1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3
24 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor
25 * Copyright (c) 2021-2022 Tino Reichardt <milky-zfs@mcmilk.de>
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/blake3.h>
30
31 #include "blake3_impl.h"
32
33 /*
34 * We need 1056 byte stack for blake3_compress_subtree_wide()
35 * - we define this pragma to make gcc happy
36 */
37 #if defined(__GNUC__)
38 #pragma GCC diagnostic ignored "-Wframe-larger-than="
39 #endif
40
41 /* internal used */
42 typedef struct {
43 uint32_t input_cv[8];
44 uint64_t counter;
45 uint8_t block[BLAKE3_BLOCK_LEN];
46 uint8_t block_len;
47 uint8_t flags;
48 } output_t;
49
50 /* internal flags */
51 enum blake3_flags {
52 CHUNK_START = 1 << 0,
53 CHUNK_END = 1 << 1,
54 PARENT = 1 << 2,
55 ROOT = 1 << 3,
56 KEYED_HASH = 1 << 4,
57 DERIVE_KEY_CONTEXT = 1 << 5,
58 DERIVE_KEY_MATERIAL = 1 << 6,
59 };
60
61 /* internal start */
62 static void chunk_state_init(blake3_chunk_state_t *ctx,
63 const uint32_t key[8], uint8_t flags)
64 {
65 memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
66 ctx->chunk_counter = 0;
67 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
68 ctx->buf_len = 0;
69 ctx->blocks_compressed = 0;
70 ctx->flags = flags;
71 }
72
73 static void chunk_state_reset(blake3_chunk_state_t *ctx,
74 const uint32_t key[8], uint64_t chunk_counter)
75 {
76 memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
77 ctx->chunk_counter = chunk_counter;
78 ctx->blocks_compressed = 0;
79 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
80 ctx->buf_len = 0;
81 }
82
83 static size_t chunk_state_len(const blake3_chunk_state_t *ctx)
84 {
85 return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) +
86 ((size_t)ctx->buf_len);
87 }
88
89 static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx,
90 const uint8_t *input, size_t input_len)
91 {
92 size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len);
93 if (take > input_len) {
94 take = input_len;
95 }
96 uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len);
97 memcpy(dest, input, take);
98 ctx->buf_len += (uint8_t)take;
99 return (take);
100 }
101
102 static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx)
103 {
104 if (ctx->blocks_compressed == 0) {
105 return (CHUNK_START);
106 } else {
107 return (0);
108 }
109 }
110
111 static output_t make_output(const uint32_t input_cv[8],
112 const uint8_t *block, uint8_t block_len,
113 uint64_t counter, uint8_t flags)
114 {
115 output_t ret;
116 memcpy(ret.input_cv, input_cv, 32);
117 memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
118 ret.block_len = block_len;
119 ret.counter = counter;
120 ret.flags = flags;
121 return (ret);
122 }
123
124 /*
125 * Chaining values within a given chunk (specifically the compress_in_place
126 * interface) are represented as words. This avoids unnecessary bytes<->words
127 * conversion overhead in the portable implementation. However, the hash_many
128 * interface handles both user input and parent node blocks, so it accepts
129 * bytes. For that reason, chaining values in the CV stack are represented as
130 * bytes.
131 */
132 static void output_chaining_value(const blake3_ops_t *ops,
133 const output_t *ctx, uint8_t cv[32])
134 {
135 uint32_t cv_words[8];
136 memcpy(cv_words, ctx->input_cv, 32);
137 ops->compress_in_place(cv_words, ctx->block, ctx->block_len,
138 ctx->counter, ctx->flags);
139 store_cv_words(cv, cv_words);
140 }
141
142 static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx,
143 uint64_t seek, uint8_t *out, size_t out_len)
144 {
145 uint64_t output_block_counter = seek / 64;
146 size_t offset_within_block = seek % 64;
147 uint8_t wide_buf[64];
148 while (out_len > 0) {
149 ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len,
150 output_block_counter, ctx->flags | ROOT, wide_buf);
151 size_t available_bytes = 64 - offset_within_block;
152 size_t memcpy_len;
153 if (out_len > available_bytes) {
154 memcpy_len = available_bytes;
155 } else {
156 memcpy_len = out_len;
157 }
158 memcpy(out, wide_buf + offset_within_block, memcpy_len);
159 out += memcpy_len;
160 out_len -= memcpy_len;
161 output_block_counter += 1;
162 offset_within_block = 0;
163 }
164 }
165
166 static void chunk_state_update(const blake3_ops_t *ops,
167 blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len)
168 {
169 if (ctx->buf_len > 0) {
170 size_t take = chunk_state_fill_buf(ctx, input, input_len);
171 input += take;
172 input_len -= take;
173 if (input_len > 0) {
174 ops->compress_in_place(ctx->cv, ctx->buf,
175 BLAKE3_BLOCK_LEN, ctx->chunk_counter,
176 ctx->flags|chunk_state_maybe_start_flag(ctx));
177 ctx->blocks_compressed += 1;
178 ctx->buf_len = 0;
179 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
180 }
181 }
182
183 while (input_len > BLAKE3_BLOCK_LEN) {
184 ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN,
185 ctx->chunk_counter,
186 ctx->flags|chunk_state_maybe_start_flag(ctx));
187 ctx->blocks_compressed += 1;
188 input += BLAKE3_BLOCK_LEN;
189 input_len -= BLAKE3_BLOCK_LEN;
190 }
191
192 chunk_state_fill_buf(ctx, input, input_len);
193 }
194
195 static output_t chunk_state_output(const blake3_chunk_state_t *ctx)
196 {
197 uint8_t block_flags =
198 ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END;
199 return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter,
200 block_flags));
201 }
202
203 static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
204 const uint32_t key[8], uint8_t flags)
205 {
206 return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT));
207 }
208
209 /*
210 * Given some input larger than one chunk, return the number of bytes that
211 * should go in the left subtree. This is the largest power-of-2 number of
212 * chunks that leaves at least 1 byte for the right subtree.
213 */
214 static size_t left_len(size_t content_len)
215 {
216 /*
217 * Subtract 1 to reserve at least one byte for the right side.
218 * content_len
219 * should always be greater than BLAKE3_CHUNK_LEN.
220 */
221 size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
222 return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN);
223 }
224
225 /*
226 * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
227 * on a single thread. Write out the chunk chaining values and return the
228 * number of chunks hashed. These chunks are never the root and never empty;
229 * those cases use a different codepath.
230 */
231 static size_t compress_chunks_parallel(const blake3_ops_t *ops,
232 const uint8_t *input, size_t input_len, const uint32_t key[8],
233 uint64_t chunk_counter, uint8_t flags, uint8_t *out)
234 {
235 const uint8_t *chunks_array[MAX_SIMD_DEGREE];
236 size_t input_position = 0;
237 size_t chunks_array_len = 0;
238 while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
239 chunks_array[chunks_array_len] = &input[input_position];
240 input_position += BLAKE3_CHUNK_LEN;
241 chunks_array_len += 1;
242 }
243
244 ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN /
245 BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START,
246 CHUNK_END, out);
247
248 /*
249 * Hash the remaining partial chunk, if there is one. Note that the
250 * empty chunk (meaning the empty message) is a different codepath.
251 */
252 if (input_len > input_position) {
253 uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
254 blake3_chunk_state_t chunk_state;
255 chunk_state_init(&chunk_state, key, flags);
256 chunk_state.chunk_counter = counter;
257 chunk_state_update(ops, &chunk_state, &input[input_position],
258 input_len - input_position);
259 output_t output = chunk_state_output(&chunk_state);
260 output_chaining_value(ops, &output, &out[chunks_array_len *
261 BLAKE3_OUT_LEN]);
262 return (chunks_array_len + 1);
263 } else {
264 return (chunks_array_len);
265 }
266 }
267
268 /*
269 * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
270 * on a single thread. Write out the parent chaining values and return the
271 * number of parents hashed. (If there's an odd input chaining value left over,
272 * return it as an additional output.) These parents are never the root and
273 * never empty; those cases use a different codepath.
274 */
275 static size_t compress_parents_parallel(const blake3_ops_t *ops,
276 const uint8_t *child_chaining_values, size_t num_chaining_values,
277 const uint32_t key[8], uint8_t flags, uint8_t *out)
278 {
279 const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2] = {0};
280 size_t parents_array_len = 0;
281
282 while (num_chaining_values - (2 * parents_array_len) >= 2) {
283 parents_array[parents_array_len] = &child_chaining_values[2 *
284 parents_array_len * BLAKE3_OUT_LEN];
285 parents_array_len += 1;
286 }
287
288 ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE,
289 flags | PARENT, 0, 0, out);
290
291 /* If there's an odd child left over, it becomes an output. */
292 if (num_chaining_values > 2 * parents_array_len) {
293 memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
294 &child_chaining_values[2 * parents_array_len *
295 BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
296 return (parents_array_len + 1);
297 } else {
298 return (parents_array_len);
299 }
300 }
301
302 /*
303 * The wide helper function returns (writes out) an array of chaining values
304 * and returns the length of that array. The number of chaining values returned
305 * is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
306 * if the input is shorter than that many chunks. The reason for maintaining a
307 * wide array of chaining values going back up the tree, is to allow the
308 * implementation to hash as many parents in parallel as possible.
309 *
310 * As a special case when the SIMD degree is 1, this function will still return
311 * at least 2 outputs. This guarantees that this function doesn't perform the
312 * root compression. (If it did, it would use the wrong flags, and also we
313 * wouldn't be able to implement exendable ouput.) Note that this function is
314 * not used when the whole input is only 1 chunk long; that's a different
315 * codepath.
316 *
317 * Why not just have the caller split the input on the first update(), instead
318 * of implementing this special rule? Because we don't want to limit SIMD or
319 * multi-threading parallelism for that update().
320 */
321 static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops,
322 const uint8_t *input, size_t input_len, const uint32_t key[8],
323 uint64_t chunk_counter, uint8_t flags, uint8_t *out)
324 {
325 /*
326 * Note that the single chunk case does *not* bump the SIMD degree up
327 * to 2 when it is 1. If this implementation adds multi-threading in
328 * the future, this gives us the option of multi-threading even the
329 * 2-chunk case, which can help performance on smaller platforms.
330 */
331 if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) {
332 return (compress_chunks_parallel(ops, input, input_len, key,
333 chunk_counter, flags, out));
334 }
335
336
337 /*
338 * With more than simd_degree chunks, we need to recurse. Start by
339 * dividing the input into left and right subtrees. (Note that this is
340 * only optimal as long as the SIMD degree is a power of 2. If we ever
341 * get a SIMD degree of 3 or something, we'll need a more complicated
342 * strategy.)
343 */
344 size_t left_input_len = left_len(input_len);
345 size_t right_input_len = input_len - left_input_len;
346 const uint8_t *right_input = &input[left_input_len];
347 uint64_t right_chunk_counter = chunk_counter +
348 (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
349
350 /*
351 * Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2
352 * to account for the special case of returning 2 outputs when the
353 * SIMD degree is 1.
354 */
355 uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
356 size_t degree = ops->degree;
357 if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
358
359 /*
360 * The special case: We always use a degree of at least two,
361 * to make sure there are two outputs. Except, as noted above,
362 * at the chunk level, where we allow degree=1. (Note that the
363 * 1-chunk-input case is a different codepath.)
364 */
365 degree = 2;
366 }
367 uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
368
369 /*
370 * Recurse! If this implementation adds multi-threading support in the
371 * future, this is where it will go.
372 */
373 size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len,
374 key, chunk_counter, flags, cv_array);
375 size_t right_n = blake3_compress_subtree_wide(ops, right_input,
376 right_input_len, key, right_chunk_counter, flags, right_cvs);
377
378 /*
379 * The special case again. If simd_degree=1, then we'll have left_n=1
380 * and right_n=1. Rather than compressing them into a single output,
381 * return them directly, to make sure we always have at least two
382 * outputs.
383 */
384 if (left_n == 1) {
385 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
386 return (2);
387 }
388
389 /* Otherwise, do one layer of parent node compression. */
390 size_t num_chaining_values = left_n + right_n;
391 return compress_parents_parallel(ops, cv_array,
392 num_chaining_values, key, flags, out);
393 }
394
395 /*
396 * Hash a subtree with compress_subtree_wide(), and then condense the resulting
397 * list of chaining values down to a single parent node. Don't compress that
398 * last parent node, however. Instead, return its message bytes (the
399 * concatenated chaining values of its children). This is necessary when the
400 * first call to update() supplies a complete subtree, because the topmost
401 * parent node of that subtree could end up being the root. It's also necessary
402 * for extended output in the general case.
403 *
404 * As with compress_subtree_wide(), this function is not used on inputs of 1
405 * chunk or less. That's a different codepath.
406 */
407 static void compress_subtree_to_parent_node(const blake3_ops_t *ops,
408 const uint8_t *input, size_t input_len, const uint32_t key[8],
409 uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN])
410 {
411 uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
412 size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len,
413 key, chunk_counter, flags, cv_array);
414
415 /*
416 * If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
417 * compress_subtree_wide() returns more than 2 chaining values. Condense
418 * them into 2 by forming parent nodes repeatedly.
419 */
420 uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
421 while (num_cvs > 2) {
422 num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key,
423 flags, out_array);
424 memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
425 }
426 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
427 }
428
429 static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8],
430 uint8_t flags)
431 {
432 memcpy(ctx->key, key, BLAKE3_KEY_LEN);
433 chunk_state_init(&ctx->chunk, key, flags);
434 ctx->cv_stack_len = 0;
435 ctx->ops = blake3_impl_get_ops();
436 }
437
438 /*
439 * As described in hasher_push_cv() below, we do "lazy merging", delaying
440 * merges until right before the next CV is about to be added. This is
441 * different from the reference implementation. Another difference is that we
442 * aren't always merging 1 chunk at a time. Instead, each CV might represent
443 * any power-of-two number of chunks, as long as the smaller-above-larger
444 * stack order is maintained. Instead of the "count the trailing 0-bits"
445 * algorithm described in the spec, we use a "count the total number of
446 * 1-bits" variant that doesn't require us to retain the subtree size of the
447 * CV on top of the stack. The principle is the same: each CV that should
448 * remain in the stack is represented by a 1-bit in the total number of chunks
449 * (or bytes) so far.
450 */
451 static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len)
452 {
453 size_t post_merge_stack_len = (size_t)popcnt(total_len);
454 while (ctx->cv_stack_len > post_merge_stack_len) {
455 uint8_t *parent_node =
456 &ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN];
457 output_t output =
458 parent_output(parent_node, ctx->key, ctx->chunk.flags);
459 output_chaining_value(ctx->ops, &output, parent_node);
460 ctx->cv_stack_len -= 1;
461 }
462 }
463
464 /*
465 * In reference_impl.rs, we merge the new CV with existing CVs from the stack
466 * before pushing it. We can do that because we know more input is coming, so
467 * we know none of the merges are root.
468 *
469 * This setting is different. We want to feed as much input as possible to
470 * compress_subtree_wide(), without setting aside anything for the chunk_state.
471 * If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
472 * as a single subtree, if at all possible.
473 *
474 * This leads to two problems:
475 * 1) This 64 KiB input might be the only call that ever gets made to update.
476 * In this case, the root node of the 64 KiB subtree would be the root node
477 * of the whole tree, and it would need to be ROOT finalized. We can't
478 * compress it until we know.
479 * 2) This 64 KiB input might complete a larger tree, whose root node is
480 * similarly going to be the the root of the whole tree. For example, maybe
481 * we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
482 * node at the root of the 256 KiB subtree until we know how to finalize it.
483 *
484 * The second problem is solved with "lazy merging". That is, when we're about
485 * to add a CV to the stack, we don't merge it with anything first, as the
486 * reference impl does. Instead we do merges using the *previous* CV that was
487 * added, which is sitting on top of the stack, and we put the new CV
488 * (unmerged) on top of the stack afterwards. This guarantees that we never
489 * merge the root node until finalize().
490 *
491 * Solving the first problem requires an additional tool,
492 * compress_subtree_to_parent_node(). That function always returns the top
493 * *two* chaining values of the subtree it's compressing. We then do lazy
494 * merging with each of them separately, so that the second CV will always
495 * remain unmerged. (That also helps us support extendable output when we're
496 * hashing an input all-at-once.)
497 */
498 static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN],
499 uint64_t chunk_counter)
500 {
501 hasher_merge_cv_stack(ctx, chunk_counter);
502 memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
503 BLAKE3_OUT_LEN);
504 ctx->cv_stack_len += 1;
505 }
506
507 void
508 Blake3_Init(BLAKE3_CTX *ctx)
509 {
510 hasher_init_base(ctx, BLAKE3_IV, 0);
511 }
512
513 void
514 Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN])
515 {
516 uint32_t key_words[8];
517 load_key_words(key, key_words);
518 hasher_init_base(ctx, key_words, KEYED_HASH);
519 }
520
521 static void
522 Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len)
523 {
524 /*
525 * Explicitly checking for zero avoids causing UB by passing a null
526 * pointer to memcpy. This comes up in practice with things like:
527 * std::vector<uint8_t> v;
528 * blake3_hasher_update(&hasher, v.data(), v.size());
529 */
530 if (input_len == 0) {
531 return;
532 }
533
534 const uint8_t *input_bytes = (const uint8_t *)input;
535
536 /*
537 * If we have some partial chunk bytes in the internal chunk_state, we
538 * need to finish that chunk first.
539 */
540 if (chunk_state_len(&ctx->chunk) > 0) {
541 size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk);
542 if (take > input_len) {
543 take = input_len;
544 }
545 chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take);
546 input_bytes += take;
547 input_len -= take;
548 /*
549 * If we've filled the current chunk and there's more coming,
550 * finalize this chunk and proceed. In this case we know it's
551 * not the root.
552 */
553 if (input_len > 0) {
554 output_t output = chunk_state_output(&ctx->chunk);
555 uint8_t chunk_cv[32];
556 output_chaining_value(ctx->ops, &output, chunk_cv);
557 hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter);
558 chunk_state_reset(&ctx->chunk, ctx->key,
559 ctx->chunk.chunk_counter + 1);
560 } else {
561 return;
562 }
563 }
564
565 /*
566 * Now the chunk_state is clear, and we have more input. If there's
567 * more than a single chunk (so, definitely not the root chunk), hash
568 * the largest whole subtree we can, with the full benefits of SIMD
569 * (and maybe in the future, multi-threading) parallelism. Two
570 * restrictions:
571 * - The subtree has to be a power-of-2 number of chunks. Only
572 * subtrees along the right edge can be incomplete, and we don't know
573 * where the right edge is going to be until we get to finalize().
574 * - The subtree must evenly divide the total number of chunks up
575 * until this point (if total is not 0). If the current incomplete
576 * subtree is only waiting for 1 more chunk, we can't hash a subtree
577 * of 4 chunks. We have to complete the current subtree first.
578 * Because we might need to break up the input to form powers of 2, or
579 * to evenly divide what we already have, this part runs in a loop.
580 */
581 while (input_len > BLAKE3_CHUNK_LEN) {
582 size_t subtree_len = round_down_to_power_of_2(input_len);
583 uint64_t count_so_far =
584 ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
585 /*
586 * Shrink the subtree_len until it evenly divides the count so
587 * far. We know that subtree_len itself is a power of 2, so we
588 * can use a bitmasking trick instead of an actual remainder
589 * operation. (Note that if the caller consistently passes
590 * power-of-2 inputs of the same size, as is hopefully
591 * typical, this loop condition will always fail, and
592 * subtree_len will always be the full length of the input.)
593 *
594 * An aside: We don't have to shrink subtree_len quite this
595 * much. For example, if count_so_far is 1, we could pass 2
596 * chunks to compress_subtree_to_parent_node. Since we'll get
597 * 2 CVs back, we'll still get the right answer in the end,
598 * and we might get to use 2-way SIMD parallelism. The problem
599 * with this optimization, is that it gets us stuck always
600 * hashing 2 chunks. The total number of chunks will remain
601 * odd, and we'll never graduate to higher degrees of
602 * parallelism. See
603 * https://github.com/BLAKE3-team/BLAKE3/issues/69.
604 */
605 while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
606 subtree_len /= 2;
607 }
608 /*
609 * The shrunken subtree_len might now be 1 chunk long. If so,
610 * hash that one chunk by itself. Otherwise, compress the
611 * subtree into a pair of CVs.
612 */
613 uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
614 if (subtree_len <= BLAKE3_CHUNK_LEN) {
615 blake3_chunk_state_t chunk_state;
616 chunk_state_init(&chunk_state, ctx->key,
617 ctx->chunk.flags);
618 chunk_state.chunk_counter = ctx->chunk.chunk_counter;
619 chunk_state_update(ctx->ops, &chunk_state, input_bytes,
620 subtree_len);
621 output_t output = chunk_state_output(&chunk_state);
622 uint8_t cv[BLAKE3_OUT_LEN];
623 output_chaining_value(ctx->ops, &output, cv);
624 hasher_push_cv(ctx, cv, chunk_state.chunk_counter);
625 } else {
626 /*
627 * This is the high-performance happy path, though
628 * getting here depends on the caller giving us a long
629 * enough input.
630 */
631 uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
632 compress_subtree_to_parent_node(ctx->ops, input_bytes,
633 subtree_len, ctx->key, ctx-> chunk.chunk_counter,
634 ctx->chunk.flags, cv_pair);
635 hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter);
636 hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN],
637 ctx->chunk.chunk_counter + (subtree_chunks / 2));
638 }
639 ctx->chunk.chunk_counter += subtree_chunks;
640 input_bytes += subtree_len;
641 input_len -= subtree_len;
642 }
643
644 /*
645 * If there's any remaining input less than a full chunk, add it to
646 * the chunk state. In that case, also do a final merge loop to make
647 * sure the subtree stack doesn't contain any unmerged pairs. The
648 * remaining input means we know these merges are non-root. This merge
649 * loop isn't strictly necessary here, because hasher_push_chunk_cv
650 * already does its own merge loop, but it simplifies
651 * blake3_hasher_finalize below.
652 */
653 if (input_len > 0) {
654 chunk_state_update(ctx->ops, &ctx->chunk, input_bytes,
655 input_len);
656 hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter);
657 }
658 }
659
660 void
661 Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo)
662 {
663 size_t done = 0;
664 const uint8_t *data = input;
665 const size_t block_max = 1024 * 64;
666
667 /* max feed buffer to leave the stack size small */
668 while (todo != 0) {
669 size_t block = (todo >= block_max) ? block_max : todo;
670 Blake3_Update2(ctx, data + done, block);
671 done += block;
672 todo -= block;
673 }
674 }
675
676 void
677 Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out)
678 {
679 Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN);
680 }
681
682 void
683 Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out,
684 size_t out_len)
685 {
686 /*
687 * Explicitly checking for zero avoids causing UB by passing a null
688 * pointer to memcpy. This comes up in practice with things like:
689 * std::vector<uint8_t> v;
690 * blake3_hasher_finalize(&hasher, v.data(), v.size());
691 */
692 if (out_len == 0) {
693 return;
694 }
695 /* If the subtree stack is empty, then the current chunk is the root. */
696 if (ctx->cv_stack_len == 0) {
697 output_t output = chunk_state_output(&ctx->chunk);
698 output_root_bytes(ctx->ops, &output, seek, out, out_len);
699 return;
700 }
701 /*
702 * If there are any bytes in the chunk state, finalize that chunk and
703 * do a roll-up merge between that chunk hash and every subtree in the
704 * stack. In this case, the extra merge loop at the end of
705 * blake3_hasher_update guarantees that none of the subtrees in the
706 * stack need to be merged with each other first. Otherwise, if there
707 * are no bytes in the chunk state, then the top of the stack is a
708 * chunk hash, and we start the merge from that.
709 */
710 output_t output;
711 size_t cvs_remaining;
712 if (chunk_state_len(&ctx->chunk) > 0) {
713 cvs_remaining = ctx->cv_stack_len;
714 output = chunk_state_output(&ctx->chunk);
715 } else {
716 /* There are always at least 2 CVs in the stack in this case. */
717 cvs_remaining = ctx->cv_stack_len - 2;
718 output = parent_output(&ctx->cv_stack[cvs_remaining * 32],
719 ctx->key, ctx->chunk.flags);
720 }
721 while (cvs_remaining > 0) {
722 cvs_remaining -= 1;
723 uint8_t parent_block[BLAKE3_BLOCK_LEN];
724 memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32);
725 output_chaining_value(ctx->ops, &output, &parent_block[32]);
726 output = parent_output(parent_block, ctx->key,
727 ctx->chunk.flags);
728 }
729 output_root_bytes(ctx->ops, &output, seek, out, out_len);
730 }
Cache object: 3b87ea93eb231cb17007ac55573d66c1
|