1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2015 by Delphix. All rights reserved.
29 */
30
31 /*
32 * AVL - generic AVL tree implementation for kernel use
33 *
34 * A complete description of AVL trees can be found in many CS textbooks.
35 *
36 * Here is a very brief overview. An AVL tree is a binary search tree that is
37 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
38 * any given node, the left and right subtrees are allowed to differ in height
39 * by at most 1 level.
40 *
41 * This relaxation from a perfectly balanced binary tree allows doing
42 * insertion and deletion relatively efficiently. Searching the tree is
43 * still a fast operation, roughly O(log(N)).
44 *
45 * The key to insertion and deletion is a set of tree manipulations called
46 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
47 *
48 * This implementation of AVL trees has the following peculiarities:
49 *
50 * - The AVL specific data structures are physically embedded as fields
51 * in the "using" data structures. To maintain generality the code
52 * must constantly translate between "avl_node_t *" and containing
53 * data structure "void *"s by adding/subtracting the avl_offset.
54 *
55 * - Since the AVL data is always embedded in other structures, there is
56 * no locking or memory allocation in the AVL routines. This must be
57 * provided for by the enclosing data structure's semantics. Typically,
58 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
59 * exclusive write lock. Other operations require a read lock.
60 *
61 * - The implementation uses iteration instead of explicit recursion,
62 * since it is intended to run on limited size kernel stacks. Since
63 * there is no recursion stack present to move "up" in the tree,
64 * there is an explicit "parent" link in the avl_node_t.
65 *
66 * - The left/right children pointers of a node are in an array.
67 * In the code, variables (instead of constants) are used to represent
68 * left and right indices. The implementation is written as if it only
69 * dealt with left handed manipulations. By changing the value assigned
70 * to "left", the code also works for right handed trees. The
71 * following variables/terms are frequently used:
72 *
73 * int left; // 0 when dealing with left children,
74 * // 1 for dealing with right children
75 *
76 * int left_heavy; // -1 when left subtree is taller at some node,
77 * // +1 when right subtree is taller
78 *
79 * int right; // will be the opposite of left (0 or 1)
80 * int right_heavy;// will be the opposite of left_heavy (-1 or 1)
81 *
82 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right)
83 *
84 * Though it is a little more confusing to read the code, the approach
85 * allows using half as much code (and hence cache footprint) for tree
86 * manipulations and eliminates many conditional branches.
87 *
88 * - The avl_index_t is an opaque "cookie" used to find nodes at or
89 * adjacent to where a new value would be inserted in the tree. The value
90 * is a modified "avl_node_t *". The bottom bit (normally 0 for a
91 * pointer) is set to indicate if that the new node has a value greater
92 * than the value of the indicated "avl_node_t *".
93 *
94 * Note - in addition to userland (e.g. libavl and libutil) and the kernel
95 * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module,
96 * which each have their own compilation environments and subsequent
97 * requirements. Each of these environments must be considered when adding
98 * dependencies from avl.c.
99 *
100 * Link to Illumos.org for more information on avl function:
101 * [1] https://illumos.org/man/9f/avl
102 */
103
104 #include <sys/types.h>
105 #include <sys/param.h>
106 #include <sys/debug.h>
107 #include <sys/avl.h>
108 #include <sys/cmn_err.h>
109 #include <sys/mod.h>
110
111 /*
112 * Walk from one node to the previous valued node (ie. an infix walk
113 * towards the left). At any given node we do one of 2 things:
114 *
115 * - If there is a left child, go to it, then to it's rightmost descendant.
116 *
117 * - otherwise we return through parent nodes until we've come from a right
118 * child.
119 *
120 * Return Value:
121 * NULL - if at the end of the nodes
122 * otherwise next node
123 */
124 void *
125 avl_walk(avl_tree_t *tree, void *oldnode, int left)
126 {
127 size_t off = tree->avl_offset;
128 avl_node_t *node = AVL_DATA2NODE(oldnode, off);
129 int right = 1 - left;
130 int was_child;
131
132
133 /*
134 * nowhere to walk to if tree is empty
135 */
136 if (node == NULL)
137 return (NULL);
138
139 /*
140 * Visit the previous valued node. There are two possibilities:
141 *
142 * If this node has a left child, go down one left, then all
143 * the way right.
144 */
145 if (node->avl_child[left] != NULL) {
146 for (node = node->avl_child[left];
147 node->avl_child[right] != NULL;
148 node = node->avl_child[right])
149 ;
150 /*
151 * Otherwise, return through left children as far as we can.
152 */
153 } else {
154 for (;;) {
155 was_child = AVL_XCHILD(node);
156 node = AVL_XPARENT(node);
157 if (node == NULL)
158 return (NULL);
159 if (was_child == right)
160 break;
161 }
162 }
163
164 return (AVL_NODE2DATA(node, off));
165 }
166
167 /*
168 * Return the lowest valued node in a tree or NULL.
169 * (leftmost child from root of tree)
170 */
171 void *
172 avl_first(avl_tree_t *tree)
173 {
174 avl_node_t *node;
175 avl_node_t *prev = NULL;
176 size_t off = tree->avl_offset;
177
178 for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
179 prev = node;
180
181 if (prev != NULL)
182 return (AVL_NODE2DATA(prev, off));
183 return (NULL);
184 }
185
186 /*
187 * Return the highest valued node in a tree or NULL.
188 * (rightmost child from root of tree)
189 */
190 void *
191 avl_last(avl_tree_t *tree)
192 {
193 avl_node_t *node;
194 avl_node_t *prev = NULL;
195 size_t off = tree->avl_offset;
196
197 for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
198 prev = node;
199
200 if (prev != NULL)
201 return (AVL_NODE2DATA(prev, off));
202 return (NULL);
203 }
204
205 /*
206 * Access the node immediately before or after an insertion point.
207 *
208 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
209 *
210 * Return value:
211 * NULL: no node in the given direction
212 * "void *" of the found tree node
213 */
214 void *
215 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
216 {
217 int child = AVL_INDEX2CHILD(where);
218 avl_node_t *node = AVL_INDEX2NODE(where);
219 void *data;
220 size_t off = tree->avl_offset;
221
222 if (node == NULL) {
223 ASSERT(tree->avl_root == NULL);
224 return (NULL);
225 }
226 data = AVL_NODE2DATA(node, off);
227 if (child != direction)
228 return (data);
229
230 return (avl_walk(tree, data, direction));
231 }
232
233
234 /*
235 * Search for the node which contains "value". The algorithm is a
236 * simple binary tree search.
237 *
238 * return value:
239 * NULL: the value is not in the AVL tree
240 * *where (if not NULL) is set to indicate the insertion point
241 * "void *" of the found tree node
242 */
243 void *
244 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
245 {
246 avl_node_t *node;
247 avl_node_t *prev = NULL;
248 int child = 0;
249 int diff;
250 size_t off = tree->avl_offset;
251
252 for (node = tree->avl_root; node != NULL;
253 node = node->avl_child[child]) {
254
255 prev = node;
256
257 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
258 ASSERT(-1 <= diff && diff <= 1);
259 if (diff == 0) {
260 #ifdef ZFS_DEBUG
261 if (where != NULL)
262 *where = 0;
263 #endif
264 return (AVL_NODE2DATA(node, off));
265 }
266 child = (diff > 0);
267 }
268
269 if (where != NULL)
270 *where = AVL_MKINDEX(prev, child);
271
272 return (NULL);
273 }
274
275
276 /*
277 * Perform a rotation to restore balance at the subtree given by depth.
278 *
279 * This routine is used by both insertion and deletion. The return value
280 * indicates:
281 * 0 : subtree did not change height
282 * !0 : subtree was reduced in height
283 *
284 * The code is written as if handling left rotations, right rotations are
285 * symmetric and handled by swapping values of variables right/left[_heavy]
286 *
287 * On input balance is the "new" balance at "node". This value is either
288 * -2 or +2.
289 */
290 static int
291 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
292 {
293 int left = !(balance < 0); /* when balance = -2, left will be 0 */
294 int right = 1 - left;
295 int left_heavy = balance >> 1;
296 int right_heavy = -left_heavy;
297 avl_node_t *parent = AVL_XPARENT(node);
298 avl_node_t *child = node->avl_child[left];
299 avl_node_t *cright;
300 avl_node_t *gchild;
301 avl_node_t *gright;
302 avl_node_t *gleft;
303 int which_child = AVL_XCHILD(node);
304 int child_bal = AVL_XBALANCE(child);
305
306 /*
307 * case 1 : node is overly left heavy, the left child is balanced or
308 * also left heavy. This requires the following rotation.
309 *
310 * (node bal:-2)
311 * / \
312 * / \
313 * (child bal:0 or -1)
314 * / \
315 * / \
316 * cright
317 *
318 * becomes:
319 *
320 * (child bal:1 or 0)
321 * / \
322 * / \
323 * (node bal:-1 or 0)
324 * / \
325 * / \
326 * cright
327 *
328 * we detect this situation by noting that child's balance is not
329 * right_heavy.
330 */
331 if (child_bal != right_heavy) {
332
333 /*
334 * compute new balance of nodes
335 *
336 * If child used to be left heavy (now balanced) we reduced
337 * the height of this sub-tree -- used in "return...;" below
338 */
339 child_bal += right_heavy; /* adjust towards right */
340
341 /*
342 * move "cright" to be node's left child
343 */
344 cright = child->avl_child[right];
345 node->avl_child[left] = cright;
346 if (cright != NULL) {
347 AVL_SETPARENT(cright, node);
348 AVL_SETCHILD(cright, left);
349 }
350
351 /*
352 * move node to be child's right child
353 */
354 child->avl_child[right] = node;
355 AVL_SETBALANCE(node, -child_bal);
356 AVL_SETCHILD(node, right);
357 AVL_SETPARENT(node, child);
358
359 /*
360 * update the pointer into this subtree
361 */
362 AVL_SETBALANCE(child, child_bal);
363 AVL_SETCHILD(child, which_child);
364 AVL_SETPARENT(child, parent);
365 if (parent != NULL)
366 parent->avl_child[which_child] = child;
367 else
368 tree->avl_root = child;
369
370 return (child_bal == 0);
371 }
372
373 /*
374 * case 2 : When node is left heavy, but child is right heavy we use
375 * a different rotation.
376 *
377 * (node b:-2)
378 * / \
379 * / \
380 * / \
381 * (child b:+1)
382 * / \
383 * / \
384 * (gchild b: != 0)
385 * / \
386 * / \
387 * gleft gright
388 *
389 * becomes:
390 *
391 * (gchild b:0)
392 * / \
393 * / \
394 * / \
395 * (child b:?) (node b:?)
396 * / \ / \
397 * / \ / \
398 * gleft gright
399 *
400 * computing the new balances is more complicated. As an example:
401 * if gchild was right_heavy, then child is now left heavy
402 * else it is balanced
403 */
404 gchild = child->avl_child[right];
405 gleft = gchild->avl_child[left];
406 gright = gchild->avl_child[right];
407
408 /*
409 * move gright to left child of node and
410 *
411 * move gleft to right child of node
412 */
413 node->avl_child[left] = gright;
414 if (gright != NULL) {
415 AVL_SETPARENT(gright, node);
416 AVL_SETCHILD(gright, left);
417 }
418
419 child->avl_child[right] = gleft;
420 if (gleft != NULL) {
421 AVL_SETPARENT(gleft, child);
422 AVL_SETCHILD(gleft, right);
423 }
424
425 /*
426 * move child to left child of gchild and
427 *
428 * move node to right child of gchild and
429 *
430 * fixup parent of all this to point to gchild
431 */
432 balance = AVL_XBALANCE(gchild);
433 gchild->avl_child[left] = child;
434 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
435 AVL_SETPARENT(child, gchild);
436 AVL_SETCHILD(child, left);
437
438 gchild->avl_child[right] = node;
439 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
440 AVL_SETPARENT(node, gchild);
441 AVL_SETCHILD(node, right);
442
443 AVL_SETBALANCE(gchild, 0);
444 AVL_SETPARENT(gchild, parent);
445 AVL_SETCHILD(gchild, which_child);
446 if (parent != NULL)
447 parent->avl_child[which_child] = gchild;
448 else
449 tree->avl_root = gchild;
450
451 return (1); /* the new tree is always shorter */
452 }
453
454
455 /*
456 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
457 *
458 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
459 * searches out to the leaf positions. The avl_index_t indicates the node
460 * which will be the parent of the new node.
461 *
462 * After the node is inserted, a single rotation further up the tree may
463 * be necessary to maintain an acceptable AVL balance.
464 */
465 void
466 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
467 {
468 avl_node_t *node;
469 avl_node_t *parent = AVL_INDEX2NODE(where);
470 int old_balance;
471 int new_balance;
472 int which_child = AVL_INDEX2CHILD(where);
473 size_t off = tree->avl_offset;
474
475 #ifdef _LP64
476 ASSERT(((uintptr_t)new_data & 0x7) == 0);
477 #endif
478
479 node = AVL_DATA2NODE(new_data, off);
480
481 /*
482 * First, add the node to the tree at the indicated position.
483 */
484 ++tree->avl_numnodes;
485
486 node->avl_child[0] = NULL;
487 node->avl_child[1] = NULL;
488
489 AVL_SETCHILD(node, which_child);
490 AVL_SETBALANCE(node, 0);
491 AVL_SETPARENT(node, parent);
492 if (parent != NULL) {
493 ASSERT(parent->avl_child[which_child] == NULL);
494 parent->avl_child[which_child] = node;
495 } else {
496 ASSERT(tree->avl_root == NULL);
497 tree->avl_root = node;
498 }
499 /*
500 * Now, back up the tree modifying the balance of all nodes above the
501 * insertion point. If we get to a highly unbalanced ancestor, we
502 * need to do a rotation. If we back out of the tree we are done.
503 * If we brought any subtree into perfect balance (0), we are also done.
504 */
505 for (;;) {
506 node = parent;
507 if (node == NULL)
508 return;
509
510 /*
511 * Compute the new balance
512 */
513 old_balance = AVL_XBALANCE(node);
514 new_balance = old_balance + (which_child ? 1 : -1);
515
516 /*
517 * If we introduced equal balance, then we are done immediately
518 */
519 if (new_balance == 0) {
520 AVL_SETBALANCE(node, 0);
521 return;
522 }
523
524 /*
525 * If both old and new are not zero we went
526 * from -1 to -2 balance, do a rotation.
527 */
528 if (old_balance != 0)
529 break;
530
531 AVL_SETBALANCE(node, new_balance);
532 parent = AVL_XPARENT(node);
533 which_child = AVL_XCHILD(node);
534 }
535
536 /*
537 * perform a rotation to fix the tree and return
538 */
539 (void) avl_rotation(tree, node, new_balance);
540 }
541
542 /*
543 * Insert "new_data" in "tree" in the given "direction" either after or
544 * before (AVL_AFTER, AVL_BEFORE) the data "here".
545 *
546 * Insertions can only be done at empty leaf points in the tree, therefore
547 * if the given child of the node is already present we move to either
548 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
549 * every other node in the tree is a leaf, this always works.
550 *
551 * To help developers using this interface, we assert that the new node
552 * is correctly ordered at every step of the way in DEBUG kernels.
553 */
554 void
555 avl_insert_here(
556 avl_tree_t *tree,
557 void *new_data,
558 void *here,
559 int direction)
560 {
561 avl_node_t *node;
562 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
563 #ifdef ZFS_DEBUG
564 int diff;
565 #endif
566
567 ASSERT(tree != NULL);
568 ASSERT(new_data != NULL);
569 ASSERT(here != NULL);
570 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
571
572 /*
573 * If corresponding child of node is not NULL, go to the neighboring
574 * node and reverse the insertion direction.
575 */
576 node = AVL_DATA2NODE(here, tree->avl_offset);
577
578 #ifdef ZFS_DEBUG
579 diff = tree->avl_compar(new_data, here);
580 ASSERT(-1 <= diff && diff <= 1);
581 ASSERT(diff != 0);
582 ASSERT(diff > 0 ? child == 1 : child == 0);
583 #endif
584
585 if (node->avl_child[child] != NULL) {
586 node = node->avl_child[child];
587 child = 1 - child;
588 while (node->avl_child[child] != NULL) {
589 #ifdef ZFS_DEBUG
590 diff = tree->avl_compar(new_data,
591 AVL_NODE2DATA(node, tree->avl_offset));
592 ASSERT(-1 <= diff && diff <= 1);
593 ASSERT(diff != 0);
594 ASSERT(diff > 0 ? child == 1 : child == 0);
595 #endif
596 node = node->avl_child[child];
597 }
598 #ifdef ZFS_DEBUG
599 diff = tree->avl_compar(new_data,
600 AVL_NODE2DATA(node, tree->avl_offset));
601 ASSERT(-1 <= diff && diff <= 1);
602 ASSERT(diff != 0);
603 ASSERT(diff > 0 ? child == 1 : child == 0);
604 #endif
605 }
606 ASSERT(node->avl_child[child] == NULL);
607
608 avl_insert(tree, new_data, AVL_MKINDEX(node, child));
609 }
610
611 /*
612 * Add a new node to an AVL tree. Strictly enforce that no duplicates can
613 * be added to the tree with a VERIFY which is enabled for non-DEBUG builds.
614 */
615 void
616 avl_add(avl_tree_t *tree, void *new_node)
617 {
618 avl_index_t where = 0;
619
620 VERIFY(avl_find(tree, new_node, &where) == NULL);
621
622 avl_insert(tree, new_node, where);
623 }
624
625 /*
626 * Delete a node from the AVL tree. Deletion is similar to insertion, but
627 * with 2 complications.
628 *
629 * First, we may be deleting an interior node. Consider the following subtree:
630 *
631 * d c c
632 * / \ / \ / \
633 * b e b e b e
634 * / \ / \ /
635 * a c a a
636 *
637 * When we are deleting node (d), we find and bring up an adjacent valued leaf
638 * node, say (c), to take the interior node's place. In the code this is
639 * handled by temporarily swapping (d) and (c) in the tree and then using
640 * common code to delete (d) from the leaf position.
641 *
642 * Secondly, an interior deletion from a deep tree may require more than one
643 * rotation to fix the balance. This is handled by moving up the tree through
644 * parents and applying rotations as needed. The return value from
645 * avl_rotation() is used to detect when a subtree did not change overall
646 * height due to a rotation.
647 */
648 void
649 avl_remove(avl_tree_t *tree, void *data)
650 {
651 avl_node_t *delete;
652 avl_node_t *parent;
653 avl_node_t *node;
654 avl_node_t tmp;
655 int old_balance;
656 int new_balance;
657 int left;
658 int right;
659 int which_child;
660 size_t off = tree->avl_offset;
661
662 delete = AVL_DATA2NODE(data, off);
663
664 /*
665 * Deletion is easiest with a node that has at most 1 child.
666 * We swap a node with 2 children with a sequentially valued
667 * neighbor node. That node will have at most 1 child. Note this
668 * has no effect on the ordering of the remaining nodes.
669 *
670 * As an optimization, we choose the greater neighbor if the tree
671 * is right heavy, otherwise the left neighbor. This reduces the
672 * number of rotations needed.
673 */
674 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
675
676 /*
677 * choose node to swap from whichever side is taller
678 */
679 old_balance = AVL_XBALANCE(delete);
680 left = (old_balance > 0);
681 right = 1 - left;
682
683 /*
684 * get to the previous value'd node
685 * (down 1 left, as far as possible right)
686 */
687 for (node = delete->avl_child[left];
688 node->avl_child[right] != NULL;
689 node = node->avl_child[right])
690 ;
691
692 /*
693 * create a temp placeholder for 'node'
694 * move 'node' to delete's spot in the tree
695 */
696 tmp = *node;
697
698 *node = *delete;
699 if (node->avl_child[left] == node)
700 node->avl_child[left] = &tmp;
701
702 parent = AVL_XPARENT(node);
703 if (parent != NULL)
704 parent->avl_child[AVL_XCHILD(node)] = node;
705 else
706 tree->avl_root = node;
707 AVL_SETPARENT(node->avl_child[left], node);
708 AVL_SETPARENT(node->avl_child[right], node);
709
710 /*
711 * Put tmp where node used to be (just temporary).
712 * It always has a parent and at most 1 child.
713 */
714 delete = &tmp;
715 parent = AVL_XPARENT(delete);
716 parent->avl_child[AVL_XCHILD(delete)] = delete;
717 which_child = (delete->avl_child[1] != 0);
718 if (delete->avl_child[which_child] != NULL)
719 AVL_SETPARENT(delete->avl_child[which_child], delete);
720 }
721
722
723 /*
724 * Here we know "delete" is at least partially a leaf node. It can
725 * be easily removed from the tree.
726 */
727 ASSERT(tree->avl_numnodes > 0);
728 --tree->avl_numnodes;
729 parent = AVL_XPARENT(delete);
730 which_child = AVL_XCHILD(delete);
731 if (delete->avl_child[0] != NULL)
732 node = delete->avl_child[0];
733 else
734 node = delete->avl_child[1];
735
736 /*
737 * Connect parent directly to node (leaving out delete).
738 */
739 if (node != NULL) {
740 AVL_SETPARENT(node, parent);
741 AVL_SETCHILD(node, which_child);
742 }
743 if (parent == NULL) {
744 tree->avl_root = node;
745 return;
746 }
747 parent->avl_child[which_child] = node;
748
749
750 /*
751 * Since the subtree is now shorter, begin adjusting parent balances
752 * and performing any needed rotations.
753 */
754 do {
755
756 /*
757 * Move up the tree and adjust the balance
758 *
759 * Capture the parent and which_child values for the next
760 * iteration before any rotations occur.
761 */
762 node = parent;
763 old_balance = AVL_XBALANCE(node);
764 new_balance = old_balance - (which_child ? 1 : -1);
765 parent = AVL_XPARENT(node);
766 which_child = AVL_XCHILD(node);
767
768 /*
769 * If a node was in perfect balance but isn't anymore then
770 * we can stop, since the height didn't change above this point
771 * due to a deletion.
772 */
773 if (old_balance == 0) {
774 AVL_SETBALANCE(node, new_balance);
775 break;
776 }
777
778 /*
779 * If the new balance is zero, we don't need to rotate
780 * else
781 * need a rotation to fix the balance.
782 * If the rotation doesn't change the height
783 * of the sub-tree we have finished adjusting.
784 */
785 if (new_balance == 0)
786 AVL_SETBALANCE(node, new_balance);
787 else if (!avl_rotation(tree, node, new_balance))
788 break;
789 } while (parent != NULL);
790 }
791
792 #define AVL_REINSERT(tree, obj) \
793 avl_remove((tree), (obj)); \
794 avl_add((tree), (obj))
795
796 boolean_t
797 avl_update_lt(avl_tree_t *t, void *obj)
798 {
799 void *neighbor;
800
801 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
802 (t->avl_compar(obj, neighbor) <= 0));
803
804 neighbor = AVL_PREV(t, obj);
805 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
806 AVL_REINSERT(t, obj);
807 return (B_TRUE);
808 }
809
810 return (B_FALSE);
811 }
812
813 boolean_t
814 avl_update_gt(avl_tree_t *t, void *obj)
815 {
816 void *neighbor;
817
818 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
819 (t->avl_compar(obj, neighbor) >= 0));
820
821 neighbor = AVL_NEXT(t, obj);
822 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
823 AVL_REINSERT(t, obj);
824 return (B_TRUE);
825 }
826
827 return (B_FALSE);
828 }
829
830 boolean_t
831 avl_update(avl_tree_t *t, void *obj)
832 {
833 void *neighbor;
834
835 neighbor = AVL_PREV(t, obj);
836 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
837 AVL_REINSERT(t, obj);
838 return (B_TRUE);
839 }
840
841 neighbor = AVL_NEXT(t, obj);
842 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
843 AVL_REINSERT(t, obj);
844 return (B_TRUE);
845 }
846
847 return (B_FALSE);
848 }
849
850 void
851 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2)
852 {
853 avl_node_t *temp_node;
854 ulong_t temp_numnodes;
855
856 ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar);
857 ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset);
858
859 temp_node = tree1->avl_root;
860 temp_numnodes = tree1->avl_numnodes;
861 tree1->avl_root = tree2->avl_root;
862 tree1->avl_numnodes = tree2->avl_numnodes;
863 tree2->avl_root = temp_node;
864 tree2->avl_numnodes = temp_numnodes;
865 }
866
867 /*
868 * initialize a new AVL tree
869 */
870 void
871 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
872 size_t size, size_t offset)
873 {
874 ASSERT(tree);
875 ASSERT(compar);
876 ASSERT(size > 0);
877 ASSERT(size >= offset + sizeof (avl_node_t));
878 #ifdef _LP64
879 ASSERT((offset & 0x7) == 0);
880 #endif
881
882 tree->avl_compar = compar;
883 tree->avl_root = NULL;
884 tree->avl_numnodes = 0;
885 tree->avl_offset = offset;
886 }
887
888 /*
889 * Delete a tree.
890 */
891 void
892 avl_destroy(avl_tree_t *tree)
893 {
894 ASSERT(tree);
895 ASSERT(tree->avl_numnodes == 0);
896 ASSERT(tree->avl_root == NULL);
897 }
898
899
900 /*
901 * Return the number of nodes in an AVL tree.
902 */
903 ulong_t
904 avl_numnodes(avl_tree_t *tree)
905 {
906 ASSERT(tree);
907 return (tree->avl_numnodes);
908 }
909
910 boolean_t
911 avl_is_empty(avl_tree_t *tree)
912 {
913 ASSERT(tree);
914 return (tree->avl_numnodes == 0);
915 }
916
917 #define CHILDBIT (1L)
918
919 /*
920 * Post-order tree walk used to visit all tree nodes and destroy the tree
921 * in post order. This is used for removing all the nodes from a tree without
922 * paying any cost for rebalancing it.
923 *
924 * example:
925 *
926 * void *cookie = NULL;
927 * my_data_t *node;
928 *
929 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
930 * free(node);
931 * avl_destroy(tree);
932 *
933 * The cookie is really an avl_node_t to the current node's parent and
934 * an indication of which child you looked at last.
935 *
936 * On input, a cookie value of CHILDBIT indicates the tree is done.
937 */
938 void *
939 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
940 {
941 avl_node_t *node;
942 avl_node_t *parent;
943 int child;
944 void *first;
945 size_t off = tree->avl_offset;
946
947 /*
948 * Initial calls go to the first node or it's right descendant.
949 */
950 if (*cookie == NULL) {
951 first = avl_first(tree);
952
953 /*
954 * deal with an empty tree
955 */
956 if (first == NULL) {
957 *cookie = (void *)CHILDBIT;
958 return (NULL);
959 }
960
961 node = AVL_DATA2NODE(first, off);
962 parent = AVL_XPARENT(node);
963 goto check_right_side;
964 }
965
966 /*
967 * If there is no parent to return to we are done.
968 */
969 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
970 if (parent == NULL) {
971 if (tree->avl_root != NULL) {
972 ASSERT(tree->avl_numnodes == 1);
973 tree->avl_root = NULL;
974 tree->avl_numnodes = 0;
975 }
976 return (NULL);
977 }
978
979 /*
980 * Remove the child pointer we just visited from the parent and tree.
981 */
982 child = (uintptr_t)(*cookie) & CHILDBIT;
983 parent->avl_child[child] = NULL;
984 ASSERT(tree->avl_numnodes > 1);
985 --tree->avl_numnodes;
986
987 /*
988 * If we just removed a right child or there isn't one, go up to parent.
989 */
990 if (child == 1 || parent->avl_child[1] == NULL) {
991 node = parent;
992 parent = AVL_XPARENT(parent);
993 goto done;
994 }
995
996 /*
997 * Do parent's right child, then leftmost descendent.
998 */
999 node = parent->avl_child[1];
1000 while (node->avl_child[0] != NULL) {
1001 parent = node;
1002 node = node->avl_child[0];
1003 }
1004
1005 /*
1006 * If here, we moved to a left child. It may have one
1007 * child on the right (when balance == +1).
1008 */
1009 check_right_side:
1010 if (node->avl_child[1] != NULL) {
1011 ASSERT(AVL_XBALANCE(node) == 1);
1012 parent = node;
1013 node = node->avl_child[1];
1014 ASSERT(node->avl_child[0] == NULL &&
1015 node->avl_child[1] == NULL);
1016 } else {
1017 ASSERT(AVL_XBALANCE(node) <= 0);
1018 }
1019
1020 done:
1021 if (parent == NULL) {
1022 *cookie = (void *)CHILDBIT;
1023 ASSERT(node == tree->avl_root);
1024 } else {
1025 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1026 }
1027
1028 return (AVL_NODE2DATA(node, off));
1029 }
1030
1031 EXPORT_SYMBOL(avl_create);
1032 EXPORT_SYMBOL(avl_find);
1033 EXPORT_SYMBOL(avl_insert);
1034 EXPORT_SYMBOL(avl_insert_here);
1035 EXPORT_SYMBOL(avl_walk);
1036 EXPORT_SYMBOL(avl_first);
1037 EXPORT_SYMBOL(avl_last);
1038 EXPORT_SYMBOL(avl_nearest);
1039 EXPORT_SYMBOL(avl_add);
1040 EXPORT_SYMBOL(avl_swap);
1041 EXPORT_SYMBOL(avl_is_empty);
1042 EXPORT_SYMBOL(avl_remove);
1043 EXPORT_SYMBOL(avl_numnodes);
1044 EXPORT_SYMBOL(avl_destroy_nodes);
1045 EXPORT_SYMBOL(avl_destroy);
1046 EXPORT_SYMBOL(avl_update_lt);
1047 EXPORT_SYMBOL(avl_update_gt);
1048 EXPORT_SYMBOL(avl_update);
Cache object: 738bd847b51da4eaaa7c3c966e5fe60e
|