The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/include/sys/zap.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
   25  * Copyright 2017 Nexenta Systems, Inc.
   26  */
   27 
   28 #ifndef _SYS_ZAP_H
   29 #define _SYS_ZAP_H
   30 
   31 /*
   32  * ZAP - ZFS Attribute Processor
   33  *
   34  * The ZAP is a module which sits on top of the DMU (Data Management
   35  * Unit) and implements a higher-level storage primitive using DMU
   36  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
   37  *
   38  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
   39  * Users should use only zap routines to access a zapobj - they should
   40  * not access the DMU object directly using DMU routines.
   41  *
   42  * The attributes stored in a zapobj are name-value pairs.  The name is
   43  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
   44  * terminating NULL).  The value is an array of integers, which may be
   45  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
   46  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
   47  * Note that an 8-byte integer value can be used to store the location
   48  * (object number) of another dmu object (which may be itself a zapobj).
   49  * Note that you can use a zero-length attribute to store a single bit
   50  * of information - the attribute is present or not.
   51  *
   52  * The ZAP routines are thread-safe.  However, you must observe the
   53  * DMU's restriction that a transaction may not be operated on
   54  * concurrently.
   55  *
   56  * Any of the routines that return an int may return an I/O error (EIO
   57  * or ECHECKSUM).
   58  *
   59  *
   60  * Implementation / Performance Notes:
   61  *
   62  * The ZAP is intended to operate most efficiently on attributes with
   63  * short (49 bytes or less) names and single 8-byte values, for which
   64  * the microzap will be used.  The ZAP should be efficient enough so
   65  * that the user does not need to cache these attributes.
   66  *
   67  * The ZAP's locking scheme makes its routines thread-safe.  Operations
   68  * on different zapobjs will be processed concurrently.  Operations on
   69  * the same zapobj which only read data will be processed concurrently.
   70  * Operations on the same zapobj which modify data will be processed
   71  * concurrently when there are many attributes in the zapobj (because
   72  * the ZAP uses per-block locking - more than 128 * (number of cpus)
   73  * small attributes will suffice).
   74  */
   75 
   76 /*
   77  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
   78  * strings) for the names of attributes, rather than a byte string
   79  * bounded by an explicit length.  If some day we want to support names
   80  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
   81  * we'll have to add routines for using length-bounded strings.
   82  */
   83 
   84 #include <sys/dmu.h>
   85 
   86 #ifdef  __cplusplus
   87 extern "C" {
   88 #endif
   89 
   90 /*
   91  * Specifies matching criteria for ZAP lookups.
   92  * MT_NORMALIZE         Use ZAP normalization flags, which can include both
   93  *                      unicode normalization and case-insensitivity.
   94  * MT_MATCH_CASE        Do case-sensitive lookups even if MT_NORMALIZE is
   95  *                      specified and ZAP normalization flags include
   96  *                      U8_TEXTPREP_TOUPPER.
   97  */
   98 typedef enum matchtype {
   99         MT_NORMALIZE = 1 << 0,
  100         MT_MATCH_CASE = 1 << 1,
  101 } matchtype_t;
  102 
  103 typedef enum zap_flags {
  104         /* Use 64-bit hash value (serialized cursors will always use 64-bits) */
  105         ZAP_FLAG_HASH64 = 1 << 0,
  106         /* Key is binary, not string (zap_add_uint64() can be used) */
  107         ZAP_FLAG_UINT64_KEY = 1 << 1,
  108         /*
  109          * First word of key (which must be an array of uint64) is
  110          * already randomly distributed.
  111          */
  112         ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
  113 #if defined(__linux__) && defined(_KERNEL)
  114 } zfs_zap_flags_t;
  115 #define zap_flags_t     zfs_zap_flags_t
  116 #else
  117 } zap_flags_t;
  118 #endif
  119 
  120 /*
  121  * Create a new zapobj with no attributes and return its object number.
  122  */
  123 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
  124     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
  125 uint64_t zap_create_dnsize(objset_t *ds, dmu_object_type_t ot,
  126     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
  127 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
  128     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
  129 uint64_t zap_create_norm_dnsize(objset_t *ds, int normflags,
  130     dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
  131     int dnodesize, dmu_tx_t *tx);
  132 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
  133     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
  134     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
  135 uint64_t zap_create_flags_dnsize(objset_t *os, int normflags,
  136     zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift,
  137     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
  138     int dnodesize, dmu_tx_t *tx);
  139 uint64_t zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
  140     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
  141     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
  142     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx);
  143 
  144 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
  145     uint64_t parent_obj, const char *name, dmu_tx_t *tx);
  146 uint64_t zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot,
  147     uint64_t parent_obj, const char *name, int dnodesize, dmu_tx_t *tx);
  148 
  149 /*
  150  * Initialize an already-allocated object.
  151  */
  152 void mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags,
  153     dmu_tx_t *tx);
  154 
  155 /*
  156  * Create a new zapobj with no attributes from the given (unallocated)
  157  * object number.
  158  */
  159 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
  160     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
  161 int zap_create_claim_dnsize(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
  162     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
  163 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
  164     int normflags, dmu_object_type_t ot,
  165     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
  166 int zap_create_claim_norm_dnsize(objset_t *ds, uint64_t obj,
  167     int normflags, dmu_object_type_t ot,
  168     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
  169 
  170 /*
  171  * The zapobj passed in must be a valid ZAP object for all of the
  172  * following routines.
  173  */
  174 
  175 /*
  176  * Destroy this zapobj and all its attributes.
  177  *
  178  * Frees the object number using dmu_object_free.
  179  */
  180 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
  181 
  182 /*
  183  * Manipulate attributes.
  184  *
  185  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
  186  */
  187 
  188 /*
  189  * Retrieve the contents of the attribute with the given name.
  190  *
  191  * If the requested attribute does not exist, the call will fail and
  192  * return ENOENT.
  193  *
  194  * If 'integer_size' is smaller than the attribute's integer size, the
  195  * call will fail and return EINVAL.
  196  *
  197  * If 'integer_size' is equal to or larger than the attribute's integer
  198  * size, the call will succeed and return 0.
  199  *
  200  * When converting to a larger integer size, the integers will be treated as
  201  * unsigned (ie. no sign-extension will be performed).
  202  *
  203  * 'num_integers' is the length (in integers) of 'buf'.
  204  *
  205  * If the attribute is longer than the buffer, as many integers as will
  206  * fit will be transferred to 'buf'.  If the entire attribute was not
  207  * transferred, the call will return EOVERFLOW.
  208  */
  209 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
  210     uint64_t integer_size, uint64_t num_integers, void *buf);
  211 
  212 /*
  213  * If rn_len is nonzero, realname will be set to the name of the found
  214  * entry (which may be different from the requested name if matchtype is
  215  * not MT_EXACT).
  216  *
  217  * If normalization_conflictp is not NULL, it will be set if there is
  218  * another name with the same case/unicode normalized form.
  219  */
  220 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
  221     uint64_t integer_size, uint64_t num_integers, void *buf,
  222     matchtype_t mt, char *realname, int rn_len,
  223     boolean_t *normalization_conflictp);
  224 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
  225     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
  226 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
  227 int zap_prefetch(objset_t *os, uint64_t zapobj, const char *name);
  228 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
  229     int key_numints);
  230 
  231 int zap_lookup_by_dnode(dnode_t *dn, const char *name,
  232     uint64_t integer_size, uint64_t num_integers, void *buf);
  233 int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
  234     uint64_t integer_size, uint64_t num_integers, void *buf,
  235     matchtype_t mt, char *realname, int rn_len,
  236     boolean_t *ncp);
  237 
  238 int zap_count_write_by_dnode(dnode_t *dn, const char *name,
  239     int add, zfs_refcount_t *towrite, zfs_refcount_t *tooverwrite);
  240 
  241 /*
  242  * Create an attribute with the given name and value.
  243  *
  244  * If an attribute with the given name already exists, the call will
  245  * fail and return EEXIST.
  246  */
  247 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
  248     int integer_size, uint64_t num_integers,
  249     const void *val, dmu_tx_t *tx);
  250 int zap_add_by_dnode(dnode_t *dn, const char *key,
  251     int integer_size, uint64_t num_integers,
  252     const void *val, dmu_tx_t *tx);
  253 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
  254     int key_numints, int integer_size, uint64_t num_integers,
  255     const void *val, dmu_tx_t *tx);
  256 
  257 /*
  258  * Set the attribute with the given name to the given value.  If an
  259  * attribute with the given name does not exist, it will be created.  If
  260  * an attribute with the given name already exists, the previous value
  261  * will be overwritten.  The integer_size may be different from the
  262  * existing attribute's integer size, in which case the attribute's
  263  * integer size will be updated to the new value.
  264  */
  265 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
  266     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
  267 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
  268     int key_numints,
  269     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
  270 
  271 /*
  272  * Get the length (in integers) and the integer size of the specified
  273  * attribute.
  274  *
  275  * If the requested attribute does not exist, the call will fail and
  276  * return ENOENT.
  277  */
  278 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
  279     uint64_t *integer_size, uint64_t *num_integers);
  280 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
  281     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
  282 
  283 /*
  284  * Remove the specified attribute.
  285  *
  286  * If the specified attribute does not exist, the call will fail and
  287  * return ENOENT.
  288  */
  289 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
  290 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
  291     matchtype_t mt, dmu_tx_t *tx);
  292 int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx);
  293 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
  294     int key_numints, dmu_tx_t *tx);
  295 
  296 /*
  297  * Returns (in *count) the number of attributes in the specified zap
  298  * object.
  299  */
  300 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
  301 
  302 /*
  303  * Returns (in name) the name of the entry whose (value & mask)
  304  * (za_first_integer) is value, or ENOENT if not found.  The string
  305  * pointed to by name must be at least 256 bytes long.  If mask==0, the
  306  * match must be exact (ie, same as mask=-1ULL).
  307  */
  308 int zap_value_search(objset_t *os, uint64_t zapobj,
  309     uint64_t value, uint64_t mask, char *name);
  310 
  311 /*
  312  * Transfer all the entries from fromobj into intoobj.  Only works on
  313  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
  314  * entries.
  315  */
  316 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
  317 
  318 /* Same as zap_join, but set the values to 'value'. */
  319 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
  320     uint64_t value, dmu_tx_t *tx);
  321 
  322 /* Same as zap_join, but add together any duplicated entries. */
  323 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
  324     dmu_tx_t *tx);
  325 
  326 /*
  327  * Manipulate entries where the name + value are the "same" (the name is
  328  * a stringified version of the value).
  329  */
  330 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
  331 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
  332 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
  333 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
  334     dmu_tx_t *tx);
  335 
  336 /* Here the key is an int and the value is a different int. */
  337 int zap_add_int_key(objset_t *os, uint64_t obj,
  338     uint64_t key, uint64_t value, dmu_tx_t *tx);
  339 int zap_update_int_key(objset_t *os, uint64_t obj,
  340     uint64_t key, uint64_t value, dmu_tx_t *tx);
  341 int zap_lookup_int_key(objset_t *os, uint64_t obj,
  342     uint64_t key, uint64_t *valuep);
  343 
  344 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
  345     dmu_tx_t *tx);
  346 
  347 struct zap;
  348 struct zap_leaf;
  349 typedef struct zap_cursor {
  350         /* This structure is opaque! */
  351         objset_t *zc_objset;
  352         struct zap *zc_zap;
  353         struct zap_leaf *zc_leaf;
  354         uint64_t zc_zapobj;
  355         uint64_t zc_serialized;
  356         uint64_t zc_hash;
  357         uint32_t zc_cd;
  358         boolean_t zc_prefetch;
  359 } zap_cursor_t;
  360 
  361 typedef struct {
  362         int za_integer_length;
  363         /*
  364          * za_normalization_conflict will be set if there are additional
  365          * entries with this normalized form (eg, "foo" and "Foo").
  366          */
  367         boolean_t za_normalization_conflict;
  368         uint64_t za_num_integers;
  369         uint64_t za_first_integer;      /* no sign extension for <8byte ints */
  370         char za_name[ZAP_MAXNAMELEN];
  371 } zap_attribute_t;
  372 
  373 /*
  374  * The interface for listing all the attributes of a zapobj can be
  375  * thought of as cursor moving down a list of the attributes one by
  376  * one.  The cookie returned by the zap_cursor_serialize routine is
  377  * persistent across system calls (and across reboot, even).
  378  */
  379 
  380 /*
  381  * Initialize a zap cursor, pointing to the "first" attribute of the
  382  * zapobj.  You must _fini the cursor when you are done with it.
  383  */
  384 void zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj);
  385 void zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os,
  386     uint64_t zapobj);
  387 void zap_cursor_fini(zap_cursor_t *zc);
  388 
  389 /*
  390  * Get the attribute currently pointed to by the cursor.  Returns
  391  * ENOENT if at the end of the attributes.
  392  */
  393 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
  394 
  395 /*
  396  * Advance the cursor to the next attribute.
  397  */
  398 void zap_cursor_advance(zap_cursor_t *zc);
  399 
  400 /*
  401  * Get a persistent cookie pointing to the current position of the zap
  402  * cursor.  The low 4 bits in the cookie are always zero, and thus can
  403  * be used as to differentiate a serialized cookie from a different type
  404  * of value.  The cookie will be less than 2^32 as long as there are
  405  * fewer than 2^22 (4.2 million) entries in the zap object.
  406  */
  407 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
  408 
  409 /*
  410  * Initialize a zap cursor pointing to the position recorded by
  411  * zap_cursor_serialize (in the "serialized" argument).  You can also
  412  * use a "serialized" argument of 0 to start at the beginning of the
  413  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
  414  * zap_cursor_init(...).)
  415  */
  416 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
  417     uint64_t zapobj, uint64_t serialized);
  418 
  419 
  420 #define ZAP_HISTOGRAM_SIZE 10
  421 
  422 typedef struct zap_stats {
  423         /*
  424          * Size of the pointer table (in number of entries).
  425          * This is always a power of 2, or zero if it's a microzap.
  426          * In general, it should be considerably greater than zs_num_leafs.
  427          */
  428         uint64_t zs_ptrtbl_len;
  429 
  430         uint64_t zs_blocksize;          /* size of zap blocks */
  431 
  432         /*
  433          * The number of blocks used.  Note that some blocks may be
  434          * wasted because old ptrtbl's and large name/value blocks are
  435          * not reused.  (Although their space is reclaimed, we don't
  436          * reuse those offsets in the object.)
  437          */
  438         uint64_t zs_num_blocks;
  439 
  440         /*
  441          * Pointer table values from zap_ptrtbl in the zap_phys_t
  442          */
  443         uint64_t zs_ptrtbl_nextblk;       /* next (larger) copy start block */
  444         uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
  445         uint64_t zs_ptrtbl_zt_blk;        /* starting block number */
  446         uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
  447         uint64_t zs_ptrtbl_zt_shift;      /* bits to index it */
  448 
  449         /*
  450          * Values of the other members of the zap_phys_t
  451          */
  452         uint64_t zs_block_type;         /* ZBT_HEADER */
  453         uint64_t zs_magic;              /* ZAP_MAGIC */
  454         uint64_t zs_num_leafs;          /* The number of leaf blocks */
  455         uint64_t zs_num_entries;        /* The number of zap entries */
  456         uint64_t zs_salt;               /* salt to stir into hash function */
  457 
  458         /*
  459          * Histograms.  For all histograms, the last index
  460          * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
  461          * than what can be represented.  For example
  462          * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
  463          * of leafs with more than 45 entries.
  464          */
  465 
  466         /*
  467          * zs_leafs_with_n_pointers[n] is the number of leafs with
  468          * 2^n pointers to it.
  469          */
  470         uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
  471 
  472         /*
  473          * zs_leafs_with_n_entries[n] is the number of leafs with
  474          * [n*5, (n+1)*5) entries.  In the current implementation, there
  475          * can be at most 55 entries in any block, but there may be
  476          * fewer if the name or value is large, or the block is not
  477          * completely full.
  478          */
  479         uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
  480 
  481         /*
  482          * zs_leafs_n_tenths_full[n] is the number of leafs whose
  483          * fullness is in the range [n/10, (n+1)/10).
  484          */
  485         uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
  486 
  487         /*
  488          * zs_entries_using_n_chunks[n] is the number of entries which
  489          * consume n 24-byte chunks.  (Note, large names/values only use
  490          * one chunk, but contribute to zs_num_blocks_large.)
  491          */
  492         uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
  493 
  494         /*
  495          * zs_buckets_with_n_entries[n] is the number of buckets (each
  496          * leaf has 64 buckets) with n entries.
  497          * zs_buckets_with_n_entries[1] should be very close to
  498          * zs_num_entries.
  499          */
  500         uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
  501 } zap_stats_t;
  502 
  503 /*
  504  * Get statistics about a ZAP object.  Note: you need to be aware of the
  505  * internal implementation of the ZAP to correctly interpret some of the
  506  * statistics.  This interface shouldn't be relied on unless you really
  507  * know what you're doing.
  508  */
  509 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
  510 
  511 #ifdef  __cplusplus
  512 }
  513 #endif
  514 
  515 #endif  /* _SYS_ZAP_H */

Cache object: f7d214a6afd1f1697e9c666decc3f8bd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.