1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright 2017 RackTop Systems.
26 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
27 * Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 */
30
31 /*
32 * LibZFS_Core (lzc) is intended to replace most functionality in libzfs.
33 * It has the following characteristics:
34 *
35 * - Thread Safe. libzfs_core is accessible concurrently from multiple
36 * threads. This is accomplished primarily by avoiding global data
37 * (e.g. caching). Since it's thread-safe, there is no reason for a
38 * process to have multiple libzfs "instances". Therefore, we store
39 * our few pieces of data (e.g. the file descriptor) in global
40 * variables. The fd is reference-counted so that the libzfs_core
41 * library can be "initialized" multiple times (e.g. by different
42 * consumers within the same process).
43 *
44 * - Committed Interface. The libzfs_core interface will be committed,
45 * therefore consumers can compile against it and be confident that
46 * their code will continue to work on future releases of this code.
47 * Currently, the interface is Evolving (not Committed), but we intend
48 * to commit to it once it is more complete and we determine that it
49 * meets the needs of all consumers.
50 *
51 * - Programmatic Error Handling. libzfs_core communicates errors with
52 * defined error numbers, and doesn't print anything to stdout/stderr.
53 *
54 * - Thin Layer. libzfs_core is a thin layer, marshaling arguments
55 * to/from the kernel ioctls. There is generally a 1:1 correspondence
56 * between libzfs_core functions and ioctls to ZFS_DEV.
57 *
58 * - Clear Atomicity. Because libzfs_core functions are generally 1:1
59 * with kernel ioctls, and kernel ioctls are general atomic, each
60 * libzfs_core function is atomic. For example, creating multiple
61 * snapshots with a single call to lzc_snapshot() is atomic -- it
62 * can't fail with only some of the requested snapshots created, even
63 * in the event of power loss or system crash.
64 *
65 * - Continued libzfs Support. Some higher-level operations (e.g.
66 * support for "zfs send -R") are too complicated to fit the scope of
67 * libzfs_core. This functionality will continue to live in libzfs.
68 * Where appropriate, libzfs will use the underlying atomic operations
69 * of libzfs_core. For example, libzfs may implement "zfs send -R |
70 * zfs receive" by using individual "send one snapshot", rename,
71 * destroy, and "receive one snapshot" operations in libzfs_core.
72 * /sbin/zfs and /sbin/zpool will link with both libzfs and
73 * libzfs_core. Other consumers should aim to use only libzfs_core,
74 * since that will be the supported, stable interface going forwards.
75 */
76
77 #include <libzfs_core.h>
78 #include <ctype.h>
79 #include <unistd.h>
80 #include <stdlib.h>
81 #include <string.h>
82 #ifdef ZFS_DEBUG
83 #include <stdio.h>
84 #endif
85 #include <errno.h>
86 #include <fcntl.h>
87 #include <pthread.h>
88 #include <libzutil.h>
89 #include <sys/nvpair.h>
90 #include <sys/param.h>
91 #include <sys/types.h>
92 #include <sys/stat.h>
93 #include <sys/zfs_ioctl.h>
94 #if __FreeBSD__
95 #define BIG_PIPE_SIZE (64 * 1024) /* From sys/pipe.h */
96 #endif
97
98 static int g_fd = -1;
99 static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER;
100 static int g_refcount;
101
102 #ifdef ZFS_DEBUG
103 static zfs_ioc_t fail_ioc_cmd = ZFS_IOC_LAST;
104 static zfs_errno_t fail_ioc_err;
105
106 static void
107 libzfs_core_debug_ioc(void)
108 {
109 /*
110 * To test running newer user space binaries with kernel's
111 * that don't yet support an ioctl or a new ioctl arg we
112 * provide an override to intentionally fail an ioctl.
113 *
114 * USAGE:
115 * The override variable, ZFS_IOC_TEST, is of the form "cmd:err"
116 *
117 * For example, to fail a ZFS_IOC_POOL_CHECKPOINT with a
118 * ZFS_ERR_IOC_CMD_UNAVAIL, the string would be "0x5a4d:1029"
119 *
120 * $ sudo sh -c "ZFS_IOC_TEST=0x5a4d:1029 zpool checkpoint tank"
121 * cannot checkpoint 'tank': the loaded zfs module does not support
122 * this operation. A reboot may be required to enable this operation.
123 */
124 if (fail_ioc_cmd == ZFS_IOC_LAST) {
125 char *ioc_test = getenv("ZFS_IOC_TEST");
126 unsigned int ioc_num = 0, ioc_err = 0;
127
128 if (ioc_test != NULL &&
129 sscanf(ioc_test, "%i:%i", &ioc_num, &ioc_err) == 2 &&
130 ioc_num < ZFS_IOC_LAST) {
131 fail_ioc_cmd = ioc_num;
132 fail_ioc_err = ioc_err;
133 }
134 }
135 }
136 #endif
137
138 int
139 libzfs_core_init(void)
140 {
141 (void) pthread_mutex_lock(&g_lock);
142 if (g_refcount == 0) {
143 g_fd = open(ZFS_DEV, O_RDWR|O_CLOEXEC);
144 if (g_fd < 0) {
145 (void) pthread_mutex_unlock(&g_lock);
146 return (errno);
147 }
148 }
149 g_refcount++;
150
151 #ifdef ZFS_DEBUG
152 libzfs_core_debug_ioc();
153 #endif
154 (void) pthread_mutex_unlock(&g_lock);
155 return (0);
156 }
157
158 void
159 libzfs_core_fini(void)
160 {
161 (void) pthread_mutex_lock(&g_lock);
162 ASSERT3S(g_refcount, >, 0);
163
164 g_refcount--;
165
166 if (g_refcount == 0 && g_fd != -1) {
167 (void) close(g_fd);
168 g_fd = -1;
169 }
170 (void) pthread_mutex_unlock(&g_lock);
171 }
172
173 static int
174 lzc_ioctl(zfs_ioc_t ioc, const char *name,
175 nvlist_t *source, nvlist_t **resultp)
176 {
177 zfs_cmd_t zc = {"\0"};
178 int error = 0;
179 char *packed = NULL;
180 size_t size = 0;
181
182 ASSERT3S(g_refcount, >, 0);
183 VERIFY3S(g_fd, !=, -1);
184
185 #ifdef ZFS_DEBUG
186 if (ioc == fail_ioc_cmd)
187 return (fail_ioc_err);
188 #endif
189
190 if (name != NULL)
191 (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name));
192
193 if (source != NULL) {
194 packed = fnvlist_pack(source, &size);
195 zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed;
196 zc.zc_nvlist_src_size = size;
197 }
198
199 if (resultp != NULL) {
200 *resultp = NULL;
201 if (ioc == ZFS_IOC_CHANNEL_PROGRAM) {
202 zc.zc_nvlist_dst_size = fnvlist_lookup_uint64(source,
203 ZCP_ARG_MEMLIMIT);
204 } else {
205 zc.zc_nvlist_dst_size = MAX(size * 2, 128 * 1024);
206 }
207 zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
208 malloc(zc.zc_nvlist_dst_size);
209 if (zc.zc_nvlist_dst == (uint64_t)0) {
210 error = ENOMEM;
211 goto out;
212 }
213 }
214
215 while (lzc_ioctl_fd(g_fd, ioc, &zc) != 0) {
216 /*
217 * If ioctl exited with ENOMEM, we retry the ioctl after
218 * increasing the size of the destination nvlist.
219 *
220 * Channel programs that exit with ENOMEM ran over the
221 * lua memory sandbox; they should not be retried.
222 */
223 if (errno == ENOMEM && resultp != NULL &&
224 ioc != ZFS_IOC_CHANNEL_PROGRAM) {
225 free((void *)(uintptr_t)zc.zc_nvlist_dst);
226 zc.zc_nvlist_dst_size *= 2;
227 zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
228 malloc(zc.zc_nvlist_dst_size);
229 if (zc.zc_nvlist_dst == (uint64_t)0) {
230 error = ENOMEM;
231 goto out;
232 }
233 } else {
234 error = errno;
235 break;
236 }
237 }
238 if (zc.zc_nvlist_dst_filled && resultp != NULL) {
239 *resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst,
240 zc.zc_nvlist_dst_size);
241 }
242
243 out:
244 if (packed != NULL)
245 fnvlist_pack_free(packed, size);
246 free((void *)(uintptr_t)zc.zc_nvlist_dst);
247 return (error);
248 }
249
250 int
251 lzc_create(const char *fsname, enum lzc_dataset_type type, nvlist_t *props,
252 uint8_t *wkeydata, uint_t wkeylen)
253 {
254 int error;
255 nvlist_t *hidden_args = NULL;
256 nvlist_t *args = fnvlist_alloc();
257
258 fnvlist_add_int32(args, "type", (dmu_objset_type_t)type);
259 if (props != NULL)
260 fnvlist_add_nvlist(args, "props", props);
261
262 if (wkeydata != NULL) {
263 hidden_args = fnvlist_alloc();
264 fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata,
265 wkeylen);
266 fnvlist_add_nvlist(args, ZPOOL_HIDDEN_ARGS, hidden_args);
267 }
268
269 error = lzc_ioctl(ZFS_IOC_CREATE, fsname, args, NULL);
270 nvlist_free(hidden_args);
271 nvlist_free(args);
272 return (error);
273 }
274
275 int
276 lzc_clone(const char *fsname, const char *origin, nvlist_t *props)
277 {
278 int error;
279 nvlist_t *hidden_args = NULL;
280 nvlist_t *args = fnvlist_alloc();
281
282 fnvlist_add_string(args, "origin", origin);
283 if (props != NULL)
284 fnvlist_add_nvlist(args, "props", props);
285 error = lzc_ioctl(ZFS_IOC_CLONE, fsname, args, NULL);
286 nvlist_free(hidden_args);
287 nvlist_free(args);
288 return (error);
289 }
290
291 int
292 lzc_promote(const char *fsname, char *snapnamebuf, int snapnamelen)
293 {
294 /*
295 * The promote ioctl is still legacy, so we need to construct our
296 * own zfs_cmd_t rather than using lzc_ioctl().
297 */
298 zfs_cmd_t zc = {"\0"};
299
300 ASSERT3S(g_refcount, >, 0);
301 VERIFY3S(g_fd, !=, -1);
302
303 (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name));
304 if (lzc_ioctl_fd(g_fd, ZFS_IOC_PROMOTE, &zc) != 0) {
305 int error = errno;
306 if (error == EEXIST && snapnamebuf != NULL)
307 (void) strlcpy(snapnamebuf, zc.zc_string, snapnamelen);
308 return (error);
309 }
310 return (0);
311 }
312
313 int
314 lzc_rename(const char *source, const char *target)
315 {
316 zfs_cmd_t zc = {"\0"};
317 int error;
318
319 ASSERT3S(g_refcount, >, 0);
320 VERIFY3S(g_fd, !=, -1);
321 (void) strlcpy(zc.zc_name, source, sizeof (zc.zc_name));
322 (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value));
323 error = lzc_ioctl_fd(g_fd, ZFS_IOC_RENAME, &zc);
324 if (error != 0)
325 error = errno;
326 return (error);
327 }
328
329 int
330 lzc_destroy(const char *fsname)
331 {
332 int error;
333 nvlist_t *args = fnvlist_alloc();
334 error = lzc_ioctl(ZFS_IOC_DESTROY, fsname, args, NULL);
335 nvlist_free(args);
336 return (error);
337 }
338
339 /*
340 * Creates snapshots.
341 *
342 * The keys in the snaps nvlist are the snapshots to be created.
343 * They must all be in the same pool.
344 *
345 * The props nvlist is properties to set. Currently only user properties
346 * are supported. { user:prop_name -> string value }
347 *
348 * The returned results nvlist will have an entry for each snapshot that failed.
349 * The value will be the (int32) error code.
350 *
351 * The return value will be 0 if all snapshots were created, otherwise it will
352 * be the errno of a (unspecified) snapshot that failed.
353 */
354 int
355 lzc_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t **errlist)
356 {
357 nvpair_t *elem;
358 nvlist_t *args;
359 int error;
360 char pool[ZFS_MAX_DATASET_NAME_LEN];
361
362 *errlist = NULL;
363
364 /* determine the pool name */
365 elem = nvlist_next_nvpair(snaps, NULL);
366 if (elem == NULL)
367 return (0);
368 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
369 pool[strcspn(pool, "/@")] = '\0';
370
371 args = fnvlist_alloc();
372 fnvlist_add_nvlist(args, "snaps", snaps);
373 if (props != NULL)
374 fnvlist_add_nvlist(args, "props", props);
375
376 error = lzc_ioctl(ZFS_IOC_SNAPSHOT, pool, args, errlist);
377 nvlist_free(args);
378
379 return (error);
380 }
381
382 /*
383 * Destroys snapshots.
384 *
385 * The keys in the snaps nvlist are the snapshots to be destroyed.
386 * They must all be in the same pool.
387 *
388 * Snapshots that do not exist will be silently ignored.
389 *
390 * If 'defer' is not set, and a snapshot has user holds or clones, the
391 * destroy operation will fail and none of the snapshots will be
392 * destroyed.
393 *
394 * If 'defer' is set, and a snapshot has user holds or clones, it will be
395 * marked for deferred destruction, and will be destroyed when the last hold
396 * or clone is removed/destroyed.
397 *
398 * The return value will be 0 if all snapshots were destroyed (or marked for
399 * later destruction if 'defer' is set) or didn't exist to begin with.
400 *
401 * Otherwise the return value will be the errno of a (unspecified) snapshot
402 * that failed, no snapshots will be destroyed, and the errlist will have an
403 * entry for each snapshot that failed. The value in the errlist will be
404 * the (int32) error code.
405 */
406 int
407 lzc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist)
408 {
409 nvpair_t *elem;
410 nvlist_t *args;
411 int error;
412 char pool[ZFS_MAX_DATASET_NAME_LEN];
413
414 /* determine the pool name */
415 elem = nvlist_next_nvpair(snaps, NULL);
416 if (elem == NULL)
417 return (0);
418 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
419 pool[strcspn(pool, "/@")] = '\0';
420
421 args = fnvlist_alloc();
422 fnvlist_add_nvlist(args, "snaps", snaps);
423 if (defer)
424 fnvlist_add_boolean(args, "defer");
425
426 error = lzc_ioctl(ZFS_IOC_DESTROY_SNAPS, pool, args, errlist);
427 nvlist_free(args);
428
429 return (error);
430 }
431
432 int
433 lzc_snaprange_space(const char *firstsnap, const char *lastsnap,
434 uint64_t *usedp)
435 {
436 nvlist_t *args;
437 nvlist_t *result;
438 int err;
439 char fs[ZFS_MAX_DATASET_NAME_LEN];
440 char *atp;
441
442 /* determine the fs name */
443 (void) strlcpy(fs, firstsnap, sizeof (fs));
444 atp = strchr(fs, '@');
445 if (atp == NULL)
446 return (EINVAL);
447 *atp = '\0';
448
449 args = fnvlist_alloc();
450 fnvlist_add_string(args, "firstsnap", firstsnap);
451
452 err = lzc_ioctl(ZFS_IOC_SPACE_SNAPS, lastsnap, args, &result);
453 nvlist_free(args);
454 if (err == 0)
455 *usedp = fnvlist_lookup_uint64(result, "used");
456 fnvlist_free(result);
457
458 return (err);
459 }
460
461 boolean_t
462 lzc_exists(const char *dataset)
463 {
464 /*
465 * The objset_stats ioctl is still legacy, so we need to construct our
466 * own zfs_cmd_t rather than using lzc_ioctl().
467 */
468 zfs_cmd_t zc = {"\0"};
469
470 ASSERT3S(g_refcount, >, 0);
471 VERIFY3S(g_fd, !=, -1);
472
473 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
474 return (lzc_ioctl_fd(g_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0);
475 }
476
477 /*
478 * outnvl is unused.
479 * It was added to preserve the function signature in case it is
480 * needed in the future.
481 */
482 int
483 lzc_sync(const char *pool_name, nvlist_t *innvl, nvlist_t **outnvl)
484 {
485 (void) outnvl;
486 return (lzc_ioctl(ZFS_IOC_POOL_SYNC, pool_name, innvl, NULL));
487 }
488
489 /*
490 * Create "user holds" on snapshots. If there is a hold on a snapshot,
491 * the snapshot can not be destroyed. (However, it can be marked for deletion
492 * by lzc_destroy_snaps(defer=B_TRUE).)
493 *
494 * The keys in the nvlist are snapshot names.
495 * The snapshots must all be in the same pool.
496 * The value is the name of the hold (string type).
497 *
498 * If cleanup_fd is not -1, it must be the result of open(ZFS_DEV, O_EXCL).
499 * In this case, when the cleanup_fd is closed (including on process
500 * termination), the holds will be released. If the system is shut down
501 * uncleanly, the holds will be released when the pool is next opened
502 * or imported.
503 *
504 * Holds for snapshots which don't exist will be skipped and have an entry
505 * added to errlist, but will not cause an overall failure.
506 *
507 * The return value will be 0 if all holds, for snapshots that existed,
508 * were successfully created.
509 *
510 * Otherwise the return value will be the errno of a (unspecified) hold that
511 * failed and no holds will be created.
512 *
513 * In all cases the errlist will have an entry for each hold that failed
514 * (name = snapshot), with its value being the error code (int32).
515 */
516 int
517 lzc_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist)
518 {
519 char pool[ZFS_MAX_DATASET_NAME_LEN];
520 nvlist_t *args;
521 nvpair_t *elem;
522 int error;
523
524 /* determine the pool name */
525 elem = nvlist_next_nvpair(holds, NULL);
526 if (elem == NULL)
527 return (0);
528 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
529 pool[strcspn(pool, "/@")] = '\0';
530
531 args = fnvlist_alloc();
532 fnvlist_add_nvlist(args, "holds", holds);
533 if (cleanup_fd != -1)
534 fnvlist_add_int32(args, "cleanup_fd", cleanup_fd);
535
536 error = lzc_ioctl(ZFS_IOC_HOLD, pool, args, errlist);
537 nvlist_free(args);
538 return (error);
539 }
540
541 /*
542 * Release "user holds" on snapshots. If the snapshot has been marked for
543 * deferred destroy (by lzc_destroy_snaps(defer=B_TRUE)), it does not have
544 * any clones, and all the user holds are removed, then the snapshot will be
545 * destroyed.
546 *
547 * The keys in the nvlist are snapshot names.
548 * The snapshots must all be in the same pool.
549 * The value is an nvlist whose keys are the holds to remove.
550 *
551 * Holds which failed to release because they didn't exist will have an entry
552 * added to errlist, but will not cause an overall failure.
553 *
554 * The return value will be 0 if the nvl holds was empty or all holds that
555 * existed, were successfully removed.
556 *
557 * Otherwise the return value will be the errno of a (unspecified) hold that
558 * failed to release and no holds will be released.
559 *
560 * In all cases the errlist will have an entry for each hold that failed to
561 * to release.
562 */
563 int
564 lzc_release(nvlist_t *holds, nvlist_t **errlist)
565 {
566 char pool[ZFS_MAX_DATASET_NAME_LEN];
567 nvpair_t *elem;
568
569 /* determine the pool name */
570 elem = nvlist_next_nvpair(holds, NULL);
571 if (elem == NULL)
572 return (0);
573 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
574 pool[strcspn(pool, "/@")] = '\0';
575
576 return (lzc_ioctl(ZFS_IOC_RELEASE, pool, holds, errlist));
577 }
578
579 /*
580 * Retrieve list of user holds on the specified snapshot.
581 *
582 * On success, *holdsp will be set to an nvlist which the caller must free.
583 * The keys are the names of the holds, and the value is the creation time
584 * of the hold (uint64) in seconds since the epoch.
585 */
586 int
587 lzc_get_holds(const char *snapname, nvlist_t **holdsp)
588 {
589 return (lzc_ioctl(ZFS_IOC_GET_HOLDS, snapname, NULL, holdsp));
590 }
591
592 static unsigned int
593 max_pipe_buffer(int infd)
594 {
595 #if __linux__
596 static unsigned int max;
597 if (max == 0) {
598 max = 1048576; /* fs/pipe.c default */
599
600 FILE *procf = fopen("/proc/sys/fs/pipe-max-size", "re");
601 if (procf != NULL) {
602 if (fscanf(procf, "%u", &max) <= 0) {
603 /* ignore error: max untouched if parse fails */
604 }
605 fclose(procf);
606 }
607 }
608
609 unsigned int cur = fcntl(infd, F_GETPIPE_SZ);
610 /*
611 * Sadly, Linux has an unfixed deadlock if you do SETPIPE_SZ on a pipe
612 * with data in it.
613 * cf. #13232, https://bugzilla.kernel.org/show_bug.cgi?id=212295
614 *
615 * And since the problem is in waking up the writer, there's nothing
616 * we can do about it from here.
617 *
618 * So if people want to, they can set this, but they
619 * may regret it...
620 */
621 if (getenv("ZFS_SET_PIPE_MAX") == NULL)
622 return (cur);
623 if (cur < max && fcntl(infd, F_SETPIPE_SZ, max) != -1)
624 cur = max;
625 return (cur);
626 #else
627 /* FreeBSD automatically resizes */
628 (void) infd;
629 return (BIG_PIPE_SIZE);
630 #endif
631 }
632
633 #if __linux__
634 struct send_worker_ctx {
635 int from; /* read end of pipe, with send data; closed on exit */
636 int to; /* original arbitrary output fd; mustn't be a pipe */
637 };
638
639 static void *
640 send_worker(void *arg)
641 {
642 struct send_worker_ctx *ctx = arg;
643 unsigned int bufsiz = max_pipe_buffer(ctx->from);
644 ssize_t rd;
645
646 while ((rd = splice(ctx->from, NULL, ctx->to, NULL, bufsiz,
647 SPLICE_F_MOVE | SPLICE_F_MORE)) > 0)
648 ;
649
650 int err = (rd == -1) ? errno : 0;
651 close(ctx->from);
652 return ((void *)(uintptr_t)err);
653 }
654 #endif
655
656 /*
657 * Since Linux 5.10, 4d03e3cc59828c82ee89ea6e27a2f3cdf95aaadf
658 * ("fs: don't allow kernel reads and writes without iter ops"),
659 * ZFS_IOC_SEND* will EINVAL when writing to /dev/null, /dev/zero, &c.
660 *
661 * This wrapper transparently executes func() with a pipe
662 * by spawning a thread to copy from that pipe to the original output
663 * in the background.
664 *
665 * Returns the error from func(), if nonzero,
666 * otherwise the error from the thread.
667 *
668 * No-op if orig_fd is -1, already a pipe (but the buffer size is bumped),
669 * and on not-Linux; as such, it is safe to wrap/call wrapped functions
670 * in a wrapped context.
671 */
672 int
673 lzc_send_wrapper(int (*func)(int, void *), int orig_fd, void *data)
674 {
675 #if __linux__
676 struct stat sb;
677 if (orig_fd != -1 && fstat(orig_fd, &sb) == -1)
678 return (errno);
679 if (orig_fd == -1 || S_ISFIFO(sb.st_mode)) {
680 if (orig_fd != -1)
681 (void) max_pipe_buffer(orig_fd);
682 return (func(orig_fd, data));
683 }
684 if ((fcntl(orig_fd, F_GETFL) & O_ACCMODE) == O_RDONLY)
685 return (errno = EBADF);
686
687 int rw[2];
688 if (pipe2(rw, O_CLOEXEC) == -1)
689 return (errno);
690
691 int err;
692 pthread_t send_thread;
693 struct send_worker_ctx ctx = {.from = rw[0], .to = orig_fd};
694 if ((err = pthread_create(&send_thread, NULL, send_worker, &ctx))
695 != 0) {
696 close(rw[0]);
697 close(rw[1]);
698 return (errno = err);
699 }
700
701 err = func(rw[1], data);
702
703 void *send_err;
704 close(rw[1]);
705 pthread_join(send_thread, &send_err);
706 if (err == 0 && send_err != 0)
707 errno = err = (uintptr_t)send_err;
708
709 return (err);
710 #else
711 return (func(orig_fd, data));
712 #endif
713 }
714
715 /*
716 * Generate a zfs send stream for the specified snapshot and write it to
717 * the specified file descriptor.
718 *
719 * "snapname" is the full name of the snapshot to send (e.g. "pool/fs@snap")
720 *
721 * If "from" is NULL, a full (non-incremental) stream will be sent.
722 * If "from" is non-NULL, it must be the full name of a snapshot or
723 * bookmark to send an incremental from (e.g. "pool/fs@earlier_snap" or
724 * "pool/fs#earlier_bmark"). If non-NULL, the specified snapshot or
725 * bookmark must represent an earlier point in the history of "snapname").
726 * It can be an earlier snapshot in the same filesystem or zvol as "snapname",
727 * or it can be the origin of "snapname"'s filesystem, or an earlier
728 * snapshot in the origin, etc.
729 *
730 * "fd" is the file descriptor to write the send stream to.
731 *
732 * If "flags" contains LZC_SEND_FLAG_LARGE_BLOCK, the stream is permitted
733 * to contain DRR_WRITE records with drr_length > 128K, and DRR_OBJECT
734 * records with drr_blksz > 128K.
735 *
736 * If "flags" contains LZC_SEND_FLAG_EMBED_DATA, the stream is permitted
737 * to contain DRR_WRITE_EMBEDDED records with drr_etype==BP_EMBEDDED_TYPE_DATA,
738 * which the receiving system must support (as indicated by support
739 * for the "embedded_data" feature).
740 *
741 * If "flags" contains LZC_SEND_FLAG_COMPRESS, the stream is generated by using
742 * compressed WRITE records for blocks which are compressed on disk and in
743 * memory. If the lz4_compress feature is active on the sending system, then
744 * the receiving system must have that feature enabled as well.
745 *
746 * If "flags" contains LZC_SEND_FLAG_RAW, the stream is generated, for encrypted
747 * datasets, by sending data exactly as it exists on disk. This allows backups
748 * to be taken even if encryption keys are not currently loaded.
749 */
750 int
751 lzc_send(const char *snapname, const char *from, int fd,
752 enum lzc_send_flags flags)
753 {
754 return (lzc_send_resume_redacted(snapname, from, fd, flags, 0, 0,
755 NULL));
756 }
757
758 int
759 lzc_send_redacted(const char *snapname, const char *from, int fd,
760 enum lzc_send_flags flags, const char *redactbook)
761 {
762 return (lzc_send_resume_redacted(snapname, from, fd, flags, 0, 0,
763 redactbook));
764 }
765
766 int
767 lzc_send_resume(const char *snapname, const char *from, int fd,
768 enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff)
769 {
770 return (lzc_send_resume_redacted(snapname, from, fd, flags, resumeobj,
771 resumeoff, NULL));
772 }
773
774 /*
775 * snapname: The name of the "tosnap", or the snapshot whose contents we are
776 * sending.
777 * from: The name of the "fromsnap", or the incremental source.
778 * fd: File descriptor to write the stream to.
779 * flags: flags that determine features to be used by the stream.
780 * resumeobj: Object to resume from, for resuming send
781 * resumeoff: Offset to resume from, for resuming send.
782 * redactnv: nvlist of string -> boolean(ignored) containing the names of all
783 * the snapshots that we should redact with respect to.
784 * redactbook: Name of the redaction bookmark to create.
785 *
786 * Pre-wrapped.
787 */
788 static int
789 lzc_send_resume_redacted_cb_impl(const char *snapname, const char *from, int fd,
790 enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff,
791 const char *redactbook)
792 {
793 nvlist_t *args;
794 int err;
795
796 args = fnvlist_alloc();
797 fnvlist_add_int32(args, "fd", fd);
798 if (from != NULL)
799 fnvlist_add_string(args, "fromsnap", from);
800 if (flags & LZC_SEND_FLAG_LARGE_BLOCK)
801 fnvlist_add_boolean(args, "largeblockok");
802 if (flags & LZC_SEND_FLAG_EMBED_DATA)
803 fnvlist_add_boolean(args, "embedok");
804 if (flags & LZC_SEND_FLAG_COMPRESS)
805 fnvlist_add_boolean(args, "compressok");
806 if (flags & LZC_SEND_FLAG_RAW)
807 fnvlist_add_boolean(args, "rawok");
808 if (flags & LZC_SEND_FLAG_SAVED)
809 fnvlist_add_boolean(args, "savedok");
810 if (resumeobj != 0 || resumeoff != 0) {
811 fnvlist_add_uint64(args, "resume_object", resumeobj);
812 fnvlist_add_uint64(args, "resume_offset", resumeoff);
813 }
814 if (redactbook != NULL)
815 fnvlist_add_string(args, "redactbook", redactbook);
816
817 err = lzc_ioctl(ZFS_IOC_SEND_NEW, snapname, args, NULL);
818 nvlist_free(args);
819 return (err);
820 }
821
822 struct lzc_send_resume_redacted {
823 const char *snapname;
824 const char *from;
825 enum lzc_send_flags flags;
826 uint64_t resumeobj;
827 uint64_t resumeoff;
828 const char *redactbook;
829 };
830
831 static int
832 lzc_send_resume_redacted_cb(int fd, void *arg)
833 {
834 struct lzc_send_resume_redacted *zsrr = arg;
835 return (lzc_send_resume_redacted_cb_impl(zsrr->snapname, zsrr->from,
836 fd, zsrr->flags, zsrr->resumeobj, zsrr->resumeoff,
837 zsrr->redactbook));
838 }
839
840 int
841 lzc_send_resume_redacted(const char *snapname, const char *from, int fd,
842 enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff,
843 const char *redactbook)
844 {
845 struct lzc_send_resume_redacted zsrr = {
846 .snapname = snapname,
847 .from = from,
848 .flags = flags,
849 .resumeobj = resumeobj,
850 .resumeoff = resumeoff,
851 .redactbook = redactbook,
852 };
853 return (lzc_send_wrapper(lzc_send_resume_redacted_cb, fd, &zsrr));
854 }
855
856 /*
857 * "from" can be NULL, a snapshot, or a bookmark.
858 *
859 * If from is NULL, a full (non-incremental) stream will be estimated. This
860 * is calculated very efficiently.
861 *
862 * If from is a snapshot, lzc_send_space uses the deadlists attached to
863 * each snapshot to efficiently estimate the stream size.
864 *
865 * If from is a bookmark, the indirect blocks in the destination snapshot
866 * are traversed, looking for blocks with a birth time since the creation TXG of
867 * the snapshot this bookmark was created from. This will result in
868 * significantly more I/O and be less efficient than a send space estimation on
869 * an equivalent snapshot. This process is also used if redact_snaps is
870 * non-null.
871 *
872 * Pre-wrapped.
873 */
874 static int
875 lzc_send_space_resume_redacted_cb_impl(const char *snapname, const char *from,
876 enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff,
877 uint64_t resume_bytes, const char *redactbook, int fd, uint64_t *spacep)
878 {
879 nvlist_t *args;
880 nvlist_t *result;
881 int err;
882
883 args = fnvlist_alloc();
884 if (from != NULL)
885 fnvlist_add_string(args, "from", from);
886 if (flags & LZC_SEND_FLAG_LARGE_BLOCK)
887 fnvlist_add_boolean(args, "largeblockok");
888 if (flags & LZC_SEND_FLAG_EMBED_DATA)
889 fnvlist_add_boolean(args, "embedok");
890 if (flags & LZC_SEND_FLAG_COMPRESS)
891 fnvlist_add_boolean(args, "compressok");
892 if (flags & LZC_SEND_FLAG_RAW)
893 fnvlist_add_boolean(args, "rawok");
894 if (resumeobj != 0 || resumeoff != 0) {
895 fnvlist_add_uint64(args, "resume_object", resumeobj);
896 fnvlist_add_uint64(args, "resume_offset", resumeoff);
897 fnvlist_add_uint64(args, "bytes", resume_bytes);
898 }
899 if (redactbook != NULL)
900 fnvlist_add_string(args, "redactbook", redactbook);
901 if (fd != -1)
902 fnvlist_add_int32(args, "fd", fd);
903
904 err = lzc_ioctl(ZFS_IOC_SEND_SPACE, snapname, args, &result);
905 nvlist_free(args);
906 if (err == 0)
907 *spacep = fnvlist_lookup_uint64(result, "space");
908 nvlist_free(result);
909 return (err);
910 }
911
912 struct lzc_send_space_resume_redacted {
913 const char *snapname;
914 const char *from;
915 enum lzc_send_flags flags;
916 uint64_t resumeobj;
917 uint64_t resumeoff;
918 uint64_t resume_bytes;
919 const char *redactbook;
920 uint64_t *spacep;
921 };
922
923 static int
924 lzc_send_space_resume_redacted_cb(int fd, void *arg)
925 {
926 struct lzc_send_space_resume_redacted *zssrr = arg;
927 return (lzc_send_space_resume_redacted_cb_impl(zssrr->snapname,
928 zssrr->from, zssrr->flags, zssrr->resumeobj, zssrr->resumeoff,
929 zssrr->resume_bytes, zssrr->redactbook, fd, zssrr->spacep));
930 }
931
932 int
933 lzc_send_space_resume_redacted(const char *snapname, const char *from,
934 enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff,
935 uint64_t resume_bytes, const char *redactbook, int fd, uint64_t *spacep)
936 {
937 struct lzc_send_space_resume_redacted zssrr = {
938 .snapname = snapname,
939 .from = from,
940 .flags = flags,
941 .resumeobj = resumeobj,
942 .resumeoff = resumeoff,
943 .resume_bytes = resume_bytes,
944 .redactbook = redactbook,
945 .spacep = spacep,
946 };
947 return (lzc_send_wrapper(lzc_send_space_resume_redacted_cb,
948 fd, &zssrr));
949 }
950
951 int
952 lzc_send_space(const char *snapname, const char *from,
953 enum lzc_send_flags flags, uint64_t *spacep)
954 {
955 return (lzc_send_space_resume_redacted(snapname, from, flags, 0, 0, 0,
956 NULL, -1, spacep));
957 }
958
959 static int
960 recv_read(int fd, void *buf, int ilen)
961 {
962 char *cp = buf;
963 int rv;
964 int len = ilen;
965
966 do {
967 rv = read(fd, cp, len);
968 cp += rv;
969 len -= rv;
970 } while (rv > 0);
971
972 if (rv < 0 || len != 0)
973 return (EIO);
974
975 return (0);
976 }
977
978 /*
979 * Linux adds ZFS_IOC_RECV_NEW for resumable and raw streams and preserves the
980 * legacy ZFS_IOC_RECV user/kernel interface. The new interface supports all
981 * stream options but is currently only used for resumable streams. This way
982 * updated user space utilities will interoperate with older kernel modules.
983 *
984 * Non-Linux OpenZFS platforms have opted to modify the legacy interface.
985 */
986 static int
987 recv_impl(const char *snapname, nvlist_t *recvdprops, nvlist_t *localprops,
988 uint8_t *wkeydata, uint_t wkeylen, const char *origin, boolean_t force,
989 boolean_t heal, boolean_t resumable, boolean_t raw, int input_fd,
990 const dmu_replay_record_t *begin_record, uint64_t *read_bytes,
991 uint64_t *errflags, nvlist_t **errors)
992 {
993 dmu_replay_record_t drr;
994 char fsname[MAXPATHLEN];
995 char *atp;
996 int error;
997 boolean_t payload = B_FALSE;
998
999 ASSERT3S(g_refcount, >, 0);
1000 VERIFY3S(g_fd, !=, -1);
1001
1002 /* Set 'fsname' to the name of containing filesystem */
1003 (void) strlcpy(fsname, snapname, sizeof (fsname));
1004 atp = strchr(fsname, '@');
1005 if (atp == NULL)
1006 return (EINVAL);
1007 *atp = '\0';
1008
1009 /* If the fs does not exist, try its parent. */
1010 if (!lzc_exists(fsname)) {
1011 char *slashp = strrchr(fsname, '/');
1012 if (slashp == NULL)
1013 return (ENOENT);
1014 *slashp = '\0';
1015 }
1016
1017 /*
1018 * It is not uncommon for gigabytes to be processed by zfs receive.
1019 * Speculatively increase the buffer size if supported by the platform.
1020 */
1021 struct stat sb;
1022 if (fstat(input_fd, &sb) == -1)
1023 return (errno);
1024 if (S_ISFIFO(sb.st_mode))
1025 (void) max_pipe_buffer(input_fd);
1026
1027 /*
1028 * The begin_record is normally a non-byteswapped BEGIN record.
1029 * For resumable streams it may be set to any non-byteswapped
1030 * dmu_replay_record_t.
1031 */
1032 if (begin_record == NULL) {
1033 error = recv_read(input_fd, &drr, sizeof (drr));
1034 if (error != 0)
1035 return (error);
1036 } else {
1037 drr = *begin_record;
1038 payload = (begin_record->drr_payloadlen != 0);
1039 }
1040
1041 /*
1042 * All receives with a payload should use the new interface.
1043 */
1044 if (resumable || heal || raw || wkeydata != NULL || payload) {
1045 nvlist_t *outnvl = NULL;
1046 nvlist_t *innvl = fnvlist_alloc();
1047
1048 fnvlist_add_string(innvl, "snapname", snapname);
1049
1050 if (recvdprops != NULL)
1051 fnvlist_add_nvlist(innvl, "props", recvdprops);
1052
1053 if (localprops != NULL)
1054 fnvlist_add_nvlist(innvl, "localprops", localprops);
1055
1056 if (wkeydata != NULL) {
1057 /*
1058 * wkeydata must be placed in the special
1059 * ZPOOL_HIDDEN_ARGS nvlist so that it
1060 * will not be printed to the zpool history.
1061 */
1062 nvlist_t *hidden_args = fnvlist_alloc();
1063 fnvlist_add_uint8_array(hidden_args, "wkeydata",
1064 wkeydata, wkeylen);
1065 fnvlist_add_nvlist(innvl, ZPOOL_HIDDEN_ARGS,
1066 hidden_args);
1067 nvlist_free(hidden_args);
1068 }
1069
1070 if (origin != NULL && strlen(origin))
1071 fnvlist_add_string(innvl, "origin", origin);
1072
1073 fnvlist_add_byte_array(innvl, "begin_record",
1074 (uchar_t *)&drr, sizeof (drr));
1075
1076 fnvlist_add_int32(innvl, "input_fd", input_fd);
1077
1078 if (force)
1079 fnvlist_add_boolean(innvl, "force");
1080
1081 if (resumable)
1082 fnvlist_add_boolean(innvl, "resumable");
1083
1084 if (heal)
1085 fnvlist_add_boolean(innvl, "heal");
1086
1087 error = lzc_ioctl(ZFS_IOC_RECV_NEW, fsname, innvl, &outnvl);
1088
1089 if (error == 0 && read_bytes != NULL)
1090 error = nvlist_lookup_uint64(outnvl, "read_bytes",
1091 read_bytes);
1092
1093 if (error == 0 && errflags != NULL)
1094 error = nvlist_lookup_uint64(outnvl, "error_flags",
1095 errflags);
1096
1097 if (error == 0 && errors != NULL) {
1098 nvlist_t *nvl;
1099 error = nvlist_lookup_nvlist(outnvl, "errors", &nvl);
1100 if (error == 0)
1101 *errors = fnvlist_dup(nvl);
1102 }
1103
1104 fnvlist_free(innvl);
1105 fnvlist_free(outnvl);
1106 } else {
1107 zfs_cmd_t zc = {"\0"};
1108 char *rp_packed = NULL;
1109 char *lp_packed = NULL;
1110 size_t size;
1111
1112 ASSERT3S(g_refcount, >, 0);
1113
1114 (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name));
1115 (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value));
1116
1117 if (recvdprops != NULL) {
1118 rp_packed = fnvlist_pack(recvdprops, &size);
1119 zc.zc_nvlist_src = (uint64_t)(uintptr_t)rp_packed;
1120 zc.zc_nvlist_src_size = size;
1121 }
1122
1123 if (localprops != NULL) {
1124 lp_packed = fnvlist_pack(localprops, &size);
1125 zc.zc_nvlist_conf = (uint64_t)(uintptr_t)lp_packed;
1126 zc.zc_nvlist_conf_size = size;
1127 }
1128
1129 if (origin != NULL)
1130 (void) strlcpy(zc.zc_string, origin,
1131 sizeof (zc.zc_string));
1132
1133 ASSERT3S(drr.drr_type, ==, DRR_BEGIN);
1134 zc.zc_begin_record = drr.drr_u.drr_begin;
1135 zc.zc_guid = force;
1136 zc.zc_cookie = input_fd;
1137 zc.zc_cleanup_fd = -1;
1138 zc.zc_action_handle = 0;
1139
1140 zc.zc_nvlist_dst_size = 128 * 1024;
1141 zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
1142 malloc(zc.zc_nvlist_dst_size);
1143
1144 error = lzc_ioctl_fd(g_fd, ZFS_IOC_RECV, &zc);
1145 if (error != 0) {
1146 error = errno;
1147 } else {
1148 if (read_bytes != NULL)
1149 *read_bytes = zc.zc_cookie;
1150
1151 if (errflags != NULL)
1152 *errflags = zc.zc_obj;
1153
1154 if (errors != NULL)
1155 VERIFY0(nvlist_unpack(
1156 (void *)(uintptr_t)zc.zc_nvlist_dst,
1157 zc.zc_nvlist_dst_size, errors, KM_SLEEP));
1158 }
1159
1160 if (rp_packed != NULL)
1161 fnvlist_pack_free(rp_packed, size);
1162 if (lp_packed != NULL)
1163 fnvlist_pack_free(lp_packed, size);
1164 free((void *)(uintptr_t)zc.zc_nvlist_dst);
1165 }
1166
1167 return (error);
1168 }
1169
1170 /*
1171 * The simplest receive case: receive from the specified fd, creating the
1172 * specified snapshot. Apply the specified properties as "received" properties
1173 * (which can be overridden by locally-set properties). If the stream is a
1174 * clone, its origin snapshot must be specified by 'origin'. The 'force'
1175 * flag will cause the target filesystem to be rolled back or destroyed if
1176 * necessary to receive.
1177 *
1178 * Return 0 on success or an errno on failure.
1179 *
1180 * Note: this interface does not work on dedup'd streams
1181 * (those with DMU_BACKUP_FEATURE_DEDUP).
1182 */
1183 int
1184 lzc_receive(const char *snapname, nvlist_t *props, const char *origin,
1185 boolean_t force, boolean_t raw, int fd)
1186 {
1187 return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
1188 B_FALSE, B_FALSE, raw, fd, NULL, NULL, NULL, NULL));
1189 }
1190
1191 /*
1192 * Like lzc_receive, but if the receive fails due to premature stream
1193 * termination, the intermediate state will be preserved on disk. In this
1194 * case, ECKSUM will be returned. The receive may subsequently be resumed
1195 * with a resuming send stream generated by lzc_send_resume().
1196 */
1197 int
1198 lzc_receive_resumable(const char *snapname, nvlist_t *props, const char *origin,
1199 boolean_t force, boolean_t raw, int fd)
1200 {
1201 return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
1202 B_FALSE, B_TRUE, raw, fd, NULL, NULL, NULL, NULL));
1203 }
1204
1205 /*
1206 * Like lzc_receive, but allows the caller to read the begin record and then to
1207 * pass it in. That could be useful if the caller wants to derive, for example,
1208 * the snapname or the origin parameters based on the information contained in
1209 * the begin record.
1210 * The begin record must be in its original form as read from the stream,
1211 * in other words, it should not be byteswapped.
1212 *
1213 * The 'resumable' parameter allows to obtain the same behavior as with
1214 * lzc_receive_resumable.
1215 */
1216 int
1217 lzc_receive_with_header(const char *snapname, nvlist_t *props,
1218 const char *origin, boolean_t force, boolean_t resumable, boolean_t raw,
1219 int fd, const dmu_replay_record_t *begin_record)
1220 {
1221 if (begin_record == NULL)
1222 return (EINVAL);
1223
1224 return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
1225 B_FALSE, resumable, raw, fd, begin_record, NULL, NULL, NULL));
1226 }
1227
1228 /*
1229 * Like lzc_receive, but allows the caller to pass all supported arguments
1230 * and retrieve all values returned. The only additional input parameter
1231 * is 'cleanup_fd' which is used to set a cleanup-on-exit file descriptor.
1232 *
1233 * The following parameters all provide return values. Several may be set
1234 * in the failure case and will contain additional information.
1235 *
1236 * The 'read_bytes' value will be set to the total number of bytes read.
1237 *
1238 * The 'errflags' value will contain zprop_errflags_t flags which are
1239 * used to describe any failures.
1240 *
1241 * The 'action_handle' and 'cleanup_fd' are no longer used, and are ignored.
1242 *
1243 * The 'errors' nvlist contains an entry for each unapplied received
1244 * property. Callers are responsible for freeing this nvlist.
1245 */
1246 int
1247 lzc_receive_one(const char *snapname, nvlist_t *props,
1248 const char *origin, boolean_t force, boolean_t resumable, boolean_t raw,
1249 int input_fd, const dmu_replay_record_t *begin_record, int cleanup_fd,
1250 uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
1251 nvlist_t **errors)
1252 {
1253 (void) action_handle, (void) cleanup_fd;
1254 return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
1255 B_FALSE, resumable, raw, input_fd, begin_record,
1256 read_bytes, errflags, errors));
1257 }
1258
1259 /*
1260 * Like lzc_receive_one, but allows the caller to pass an additional 'cmdprops'
1261 * argument.
1262 *
1263 * The 'cmdprops' nvlist contains both override ('zfs receive -o') and
1264 * exclude ('zfs receive -x') properties. Callers are responsible for freeing
1265 * this nvlist
1266 */
1267 int
1268 lzc_receive_with_cmdprops(const char *snapname, nvlist_t *props,
1269 nvlist_t *cmdprops, uint8_t *wkeydata, uint_t wkeylen, const char *origin,
1270 boolean_t force, boolean_t resumable, boolean_t raw, int input_fd,
1271 const dmu_replay_record_t *begin_record, int cleanup_fd,
1272 uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
1273 nvlist_t **errors)
1274 {
1275 (void) action_handle, (void) cleanup_fd;
1276 return (recv_impl(snapname, props, cmdprops, wkeydata, wkeylen, origin,
1277 force, B_FALSE, resumable, raw, input_fd, begin_record,
1278 read_bytes, errflags, errors));
1279 }
1280
1281 /*
1282 * Like lzc_receive_with_cmdprops, but allows the caller to pass an additional
1283 * 'heal' argument.
1284 *
1285 * The heal arguments tells us to heal the provided snapshot using the provided
1286 * send stream
1287 */
1288 int lzc_receive_with_heal(const char *snapname, nvlist_t *props,
1289 nvlist_t *cmdprops, uint8_t *wkeydata, uint_t wkeylen, const char *origin,
1290 boolean_t force, boolean_t heal, boolean_t resumable, boolean_t raw,
1291 int input_fd, const dmu_replay_record_t *begin_record, int cleanup_fd,
1292 uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
1293 nvlist_t **errors)
1294 {
1295 (void) action_handle, (void) cleanup_fd;
1296 return (recv_impl(snapname, props, cmdprops, wkeydata, wkeylen, origin,
1297 force, heal, resumable, raw, input_fd, begin_record,
1298 read_bytes, errflags, errors));
1299 }
1300
1301 /*
1302 * Roll back this filesystem or volume to its most recent snapshot.
1303 * If snapnamebuf is not NULL, it will be filled in with the name
1304 * of the most recent snapshot.
1305 * Note that the latest snapshot may change if a new one is concurrently
1306 * created or the current one is destroyed. lzc_rollback_to can be used
1307 * to roll back to a specific latest snapshot.
1308 *
1309 * Return 0 on success or an errno on failure.
1310 */
1311 int
1312 lzc_rollback(const char *fsname, char *snapnamebuf, int snapnamelen)
1313 {
1314 nvlist_t *args;
1315 nvlist_t *result;
1316 int err;
1317
1318 args = fnvlist_alloc();
1319 err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result);
1320 nvlist_free(args);
1321 if (err == 0 && snapnamebuf != NULL) {
1322 const char *snapname = fnvlist_lookup_string(result, "target");
1323 (void) strlcpy(snapnamebuf, snapname, snapnamelen);
1324 }
1325 nvlist_free(result);
1326
1327 return (err);
1328 }
1329
1330 /*
1331 * Roll back this filesystem or volume to the specified snapshot,
1332 * if possible.
1333 *
1334 * Return 0 on success or an errno on failure.
1335 */
1336 int
1337 lzc_rollback_to(const char *fsname, const char *snapname)
1338 {
1339 nvlist_t *args;
1340 nvlist_t *result;
1341 int err;
1342
1343 args = fnvlist_alloc();
1344 fnvlist_add_string(args, "target", snapname);
1345 err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result);
1346 nvlist_free(args);
1347 nvlist_free(result);
1348 return (err);
1349 }
1350
1351 /*
1352 * Creates new bookmarks from existing snapshot or bookmark.
1353 *
1354 * The bookmarks nvlist maps from the full name of the new bookmark to
1355 * the full name of the source snapshot or bookmark.
1356 * All the bookmarks and snapshots must be in the same pool.
1357 * The new bookmarks names must be unique.
1358 * => see function dsl_bookmark_create_nvl_validate
1359 *
1360 * The returned results nvlist will have an entry for each bookmark that failed.
1361 * The value will be the (int32) error code.
1362 *
1363 * The return value will be 0 if all bookmarks were created, otherwise it will
1364 * be the errno of a (undetermined) bookmarks that failed.
1365 */
1366 int
1367 lzc_bookmark(nvlist_t *bookmarks, nvlist_t **errlist)
1368 {
1369 nvpair_t *elem;
1370 int error;
1371 char pool[ZFS_MAX_DATASET_NAME_LEN];
1372
1373 /* determine pool name from first bookmark */
1374 elem = nvlist_next_nvpair(bookmarks, NULL);
1375 if (elem == NULL)
1376 return (0);
1377 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
1378 pool[strcspn(pool, "/#")] = '\0';
1379
1380 error = lzc_ioctl(ZFS_IOC_BOOKMARK, pool, bookmarks, errlist);
1381
1382 return (error);
1383 }
1384
1385 /*
1386 * Retrieve bookmarks.
1387 *
1388 * Retrieve the list of bookmarks for the given file system. The props
1389 * parameter is an nvlist of property names (with no values) that will be
1390 * returned for each bookmark.
1391 *
1392 * The following are valid properties on bookmarks, most of which are numbers
1393 * (represented as uint64 in the nvlist), except redact_snaps, which is a
1394 * uint64 array, and redact_complete, which is a boolean
1395 *
1396 * "guid" - globally unique identifier of the snapshot it refers to
1397 * "createtxg" - txg when the snapshot it refers to was created
1398 * "creation" - timestamp when the snapshot it refers to was created
1399 * "ivsetguid" - IVset guid for identifying encrypted snapshots
1400 * "redact_snaps" - list of guids of the redaction snapshots for the specified
1401 * bookmark. If the bookmark is not a redaction bookmark, the nvlist will
1402 * not contain an entry for this value. If it is redacted with respect to
1403 * no snapshots, it will contain value -> NULL uint64 array
1404 * "redact_complete" - boolean value; true if the redaction bookmark is
1405 * complete, false otherwise.
1406 *
1407 * The format of the returned nvlist as follows:
1408 * <short name of bookmark> -> {
1409 * <name of property> -> {
1410 * "value" -> uint64
1411 * }
1412 * ...
1413 * "redact_snaps" -> {
1414 * "value" -> uint64 array
1415 * }
1416 * "redact_complete" -> {
1417 * "value" -> boolean value
1418 * }
1419 * }
1420 */
1421 int
1422 lzc_get_bookmarks(const char *fsname, nvlist_t *props, nvlist_t **bmarks)
1423 {
1424 return (lzc_ioctl(ZFS_IOC_GET_BOOKMARKS, fsname, props, bmarks));
1425 }
1426
1427 /*
1428 * Get bookmark properties.
1429 *
1430 * Given a bookmark's full name, retrieve all properties for the bookmark.
1431 *
1432 * The format of the returned property list is as follows:
1433 * {
1434 * <name of property> -> {
1435 * "value" -> uint64
1436 * }
1437 * ...
1438 * "redact_snaps" -> {
1439 * "value" -> uint64 array
1440 * }
1441 */
1442 int
1443 lzc_get_bookmark_props(const char *bookmark, nvlist_t **props)
1444 {
1445 int error;
1446
1447 nvlist_t *innvl = fnvlist_alloc();
1448 error = lzc_ioctl(ZFS_IOC_GET_BOOKMARK_PROPS, bookmark, innvl, props);
1449 fnvlist_free(innvl);
1450
1451 return (error);
1452 }
1453
1454 /*
1455 * Destroys bookmarks.
1456 *
1457 * The keys in the bmarks nvlist are the bookmarks to be destroyed.
1458 * They must all be in the same pool. Bookmarks are specified as
1459 * <fs>#<bmark>.
1460 *
1461 * Bookmarks that do not exist will be silently ignored.
1462 *
1463 * The return value will be 0 if all bookmarks that existed were destroyed.
1464 *
1465 * Otherwise the return value will be the errno of a (undetermined) bookmark
1466 * that failed, no bookmarks will be destroyed, and the errlist will have an
1467 * entry for each bookmarks that failed. The value in the errlist will be
1468 * the (int32) error code.
1469 */
1470 int
1471 lzc_destroy_bookmarks(nvlist_t *bmarks, nvlist_t **errlist)
1472 {
1473 nvpair_t *elem;
1474 int error;
1475 char pool[ZFS_MAX_DATASET_NAME_LEN];
1476
1477 /* determine the pool name */
1478 elem = nvlist_next_nvpair(bmarks, NULL);
1479 if (elem == NULL)
1480 return (0);
1481 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
1482 pool[strcspn(pool, "/#")] = '\0';
1483
1484 error = lzc_ioctl(ZFS_IOC_DESTROY_BOOKMARKS, pool, bmarks, errlist);
1485
1486 return (error);
1487 }
1488
1489 static int
1490 lzc_channel_program_impl(const char *pool, const char *program, boolean_t sync,
1491 uint64_t instrlimit, uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl)
1492 {
1493 int error;
1494 nvlist_t *args;
1495
1496 args = fnvlist_alloc();
1497 fnvlist_add_string(args, ZCP_ARG_PROGRAM, program);
1498 fnvlist_add_nvlist(args, ZCP_ARG_ARGLIST, argnvl);
1499 fnvlist_add_boolean_value(args, ZCP_ARG_SYNC, sync);
1500 fnvlist_add_uint64(args, ZCP_ARG_INSTRLIMIT, instrlimit);
1501 fnvlist_add_uint64(args, ZCP_ARG_MEMLIMIT, memlimit);
1502 error = lzc_ioctl(ZFS_IOC_CHANNEL_PROGRAM, pool, args, outnvl);
1503 fnvlist_free(args);
1504
1505 return (error);
1506 }
1507
1508 /*
1509 * Executes a channel program.
1510 *
1511 * If this function returns 0 the channel program was successfully loaded and
1512 * ran without failing. Note that individual commands the channel program ran
1513 * may have failed and the channel program is responsible for reporting such
1514 * errors through outnvl if they are important.
1515 *
1516 * This method may also return:
1517 *
1518 * EINVAL The program contains syntax errors, or an invalid memory or time
1519 * limit was given. No part of the channel program was executed.
1520 * If caused by syntax errors, 'outnvl' contains information about the
1521 * errors.
1522 *
1523 * ECHRNG The program was executed, but encountered a runtime error, such as
1524 * calling a function with incorrect arguments, invoking the error()
1525 * function directly, failing an assert() command, etc. Some portion
1526 * of the channel program may have executed and committed changes.
1527 * Information about the failure can be found in 'outnvl'.
1528 *
1529 * ENOMEM The program fully executed, but the output buffer was not large
1530 * enough to store the returned value. No output is returned through
1531 * 'outnvl'.
1532 *
1533 * ENOSPC The program was terminated because it exceeded its memory usage
1534 * limit. Some portion of the channel program may have executed and
1535 * committed changes to disk. No output is returned through 'outnvl'.
1536 *
1537 * ETIME The program was terminated because it exceeded its Lua instruction
1538 * limit. Some portion of the channel program may have executed and
1539 * committed changes to disk. No output is returned through 'outnvl'.
1540 */
1541 int
1542 lzc_channel_program(const char *pool, const char *program, uint64_t instrlimit,
1543 uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl)
1544 {
1545 return (lzc_channel_program_impl(pool, program, B_TRUE, instrlimit,
1546 memlimit, argnvl, outnvl));
1547 }
1548
1549 /*
1550 * Creates a checkpoint for the specified pool.
1551 *
1552 * If this function returns 0 the pool was successfully checkpointed.
1553 *
1554 * This method may also return:
1555 *
1556 * ZFS_ERR_CHECKPOINT_EXISTS
1557 * The pool already has a checkpoint. A pools can only have one
1558 * checkpoint at most, at any given time.
1559 *
1560 * ZFS_ERR_DISCARDING_CHECKPOINT
1561 * ZFS is in the middle of discarding a checkpoint for this pool.
1562 * The pool can be checkpointed again once the discard is done.
1563 *
1564 * ZFS_DEVRM_IN_PROGRESS
1565 * A vdev is currently being removed. The pool cannot be
1566 * checkpointed until the device removal is done.
1567 *
1568 * ZFS_VDEV_TOO_BIG
1569 * One or more top-level vdevs exceed the maximum vdev size
1570 * supported for this feature.
1571 */
1572 int
1573 lzc_pool_checkpoint(const char *pool)
1574 {
1575 int error;
1576
1577 nvlist_t *result = NULL;
1578 nvlist_t *args = fnvlist_alloc();
1579
1580 error = lzc_ioctl(ZFS_IOC_POOL_CHECKPOINT, pool, args, &result);
1581
1582 fnvlist_free(args);
1583 fnvlist_free(result);
1584
1585 return (error);
1586 }
1587
1588 /*
1589 * Discard the checkpoint from the specified pool.
1590 *
1591 * If this function returns 0 the checkpoint was successfully discarded.
1592 *
1593 * This method may also return:
1594 *
1595 * ZFS_ERR_NO_CHECKPOINT
1596 * The pool does not have a checkpoint.
1597 *
1598 * ZFS_ERR_DISCARDING_CHECKPOINT
1599 * ZFS is already in the middle of discarding the checkpoint.
1600 */
1601 int
1602 lzc_pool_checkpoint_discard(const char *pool)
1603 {
1604 int error;
1605
1606 nvlist_t *result = NULL;
1607 nvlist_t *args = fnvlist_alloc();
1608
1609 error = lzc_ioctl(ZFS_IOC_POOL_DISCARD_CHECKPOINT, pool, args, &result);
1610
1611 fnvlist_free(args);
1612 fnvlist_free(result);
1613
1614 return (error);
1615 }
1616
1617 /*
1618 * Executes a read-only channel program.
1619 *
1620 * A read-only channel program works programmatically the same way as a
1621 * normal channel program executed with lzc_channel_program(). The only
1622 * difference is it runs exclusively in open-context and therefore can
1623 * return faster. The downside to that, is that the program cannot change
1624 * on-disk state by calling functions from the zfs.sync submodule.
1625 *
1626 * The return values of this function (and their meaning) are exactly the
1627 * same as the ones described in lzc_channel_program().
1628 */
1629 int
1630 lzc_channel_program_nosync(const char *pool, const char *program,
1631 uint64_t timeout, uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl)
1632 {
1633 return (lzc_channel_program_impl(pool, program, B_FALSE, timeout,
1634 memlimit, argnvl, outnvl));
1635 }
1636
1637 int
1638 lzc_get_vdev_prop(const char *poolname, nvlist_t *innvl, nvlist_t **outnvl)
1639 {
1640 return (lzc_ioctl(ZFS_IOC_VDEV_GET_PROPS, poolname, innvl, outnvl));
1641 }
1642
1643 int
1644 lzc_set_vdev_prop(const char *poolname, nvlist_t *innvl, nvlist_t **outnvl)
1645 {
1646 return (lzc_ioctl(ZFS_IOC_VDEV_SET_PROPS, poolname, innvl, outnvl));
1647 }
1648
1649 /*
1650 * Performs key management functions
1651 *
1652 * crypto_cmd should be a value from dcp_cmd_t. If the command specifies to
1653 * load or change a wrapping key, the key should be specified in the
1654 * hidden_args nvlist so that it is not logged.
1655 */
1656 int
1657 lzc_load_key(const char *fsname, boolean_t noop, uint8_t *wkeydata,
1658 uint_t wkeylen)
1659 {
1660 int error;
1661 nvlist_t *ioc_args;
1662 nvlist_t *hidden_args;
1663
1664 if (wkeydata == NULL)
1665 return (EINVAL);
1666
1667 ioc_args = fnvlist_alloc();
1668 hidden_args = fnvlist_alloc();
1669 fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen);
1670 fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args);
1671 if (noop)
1672 fnvlist_add_boolean(ioc_args, "noop");
1673 error = lzc_ioctl(ZFS_IOC_LOAD_KEY, fsname, ioc_args, NULL);
1674 nvlist_free(hidden_args);
1675 nvlist_free(ioc_args);
1676
1677 return (error);
1678 }
1679
1680 int
1681 lzc_unload_key(const char *fsname)
1682 {
1683 return (lzc_ioctl(ZFS_IOC_UNLOAD_KEY, fsname, NULL, NULL));
1684 }
1685
1686 int
1687 lzc_change_key(const char *fsname, uint64_t crypt_cmd, nvlist_t *props,
1688 uint8_t *wkeydata, uint_t wkeylen)
1689 {
1690 int error;
1691 nvlist_t *ioc_args = fnvlist_alloc();
1692 nvlist_t *hidden_args = NULL;
1693
1694 fnvlist_add_uint64(ioc_args, "crypt_cmd", crypt_cmd);
1695
1696 if (wkeydata != NULL) {
1697 hidden_args = fnvlist_alloc();
1698 fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata,
1699 wkeylen);
1700 fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args);
1701 }
1702
1703 if (props != NULL)
1704 fnvlist_add_nvlist(ioc_args, "props", props);
1705
1706 error = lzc_ioctl(ZFS_IOC_CHANGE_KEY, fsname, ioc_args, NULL);
1707 nvlist_free(hidden_args);
1708 nvlist_free(ioc_args);
1709
1710 return (error);
1711 }
1712
1713 int
1714 lzc_reopen(const char *pool_name, boolean_t scrub_restart)
1715 {
1716 nvlist_t *args = fnvlist_alloc();
1717 int error;
1718
1719 fnvlist_add_boolean_value(args, "scrub_restart", scrub_restart);
1720
1721 error = lzc_ioctl(ZFS_IOC_POOL_REOPEN, pool_name, args, NULL);
1722 nvlist_free(args);
1723 return (error);
1724 }
1725
1726 /*
1727 * Changes initializing state.
1728 *
1729 * vdevs should be a list of (<key>, guid) where guid is a uint64 vdev GUID.
1730 * The key is ignored.
1731 *
1732 * If there are errors related to vdev arguments, per-vdev errors are returned
1733 * in an nvlist with the key "vdevs". Each error is a (guid, errno) pair where
1734 * guid is stringified with PRIu64, and errno is one of the following as
1735 * an int64_t:
1736 * - ENODEV if the device was not found
1737 * - EINVAL if the devices is not a leaf or is not concrete (e.g. missing)
1738 * - EROFS if the device is not writeable
1739 * - EBUSY start requested but the device is already being either
1740 * initialized or trimmed
1741 * - ESRCH cancel/suspend requested but device is not being initialized
1742 *
1743 * If the errlist is empty, then return value will be:
1744 * - EINVAL if one or more arguments was invalid
1745 * - Other spa_open failures
1746 * - 0 if the operation succeeded
1747 */
1748 int
1749 lzc_initialize(const char *poolname, pool_initialize_func_t cmd_type,
1750 nvlist_t *vdevs, nvlist_t **errlist)
1751 {
1752 int error;
1753
1754 nvlist_t *args = fnvlist_alloc();
1755 fnvlist_add_uint64(args, ZPOOL_INITIALIZE_COMMAND, (uint64_t)cmd_type);
1756 fnvlist_add_nvlist(args, ZPOOL_INITIALIZE_VDEVS, vdevs);
1757
1758 error = lzc_ioctl(ZFS_IOC_POOL_INITIALIZE, poolname, args, errlist);
1759
1760 fnvlist_free(args);
1761
1762 return (error);
1763 }
1764
1765 /*
1766 * Changes TRIM state.
1767 *
1768 * vdevs should be a list of (<key>, guid) where guid is a uint64 vdev GUID.
1769 * The key is ignored.
1770 *
1771 * If there are errors related to vdev arguments, per-vdev errors are returned
1772 * in an nvlist with the key "vdevs". Each error is a (guid, errno) pair where
1773 * guid is stringified with PRIu64, and errno is one of the following as
1774 * an int64_t:
1775 * - ENODEV if the device was not found
1776 * - EINVAL if the devices is not a leaf or is not concrete (e.g. missing)
1777 * - EROFS if the device is not writeable
1778 * - EBUSY start requested but the device is already being either trimmed
1779 * or initialized
1780 * - ESRCH cancel/suspend requested but device is not being initialized
1781 * - EOPNOTSUPP if the device does not support TRIM (or secure TRIM)
1782 *
1783 * If the errlist is empty, then return value will be:
1784 * - EINVAL if one or more arguments was invalid
1785 * - Other spa_open failures
1786 * - 0 if the operation succeeded
1787 */
1788 int
1789 lzc_trim(const char *poolname, pool_trim_func_t cmd_type, uint64_t rate,
1790 boolean_t secure, nvlist_t *vdevs, nvlist_t **errlist)
1791 {
1792 int error;
1793
1794 nvlist_t *args = fnvlist_alloc();
1795 fnvlist_add_uint64(args, ZPOOL_TRIM_COMMAND, (uint64_t)cmd_type);
1796 fnvlist_add_nvlist(args, ZPOOL_TRIM_VDEVS, vdevs);
1797 fnvlist_add_uint64(args, ZPOOL_TRIM_RATE, rate);
1798 fnvlist_add_boolean_value(args, ZPOOL_TRIM_SECURE, secure);
1799
1800 error = lzc_ioctl(ZFS_IOC_POOL_TRIM, poolname, args, errlist);
1801
1802 fnvlist_free(args);
1803
1804 return (error);
1805 }
1806
1807 /*
1808 * Create a redaction bookmark named bookname by redacting snapshot with respect
1809 * to all the snapshots in snapnv.
1810 */
1811 int
1812 lzc_redact(const char *snapshot, const char *bookname, nvlist_t *snapnv)
1813 {
1814 nvlist_t *args = fnvlist_alloc();
1815 fnvlist_add_string(args, "bookname", bookname);
1816 fnvlist_add_nvlist(args, "snapnv", snapnv);
1817 int error = lzc_ioctl(ZFS_IOC_REDACT, snapshot, args, NULL);
1818 fnvlist_free(args);
1819 return (error);
1820 }
1821
1822 static int
1823 wait_common(const char *pool, zpool_wait_activity_t activity, boolean_t use_tag,
1824 uint64_t tag, boolean_t *waited)
1825 {
1826 nvlist_t *args = fnvlist_alloc();
1827 nvlist_t *result = NULL;
1828
1829 fnvlist_add_int32(args, ZPOOL_WAIT_ACTIVITY, activity);
1830 if (use_tag)
1831 fnvlist_add_uint64(args, ZPOOL_WAIT_TAG, tag);
1832
1833 int error = lzc_ioctl(ZFS_IOC_WAIT, pool, args, &result);
1834
1835 if (error == 0 && waited != NULL)
1836 *waited = fnvlist_lookup_boolean_value(result,
1837 ZPOOL_WAIT_WAITED);
1838
1839 fnvlist_free(args);
1840 fnvlist_free(result);
1841
1842 return (error);
1843 }
1844
1845 int
1846 lzc_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
1847 {
1848 return (wait_common(pool, activity, B_FALSE, 0, waited));
1849 }
1850
1851 int
1852 lzc_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
1853 boolean_t *waited)
1854 {
1855 return (wait_common(pool, activity, B_TRUE, tag, waited));
1856 }
1857
1858 int
1859 lzc_wait_fs(const char *fs, zfs_wait_activity_t activity, boolean_t *waited)
1860 {
1861 nvlist_t *args = fnvlist_alloc();
1862 nvlist_t *result = NULL;
1863
1864 fnvlist_add_int32(args, ZFS_WAIT_ACTIVITY, activity);
1865
1866 int error = lzc_ioctl(ZFS_IOC_WAIT_FS, fs, args, &result);
1867
1868 if (error == 0 && waited != NULL)
1869 *waited = fnvlist_lookup_boolean_value(result,
1870 ZFS_WAIT_WAITED);
1871
1872 fnvlist_free(args);
1873 fnvlist_free(result);
1874
1875 return (error);
1876 }
1877
1878 /*
1879 * Set the bootenv contents for the given pool.
1880 */
1881 int
1882 lzc_set_bootenv(const char *pool, const nvlist_t *env)
1883 {
1884 return (lzc_ioctl(ZFS_IOC_SET_BOOTENV, pool, (nvlist_t *)env, NULL));
1885 }
1886
1887 /*
1888 * Get the contents of the bootenv of the given pool.
1889 */
1890 int
1891 lzc_get_bootenv(const char *pool, nvlist_t **outnvl)
1892 {
1893 return (lzc_ioctl(ZFS_IOC_GET_BOOTENV, pool, NULL, outnvl));
1894 }
Cache object: 26d612fe7ce8b8b2284adfca3a8aa7d6
|