll_writer) {
 1636                 ASSERT0(rll->rll_readers);
 1637                 rll->rll_writer = NULL;
 1638         } else {
 1639                 ASSERT3S(rll->rll_readers, >, 0);
 1640                 ASSERT3P(rll->rll_writer, ==, NULL);
 1641                 rll->rll_readers--;
 1642         }
 1643 
 1644         if (rll->rll_writer == NULL && rll->rll_readers == 0)
 1645                 cv_broadcast(&rll->rll_cv);
 1646 
 1647         mutex_exit(&rll->rll_lock);
 1648 }
 1649 
 1650 static void
 1651 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
 1652 {
 1653         rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
 1654 
 1655         ztest_rll_lock(rll, type);
 1656 }
 1657 
 1658 static void
 1659 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
 1660 {
 1661         rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
 1662 
 1663         ztest_rll_unlock(rll);
 1664 }
 1665 
 1666 static rl_t *
 1667 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
 1668     uint64_t size, rl_type_t type)
 1669 {
 1670         uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
 1671         rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
 1672         rl_t *rl;
 1673 
 1674         rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
 1675         rl->rl_object = object;
 1676         rl->rl_offset = offset;
 1677         rl->rl_size = size;
 1678         rl->rl_lock = rll;
 1679 
 1680         ztest_rll_lock(rll, type);
 1681 
 1682         return (rl);
 1683 }
 1684 
 1685 static void
 1686 ztest_range_unlock(rl_t *rl)
 1687 {
 1688         rll_t *rll = rl->rl_lock;
 1689 
 1690         ztest_rll_unlock(rll);
 1691 
 1692         umem_free(rl, sizeof (*rl));
 1693 }
 1694 
 1695 static void
 1696 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
 1697 {
 1698         zd->zd_os = os;
 1699         zd->zd_zilog = dmu_objset_zil(os);
 1700         zd->zd_shared = szd;
 1701         dmu_objset_name(os, zd->zd_name);
 1702         int l;
 1703 
 1704         if (zd->zd_shared != NULL)
 1705                 zd->zd_shared->zd_seq = 0;
 1706 
 1707         VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
 1708         mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
 1709 
 1710         for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
 1711                 ztest_rll_init(&zd->zd_object_lock[l]);
 1712 
 1713         for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
 1714                 ztest_rll_init(&zd->zd_range_lock[l]);
 1715 }
 1716 
 1717 static void
 1718 ztest_zd_fini(ztest_ds_t *zd)
 1719 {
 1720         int l;
 1721 
 1722         mutex_destroy(&zd->zd_dirobj_lock);
 1723         (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
 1724 
 1725         for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
 1726                 ztest_rll_destroy(&zd->zd_object_lock[l]);
 1727 
 1728         for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
 1729                 ztest_rll_destroy(&zd->zd_range_lock[l]);
 1730 }
 1731 
 1732 #define TXG_MIGHTWAIT   (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
 1733 
 1734 static uint64_t
 1735 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
 1736 {
 1737         uint64_t txg;
 1738         int error;
 1739 
 1740         /*
 1741          * Attempt to assign tx to some transaction group.
 1742          */
 1743         error = dmu_tx_assign(tx, txg_how);
 1744         if (error) {
 1745                 if (error == ERESTART) {
 1746                         ASSERT3U(txg_how, ==, TXG_NOWAIT);
 1747                         dmu_tx_wait(tx);
 1748                 } else {
 1749                         ASSERT3U(error, ==, ENOSPC);
 1750                         ztest_record_enospc(tag);
 1751                 }
 1752                 dmu_tx_abort(tx);
 1753                 return (0);
 1754         }
 1755         txg = dmu_tx_get_txg(tx);
 1756         ASSERT3U(txg, !=, 0);
 1757         return (txg);
 1758 }
 1759 
 1760 static void
 1761 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
 1762     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
 1763     uint64_t crtxg)
 1764 {
 1765         bt->bt_magic = BT_MAGIC;
 1766         bt->bt_objset = dmu_objset_id(os);
 1767         bt->bt_object = object;
 1768         bt->bt_dnodesize = dnodesize;
 1769         bt->bt_offset = offset;
 1770         bt->bt_gen = gen;
 1771         bt->bt_txg = txg;
 1772         bt->bt_crtxg = crtxg;
 1773 }
 1774 
 1775 static void
 1776 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
 1777     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
 1778     uint64_t crtxg)
 1779 {
 1780         ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
 1781         ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
 1782         ASSERT3U(bt->bt_object, ==, object);
 1783         ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
 1784         ASSERT3U(bt->bt_offset, ==, offset);
 1785         ASSERT3U(bt->bt_gen, <=, gen);
 1786         ASSERT3U(bt->bt_txg, <=, txg);
 1787         ASSERT3U(bt->bt_crtxg, ==, crtxg);
 1788 }
 1789 
 1790 static ztest_block_tag_t *
 1791 ztest_bt_bonus(dmu_buf_t *db)
 1792 {
 1793         dmu_object_info_t doi;
 1794         ztest_block_tag_t *bt;
 1795 
 1796         dmu_object_info_from_db(db, &doi);
 1797         ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
 1798         ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
 1799         bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
 1800 
 1801         return (bt);
 1802 }
 1803 
 1804 /*
 1805  * Generate a token to fill up unused bonus buffer space.  Try to make
 1806  * it unique to the object, generation, and offset to verify that data
 1807  * is not getting overwritten by data from other dnodes.
 1808  */
 1809 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
 1810         (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
 1811 
 1812 /*
 1813  * Fill up the unused bonus buffer region before the block tag with a
 1814  * verifiable pattern. Filling the whole bonus area with non-zero data
 1815  * helps ensure that all dnode traversal code properly skips the
 1816  * interior regions of large dnodes.
 1817  */
 1818 static void
 1819 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
 1820     objset_t *os, uint64_t gen)
 1821 {
 1822         uint64_t *bonusp;
 1823 
 1824         ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
 1825 
 1826         for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
 1827                 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
 1828                     gen, bonusp - (uint64_t *)db->db_data);
 1829                 *bonusp = token;
 1830         }
 1831 }
 1832 
 1833 /*
 1834  * Verify that the unused area of a bonus buffer is filled with the
 1835  * expected tokens.
 1836  */
 1837 static void
 1838 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
 1839     objset_t *os, uint64_t gen)
 1840 {
 1841         uint64_t *bonusp;
 1842 
 1843         for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
 1844                 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
 1845                     gen, bonusp - (uint64_t *)db->db_data);
 1846                 VERIFY3U(*bonusp, ==, token);
 1847         }
 1848 }
 1849 
 1850 /*
 1851  * ZIL logging ops
 1852  */
 1853 
 1854 #define lrz_type        lr_mode
 1855 #define lrz_blocksize   lr_uid
 1856 #define lrz_ibshift     lr_gid
 1857 #define lrz_bonustype   lr_rdev
 1858 #define lrz_dnodesize   lr_crtime[1]
 1859 
 1860 static void
 1861 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
 1862 {
 1863         char *name = (void *)(lr + 1);          /* name follows lr */
 1864         size_t namesize = strlen(name) + 1;
 1865         itx_t *itx;
 1866 
 1867         if (zil_replaying(zd->zd_zilog, tx))
 1868                 return;
 1869 
 1870         itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
 1871         memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 1872             sizeof (*lr) + namesize - sizeof (lr_t));
 1873 
 1874         zil_itx_assign(zd->zd_zilog, itx, tx);
 1875 }
 1876 
 1877 static void
 1878 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
 1879 {
 1880         char *name = (void *)(lr + 1);          /* name follows lr */
 1881         size_t namesize = strlen(name) + 1;
 1882         itx_t *itx;
 1883 
 1884         if (zil_replaying(zd->zd_zilog, tx))
 1885                 return;
 1886 
 1887         itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
 1888         memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 1889             sizeof (*lr) + namesize - sizeof (lr_t));
 1890 
 1891         itx->itx_oid = object;
 1892         zil_itx_assign(zd->zd_zilog, itx, tx);
 1893 }
 1894 
 1895 static void
 1896 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
 1897 {
 1898         itx_t *itx;
 1899         itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
 1900 
 1901         if (zil_replaying(zd->zd_zilog, tx))
 1902                 return;
 1903 
 1904         if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
 1905                 write_state = WR_INDIRECT;
 1906 
 1907         itx = zil_itx_create(TX_WRITE,
 1908             sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
 1909 
 1910         if (write_state == WR_COPIED &&
 1911             dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
 1912             ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
 1913                 zil_itx_destroy(itx);
 1914                 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
 1915                 write_state = WR_NEED_COPY;
 1916         }
 1917         itx->itx_private = zd;
 1918         itx->itx_wr_state = write_state;
 1919         itx->itx_sync = (ztest_random(8) == 0);
 1920 
 1921         memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 1922             sizeof (*lr) - sizeof (lr_t));
 1923 
 1924         zil_itx_assign(zd->zd_zilog, itx, tx);
 1925 }
 1926 
 1927 static void
 1928 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
 1929 {
 1930         itx_t *itx;
 1931 
 1932         if (zil_replaying(zd->zd_zilog, tx))
 1933                 return;
 1934 
 1935         itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
 1936         memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 1937             sizeof (*lr) - sizeof (lr_t));
 1938 
 1939         itx->itx_sync = B_FALSE;
 1940         zil_itx_assign(zd->zd_zilog, itx, tx);
 1941 }
 1942 
 1943 static void
 1944 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
 1945 {
 1946         itx_t *itx;
 1947 
 1948         if (zil_replaying(zd->zd_zilog, tx))
 1949                 return;
 1950 
 1951         itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
 1952         memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 1953             sizeof (*lr) - sizeof (lr_t));
 1954 
 1955         itx->itx_sync = B_FALSE;
 1956         zil_itx_assign(zd->zd_zilog, itx, tx);
 1957 }
 1958 
 1959 /*
 1960  * ZIL replay ops
 1961  */
 1962 static int
 1963 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
 1964 {
 1965         ztest_ds_t *zd = arg1;
 1966         lr_create_t *lr = arg2;
 1967         char *name = (void *)(lr + 1);          /* name follows lr */
 1968         objset_t *os = zd->zd_os;
 1969         ztest_block_tag_t *bbt;
 1970         dmu_buf_t *db;
 1971         dmu_tx_t *tx;
 1972         uint64_t txg;
 1973         int error = 0;
 1974         int bonuslen;
 1975 
 1976         if (byteswap)
 1977                 byteswap_uint64_array(lr, sizeof (*lr));
 1978 
 1979         ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
 1980         ASSERT3S(name[0], !=, '\0');
 1981 
 1982         tx = dmu_tx_create(os);
 1983 
 1984         dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
 1985 
 1986         if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
 1987                 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
 1988         } else {
 1989                 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
 1990         }
 1991 
 1992         txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 1993         if (txg == 0)
 1994                 return (ENOSPC);
 1995 
 1996         ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
 1997         bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
 1998 
 1999         if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
 2000                 if (lr->lr_foid == 0) {
 2001                         lr->lr_foid = zap_create_dnsize(os,
 2002                             lr->lrz_type, lr->lrz_bonustype,
 2003                             bonuslen, lr->lrz_dnodesize, tx);
 2004                 } else {
 2005                         error = zap_create_claim_dnsize(os, lr->lr_foid,
 2006                             lr->lrz_type, lr->lrz_bonustype,
 2007                             bonuslen, lr->lrz_dnodesize, tx);
 2008                 }
 2009         } else {
 2010                 if (lr->lr_foid == 0) {
 2011                         lr->lr_foid = dmu_object_alloc_dnsize(os,
 2012                             lr->lrz_type, 0, lr->lrz_bonustype,
 2013                             bonuslen, lr->lrz_dnodesize, tx);
 2014                 } else {
 2015                         error = dmu_object_claim_dnsize(os, lr->lr_foid,
 2016                             lr->lrz_type, 0, lr->lrz_bonustype,
 2017                             bonuslen, lr->lrz_dnodesize, tx);
 2018                 }
 2019         }
 2020 
 2021         if (error) {
 2022                 ASSERT3U(error, ==, EEXIST);
 2023                 ASSERT(zd->zd_zilog->zl_replay);
 2024                 dmu_tx_commit(tx);
 2025                 return (error);
 2026         }
 2027 
 2028         ASSERT3U(lr->lr_foid, !=, 0);
 2029 
 2030         if (lr->lrz_type != DMU_OT_ZAP_OTHER)
 2031                 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
 2032                     lr->lrz_blocksize, lr->lrz_ibshift, tx));
 2033 
 2034         VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
 2035         bbt = ztest_bt_bonus(db);
 2036         dmu_buf_will_dirty(db, tx);
 2037         ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
 2038             lr->lr_gen, txg, txg);
 2039         ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
 2040         dmu_buf_rele(db, FTAG);
 2041 
 2042         VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
 2043             &lr->lr_foid, tx));
 2044 
 2045         (void) ztest_log_create(zd, tx, lr);
 2046 
 2047         dmu_tx_commit(tx);
 2048 
 2049         return (0);
 2050 }
 2051 
 2052 static int
 2053 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
 2054 {
 2055         ztest_ds_t *zd = arg1;
 2056         lr_remove_t *lr = arg2;
 2057         char *name = (void *)(lr + 1);          /* name follows lr */
 2058         objset_t *os = zd->zd_os;
 2059         dmu_object_info_t doi;
 2060         dmu_tx_t *tx;
 2061         uint64_t object, txg;
 2062 
 2063         if (byteswap)
 2064                 byteswap_uint64_array(lr, sizeof (*lr));
 2065 
 2066         ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
 2067         ASSERT3S(name[0], !=, '\0');
 2068 
 2069         VERIFY0(
 2070             zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
 2071         ASSERT3U(object, !=, 0);
 2072 
 2073         ztest_object_lock(zd, object, RL_WRITER);
 2074 
 2075         VERIFY0(dmu_object_info(os, object, &doi));
 2076 
 2077         tx = dmu_tx_create(os);
 2078 
 2079         dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
 2080         dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
 2081 
 2082         txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 2083         if (txg == 0) {
 2084                 ztest_object_unlock(zd, object);
 2085                 return (ENOSPC);
 2086         }
 2087 
 2088         if (doi.doi_type == DMU_OT_ZAP_OTHER) {
 2089                 VERIFY0(zap_destroy(os, object, tx));
 2090         } else {
 2091                 VERIFY0(dmu_object_free(os, object, tx));
 2092         }
 2093 
 2094         VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
 2095 
 2096         (void) ztest_log_remove(zd, tx, lr, object);
 2097 
 2098         dmu_tx_commit(tx);
 2099 
 2100         ztest_object_unlock(zd, object);
 2101 
 2102         return (0);
 2103 }
 2104 
 2105 static int
 2106 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
 2107 {
 2108         ztest_ds_t *zd = arg1;
 2109         lr_write_t *lr = arg2;
 2110         objset_t *os = zd->zd_os;
 2111         void *data = lr + 1;                    /* data follows lr */
 2112         uint64_t offset, length;
 2113         ztest_block_tag_t *bt = data;
 2114         ztest_block_tag_t *bbt;
 2115         uint64_t gen, txg, lrtxg, crtxg;
 2116         dmu_object_info_t doi;
 2117         dmu_tx_t *tx;
 2118         dmu_buf_t *db;
 2119         arc_buf_t *abuf = NULL;
 2120         rl_t *rl;
 2121 
 2122         if (byteswap)
 2123                 byteswap_uint64_array(lr, sizeof (*lr));
 2124 
 2125         offset = lr->lr_offset;
 2126         length = lr->lr_length;
 2127 
 2128         /* If it's a dmu_sync() block, write the whole block */
 2129         if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
 2130                 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
 2131                 if (length < blocksize) {
 2132                         offset -= offset % blocksize;
 2133                         length = blocksize;
 2134                 }
 2135         }
 2136 
 2137         if (bt->bt_magic == BSWAP_64(BT_MAGIC))
 2138                 byteswap_uint64_array(bt, sizeof (*bt));
 2139 
 2140         if (bt->bt_magic != BT_MAGIC)
 2141                 bt = NULL;
 2142 
 2143         ztest_object_lock(zd, lr->lr_foid, RL_READER);
 2144         rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
 2145 
 2146         VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
 2147 
 2148         dmu_object_info_from_db(db, &doi);
 2149 
 2150         bbt = ztest_bt_bonus(db);
 2151         ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
 2152         gen = bbt->bt_gen;
 2153         crtxg = bbt->bt_crtxg;
 2154         lrtxg = lr->lr_common.lrc_txg;
 2155 
 2156         tx = dmu_tx_create(os);
 2157 
 2158         dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
 2159 
 2160         if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
 2161             P2PHASE(offset, length) == 0)
 2162                 abuf = dmu_request_arcbuf(db, length);
 2163 
 2164         txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 2165         if (txg == 0) {
 2166                 if (abuf != NULL)
 2167                         dmu_return_arcbuf(abuf);
 2168                 dmu_buf_rele(db, FTAG);
 2169                 ztest_range_unlock(rl);
 2170                 ztest_object_unlock(zd, lr->lr_foid);
 2171                 return (ENOSPC);
 2172         }
 2173 
 2174         if (bt != NULL) {
 2175                 /*
 2176                  * Usually, verify the old data before writing new data --
 2177                  * but not always, because we also want to verify correct
 2178                  * behavior when the data was not recently read into cache.
 2179                  */
 2180                 ASSERT(doi.doi_data_block_size);
 2181                 ASSERT0(offset % doi.doi_data_block_size);
 2182                 if (ztest_random(4) != 0) {
 2183                         int prefetch = ztest_random(2) ?
 2184                             DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
 2185                         ztest_block_tag_t rbt;
 2186 
 2187                         VERIFY(dmu_read(os, lr->lr_foid, offset,
 2188                             sizeof (rbt), &rbt, prefetch) == 0);
 2189                         if (rbt.bt_magic == BT_MAGIC) {
 2190                                 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
 2191                                     offset, gen, txg, crtxg);
 2192                         }
 2193                 }
 2194 
 2195                 /*
 2196                  * Writes can appear to be newer than the bonus buffer because
 2197                  * the ztest_get_data() callback does a dmu_read() of the
 2198                  * open-context data, which may be different than the data
 2199                  * as it was when the write was generated.
 2200                  */
 2201                 if (zd->zd_zilog->zl_replay) {
 2202                         ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
 2203                             MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
 2204                             bt->bt_crtxg);
 2205                 }
 2206 
 2207                 /*
 2208                  * Set the bt's gen/txg to the bonus buffer's gen/txg
 2209                  * so that all of the usual ASSERTs will work.
 2210                  */
 2211                 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
 2212                     crtxg);
 2213         }
 2214 
 2215         if (abuf == NULL) {
 2216                 dmu_write(os, lr->lr_foid, offset, length, data, tx);
 2217         } else {
 2218                 memcpy(abuf->b_data, data, length);
 2219                 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
 2220         }
 2221 
 2222         (void) ztest_log_write(zd, tx, lr);
 2223 
 2224         dmu_buf_rele(db, FTAG);
 2225 
 2226         dmu_tx_commit(tx);
 2227 
 2228         ztest_range_unlock(rl);
 2229         ztest_object_unlock(zd, lr->lr_foid);
 2230 
 2231         return (0);
 2232 }
 2233 
 2234 static int
 2235 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
 2236 {
 2237         ztest_ds_t *zd = arg1;
 2238         lr_truncate_t *lr = arg2;
 2239         objset_t *os = zd->zd_os;
 2240         dmu_tx_t *tx;
 2241         uint64_t txg;
 2242         rl_t *rl;
 2243 
 2244         if (byteswap)
 2245                 byteswap_uint64_array(lr, sizeof (*lr));
 2246 
 2247         ztest_object_lock(zd, lr->lr_foid, RL_READER);
 2248         rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
 2249             RL_WRITER);
 2250 
 2251         tx = dmu_tx_create(os);
 2252 
 2253         dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
 2254 
 2255         txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 2256         if (txg == 0) {
 2257                 ztest_range_unlock(rl);
 2258                 ztest_object_unlock(zd, lr->lr_foid);
 2259                 return (ENOSPC);
 2260         }
 2261 
 2262         VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
 2263             lr->lr_length, tx));
 2264 
 2265         (void) ztest_log_truncate(zd, tx, lr);
 2266 
 2267         dmu_tx_commit(tx);
 2268 
 2269         ztest_range_unlock(rl);
 2270         ztest_object_unlock(zd, lr->lr_foid);
 2271 
 2272         return (0);
 2273 }
 2274 
 2275 static int
 2276 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
 2277 {
 2278         ztest_ds_t *zd = arg1;
 2279         lr_setattr_t *lr = arg2;
 2280         objset_t *os = zd->zd_os;
 2281         dmu_tx_t *tx;
 2282         dmu_buf_t *db;
 2283         ztest_block_tag_t *bbt;
 2284         uint64_t txg, lrtxg, crtxg, dnodesize;
 2285 
 2286         if (byteswap)
 2287                 byteswap_uint64_array(lr, sizeof (*lr));
 2288 
 2289         ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
 2290 
 2291         VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
 2292 
 2293         tx = dmu_tx_create(os);
 2294         dmu_tx_hold_bonus(tx, lr->lr_foid);
 2295 
 2296         txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 2297         if (txg == 0) {
 2298                 dmu_buf_rele(db, FTAG);
 2299                 ztest_object_unlock(zd, lr->lr_foid);
 2300                 return (ENOSPC);
 2301         }
 2302 
 2303         bbt = ztest_bt_bonus(db);
 2304         ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
 2305         crtxg = bbt->bt_crtxg;
 2306         lrtxg = lr->lr_common.lrc_txg;
 2307         dnodesize = bbt->bt_dnodesize;
 2308 
 2309         if (zd->zd_zilog->zl_replay) {
 2310                 ASSERT3U(lr->lr_size, !=, 0);
 2311                 ASSERT3U(lr->lr_mode, !=, 0);
 2312                 ASSERT3U(lrtxg, !=, 0);
 2313         } else {
 2314                 /*
 2315                  * Randomly change the size and increment the generation.
 2316                  */
 2317                 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
 2318                     sizeof (*bbt);
 2319                 lr->lr_mode = bbt->bt_gen + 1;
 2320                 ASSERT0(lrtxg);
 2321         }
 2322 
 2323         /*
 2324          * Verify that the current bonus buffer is not newer than our txg.
 2325          */
 2326         ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
 2327             MAX(txg, lrtxg), crtxg);
 2328 
 2329         dmu_buf_will_dirty(db, tx);
 2330 
 2331         ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
 2332         ASSERT3U(lr->lr_size, <=, db->db_size);
 2333         VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
 2334         bbt = ztest_bt_bonus(db);
 2335 
 2336         ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
 2337             txg, crtxg);
 2338         ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
 2339         dmu_buf_rele(db, FTAG);
 2340 
 2341         (void) ztest_log_setattr(zd, tx, lr);
 2342 
 2343         dmu_tx_commit(tx);
 2344 
 2345         ztest_object_unlock(zd, lr->lr_foid);
 2346 
 2347         return (0);
 2348 }
 2349 
 2350 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
 2351         NULL,                   /* 0 no such transaction type */
 2352         ztest_replay_create,    /* TX_CREATE */
 2353         NULL,                   /* TX_MKDIR */
 2354         NULL,                   /* TX_MKXATTR */
 2355         NULL,                   /* TX_SYMLINK */
 2356         ztest_replay_remove,    /* TX_REMOVE */
 2357         NULL,                   /* TX_RMDIR */
 2358         NULL,                   /* TX_LINK */
 2359         NULL,                   /* TX_RENAME */
 2360         ztest_replay_write,     /* TX_WRITE */
 2361         ztest_replay_truncate,  /* TX_TRUNCATE */
 2362         ztest_replay_setattr,   /* TX_SETATTR */
 2363         NULL,                   /* TX_ACL */
 2364         NULL,                   /* TX_CREATE_ACL */
 2365         NULL,                   /* TX_CREATE_ATTR */
 2366         NULL,                   /* TX_CREATE_ACL_ATTR */
 2367         NULL,                   /* TX_MKDIR_ACL */
 2368         NULL,                   /* TX_MKDIR_ATTR */
 2369         NULL,                   /* TX_MKDIR_ACL_ATTR */
 2370         NULL,                   /* TX_WRITE2 */
 2371         NULL,                   /* TX_SETSAXATTR */
 2372         NULL,                   /* TX_RENAME_EXCHANGE */
 2373         NULL,                   /* TX_RENAME_WHITEOUT */
 2374 };
 2375 
 2376 /*
 2377  * ZIL get_data callbacks
 2378  */
 2379 
 2380 static void
 2381 ztest_get_done(zgd_t *zgd, int error)
 2382 {
 2383         (void) error;
 2384         ztest_ds_t *zd = zgd->zgd_private;
 2385         uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
 2386 
 2387         if (zgd->zgd_db)
 2388                 dmu_buf_rele(zgd->zgd_db, zgd);
 2389 
 2390         ztest_range_unlock((rl_t *)zgd->zgd_lr);
 2391         ztest_object_unlock(zd, object);
 2392 
 2393         umem_free(zgd, sizeof (*zgd));
 2394 }
 2395 
 2396 static int
 2397 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
 2398     struct lwb *lwb, zio_t *zio)
 2399 {
 2400         (void) arg2;
 2401         ztest_ds_t *zd = arg;
 2402         objset_t *os = zd->zd_os;
 2403         uint64_t object = lr->lr_foid;
 2404         uint64_t offset = lr->lr_offset;
 2405         uint64_t size = lr->lr_length;
 2406         uint64_t txg = lr->lr_common.lrc_txg;
 2407         uint64_t crtxg;
 2408         dmu_object_info_t doi;
 2409         dmu_buf_t *db;
 2410         zgd_t *zgd;
 2411         int error;
 2412 
 2413         ASSERT3P(lwb, !=, NULL);
 2414         ASSERT3P(zio, !=, NULL);
 2415         ASSERT3U(size, !=, 0);
 2416 
 2417         ztest_object_lock(zd, object, RL_READER);
 2418         error = dmu_bonus_hold(os, object, FTAG, &db);
 2419         if (error) {
 2420                 ztest_object_unlock(zd, object);
 2421                 return (error);
 2422         }
 2423 
 2424         crtxg = ztest_bt_bonus(db)->bt_crtxg;
 2425 
 2426         if (crtxg == 0 || crtxg > txg) {
 2427                 dmu_buf_rele(db, FTAG);
 2428                 ztest_object_unlock(zd, object);
 2429                 return (ENOENT);
 2430         }
 2431 
 2432         dmu_object_info_from_db(db, &doi);
 2433         dmu_buf_rele(db, FTAG);
 2434         db = NULL;
 2435 
 2436         zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
 2437         zgd->zgd_lwb = lwb;
 2438         zgd->zgd_private = zd;
 2439 
 2440         if (buf != NULL) {      /* immediate write */
 2441                 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
 2442                     object, offset, size, RL_READER);
 2443 
 2444                 error = dmu_read(os, object, offset, size, buf,
 2445                     DMU_READ_NO_PREFETCH);
 2446                 ASSERT0(error);
 2447         } else {
 2448                 size = doi.doi_data_block_size;
 2449                 if (ISP2(size)) {
 2450                         offset = P2ALIGN(offset, size);
 2451                 } else {
 2452                         ASSERT3U(offset, <, size);
 2453                         offset = 0;
 2454                 }
 2455 
 2456                 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
 2457                     object, offset, size, RL_READER);
 2458 
 2459                 error = dmu_buf_hold(os, object, offset, zgd, &db,
 2460                     DMU_READ_NO_PREFETCH);
 2461 
 2462                 if (error == 0) {
 2463                         blkptr_t *bp = &lr->lr_blkptr;
 2464 
 2465                         zgd->zgd_db = db;
 2466                         zgd->zgd_bp = bp;
 2467 
 2468                         ASSERT3U(db->db_offset, ==, offset);
 2469                         ASSERT3U(db->db_size, ==, size);
 2470 
 2471                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
 2472                             ztest_get_done, zgd);
 2473 
 2474                         if (error == 0)
 2475                                 return (0);
 2476                 }
 2477         }
 2478 
 2479         ztest_get_done(zgd, error);
 2480 
 2481         return (error);
 2482 }
 2483 
 2484 static void *
 2485 ztest_lr_alloc(size_t lrsize, char *name)
 2486 {
 2487         char *lr;
 2488         size_t namesize = name ? strlen(name) + 1 : 0;
 2489 
 2490         lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
 2491 
 2492         if (name)
 2493                 memcpy(lr + lrsize, name, namesize);
 2494 
 2495         return (lr);
 2496 }
 2497 
 2498 static void
 2499 ztest_lr_free(void *lr, size_t lrsize, char *name)
 2500 {
 2501         size_t namesize = name ? strlen(name) + 1 : 0;
 2502 
 2503         umem_free(lr, lrsize + namesize);
 2504 }
 2505 
 2506 /*
 2507  * Lookup a bunch of objects.  Returns the number of objects not found.
 2508  */
 2509 static int
 2510 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
 2511 {
 2512         int missing = 0;
 2513         int error;
 2514         int i;
 2515 
 2516         ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
 2517 
 2518         for (i = 0; i < count; i++, od++) {
 2519                 od->od_object = 0;
 2520                 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
 2521                     sizeof (uint64_t), 1, &od->od_object);
 2522                 if (error) {
 2523                         ASSERT3S(error, ==, ENOENT);
 2524                         ASSERT0(od->od_object);
 2525                         missing++;
 2526                 } else {
 2527                         dmu_buf_t *db;
 2528                         ztest_block_tag_t *bbt;
 2529                         dmu_object_info_t doi;
 2530 
 2531                         ASSERT3U(od->od_object, !=, 0);
 2532                         ASSERT0(missing);       /* there should be no gaps */
 2533 
 2534                         ztest_object_lock(zd, od->od_object, RL_READER);
 2535                         VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
 2536                             FTAG, &db));
 2537                         dmu_object_info_from_db(db, &doi);
 2538                         bbt = ztest_bt_bonus(db);
 2539                         ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
 2540                         od->od_type = doi.doi_type;
 2541                         od->od_blocksize = doi.doi_data_block_size;
 2542                         od->od_gen = bbt->bt_gen;
 2543                         dmu_buf_rele(db, FTAG);
 2544                         ztest_object_unlock(zd, od->od_object);
 2545                 }
 2546         }
 2547 
 2548         return (missing);
 2549 }
 2550 
 2551 static int
 2552 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
 2553 {
 2554         int missing = 0;
 2555         int i;
 2556 
 2557         ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
 2558 
 2559         for (i = 0; i < count; i++, od++) {
 2560                 if (missing) {
 2561                         od->od_object = 0;
 2562                         missing++;
 2563                         continue;
 2564                 }
 2565 
 2566                 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
 2567 
 2568                 lr->lr_doid = od->od_dir;
 2569                 lr->lr_foid = 0;        /* 0 to allocate, > 0 to claim */
 2570                 lr->lrz_type = od->od_crtype;
 2571                 lr->lrz_blocksize = od->od_crblocksize;
 2572                 lr->lrz_ibshift = ztest_random_ibshift();
 2573                 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
 2574                 lr->lrz_dnodesize = od->od_crdnodesize;
 2575                 lr->lr_gen = od->od_crgen;
 2576                 lr->lr_crtime[0] = time(NULL);
 2577 
 2578                 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
 2579                         ASSERT0(missing);
 2580                         od->od_object = 0;
 2581                         missing++;
 2582                 } else {
 2583                         od->od_object = lr->lr_foid;
 2584                         od->od_type = od->od_crtype;
 2585                         od->od_blocksize = od->od_crblocksize;
 2586                         od->od_gen = od->od_crgen;
 2587                         ASSERT3U(od->od_object, !=, 0);
 2588                 }
 2589 
 2590                 ztest_lr_free(lr, sizeof (*lr), od->od_name);
 2591         }
 2592 
 2593         return (missing);
 2594 }
 2595 
 2596 static int
 2597 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
 2598 {
 2599         int missing = 0;
 2600         int error;
 2601         int i;
 2602 
 2603         ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
 2604 
 2605         od += count - 1;
 2606 
 2607         for (i = count - 1; i >= 0; i--, od--) {
 2608                 if (missing) {
 2609                         missing++;
 2610                         continue;
 2611                 }
 2612 
 2613                 /*
 2614                  * No object was found.
 2615                  */
 2616                 if (od->od_object == 0)
 2617                         continue;
 2618 
 2619                 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
 2620 
 2621                 lr->lr_doid = od->od_dir;
 2622 
 2623                 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
 2624                         ASSERT3U(error, ==, ENOSPC);
 2625                         missing++;
 2626                 } else {
 2627                         od->od_object = 0;
 2628                 }
 2629                 ztest_lr_free(lr, sizeof (*lr), od->od_name);
 2630         }
 2631 
 2632         return (missing);
 2633 }
 2634 
 2635 static int
 2636 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
 2637     void *data)
 2638 {
 2639         lr_write_t *lr;
 2640         int error;
 2641 
 2642         lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
 2643 
 2644         lr->lr_foid = object;
 2645         lr->lr_offset = offset;
 2646         lr->lr_length = size;
 2647         lr->lr_blkoff = 0;
 2648         BP_ZERO(&lr->lr_blkptr);
 2649 
 2650         memcpy(lr + 1, data, size);
 2651 
 2652         error = ztest_replay_write(zd, lr, B_FALSE);
 2653 
 2654         ztest_lr_free(lr, sizeof (*lr) + size, NULL);
 2655 
 2656         return (error);
 2657 }
 2658 
 2659 static int
 2660 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
 2661 {
 2662         lr_truncate_t *lr;
 2663         int error;
 2664 
 2665         lr = ztest_lr_alloc(sizeof (*lr), NULL);
 2666 
 2667         lr->lr_foid = object;
 2668         lr->lr_offset = offset;
 2669         lr->lr_length = size;
 2670 
 2671         error = ztest_replay_truncate(zd, lr, B_FALSE);
 2672 
 2673         ztest_lr_free(lr, sizeof (*lr), NULL);
 2674 
 2675         return (error);
 2676 }
 2677 
 2678 static int
 2679 ztest_setattr(ztest_ds_t *zd, uint64_t object)
 2680 {
 2681         lr_setattr_t *lr;
 2682         int error;
 2683 
 2684         lr = ztest_lr_alloc(sizeof (*lr), NULL);
 2685 
 2686         lr->lr_foid = object;
 2687         lr->lr_size = 0;
 2688         lr->lr_mode = 0;
 2689 
 2690         error = ztest_replay_setattr(zd, lr, B_FALSE);
 2691 
 2692         ztest_lr_free(lr, sizeof (*lr), NULL);
 2693 
 2694         return (error);
 2695 }
 2696 
 2697 static void
 2698 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
 2699 {
 2700         objset_t *os = zd->zd_os;
 2701         dmu_tx_t *tx;
 2702         uint64_t txg;
 2703         rl_t *rl;
 2704 
 2705         txg_wait_synced(dmu_objset_pool(os), 0);
 2706 
 2707         ztest_object_lock(zd, object, RL_READER);
 2708         rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
 2709 
 2710         tx = dmu_tx_create(os);
 2711 
 2712         dmu_tx_hold_write(tx, object, offset, size);
 2713 
 2714         txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 2715 
 2716         if (txg != 0) {
 2717                 dmu_prealloc(os, object, offset, size, tx);
 2718                 dmu_tx_commit(tx);
 2719                 txg_wait_synced(dmu_objset_pool(os), txg);
 2720         } else {
 2721                 (void) dmu_free_long_range(os, object, offset, size);
 2722         }
 2723 
 2724         ztest_range_unlock(rl);
 2725         ztest_object_unlock(zd, object);
 2726 }
 2727 
 2728 static void
 2729 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
 2730 {
 2731         int err;
 2732         ztest_block_tag_t wbt;
 2733         dmu_object_info_t doi;
 2734         enum ztest_io_type io_type;
 2735         uint64_t blocksize;
 2736         void *data;
 2737 
 2738         VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
 2739         blocksize = doi.doi_data_block_size;
 2740         data = umem_alloc(blocksize, UMEM_NOFAIL);
 2741 
 2742         /*
 2743          * Pick an i/o type at random, biased toward writing block tags.
 2744          */
 2745         io_type = ztest_random(ZTEST_IO_TYPES);
 2746         if (ztest_random(2) == 0)
 2747                 io_type = ZTEST_IO_WRITE_TAG;
 2748 
 2749         (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
 2750 
 2751         switch (io_type) {
 2752 
 2753         case ZTEST_IO_WRITE_TAG:
 2754                 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
 2755                     offset, 0, 0, 0);
 2756                 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
 2757                 break;
 2758 
 2759         case ZTEST_IO_WRITE_PATTERN:
 2760                 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
 2761                 if (ztest_random(2) == 0) {
 2762                         /*
 2763                          * Induce fletcher2 collisions to ensure that
 2764                          * zio_ddt_collision() detects and resolves them
 2765                          * when using fletcher2-verify for deduplication.
 2766                          */
 2767                         ((uint64_t *)data)[0] ^= 1ULL << 63;
 2768                         ((uint64_t *)data)[4] ^= 1ULL << 63;
 2769                 }
 2770                 (void) ztest_write(zd, object, offset, blocksize, data);
 2771                 break;
 2772 
 2773         case ZTEST_IO_WRITE_ZEROES:
 2774                 memset(data, 0, blocksize);
 2775                 (void) ztest_write(zd, object, offset, blocksize, data);
 2776                 break;
 2777 
 2778         case ZTEST_IO_TRUNCATE:
 2779                 (void) ztest_truncate(zd, object, offset, blocksize);
 2780                 break;
 2781 
 2782         case ZTEST_IO_SETATTR:
 2783                 (void) ztest_setattr(zd, object);
 2784                 break;
 2785         default:
 2786                 break;
 2787 
 2788         case ZTEST_IO_REWRITE:
 2789                 (void) pthread_rwlock_rdlock(&ztest_name_lock);
 2790                 err = ztest_dsl_prop_set_uint64(zd->zd_name,
 2791                     ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
 2792                     B_FALSE);
 2793                 ASSERT(err == 0 || err == ENOSPC);
 2794                 err = ztest_dsl_prop_set_uint64(zd->zd_name,
 2795                     ZFS_PROP_COMPRESSION,
 2796                     ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
 2797                     B_FALSE);
 2798                 ASSERT(err == 0 || err == ENOSPC);
 2799                 (void) pthread_rwlock_unlock(&ztest_name_lock);
 2800 
 2801                 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
 2802                     DMU_READ_NO_PREFETCH));
 2803 
 2804                 (void) ztest_write(zd, object, offset, blocksize, data);
 2805                 break;
 2806         }
 2807 
 2808         (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
 2809 
 2810         umem_free(data, blocksize);
 2811 }
 2812 
 2813 /*
 2814  * Initialize an object description template.
 2815  */
 2816 static void
 2817 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
 2818     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
 2819     uint64_t gen)
 2820 {
 2821         od->od_dir = ZTEST_DIROBJ;
 2822         od->od_object = 0;
 2823 
 2824         od->od_crtype = type;
 2825         od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
 2826         od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
 2827         od->od_crgen = gen;
 2828 
 2829         od->od_type = DMU_OT_NONE;
 2830         od->od_blocksize = 0;
 2831         od->od_gen = 0;
 2832 
 2833         (void) snprintf(od->od_name, sizeof (od->od_name),
 2834             "%s(%"PRId64")[%"PRIu64"]",
 2835             tag, id, index);
 2836 }
 2837 
 2838 /*
 2839  * Lookup or create the objects for a test using the od template.
 2840  * If the objects do not all exist, or if 'remove' is specified,
 2841  * remove any existing objects and create new ones.  Otherwise,
 2842  * use the existing objects.
 2843  */
 2844 static int
 2845 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
 2846 {
 2847         int count = size / sizeof (*od);
 2848         int rv = 0;
 2849 
 2850         mutex_enter(&zd->zd_dirobj_lock);
 2851         if ((ztest_lookup(zd, od, count) != 0 || remove) &&
 2852             (ztest_remove(zd, od, count) != 0 ||
 2853             ztest_create(zd, od, count) != 0))
 2854                 rv = -1;
 2855         zd->zd_od = od;
 2856         mutex_exit(&zd->zd_dirobj_lock);
 2857 
 2858         return (rv);
 2859 }
 2860 
 2861 void
 2862 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
 2863 {
 2864         (void) id;
 2865         zilog_t *zilog = zd->zd_zilog;
 2866 
 2867         (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
 2868 
 2869         zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
 2870 
 2871         /*
 2872          * Remember the committed values in zd, which is in parent/child
 2873          * shared memory.  If we die, the next iteration of ztest_run()
 2874          * will verify that the log really does contain this record.
 2875          */
 2876         mutex_enter(&zilog->zl_lock);
 2877         ASSERT3P(zd->zd_shared, !=, NULL);
 2878         ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
 2879         zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
 2880         mutex_exit(&zilog->zl_lock);
 2881 
 2882         (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
 2883 }
 2884 
 2885 /*
 2886  * This function is designed to simulate the operations that occur during a
 2887  * mount/unmount operation.  We hold the dataset across these operations in an
 2888  * attempt to expose any implicit assumptions about ZIL management.
 2889  */
 2890 void
 2891 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
 2892 {
 2893         (void) id;
 2894         objset_t *os = zd->zd_os;
 2895 
 2896         /*
 2897          * We hold the ztest_vdev_lock so we don't cause problems with
 2898          * other threads that wish to remove a log device, such as
 2899          * ztest_device_removal().
 2900          */
 2901         mutex_enter(&ztest_vdev_lock);
 2902 
 2903         /*
 2904          * We grab the zd_dirobj_lock to ensure that no other thread is
 2905          * updating the zil (i.e. adding in-memory log records) and the
 2906          * zd_zilog_lock to block any I/O.
 2907          */
 2908         mutex_enter(&zd->zd_dirobj_lock);
 2909         (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
 2910 
 2911         /* zfsvfs_teardown() */
 2912         zil_close(zd->zd_zilog);
 2913 
 2914         /* zfsvfs_setup() */
 2915         VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
 2916         zil_replay(os, zd, ztest_replay_vector);
 2917 
 2918         (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
 2919         mutex_exit(&zd->zd_dirobj_lock);
 2920         mutex_exit(&ztest_vdev_lock);
 2921 }
 2922 
 2923 /*
 2924  * Verify that we can't destroy an active pool, create an existing pool,
 2925  * or create a pool with a bad vdev spec.
 2926  */
 2927 void
 2928 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
 2929 {
 2930         (void) zd, (void) id;
 2931         ztest_shared_opts_t *zo = &ztest_opts;
 2932         spa_t *spa;
 2933         nvlist_t *nvroot;
 2934 
 2935         if (zo->zo_mmp_test)
 2936                 return;
 2937 
 2938         /*
 2939          * Attempt to create using a bad file.
 2940          */
 2941         nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
 2942         VERIFY3U(ENOENT, ==,
 2943             spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
 2944         fnvlist_free(nvroot);
 2945 
 2946         /*
 2947          * Attempt to create using a bad mirror.
 2948          */
 2949         nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
 2950         VERIFY3U(ENOENT, ==,
 2951             spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
 2952         fnvlist_free(nvroot);
 2953 
 2954         /*
 2955          * Attempt to create an existing pool.  It shouldn't matter
 2956          * what's in the nvroot; we should fail with EEXIST.
 2957          */
 2958         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 2959         nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
 2960         VERIFY3U(EEXIST, ==,
 2961             spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
 2962         fnvlist_free(nvroot);
 2963 
 2964         /*
 2965          * We open a reference to the spa and then we try to export it
 2966          * expecting one of the following errors:
 2967          *
 2968          * EBUSY
 2969          *      Because of the reference we just opened.
 2970          *
 2971          * ZFS_ERR_EXPORT_IN_PROGRESS
 2972          *      For the case that there is another ztest thread doing
 2973          *      an export concurrently.
 2974          */
 2975         VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
 2976         int error = spa_destroy(zo->zo_pool);
 2977         if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
 2978                 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
 2979                     spa->spa_name, error);
 2980         }
 2981         spa_close(spa, FTAG);
 2982 
 2983         (void) pthread_rwlock_unlock(&ztest_name_lock);
 2984 }
 2985 
 2986 /*
 2987  * Start and then stop the MMP threads to ensure the startup and shutdown code
 2988  * works properly.  Actual protection and property-related code tested via ZTS.
 2989  */
 2990 void
 2991 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
 2992 {
 2993         (void) zd, (void) id;
 2994         ztest_shared_opts_t *zo = &ztest_opts;
 2995         spa_t *spa = ztest_spa;
 2996 
 2997         if (zo->zo_mmp_test)
 2998                 return;
 2999 
 3000         /*
 3001          * Since enabling MMP involves setting a property, it could not be done
 3002          * while the pool is suspended.
 3003          */
 3004         if (spa_suspended(spa))
 3005                 return;
 3006 
 3007         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 3008         mutex_enter(&spa->spa_props_lock);
 3009 
 3010         zfs_multihost_fail_intervals = 0;
 3011 
 3012         if (!spa_multihost(spa)) {
 3013                 spa->spa_multihost = B_TRUE;
 3014                 mmp_thread_start(spa);
 3015         }
 3016 
 3017         mutex_exit(&spa->spa_props_lock);
 3018         spa_config_exit(spa, SCL_CONFIG, FTAG);
 3019 
 3020         txg_wait_synced(spa_get_dsl(spa), 0);
 3021         mmp_signal_all_threads();
 3022         txg_wait_synced(spa_get_dsl(spa), 0);
 3023 
 3024         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 3025         mutex_enter(&spa->spa_props_lock);
 3026 
 3027         if (spa_multihost(spa)) {
 3028                 mmp_thread_stop(spa);
 3029                 spa->spa_multihost = B_FALSE;
 3030         }
 3031 
 3032         mutex_exit(&spa->spa_props_lock);
 3033         spa_config_exit(spa, SCL_CONFIG, FTAG);
 3034 }
 3035 
 3036 void
 3037 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
 3038 {
 3039         (void) zd, (void) id;
 3040         spa_t *spa;
 3041         uint64_t initial_version = SPA_VERSION_INITIAL;
 3042         uint64_t version, newversion;
 3043         nvlist_t *nvroot, *props;
 3044         char *name;
 3045 
 3046         if (ztest_opts.zo_mmp_test)
 3047                 return;
 3048 
 3049         /* dRAID added after feature flags, skip upgrade test. */
 3050         if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
 3051                 return;
 3052 
 3053         mutex_enter(&ztest_vdev_lock);
 3054         name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
 3055 
 3056         /*
 3057          * Clean up from previous runs.
 3058          */
 3059         (void) spa_destroy(name);
 3060 
 3061         nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
 3062             NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
 3063 
 3064         /*
 3065          * If we're configuring a RAIDZ device then make sure that the
 3066          * initial version is capable of supporting that feature.
 3067          */
 3068         switch (ztest_opts.zo_raid_parity) {
 3069         case 0:
 3070         case 1:
 3071                 initial_version = SPA_VERSION_INITIAL;
 3072                 break;
 3073         case 2:
 3074                 initial_version = SPA_VERSION_RAIDZ2;
 3075                 break;
 3076         case 3:
 3077                 initial_version = SPA_VERSION_RAIDZ3;
 3078                 break;
 3079         }
 3080 
 3081         /*
 3082          * Create a pool with a spa version that can be upgraded. Pick
 3083          * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
 3084          */
 3085         do {
 3086                 version = ztest_random_spa_version(initial_version);
 3087         } while (version > SPA_VERSION_BEFORE_FEATURES);
 3088 
 3089         props = fnvlist_alloc();
 3090         fnvlist_add_uint64(props,
 3091             zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
 3092         VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
 3093         fnvlist_free(nvroot);
 3094         fnvlist_free(props);
 3095 
 3096         VERIFY0(spa_open(name, &spa, FTAG));
 3097         VERIFY3U(spa_version(spa), ==, version);
 3098         newversion = ztest_random_spa_version(version + 1);
 3099 
 3100         if (ztest_opts.zo_verbose >= 4) {
 3101                 (void) printf("upgrading spa version from "
 3102                     "%"PRIu64" to %"PRIu64"\n",
 3103                     version, newversion);
 3104         }
 3105 
 3106         spa_upgrade(spa, newversion);
 3107         VERIFY3U(spa_version(spa), >, version);
 3108         VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
 3109             zpool_prop_to_name(ZPOOL_PROP_VERSION)));
 3110         spa_close(spa, FTAG);
 3111 
 3112         kmem_strfree(name);
 3113         mutex_exit(&ztest_vdev_lock);
 3114 }
 3115 
 3116 static void
 3117 ztest_spa_checkpoint(spa_t *spa)
 3118 {
 3119         ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
 3120 
 3121         int error = spa_checkpoint(spa->spa_name);
 3122 
 3123         switch (error) {
 3124         case 0:
 3125         case ZFS_ERR_DEVRM_IN_PROGRESS:
 3126         case ZFS_ERR_DISCARDING_CHECKPOINT:
 3127         case ZFS_ERR_CHECKPOINT_EXISTS:
 3128                 break;
 3129         case ENOSPC:
 3130                 ztest_record_enospc(FTAG);
 3131                 break;
 3132         default:
 3133                 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
 3134         }
 3135 }
 3136 
 3137 static void
 3138 ztest_spa_discard_checkpoint(spa_t *spa)
 3139 {
 3140         ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
 3141 
 3142         int error = spa_checkpoint_discard(spa->spa_name);
 3143 
 3144         switch (error) {
 3145         case 0:
 3146         case ZFS_ERR_DISCARDING_CHECKPOINT:
 3147         case ZFS_ERR_NO_CHECKPOINT:
 3148                 break;
 3149         default:
 3150                 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
 3151                     spa->spa_name, error);
 3152         }
 3153 
 3154 }
 3155 
 3156 void
 3157 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
 3158 {
 3159         (void) zd, (void) id;
 3160         spa_t *spa = ztest_spa;
 3161 
 3162         mutex_enter(&ztest_checkpoint_lock);
 3163         if (ztest_random(2) == 0) {
 3164                 ztest_spa_checkpoint(spa);
 3165         } else {
 3166                 ztest_spa_discard_checkpoint(spa);
 3167         }
 3168         mutex_exit(&ztest_checkpoint_lock);
 3169 }
 3170 
 3171 
 3172 static vdev_t *
 3173 vdev_lookup_by_path(vdev_t *vd, const char *path)
 3174 {
 3175         vdev_t *mvd;
 3176         int c;
 3177 
 3178         if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
 3179                 return (vd);
 3180 
 3181         for (c = 0; c < vd->vdev_children; c++)
 3182                 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
 3183                     NULL)
 3184                         return (mvd);
 3185 
 3186         return (NULL);
 3187 }
 3188 
 3189 static int
 3190 spa_num_top_vdevs(spa_t *spa)
 3191 {
 3192         vdev_t *rvd = spa->spa_root_vdev;
 3193         ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
 3194         return (rvd->vdev_children);
 3195 }
 3196 
 3197 /*
 3198  * Verify that vdev_add() works as expected.
 3199  */
 3200 void
 3201 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
 3202 {
 3203         (void) zd, (void) id;
 3204         ztest_shared_t *zs = ztest_shared;
 3205         spa_t *spa = ztest_spa;
 3206         uint64_t leaves;
 3207         uint64_t guid;
 3208         nvlist_t *nvroot;
 3209         int error;
 3210 
 3211         if (ztest_opts.zo_mmp_test)
 3212                 return;
 3213 
 3214         mutex_enter(&ztest_vdev_lock);
 3215         leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
 3216             ztest_opts.zo_raid_children;
 3217 
 3218         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 3219 
 3220         ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
 3221 
 3222         /*
 3223          * If we have slogs then remove them 1/4 of the time.
 3224          */
 3225         if (spa_has_slogs(spa) && ztest_random(4) == 0) {
 3226                 metaslab_group_t *mg;
 3227 
 3228                 /*
 3229                  * find the first real slog in log allocation class
 3230                  */
 3231                 mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
 3232                 while (!mg->mg_vd->vdev_islog)
 3233                         mg = mg->mg_next;
 3234 
 3235                 guid = mg->mg_vd->vdev_guid;
 3236 
 3237                 spa_config_exit(spa, SCL_VDEV, FTAG);
 3238 
 3239                 /*
 3240                  * We have to grab the zs_name_lock as writer to
 3241                  * prevent a race between removing a slog (dmu_objset_find)
 3242                  * and destroying a dataset. Removing the slog will
 3243                  * grab a reference on the dataset which may cause
 3244                  * dsl_destroy_head() to fail with EBUSY thus
 3245                  * leaving the dataset in an inconsistent state.
 3246                  */
 3247                 pthread_rwlock_wrlock(&ztest_name_lock);
 3248                 error = spa_vdev_remove(spa, guid, B_FALSE);
 3249                 pthread_rwlock_unlock(&ztest_name_lock);
 3250 
 3251                 switch (error) {
 3252                 case 0:
 3253                 case EEXIST:    /* Generic zil_reset() error */
 3254                 case EBUSY:     /* Replay required */
 3255                 case EACCES:    /* Crypto key not loaded */
 3256                 case ZFS_ERR_CHECKPOINT_EXISTS:
 3257                 case ZFS_ERR_DISCARDING_CHECKPOINT:
 3258                         break;
 3259                 default:
 3260                         fatal(B_FALSE, "spa_vdev_remove() = %d", error);
 3261                 }
 3262         } else {
 3263                 spa_config_exit(spa, SCL_VDEV, FTAG);
 3264 
 3265                 /*
 3266                  * Make 1/4 of the devices be log devices
 3267                  */
 3268                 nvroot = make_vdev_root(NULL, NULL, NULL,
 3269                     ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
 3270                     "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
 3271                     1);
 3272 
 3273                 error = spa_vdev_add(spa, nvroot);
 3274                 fnvlist_free(nvroot);
 3275 
 3276                 switch (error) {
 3277                 case 0:
 3278                         break;
 3279                 case ENOSPC:
 3280                         ztest_record_enospc("spa_vdev_add");
 3281                         break;
 3282                 default:
 3283                         fatal(B_FALSE, "spa_vdev_add() = %d", error);
 3284                 }
 3285         }
 3286 
 3287         mutex_exit(&ztest_vdev_lock);
 3288 }
 3289 
 3290 void
 3291 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
 3292 {
 3293         (void) zd, (void) id;
 3294         ztest_shared_t *zs = ztest_shared;
 3295         spa_t *spa = ztest_spa;
 3296         uint64_t leaves;
 3297         nvlist_t *nvroot;
 3298         const char *class = (ztest_random(2) == 0) ?
 3299             VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
 3300         int error;
 3301 
 3302         /*
 3303          * By default add a special vdev 50% of the time
 3304          */
 3305         if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
 3306             (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
 3307             ztest_random(2) == 0)) {
 3308                 return;
 3309         }
 3310 
 3311         mutex_enter(&ztest_vdev_lock);
 3312 
 3313         /* Only test with mirrors */
 3314         if (zs->zs_mirrors < 2) {
 3315                 mutex_exit(&ztest_vdev_lock);
 3316                 return;
 3317         }
 3318 
 3319         /* requires feature@allocation_classes */
 3320         if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
 3321                 mutex_exit(&ztest_vdev_lock);
 3322                 return;
 3323         }
 3324 
 3325         leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
 3326             ztest_opts.zo_raid_children;
 3327 
 3328         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 3329         ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
 3330         spa_config_exit(spa, SCL_VDEV, FTAG);
 3331 
 3332         nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
 3333             class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
 3334 
 3335         error = spa_vdev_add(spa, nvroot);
 3336         fnvlist_free(nvroot);
 3337 
 3338         if (error == ENOSPC)
 3339                 ztest_record_enospc("spa_vdev_add");
 3340         else if (error != 0)
 3341                 fatal(B_FALSE, "spa_vdev_add() = %d", error);
 3342 
 3343         /*
 3344          * 50% of the time allow small blocks in the special class
 3345          */
 3346         if (error == 0 &&
 3347             spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
 3348                 if (ztest_opts.zo_verbose >= 3)
 3349                         (void) printf("Enabling special VDEV small blocks\n");
 3350                 error = ztest_dsl_prop_set_uint64(zd->zd_name,
 3351                     ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
 3352                 ASSERT(error == 0 || error == ENOSPC);
 3353         }
 3354 
 3355         mutex_exit(&ztest_vdev_lock);
 3356 
 3357         if (ztest_opts.zo_verbose >= 3) {
 3358                 metaslab_class_t *mc;
 3359 
 3360                 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
 3361                         mc = spa_special_class(spa);
 3362                 else
 3363                         mc = spa_dedup_class(spa);
 3364                 (void) printf("Added a %s mirrored vdev (of %d)\n",
 3365                     class, (int)mc->mc_groups);
 3366         }
 3367 }
 3368 
 3369 /*
 3370  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
 3371  */
 3372 void
 3373 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
 3374 {
 3375         (void) zd, (void) id;
 3376         ztest_shared_t *zs = ztest_shared;
 3377         spa_t *spa = ztest_spa;
 3378         vdev_t *rvd = spa->spa_root_vdev;
 3379         spa_aux_vdev_t *sav;
 3380         const char *aux;
 3381         char *path;
 3382         uint64_t guid = 0;
 3383         int error, ignore_err = 0;
 3384 
 3385         if (ztest_opts.zo_mmp_test)
 3386                 return;
 3387 
 3388         path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 3389 
 3390         if (ztest_random(2) == 0) {
 3391                 sav = &spa->spa_spares;
 3392                 aux = ZPOOL_CONFIG_SPARES;
 3393         } else {
 3394                 sav = &spa->spa_l2cache;
 3395                 aux = ZPOOL_CONFIG_L2CACHE;
 3396         }
 3397 
 3398         mutex_enter(&ztest_vdev_lock);
 3399 
 3400         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 3401 
 3402         if (sav->sav_count != 0 && ztest_random(4) == 0) {
 3403                 /*
 3404                  * Pick a random device to remove.
 3405                  */
 3406                 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
 3407 
 3408                 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
 3409                 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
 3410                         ignore_err = ENOTSUP;
 3411 
 3412                 guid = svd->vdev_guid;
 3413         } else {
 3414                 /*
 3415                  * Find an unused device we can add.
 3416                  */
 3417                 zs->zs_vdev_aux = 0;
 3418                 for (;;) {
 3419                         int c;
 3420                         (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
 3421                             ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
 3422                             zs->zs_vdev_aux);
 3423                         for (c = 0; c < sav->sav_count; c++)
 3424                                 if (strcmp(sav->sav_vdevs[c]->vdev_path,
 3425                                     path) == 0)
 3426                                         break;
 3427                         if (c == sav->sav_count &&
 3428                             vdev_lookup_by_path(rvd, path) == NULL)
 3429                                 break;
 3430                         zs->zs_vdev_aux++;
 3431                 }
 3432         }
 3433 
 3434         spa_config_exit(spa, SCL_VDEV, FTAG);
 3435 
 3436         if (guid == 0) {
 3437                 /*
 3438                  * Add a new device.
 3439                  */
 3440                 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
 3441                     (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
 3442                 error = spa_vdev_add(spa, nvroot);
 3443 
 3444                 switch (error) {
 3445                 case 0:
 3446                         break;
 3447                 default:
 3448                         fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
 3449                 }
 3450                 fnvlist_free(nvroot);
 3451         } else {
 3452                 /*
 3453                  * Remove an existing device.  Sometimes, dirty its
 3454                  * vdev state first to make sure we handle removal
 3455                  * of devices that have pending state changes.
 3456                  */
 3457                 if (ztest_random(2) == 0)
 3458                         (void) vdev_online(spa, guid, 0, NULL);
 3459 
 3460                 error = spa_vdev_remove(spa, guid, B_FALSE);
 3461 
 3462                 switch (error) {
 3463                 case 0:
 3464                 case EBUSY:
 3465                 case ZFS_ERR_CHECKPOINT_EXISTS:
 3466                 case ZFS_ERR_DISCARDING_CHECKPOINT:
 3467                         break;
 3468                 default:
 3469                         if (error != ignore_err)
 3470                                 fatal(B_FALSE,
 3471                                     "spa_vdev_remove(%"PRIu64") = %d",
 3472                                     guid, error);
 3473                 }
 3474         }
 3475 
 3476         mutex_exit(&ztest_vdev_lock);
 3477 
 3478         umem_free(path, MAXPATHLEN);
 3479 }
 3480 
 3481 /*
 3482  * split a pool if it has mirror tlvdevs
 3483  */
 3484 void
 3485 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
 3486 {
 3487         (void) zd, (void) id;
 3488         ztest_shared_t *zs = ztest_shared;
 3489         spa_t *spa = ztest_spa;
 3490         vdev_t *rvd = spa->spa_root_vdev;
 3491         nvlist_t *tree, **child, *config, *split, **schild;
 3492         uint_t c, children, schildren = 0, lastlogid = 0;
 3493         int error = 0;
 3494 
 3495         if (ztest_opts.zo_mmp_test)
 3496                 return;
 3497 
 3498         mutex_enter(&ztest_vdev_lock);
 3499 
 3500         /* ensure we have a usable config; mirrors of raidz aren't supported */
 3501         if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
 3502                 mutex_exit(&ztest_vdev_lock);
 3503                 return;
 3504         }
 3505 
 3506         /* clean up the old pool, if any */
 3507         (void) spa_destroy("splitp");
 3508 
 3509         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 3510 
 3511         /* generate a config from the existing config */
 3512         mutex_enter(&spa->spa_props_lock);
 3513         tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
 3514         mutex_exit(&spa->spa_props_lock);
 3515 
 3516         VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
 3517             &child, &children));
 3518 
 3519         schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
 3520             UMEM_NOFAIL);
 3521         for (c = 0; c < children; c++) {
 3522                 vdev_t *tvd = rvd->vdev_child[c];
 3523                 nvlist_t **mchild;
 3524                 uint_t mchildren;
 3525 
 3526                 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
 3527                         schild[schildren] = fnvlist_alloc();
 3528                         fnvlist_add_string(schild[schildren],
 3529                             ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
 3530                         fnvlist_add_uint64(schild[schildren],
 3531                             ZPOOL_CONFIG_IS_HOLE, 1);
 3532                         if (lastlogid == 0)
 3533                                 lastlogid = schildren;
 3534                         ++schildren;
 3535                         continue;
 3536                 }
 3537                 lastlogid = 0;
 3538                 VERIFY0(nvlist_lookup_nvlist_array(child[c],
 3539                     ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
 3540                 schild[schildren++] = fnvlist_dup(mchild[0]);
 3541         }
 3542 
 3543         /* OK, create a config that can be used to split */
 3544         split = fnvlist_alloc();
 3545         fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
 3546         fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
 3547             (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
 3548 
 3549         config = fnvlist_alloc();
 3550         fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
 3551 
 3552         for (c = 0; c < schildren; c++)
 3553                 fnvlist_free(schild[c]);
 3554         umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
 3555         fnvlist_free(split);
 3556 
 3557         spa_config_exit(spa, SCL_VDEV, FTAG);
 3558 
 3559         (void) pthread_rwlock_wrlock(&ztest_name_lock);
 3560         error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
 3561         (void) pthread_rwlock_unlock(&ztest_name_lock);
 3562 
 3563         fnvlist_free(config);
 3564 
 3565         if (error == 0) {
 3566                 (void) printf("successful split - results:\n");
 3567                 mutex_enter(&spa_namespace_lock);
 3568                 show_pool_stats(spa);
 3569                 show_pool_stats(spa_lookup("splitp"));
 3570                 mutex_exit(&spa_namespace_lock);
 3571                 ++zs->zs_splits;
 3572                 --zs->zs_mirrors;
 3573         }
 3574         mutex_exit(&ztest_vdev_lock);
 3575 }
 3576 
 3577 /*
 3578  * Verify that we can attach and detach devices.
 3579  */
 3580 void
 3581 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
 3582 {
 3583         (void) zd, (void) id;
 3584         ztest_shared_t *zs = ztest_shared;
 3585         spa_t *spa = ztest_spa;
 3586         spa_aux_vdev_t *sav = &spa->spa_spares;
 3587         vdev_t *rvd = spa->spa_root_vdev;
 3588         vdev_t *oldvd, *newvd, *pvd;
 3589         nvlist_t *root;
 3590         uint64_t leaves;
 3591         uint64_t leaf, top;
 3592         uint64_t ashift = ztest_get_ashift();
 3593         uint64_t oldguid, pguid;
 3594         uint64_t oldsize, newsize;
 3595         char *oldpath, *newpath;
 3596         int replacing;
 3597         int oldvd_has_siblings = B_FALSE;
 3598         int newvd_is_spare = B_FALSE;
 3599         int newvd_is_dspare = B_FALSE;
 3600         int oldvd_is_log;
 3601         int oldvd_is_special;
 3602         int error, expected_error;
 3603 
 3604         if (ztest_opts.zo_mmp_test)
 3605                 return;
 3606 
 3607         oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 3608         newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 3609 
 3610         mutex_enter(&ztest_vdev_lock);
 3611         leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
 3612 
 3613         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 3614 
 3615         /*
 3616          * If a vdev is in the process of being removed, its removal may
 3617          * finish while we are in progress, leading to an unexpected error
 3618          * value.  Don't bother trying to attach while we are in the middle
 3619          * of removal.
 3620          */
 3621         if (ztest_device_removal_active) {
 3622                 spa_config_exit(spa, SCL_ALL, FTAG);
 3623                 goto out;
 3624         }
 3625 
 3626         /*
 3627          * Decide whether to do an attach or a replace.
 3628          */
 3629         replacing = ztest_random(2);
 3630 
 3631         /*
 3632          * Pick a random top-level vdev.
 3633          */
 3634         top = ztest_random_vdev_top(spa, B_TRUE);
 3635 
 3636         /*
 3637          * Pick a random leaf within it.
 3638          */
 3639         leaf = ztest_random(leaves);
 3640 
 3641         /*
 3642          * Locate this vdev.
 3643          */
 3644         oldvd = rvd->vdev_child[top];
 3645 
 3646         /* pick a child from the mirror */
 3647         if (zs->zs_mirrors >= 1) {
 3648                 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
 3649                 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
 3650                 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
 3651         }
 3652 
 3653         /* pick a child out of the raidz group */
 3654         if (ztest_opts.zo_raid_children > 1) {
 3655                 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
 3656                         ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
 3657                 else
 3658                         ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
 3659                 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
 3660                 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
 3661         }
 3662 
 3663         /*
 3664          * If we're already doing an attach or replace, oldvd may be a
 3665          * mirror vdev -- in which case, pick a random child.
 3666          */
 3667         while (oldvd->vdev_children != 0) {
 3668                 oldvd_has_siblings = B_TRUE;
 3669                 ASSERT3U(oldvd->vdev_children, >=, 2);
 3670                 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
 3671         }
 3672 
 3673         oldguid = oldvd->vdev_guid;
 3674         oldsize = vdev_get_min_asize(oldvd);
 3675         oldvd_is_log = oldvd->vdev_top->vdev_islog;
 3676         oldvd_is_special =
 3677             oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
 3678             oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
 3679         (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
 3680         pvd = oldvd->vdev_parent;
 3681         pguid = pvd->vdev_guid;
 3682 
 3683         /*
 3684          * If oldvd has siblings, then half of the time, detach it.  Prior
 3685          * to the detach the pool is scrubbed in order to prevent creating
 3686          * unrepairable blocks as a result of the data corruption injection.
 3687          */
 3688         if (oldvd_has_siblings && ztest_random(2) == 0) {
 3689                 spa_config_exit(spa, SCL_ALL, FTAG);
 3690 
 3691                 error = ztest_scrub_impl(spa);
 3692                 if (error)
 3693                         goto out;
 3694 
 3695                 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
 3696                 if (error != 0 && error != ENODEV && error != EBUSY &&
 3697                     error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
 3698                     error != ZFS_ERR_DISCARDING_CHECKPOINT)
 3699                         fatal(B_FALSE, "detach (%s) returned %d",
 3700                             oldpath, error);
 3701                 goto out;
 3702         }
 3703 
 3704         /*
 3705          * For the new vdev, choose with equal probability between the two
 3706          * standard paths (ending in either 'a' or 'b') or a random hot spare.
 3707          */
 3708         if (sav->sav_count != 0 && ztest_random(3) == 0) {
 3709                 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
 3710                 newvd_is_spare = B_TRUE;
 3711 
 3712                 if (newvd->vdev_ops == &vdev_draid_spare_ops)
 3713                         newvd_is_dspare = B_TRUE;
 3714 
 3715                 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
 3716         } else {
 3717                 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
 3718                     ztest_opts.zo_dir, ztest_opts.zo_pool,
 3719                     top * leaves + leaf);
 3720                 if (ztest_random(2) == 0)
 3721                         newpath[strlen(newpath) - 1] = 'b';
 3722                 newvd = vdev_lookup_by_path(rvd, newpath);
 3723         }
 3724 
 3725         if (newvd) {
 3726                 /*
 3727                  * Reopen to ensure the vdev's asize field isn't stale.
 3728                  */
 3729                 vdev_reopen(newvd);
 3730                 newsize = vdev_get_min_asize(newvd);
 3731         } else {
 3732                 /*
 3733                  * Make newsize a little bigger or smaller than oldsize.
 3734                  * If it's smaller, the attach should fail.
 3735                  * If it's larger, and we're doing a replace,
 3736                  * we should get dynamic LUN growth when we're done.
 3737                  */
 3738                 newsize = 10 * oldsize / (9 + ztest_random(3));
 3739         }
 3740 
 3741         /*
 3742          * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
 3743          * unless it's a replace; in that case any non-replacing parent is OK.
 3744          *
 3745          * If newvd is already part of the pool, it should fail with EBUSY.
 3746          *
 3747          * If newvd is too small, it should fail with EOVERFLOW.
 3748          *
 3749          * If newvd is a distributed spare and it's being attached to a
 3750          * dRAID which is not its parent it should fail with EINVAL.
 3751          */
 3752         if (pvd->vdev_ops != &vdev_mirror_ops &&
 3753             pvd->vdev_ops != &vdev_root_ops && (!replacing ||
 3754             pvd->vdev_ops == &vdev_replacing_ops ||
 3755             pvd->vdev_ops == &vdev_spare_ops))
 3756                 expected_error = ENOTSUP;
 3757         else if (newvd_is_spare &&
 3758             (!replacing || oldvd_is_log || oldvd_is_special))
 3759                 expected_error = ENOTSUP;
 3760         else if (newvd == oldvd)
 3761                 expected_error = replacing ? 0 : EBUSY;
 3762         else if (vdev_lookup_by_path(rvd, newpath) != NULL)
 3763                 expected_error = EBUSY;
 3764         else if (!newvd_is_dspare && newsize < oldsize)
 3765                 expected_error = EOVERFLOW;
 3766         else if (ashift > oldvd->vdev_top->vdev_ashift)
 3767                 expected_error = EDOM;
 3768         else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
 3769                 expected_error = ENOTSUP;
 3770         else
 3771                 expected_error = 0;
 3772 
 3773         spa_config_exit(spa, SCL_ALL, FTAG);
 3774 
 3775         /*
 3776          * Build the nvlist describing newpath.
 3777          */
 3778         root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
 3779             ashift, NULL, 0, 0, 1);
 3780 
 3781         /*
 3782          * When supported select either a healing or sequential resilver.
 3783          */
 3784         boolean_t rebuilding = B_FALSE;
 3785         if (pvd->vdev_ops == &vdev_mirror_ops ||
 3786             pvd->vdev_ops ==  &vdev_root_ops) {
 3787                 rebuilding = !!ztest_random(2);
 3788         }
 3789 
 3790         error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
 3791 
 3792         fnvlist_free(root);
 3793 
 3794         /*
 3795          * If our parent was the replacing vdev, but the replace completed,
 3796          * then instead of failing with ENOTSUP we may either succeed,
 3797          * fail with ENODEV, or fail with EOVERFLOW.
 3798          */
 3799         if (expected_error == ENOTSUP &&
 3800             (error == 0 || error == ENODEV || error == EOVERFLOW))
 3801                 expected_error = error;
 3802 
 3803         /*
 3804          * If someone grew the LUN, the replacement may be too small.
 3805          */
 3806         if (error == EOVERFLOW || error == EBUSY)
 3807                 expected_error = error;
 3808 
 3809         if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
 3810             error == ZFS_ERR_DISCARDING_CHECKPOINT ||
 3811             error == ZFS_ERR_RESILVER_IN_PROGRESS ||
 3812             error == ZFS_ERR_REBUILD_IN_PROGRESS)
 3813                 expected_error = error;
 3814 
 3815         if (error != expected_error && expected_error != EBUSY) {
 3816                 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
 3817                     "returned %d, expected %d",
 3818                     oldpath, oldsize, newpath,
 3819                     newsize, replacing, error, expected_error);
 3820         }
 3821 out:
 3822         mutex_exit(&ztest_vdev_lock);
 3823 
 3824         umem_free(oldpath, MAXPATHLEN);
 3825         umem_free(newpath, MAXPATHLEN);
 3826 }
 3827 
 3828 void
 3829 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
 3830 {
 3831         (void) zd, (void) id;
 3832         spa_t *spa = ztest_spa;
 3833         vdev_t *vd;
 3834         uint64_t guid;
 3835         int error;
 3836 
 3837         mutex_enter(&ztest_vdev_lock);
 3838 
 3839         if (ztest_device_removal_active) {
 3840                 mutex_exit(&ztest_vdev_lock);
 3841                 return;
 3842         }
 3843 
 3844         /*
 3845          * Remove a random top-level vdev and wait for removal to finish.
 3846          */
 3847         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 3848         vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
 3849         guid = vd->vdev_guid;
 3850         spa_config_exit(spa, SCL_VDEV, FTAG);
 3851 
 3852         error = spa_vdev_remove(spa, guid, B_FALSE);
 3853         if (error == 0) {
 3854                 ztest_device_removal_active = B_TRUE;
 3855                 mutex_exit(&ztest_vdev_lock);
 3856 
 3857                 /*
 3858                  * spa->spa_vdev_removal is created in a sync task that
 3859                  * is initiated via dsl_sync_task_nowait(). Since the
 3860                  * task may not run before spa_vdev_remove() returns, we
 3861                  * must wait at least 1 txg to ensure that the removal
 3862                  * struct has been created.
 3863                  */
 3864                 txg_wait_synced(spa_get_dsl(spa), 0);
 3865 
 3866                 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
 3867                         txg_wait_synced(spa_get_dsl(spa), 0);
 3868         } else {
 3869                 mutex_exit(&ztest_vdev_lock);
 3870                 return;
 3871         }
 3872 
 3873         /*
 3874          * The pool needs to be scrubbed after completing device removal.
 3875          * Failure to do so may result in checksum errors due to the
 3876          * strategy employed by ztest_fault_inject() when selecting which
 3877          * offset are redundant and can be damaged.
 3878          */
 3879         error = spa_scan(spa, POOL_SCAN_SCRUB);
 3880         if (error == 0) {
 3881                 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
 3882                         txg_wait_synced(spa_get_dsl(spa), 0);
 3883         }
 3884 
 3885         mutex_enter(&ztest_vdev_lock);
 3886         ztest_device_removal_active = B_FALSE;
 3887         mutex_exit(&ztest_vdev_lock);
 3888 }
 3889 
 3890 /*
 3891  * Callback function which expands the physical size of the vdev.
 3892  */
 3893 static vdev_t *
 3894 grow_vdev(vdev_t *vd, void *arg)
 3895 {
 3896         spa_t *spa __maybe_unused = vd->vdev_spa;
 3897         size_t *newsize = arg;
 3898         size_t fsize;
 3899         int fd;
 3900 
 3901         ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
 3902         ASSERT(vd->vdev_ops->vdev_op_leaf);
 3903 
 3904         if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
 3905                 return (vd);
 3906 
 3907         fsize = lseek(fd, 0, SEEK_END);
 3908         VERIFY0(ftruncate(fd, *newsize));
 3909 
 3910         if (ztest_opts.zo_verbose >= 6) {
 3911                 (void) printf("%s grew from %lu to %lu bytes\n",
 3912                     vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
 3913         }
 3914         (void) close(fd);
 3915         return (NULL);
 3916 }
 3917 
 3918 /*
 3919  * Callback function which expands a given vdev by calling vdev_online().
 3920  */
 3921 static vdev_t *
 3922 online_vdev(vdev_t *vd, void *arg)
 3923 {
 3924         (void) arg;
 3925         spa_t *spa = vd->vdev_spa;
 3926         vdev_t *tvd = vd->vdev_top;
 3927         uint64_t guid = vd->vdev_guid;
 3928         uint64_t generation = spa->spa_config_generation + 1;
 3929         vdev_state_t newstate = VDEV_STATE_UNKNOWN;
 3930         int error;
 3931 
 3932         ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
 3933         ASSERT(vd->vdev_ops->vdev_op_leaf);
 3934 
 3935         /* Calling vdev_online will initialize the new metaslabs */
 3936         spa_config_exit(spa, SCL_STATE, spa);
 3937         error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
 3938         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
 3939 
 3940         /*
 3941          * If vdev_online returned an error or the underlying vdev_open
 3942          * failed then we abort the expand. The only way to know that
 3943          * vdev_open fails is by checking the returned newstate.
 3944          */
 3945         if (error || newstate != VDEV_STATE_HEALTHY) {
 3946                 if (ztest_opts.zo_verbose >= 5) {
 3947                         (void) printf("Unable to expand vdev, state %u, "
 3948                             "error %d\n", newstate, error);
 3949                 }
 3950                 return (vd);
 3951         }
 3952         ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
 3953 
 3954         /*
 3955          * Since we dropped the lock we need to ensure that we're
 3956          * still talking to the original vdev. It's possible this
 3957          * vdev may have been detached/replaced while we were
 3958          * trying to online it.
 3959          */
 3960         if (generation != spa->spa_config_generation) {
 3961                 if (ztest_opts.zo_verbose >= 5) {
 3962                         (void) printf("vdev configuration has changed, "
 3963                             "guid %"PRIu64", state %"PRIu64", "
 3964                             "expected gen %"PRIu64", got gen %"PRIu64"\n",
 3965                             guid,
 3966                             tvd->vdev_state,
 3967                             generation,
 3968                             spa->spa_config_generation);
 3969                 }
 3970                 return (vd);
 3971         }
 3972         return (NULL);
 3973 }
 3974 
 3975 /*
 3976  * Traverse the vdev tree calling the supplied function.
 3977  * We continue to walk the tree until we either have walked all
 3978  * children or we receive a non-NULL return from the callback.
 3979  * If a NULL callback is passed, then we just return back the first
 3980  * leaf vdev we encounter.
 3981  */
 3982 static vdev_t *
 3983 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
 3984 {
 3985         uint_t c;
 3986 
 3987         if (vd->vdev_ops->vdev_op_leaf) {
 3988                 if (func == NULL)
 3989                         return (vd);
 3990                 else
 3991                         return (func(vd, arg));
 3992         }
 3993 
 3994         for (c = 0; c < vd->vdev_children; c++) {
 3995                 vdev_t *cvd = vd->vdev_child[c];
 3996                 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
 3997                         return (cvd);
 3998         }
 3999         return (NULL);
 4000 }
 4001 
 4002 /*
 4003  * Verify that dynamic LUN growth works as expected.
 4004  */
 4005 void
 4006 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
 4007 {
 4008         (void) zd, (void) id;
 4009         spa_t *spa = ztest_spa;
 4010         vdev_t *vd, *tvd;
 4011         metaslab_class_t *mc;
 4012         metaslab_group_t *mg;
 4013         size_t psize, newsize;
 4014         uint64_t top;
 4015         uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
 4016 
 4017         mutex_enter(&ztest_checkpoint_lock);
 4018         mutex_enter(&ztest_vdev_lock);
 4019         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
 4020 
 4021         /*
 4022          * If there is a vdev removal in progress, it could complete while
 4023          * we are running, in which case we would not be able to verify
 4024          * that the metaslab_class space increased (because it decreases
 4025          * when the device removal completes).
 4026          */
 4027         if (ztest_device_removal_active) {
 4028                 spa_config_exit(spa, SCL_STATE, spa);
 4029                 mutex_exit(&ztest_vdev_lock);
 4030                 mutex_exit(&ztest_checkpoint_lock);
 4031                 return;
 4032         }
 4033 
 4034         top = ztest_random_vdev_top(spa, B_TRUE);
 4035 
 4036         tvd = spa->spa_root_vdev->vdev_child[top];
 4037         mg = tvd->vdev_mg;
 4038         mc = mg->mg_class;
 4039         old_ms_count = tvd->vdev_ms_count;
 4040         old_class_space = metaslab_class_get_space(mc);
 4041 
 4042         /*
 4043          * Determine the size of the first leaf vdev associated with
 4044          * our top-level device.
 4045          */
 4046         vd = vdev_walk_tree(tvd, NULL, NULL);
 4047         ASSERT3P(vd, !=, NULL);
 4048         ASSERT(vd->vdev_ops->vdev_op_leaf);
 4049 
 4050         psize = vd->vdev_psize;
 4051 
 4052         /*
 4053          * We only try to expand the vdev if it's healthy, less than 4x its
 4054          * original size, and it has a valid psize.
 4055          */
 4056         if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
 4057             psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
 4058                 spa_config_exit(spa, SCL_STATE, spa);
 4059                 mutex_exit(&ztest_vdev_lock);
 4060                 mutex_exit(&ztest_checkpoint_lock);
 4061                 return;
 4062         }
 4063         ASSERT3U(psize, >, 0);
 4064         newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
 4065         ASSERT3U(newsize, >, psize);
 4066 
 4067         if (ztest_opts.zo_verbose >= 6) {
 4068                 (void) printf("Expanding LUN %s from %lu to %lu\n",
 4069                     vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
 4070         }
 4071 
 4072         /*
 4073          * Growing the vdev is a two step process:
 4074          *      1). expand the physical size (i.e. relabel)
 4075          *      2). online the vdev to create the new metaslabs
 4076          */
 4077         if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
 4078             vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
 4079             tvd->vdev_state != VDEV_STATE_HEALTHY) {
 4080                 if (ztest_opts.zo_verbose >= 5) {
 4081                         (void) printf("Could not expand LUN because "
 4082                             "the vdev configuration changed.\n");
 4083                 }
 4084                 spa_config_exit(spa, SCL_STATE, spa);
 4085                 mutex_exit(&ztest_vdev_lock);
 4086                 mutex_exit(&ztest_checkpoint_lock);
 4087                 return;
 4088         }
 4089 
 4090         spa_config_exit(spa, SCL_STATE, spa);
 4091 
 4092         /*
 4093          * Expanding the LUN will update the config asynchronously,
 4094          * thus we must wait for the async thread to complete any
 4095          * pending tasks before proceeding.
 4096          */
 4097         for (;;) {
 4098                 boolean_t done;
 4099                 mutex_enter(&spa->spa_async_lock);
 4100                 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
 4101                 mutex_exit(&spa->spa_async_lock);
 4102                 if (done)
 4103                         break;
 4104                 txg_wait_synced(spa_get_dsl(spa), 0);
 4105                 (void) poll(NULL, 0, 100);
 4106         }
 4107 
 4108         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
 4109 
 4110         tvd = spa->spa_root_vdev->vdev_child[top];
 4111         new_ms_count = tvd->vdev_ms_count;
 4112         new_class_space = metaslab_class_get_space(mc);
 4113 
 4114         if (tvd->vdev_mg != mg || mg->mg_class != mc) {
 4115                 if (ztest_opts.zo_verbose >= 5) {
 4116                         (void) printf("Could not verify LUN expansion due to "
 4117                             "intervening vdev offline or remove.\n");
 4118                 }
 4119                 spa_config_exit(spa, SCL_STATE, spa);
 4120                 mutex_exit(&ztest_vdev_lock);
 4121                 mutex_exit(&ztest_checkpoint_lock);
 4122                 return;
 4123         }
 4124 
 4125         /*
 4126          * Make sure we were able to grow the vdev.
 4127          */
 4128         if (new_ms_count <= old_ms_count) {
 4129                 fatal(B_FALSE,
 4130                     "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
 4131                     old_ms_count, new_ms_count);
 4132         }
 4133 
 4134         /*
 4135          * Make sure we were able to grow the pool.
 4136          */
 4137         if (new_class_space <= old_class_space) {
 4138                 fatal(B_FALSE,
 4139                     "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
 4140                     old_class_space, new_class_space);
 4141         }
 4142 
 4143         if (ztest_opts.zo_verbose >= 5) {
 4144                 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
 4145 
 4146                 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
 4147                 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
 4148                 (void) printf("%s grew from %s to %s\n",
 4149                     spa->spa_name, oldnumbuf, newnumbuf);
 4150         }
 4151 
 4152         spa_config_exit(spa, SCL_STATE, spa);
 4153         mutex_exit(&ztest_vdev_lock);
 4154         mutex_exit(&ztest_checkpoint_lock);
 4155 }
 4156 
 4157 /*
 4158  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
 4159  */
 4160 static void
 4161 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
 4162 {
 4163         (void) arg, (void) cr;
 4164 
 4165         /*
 4166          * Create the objects common to all ztest datasets.
 4167          */
 4168         VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
 4169             DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
 4170 }
 4171 
 4172 static int
 4173 ztest_dataset_create(char *dsname)
 4174 {
 4175         int err;
 4176         uint64_t rand;
 4177         dsl_crypto_params_t *dcp = NULL;
 4178 
 4179         /*
 4180          * 50% of the time, we create encrypted datasets
 4181          * using a random cipher suite and a hard-coded
 4182          * wrapping key.
 4183          */
 4184         rand = ztest_random(2);
 4185         if (rand != 0) {
 4186                 nvlist_t *crypto_args = fnvlist_alloc();
 4187                 nvlist_t *props = fnvlist_alloc();
 4188 
 4189                 /* slight bias towards the default cipher suite */
 4190                 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
 4191                 if (rand < ZIO_CRYPT_AES_128_CCM)
 4192                         rand = ZIO_CRYPT_ON;
 4193 
 4194                 fnvlist_add_uint64(props,
 4195                     zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
 4196                 fnvlist_add_uint8_array(crypto_args, "wkeydata",
 4197                     (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
 4198 
 4199                 /*
 4200                  * These parameters aren't really used by the kernel. They
 4201                  * are simply stored so that userspace knows how to load
 4202                  * the wrapping key.
 4203                  */
 4204                 fnvlist_add_uint64(props,
 4205                     zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
 4206                 fnvlist_add_string(props,
 4207                     zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
 4208                 fnvlist_add_uint64(props,
 4209                     zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
 4210                 fnvlist_add_uint64(props,
 4211                     zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
 4212 
 4213                 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
 4214                     crypto_args, &dcp));
 4215 
 4216                 /*
 4217                  * Cycle through all available encryption implementations
 4218                  * to verify interoperability.
 4219                  */
 4220                 VERIFY0(gcm_impl_set("cycle"));
 4221                 VERIFY0(aes_impl_set("cycle"));
 4222 
 4223                 fnvlist_free(crypto_args);
 4224                 fnvlist_free(props);
 4225         }
 4226 
 4227         err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
 4228             ztest_objset_create_cb, NULL);
 4229         dsl_crypto_params_free(dcp, !!err);
 4230 
 4231         rand = ztest_random(100);
 4232         if (err || rand < 80)
 4233                 return (err);
 4234 
 4235         if (ztest_opts.zo_verbose >= 5)
 4236                 (void) printf("Setting dataset %s to sync always\n", dsname);
 4237         return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
 4238             ZFS_SYNC_ALWAYS, B_FALSE));
 4239 }
 4240 
 4241 static int
 4242 ztest_objset_destroy_cb(const char *name, void *arg)
 4243 {
 4244         (void) arg;
 4245         objset_t *os;
 4246         dmu_object_info_t doi;
 4247         int error;
 4248 
 4249         /*
 4250          * Verify that the dataset contains a directory object.
 4251          */
 4252         VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
 4253             B_TRUE, FTAG, &os));
 4254         error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
 4255         if (error != ENOENT) {
 4256                 /* We could have crashed in the middle of destroying it */
 4257                 ASSERT0(error);
 4258                 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
 4259                 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
 4260         }
 4261         dmu_objset_disown(os, B_TRUE, FTAG);
 4262 
 4263         /*
 4264          * Destroy the dataset.
 4265          */
 4266         if (strchr(name, '@') != NULL) {
 4267                 error = dsl_destroy_snapshot(name, B_TRUE);
 4268                 if (error != ECHRNG) {
 4269                         /*
 4270                          * The program was executed, but encountered a runtime
 4271                          * error, such as insufficient slop, or a hold on the
 4272                          * dataset.
 4273                          */
 4274                         ASSERT0(error);
 4275                 }
 4276         } else {
 4277                 error = dsl_destroy_head(name);
 4278                 if (error == ENOSPC) {
 4279                         /* There could be checkpoint or insufficient slop */
 4280                         ztest_record_enospc(FTAG);
 4281                 } else if (error != EBUSY) {
 4282                         /* There could be a hold on this dataset */
 4283                         ASSERT0(error);
 4284                 }
 4285         }
 4286         return (0);
 4287 }
 4288 
 4289 static boolean_t
 4290 ztest_snapshot_create(char *osname, uint64_t id)
 4291 {
 4292         char snapname[ZFS_MAX_DATASET_NAME_LEN];
 4293         int error;
 4294 
 4295         (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
 4296 
 4297         error = dmu_objset_snapshot_one(osname, snapname);
 4298         if (error == ENOSPC) {
 4299                 ztest_record_enospc(FTAG);
 4300                 return (B_FALSE);
 4301         }
 4302         if (error != 0 && error != EEXIST && error != ECHRNG) {
 4303                 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
 4304                     snapname, error);
 4305         }
 4306         return (B_TRUE);
 4307 }
 4308 
 4309 static boolean_t
 4310 ztest_snapshot_destroy(char *osname, uint64_t id)
 4311 {
 4312         char snapname[ZFS_MAX_DATASET_NAME_LEN];
 4313         int error;
 4314 
 4315         (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
 4316             osname, id);
 4317 
 4318         error = dsl_destroy_snapshot(snapname, B_FALSE);
 4319         if (error != 0 && error != ENOENT && error != ECHRNG)
 4320                 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
 4321                     snapname, error);
 4322         return (B_TRUE);
 4323 }
 4324 
 4325 void
 4326 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
 4327 {
 4328         (void) zd;
 4329         ztest_ds_t *zdtmp;
 4330         int iters;
 4331         int error;
 4332         objset_t *os, *os2;
 4333         char name[ZFS_MAX_DATASET_NAME_LEN];
 4334         zilog_t *zilog;
 4335         int i;
 4336 
 4337         zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
 4338 
 4339         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 4340 
 4341         (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
 4342             ztest_opts.zo_pool, id);
 4343 
 4344         /*
 4345          * If this dataset exists from a previous run, process its replay log
 4346          * half of the time.  If we don't replay it, then dsl_destroy_head()
 4347          * (invoked from ztest_objset_destroy_cb()) should just throw it away.
 4348          */
 4349         if (ztest_random(2) == 0 &&
 4350             ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
 4351             B_TRUE, FTAG, &os) == 0) {
 4352                 ztest_zd_init(zdtmp, NULL, os);
 4353                 zil_replay(os, zdtmp, ztest_replay_vector);
 4354                 ztest_zd_fini(zdtmp);
 4355                 dmu_objset_disown(os, B_TRUE, FTAG);
 4356         }
 4357 
 4358         /*
 4359          * There may be an old instance of the dataset we're about to
 4360          * create lying around from a previous run.  If so, destroy it
 4361          * and all of its snapshots.
 4362          */
 4363         (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
 4364             DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
 4365 
 4366         /*
 4367          * Verify that the destroyed dataset is no longer in the namespace.
 4368          * It may still be present if the destroy above fails with ENOSPC.
 4369          */
 4370         error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
 4371             FTAG, &os);
 4372         if (error == 0) {
 4373                 dmu_objset_disown(os, B_TRUE, FTAG);
 4374                 ztest_record_enospc(FTAG);
 4375                 goto out;
 4376         }
 4377         VERIFY3U(ENOENT, ==, error);
 4378 
 4379         /*
 4380          * Verify that we can create a new dataset.
 4381          */
 4382         error = ztest_dataset_create(name);
 4383         if (error) {
 4384                 if (error == ENOSPC) {
 4385                         ztest_record_enospc(FTAG);
 4386                         goto out;
 4387                 }
 4388                 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
 4389         }
 4390 
 4391         VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
 4392             FTAG, &os));
 4393 
 4394         ztest_zd_init(zdtmp, NULL, os);
 4395 
 4396         /*
 4397          * Open the intent log for it.
 4398          */
 4399         zilog = zil_open(os, ztest_get_data, NULL);
 4400 
 4401         /*
 4402          * Put some objects in there, do a little I/O to them,
 4403          * and randomly take a couple of snapshots along the way.
 4404          */
 4405         iters = ztest_random(5);
 4406         for (i = 0; i < iters; i++) {
 4407                 ztest_dmu_object_alloc_free(zdtmp, id);
 4408                 if (ztest_random(iters) == 0)
 4409                         (void) ztest_snapshot_create(name, i);
 4410         }
 4411 
 4412         /*
 4413          * Verify that we cannot create an existing dataset.
 4414          */
 4415         VERIFY3U(EEXIST, ==,
 4416             dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
 4417 
 4418         /*
 4419          * Verify that we can hold an objset that is also owned.
 4420          */
 4421         VERIFY0(dmu_objset_hold(name, FTAG, &os2));
 4422         dmu_objset_rele(os2, FTAG);
 4423 
 4424         /*
 4425          * Verify that we cannot own an objset that is already owned.
 4426          */
 4427         VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
 4428             B_FALSE, B_TRUE, FTAG, &os2));
 4429 
 4430         zil_close(zilog);
 4431         dmu_objset_disown(os, B_TRUE, FTAG);
 4432         ztest_zd_fini(zdtmp);
 4433 out:
 4434         (void) pthread_rwlock_unlock(&ztest_name_lock);
 4435 
 4436         umem_free(zdtmp, sizeof (ztest_ds_t));
 4437 }
 4438 
 4439 /*
 4440  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
 4441  */
 4442 void
 4443 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
 4444 {
 4445         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 4446         (void) ztest_snapshot_destroy(zd->zd_name, id);
 4447         (void) ztest_snapshot_create(zd->zd_name, id);
 4448         (void) pthread_rwlock_unlock(&ztest_name_lock);
 4449 }
 4450 
 4451 /*
 4452  * Cleanup non-standard snapshots and clones.
 4453  */
 4454 static void
 4455 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
 4456 {
 4457         char *snap1name;
 4458         char *clone1name;
 4459         char *snap2name;
 4460         char *clone2name;
 4461         char *snap3name;
 4462         int error;
 4463 
 4464         snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4465         clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4466         snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4467         clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4468         snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4469 
 4470         (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
 4471             osname, id);
 4472         (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
 4473             osname, id);
 4474         (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
 4475             clone1name, id);
 4476         (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
 4477             osname, id);
 4478         (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
 4479             clone1name, id);
 4480 
 4481         error = dsl_destroy_head(clone2name);
 4482         if (error && error != ENOENT)
 4483                 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
 4484         error = dsl_destroy_snapshot(snap3name, B_FALSE);
 4485         if (error && error != ENOENT)
 4486                 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
 4487                     snap3name, error);
 4488         error = dsl_destroy_snapshot(snap2name, B_FALSE);
 4489         if (error && error != ENOENT)
 4490                 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
 4491                     snap2name, error);
 4492         error = dsl_destroy_head(clone1name);
 4493         if (error && error != ENOENT)
 4494                 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
 4495         error = dsl_destroy_snapshot(snap1name, B_FALSE);
 4496         if (error && error != ENOENT)
 4497                 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
 4498                     snap1name, error);
 4499 
 4500         umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
 4501         umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
 4502         umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
 4503         umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
 4504         umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
 4505 }
 4506 
 4507 /*
 4508  * Verify dsl_dataset_promote handles EBUSY
 4509  */
 4510 void
 4511 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
 4512 {
 4513         objset_t *os;
 4514         char *snap1name;
 4515         char *clone1name;
 4516         char *snap2name;
 4517         char *clone2name;
 4518         char *snap3name;
 4519         char *osname = zd->zd_name;
 4520         int error;
 4521 
 4522         snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4523         clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4524         snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4525         clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4526         snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 4527 
 4528         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 4529 
 4530         ztest_dsl_dataset_cleanup(osname, id);
 4531 
 4532         (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
 4533             osname, id);
 4534         (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
 4535             osname, id);
 4536         (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
 4537             clone1name, id);
 4538         (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
 4539             osname, id);
 4540         (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
 4541             clone1name, id);
 4542 
 4543         error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
 4544         if (error && error != EEXIST) {
 4545                 if (error == ENOSPC) {
 4546                         ztest_record_enospc(FTAG);
 4547                         goto out;
 4548                 }
 4549                 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
 4550         }
 4551 
 4552         error = dmu_objset_clone(clone1name, snap1name);
 4553         if (error) {
 4554                 if (error == ENOSPC) {
 4555                         ztest_record_enospc(FTAG);
 4556                         goto out;
 4557                 }
 4558                 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
 4559         }
 4560 
 4561         error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
 4562         if (error && error != EEXIST) {
 4563                 if (error == ENOSPC) {
 4564                         ztest_record_enospc(FTAG);
 4565                         goto out;
 4566                 }
 4567                 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
 4568         }
 4569 
 4570         error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
 4571         if (error && error != EEXIST) {
 4572                 if (error == ENOSPC) {
 4573                         ztest_record_enospc(FTAG);
 4574                         goto out;
 4575                 }
 4576                 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
 4577         }
 4578 
 4579         error = dmu_objset_clone(clone2name, snap3name);
 4580         if (error) {
 4581                 if (error == ENOSPC) {
 4582                         ztest_record_enospc(FTAG);
 4583                         goto out;
 4584                 }
 4585                 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
 4586         }
 4587 
 4588         error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
 4589             FTAG, &os);
 4590         if (error)
 4591                 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
 4592         error = dsl_dataset_promote(clone2name, NULL);
 4593         if (error == ENOSPC) {
 4594                 dmu_objset_disown(os, B_TRUE, FTAG);
 4595                 ztest_record_enospc(FTAG);
 4596                 goto out;
 4597         }
 4598         if (error != EBUSY)
 4599                 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
 4600                     clone2name, error);
 4601         dmu_objset_disown(os, B_TRUE, FTAG);
 4602 
 4603 out:
 4604         ztest_dsl_dataset_cleanup(osname, id);
 4605 
 4606         (void) pthread_rwlock_unlock(&ztest_name_lock);
 4607 
 4608         umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
 4609         umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
 4610         umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
 4611         umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
 4612         umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
 4613 }
 4614 
 4615 #undef OD_ARRAY_SIZE
 4616 #define OD_ARRAY_SIZE   4
 4617 
 4618 /*
 4619  * Verify that dmu_object_{alloc,free} work as expected.
 4620  */
 4621 void
 4622 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
 4623 {
 4624         ztest_od_t *od;
 4625         int batchsize;
 4626         int size;
 4627         int b;
 4628 
 4629         size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
 4630         od = umem_alloc(size, UMEM_NOFAIL);
 4631         batchsize = OD_ARRAY_SIZE;
 4632 
 4633         for (b = 0; b < batchsize; b++)
 4634                 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
 4635                     0, 0, 0);
 4636 
 4637         /*
 4638          * Destroy the previous batch of objects, create a new batch,
 4639          * and do some I/O on the new objects.
 4640          */
 4641         if (ztest_object_init(zd, od, size, B_TRUE) != 0)
 4642                 return;
 4643 
 4644         while (ztest_random(4 * batchsize) != 0)
 4645                 ztest_io(zd, od[ztest_random(batchsize)].od_object,
 4646                     ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 4647 
 4648         umem_free(od, size);
 4649 }
 4650 
 4651 /*
 4652  * Rewind the global allocator to verify object allocation backfilling.
 4653  */
 4654 void
 4655 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
 4656 {
 4657         (void) id;
 4658         objset_t *os = zd->zd_os;
 4659         uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
 4660         uint64_t object;
 4661 
 4662         /*
 4663          * Rewind the global allocator randomly back to a lower object number
 4664          * to force backfilling and reclamation of recently freed dnodes.
 4665          */
 4666         mutex_enter(&os->os_obj_lock);
 4667         object = ztest_random(os->os_obj_next_chunk);
 4668         os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
 4669         mutex_exit(&os->os_obj_lock);
 4670 }
 4671 
 4672 #undef OD_ARRAY_SIZE
 4673 #define OD_ARRAY_SIZE   2
 4674 
 4675 /*
 4676  * Verify that dmu_{read,write} work as expected.
 4677  */
 4678 void
 4679 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
 4680 {
 4681         int size;
 4682         ztest_od_t *od;
 4683 
 4684         objset_t *os = zd->zd_os;
 4685         size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
 4686         od = umem_alloc(size, UMEM_NOFAIL);
 4687         dmu_tx_t *tx;
 4688         int freeit, error;
 4689         uint64_t i, n, s, txg;
 4690         bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
 4691         uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
 4692         uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
 4693         uint64_t regions = 997;
 4694         uint64_t stride = 123456789ULL;
 4695         uint64_t width = 40;
 4696         int free_percent = 5;
 4697 
 4698         /*
 4699          * This test uses two objects, packobj and bigobj, that are always
 4700          * updated together (i.e. in the same tx) so that their contents are
 4701          * in sync and can be compared.  Their contents relate to each other
 4702          * in a simple way: packobj is a dense array of 'bufwad' structures,
 4703          * while bigobj is a sparse array of the same bufwads.  Specifically,
 4704          * for any index n, there are three bufwads that should be identical:
 4705          *
 4706          *      packobj, at offset n * sizeof (bufwad_t)
 4707          *      bigobj, at the head of the nth chunk
 4708          *      bigobj, at the tail of the nth chunk
 4709          *
 4710          * The chunk size is arbitrary. It doesn't have to be a power of two,
 4711          * and it doesn't have any relation to the object blocksize.
 4712          * The only requirement is that it can hold at least two bufwads.
 4713          *
 4714          * Normally, we write the bufwad to each of these locations.
 4715          * However, free_percent of the time we instead write zeroes to
 4716          * packobj and perform a dmu_free_range() on bigobj.  By comparing
 4717          * bigobj to packobj, we can verify that the DMU is correctly
 4718          * tracking which parts of an object are allocated and free,
 4719          * and that the contents of the allocated blocks are correct.
 4720          */
 4721 
 4722         /*
 4723          * Read the directory info.  If it's the first time, set things up.
 4724          */
 4725         ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
 4726         ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
 4727             chunksize);
 4728 
 4729         if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
 4730                 umem_free(od, size);
 4731                 return;
 4732         }
 4733 
 4734         bigobj = od[0].od_object;
 4735         packobj = od[1].od_object;
 4736         chunksize = od[0].od_gen;
 4737         ASSERT3U(chunksize, ==, od[1].od_gen);
 4738 
 4739         /*
 4740          * Prefetch a random chunk of the big object.
 4741          * Our aim here is to get some async reads in flight
 4742          * for blocks that we may free below; the DMU should
 4743          * handle this race correctly.
 4744          */
 4745         n = ztest_random(regions) * stride + ztest_random(width);
 4746         s = 1 + ztest_random(2 * width - 1);
 4747         dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
 4748             ZIO_PRIORITY_SYNC_READ);
 4749 
 4750         /*
 4751          * Pick a random index and compute the offsets into packobj and bigobj.
 4752          */
 4753         n = ztest_random(regions) * stride + ztest_random(width);
 4754         s = 1 + ztest_random(width - 1);
 4755 
 4756         packoff = n * sizeof (bufwad_t);
 4757         packsize = s * sizeof (bufwad_t);
 4758 
 4759         bigoff = n * chunksize;
 4760         bigsize = s * chunksize;
 4761 
 4762         packbuf = umem_alloc(packsize, UMEM_NOFAIL);
 4763         bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
 4764 
 4765         /*
 4766          * free_percent of the time, free a range of bigobj rather than
 4767          * overwriting it.
 4768          */
 4769         freeit = (ztest_random(100) < free_percent);
 4770 
 4771         /*
 4772          * Read the current contents of our objects.
 4773          */
 4774         error = dmu_read(os, packobj, packoff, packsize, packbuf,
 4775             DMU_READ_PREFETCH);
 4776         ASSERT0(error);
 4777         error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
 4778             DMU_READ_PREFETCH);
 4779         ASSERT0(error);
 4780 
 4781         /*
 4782          * Get a tx for the mods to both packobj and bigobj.
 4783          */
 4784         tx = dmu_tx_create(os);
 4785 
 4786         dmu_tx_hold_write(tx, packobj, packoff, packsize);
 4787 
 4788         if (freeit)
 4789                 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
 4790         else
 4791                 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
 4792 
 4793         /* This accounts for setting the checksum/compression. */
 4794         dmu_tx_hold_bonus(tx, bigobj);
 4795 
 4796         txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 4797         if (txg == 0) {
 4798                 umem_free(packbuf, packsize);
 4799                 umem_free(bigbuf, bigsize);
 4800                 umem_free(od, size);
 4801                 return;
 4802         }
 4803 
 4804         enum zio_checksum cksum;
 4805         do {
 4806                 cksum = (enum zio_checksum)
 4807                     ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
 4808         } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
 4809         dmu_object_set_checksum(os, bigobj, cksum, tx);
 4810 
 4811         enum zio_compress comp;
 4812         do {
 4813                 comp = (enum zio_compress)
 4814                     ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
 4815         } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
 4816         dmu_object_set_compress(os, bigobj, comp, tx);
 4817 
 4818         /*
 4819          * For each index from n to n + s, verify that the existing bufwad
 4820          * in packobj matches the bufwads at the head and tail of the
 4821          * corresponding chunk in bigobj.  Then update all three bufwads
 4822          * with the new values we want to write out.
 4823          */
 4824         for (i = 0; i < s; i++) {
 4825                 /* LINTED */
 4826                 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
 4827                 /* LINTED */
 4828                 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
 4829                 /* LINTED */
 4830                 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
 4831 
 4832                 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
 4833                 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
 4834 
 4835                 if (pack->bw_txg > txg)
 4836                         fatal(B_FALSE,
 4837                             "future leak: got %"PRIx64", open txg is %"PRIx64"",
 4838                             pack->bw_txg, txg);
 4839 
 4840                 if (pack->bw_data != 0 && pack->bw_index != n + i)
 4841                         fatal(B_FALSE, "wrong index: "
 4842                             "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
 4843                             pack->bw_index, n, i);
 4844 
 4845                 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
 4846                         fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
 4847                             pack, bigH);
 4848 
 4849                 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
 4850                         fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
 4851                             pack, bigT);
 4852 
 4853                 if (freeit) {
 4854                         memset(pack, 0, sizeof (bufwad_t));
 4855                 } else {
 4856                         pack->bw_index = n + i;
 4857                         pack->bw_txg = txg;
 4858                         pack->bw_data = 1 + ztest_random(-2ULL);
 4859                 }
 4860                 *bigH = *pack;
 4861                 *bigT = *pack;
 4862         }
 4863 
 4864         /*
 4865          * We've verified all the old bufwads, and made new ones.
 4866          * Now write them out.
 4867          */
 4868         dmu_write(os, packobj, packoff, packsize, packbuf, tx);
 4869 
 4870         if (freeit) {
 4871                 if (ztest_opts.zo_verbose >= 7) {
 4872                         (void) printf("freeing offset %"PRIx64" size %"PRIx64""
 4873                             " txg %"PRIx64"\n",
 4874                             bigoff, bigsize, txg);
 4875                 }
 4876                 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
 4877         } else {
 4878                 if (ztest_opts.zo_verbose >= 7) {
 4879                         (void) printf("writing offset %"PRIx64" size %"PRIx64""
 4880                             " txg %"PRIx64"\n",
 4881                             bigoff, bigsize, txg);
 4882                 }
 4883                 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
 4884         }
 4885 
 4886         dmu_tx_commit(tx);
 4887 
 4888         /*
 4889          * Sanity check the stuff we just wrote.
 4890          */
 4891         {
 4892                 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
 4893                 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
 4894 
 4895                 VERIFY0(dmu_read(os, packobj, packoff,
 4896                     packsize, packcheck, DMU_READ_PREFETCH));
 4897                 VERIFY0(dmu_read(os, bigobj, bigoff,
 4898                     bigsize, bigcheck, DMU_READ_PREFETCH));
 4899 
 4900                 ASSERT0(memcmp(packbuf, packcheck, packsize));
 4901                 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
 4902 
 4903                 umem_free(packcheck, packsize);
 4904                 umem_free(bigcheck, bigsize);
 4905         }
 4906 
 4907         umem_free(packbuf, packsize);
 4908         umem_free(bigbuf, bigsize);
 4909         umem_free(od, size);
 4910 }
 4911 
 4912 static void
 4913 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
 4914     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
 4915 {
 4916         uint64_t i;
 4917         bufwad_t *pack;
 4918         bufwad_t *bigH;
 4919         bufwad_t *bigT;
 4920 
 4921         /*
 4922          * For each index from n to n + s, verify that the existing bufwad
 4923          * in packobj matches the bufwads at the head and tail of the
 4924          * corresponding chunk in bigobj.  Then update all three bufwads
 4925          * with the new values we want to write out.
 4926          */
 4927         for (i = 0; i < s; i++) {
 4928                 /* LINTED */
 4929                 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
 4930                 /* LINTED */
 4931                 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
 4932                 /* LINTED */
 4933                 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
 4934 
 4935                 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
 4936                 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
 4937 
 4938                 if (pack->bw_txg > txg)
 4939                         fatal(B_FALSE,
 4940                             "future leak: got %"PRIx64", open txg is %"PRIx64"",
 4941                             pack->bw_txg, txg);
 4942 
 4943                 if (pack->bw_data != 0 && pack->bw_index != n + i)
 4944                         fatal(B_FALSE, "wrong index: "
 4945                             "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
 4946                             pack->bw_index, n, i);
 4947 
 4948                 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
 4949                         fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
 4950                             pack, bigH);
 4951 
 4952                 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
 4953                         fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
 4954                             pack, bigT);
 4955 
 4956                 pack->bw_index = n + i;
 4957                 pack->bw_txg = txg;
 4958                 pack->bw_data = 1 + ztest_random(-2ULL);
 4959 
 4960                 *bigH = *pack;
 4961                 *bigT = *pack;
 4962         }
 4963 }
 4964 
 4965 #undef OD_ARRAY_SIZE
 4966 #define OD_ARRAY_SIZE   2
 4967 
 4968 void
 4969 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
 4970 {
 4971         objset_t *os = zd->zd_os;
 4972         ztest_od_t *od;
 4973         dmu_tx_t *tx;
 4974         uint64_t i;
 4975         int error;
 4976         int size;
 4977         uint64_t n, s, txg;
 4978         bufwad_t *packbuf, *bigbuf;
 4979         uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
 4980         uint64_t blocksize = ztest_random_blocksize();
 4981         uint64_t chunksize = blocksize;
 4982         uint64_t regions = 997;
 4983         uint64_t stride = 123456789ULL;
 4984         uint64_t width = 9;
 4985         dmu_buf_t *bonus_db;
 4986         arc_buf_t **bigbuf_arcbufs;
 4987         dmu_object_info_t doi;
 4988 
 4989         size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
 4990         od = umem_alloc(size, UMEM_NOFAIL);
 4991 
 4992         /*
 4993          * This test uses two objects, packobj and bigobj, that are always
 4994          * updated together (i.e. in the same tx) so that their contents are
 4995          * in sync and can be compared.  Their contents relate to each other
 4996          * in a simple way: packobj is a dense array of 'bufwad' structures,
 4997          * while bigobj is a sparse array of the same bufwads.  Specifically,
 4998          * for any index n, there are three bufwads that should be identical:
 4999          *
 5000          *      packobj, at offset n * sizeof (bufwad_t)
 5001          *      bigobj, at the head of the nth chunk
 5002          *      bigobj, at the tail of the nth chunk
 5003          *
 5004          * The chunk size is set equal to bigobj block size so that
 5005          * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
 5006          */
 5007 
 5008         /*
 5009          * Read the directory info.  If it's the first time, set things up.
 5010          */
 5011         ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
 5012         ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
 5013             chunksize);
 5014 
 5015 
 5016         if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
 5017                 umem_free(od, size);
 5018                 return;
 5019         }
 5020 
 5021         bigobj = od[0].od_object;
 5022         packobj = od[1].od_object;
 5023         blocksize = od[0].od_blocksize;
 5024         chunksize = blocksize;
 5025         ASSERT3U(chunksize, ==, od[1].od_gen);
 5026 
 5027         VERIFY0(dmu_object_info(os, bigobj, &doi));
 5028         VERIFY(ISP2(doi.doi_data_block_size));
 5029         VERIFY3U(chunksize, ==, doi.doi_data_block_size);
 5030         VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
 5031 
 5032         /*
 5033          * Pick a random index and compute the offsets into packobj and bigobj.
 5034          */
 5035         n = ztest_random(regions) * stride + ztest_random(width);
 5036         s = 1 + ztest_random(width - 1);
 5037 
 5038         packoff = n * sizeof (bufwad_t);
 5039         packsize = s * sizeof (bufwad_t);
 5040 
 5041         bigoff = n * chunksize;
 5042         bigsize = s * chunksize;
 5043 
 5044         packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
 5045         bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
 5046 
 5047         VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
 5048 
 5049         bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
 5050 
 5051         /*
 5052          * Iteration 0 test zcopy for DB_UNCACHED dbufs.
 5053          * Iteration 1 test zcopy to already referenced dbufs.
 5054          * Iteration 2 test zcopy to dirty dbuf in the same txg.
 5055          * Iteration 3 test zcopy to dbuf dirty in previous txg.
 5056          * Iteration 4 test zcopy when dbuf is no longer dirty.
 5057          * Iteration 5 test zcopy when it can't be done.
 5058          * Iteration 6 one more zcopy write.
 5059          */
 5060         for (i = 0; i < 7; i++) {
 5061                 uint64_t j;
 5062                 uint64_t off;
 5063 
 5064                 /*
 5065                  * In iteration 5 (i == 5) use arcbufs
 5066                  * that don't match bigobj blksz to test
 5067                  * dmu_assign_arcbuf_by_dbuf() when it can't directly
 5068                  * assign an arcbuf to a dbuf.
 5069                  */
 5070                 for (j = 0; j < s; j++) {
 5071                         if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
 5072                                 bigbuf_arcbufs[j] =
 5073                                     dmu_request_arcbuf(bonus_db, chunksize);
 5074                         } else {
 5075                                 bigbuf_arcbufs[2 * j] =
 5076                                     dmu_request_arcbuf(bonus_db, chunksize / 2);
 5077                                 bigbuf_arcbufs[2 * j + 1] =
 5078                                     dmu_request_arcbuf(bonus_db, chunksize / 2);
 5079                         }
 5080                 }
 5081 
 5082                 /*
 5083                  * Get a tx for the mods to both packobj and bigobj.
 5084                  */
 5085                 tx = dmu_tx_create(os);
 5086 
 5087                 dmu_tx_hold_write(tx, packobj, packoff, packsize);
 5088                 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
 5089 
 5090                 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 5091                 if (txg == 0) {
 5092                         umem_free(packbuf, packsize);
 5093                         umem_free(bigbuf, bigsize);
 5094                         for (j = 0; j < s; j++) {
 5095                                 if (i != 5 ||
 5096                                     chunksize < (SPA_MINBLOCKSIZE * 2)) {
 5097                                         dmu_return_arcbuf(bigbuf_arcbufs[j]);
 5098                                 } else {
 5099                                         dmu_return_arcbuf(
 5100                                             bigbuf_arcbufs[2 * j]);
 5101                                         dmu_return_arcbuf(
 5102                                             bigbuf_arcbufs[2 * j + 1]);
 5103                                 }
 5104                         }
 5105                         umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
 5106                         umem_free(od, size);
 5107                         dmu_buf_rele(bonus_db, FTAG);
 5108                         return;
 5109                 }
 5110 
 5111                 /*
 5112                  * 50% of the time don't read objects in the 1st iteration to
 5113                  * test dmu_assign_arcbuf_by_dbuf() for the case when there are
 5114                  * no existing dbufs for the specified offsets.
 5115                  */
 5116                 if (i != 0 || ztest_random(2) != 0) {
 5117                         error = dmu_read(os, packobj, packoff,
 5118                             packsize, packbuf, DMU_READ_PREFETCH);
 5119                         ASSERT0(error);
 5120                         error = dmu_read(os, bigobj, bigoff, bigsize,
 5121                             bigbuf, DMU_READ_PREFETCH);
 5122                         ASSERT0(error);
 5123                 }
 5124                 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
 5125                     n, chunksize, txg);
 5126 
 5127                 /*
 5128                  * We've verified all the old bufwads, and made new ones.
 5129                  * Now write them out.
 5130                  */
 5131                 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
 5132                 if (ztest_opts.zo_verbose >= 7) {
 5133                         (void) printf("writing offset %"PRIx64" size %"PRIx64""
 5134                             " txg %"PRIx64"\n",
 5135                             bigoff, bigsize, txg);
 5136                 }
 5137                 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
 5138                         dmu_buf_t *dbt;
 5139                         if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
 5140                                 memcpy(bigbuf_arcbufs[j]->b_data,
 5141                                     (caddr_t)bigbuf + (off - bigoff),
 5142                                     chunksize);
 5143                         } else {
 5144                                 memcpy(bigbuf_arcbufs[2 * j]->b_data,
 5145                                     (caddr_t)bigbuf + (off - bigoff),
 5146                                     chunksize / 2);
 5147                                 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
 5148                                     (caddr_t)bigbuf + (off - bigoff) +
 5149                                     chunksize / 2,
 5150                                     chunksize / 2);
 5151                         }
 5152 
 5153                         if (i == 1) {
 5154                                 VERIFY(dmu_buf_hold(os, bigobj, off,
 5155                                     FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
 5156                         }
 5157                         if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
 5158                                 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
 5159                                     off, bigbuf_arcbufs[j], tx));
 5160                         } else {
 5161                                 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
 5162                                     off, bigbuf_arcbufs[2 * j], tx));
 5163                                 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
 5164                                     off + chunksize / 2,
 5165                                     bigbuf_arcbufs[2 * j + 1], tx));
 5166                         }
 5167                         if (i == 1) {
 5168                                 dmu_buf_rele(dbt, FTAG);
 5169                         }
 5170                 }
 5171                 dmu_tx_commit(tx);
 5172 
 5173                 /*
 5174                  * Sanity check the stuff we just wrote.
 5175                  */
 5176                 {
 5177                         void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
 5178                         void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
 5179 
 5180                         VERIFY0(dmu_read(os, packobj, packoff,
 5181                             packsize, packcheck, DMU_READ_PREFETCH));
 5182                         VERIFY0(dmu_read(os, bigobj, bigoff,
 5183                             bigsize, bigcheck, DMU_READ_PREFETCH));
 5184 
 5185                         ASSERT0(memcmp(packbuf, packcheck, packsize));
 5186                         ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
 5187 
 5188                         umem_free(packcheck, packsize);
 5189                         umem_free(bigcheck, bigsize);
 5190                 }
 5191                 if (i == 2) {
 5192                         txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
 5193                 } else if (i == 3) {
 5194                         txg_wait_synced(dmu_objset_pool(os), 0);
 5195                 }
 5196         }
 5197 
 5198         dmu_buf_rele(bonus_db, FTAG);
 5199         umem_free(packbuf, packsize);
 5200         umem_free(bigbuf, bigsize);
 5201         umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
 5202         umem_free(od, size);
 5203 }
 5204 
 5205 void
 5206 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
 5207 {
 5208         (void) id;
 5209         ztest_od_t *od;
 5210 
 5211         od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 5212         uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
 5213             (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 5214 
 5215         /*
 5216          * Have multiple threads write to large offsets in an object
 5217          * to verify that parallel writes to an object -- even to the
 5218          * same blocks within the object -- doesn't cause any trouble.
 5219          */
 5220         ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
 5221 
 5222         if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
 5223                 return;
 5224 
 5225         while (ztest_random(10) != 0)
 5226                 ztest_io(zd, od->od_object, offset);
 5227 
 5228         umem_free(od, sizeof (ztest_od_t));
 5229 }
 5230 
 5231 void
 5232 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
 5233 {
 5234         ztest_od_t *od;
 5235         uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
 5236             (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 5237         uint64_t count = ztest_random(20) + 1;
 5238         uint64_t blocksize = ztest_random_blocksize();
 5239         void *data;
 5240 
 5241         od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 5242 
 5243         ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
 5244 
 5245         if (ztest_object_init(zd, od, sizeof (ztest_od_t),
 5246             !ztest_random(2)) != 0) {
 5247                 umem_free(od, sizeof (ztest_od_t));
 5248                 return;
 5249         }
 5250 
 5251         if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
 5252                 umem_free(od, sizeof (ztest_od_t));
 5253                 return;
 5254         }
 5255 
 5256         ztest_prealloc(zd, od->od_object, offset, count * blocksize);
 5257 
 5258         data = umem_zalloc(blocksize, UMEM_NOFAIL);
 5259 
 5260         while (ztest_random(count) != 0) {
 5261                 uint64_t randoff = offset + (ztest_random(count) * blocksize);
 5262                 if (ztest_write(zd, od->od_object, randoff, blocksize,
 5263                     data) != 0)
 5264                         break;
 5265                 while (ztest_random(4) != 0)
 5266                         ztest_io(zd, od->od_object, randoff);
 5267         }
 5268 
 5269         umem_free(data, blocksize);
 5270         umem_free(od, sizeof (ztest_od_t));
 5271 }
 5272 
 5273 /*
 5274  * Verify that zap_{create,destroy,add,remove,update} work as expected.
 5275  */
 5276 #define ZTEST_ZAP_MIN_INTS      1
 5277 #define ZTEST_ZAP_MAX_INTS      4
 5278 #define ZTEST_ZAP_MAX_PROPS     1000
 5279 
 5280 void
 5281 ztest_zap(ztest_ds_t *zd, uint64_t id)
 5282 {
 5283         objset_t *os = zd->zd_os;
 5284         ztest_od_t *od;
 5285         uint64_t object;
 5286         uint64_t txg, last_txg;
 5287         uint64_t value[ZTEST_ZAP_MAX_INTS];
 5288         uint64_t zl_ints, zl_intsize, prop;
 5289         int i, ints;
 5290         dmu_tx_t *tx;
 5291         char propname[100], txgname[100];
 5292         int error;
 5293         const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
 5294 
 5295         od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 5296         ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
 5297 
 5298         if (ztest_object_init(zd, od, sizeof (ztest_od_t),
 5299             !ztest_random(2)) != 0)
 5300                 goto out;
 5301 
 5302         object = od->od_object;
 5303 
 5304         /*
 5305          * Generate a known hash collision, and verify that
 5306          * we can lookup and remove both entries.
 5307          */
 5308         tx = dmu_tx_create(os);
 5309         dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 5310         txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 5311         if (txg == 0)
 5312                 goto out;
 5313         for (i = 0; i < 2; i++) {
 5314                 value[i] = i;
 5315                 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
 5316                     1, &value[i], tx));
 5317         }
 5318         for (i = 0; i < 2; i++) {
 5319                 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
 5320                     sizeof (uint64_t), 1, &value[i], tx));
 5321                 VERIFY0(
 5322                     zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
 5323                 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
 5324                 ASSERT3U(zl_ints, ==, 1);
 5325         }
 5326         for (i = 0; i < 2; i++) {
 5327                 VERIFY0(zap_remove(os, object, hc[i], tx));
 5328         }
 5329         dmu_tx_commit(tx);
 5330 
 5331         /*
 5332          * Generate a bunch of random entries.
 5333          */
 5334         ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
 5335 
 5336         prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
 5337         (void) sprintf(propname, "prop_%"PRIu64"", prop);
 5338         (void) sprintf(txgname, "txg_%"PRIu64"", prop);
 5339         memset(value, 0, sizeof (value));
 5340         last_txg = 0;
 5341 
 5342         /*
 5343          * If these zap entries already exist, validate their contents.
 5344          */
 5345         error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
 5346         if (error == 0) {
 5347                 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
 5348                 ASSERT3U(zl_ints, ==, 1);
 5349 
 5350                 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
 5351                     zl_ints, &last_txg));
 5352 
 5353                 VERIFY0(zap_length(os, object, propname, &zl_intsize,
 5354                     &zl_ints));
 5355 
 5356                 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
 5357                 ASSERT3U(zl_ints, ==, ints);
 5358 
 5359                 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
 5360                     zl_ints, value));
 5361 
 5362                 for (i = 0; i < ints; i++) {
 5363                         ASSERT3U(value[i], ==, last_txg + object + i);
 5364                 }
 5365         } else {
 5366                 ASSERT3U(error, ==, ENOENT);
 5367         }
 5368 
 5369         /*
 5370          * Atomically update two entries in our zap object.
 5371          * The first is named txg_%llu, and contains the txg
 5372          * in which the property was last updated.  The second
 5373          * is named prop_%llu, and the nth element of its value
 5374          * should be txg + object + n.
 5375          */
 5376         tx = dmu_tx_create(os);
 5377         dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 5378         txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 5379         if (txg == 0)
 5380                 goto out;
 5381 
 5382         if (last_txg > txg)
 5383                 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
 5384                     last_txg, txg);
 5385 
 5386         for (i = 0; i < ints; i++)
 5387                 value[i] = txg + object + i;
 5388 
 5389         VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
 5390             1, &txg, tx));
 5391         VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
 5392             ints, value, tx));
 5393 
 5394         dmu_tx_commit(tx);
 5395 
 5396         /*
 5397          * Remove a random pair of entries.
 5398          */
 5399         prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
 5400         (void) sprintf(propname, "prop_%"PRIu64"", prop);
 5401         (void) sprintf(txgname, "txg_%"PRIu64"", prop);
 5402 
 5403         error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
 5404 
 5405         if (error == ENOENT)
 5406                 goto out;
 5407 
 5408         ASSERT0(error);
 5409 
 5410         tx = dmu_tx_create(os);
 5411         dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 5412         txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 5413         if (txg == 0)
 5414                 goto out;
 5415         VERIFY0(zap_remove(os, object, txgname, tx));
 5416         VERIFY0(zap_remove(os, object, propname, tx));
 5417         dmu_tx_commit(tx);
 5418 out:
 5419         umem_free(od, sizeof (ztest_od_t));
 5420 }
 5421 
 5422 /*
 5423  * Test case to test the upgrading of a microzap to fatzap.
 5424  */
 5425 void
 5426 ztest_fzap(ztest_ds_t *zd, uint64_t id)
 5427 {
 5428         objset_t *os = zd->zd_os;
 5429         ztest_od_t *od;
 5430         uint64_t object, txg, value;
 5431 
 5432         od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 5433         ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
 5434 
 5435         if (ztest_object_init(zd, od, sizeof (ztest_od_t),
 5436             !ztest_random(2)) != 0)
 5437                 goto out;
 5438         object = od->od_object;
 5439 
 5440         /*
 5441          * Add entries to this ZAP and make sure it spills over
 5442          * and gets upgraded to a fatzap. Also, since we are adding
 5443          * 2050 entries we should see ptrtbl growth and leaf-block split.
 5444          */
 5445         for (value = 0; value < 2050; value++) {
 5446                 char name[ZFS_MAX_DATASET_NAME_LEN];
 5447                 dmu_tx_t *tx;
 5448                 int error;
 5449 
 5450                 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
 5451                     id, value);
 5452 
 5453                 tx = dmu_tx_create(os);
 5454                 dmu_tx_hold_zap(tx, object, B_TRUE, name);
 5455                 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 5456                 if (txg == 0)
 5457                         goto out;
 5458                 error = zap_add(os, object, name, sizeof (uint64_t), 1,
 5459                     &value, tx);
 5460                 ASSERT(error == 0 || error == EEXIST);
 5461                 dmu_tx_commit(tx);
 5462         }
 5463 out:
 5464         umem_free(od, sizeof (ztest_od_t));
 5465 }
 5466 
 5467 void
 5468 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
 5469 {
 5470         (void) id;
 5471         objset_t *os = zd->zd_os;
 5472         ztest_od_t *od;
 5473         uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
 5474         dmu_tx_t *tx;
 5475         int i, namelen, error;
 5476         int micro = ztest_random(2);
 5477         char name[20], string_value[20];
 5478         void *data;
 5479 
 5480         od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 5481         ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
 5482 
 5483         if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
 5484                 umem_free(od, sizeof (ztest_od_t));
 5485                 return;
 5486         }
 5487 
 5488         object = od->od_object;
 5489 
 5490         /*
 5491          * Generate a random name of the form 'xxx.....' where each
 5492          * x is a random printable character and the dots are dots.
 5493          * There are 94 such characters, and the name length goes from
 5494          * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
 5495          */
 5496         namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
 5497 
 5498         for (i = 0; i < 3; i++)
 5499                 name[i] = '!' + ztest_random('~' - '!' + 1);
 5500         for (; i < namelen - 1; i++)
 5501                 name[i] = '.';
 5502         name[i] = '\0';
 5503 
 5504         if ((namelen & 1) || micro) {
 5505                 wsize = sizeof (txg);
 5506                 wc = 1;
 5507                 data = &txg;
 5508         } else {
 5509                 wsize = 1;
 5510                 wc = namelen;
 5511                 data = string_value;
 5512         }
 5513 
 5514         count = -1ULL;
 5515         VERIFY0(zap_count(os, object, &count));
 5516         ASSERT3S(count, !=, -1ULL);
 5517 
 5518         /*
 5519          * Select an operation: length, lookup, add, update, remove.
 5520          */
 5521         i = ztest_random(5);
 5522 
 5523         if (i >= 2) {
 5524                 tx = dmu_tx_create(os);
 5525                 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 5526                 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 5527                 if (txg == 0) {
 5528                         umem_free(od, sizeof (ztest_od_t));
 5529                         return;
 5530                 }
 5531                 memcpy(string_value, name, namelen);
 5532         } else {
 5533                 tx = NULL;
 5534                 txg = 0;
 5535                 memset(string_value, 0, namelen);
 5536         }
 5537 
 5538         switch (i) {
 5539 
 5540         case 0:
 5541                 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
 5542                 if (error == 0) {
 5543                         ASSERT3U(wsize, ==, zl_wsize);
 5544                         ASSERT3U(wc, ==, zl_wc);
 5545                 } else {
 5546                         ASSERT3U(error, ==, ENOENT);
 5547                 }
 5548                 break;
 5549 
 5550         case 1:
 5551                 error = zap_lookup(os, object, name, wsize, wc, data);
 5552                 if (error == 0) {
 5553                         if (data == string_value &&
 5554                             memcmp(name, data, namelen) != 0)
 5555                                 fatal(B_FALSE, "name '%s' != val '%s' len %d",
 5556                                     name, (char *)data, namelen);
 5557                 } else {
 5558                         ASSERT3U(error, ==, ENOENT);
 5559                 }
 5560                 break;
 5561 
 5562         case 2:
 5563                 error = zap_add(os, object, name, wsize, wc, data, tx);
 5564                 ASSERT(error == 0 || error == EEXIST);
 5565                 break;
 5566 
 5567         case 3:
 5568                 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
 5569                 break;
 5570 
 5571         case 4:
 5572                 error = zap_remove(os, object, name, tx);
 5573                 ASSERT(error == 0 || error == ENOENT);
 5574                 break;
 5575         }
 5576 
 5577         if (tx != NULL)
 5578                 dmu_tx_commit(tx);
 5579 
 5580         umem_free(od, sizeof (ztest_od_t));
 5581 }
 5582 
 5583 /*
 5584  * Commit callback data.
 5585  */
 5586 typedef struct ztest_cb_data {
 5587         list_node_t             zcd_node;
 5588         uint64_t                zcd_txg;
 5589         int                     zcd_expected_err;
 5590         boolean_t               zcd_added;
 5591         boolean_t               zcd_called;
 5592         spa_t                   *zcd_spa;
 5593 } ztest_cb_data_t;
 5594 
 5595 /* This is the actual commit callback function */
 5596 static void
 5597 ztest_commit_callback(void *arg, int error)
 5598 {
 5599         ztest_cb_data_t *data = arg;
 5600         uint64_t synced_txg;
 5601 
 5602         VERIFY3P(data, !=, NULL);
 5603         VERIFY3S(data->zcd_expected_err, ==, error);
 5604         VERIFY(!data->zcd_called);
 5605 
 5606         synced_txg = spa_last_synced_txg(data->zcd_spa);
 5607         if (data->zcd_txg > synced_txg)
 5608                 fatal(B_FALSE,
 5609                     "commit callback of txg %"PRIu64" called prematurely, "
 5610                     "last synced txg = %"PRIu64"\n",
 5611                     data->zcd_txg, synced_txg);
 5612 
 5613         data->zcd_called = B_TRUE;
 5614 
 5615         if (error == ECANCELED) {
 5616                 ASSERT0(data->zcd_txg);
 5617                 ASSERT(!data->zcd_added);
 5618 
 5619                 /*
 5620                  * The private callback data should be destroyed here, but
 5621                  * since we are going to check the zcd_called field after
 5622                  * dmu_tx_abort(), we will destroy it there.
 5623                  */
 5624                 return;
 5625         }
 5626 
 5627         ASSERT(data->zcd_added);
 5628         ASSERT3U(data->zcd_txg, !=, 0);
 5629 
 5630         (void) mutex_enter(&zcl.zcl_callbacks_lock);
 5631 
 5632         /* See if this cb was called more quickly */
 5633         if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
 5634                 zc_min_txg_delay = synced_txg - data->zcd_txg;
 5635 
 5636         /* Remove our callback from the list */
 5637         list_remove(&zcl.zcl_callbacks, data);
 5638 
 5639         (void) mutex_exit(&zcl.zcl_callbacks_lock);
 5640 
 5641         umem_free(data, sizeof (ztest_cb_data_t));
 5642 }
 5643 
 5644 /* Allocate and initialize callback data structure */
 5645 static ztest_cb_data_t *
 5646 ztest_create_cb_data(objset_t *os, uint64_t txg)
 5647 {
 5648         ztest_cb_data_t *cb_data;
 5649 
 5650         cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
 5651 
 5652         cb_data->zcd_txg = txg;
 5653         cb_data->zcd_spa = dmu_objset_spa(os);
 5654         list_link_init(&cb_data->zcd_node);
 5655 
 5656         return (cb_data);
 5657 }
 5658 
 5659 /*
 5660  * Commit callback test.
 5661  */
 5662 void
 5663 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
 5664 {
 5665         objset_t *os = zd->zd_os;
 5666         ztest_od_t *od;
 5667         dmu_tx_t *tx;
 5668         ztest_cb_data_t *cb_data[3], *tmp_cb;
 5669         uint64_t old_txg, txg;
 5670         int i, error = 0;
 5671 
 5672         od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 5673         ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
 5674 
 5675         if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
 5676                 umem_free(od, sizeof (ztest_od_t));
 5677                 return;
 5678         }
 5679 
 5680         tx = dmu_tx_create(os);
 5681 
 5682         cb_data[0] = ztest_create_cb_data(os, 0);
 5683         dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
 5684 
 5685         dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
 5686 
 5687         /* Every once in a while, abort the transaction on purpose */
 5688         if (ztest_random(100) == 0)
 5689                 error = -1;
 5690 
 5691         if (!error)
 5692                 error = dmu_tx_assign(tx, TXG_NOWAIT);
 5693 
 5694         txg = error ? 0 : dmu_tx_get_txg(tx);
 5695 
 5696         cb_data[0]->zcd_txg = txg;
 5697         cb_data[1] = ztest_create_cb_data(os, txg);
 5698         dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
 5699 
 5700         if (error) {
 5701                 /*
 5702                  * It's not a strict requirement to call the registered
 5703                  * callbacks from inside dmu_tx_abort(), but that's what
 5704                  * it's supposed to happen in the current implementation
 5705                  * so we will check for that.
 5706                  */
 5707                 for (i = 0; i < 2; i++) {
 5708                         cb_data[i]->zcd_expected_err = ECANCELED;
 5709                         VERIFY(!cb_data[i]->zcd_called);
 5710                 }
 5711 
 5712                 dmu_tx_abort(tx);
 5713 
 5714                 for (i = 0; i < 2; i++) {
 5715                         VERIFY(cb_data[i]->zcd_called);
 5716                         umem_free(cb_data[i], sizeof (ztest_cb_data_t));
 5717                 }
 5718 
 5719                 umem_free(od, sizeof (ztest_od_t));
 5720                 return;
 5721         }
 5722 
 5723         cb_data[2] = ztest_create_cb_data(os, txg);
 5724         dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
 5725 
 5726         /*
 5727          * Read existing data to make sure there isn't a future leak.
 5728          */
 5729         VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
 5730             &old_txg, DMU_READ_PREFETCH));
 5731 
 5732         if (old_txg > txg)
 5733                 fatal(B_FALSE,
 5734                     "future leak: got %"PRIu64", open txg is %"PRIu64"",
 5735                     old_txg, txg);
 5736 
 5737         dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
 5738 
 5739         (void) mutex_enter(&zcl.zcl_callbacks_lock);
 5740 
 5741         /*
 5742          * Since commit callbacks don't have any ordering requirement and since
 5743          * it is theoretically possible for a commit callback to be called
 5744          * after an arbitrary amount of time has elapsed since its txg has been
 5745          * synced, it is difficult to reliably determine whether a commit
 5746          * callback hasn't been called due to high load or due to a flawed
 5747          * implementation.
 5748          *
 5749          * In practice, we will assume that if after a certain number of txgs a
 5750          * commit callback hasn't been called, then most likely there's an
 5751          * implementation bug..
 5752          */
 5753         tmp_cb = list_head(&zcl.zcl_callbacks);
 5754         if (tmp_cb != NULL &&
 5755             tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
 5756                 fatal(B_FALSE,
 5757                     "Commit callback threshold exceeded, "
 5758                     "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
 5759                     tmp_cb->zcd_txg, txg);
 5760         }
 5761 
 5762         /*
 5763          * Let's find the place to insert our callbacks.
 5764          *
 5765          * Even though the list is ordered by txg, it is possible for the
 5766          * insertion point to not be the end because our txg may already be
 5767          * quiescing at this point and other callbacks in the open txg
 5768          * (from other objsets) may have sneaked in.
 5769          */
 5770         tmp_cb = list_tail(&zcl.zcl_callbacks);
 5771         while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
 5772                 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
 5773 
 5774         /* Add the 3 callbacks to the list */
 5775         for (i = 0; i < 3; i++) {
 5776                 if (tmp_cb == NULL)
 5777                         list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
 5778                 else
 5779                         list_insert_after(&zcl.zcl_callbacks, tmp_cb,
 5780                             cb_data[i]);
 5781 
 5782                 cb_data[i]->zcd_added = B_TRUE;
 5783                 VERIFY(!cb_data[i]->zcd_called);
 5784 
 5785                 tmp_cb = cb_data[i];
 5786         }
 5787 
 5788         zc_cb_counter += 3;
 5789 
 5790         (void) mutex_exit(&zcl.zcl_callbacks_lock);
 5791 
 5792         dmu_tx_commit(tx);
 5793 
 5794         umem_free(od, sizeof (ztest_od_t));
 5795 }
 5796 
 5797 /*
 5798  * Visit each object in the dataset. Verify that its properties
 5799  * are consistent what was stored in the block tag when it was created,
 5800  * and that its unused bonus buffer space has not been overwritten.
 5801  */
 5802 void
 5803 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
 5804 {
 5805         (void) id;
 5806         objset_t *os = zd->zd_os;
 5807         uint64_t obj;
 5808         int err = 0;
 5809 
 5810         for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
 5811                 ztest_block_tag_t *bt = NULL;
 5812                 dmu_object_info_t doi;
 5813                 dmu_buf_t *db;
 5814 
 5815                 ztest_object_lock(zd, obj, RL_READER);
 5816                 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
 5817                         ztest_object_unlock(zd, obj);
 5818                         continue;
 5819                 }
 5820 
 5821                 dmu_object_info_from_db(db, &doi);
 5822                 if (doi.doi_bonus_size >= sizeof (*bt))
 5823                         bt = ztest_bt_bonus(db);
 5824 
 5825                 if (bt && bt->bt_magic == BT_MAGIC) {
 5826                         ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
 5827                             bt->bt_offset, bt->bt_gen, bt->bt_txg,
 5828                             bt->bt_crtxg);
 5829                         ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
 5830                 }
 5831 
 5832                 dmu_buf_rele(db, FTAG);
 5833                 ztest_object_unlock(zd, obj);
 5834         }
 5835 }
 5836 
 5837 void
 5838 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
 5839 {
 5840         (void) id;
 5841         zfs_prop_t proplist[] = {
 5842                 ZFS_PROP_CHECKSUM,
 5843                 ZFS_PROP_COMPRESSION,
 5844                 ZFS_PROP_COPIES,
 5845                 ZFS_PROP_DEDUP
 5846         };
 5847 
 5848         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 5849 
 5850         for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
 5851                 int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
 5852                     ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
 5853                 ASSERT(error == 0 || error == ENOSPC);
 5854         }
 5855 
 5856         int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
 5857             ztest_random_blocksize(), (int)ztest_random(2));
 5858         ASSERT(error == 0 || error == ENOSPC);
 5859 
 5860         (void) pthread_rwlock_unlock(&ztest_name_lock);
 5861 }
 5862 
 5863 void
 5864 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
 5865 {
 5866         (void) zd, (void) id;
 5867         nvlist_t *props = NULL;
 5868 
 5869         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 5870 
 5871         (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
 5872 
 5873         VERIFY0(spa_prop_get(ztest_spa, &props));
 5874 
 5875         if (ztest_opts.zo_verbose >= 6)
 5876                 dump_nvlist(props, 4);
 5877 
 5878         fnvlist_free(props);
 5879 
 5880         (void) pthread_rwlock_unlock(&ztest_name_lock);
 5881 }
 5882 
 5883 static int
 5884 user_release_one(const char *snapname, const char *holdname)
 5885 {
 5886         nvlist_t *snaps, *holds;
 5887         int error;
 5888 
 5889         snaps = fnvlist_alloc();
 5890         holds = fnvlist_alloc();
 5891         fnvlist_add_boolean(holds, holdname);
 5892         fnvlist_add_nvlist(snaps, snapname, holds);
 5893         fnvlist_free(holds);
 5894         error = dsl_dataset_user_release(snaps, NULL);
 5895         fnvlist_free(snaps);
 5896         return (error);
 5897 }
 5898 
 5899 /*
 5900  * Test snapshot hold/release and deferred destroy.
 5901  */
 5902 void
 5903 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
 5904 {
 5905         int error;
 5906         objset_t *os = zd->zd_os;
 5907         objset_t *origin;
 5908         char snapname[100];
 5909         char fullname[100];
 5910         char clonename[100];
 5911         char tag[100];
 5912         char osname[ZFS_MAX_DATASET_NAME_LEN];
 5913         nvlist_t *holds;
 5914 
 5915         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 5916 
 5917         dmu_objset_name(os, osname);
 5918 
 5919         (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
 5920         (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
 5921         (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
 5922             osname, id);
 5923         (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
 5924 
 5925         /*
 5926          * Clean up from any previous run.
 5927          */
 5928         error = dsl_destroy_head(clonename);
 5929         if (error != ENOENT)
 5930                 ASSERT0(error);
 5931         error = user_release_one(fullname, tag);
 5932         if (error != ESRCH && error != ENOENT)
 5933                 ASSERT0(error);
 5934         error = dsl_destroy_snapshot(fullname, B_FALSE);
 5935         if (error != ENOENT)
 5936                 ASSERT0(error);
 5937 
 5938         /*
 5939          * Create snapshot, clone it, mark snap for deferred destroy,
 5940          * destroy clone, verify snap was also destroyed.
 5941          */
 5942         error = dmu_objset_snapshot_one(osname, snapname);
 5943         if (error) {
 5944                 if (error == ENOSPC) {
 5945                         ztest_record_enospc("dmu_objset_snapshot");
 5946                         goto out;
 5947                 }
 5948                 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
 5949         }
 5950 
 5951         error = dmu_objset_clone(clonename, fullname);
 5952         if (error) {
 5953                 if (error == ENOSPC) {
 5954                         ztest_record_enospc("dmu_objset_clone");
 5955                         goto out;
 5956                 }
 5957                 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
 5958         }
 5959 
 5960         error = dsl_destroy_snapshot(fullname, B_TRUE);
 5961         if (error) {
 5962                 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
 5963                     fullname, error);
 5964         }
 5965 
 5966         error = dsl_destroy_head(clonename);
 5967         if (error)
 5968                 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
 5969 
 5970         error = dmu_objset_hold(fullname, FTAG, &origin);
 5971         if (error != ENOENT)
 5972                 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
 5973 
 5974         /*
 5975          * Create snapshot, add temporary hold, verify that we can't
 5976          * destroy a held snapshot, mark for deferred destroy,
 5977          * release hold, verify snapshot was destroyed.
 5978          */
 5979         error = dmu_objset_snapshot_one(osname, snapname);
 5980         if (error) {
 5981                 if (error == ENOSPC) {
 5982                         ztest_record_enospc("dmu_objset_snapshot");
 5983                         goto out;
 5984                 }
 5985                 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
 5986         }
 5987 
 5988         holds = fnvlist_alloc();
 5989         fnvlist_add_string(holds, fullname, tag);
 5990         error = dsl_dataset_user_hold(holds, 0, NULL);
 5991         fnvlist_free(holds);
 5992 
 5993         if (error == ENOSPC) {
 5994                 ztest_record_enospc("dsl_dataset_user_hold");
 5995                 goto out;
 5996         } else if (error) {
 5997                 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
 5998                     fullname, tag, error);
 5999         }
 6000 
 6001         error = dsl_destroy_snapshot(fullname, B_FALSE);
 6002         if (error != EBUSY) {
 6003                 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
 6004                     fullname, error);
 6005         }
 6006 
 6007         error = dsl_destroy_snapshot(fullname, B_TRUE);
 6008         if (error) {
 6009                 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
 6010                     fullname, error);
 6011         }
 6012 
 6013         error = user_release_one(fullname, tag);
 6014         if (error)
 6015                 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
 6016                     fullname, tag, error);
 6017 
 6018         VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
 6019 
 6020 out:
 6021         (void) pthread_rwlock_unlock(&ztest_name_lock);
 6022 }
 6023 
 6024 /*
 6025  * Inject random faults into the on-disk data.
 6026  */
 6027 void
 6028 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
 6029 {
 6030         (void) zd, (void) id;
 6031         ztest_shared_t *zs = ztest_shared;
 6032         spa_t *spa = ztest_spa;
 6033         int fd;
 6034         uint64_t offset;
 6035         uint64_t leaves;
 6036         uint64_t bad = 0x1990c0ffeedecadeull;
 6037         uint64_t top, leaf;
 6038         char *path0;
 6039         char *pathrand;
 6040         size_t fsize;
 6041         int bshift = SPA_MAXBLOCKSHIFT + 2;
 6042         int iters = 1000;
 6043         int maxfaults;
 6044         int mirror_save;
 6045         vdev_t *vd0 = NULL;
 6046         uint64_t guid0 = 0;
 6047         boolean_t islog = B_FALSE;
 6048 
 6049         path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 6050         pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 6051 
 6052         mutex_enter(&ztest_vdev_lock);
 6053 
 6054         /*
 6055          * Device removal is in progress, fault injection must be disabled
 6056          * until it completes and the pool is scrubbed.  The fault injection
 6057          * strategy for damaging blocks does not take in to account evacuated
 6058          * blocks which may have already been damaged.
 6059          */
 6060         if (ztest_device_removal_active) {
 6061                 mutex_exit(&ztest_vdev_lock);
 6062                 goto out;
 6063         }
 6064 
 6065         maxfaults = MAXFAULTS(zs);
 6066         leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
 6067         mirror_save = zs->zs_mirrors;
 6068         mutex_exit(&ztest_vdev_lock);
 6069 
 6070         ASSERT3U(leaves, >=, 1);
 6071 
 6072         /*
 6073          * While ztest is running the number of leaves will not change.  This
 6074          * is critical for the fault injection logic as it determines where
 6075          * errors can be safely injected such that they are always repairable.
 6076          *
 6077          * When restarting ztest a different number of leaves may be requested
 6078          * which will shift the regions to be damaged.  This is fine as long
 6079          * as the pool has been scrubbed prior to using the new mapping.
 6080          * Failure to do can result in non-repairable damage being injected.
 6081          */
 6082         if (ztest_pool_scrubbed == B_FALSE)
 6083                 goto out;
 6084 
 6085         /*
 6086          * Grab the name lock as reader. There are some operations
 6087          * which don't like to have their vdevs changed while
 6088          * they are in progress (i.e. spa_change_guid). Those
 6089          * operations will have grabbed the name lock as writer.
 6090          */
 6091         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 6092 
 6093         /*
 6094          * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
 6095          */
 6096         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 6097 
 6098         if (ztest_random(2) == 0) {
 6099                 /*
 6100                  * Inject errors on a normal data device or slog device.
 6101                  */
 6102                 top = ztest_random_vdev_top(spa, B_TRUE);
 6103                 leaf = ztest_random(leaves) + zs->zs_splits;
 6104 
 6105                 /*
 6106                  * Generate paths to the first leaf in this top-level vdev,
 6107                  * and to the random leaf we selected.  We'll induce transient
 6108                  * write failures and random online/offline activity on leaf 0,
 6109                  * and we'll write random garbage to the randomly chosen leaf.
 6110                  */
 6111                 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
 6112                     ztest_opts.zo_dir, ztest_opts.zo_pool,
 6113                     top * leaves + zs->zs_splits);
 6114                 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
 6115                     ztest_opts.zo_dir, ztest_opts.zo_pool,
 6116                     top * leaves + leaf);
 6117 
 6118                 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
 6119                 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
 6120                         islog = B_TRUE;
 6121 
 6122                 /*
 6123                  * If the top-level vdev needs to be resilvered
 6124                  * then we only allow faults on the device that is
 6125                  * resilvering.
 6126                  */
 6127                 if (vd0 != NULL && maxfaults != 1 &&
 6128                     (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
 6129                     vd0->vdev_resilver_txg != 0)) {
 6130                         /*
 6131                          * Make vd0 explicitly claim to be unreadable,
 6132                          * or unwritable, or reach behind its back
 6133                          * and close the underlying fd.  We can do this if
 6134                          * maxfaults == 0 because we'll fail and reexecute,
 6135                          * and we can do it if maxfaults >= 2 because we'll
 6136                          * have enough redundancy.  If maxfaults == 1, the
 6137                          * combination of this with injection of random data
 6138                          * corruption below exceeds the pool's fault tolerance.
 6139                          */
 6140                         vdev_file_t *vf = vd0->vdev_tsd;
 6141 
 6142                         zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
 6143                             (long long)vd0->vdev_id, (int)maxfaults);
 6144 
 6145                         if (vf != NULL && ztest_random(3) == 0) {
 6146                                 (void) close(vf->vf_file->f_fd);
 6147                                 vf->vf_file->f_fd = -1;
 6148                         } else if (ztest_random(2) == 0) {
 6149                                 vd0->vdev_cant_read = B_TRUE;
 6150                         } else {
 6151                                 vd0->vdev_cant_write = B_TRUE;
 6152                         }
 6153                         guid0 = vd0->vdev_guid;
 6154                 }
 6155         } else {
 6156                 /*
 6157                  * Inject errors on an l2cache device.
 6158                  */
 6159                 spa_aux_vdev_t *sav = &spa->spa_l2cache;
 6160 
 6161                 if (sav->sav_count == 0) {
 6162                         spa_config_exit(spa, SCL_STATE, FTAG);
 6163                         (void) pthread_rwlock_unlock(&ztest_name_lock);
 6164                         goto out;
 6165                 }
 6166                 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
 6167                 guid0 = vd0->vdev_guid;
 6168                 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
 6169                 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
 6170 
 6171                 leaf = 0;
 6172                 leaves = 1;
 6173                 maxfaults = INT_MAX;    /* no limit on cache devices */
 6174         }
 6175 
 6176         spa_config_exit(spa, SCL_STATE, FTAG);
 6177         (void) pthread_rwlock_unlock(&ztest_name_lock);
 6178 
 6179         /*
 6180          * If we can tolerate two or more faults, or we're dealing
 6181          * with a slog, randomly online/offline vd0.
 6182          */
 6183         if ((maxfaults >= 2 || islog) && guid0 != 0) {
 6184                 if (ztest_random(10) < 6) {
 6185                         int flags = (ztest_random(2) == 0 ?
 6186                             ZFS_OFFLINE_TEMPORARY : 0);
 6187 
 6188                         /*
 6189                          * We have to grab the zs_name_lock as writer to
 6190                          * prevent a race between offlining a slog and
 6191                          * destroying a dataset. Offlining the slog will
 6192                          * grab a reference on the dataset which may cause
 6193                          * dsl_destroy_head() to fail with EBUSY thus
 6194                          * leaving the dataset in an inconsistent state.
 6195                          */
 6196                         if (islog)
 6197                                 (void) pthread_rwlock_wrlock(&ztest_name_lock);
 6198 
 6199                         VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
 6200 
 6201                         if (islog)
 6202                                 (void) pthread_rwlock_unlock(&ztest_name_lock);
 6203                 } else {
 6204                         /*
 6205                          * Ideally we would like to be able to randomly
 6206                          * call vdev_[on|off]line without holding locks
 6207                          * to force unpredictable failures but the side
 6208                          * effects of vdev_[on|off]line prevent us from
 6209                          * doing so. We grab the ztest_vdev_lock here to
 6210                          * prevent a race between injection testing and
 6211                          * aux_vdev removal.
 6212                          */
 6213                         mutex_enter(&ztest_vdev_lock);
 6214                         (void) vdev_online(spa, guid0, 0, NULL);
 6215                         mutex_exit(&ztest_vdev_lock);
 6216                 }
 6217         }
 6218 
 6219         if (maxfaults == 0)
 6220                 goto out;
 6221 
 6222         /*
 6223          * We have at least single-fault tolerance, so inject data corruption.
 6224          */
 6225         fd = open(pathrand, O_RDWR);
 6226 
 6227         if (fd == -1) /* we hit a gap in the device namespace */
 6228                 goto out;
 6229 
 6230         fsize = lseek(fd, 0, SEEK_END);
 6231 
 6232         while (--iters != 0) {
 6233                 /*
 6234                  * The offset must be chosen carefully to ensure that
 6235                  * we do not inject a given logical block with errors
 6236                  * on two different leaf devices, because ZFS can not
 6237                  * tolerate that (if maxfaults==1).
 6238                  *
 6239                  * To achieve this we divide each leaf device into
 6240                  * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
 6241                  * Each chunk is further divided into error-injection
 6242                  * ranges (can accept errors) and clear ranges (we do
 6243                  * not inject errors in those). Each error-injection
 6244                  * range can accept errors only for a single leaf vdev.
 6245                  * Error-injection ranges are separated by clear ranges.
 6246                  *
 6247                  * For example, with 3 leaves, each chunk looks like:
 6248                  *    0 to  32M: injection range for leaf 0
 6249                  *  32M to  64M: clear range - no injection allowed
 6250                  *  64M to  96M: injection range for leaf 1
 6251                  *  96M to 128M: clear range - no injection allowed
 6252                  * 128M to 160M: injection range for leaf 2
 6253                  * 160M to 192M: clear range - no injection allowed
 6254                  *
 6255                  * Each clear range must be large enough such that a
 6256                  * single block cannot straddle it. This way a block
 6257                  * can't be a target in two different injection ranges
 6258                  * (on different leaf vdevs).
 6259                  */
 6260                 offset = ztest_random(fsize / (leaves << bshift)) *
 6261                     (leaves << bshift) + (leaf << bshift) +
 6262                     (ztest_random(1ULL << (bshift - 1)) & -8ULL);
 6263 
 6264                 /*
 6265                  * Only allow damage to the labels at one end of the vdev.
 6266                  *
 6267                  * If all labels are damaged, the device will be totally
 6268                  * inaccessible, which will result in loss of data,
 6269                  * because we also damage (parts of) the other side of
 6270                  * the mirror/raidz.
 6271                  *
 6272                  * Additionally, we will always have both an even and an
 6273                  * odd label, so that we can handle crashes in the
 6274                  * middle of vdev_config_sync().
 6275                  */
 6276                 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
 6277                         continue;
 6278 
 6279                 /*
 6280                  * The two end labels are stored at the "end" of the disk, but
 6281                  * the end of the disk (vdev_psize) is aligned to
 6282                  * sizeof (vdev_label_t).
 6283                  */
 6284                 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
 6285                 if ((leaf & 1) == 1 &&
 6286                     offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
 6287                         continue;
 6288 
 6289                 mutex_enter(&ztest_vdev_lock);
 6290                 if (mirror_save != zs->zs_mirrors) {
 6291                         mutex_exit(&ztest_vdev_lock);
 6292                         (void) close(fd);
 6293                         goto out;
 6294                 }
 6295 
 6296                 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
 6297                         fatal(B_TRUE,
 6298                             "can't inject bad word at 0x%"PRIx64" in %s",
 6299                             offset, pathrand);
 6300 
 6301                 mutex_exit(&ztest_vdev_lock);
 6302 
 6303                 if (ztest_opts.zo_verbose >= 7)
 6304                         (void) printf("injected bad word into %s,"
 6305                             " offset 0x%"PRIx64"\n", pathrand, offset);
 6306         }
 6307 
 6308         (void) close(fd);
 6309 out:
 6310         umem_free(path0, MAXPATHLEN);
 6311         umem_free(pathrand, MAXPATHLEN);
 6312 }
 6313 
 6314 /*
 6315  * By design ztest will never inject uncorrectable damage in to the pool.
 6316  * Issue a scrub, wait for it to complete, and verify there is never any
 6317  * persistent damage.
 6318  *
 6319  * Only after a full scrub has been completed is it safe to start injecting
 6320  * data corruption.  See the comment in zfs_fault_inject().
 6321  */
 6322 static int
 6323 ztest_scrub_impl(spa_t *spa)
 6324 {
 6325         int error = spa_scan(spa, POOL_SCAN_SCRUB);
 6326         if (error)
 6327                 return (error);
 6328 
 6329         while (dsl_scan_scrubbing(spa_get_dsl(spa)))
 6330                 txg_wait_synced(spa_get_dsl(spa), 0);
 6331 
 6332         if (spa_approx_errlog_size(spa) > 0)
 6333                 return (ECKSUM);
 6334 
 6335         ztest_pool_scrubbed = B_TRUE;
 6336 
 6337         return (0);
 6338 }
 6339 
 6340 /*
 6341  * Scrub the pool.
 6342  */
 6343 void
 6344 ztest_scrub(ztest_ds_t *zd, uint64_t id)
 6345 {
 6346         (void) zd, (void) id;
 6347         spa_t *spa = ztest_spa;
 6348         int error;
 6349 
 6350         /*
 6351          * Scrub in progress by device removal.
 6352          */
 6353         if (ztest_device_removal_active)
 6354                 return;
 6355 
 6356         /*
 6357          * Start a scrub, wait a moment, then force a restart.
 6358          */
 6359         (void) spa_scan(spa, POOL_SCAN_SCRUB);
 6360         (void) poll(NULL, 0, 100);
 6361 
 6362         error = ztest_scrub_impl(spa);
 6363         if (error == EBUSY)
 6364                 error = 0;
 6365         ASSERT0(error);
 6366 }
 6367 
 6368 /*
 6369  * Change the guid for the pool.
 6370  */
 6371 void
 6372 ztest_reguid(ztest_ds_t *zd, uint64_t id)
 6373 {
 6374         (void) zd, (void) id;
 6375         spa_t *spa = ztest_spa;
 6376         uint64_t orig, load;
 6377         int error;
 6378 
 6379         if (ztest_opts.zo_mmp_test)
 6380                 return;
 6381 
 6382         orig = spa_guid(spa);
 6383         load = spa_load_guid(spa);
 6384 
 6385         (void) pthread_rwlock_wrlock(&ztest_name_lock);
 6386         error = spa_change_guid(spa);
 6387         (void) pthread_rwlock_unlock(&ztest_name_lock);
 6388 
 6389         if (error != 0)
 6390                 return;
 6391 
 6392         if (ztest_opts.zo_verbose >= 4) {
 6393                 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
 6394                     orig, spa_guid(spa));
 6395         }
 6396 
 6397         VERIFY3U(orig, !=, spa_guid(spa));
 6398         VERIFY3U(load, ==, spa_load_guid(spa));
 6399 }
 6400 
 6401 void
 6402 ztest_blake3(ztest_ds_t *zd, uint64_t id)
 6403 {
 6404         (void) zd, (void) id;
 6405         hrtime_t end = gethrtime() + NANOSEC;
 6406         zio_cksum_salt_t salt;
 6407         void *salt_ptr = &salt.zcs_bytes;
 6408         struct abd *abd_data, *abd_meta;
 6409         void *buf, *templ;
 6410         int i, *ptr;
 6411         uint32_t size;
 6412         BLAKE3_CTX ctx;
 6413 
 6414         size = ztest_random_blocksize();
 6415         buf = umem_alloc(size, UMEM_NOFAIL);
 6416         abd_data = abd_alloc(size, B_FALSE);
 6417         abd_meta = abd_alloc(size, B_TRUE);
 6418 
 6419         for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
 6420                 *ptr = ztest_random(UINT_MAX);
 6421         memset(salt_ptr, 'A', 32);
 6422 
 6423         abd_copy_from_buf_off(abd_data, buf, 0, size);
 6424         abd_copy_from_buf_off(abd_meta, buf, 0, size);
 6425 
 6426         while (gethrtime() <= end) {
 6427                 int run_count = 100;
 6428                 zio_cksum_t zc_ref1, zc_ref2;
 6429                 zio_cksum_t zc_res1, zc_res2;
 6430 
 6431                 void *ref1 = &zc_ref1;
 6432                 void *ref2 = &zc_ref2;
 6433                 void *res1 = &zc_res1;
 6434                 void *res2 = &zc_res2;
 6435 
 6436                 /* BLAKE3_KEY_LEN = 32 */
 6437                 VERIFY0(blake3_impl_setname("generic"));
 6438                 templ = abd_checksum_blake3_tmpl_init(&salt);
 6439                 Blake3_InitKeyed(&ctx, salt_ptr);
 6440                 Blake3_Update(&ctx, buf, size);
 6441                 Blake3_Final(&ctx, ref1);
 6442                 zc_ref2 = zc_ref1;
 6443                 ZIO_CHECKSUM_BSWAP(&zc_ref2);
 6444                 abd_checksum_blake3_tmpl_free(templ);
 6445 
 6446                 VERIFY0(blake3_impl_setname("cycle"));
 6447                 while (run_count-- > 0) {
 6448 
 6449                         /* Test current implementation */
 6450                         Blake3_InitKeyed(&ctx, salt_ptr);
 6451                         Blake3_Update(&ctx, buf, size);
 6452                         Blake3_Final(&ctx, res1);
 6453                         zc_res2 = zc_res1;
 6454                         ZIO_CHECKSUM_BSWAP(&zc_res2);
 6455 
 6456                         VERIFY0(memcmp(ref1, res1, 32));
 6457                         VERIFY0(memcmp(ref2, res2, 32));
 6458 
 6459                         /* Test ABD - data */
 6460                         templ = abd_checksum_blake3_tmpl_init(&salt);
 6461                         abd_checksum_blake3_native(abd_data, size,
 6462                             templ, &zc_res1);
 6463                         abd_checksum_blake3_byteswap(abd_data, size,
 6464                             templ, &zc_res2);
 6465 
 6466                         VERIFY0(memcmp(ref1, res1, 32));
 6467                         VERIFY0(memcmp(ref2, res2, 32));
 6468 
 6469                         /* Test ABD - metadata */
 6470                         abd_checksum_blake3_native(abd_meta, size,
 6471                             templ, &zc_res1);
 6472                         abd_checksum_blake3_byteswap(abd_meta, size,
 6473                             templ, &zc_res2);
 6474                         abd_checksum_blake3_tmpl_free(templ);
 6475 
 6476                         VERIFY0(memcmp(ref1, res1, 32));
 6477                         VERIFY0(memcmp(ref2, res2, 32));
 6478 
 6479                 }
 6480         }
 6481 
 6482         abd_free(abd_data);
 6483         abd_free(abd_meta);
 6484         umem_free(buf, size);
 6485 }
 6486 
 6487 void
 6488 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
 6489 {
 6490         (void) zd, (void) id;
 6491         hrtime_t end = gethrtime() + NANOSEC;
 6492 
 6493         while (gethrtime() <= end) {
 6494                 int run_count = 100;
 6495                 void *buf;
 6496                 struct abd *abd_data, *abd_meta;
 6497                 uint32_t size;
 6498                 int *ptr;
 6499                 int i;
 6500                 zio_cksum_t zc_ref;
 6501                 zio_cksum_t zc_ref_byteswap;
 6502 
 6503                 size = ztest_random_blocksize();
 6504 
 6505                 buf = umem_alloc(size, UMEM_NOFAIL);
 6506                 abd_data = abd_alloc(size, B_FALSE);
 6507                 abd_meta = abd_alloc(size, B_TRUE);
 6508 
 6509                 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
 6510                         *ptr = ztest_random(UINT_MAX);
 6511 
 6512                 abd_copy_from_buf_off(abd_data, buf, 0, size);
 6513                 abd_copy_from_buf_off(abd_meta, buf, 0, size);
 6514 
 6515                 VERIFY0(fletcher_4_impl_set("scalar"));
 6516                 fletcher_4_native(buf, size, NULL, &zc_ref);
 6517                 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
 6518 
 6519                 VERIFY0(fletcher_4_impl_set("cycle"));
 6520                 while (run_count-- > 0) {
 6521                         zio_cksum_t zc;
 6522                         zio_cksum_t zc_byteswap;
 6523 
 6524                         fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
 6525                         fletcher_4_native(buf, size, NULL, &zc);
 6526 
 6527                         VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
 6528                         VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
 6529                             sizeof (zc_byteswap)));
 6530 
 6531                         /* Test ABD - data */
 6532                         abd_fletcher_4_byteswap(abd_data, size, NULL,
 6533                             &zc_byteswap);
 6534                         abd_fletcher_4_native(abd_data, size, NULL, &zc);
 6535 
 6536                         VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
 6537                         VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
 6538                             sizeof (zc_byteswap)));
 6539 
 6540                         /* Test ABD - metadata */
 6541                         abd_fletcher_4_byteswap(abd_meta, size, NULL,
 6542                             &zc_byteswap);
 6543                         abd_fletcher_4_native(abd_meta, size, NULL, &zc);
 6544 
 6545                         VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
 6546                         VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
 6547                             sizeof (zc_byteswap)));
 6548 
 6549                 }
 6550 
 6551                 umem_free(buf, size);
 6552                 abd_free(abd_data);
 6553                 abd_free(abd_meta);
 6554         }
 6555 }
 6556 
 6557 void
 6558 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
 6559 {
 6560         (void) zd, (void) id;
 6561         void *buf;
 6562         size_t size;
 6563         int *ptr;
 6564         int i;
 6565         zio_cksum_t zc_ref;
 6566         zio_cksum_t zc_ref_bswap;
 6567 
 6568         hrtime_t end = gethrtime() + NANOSEC;
 6569 
 6570         while (gethrtime() <= end) {
 6571                 int run_count = 100;
 6572 
 6573                 size = ztest_random_blocksize();
 6574                 buf = umem_alloc(size, UMEM_NOFAIL);
 6575 
 6576                 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
 6577                         *ptr = ztest_random(UINT_MAX);
 6578 
 6579                 VERIFY0(fletcher_4_impl_set("scalar"));
 6580                 fletcher_4_native(buf, size, NULL, &zc_ref);
 6581                 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
 6582 
 6583                 VERIFY0(fletcher_4_impl_set("cycle"));
 6584 
 6585                 while (run_count-- > 0) {
 6586                         zio_cksum_t zc;
 6587                         zio_cksum_t zc_bswap;
 6588                         size_t pos = 0;
 6589 
 6590                         ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
 6591                         ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
 6592 
 6593                         while (pos < size) {
 6594                                 size_t inc = 64 * ztest_random(size / 67);
 6595                                 /* sometimes add few bytes to test non-simd */
 6596                                 if (ztest_random(100) < 10)
 6597                                         inc += P2ALIGN(ztest_random(64),
 6598                                             sizeof (uint32_t));
 6599 
 6600                                 if (inc > (size - pos))
 6601                                         inc = size - pos;
 6602 
 6603                                 fletcher_4_incremental_native(buf + pos, inc,
 6604                                     &zc);
 6605                                 fletcher_4_incremental_byteswap(buf + pos, inc,
 6606                                     &zc_bswap);
 6607 
 6608                                 pos += inc;
 6609                         }
 6610 
 6611                         VERIFY3U(pos, ==, size);
 6612 
 6613                         VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
 6614                         VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
 6615 
 6616                         /*
 6617                          * verify if incremental on the whole buffer is
 6618                          * equivalent to non-incremental version
 6619                          */
 6620                         ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
 6621                         ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
 6622 
 6623                         fletcher_4_incremental_native(buf, size, &zc);
 6624                         fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
 6625 
 6626                         VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
 6627                         VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
 6628                 }
 6629 
 6630                 umem_free(buf, size);
 6631         }
 6632 }
 6633 
 6634 static int
 6635 ztest_set_global_vars(void)
 6636 {
 6637         for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
 6638                 char *kv = ztest_opts.zo_gvars[i];
 6639                 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
 6640                 VERIFY3U(strlen(kv), >, 0);
 6641                 int err = set_global_var(kv);
 6642                 if (ztest_opts.zo_verbose > 0) {
 6643                         (void) printf("setting global var %s ... %s\n", kv,
 6644                             err ? "failed" : "ok");
 6645                 }
 6646                 if (err != 0) {
 6647                         (void) fprintf(stderr,
 6648                             "failed to set global var '%s'\n", kv);
 6649                         return (err);
 6650                 }
 6651         }
 6652         return (0);
 6653 }
 6654 
 6655 static char **
 6656 ztest_global_vars_to_zdb_args(void)
 6657 {
 6658         char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
 6659         char **cur = args;
 6660         if (args == NULL)
 6661                 return (NULL);
 6662         for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
 6663                 *cur++ = (char *)"-o";
 6664                 *cur++ = ztest_opts.zo_gvars[i];
 6665         }
 6666         ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
 6667         *cur = NULL;
 6668         return (args);
 6669 }
 6670 
 6671 /* The end of strings is indicated by a NULL element */
 6672 static char *
 6673 join_strings(char **strings, const char *sep)
 6674 {
 6675         size_t totallen = 0;
 6676         for (char **sp = strings; *sp != NULL; sp++) {
 6677                 totallen += strlen(*sp);
 6678                 totallen += strlen(sep);
 6679         }
 6680         if (totallen > 0) {
 6681                 ASSERT(totallen >= strlen(sep));
 6682                 totallen -= strlen(sep);
 6683         }
 6684 
 6685         size_t buflen = totallen + 1;
 6686         char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
 6687         o[0] = '\0';
 6688         for (char **sp = strings; *sp != NULL; sp++) {
 6689                 size_t would;
 6690                 would = strlcat(o, *sp, buflen);
 6691                 VERIFY3U(would, <, buflen);
 6692                 if (*(sp+1) == NULL) {
 6693                         break;
 6694                 }
 6695                 would = strlcat(o, sep, buflen);
 6696                 VERIFY3U(would, <, buflen);
 6697         }
 6698         ASSERT3S(strlen(o), ==, totallen);
 6699         return (o);
 6700 }
 6701 
 6702 static int
 6703 ztest_check_path(char *path)
 6704 {
 6705         struct stat s;
 6706         /* return true on success */
 6707         return (!stat(path, &s));
 6708 }
 6709 
 6710 static void
 6711 ztest_get_zdb_bin(char *bin, int len)
 6712 {
 6713         char *zdb_path;
 6714         /*
 6715          * Try to use $ZDB and in-tree zdb path. If not successful, just
 6716          * let popen to search through PATH.
 6717          */
 6718         if ((zdb_path = getenv("ZDB"))) {
 6719                 strlcpy(bin, zdb_path, len); /* In env */
 6720                 if (!ztest_check_path(bin)) {
 6721                         ztest_dump_core = 0;
 6722                         fatal(B_TRUE, "invalid ZDB '%s'", bin);
 6723                 }
 6724                 return;
 6725         }
 6726 
 6727         VERIFY3P(realpath(getexecname(), bin), !=, NULL);
 6728         if (strstr(bin, ".libs/ztest")) {
 6729                 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
 6730                 strcat(bin, "zdb");
 6731                 if (ztest_check_path(bin))
 6732                         return;
 6733         }
 6734         strcpy(bin, "zdb");
 6735 }
 6736 
 6737 static vdev_t *
 6738 ztest_random_concrete_vdev_leaf(vdev_t *vd)
 6739 {
 6740         if (vd == NULL)
 6741                 return (NULL);
 6742 
 6743         if (vd->vdev_children == 0)
 6744                 return (vd);
 6745 
 6746         vdev_t *eligible[vd->vdev_children];
 6747         int eligible_idx = 0, i;
 6748         for (i = 0; i < vd->vdev_children; i++) {
 6749                 vdev_t *cvd = vd->vdev_child[i];
 6750                 if (cvd->vdev_top->vdev_removing)
 6751                         continue;
 6752                 if (cvd->vdev_children > 0 ||
 6753                     (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
 6754                         eligible[eligible_idx++] = cvd;
 6755                 }
 6756         }
 6757         VERIFY3S(eligible_idx, >, 0);
 6758 
 6759         uint64_t child_no = ztest_random(eligible_idx);
 6760         return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
 6761 }
 6762 
 6763 void
 6764 ztest_initialize(ztest_ds_t *zd, uint64_t id)
 6765 {
 6766         (void) zd, (void) id;
 6767         spa_t *spa = ztest_spa;
 6768         int error = 0;
 6769 
 6770         mutex_enter(&ztest_vdev_lock);
 6771 
 6772         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 6773 
 6774         /* Random leaf vdev */
 6775         vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
 6776         if (rand_vd == NULL) {
 6777                 spa_config_exit(spa, SCL_VDEV, FTAG);
 6778                 mutex_exit(&ztest_vdev_lock);
 6779                 return;
 6780         }
 6781 
 6782         /*
 6783          * The random vdev we've selected may change as soon as we
 6784          * drop the spa_config_lock. We create local copies of things
 6785          * we're interested in.
 6786          */
 6787         uint64_t guid = rand_vd->vdev_guid;
 6788         char *path = strdup(rand_vd->vdev_path);
 6789         boolean_t active = rand_vd->vdev_initialize_thread != NULL;
 6790 
 6791         zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
 6792         spa_config_exit(spa, SCL_VDEV, FTAG);
 6793 
 6794         uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
 6795 
 6796         nvlist_t *vdev_guids = fnvlist_alloc();
 6797         nvlist_t *vdev_errlist = fnvlist_alloc();
 6798         fnvlist_add_uint64(vdev_guids, path, guid);
 6799         error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
 6800         fnvlist_free(vdev_guids);
 6801         fnvlist_free(vdev_errlist);
 6802 
 6803         switch (cmd) {
 6804         case POOL_INITIALIZE_CANCEL:
 6805                 if (ztest_opts.zo_verbose >= 4) {
 6806                         (void) printf("Cancel initialize %s", path);
 6807                         if (!active)
 6808                                 (void) printf(" failed (no initialize active)");
 6809                         (void) printf("\n");
 6810                 }
 6811                 break;
 6812         case POOL_INITIALIZE_START:
 6813                 if (ztest_opts.zo_verbose >= 4) {
 6814                         (void) printf("Start initialize %s", path);
 6815                         if (active && error == 0)
 6816                                 (void) printf(" failed (already active)");
 6817                         else if (error != 0)
 6818                                 (void) printf(" failed (error %d)", error);
 6819                         (void) printf("\n");
 6820                 }
 6821                 break;
 6822         case POOL_INITIALIZE_SUSPEND:
 6823                 if (ztest_opts.zo_verbose >= 4) {
 6824                         (void) printf("Suspend initialize %s", path);
 6825                         if (!active)
 6826                                 (void) printf(" failed (no initialize active)");
 6827                         (void) printf("\n");
 6828                 }
 6829                 break;
 6830         }
 6831         free(path);
 6832         mutex_exit(&ztest_vdev_lock);
 6833 }
 6834 
 6835 void
 6836 ztest_trim(ztest_ds_t *zd, uint64_t id)
 6837 {
 6838         (void) zd, (void) id;
 6839         spa_t *spa = ztest_spa;
 6840         int error = 0;
 6841 
 6842         mutex_enter(&ztest_vdev_lock);
 6843 
 6844         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 6845 
 6846         /* Random leaf vdev */
 6847         vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
 6848         if (rand_vd == NULL) {
 6849                 spa_config_exit(spa, SCL_VDEV, FTAG);
 6850                 mutex_exit(&ztest_vdev_lock);
 6851                 return;
 6852         }
 6853 
 6854         /*
 6855          * The random vdev we've selected may change as soon as we
 6856          * drop the spa_config_lock. We create local copies of things
 6857          * we're interested in.
 6858          */
 6859         uint64_t guid = rand_vd->vdev_guid;
 6860         char *path = strdup(rand_vd->vdev_path);
 6861         boolean_t active = rand_vd->vdev_trim_thread != NULL;
 6862 
 6863         zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
 6864         spa_config_exit(spa, SCL_VDEV, FTAG);
 6865 
 6866         uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
 6867         uint64_t rate = 1 << ztest_random(30);
 6868         boolean_t partial = (ztest_random(5) > 0);
 6869         boolean_t secure = (ztest_random(5) > 0);
 6870 
 6871         nvlist_t *vdev_guids = fnvlist_alloc();
 6872         nvlist_t *vdev_errlist = fnvlist_alloc();
 6873         fnvlist_add_uint64(vdev_guids, path, guid);
 6874         error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
 6875             secure, vdev_errlist);
 6876         fnvlist_free(vdev_guids);
 6877         fnvlist_free(vdev_errlist);
 6878 
 6879         switch (cmd) {
 6880         case POOL_TRIM_CANCEL:
 6881                 if (ztest_opts.zo_verbose >= 4) {
 6882                         (void) printf("Cancel TRIM %s", path);
 6883                         if (!active)
 6884                                 (void) printf(" failed (no TRIM active)");
 6885                         (void) printf("\n");
 6886                 }
 6887                 break;
 6888         case POOL_TRIM_START:
 6889                 if (ztest_opts.zo_verbose >= 4) {
 6890                         (void) printf("Start TRIM %s", path);
 6891                         if (active && error == 0)
 6892                                 (void) printf(" failed (already active)");
 6893                         else if (error != 0)
 6894                                 (void) printf(" failed (error %d)", error);
 6895                         (void) printf("\n");
 6896                 }
 6897                 break;
 6898         case POOL_TRIM_SUSPEND:
 6899                 if (ztest_opts.zo_verbose >= 4) {
 6900                         (void) printf("Suspend TRIM %s", path);
 6901                         if (!active)
 6902                                 (void) printf(" failed (no TRIM active)");
 6903                         (void) printf("\n");
 6904                 }
 6905                 break;
 6906         }
 6907         free(path);
 6908         mutex_exit(&ztest_vdev_lock);
 6909 }
 6910 
 6911 /*
 6912  * Verify pool integrity by running zdb.
 6913  */
 6914 static void
 6915 ztest_run_zdb(const char *pool)
 6916 {
 6917         int status;
 6918         char *bin;
 6919         char *zdb;
 6920         char *zbuf;
 6921         const int len = MAXPATHLEN + MAXNAMELEN + 20;
 6922         FILE *fp;
 6923 
 6924         bin = umem_alloc(len, UMEM_NOFAIL);
 6925         zdb = umem_alloc(len, UMEM_NOFAIL);
 6926         zbuf = umem_alloc(1024, UMEM_NOFAIL);
 6927 
 6928         ztest_get_zdb_bin(bin, len);
 6929 
 6930         char **set_gvars_args = ztest_global_vars_to_zdb_args();
 6931         if (set_gvars_args == NULL) {
 6932                 fatal(B_FALSE, "Failed to allocate memory in "
 6933                     "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
 6934         }
 6935         char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
 6936         free(set_gvars_args);
 6937 
 6938         size_t would = snprintf(zdb, len,
 6939             "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
 6940             bin,
 6941             ztest_opts.zo_verbose >= 3 ? "s" : "",
 6942             ztest_opts.zo_verbose >= 4 ? "v" : "",
 6943             set_gvars_args_joined,
 6944             ztest_opts.zo_dir,
 6945             pool);
 6946         ASSERT3U(would, <, len);
 6947 
 6948         umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
 6949 
 6950         if (ztest_opts.zo_verbose >= 5)
 6951                 (void) printf("Executing %s\n", zdb);
 6952 
 6953         fp = popen(zdb, "r");
 6954 
 6955         while (fgets(zbuf, 1024, fp) != NULL)
 6956                 if (ztest_opts.zo_verbose >= 3)
 6957                         (void) printf("%s", zbuf);
 6958 
 6959         status = pclose(fp);
 6960 
 6961         if (status == 0)
 6962                 goto out;
 6963 
 6964         ztest_dump_core = 0;
 6965         if (WIFEXITED(status))
 6966                 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
 6967         else
 6968                 fatal(B_FALSE, "'%s' died with signal %d",
 6969                     zdb, WTERMSIG(status));
 6970 out:
 6971         umem_free(bin, len);
 6972         umem_free(zdb, len);
 6973         umem_free(zbuf, 1024);
 6974 }
 6975 
 6976 static void
 6977 ztest_walk_pool_directory(const char *header)
 6978 {
 6979         spa_t *spa = NULL;
 6980 
 6981         if (ztest_opts.zo_verbose >= 6)
 6982                 (void) puts(header);
 6983 
 6984         mutex_enter(&spa_namespace_lock);
 6985         while ((spa = spa_next(spa)) != NULL)
 6986                 if (ztest_opts.zo_verbose >= 6)
 6987                         (void) printf("\t%s\n", spa_name(spa));
 6988         mutex_exit(&spa_namespace_lock);
 6989 }
 6990 
 6991 static void
 6992 ztest_spa_import_export(char *oldname, char *newname)
 6993 {
 6994         nvlist_t *config, *newconfig;
 6995         uint64_t pool_guid;
 6996         spa_t *spa;
 6997         int error;
 6998 
 6999         if (ztest_opts.zo_verbose >= 4) {
 7000                 (void) printf("import/export: old = %s, new = %s\n",
 7001                     oldname, newname);
 7002         }
 7003 
 7004         /*
 7005          * Clean up from previous runs.
 7006          */
 7007         (void) spa_destroy(newname);
 7008 
 7009         /*
 7010          * Get the pool's configuration and guid.
 7011          */
 7012         VERIFY0(spa_open(oldname, &spa, FTAG));
 7013 
 7014         /*
 7015          * Kick off a scrub to tickle scrub/export races.
 7016          */
 7017         if (ztest_random(2) == 0)
 7018                 (void) spa_scan(spa, POOL_SCAN_SCRUB);
 7019 
 7020         pool_guid = spa_guid(spa);
 7021         spa_close(spa, FTAG);
 7022 
 7023         ztest_walk_pool_directory("pools before export");
 7024 
 7025         /*
 7026          * Export it.
 7027          */
 7028         VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
 7029 
 7030         ztest_walk_pool_directory("pools after export");
 7031 
 7032         /*
 7033          * Try to import it.
 7034          */
 7035         newconfig = spa_tryimport(config);
 7036         ASSERT3P(newconfig, !=, NULL);
 7037         fnvlist_free(newconfig);
 7038 
 7039         /*
 7040          * Import it under the new name.
 7041          */
 7042         error = spa_import(newname, config, NULL, 0);
 7043         if (error != 0) {
 7044                 dump_nvlist(config, 0);
 7045                 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
 7046                     oldname, newname, error);
 7047         }
 7048 
 7049         ztest_walk_pool_directory("pools after import");
 7050 
 7051         /*
 7052          * Try to import it again -- should fail with EEXIST.
 7053          */
 7054         VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
 7055 
 7056         /*
 7057          * Try to import it under a different name -- should fail with EEXIST.
 7058          */
 7059         VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
 7060 
 7061         /*
 7062          * Verify that the pool is no longer visible under the old name.
 7063          */
 7064         VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
 7065 
 7066         /*
 7067          * Verify that we can open and close the pool using the new name.
 7068          */
 7069         VERIFY0(spa_open(newname, &spa, FTAG));
 7070         ASSERT3U(pool_guid, ==, spa_guid(spa));
 7071         spa_close(spa, FTAG);
 7072 
 7073         fnvlist_free(config);
 7074 }
 7075 
 7076 static void
 7077 ztest_resume(spa_t *spa)
 7078 {
 7079         if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
 7080                 (void) printf("resuming from suspended state\n");
 7081         spa_vdev_state_enter(spa, SCL_NONE);
 7082         vdev_clear(spa, NULL);
 7083         (void) spa_vdev_state_exit(spa, NULL, 0);
 7084         (void) zio_resume(spa);
 7085 }
 7086 
 7087 static __attribute__((noreturn)) void
 7088 ztest_resume_thread(void *arg)
 7089 {
 7090         spa_t *spa = arg;
 7091 
 7092         while (!ztest_exiting) {
 7093                 if (spa_suspended(spa))
 7094                         ztest_resume(spa);
 7095                 (void) poll(NULL, 0, 100);
 7096 
 7097                 /*
 7098                  * Periodically change the zfs_compressed_arc_enabled setting.
 7099                  */
 7100                 if (ztest_random(10) == 0)
 7101                         zfs_compressed_arc_enabled = ztest_random(2);
 7102 
 7103                 /*
 7104                  * Periodically change the zfs_abd_scatter_enabled setting.
 7105                  */
 7106                 if (ztest_random(10) == 0)
 7107                         zfs_abd_scatter_enabled = ztest_random(2);
 7108         }
 7109 
 7110         thread_exit();
 7111 }
 7112 
 7113 static __attribute__((noreturn)) void
 7114 ztest_deadman_thread(void *arg)
 7115 {
 7116         ztest_shared_t *zs = arg;
 7117         spa_t *spa = ztest_spa;
 7118         hrtime_t delay, overdue, last_run = gethrtime();
 7119 
 7120         delay = (zs->zs_thread_stop - zs->zs_thread_start) +
 7121             MSEC2NSEC(zfs_deadman_synctime_ms);
 7122 
 7123         while (!ztest_exiting) {
 7124                 /*
 7125                  * Wait for the delay timer while checking occasionally
 7126                  * if we should stop.
 7127                  */
 7128                 if (gethrtime() < last_run + delay) {
 7129                         (void) poll(NULL, 0, 1000);
 7130                         continue;
 7131                 }
 7132 
 7133                 /*
 7134                  * If the pool is suspended then fail immediately. Otherwise,
 7135                  * check to see if the pool is making any progress. If
 7136                  * vdev_deadman() discovers that there hasn't been any recent
 7137                  * I/Os then it will end up aborting the tests.
 7138                  */
 7139                 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
 7140                         fatal(B_FALSE,
 7141                             "aborting test after %llu seconds because "
 7142                             "pool has transitioned to a suspended state.",
 7143                             (u_longlong_t)zfs_deadman_synctime_ms / 1000);
 7144                 }
 7145                 vdev_deadman(spa->spa_root_vdev, FTAG);
 7146 
 7147                 /*
 7148                  * If the process doesn't complete within a grace period of
 7149                  * zfs_deadman_synctime_ms over the expected finish time,
 7150                  * then it may be hung and is terminated.
 7151                  */
 7152                 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
 7153                 if (gethrtime() > overdue) {
 7154                         fatal(B_FALSE,
 7155                             "aborting test after %llu seconds because "
 7156                             "the process is overdue for termination.",
 7157                             (gethrtime() - zs->zs_proc_start) / NANOSEC);
 7158                 }
 7159 
 7160                 (void) printf("ztest has been running for %lld seconds\n",
 7161                     (gethrtime() - zs->zs_proc_start) / NANOSEC);
 7162 
 7163                 last_run = gethrtime();
 7164                 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
 7165         }
 7166 
 7167         thread_exit();
 7168 }
 7169 
 7170 static void
 7171 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
 7172 {
 7173         ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
 7174         ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
 7175         hrtime_t functime = gethrtime();
 7176         int i;
 7177 
 7178         for (i = 0; i < zi->zi_iters; i++)
 7179                 zi->zi_func(zd, id);
 7180 
 7181         functime = gethrtime() - functime;
 7182 
 7183         atomic_add_64(&zc->zc_count, 1);
 7184         atomic_add_64(&zc->zc_time, functime);
 7185 
 7186         if (ztest_opts.zo_verbose >= 4)
 7187                 (void) printf("%6.2f sec in %s\n",
 7188                     (double)functime / NANOSEC, zi->zi_funcname);
 7189 }
 7190 
 7191 static __attribute__((noreturn)) void
 7192 ztest_thread(void *arg)
 7193 {
 7194         int rand;
 7195         uint64_t id = (uintptr_t)arg;
 7196         ztest_shared_t *zs = ztest_shared;
 7197         uint64_t call_next;
 7198         hrtime_t now;
 7199         ztest_info_t *zi;
 7200         ztest_shared_callstate_t *zc;
 7201 
 7202         while ((now = gethrtime()) < zs->zs_thread_stop) {
 7203                 /*
 7204                  * See if it's time to force a crash.
 7205                  */
 7206                 if (now > zs->zs_thread_kill)
 7207                         ztest_kill(zs);
 7208 
 7209                 /*
 7210                  * If we're getting ENOSPC with some regularity, stop.
 7211                  */
 7212                 if (zs->zs_enospc_count > 10)
 7213                         break;
 7214 
 7215                 /*
 7216                  * Pick a random function to execute.
 7217                  */
 7218                 rand = ztest_random(ZTEST_FUNCS);
 7219                 zi = &ztest_info[rand];
 7220                 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
 7221                 call_next = zc->zc_next;
 7222 
 7223                 if (now >= call_next &&
 7224                     atomic_cas_64(&zc->zc_next, call_next, call_next +
 7225                     ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
 7226                         ztest_execute(rand, zi, id);
 7227                 }
 7228         }
 7229 
 7230         thread_exit();
 7231 }
 7232 
 7233 static void
 7234 ztest_dataset_name(char *dsname, const char *pool, int d)
 7235 {
 7236         (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
 7237 }
 7238 
 7239 static void
 7240 ztest_dataset_destroy(int d)
 7241 {
 7242         char name[ZFS_MAX_DATASET_NAME_LEN];
 7243         int t;
 7244 
 7245         ztest_dataset_name(name, ztest_opts.zo_pool, d);
 7246 
 7247         if (ztest_opts.zo_verbose >= 3)
 7248                 (void) printf("Destroying %s to free up space\n", name);
 7249 
 7250         /*
 7251          * Cleanup any non-standard clones and snapshots.  In general,
 7252          * ztest thread t operates on dataset (t % zopt_datasets),
 7253          * so there may be more than one thing to clean up.
 7254          */
 7255         for (t = d; t < ztest_opts.zo_threads;
 7256             t += ztest_opts.zo_datasets)
 7257                 ztest_dsl_dataset_cleanup(name, t);
 7258 
 7259         (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
 7260             DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
 7261 }
 7262 
 7263 static void
 7264 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
 7265 {
 7266         uint64_t usedobjs, dirobjs, scratch;
 7267 
 7268         /*
 7269          * ZTEST_DIROBJ is the object directory for the entire dataset.
 7270          * Therefore, the number of objects in use should equal the
 7271          * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
 7272          * If not, we have an object leak.
 7273          *
 7274          * Note that we can only check this in ztest_dataset_open(),
 7275          * when the open-context and syncing-context values agree.
 7276          * That's because zap_count() returns the open-context value,
 7277          * while dmu_objset_space() returns the rootbp fill count.
 7278          */
 7279         VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
 7280         dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
 7281         ASSERT3U(dirobjs + 1, ==, usedobjs);
 7282 }
 7283 
 7284 static int
 7285 ztest_dataset_open(int d)
 7286 {
 7287         ztest_ds_t *zd = &ztest_ds[d];
 7288         uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
 7289         objset_t *os;
 7290         zilog_t *zilog;
 7291         char name[ZFS_MAX_DATASET_NAME_LEN];
 7292         int error;
 7293 
 7294         ztest_dataset_name(name, ztest_opts.zo_pool, d);
 7295 
 7296         (void) pthread_rwlock_rdlock(&ztest_name_lock);
 7297 
 7298         error = ztest_dataset_create(name);
 7299         if (error == ENOSPC) {
 7300                 (void) pthread_rwlock_unlock(&ztest_name_lock);
 7301                 ztest_record_enospc(FTAG);
 7302                 return (error);
 7303         }
 7304         ASSERT(error == 0 || error == EEXIST);
 7305 
 7306         VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
 7307             B_TRUE, zd, &os));
 7308         (void) pthread_rwlock_unlock(&ztest_name_lock);
 7309 
 7310         ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
 7311 
 7312         zilog = zd->zd_zilog;
 7313 
 7314         if (zilog->zl_header->zh_claim_lr_seq != 0 &&
 7315             zilog->zl_header->zh_claim_lr_seq < committed_seq)
 7316                 fatal(B_FALSE, "missing log records: "
 7317                     "claimed %"PRIu64" < committed %"PRIu64"",
 7318                     zilog->zl_header->zh_claim_lr_seq, committed_seq);
 7319 
 7320         ztest_dataset_dirobj_verify(zd);
 7321 
 7322         zil_replay(os, zd, ztest_replay_vector);
 7323 
 7324         ztest_dataset_dirobj_verify(zd);
 7325 
 7326         if (ztest_opts.zo_verbose >= 6)
 7327                 (void) printf("%s replay %"PRIu64" blocks, "
 7328                     "%"PRIu64" records, seq %"PRIu64"\n",
 7329                     zd->zd_name,
 7330                     zilog->zl_parse_blk_count,
 7331                     zilog->zl_parse_lr_count,
 7332                     zilog->zl_replaying_seq);
 7333 
 7334         zilog = zil_open(os, ztest_get_data, NULL);
 7335 
 7336         if (zilog->zl_replaying_seq != 0 &&
 7337             zilog->zl_replaying_seq < committed_seq)
 7338                 fatal(B_FALSE, "missing log records: "
 7339                     "replayed %"PRIu64" < committed %"PRIu64"",
 7340                     zilog->zl_replaying_seq, committed_seq);
 7341 
 7342         return (0);
 7343 }
 7344 
 7345 static void
 7346 ztest_dataset_close(int d)
 7347 {
 7348         ztest_ds_t *zd = &ztest_ds[d];
 7349 
 7350         zil_close(zd->zd_zilog);
 7351         dmu_objset_disown(zd->zd_os, B_TRUE, zd);
 7352 
 7353         ztest_zd_fini(zd);
 7354 }
 7355 
 7356 static int
 7357 ztest_replay_zil_cb(const char *name, void *arg)
 7358 {
 7359         (void) arg;
 7360         objset_t *os;
 7361         ztest_ds_t *zdtmp;
 7362 
 7363         VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
 7364             B_TRUE, FTAG, &os));
 7365 
 7366         zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
 7367 
 7368         ztest_zd_init(zdtmp, NULL, os);
 7369         zil_replay(os, zdtmp, ztest_replay_vector);
 7370         ztest_zd_fini(zdtmp);
 7371 
 7372         if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
 7373             ztest_opts.zo_verbose >= 6) {
 7374                 zilog_t *zilog = dmu_objset_zil(os);
 7375 
 7376                 (void) printf("%s replay %"PRIu64" blocks, "
 7377                     "%"PRIu64" records, seq %"PRIu64"\n",
 7378                     name,
 7379                     zilog->zl_parse_blk_count,
 7380                     zilog->zl_parse_lr_count,
 7381                     zilog->zl_replaying_seq);
 7382         }
 7383 
 7384         umem_free(zdtmp, sizeof (ztest_ds_t));
 7385 
 7386         dmu_objset_disown(os, B_TRUE, FTAG);
 7387         return (0);
 7388 }
 7389 
 7390 static void
 7391 ztest_freeze(void)
 7392 {
 7393         ztest_ds_t *zd = &ztest_ds[0];
 7394         spa_t *spa;
 7395         int numloops = 0;
 7396 
 7397         if (ztest_opts.zo_verbose >= 3)
 7398                 (void) printf("testing spa_freeze()...\n");
 7399 
 7400         kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 7401         VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 7402         VERIFY0(ztest_dataset_open(0));
 7403         ztest_spa = spa;
 7404 
 7405         /*
 7406          * Force the first log block to be transactionally allocated.
 7407          * We have to do this before we freeze the pool -- otherwise
 7408          * the log chain won't be anchored.
 7409          */
 7410         while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
 7411                 ztest_dmu_object_alloc_free(zd, 0);
 7412                 zil_commit(zd->zd_zilog, 0);
 7413         }
 7414 
 7415         txg_wait_synced(spa_get_dsl(spa), 0);
 7416 
 7417         /*
 7418          * Freeze the pool.  This stops spa_sync() from doing anything,
 7419          * so that the only way to record changes from now on is the ZIL.
 7420          */
 7421         spa_freeze(spa);
 7422 
 7423         /*
 7424          * Because it is hard to predict how much space a write will actually
 7425          * require beforehand, we leave ourselves some fudge space to write over
 7426          * capacity.
 7427          */
 7428         uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
 7429 
 7430         /*
 7431          * Run tests that generate log records but don't alter the pool config
 7432          * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
 7433          * We do a txg_wait_synced() after each iteration to force the txg
 7434          * to increase well beyond the last synced value in the uberblock.
 7435          * The ZIL should be OK with that.
 7436          *
 7437          * Run a random number of times less than zo_maxloops and ensure we do
 7438          * not run out of space on the pool.
 7439          */
 7440         while (ztest_random(10) != 0 &&
 7441             numloops++ < ztest_opts.zo_maxloops &&
 7442             metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
 7443                 ztest_od_t od;
 7444                 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
 7445                 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
 7446                 ztest_io(zd, od.od_object,
 7447                     ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 7448                 txg_wait_synced(spa_get_dsl(spa), 0);
 7449         }
 7450 
 7451         /*
 7452          * Commit all of the changes we just generated.
 7453          */
 7454         zil_commit(zd->zd_zilog, 0);
 7455         txg_wait_synced(spa_get_dsl(spa), 0);
 7456 
 7457         /*
 7458          * Close our dataset and close the pool.
 7459          */
 7460         ztest_dataset_close(0);
 7461         spa_close(spa, FTAG);
 7462         kernel_fini();
 7463 
 7464         /*
 7465          * Open and close the pool and dataset to induce log replay.
 7466          */
 7467         kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 7468         VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 7469         ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
 7470         VERIFY0(ztest_dataset_open(0));
 7471         ztest_spa = spa;
 7472         txg_wait_synced(spa_get_dsl(spa), 0);
 7473         ztest_dataset_close(0);
 7474         ztest_reguid(NULL, 0);
 7475 
 7476         spa_close(spa, FTAG);
 7477         kernel_fini();
 7478 }
 7479 
 7480 static void
 7481 ztest_import_impl(void)
 7482 {
 7483         importargs_t args = { 0 };
 7484         nvlist_t *cfg = NULL;
 7485         int nsearch = 1;
 7486         char *searchdirs[nsearch];
 7487         int flags = ZFS_IMPORT_MISSING_LOG;
 7488 
 7489         searchdirs[0] = ztest_opts.zo_dir;
 7490         args.paths = nsearch;
 7491         args.path = searchdirs;
 7492         args.can_be_active = B_FALSE;
 7493 
 7494         libpc_handle_t lpch = {
 7495                 .lpc_lib_handle = NULL,
 7496                 .lpc_ops = &libzpool_config_ops,
 7497                 .lpc_printerr = B_TRUE
 7498         };
 7499         VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
 7500         VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
 7501         fnvlist_free(cfg);
 7502 }
 7503 
 7504 /*
 7505  * Import a storage pool with the given name.
 7506  */
 7507 static void
 7508 ztest_import(ztest_shared_t *zs)
 7509 {
 7510         spa_t *spa;
 7511 
 7512         mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
 7513         mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
 7514         VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
 7515 
 7516         kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 7517 
 7518         ztest_import_impl();
 7519 
 7520         VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 7521         zs->zs_metaslab_sz =
 7522             1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
 7523         spa_close(spa, FTAG);
 7524 
 7525         kernel_fini();
 7526 
 7527         if (!ztest_opts.zo_mmp_test) {
 7528                 ztest_run_zdb(ztest_opts.zo_pool);
 7529                 ztest_freeze();
 7530                 ztest_run_zdb(ztest_opts.zo_pool);
 7531         }
 7532 
 7533         (void) pthread_rwlock_destroy(&ztest_name_lock);
 7534         mutex_destroy(&ztest_vdev_lock);
 7535         mutex_destroy(&ztest_checkpoint_lock);
 7536 }
 7537 
 7538 /*
 7539  * Kick off threads to run tests on all datasets in parallel.
 7540  */
 7541 static void
 7542 ztest_run(ztest_shared_t *zs)
 7543 {
 7544         spa_t *spa;
 7545         objset_t *os;
 7546         kthread_t *resume_thread, *deadman_thread;
 7547         kthread_t **run_threads;
 7548         uint64_t object;
 7549         int error;
 7550         int t, d;
 7551 
 7552         ztest_exiting = B_FALSE;
 7553 
 7554         /*
 7555          * Initialize parent/child shared state.
 7556          */
 7557         mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
 7558         mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
 7559         VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
 7560 
 7561         zs->zs_thread_start = gethrtime();
 7562         zs->zs_thread_stop =
 7563             zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
 7564         zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
 7565         zs->zs_thread_kill = zs->zs_thread_stop;
 7566         if (ztest_random(100) < ztest_opts.zo_killrate) {
 7567                 zs->zs_thread_kill -=
 7568                     ztest_random(ztest_opts.zo_passtime * NANOSEC);
 7569         }
 7570 
 7571         mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
 7572 
 7573         list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
 7574             offsetof(ztest_cb_data_t, zcd_node));
 7575 
 7576         /*
 7577          * Open our pool.  It may need to be imported first depending on
 7578          * what tests were running when the previous pass was terminated.
 7579          */
 7580         kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 7581         error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
 7582         if (error) {
 7583                 VERIFY3S(error, ==, ENOENT);
 7584                 ztest_import_impl();
 7585                 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 7586                 zs->zs_metaslab_sz =
 7587                     1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
 7588         }
 7589 
 7590         metaslab_preload_limit = ztest_random(20) + 1;
 7591         ztest_spa = spa;
 7592 
 7593         VERIFY0(vdev_raidz_impl_set("cycle"));
 7594 
 7595         dmu_objset_stats_t dds;
 7596         VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
 7597             DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
 7598         dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
 7599         dmu_objset_fast_stat(os, &dds);
 7600         dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
 7601         zs->zs_guid = dds.dds_guid;
 7602         dmu_objset_disown(os, B_TRUE, FTAG);
 7603 
 7604         /*
 7605          * Create a thread to periodically resume suspended I/O.
 7606          */
 7607         resume_thread = thread_create(NULL, 0, ztest_resume_thread,
 7608             spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
 7609 
 7610         /*
 7611          * Create a deadman thread and set to panic if we hang.
 7612          */
 7613         deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
 7614             zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
 7615 
 7616         spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
 7617 
 7618         /*
 7619          * Verify that we can safely inquire about any object,
 7620          * whether it's allocated or not.  To make it interesting,
 7621          * we probe a 5-wide window around each power of two.
 7622          * This hits all edge cases, including zero and the max.
 7623          */
 7624         for (t = 0; t < 64; t++) {
 7625                 for (d = -5; d <= 5; d++) {
 7626                         error = dmu_object_info(spa->spa_meta_objset,
 7627                             (1ULL << t) + d, NULL);
 7628                         ASSERT(error == 0 || error == ENOENT ||
 7629                             error == EINVAL);
 7630                 }
 7631         }
 7632 
 7633         /*
 7634          * If we got any ENOSPC errors on the previous run, destroy something.
 7635          */
 7636         if (zs->zs_enospc_count != 0) {
 7637                 int d = ztest_random(ztest_opts.zo_datasets);
 7638                 ztest_dataset_destroy(d);
 7639         }
 7640         zs->zs_enospc_count = 0;
 7641 
 7642         /*
 7643          * If we were in the middle of ztest_device_removal() and were killed
 7644          * we need to ensure the removal and scrub complete before running
 7645          * any tests that check ztest_device_removal_active. The removal will
 7646          * be restarted automatically when the spa is opened, but we need to
 7647          * initiate the scrub manually if it is not already in progress. Note
 7648          * that we always run the scrub whenever an indirect vdev exists
 7649          * because we have no way of knowing for sure if ztest_device_removal()
 7650          * fully completed its scrub before the pool was reimported.
 7651          */
 7652         if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
 7653             spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
 7654                 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
 7655                         txg_wait_synced(spa_get_dsl(spa), 0);
 7656 
 7657                 error = ztest_scrub_impl(spa);
 7658                 if (error == EBUSY)
 7659                         error = 0;
 7660                 ASSERT0(error);
 7661         }
 7662 
 7663         run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
 7664             UMEM_NOFAIL);
 7665 
 7666         if (ztest_opts.zo_verbose >= 4)
 7667                 (void) printf("starting main threads...\n");
 7668 
 7669         /*
 7670          * Replay all logs of all datasets in the pool. This is primarily for
 7671          * temporary datasets which wouldn't otherwise get replayed, which
 7672          * can trigger failures when attempting to offline a SLOG in
 7673          * ztest_fault_inject().
 7674          */
 7675         (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
 7676             NULL, DS_FIND_CHILDREN);
 7677 
 7678         /*
 7679          * Kick off all the tests that run in parallel.
 7680          */
 7681         for (t = 0; t < ztest_opts.zo_threads; t++) {
 7682                 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
 7683                         umem_free(run_threads, ztest_opts.zo_threads *
 7684                             sizeof (kthread_t *));
 7685                         return;
 7686                 }
 7687 
 7688                 run_threads[t] = thread_create(NULL, 0, ztest_thread,
 7689                     (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
 7690                     defclsyspri);
 7691         }
 7692 
 7693         /*
 7694          * Wait for all of the tests to complete.
 7695          */
 7696         for (t = 0; t < ztest_opts.zo_threads; t++)
 7697                 VERIFY0(thread_join(run_threads[t]));
 7698 
 7699         /*
 7700          * Close all datasets. This must be done after all the threads
 7701          * are joined so we can be sure none of the datasets are in-use
 7702          * by any of the threads.
 7703          */
 7704         for (t = 0; t < ztest_opts.zo_threads; t++) {
 7705                 if (t < ztest_opts.zo_datasets)
 7706                         ztest_dataset_close(t);
 7707         }
 7708 
 7709         txg_wait_synced(spa_get_dsl(spa), 0);
 7710 
 7711         zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 7712         zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
 7713 
 7714         umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
 7715 
 7716         /* Kill the resume and deadman threads */
 7717         ztest_exiting = B_TRUE;
 7718         VERIFY0(thread_join(resume_thread));
 7719         VERIFY0(thread_join(deadman_thread));
 7720         ztest_resume(spa);
 7721 
 7722         /*
 7723          * Right before closing the pool, kick off a bunch of async I/O;
 7724          * spa_close() should wait for it to complete.
 7725          */
 7726         for (object = 1; object < 50; object++) {
 7727                 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
 7728                     ZIO_PRIORITY_SYNC_READ);
 7729         }
 7730 
 7731         /* Verify that at least one commit cb was called in a timely fashion */
 7732         if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
 7733                 VERIFY0(zc_min_txg_delay);
 7734 
 7735         spa_close(spa, FTAG);
 7736 
 7737         /*
 7738          * Verify that we can loop over all pools.
 7739          */
 7740         mutex_enter(&spa_namespace_lock);
 7741         for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
 7742                 if (ztest_opts.zo_verbose > 3)
 7743                         (void) printf("spa_next: found %s\n", spa_name(spa));
 7744         mutex_exit(&spa_namespace_lock);
 7745 
 7746         /*
 7747          * Verify that we can export the pool and reimport it under a
 7748          * different name.
 7749          */
 7750         if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
 7751                 char name[ZFS_MAX_DATASET_NAME_LEN];
 7752                 (void) snprintf(name, sizeof (name), "%s_import",
 7753                     ztest_opts.zo_pool);
 7754                 ztest_spa_import_export(ztest_opts.zo_pool, name);
 7755                 ztest_spa_import_export(name, ztest_opts.zo_pool);
 7756         }
 7757 
 7758         kernel_fini();
 7759 
 7760         list_destroy(&zcl.zcl_callbacks);
 7761         mutex_destroy(&zcl.zcl_callbacks_lock);
 7762         (void) pthread_rwlock_destroy(&ztest_name_lock);
 7763         mutex_destroy(&ztest_vdev_lock);
 7764         mutex_destroy(&ztest_checkpoint_lock);
 7765 }
 7766 
 7767 static void
 7768 print_time(hrtime_t t, char *timebuf)
 7769 {
 7770         hrtime_t s = t / NANOSEC;
 7771         hrtime_t m = s / 60;
 7772         hrtime_t h = m / 60;
 7773         hrtime_t d = h / 24;
 7774 
 7775         s -= m * 60;
 7776         m -= h * 60;
 7777         h -= d * 24;
 7778 
 7779         timebuf[0] = '\0';
 7780 
 7781         if (d)
 7782                 (void) sprintf(timebuf,
 7783                     "%llud%02lluh%02llum%02llus", d, h, m, s);
 7784         else if (h)
 7785                 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
 7786         else if (m)
 7787                 (void) sprintf(timebuf, "%llum%02llus", m, s);
 7788         else
 7789                 (void) sprintf(timebuf, "%llus", s);
 7790 }
 7791 
 7792 static nvlist_t *
 7793 make_random_props(void)
 7794 {
 7795         nvlist_t *props;
 7796 
 7797         props = fnvlist_alloc();
 7798 
 7799         if (ztest_random(2) == 0)
 7800                 return (props);
 7801 
 7802         fnvlist_add_uint64(props,
 7803             zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
 7804 
 7805         return (props);
 7806 }
 7807 
 7808 /*
 7809  * Create a storage pool with the given name and initial vdev size.
 7810  * Then test spa_freeze() functionality.
 7811  */
 7812 static void
 7813 ztest_init(ztest_shared_t *zs)
 7814 {
 7815         spa_t *spa;
 7816         nvlist_t *nvroot, *props;
 7817         int i;
 7818 
 7819         mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
 7820         mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
 7821         VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
 7822 
 7823         kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 7824 
 7825         /*
 7826          * Create the storage pool.
 7827          */
 7828         (void) spa_destroy(ztest_opts.zo_pool);
 7829         ztest_shared->zs_vdev_next_leaf = 0;
 7830         zs->zs_splits = 0;
 7831         zs->zs_mirrors = ztest_opts.zo_mirrors;
 7832         nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
 7833             NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
 7834         props = make_random_props();
 7835 
 7836         /*
 7837          * We don't expect the pool to suspend unless maxfaults == 0,
 7838          * in which case ztest_fault_inject() temporarily takes away
 7839          * the only valid replica.
 7840          */
 7841         fnvlist_add_uint64(props,
 7842             zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
 7843             MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
 7844 
 7845         for (i = 0; i < SPA_FEATURES; i++) {
 7846                 char *buf;
 7847 
 7848                 if (!spa_feature_table[i].fi_zfs_mod_supported)
 7849                         continue;
 7850 
 7851                 /*
 7852                  * 75% chance of using the log space map feature. We want ztest
 7853                  * to exercise both the code paths that use the log space map
 7854                  * feature and the ones that don't.
 7855                  */
 7856                 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
 7857                         continue;
 7858 
 7859                 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
 7860                     spa_feature_table[i].fi_uname));
 7861                 fnvlist_add_uint64(props, buf, 0);
 7862                 free(buf);
 7863         }
 7864 
 7865         VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
 7866         fnvlist_free(nvroot);
 7867         fnvlist_free(props);
 7868 
 7869         VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 7870         zs->zs_metaslab_sz =
 7871             1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
 7872         spa_close(spa, FTAG);
 7873 
 7874         kernel_fini();
 7875 
 7876         if (!ztest_opts.zo_mmp_test) {
 7877                 ztest_run_zdb(ztest_opts.zo_pool);
 7878                 ztest_freeze();
 7879                 ztest_run_zdb(ztest_opts.zo_pool);
 7880         }
 7881 
 7882         (void) pthread_rwlock_destroy(&ztest_name_lock);
 7883         mutex_destroy(&ztest_vdev_lock);
 7884         mutex_destroy(&ztest_checkpoint_lock);
 7885 }
 7886 
 7887 static void
 7888 setup_data_fd(void)
 7889 {
 7890         static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
 7891 
 7892         ztest_fd_data = mkstemp(ztest_name_data);
 7893         ASSERT3S(ztest_fd_data, >=, 0);
 7894         (void) unlink(ztest_name_data);
 7895 }
 7896 
 7897 static int
 7898 shared_data_size(ztest_shared_hdr_t *hdr)
 7899 {
 7900         int size;
 7901 
 7902         size = hdr->zh_hdr_size;
 7903         size += hdr->zh_opts_size;
 7904         size += hdr->zh_size;
 7905         size += hdr->zh_stats_size * hdr->zh_stats_count;
 7906         size += hdr->zh_ds_size * hdr->zh_ds_count;
 7907 
 7908         return (size);
 7909 }
 7910 
 7911 static void
 7912 setup_hdr(void)
 7913 {
 7914         int size;
 7915         ztest_shared_hdr_t *hdr;
 7916 
 7917         hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
 7918             PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
 7919         ASSERT3P(hdr, !=, MAP_FAILED);
 7920 
 7921         VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
 7922 
 7923         hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
 7924         hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
 7925         hdr->zh_size = sizeof (ztest_shared_t);
 7926         hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
 7927         hdr->zh_stats_count = ZTEST_FUNCS;
 7928         hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
 7929         hdr->zh_ds_count = ztest_opts.zo_datasets;
 7930 
 7931         size = shared_data_size(hdr);
 7932         VERIFY0(ftruncate(ztest_fd_data, size));
 7933 
 7934         (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
 7935 }
 7936 
 7937 static void
 7938 setup_data(void)
 7939 {
 7940         int size, offset;
 7941         ztest_shared_hdr_t *hdr;
 7942         uint8_t *buf;
 7943 
 7944         hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
 7945             PROT_READ, MAP_SHARED, ztest_fd_data, 0);
 7946         ASSERT3P(hdr, !=, MAP_FAILED);
 7947 
 7948         size = shared_data_size(hdr);
 7949 
 7950         (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
 7951         hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
 7952             PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
 7953         ASSERT3P(hdr, !=, MAP_FAILED);
 7954         buf = (uint8_t *)hdr;
 7955 
 7956         offset = hdr->zh_hdr_size;
 7957         ztest_shared_opts = (void *)&buf[offset];
 7958         offset += hdr->zh_opts_size;
 7959         ztest_shared = (void *)&buf[offset];
 7960         offset += hdr->zh_size;
 7961         ztest_shared_callstate = (void *)&buf[offset];
 7962         offset += hdr->zh_stats_size * hdr->zh_stats_count;
 7963         ztest_shared_ds = (void *)&buf[offset];
 7964 }
 7965 
 7966 static boolean_t
 7967 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
 7968 {
 7969         pid_t pid;
 7970         int status;
 7971         char *cmdbuf = NULL;
 7972 
 7973         pid = fork();
 7974 
 7975         if (cmd == NULL) {
 7976                 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 7977                 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
 7978                 cmd = cmdbuf;
 7979         }
 7980 
 7981         if (pid == -1)
 7982                 fatal(B_TRUE, "fork failed");
 7983 
 7984         if (pid == 0) { /* child */
 7985                 char fd_data_str[12];
 7986 
 7987                 VERIFY3S(11, >=,
 7988                     snprintf(fd_data_str, 12, "%d", ztest_fd_data));
 7989                 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
 7990 
 7991                 if (libpath != NULL) {
 7992                         const char *curlp = getenv("LD_LIBRARY_PATH");
 7993                         if (curlp == NULL)
 7994                                 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
 7995                         else {
 7996                                 char *newlp = NULL;
 7997                                 VERIFY3S(-1, !=,
 7998                                     asprintf(&newlp, "%s:%s", libpath, curlp));
 7999                                 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
 8000                                 free(newlp);
 8001                         }
 8002                 }
 8003                 (void) execl(cmd, cmd, (char *)NULL);
 8004                 ztest_dump_core = B_FALSE;
 8005                 fatal(B_TRUE, "exec failed: %s", cmd);
 8006         }
 8007 
 8008         if (cmdbuf != NULL) {
 8009                 umem_free(cmdbuf, MAXPATHLEN);
 8010                 cmd = NULL;
 8011         }
 8012 
 8013         while (waitpid(pid, &status, 0) != pid)
 8014                 continue;
 8015         if (statusp != NULL)
 8016                 *statusp = status;
 8017 
 8018         if (WIFEXITED(status)) {
 8019                 if (WEXITSTATUS(status) != 0) {
 8020                         (void) fprintf(stderr, "child exited with code %d\n",
 8021                             WEXITSTATUS(status));
 8022                         exit(2);
 8023                 }
 8024                 return (B_FALSE);
 8025         } else if (WIFSIGNALED(status)) {
 8026                 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
 8027                         (void) fprintf(stderr, "child died with signal %d\n",
 8028                             WTERMSIG(status));
 8029                         exit(3);
 8030                 }
 8031                 return (B_TRUE);
 8032         } else {
 8033                 (void) fprintf(stderr, "something strange happened to child\n");
 8034                 exit(4);
 8035         }
 8036 }
 8037 
 8038 static void
 8039 ztest_run_init(void)
 8040 {
 8041         int i;
 8042 
 8043         ztest_shared_t *zs = ztest_shared;
 8044 
 8045         /*
 8046          * Blow away any existing copy of zpool.cache
 8047          */
 8048         (void) remove(spa_config_path);
 8049 
 8050         if (ztest_opts.zo_init == 0) {
 8051                 if (ztest_opts.zo_verbose >= 1)
 8052                         (void) printf("Importing pool %s\n",
 8053                             ztest_opts.zo_pool);
 8054                 ztest_import(zs);
 8055                 return;
 8056         }
 8057 
 8058         /*
 8059          * Create and initialize our storage pool.
 8060          */
 8061         for (i = 1; i <= ztest_opts.zo_init; i++) {
 8062                 memset(zs, 0, sizeof (*zs));
 8063                 if (ztest_opts.zo_verbose >= 3 &&
 8064                     ztest_opts.zo_init != 1) {
 8065                         (void) printf("ztest_init(), pass %d\n", i);
 8066                 }
 8067                 ztest_init(zs);
 8068         }
 8069 }
 8070 
 8071 int
 8072 main(int argc, char **argv)
 8073 {
 8074         int kills = 0;
 8075         int iters = 0;
 8076         int older = 0;
 8077         int newer = 0;
 8078         ztest_shared_t *zs;
 8079         ztest_info_t *zi;
 8080         ztest_shared_callstate_t *zc;
 8081         char timebuf[100];
 8082         char numbuf[NN_NUMBUF_SZ];
 8083         char *cmd;
 8084         boolean_t hasalt;
 8085         int f, err;
 8086         char *fd_data_str = getenv("ZTEST_FD_DATA");
 8087         struct sigaction action;
 8088 
 8089         (void) setvbuf(stdout, NULL, _IOLBF, 0);
 8090 
 8091         dprintf_setup(&argc, argv);
 8092         zfs_deadman_synctime_ms = 300000;
 8093         zfs_deadman_checktime_ms = 30000;
 8094         /*
 8095          * As two-word space map entries may not come up often (especially
 8096          * if pool and vdev sizes are small) we want to force at least some
 8097          * of them so the feature get tested.
 8098          */
 8099         zfs_force_some_double_word_sm_entries = B_TRUE;
 8100 
 8101         /*
 8102          * Verify that even extensively damaged split blocks with many
 8103          * segments can be reconstructed in a reasonable amount of time
 8104          * when reconstruction is known to be possible.
 8105          *
 8106          * Note: the lower this value is, the more damage we inflict, and
 8107          * the more time ztest spends in recovering that damage. We chose
 8108          * to induce damage 1/100th of the time so recovery is tested but
 8109          * not so frequently that ztest doesn't get to test other code paths.
 8110          */
 8111         zfs_reconstruct_indirect_damage_fraction = 100;
 8112 
 8113         action.sa_handler = sig_handler;
 8114         sigemptyset(&action.sa_mask);
 8115         action.sa_flags = 0;
 8116 
 8117         if (sigaction(SIGSEGV, &action, NULL) < 0) {
 8118                 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
 8119                     strerror(errno));
 8120                 exit(EXIT_FAILURE);
 8121         }
 8122 
 8123         if (sigaction(SIGABRT, &action, NULL) < 0) {
 8124                 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
 8125                     strerror(errno));
 8126                 exit(EXIT_FAILURE);
 8127         }
 8128 
 8129         /*
 8130          * Force random_get_bytes() to use /dev/urandom in order to prevent
 8131          * ztest from needlessly depleting the system entropy pool.
 8132          */
 8133         random_path = "/dev/urandom";
 8134         ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
 8135         ASSERT3S(ztest_fd_rand, >=, 0);
 8136 
 8137         if (!fd_data_str) {
 8138                 process_options(argc, argv);
 8139 
 8140                 setup_data_fd();
 8141                 setup_hdr();
 8142                 setup_data();
 8143                 memcpy(ztest_shared_opts, &ztest_opts,
 8144                     sizeof (*ztest_shared_opts));
 8145         } else {
 8146                 ztest_fd_data = atoi(fd_data_str);
 8147                 setup_data();
 8148                 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
 8149         }
 8150         ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
 8151 
 8152         err = ztest_set_global_vars();
 8153         if (err != 0 && !fd_data_str) {
 8154                 /* error message done by ztest_set_global_vars */
 8155                 exit(EXIT_FAILURE);
 8156         } else {
 8157                 /* children should not be spawned if setting gvars fails */
 8158                 VERIFY3S(err, ==, 0);
 8159         }
 8160 
 8161         /* Override location of zpool.cache */
 8162         VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
 8163             ztest_opts.zo_dir), !=, -1);
 8164 
 8165         ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
 8166             UMEM_NOFAIL);
 8167         zs = ztest_shared;
 8168 
 8169         if (fd_data_str) {
 8170                 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
 8171                 metaslab_df_alloc_threshold =
 8172                     zs->zs_metaslab_df_alloc_threshold;
 8173 
 8174                 if (zs->zs_do_init)
 8175                         ztest_run_init();
 8176                 else
 8177                         ztest_run(zs);
 8178                 exit(0);
 8179         }
 8180 
 8181         hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
 8182 
 8183         if (ztest_opts.zo_verbose >= 1) {
 8184                 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads,"
 8185                     "%d %s disks, %"PRIu64" seconds...\n\n",
 8186                     ztest_opts.zo_vdevs,
 8187                     ztest_opts.zo_datasets,
 8188                     ztest_opts.zo_threads,
 8189                     ztest_opts.zo_raid_children,
 8190                     ztest_opts.zo_raid_type,
 8191                     ztest_opts.zo_time);
 8192         }
 8193 
 8194         cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
 8195         (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
 8196 
 8197         zs->zs_do_init = B_TRUE;
 8198         if (strlen(ztest_opts.zo_alt_ztest) != 0) {
 8199                 if (ztest_opts.zo_verbose >= 1) {
 8200                         (void) printf("Executing older ztest for "
 8201                             "initialization: %s\n", ztest_opts.zo_alt_ztest);
 8202                 }
 8203                 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
 8204                     ztest_opts.zo_alt_libpath, B_FALSE, NULL));
 8205         } else {
 8206                 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
 8207         }
 8208         zs->zs_do_init = B_FALSE;
 8209 
 8210         zs->zs_proc_start = gethrtime();
 8211         zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
 8212 
 8213         for (f = 0; f < ZTEST_FUNCS; f++) {
 8214                 zi = &ztest_info[f];
 8215                 zc = ZTEST_GET_SHARED_CALLSTATE(f);
 8216                 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
 8217                         zc->zc_next = UINT64_MAX;
 8218                 else
 8219                         zc->zc_next = zs->zs_proc_start +
 8220                             ztest_random(2 * zi->zi_interval[0] + 1);
 8221         }
 8222 
 8223         /*
 8224          * Run the tests in a loop.  These tests include fault injection
 8225          * to verify that self-healing data works, and forced crashes
 8226          * to verify that we never lose on-disk consistency.
 8227          */
 8228         while (gethrtime() < zs->zs_proc_stop) {
 8229                 int status;
 8230                 boolean_t killed;
 8231 
 8232                 /*
 8233                  * Initialize the workload counters for each function.
 8234                  */
 8235                 for (f = 0; f < ZTEST_FUNCS; f++) {
 8236                         zc = ZTEST_GET_SHARED_CALLSTATE(f);
 8237                         zc->zc_count = 0;
 8238                         zc->zc_time = 0;
 8239                 }
 8240 
 8241                 /* Set the allocation switch size */
 8242                 zs->zs_metaslab_df_alloc_threshold =
 8243                     ztest_random(zs->zs_metaslab_sz / 4) + 1;
 8244 
 8245                 if (!hasalt || ztest_random(2) == 0) {
 8246                         if (hasalt && ztest_opts.zo_verbose >= 1) {
 8247                                 (void) printf("Executing newer ztest: %s\n",
 8248                                     cmd);
 8249                         }
 8250                         newer++;
 8251                         killed = exec_child(cmd, NULL, B_TRUE, &status);
 8252                 } else {
 8253                         if (hasalt && ztest_opts.zo_verbose >= 1) {
 8254                                 (void) printf("Executing older ztest: %s\n",
 8255                                     ztest_opts.zo_alt_ztest);
 8256                         }
 8257                         older++;
 8258                         killed = exec_child(ztest_opts.zo_alt_ztest,
 8259                             ztest_opts.zo_alt_libpath, B_TRUE, &status);
 8260                 }
 8261 
 8262                 if (killed)
 8263                         kills++;
 8264                 iters++;
 8265 
 8266                 if (ztest_opts.zo_verbose >= 1) {
 8267                         hrtime_t now = gethrtime();
 8268 
 8269                         now = MIN(now, zs->zs_proc_stop);
 8270                         print_time(zs->zs_proc_stop - now, timebuf);
 8271                         nicenum(zs->zs_space, numbuf, sizeof (numbuf));
 8272 
 8273                         (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
 8274                             "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
 8275                             iters,
 8276                             WIFEXITED(status) ? "Complete" : "SIGKILL",
 8277                             zs->zs_enospc_count,
 8278                             100.0 * zs->zs_alloc / zs->zs_space,
 8279                             numbuf,
 8280                             100.0 * (now - zs->zs_proc_start) /
 8281                             (ztest_opts.zo_time * NANOSEC), timebuf);
 8282                 }
 8283 
 8284                 if (ztest_opts.zo_verbose >= 2) {
 8285                         (void) printf("\nWorkload summary:\n\n");
 8286                         (void) printf("%7s %9s   %s\n",
 8287                             "Calls", "Time", "Function");
 8288                         (void) printf("%7s %9s   %s\n",
 8289                             "-----", "----", "--------");
 8290                         for (f = 0; f < ZTEST_FUNCS; f++) {
 8291                                 zi = &ztest_info[f];
 8292                                 zc = ZTEST_GET_SHARED_CALLSTATE(f);
 8293                                 print_time(zc->zc_time, timebuf);
 8294                                 (void) printf("%7"PRIu64" %9s   %s\n",
 8295                                     zc->zc_count, timebuf,
 8296                                     zi->zi_funcname);
 8297                         }
 8298                         (void) printf("\n");
 8299                 }
 8300 
 8301                 if (!ztest_opts.zo_mmp_test)
 8302                         ztest_run_zdb(ztest_opts.zo_pool);
 8303         }
 8304 
 8305         if (ztest_opts.zo_verbose >= 1) {
 8306                 if (hasalt) {
 8307                         (void) printf("%d runs of older ztest: %s\n", older,
 8308                             ztest_opts.zo_alt_ztest);
 8309                         (void) printf("%d runs of newer ztest: %s\n", newer,
 8310                             cmd);
 8311                 }
 8312                 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
 8313                     kills, iters - kills, (100.0 * kills) / MAX(1, iters));
 8314         }
 8315 
 8316         umem_free(cmd, MAXNAMELEN);
 8317 
 8318         return (0);
 8319 }

Cache object: 452561b6e8d9b399efeaa95408bffccb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.