The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/include/sys/dmu.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
   24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
   25  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
   26  * Copyright 2014 HybridCluster. All rights reserved.
   27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
   28  * Copyright 2013 Saso Kiselkov. All rights reserved.
   29  * Copyright (c) 2017, Intel Corporation.
   30  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
   31  */
   32 
   33 /* Portions Copyright 2010 Robert Milkowski */
   34 
   35 #ifndef _SYS_DMU_H
   36 #define _SYS_DMU_H
   37 
   38 /*
   39  * This file describes the interface that the DMU provides for its
   40  * consumers.
   41  *
   42  * The DMU also interacts with the SPA.  That interface is described in
   43  * dmu_spa.h.
   44  */
   45 
   46 #include <sys/zfs_context.h>
   47 #include <sys/inttypes.h>
   48 #include <sys/cred.h>
   49 #include <sys/fs/zfs.h>
   50 #include <sys/zio_compress.h>
   51 #include <sys/zio_priority.h>
   52 #include <sys/uio.h>
   53 #include <sys/zfs_file.h>
   54 
   55 #ifdef  __cplusplus
   56 extern "C" {
   57 #endif
   58 
   59 struct page;
   60 struct vnode;
   61 struct spa;
   62 struct zilog;
   63 struct zio;
   64 struct blkptr;
   65 struct zap_cursor;
   66 struct dsl_dataset;
   67 struct dsl_pool;
   68 struct dnode;
   69 struct drr_begin;
   70 struct drr_end;
   71 struct zbookmark_phys;
   72 struct spa;
   73 struct nvlist;
   74 struct arc_buf;
   75 struct zio_prop;
   76 struct sa_handle;
   77 struct dsl_crypto_params;
   78 struct locked_range;
   79 
   80 typedef struct objset objset_t;
   81 typedef struct dmu_tx dmu_tx_t;
   82 typedef struct dsl_dir dsl_dir_t;
   83 typedef struct dnode dnode_t;
   84 
   85 typedef enum dmu_object_byteswap {
   86         DMU_BSWAP_UINT8,
   87         DMU_BSWAP_UINT16,
   88         DMU_BSWAP_UINT32,
   89         DMU_BSWAP_UINT64,
   90         DMU_BSWAP_ZAP,
   91         DMU_BSWAP_DNODE,
   92         DMU_BSWAP_OBJSET,
   93         DMU_BSWAP_ZNODE,
   94         DMU_BSWAP_OLDACL,
   95         DMU_BSWAP_ACL,
   96         /*
   97          * Allocating a new byteswap type number makes the on-disk format
   98          * incompatible with any other format that uses the same number.
   99          *
  100          * Data can usually be structured to work with one of the
  101          * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
  102          */
  103         DMU_BSWAP_NUMFUNCS
  104 } dmu_object_byteswap_t;
  105 
  106 #define DMU_OT_NEWTYPE 0x80
  107 #define DMU_OT_METADATA 0x40
  108 #define DMU_OT_ENCRYPTED 0x20
  109 #define DMU_OT_BYTESWAP_MASK 0x1f
  110 
  111 /*
  112  * Defines a uint8_t object type. Object types specify if the data
  113  * in the object is metadata (boolean) and how to byteswap the data
  114  * (dmu_object_byteswap_t). All of the types created by this method
  115  * are cached in the dbuf metadata cache.
  116  */
  117 #define DMU_OT(byteswap, metadata, encrypted) \
  118         (DMU_OT_NEWTYPE | \
  119         ((metadata) ? DMU_OT_METADATA : 0) | \
  120         ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
  121         ((byteswap) & DMU_OT_BYTESWAP_MASK))
  122 
  123 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
  124         ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
  125         (ot) < DMU_OT_NUMTYPES)
  126 
  127 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
  128         B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
  129 
  130 /*
  131  * MDB doesn't have dmu_ot; it defines these macros itself.
  132  */
  133 #ifndef ZFS_MDB
  134 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
  135 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
  136 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
  137 #endif
  138 
  139 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
  140         (((ot) & DMU_OT_METADATA) != 0) : \
  141         DMU_OT_IS_METADATA_IMPL(ot))
  142 
  143 #define DMU_OT_IS_DDT(ot) \
  144         ((ot) == DMU_OT_DDT_ZAP)
  145 
  146 #define DMU_OT_IS_CRITICAL(ot) \
  147         (DMU_OT_IS_METADATA(ot) && \
  148         (ot) != DMU_OT_DNODE && \
  149         (ot) != DMU_OT_DIRECTORY_CONTENTS && \
  150         (ot) != DMU_OT_SA)
  151 
  152 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
  153 #define DMU_OT_IS_FILE(ot) \
  154         ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
  155 
  156 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
  157         (((ot) & DMU_OT_ENCRYPTED) != 0) : \
  158         DMU_OT_IS_ENCRYPTED_IMPL(ot))
  159 
  160 /*
  161  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
  162  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
  163  * is repurposed for embedded BPs.
  164  */
  165 #define DMU_OT_HAS_FILL(ot) \
  166         ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
  167 
  168 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
  169         ((ot) & DMU_OT_BYTESWAP_MASK) : \
  170         DMU_OT_BYTESWAP_IMPL(ot))
  171 
  172 typedef enum dmu_object_type {
  173         DMU_OT_NONE,
  174         /* general: */
  175         DMU_OT_OBJECT_DIRECTORY,        /* ZAP */
  176         DMU_OT_OBJECT_ARRAY,            /* UINT64 */
  177         DMU_OT_PACKED_NVLIST,           /* UINT8 (XDR by nvlist_pack/unpack) */
  178         DMU_OT_PACKED_NVLIST_SIZE,      /* UINT64 */
  179         DMU_OT_BPOBJ,                   /* UINT64 */
  180         DMU_OT_BPOBJ_HDR,               /* UINT64 */
  181         /* spa: */
  182         DMU_OT_SPACE_MAP_HEADER,        /* UINT64 */
  183         DMU_OT_SPACE_MAP,               /* UINT64 */
  184         /* zil: */
  185         DMU_OT_INTENT_LOG,              /* UINT64 */
  186         /* dmu: */
  187         DMU_OT_DNODE,                   /* DNODE */
  188         DMU_OT_OBJSET,                  /* OBJSET */
  189         /* dsl: */
  190         DMU_OT_DSL_DIR,                 /* UINT64 */
  191         DMU_OT_DSL_DIR_CHILD_MAP,       /* ZAP */
  192         DMU_OT_DSL_DS_SNAP_MAP,         /* ZAP */
  193         DMU_OT_DSL_PROPS,               /* ZAP */
  194         DMU_OT_DSL_DATASET,             /* UINT64 */
  195         /* zpl: */
  196         DMU_OT_ZNODE,                   /* ZNODE */
  197         DMU_OT_OLDACL,                  /* Old ACL */
  198         DMU_OT_PLAIN_FILE_CONTENTS,     /* UINT8 */
  199         DMU_OT_DIRECTORY_CONTENTS,      /* ZAP */
  200         DMU_OT_MASTER_NODE,             /* ZAP */
  201         DMU_OT_UNLINKED_SET,            /* ZAP */
  202         /* zvol: */
  203         DMU_OT_ZVOL,                    /* UINT8 */
  204         DMU_OT_ZVOL_PROP,               /* ZAP */
  205         /* other; for testing only! */
  206         DMU_OT_PLAIN_OTHER,             /* UINT8 */
  207         DMU_OT_UINT64_OTHER,            /* UINT64 */
  208         DMU_OT_ZAP_OTHER,               /* ZAP */
  209         /* new object types: */
  210         DMU_OT_ERROR_LOG,               /* ZAP */
  211         DMU_OT_SPA_HISTORY,             /* UINT8 */
  212         DMU_OT_SPA_HISTORY_OFFSETS,     /* spa_his_phys_t */
  213         DMU_OT_POOL_PROPS,              /* ZAP */
  214         DMU_OT_DSL_PERMS,               /* ZAP */
  215         DMU_OT_ACL,                     /* ACL */
  216         DMU_OT_SYSACL,                  /* SYSACL */
  217         DMU_OT_FUID,                    /* FUID table (Packed NVLIST UINT8) */
  218         DMU_OT_FUID_SIZE,               /* FUID table size UINT64 */
  219         DMU_OT_NEXT_CLONES,             /* ZAP */
  220         DMU_OT_SCAN_QUEUE,              /* ZAP */
  221         DMU_OT_USERGROUP_USED,          /* ZAP */
  222         DMU_OT_USERGROUP_QUOTA,         /* ZAP */
  223         DMU_OT_USERREFS,                /* ZAP */
  224         DMU_OT_DDT_ZAP,                 /* ZAP */
  225         DMU_OT_DDT_STATS,               /* ZAP */
  226         DMU_OT_SA,                      /* System attr */
  227         DMU_OT_SA_MASTER_NODE,          /* ZAP */
  228         DMU_OT_SA_ATTR_REGISTRATION,    /* ZAP */
  229         DMU_OT_SA_ATTR_LAYOUTS,         /* ZAP */
  230         DMU_OT_SCAN_XLATE,              /* ZAP */
  231         DMU_OT_DEDUP,                   /* fake dedup BP from ddt_bp_create() */
  232         DMU_OT_DEADLIST,                /* ZAP */
  233         DMU_OT_DEADLIST_HDR,            /* UINT64 */
  234         DMU_OT_DSL_CLONES,              /* ZAP */
  235         DMU_OT_BPOBJ_SUBOBJ,            /* UINT64 */
  236         /*
  237          * Do not allocate new object types here. Doing so makes the on-disk
  238          * format incompatible with any other format that uses the same object
  239          * type number.
  240          *
  241          * When creating an object which does not have one of the above types
  242          * use the DMU_OTN_* type with the correct byteswap and metadata
  243          * values.
  244          *
  245          * The DMU_OTN_* types do not have entries in the dmu_ot table,
  246          * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
  247          * of indexing into dmu_ot directly (this works for both DMU_OT_* types
  248          * and DMU_OTN_* types).
  249          */
  250         DMU_OT_NUMTYPES,
  251 
  252         /*
  253          * Names for valid types declared with DMU_OT().
  254          */
  255         DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
  256         DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
  257         DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
  258         DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
  259         DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
  260         DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
  261         DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
  262         DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
  263         DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
  264         DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
  265 
  266         DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
  267         DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
  268         DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
  269         DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
  270         DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
  271         DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
  272         DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
  273         DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
  274         DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
  275         DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
  276 } dmu_object_type_t;
  277 
  278 /*
  279  * These flags are intended to be used to specify the "txg_how"
  280  * parameter when calling the dmu_tx_assign() function. See the comment
  281  * above dmu_tx_assign() for more details on the meaning of these flags.
  282  */
  283 #define TXG_NOWAIT      (0ULL)
  284 #define TXG_WAIT        (1ULL<<0)
  285 #define TXG_NOTHROTTLE  (1ULL<<1)
  286 
  287 void byteswap_uint64_array(void *buf, size_t size);
  288 void byteswap_uint32_array(void *buf, size_t size);
  289 void byteswap_uint16_array(void *buf, size_t size);
  290 void byteswap_uint8_array(void *buf, size_t size);
  291 void zap_byteswap(void *buf, size_t size);
  292 void zfs_oldacl_byteswap(void *buf, size_t size);
  293 void zfs_acl_byteswap(void *buf, size_t size);
  294 void zfs_znode_byteswap(void *buf, size_t size);
  295 
  296 #define DS_FIND_SNAPSHOTS       (1<<0)
  297 #define DS_FIND_CHILDREN        (1<<1)
  298 #define DS_FIND_SERIALIZE       (1<<2)
  299 
  300 /*
  301  * The maximum number of bytes that can be accessed as part of one
  302  * operation, including metadata.
  303  */
  304 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
  305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
  306 
  307 #define DMU_USERUSED_OBJECT     (-1ULL)
  308 #define DMU_GROUPUSED_OBJECT    (-2ULL)
  309 #define DMU_PROJECTUSED_OBJECT  (-3ULL)
  310 
  311 /*
  312  * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
  313  */
  314 #define DMU_OBJACCT_PREFIX      "obj-"
  315 #define DMU_OBJACCT_PREFIX_LEN  4
  316 
  317 /*
  318  * artificial blkids for bonus buffer and spill blocks
  319  */
  320 #define DMU_BONUS_BLKID         (-1ULL)
  321 #define DMU_SPILL_BLKID         (-2ULL)
  322 
  323 /*
  324  * Public routines to create, destroy, open, and close objsets.
  325  */
  326 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
  327     cred_t *cr, dmu_tx_t *tx);
  328 
  329 int dmu_objset_hold(const char *name, const void *tag, objset_t **osp);
  330 int dmu_objset_own(const char *name, dmu_objset_type_t type,
  331     boolean_t readonly, boolean_t key_required, const void *tag,
  332     objset_t **osp);
  333 void dmu_objset_rele(objset_t *os, const void *tag);
  334 void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag);
  335 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
  336 
  337 void dmu_objset_evict_dbufs(objset_t *os);
  338 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
  339     struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
  340     void *arg);
  341 int dmu_objset_clone(const char *name, const char *origin);
  342 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
  343     struct nvlist *errlist);
  344 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
  345 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
  346     int flags);
  347 void dmu_objset_byteswap(void *buf, size_t size);
  348 int dsl_dataset_rename_snapshot(const char *fsname,
  349     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
  350 
  351 typedef struct dmu_buf {
  352         uint64_t db_object;             /* object that this buffer is part of */
  353         uint64_t db_offset;             /* byte offset in this object */
  354         uint64_t db_size;               /* size of buffer in bytes */
  355         void *db_data;                  /* data in buffer */
  356 } dmu_buf_t;
  357 
  358 /*
  359  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
  360  */
  361 #define DMU_POOL_DIRECTORY_OBJECT       1
  362 #define DMU_POOL_CONFIG                 "config"
  363 #define DMU_POOL_FEATURES_FOR_WRITE     "features_for_write"
  364 #define DMU_POOL_FEATURES_FOR_READ      "features_for_read"
  365 #define DMU_POOL_FEATURE_DESCRIPTIONS   "feature_descriptions"
  366 #define DMU_POOL_FEATURE_ENABLED_TXG    "feature_enabled_txg"
  367 #define DMU_POOL_ROOT_DATASET           "root_dataset"
  368 #define DMU_POOL_SYNC_BPOBJ             "sync_bplist"
  369 #define DMU_POOL_ERRLOG_SCRUB           "errlog_scrub"
  370 #define DMU_POOL_ERRLOG_LAST            "errlog_last"
  371 #define DMU_POOL_SPARES                 "spares"
  372 #define DMU_POOL_DEFLATE                "deflate"
  373 #define DMU_POOL_HISTORY                "history"
  374 #define DMU_POOL_PROPS                  "pool_props"
  375 #define DMU_POOL_L2CACHE                "l2cache"
  376 #define DMU_POOL_TMP_USERREFS           "tmp_userrefs"
  377 #define DMU_POOL_DDT                    "DDT-%s-%s-%s"
  378 #define DMU_POOL_DDT_STATS              "DDT-statistics"
  379 #define DMU_POOL_CREATION_VERSION       "creation_version"
  380 #define DMU_POOL_SCAN                   "scan"
  381 #define DMU_POOL_FREE_BPOBJ             "free_bpobj"
  382 #define DMU_POOL_BPTREE_OBJ             "bptree_obj"
  383 #define DMU_POOL_EMPTY_BPOBJ            "empty_bpobj"
  384 #define DMU_POOL_CHECKSUM_SALT          "org.illumos:checksum_salt"
  385 #define DMU_POOL_VDEV_ZAP_MAP           "com.delphix:vdev_zap_map"
  386 #define DMU_POOL_REMOVING               "com.delphix:removing"
  387 #define DMU_POOL_OBSOLETE_BPOBJ         "com.delphix:obsolete_bpobj"
  388 #define DMU_POOL_CONDENSING_INDIRECT    "com.delphix:condensing_indirect"
  389 #define DMU_POOL_ZPOOL_CHECKPOINT       "com.delphix:zpool_checkpoint"
  390 #define DMU_POOL_LOG_SPACEMAP_ZAP       "com.delphix:log_spacemap_zap"
  391 #define DMU_POOL_DELETED_CLONES         "com.delphix:deleted_clones"
  392 
  393 /*
  394  * Allocate an object from this objset.  The range of object numbers
  395  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
  396  *
  397  * The transaction must be assigned to a txg.  The newly allocated
  398  * object will be "held" in the transaction (ie. you can modify the
  399  * newly allocated object in this transaction).
  400  *
  401  * dmu_object_alloc() chooses an object and returns it in *objectp.
  402  *
  403  * dmu_object_claim() allocates a specific object number.  If that
  404  * number is already allocated, it fails and returns EEXIST.
  405  *
  406  * Return 0 on success, or ENOSPC or EEXIST as specified above.
  407  */
  408 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
  409     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
  410 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
  411     int indirect_blockshift,
  412     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
  413 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
  414     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
  415     int dnodesize, dmu_tx_t *tx);
  416 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
  417     int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
  418     int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag,
  419     dmu_tx_t *tx);
  420 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
  421     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
  422 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
  423     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
  424     int dnodesize, dmu_tx_t *tx);
  425 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
  426     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
  427 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
  428     dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
  429     int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
  430 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
  431 
  432 /*
  433  * Free an object from this objset.
  434  *
  435  * The object's data will be freed as well (ie. you don't need to call
  436  * dmu_free(object, 0, -1, tx)).
  437  *
  438  * The object need not be held in the transaction.
  439  *
  440  * If there are any holds on this object's buffers (via dmu_buf_hold()),
  441  * or tx holds on the object (via dmu_tx_hold_object()), you can not
  442  * free it; it fails and returns EBUSY.
  443  *
  444  * If the object is not allocated, it fails and returns ENOENT.
  445  *
  446  * Return 0 on success, or EBUSY or ENOENT as specified above.
  447  */
  448 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
  449 
  450 /*
  451  * Find the next allocated or free object.
  452  *
  453  * The objectp parameter is in-out.  It will be updated to be the next
  454  * object which is allocated.  Ignore objects which have not been
  455  * modified since txg.
  456  *
  457  * XXX Can only be called on a objset with no dirty data.
  458  *
  459  * Returns 0 on success, or ENOENT if there are no more objects.
  460  */
  461 int dmu_object_next(objset_t *os, uint64_t *objectp,
  462     boolean_t hole, uint64_t txg);
  463 
  464 /*
  465  * Set the number of levels on a dnode. nlevels must be greater than the
  466  * current number of levels or an EINVAL will be returned.
  467  */
  468 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
  469     dmu_tx_t *tx);
  470 
  471 /*
  472  * Set the data blocksize for an object.
  473  *
  474  * The object cannot have any blocks allocated beyond the first.  If
  475  * the first block is allocated already, the new size must be greater
  476  * than the current block size.  If these conditions are not met,
  477  * ENOTSUP will be returned.
  478  *
  479  * Returns 0 on success, or EBUSY if there are any holds on the object
  480  * contents, or ENOTSUP as described above.
  481  */
  482 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
  483     int ibs, dmu_tx_t *tx);
  484 
  485 /*
  486  * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
  487  * to accommodate the change. When calling this function, the caller must
  488  * ensure that the object's nlevels can sufficiently support the new maxblkid.
  489  */
  490 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
  491     dmu_tx_t *tx);
  492 
  493 /*
  494  * Set the checksum property on a dnode.  The new checksum algorithm will
  495  * apply to all newly written blocks; existing blocks will not be affected.
  496  */
  497 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
  498     dmu_tx_t *tx);
  499 
  500 /*
  501  * Set the compress property on a dnode.  The new compression algorithm will
  502  * apply to all newly written blocks; existing blocks will not be affected.
  503  */
  504 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
  505     dmu_tx_t *tx);
  506 
  507 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
  508     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
  509     int compressed_size, int byteorder, dmu_tx_t *tx);
  510 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
  511     dmu_tx_t *tx);
  512 
  513 /*
  514  * Decide how to write a block: checksum, compression, number of copies, etc.
  515  */
  516 #define WP_NOFILL       0x1
  517 #define WP_DMU_SYNC     0x2
  518 #define WP_SPILL        0x4
  519 
  520 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
  521     struct zio_prop *zp);
  522 
  523 /*
  524  * The bonus data is accessed more or less like a regular buffer.
  525  * You must dmu_bonus_hold() to get the buffer, which will give you a
  526  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
  527  * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
  528  * before modifying it, and the
  529  * object must be held in an assigned transaction before calling
  530  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
  531  * buffer as well.  You must release what you hold with dmu_buf_rele().
  532  *
  533  * Returns ENOENT, EIO, or 0.
  534  */
  535 int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag,
  536     dmu_buf_t **dbp);
  537 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
  538     uint32_t flags);
  539 int dmu_bonus_max(void);
  540 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
  541 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
  542 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
  543 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
  544 
  545 /*
  546  * Special spill buffer support used by "SA" framework
  547  */
  548 
  549 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
  550     dmu_buf_t **dbp);
  551 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
  552     const void *tag, dmu_buf_t **dbp);
  553 int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp);
  554 
  555 /*
  556  * Obtain the DMU buffer from the specified object which contains the
  557  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
  558  * that it will remain in memory.  You must release the hold with
  559  * dmu_buf_rele().  You must not access the dmu_buf_t after releasing
  560  * what you hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
  561  *
  562  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
  563  * on the returned buffer before reading or writing the buffer's
  564  * db_data.  The comments for those routines describe what particular
  565  * operations are valid after calling them.
  566  *
  567  * The object number must be a valid, allocated object number.
  568  */
  569 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
  570     const void *tag, dmu_buf_t **, int flags);
  571 int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
  572     uint64_t length, int read, const void *tag, int *numbufsp,
  573     dmu_buf_t ***dbpp);
  574 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
  575     const void *tag, dmu_buf_t **dbp, int flags);
  576 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
  577     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
  578     dmu_buf_t ***dbpp, uint32_t flags);
  579 /*
  580  * Add a reference to a dmu buffer that has already been held via
  581  * dmu_buf_hold() in the current context.
  582  */
  583 void dmu_buf_add_ref(dmu_buf_t *db, const void *tag);
  584 
  585 /*
  586  * Attempt to add a reference to a dmu buffer that is in an unknown state,
  587  * using a pointer that may have been invalidated by eviction processing.
  588  * The request will succeed if the passed in dbuf still represents the
  589  * same os/object/blkid, is ineligible for eviction, and has at least
  590  * one hold by a user other than the syncer.
  591  */
  592 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
  593     uint64_t blkid, const void *tag);
  594 
  595 void dmu_buf_rele(dmu_buf_t *db, const void *tag);
  596 uint64_t dmu_buf_refcount(dmu_buf_t *db);
  597 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
  598 
  599 /*
  600  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
  601  * range of an object.  A pointer to an array of dmu_buf_t*'s is
  602  * returned (in *dbpp).
  603  *
  604  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
  605  * frees the array.  The hold on the array of buffers MUST be released
  606  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
  607  * individually with dmu_buf_rele.
  608  */
  609 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
  610     uint64_t length, boolean_t read, const void *tag,
  611     int *numbufsp, dmu_buf_t ***dbpp);
  612 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag);
  613 
  614 typedef void dmu_buf_evict_func_t(void *user_ptr);
  615 
  616 /*
  617  * A DMU buffer user object may be associated with a dbuf for the
  618  * duration of its lifetime.  This allows the user of a dbuf (client)
  619  * to attach private data to a dbuf (e.g. in-core only data such as a
  620  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
  621  * when that dbuf has been evicted.  Clients typically respond to the
  622  * eviction notification by freeing their private data, thus ensuring
  623  * the same lifetime for both dbuf and private data.
  624  *
  625  * The mapping from a dmu_buf_user_t to any client private data is the
  626  * client's responsibility.  All current consumers of the API with private
  627  * data embed a dmu_buf_user_t as the first member of the structure for
  628  * their private data.  This allows conversions between the two types
  629  * with a simple cast.  Since the DMU buf user API never needs access
  630  * to the private data, other strategies can be employed if necessary
  631  * or convenient for the client (e.g. using container_of() to do the
  632  * conversion for private data that cannot have the dmu_buf_user_t as
  633  * its first member).
  634  *
  635  * Eviction callbacks are executed without the dbuf mutex held or any
  636  * other type of mechanism to guarantee that the dbuf is still available.
  637  * For this reason, users must assume the dbuf has already been freed
  638  * and not reference the dbuf from the callback context.
  639  *
  640  * Users requesting "immediate eviction" are notified as soon as the dbuf
  641  * is only referenced by dirty records (dirties == holds).  Otherwise the
  642  * notification occurs after eviction processing for the dbuf begins.
  643  */
  644 typedef struct dmu_buf_user {
  645         /*
  646          * Asynchronous user eviction callback state.
  647          */
  648         taskq_ent_t     dbu_tqent;
  649 
  650         /*
  651          * This instance's eviction function pointers.
  652          *
  653          * dbu_evict_func_sync is called synchronously and then
  654          * dbu_evict_func_async is executed asynchronously on a taskq.
  655          */
  656         dmu_buf_evict_func_t *dbu_evict_func_sync;
  657         dmu_buf_evict_func_t *dbu_evict_func_async;
  658 #ifdef ZFS_DEBUG
  659         /*
  660          * Pointer to user's dbuf pointer.  NULL for clients that do
  661          * not associate a dbuf with their user data.
  662          *
  663          * The dbuf pointer is cleared upon eviction so as to catch
  664          * use-after-evict bugs in clients.
  665          */
  666         dmu_buf_t **dbu_clear_on_evict_dbufp;
  667 #endif
  668 } dmu_buf_user_t;
  669 
  670 /*
  671  * Initialize the given dmu_buf_user_t instance with the eviction function
  672  * evict_func, to be called when the user is evicted.
  673  *
  674  * NOTE: This function should only be called once on a given dmu_buf_user_t.
  675  *       To allow enforcement of this, dbu must already be zeroed on entry.
  676  */
  677 static inline void
  678 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
  679     dmu_buf_evict_func_t *evict_func_async,
  680     dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
  681 {
  682         ASSERT(dbu->dbu_evict_func_sync == NULL);
  683         ASSERT(dbu->dbu_evict_func_async == NULL);
  684 
  685         /* must have at least one evict func */
  686         IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
  687         dbu->dbu_evict_func_sync = evict_func_sync;
  688         dbu->dbu_evict_func_async = evict_func_async;
  689         taskq_init_ent(&dbu->dbu_tqent);
  690 #ifdef ZFS_DEBUG
  691         dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
  692 #endif
  693 }
  694 
  695 /*
  696  * Attach user data to a dbuf and mark it for normal (when the dbuf's
  697  * data is cleared or its reference count goes to zero) eviction processing.
  698  *
  699  * Returns NULL on success, or the existing user if another user currently
  700  * owns the buffer.
  701  */
  702 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
  703 
  704 /*
  705  * Attach user data to a dbuf and mark it for immediate (its dirty and
  706  * reference counts are equal) eviction processing.
  707  *
  708  * Returns NULL on success, or the existing user if another user currently
  709  * owns the buffer.
  710  */
  711 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
  712 
  713 /*
  714  * Replace the current user of a dbuf.
  715  *
  716  * If given the current user of a dbuf, replaces the dbuf's user with
  717  * "new_user" and returns the user data pointer that was replaced.
  718  * Otherwise returns the current, and unmodified, dbuf user pointer.
  719  */
  720 void *dmu_buf_replace_user(dmu_buf_t *db,
  721     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
  722 
  723 /*
  724  * Remove the specified user data for a DMU buffer.
  725  *
  726  * Returns the user that was removed on success, or the current user if
  727  * another user currently owns the buffer.
  728  */
  729 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
  730 
  731 /*
  732  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
  733  */
  734 void *dmu_buf_get_user(dmu_buf_t *db);
  735 
  736 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
  737 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
  738 void dmu_buf_dnode_exit(dmu_buf_t *db);
  739 
  740 /* Block until any in-progress dmu buf user evictions complete. */
  741 void dmu_buf_user_evict_wait(void);
  742 
  743 /*
  744  * Returns the blkptr associated with this dbuf, or NULL if not set.
  745  */
  746 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
  747 
  748 /*
  749  * Indicate that you are going to modify the buffer's data (db_data).
  750  *
  751  * The transaction (tx) must be assigned to a txg (ie. you've called
  752  * dmu_tx_assign()).  The buffer's object must be held in the tx
  753  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
  754  */
  755 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
  756 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
  757 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
  758     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
  759 
  760 /*
  761  * You must create a transaction, then hold the objects which you will
  762  * (or might) modify as part of this transaction.  Then you must assign
  763  * the transaction to a transaction group.  Once the transaction has
  764  * been assigned, you can modify buffers which belong to held objects as
  765  * part of this transaction.  You can't modify buffers before the
  766  * transaction has been assigned; you can't modify buffers which don't
  767  * belong to objects which this transaction holds; you can't hold
  768  * objects once the transaction has been assigned.  You may hold an
  769  * object which you are going to free (with dmu_object_free()), but you
  770  * don't have to.
  771  *
  772  * You can abort the transaction before it has been assigned.
  773  *
  774  * Note that you may hold buffers (with dmu_buf_hold) at any time,
  775  * regardless of transaction state.
  776  */
  777 
  778 #define DMU_NEW_OBJECT  (-1ULL)
  779 #define DMU_OBJECT_END  (-1ULL)
  780 
  781 dmu_tx_t *dmu_tx_create(objset_t *os);
  782 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
  783 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
  784     int len);
  785 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
  786     uint64_t len);
  787 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
  788     uint64_t len);
  789 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
  790 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
  791     const char *name);
  792 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
  793 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
  794 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
  795 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
  796 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
  797 void dmu_tx_abort(dmu_tx_t *tx);
  798 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
  799 void dmu_tx_wait(dmu_tx_t *tx);
  800 void dmu_tx_commit(dmu_tx_t *tx);
  801 void dmu_tx_mark_netfree(dmu_tx_t *tx);
  802 
  803 /*
  804  * To register a commit callback, dmu_tx_callback_register() must be called.
  805  *
  806  * dcb_data is a pointer to caller private data that is passed on as a
  807  * callback parameter. The caller is responsible for properly allocating and
  808  * freeing it.
  809  *
  810  * When registering a callback, the transaction must be already created, but
  811  * it cannot be committed or aborted. It can be assigned to a txg or not.
  812  *
  813  * The callback will be called after the transaction has been safely written
  814  * to stable storage and will also be called if the dmu_tx is aborted.
  815  * If there is any error which prevents the transaction from being committed to
  816  * disk, the callback will be called with a value of error != 0.
  817  *
  818  * When multiple callbacks are registered to the transaction, the callbacks
  819  * will be called in reverse order to let Lustre, the only user of commit
  820  * callback currently, take the fast path of its commit callback handling.
  821  */
  822 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
  823 
  824 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
  825     void *dcb_data);
  826 void dmu_tx_do_callbacks(list_t *cb_list, int error);
  827 
  828 /*
  829  * Free up the data blocks for a defined range of a file.  If size is
  830  * -1, the range from offset to end-of-file is freed.
  831  */
  832 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
  833     uint64_t size, dmu_tx_t *tx);
  834 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
  835     uint64_t size);
  836 int dmu_free_long_object(objset_t *os, uint64_t object);
  837 
  838 /*
  839  * Convenience functions.
  840  *
  841  * Canfail routines will return 0 on success, or an errno if there is a
  842  * nonrecoverable I/O error.
  843  */
  844 #define DMU_READ_PREFETCH       0 /* prefetch */
  845 #define DMU_READ_NO_PREFETCH    1 /* don't prefetch */
  846 #define DMU_READ_NO_DECRYPT     2 /* don't decrypt */
  847 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
  848         void *buf, uint32_t flags);
  849 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
  850     uint32_t flags);
  851 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
  852         const void *buf, dmu_tx_t *tx);
  853 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
  854     const void *buf, dmu_tx_t *tx);
  855 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
  856         dmu_tx_t *tx);
  857 #ifdef _KERNEL
  858 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
  859 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
  860 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
  861 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
  862         dmu_tx_t *tx);
  863 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
  864         dmu_tx_t *tx);
  865 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
  866         dmu_tx_t *tx);
  867 #endif
  868 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
  869 void dmu_return_arcbuf(struct arc_buf *buf);
  870 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
  871     struct arc_buf *buf, dmu_tx_t *tx);
  872 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
  873     struct arc_buf *buf, dmu_tx_t *tx);
  874 #define dmu_assign_arcbuf       dmu_assign_arcbuf_by_dbuf
  875 extern uint_t zfs_max_recordsize;
  876 
  877 /*
  878  * Asynchronously try to read in the data.
  879  */
  880 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
  881         uint64_t len, enum zio_priority pri);
  882 
  883 typedef struct dmu_object_info {
  884         /* All sizes are in bytes unless otherwise indicated. */
  885         uint32_t doi_data_block_size;
  886         uint32_t doi_metadata_block_size;
  887         dmu_object_type_t doi_type;
  888         dmu_object_type_t doi_bonus_type;
  889         uint64_t doi_bonus_size;
  890         uint8_t doi_indirection;                /* 2 = dnode->indirect->data */
  891         uint8_t doi_checksum;
  892         uint8_t doi_compress;
  893         uint8_t doi_nblkptr;
  894         uint8_t doi_pad[4];
  895         uint64_t doi_dnodesize;
  896         uint64_t doi_physical_blocks_512;       /* data + metadata, 512b blks */
  897         uint64_t doi_max_offset;
  898         uint64_t doi_fill_count;                /* number of non-empty blocks */
  899 } dmu_object_info_t;
  900 
  901 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
  902 
  903 typedef struct dmu_object_type_info {
  904         dmu_object_byteswap_t   ot_byteswap;
  905         boolean_t               ot_metadata;
  906         boolean_t               ot_dbuf_metadata_cache;
  907         boolean_t               ot_encrypt;
  908         const char              *ot_name;
  909 } dmu_object_type_info_t;
  910 
  911 typedef const struct dmu_object_byteswap_info {
  912         arc_byteswap_func_t      ob_func;
  913         const char              *ob_name;
  914 } dmu_object_byteswap_info_t;
  915 
  916 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
  917 extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
  918 
  919 /*
  920  * Get information on a DMU object.
  921  *
  922  * Return 0 on success or ENOENT if object is not allocated.
  923  *
  924  * If doi is NULL, just indicates whether the object exists.
  925  */
  926 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
  927 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
  928 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
  929 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
  930 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
  931 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
  932 /*
  933  * Like dmu_object_info_from_db, but faster still when you only care about
  934  * the size.
  935  */
  936 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
  937     u_longlong_t *nblk512);
  938 
  939 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
  940 
  941 typedef struct dmu_objset_stats {
  942         uint64_t dds_num_clones; /* number of clones of this */
  943         uint64_t dds_creation_txg;
  944         uint64_t dds_guid;
  945         dmu_objset_type_t dds_type;
  946         uint8_t dds_is_snapshot;
  947         uint8_t dds_inconsistent;
  948         uint8_t dds_redacted;
  949         char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
  950 } dmu_objset_stats_t;
  951 
  952 /*
  953  * Get stats on a dataset.
  954  */
  955 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
  956 
  957 /*
  958  * Add entries to the nvlist for all the objset's properties.  See
  959  * zfs_prop_table[] and zfs(1m) for details on the properties.
  960  */
  961 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
  962 
  963 /*
  964  * Get the space usage statistics for statvfs().
  965  *
  966  * refdbytes is the amount of space "referenced" by this objset.
  967  * availbytes is the amount of space available to this objset, taking
  968  * into account quotas & reservations, assuming that no other objsets
  969  * use the space first.  These values correspond to the 'referenced' and
  970  * 'available' properties, described in the zfs(1m) manpage.
  971  *
  972  * usedobjs and availobjs are the number of objects currently allocated,
  973  * and available.
  974  */
  975 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
  976     uint64_t *usedobjsp, uint64_t *availobjsp);
  977 
  978 /*
  979  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
  980  * (Contrast with the ds_guid which is a 64-bit ID that will never
  981  * change, so there is a small probability that it will collide.)
  982  */
  983 uint64_t dmu_objset_fsid_guid(objset_t *os);
  984 
  985 /*
  986  * Get the [cm]time for an objset's snapshot dir
  987  */
  988 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
  989 
  990 int dmu_objset_is_snapshot(objset_t *os);
  991 
  992 extern struct spa *dmu_objset_spa(objset_t *os);
  993 extern struct zilog *dmu_objset_zil(objset_t *os);
  994 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
  995 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
  996 extern void dmu_objset_name(objset_t *os, char *buf);
  997 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
  998 extern uint64_t dmu_objset_id(objset_t *os);
  999 extern uint64_t dmu_objset_dnodesize(objset_t *os);
 1000 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
 1001 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
 1002 extern int dmu_objset_blksize(objset_t *os);
 1003 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
 1004     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
 1005 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
 1006 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
 1007     int maxlen, boolean_t *conflict);
 1008 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
 1009     uint64_t *idp, uint64_t *offp);
 1010 
 1011 typedef struct zfs_file_info {
 1012         uint64_t zfi_user;
 1013         uint64_t zfi_group;
 1014         uint64_t zfi_project;
 1015         uint64_t zfi_generation;
 1016 } zfs_file_info_t;
 1017 
 1018 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
 1019     struct zfs_file_info *zoi);
 1020 extern void dmu_objset_register_type(dmu_objset_type_t ost,
 1021     file_info_cb_t *cb);
 1022 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
 1023 extern void *dmu_objset_get_user(objset_t *os);
 1024 
 1025 /*
 1026  * Return the txg number for the given assigned transaction.
 1027  */
 1028 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
 1029 
 1030 /*
 1031  * Synchronous write.
 1032  * If a parent zio is provided this function initiates a write on the
 1033  * provided buffer as a child of the parent zio.
 1034  * In the absence of a parent zio, the write is completed synchronously.
 1035  * At write completion, blk is filled with the bp of the written block.
 1036  * Note that while the data covered by this function will be on stable
 1037  * storage when the write completes this new data does not become a
 1038  * permanent part of the file until the associated transaction commits.
 1039  */
 1040 
 1041 /*
 1042  * {zfs,zvol,ztest}_get_done() args
 1043  */
 1044 typedef struct zgd {
 1045         struct lwb      *zgd_lwb;
 1046         struct blkptr   *zgd_bp;
 1047         dmu_buf_t       *zgd_db;
 1048         struct zfs_locked_range *zgd_lr;
 1049         void            *zgd_private;
 1050 } zgd_t;
 1051 
 1052 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
 1053 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
 1054 
 1055 /*
 1056  * Find the next hole or data block in file starting at *off
 1057  * Return found offset in *off. Return ESRCH for end of file.
 1058  */
 1059 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
 1060     uint64_t *off);
 1061 
 1062 /*
 1063  * Initial setup and final teardown.
 1064  */
 1065 extern void dmu_init(void);
 1066 extern void dmu_fini(void);
 1067 
 1068 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
 1069     uint64_t object, uint64_t offset, int len);
 1070 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
 1071     dmu_traverse_cb_t cb, void *arg);
 1072 
 1073 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
 1074     zfs_file_t *fp, offset_t *offp);
 1075 
 1076 /* CRC64 table */
 1077 #define ZFS_CRC64_POLY  0xC96C5795D7870F42ULL   /* ECMA-182, reflected form */
 1078 extern uint64_t zfs_crc64_table[256];
 1079 
 1080 extern uint_t dmu_prefetch_max;
 1081 
 1082 #ifdef  __cplusplus
 1083 }
 1084 #endif
 1085 
 1086 #endif  /* _SYS_DMU_H */

Cache object: 6535dccf09891ee01314adec56d8fd88


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.