1 /*
2 * ---------------------------------------------------------------------------
3 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
4 *
5 * LICENSE TERMS
6 *
7 * The free distribution and use of this software is allowed (with or without
8 * changes) provided that:
9 *
10 * 1. source code distributions include the above copyright notice, this
11 * list of conditions and the following disclaimer;
12 *
13 * 2. binary distributions include the above copyright notice, this list
14 * of conditions and the following disclaimer in their documentation;
15 *
16 * 3. the name of the copyright holder is not used to endorse products
17 * built using this software without specific written permission.
18 *
19 * DISCLAIMER
20 *
21 * This software is provided 'as is' with no explicit or implied warranties
22 * in respect of its properties, including, but not limited to, correctness
23 * and/or fitness for purpose.
24 * ---------------------------------------------------------------------------
25 * Issue Date: 20/12/2007
26 *
27 * This file contains the compilation options for AES (Rijndael) and code
28 * that is common across encryption, key scheduling and table generation.
29 *
30 * OPERATION
31 *
32 * These source code files implement the AES algorithm Rijndael designed by
33 * Joan Daemen and Vincent Rijmen. This version is designed for the standard
34 * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
35 * and 32 bytes).
36 *
37 * This version is designed for flexibility and speed using operations on
38 * 32-bit words rather than operations on bytes. It can be compiled with
39 * either big or little endian internal byte order but is faster when the
40 * native byte order for the processor is used.
41 *
42 * THE CIPHER INTERFACE
43 *
44 * The cipher interface is implemented as an array of bytes in which lower
45 * AES bit sequence indexes map to higher numeric significance within bytes.
46 */
47
48 /*
49 * OpenSolaris changes
50 * 1. Added __cplusplus and _AESTAB_H header guards
51 * 2. Added header files sys/types.h and aes_impl.h
52 * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C
53 * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER
54 * from brg_endian.h
55 * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT
56 * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t
57 * 7. Defined aes_sw32 as htonl() for byte swapping
58 * 8. Cstyled and hdrchk code
59 *
60 */
61
62 #ifndef _AESOPT_H
63 #define _AESOPT_H
64
65 #ifdef __cplusplus
66 extern "C" {
67 #endif
68
69 #include <sys/zfs_context.h>
70 #include <aes/aes_impl.h>
71
72 /* SUPPORT FEATURES */
73 #define AES_ENCRYPT /* if support for encryption is needed */
74 #define AES_DECRYPT /* if support for decryption is needed */
75
76 /* PLATFORM-SPECIFIC FEATURES */
77 #define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
78 #define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
79 #define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
80 #define AES_REV_DKS /* define to reverse decryption key schedule */
81
82
83 /*
84 * CONFIGURATION - THE USE OF DEFINES
85 * Later in this section there are a number of defines that control the
86 * operation of the code. In each section, the purpose of each define is
87 * explained so that the relevant form can be included or excluded by
88 * setting either 1's or 0's respectively on the branches of the related
89 * #if clauses. The following local defines should not be changed.
90 */
91
92 #define ENCRYPTION_IN_C 1
93 #define DECRYPTION_IN_C 2
94 #define ENC_KEYING_IN_C 4
95 #define DEC_KEYING_IN_C 8
96
97 #define NO_TABLES 0
98 #define ONE_TABLE 1
99 #define FOUR_TABLES 4
100 #define NONE 0
101 #define PARTIAL 1
102 #define FULL 2
103
104 /* --- START OF USER CONFIGURED OPTIONS --- */
105
106 /*
107 * 1. BYTE ORDER WITHIN 32 BIT WORDS
108 *
109 * The fundamental data processing units in Rijndael are 8-bit bytes. The
110 * input, output and key input are all enumerated arrays of bytes in which
111 * bytes are numbered starting at zero and increasing to one less than the
112 * number of bytes in the array in question. This enumeration is only used
113 * for naming bytes and does not imply any adjacency or order relationship
114 * from one byte to another. When these inputs and outputs are considered
115 * as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
116 * byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
117 * In this implementation bits are numbered from 0 to 7 starting at the
118 * numerically least significant end of each byte. Bit n represents 2^n.
119 *
120 * However, Rijndael can be implemented more efficiently using 32-bit
121 * words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
122 * into word[n]. While in principle these bytes can be assembled into words
123 * in any positions, this implementation only supports the two formats in
124 * which bytes in adjacent positions within words also have adjacent byte
125 * numbers. This order is called big-endian if the lowest numbered bytes
126 * in words have the highest numeric significance and little-endian if the
127 * opposite applies.
128 *
129 * This code can work in either order irrespective of the order used by the
130 * machine on which it runs. Normally the internal byte order will be set
131 * to the order of the processor on which the code is to be run but this
132 * define can be used to reverse this in special situations
133 *
134 * WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
135 * This define will hence be redefined later (in section 4) if necessary
136 */
137
138 #if 1
139 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
140 #elif 0
141 #define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
142 #elif 0
143 #define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
144 #else
145 #error The algorithm byte order is not defined
146 #endif
147
148 /* 2. VIA ACE SUPPORT */
149
150 #if defined(__GNUC__) && defined(__i386__) || \
151 defined(_WIN32) && defined(_M_IX86) && \
152 !(defined(_WIN64) || defined(_WIN32_WCE) || \
153 defined(_MSC_VER) && (_MSC_VER <= 800))
154 #define VIA_ACE_POSSIBLE
155 #endif
156
157 /*
158 * Define this option if support for the VIA ACE is required. This uses
159 * inline assembler instructions and is only implemented for the Microsoft,
160 * Intel and GCC compilers. If VIA ACE is known to be present, then defining
161 * ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
162 * code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
163 * it is detected (both present and enabled) but the normal AES code will
164 * also be present.
165 *
166 * When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
167 * aligned; other input/output buffers do not need to be 16 byte aligned
168 * but there are very large performance gains if this can be arranged.
169 * VIA ACE also requires the decryption key schedule to be in reverse
170 * order (which later checks below ensure).
171 */
172
173 /* VIA ACE is not used here for OpenSolaris: */
174 #undef VIA_ACE_POSSIBLE
175 #undef ASSUME_VIA_ACE_PRESENT
176
177 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT)
178 #define USE_VIA_ACE_IF_PRESENT
179 #endif
180
181 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT)
182 #define ASSUME_VIA_ACE_PRESENT
183 #endif
184
185
186 /*
187 * 3. ASSEMBLER SUPPORT
188 *
189 * This define (which can be on the command line) enables the use of the
190 * assembler code routines for encryption, decryption and key scheduling
191 * as follows:
192 *
193 * ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
194 * encryption and decryption and but with key scheduling in C
195 * ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
196 * encryption, decryption and key scheduling
197 * ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
198 * encryption and decryption and but with key scheduling in C
199 * ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
200 * encryption and decryption and but with key scheduling in C
201 *
202 * Change one 'if 0' below to 'if 1' to select the version or define
203 * as a compilation option.
204 */
205
206 #if 0 && !defined(ASM_X86_V1C)
207 #define ASM_X86_V1C
208 #elif 0 && !defined(ASM_X86_V2)
209 #define ASM_X86_V2
210 #elif 0 && !defined(ASM_X86_V2C)
211 #define ASM_X86_V2C
212 #elif 1 && !defined(ASM_AMD64_C)
213 #define ASM_AMD64_C
214 #endif
215
216 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \
217 !defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \
218 !defined(__amd64)
219 #error Assembler code is only available for x86 and AMD64 systems
220 #endif
221
222 /*
223 * 4. FAST INPUT/OUTPUT OPERATIONS.
224 *
225 * On some machines it is possible to improve speed by transferring the
226 * bytes in the input and output arrays to and from the internal 32-bit
227 * variables by addressing these arrays as if they are arrays of 32-bit
228 * words. On some machines this will always be possible but there may
229 * be a large performance penalty if the byte arrays are not aligned on
230 * the normal word boundaries. On other machines this technique will
231 * lead to memory access errors when such 32-bit word accesses are not
232 * properly aligned. The option SAFE_IO avoids such problems but will
233 * often be slower on those machines that support misaligned access
234 * (especially so if care is taken to align the input and output byte
235 * arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
236 * assumed that access to byte arrays as if they are arrays of 32-bit
237 * words will not cause problems when such accesses are misaligned.
238 */
239 #if 1 && !defined(_MSC_VER)
240 #define SAFE_IO
241 #endif
242
243 /*
244 * 5. LOOP UNROLLING
245 *
246 * The code for encryption and decryption cycles through a number of rounds
247 * that can be implemented either in a loop or by expanding the code into a
248 * long sequence of instructions, the latter producing a larger program but
249 * one that will often be much faster. The latter is called loop unrolling.
250 * There are also potential speed advantages in expanding two iterations in
251 * a loop with half the number of iterations, which is called partial loop
252 * unrolling. The following options allow partial or full loop unrolling
253 * to be set independently for encryption and decryption
254 */
255 #if 1
256 #define ENC_UNROLL FULL
257 #elif 0
258 #define ENC_UNROLL PARTIAL
259 #else
260 #define ENC_UNROLL NONE
261 #endif
262
263 #if 1
264 #define DEC_UNROLL FULL
265 #elif 0
266 #define DEC_UNROLL PARTIAL
267 #else
268 #define DEC_UNROLL NONE
269 #endif
270
271 #if 1
272 #define ENC_KS_UNROLL
273 #endif
274
275 #if 1
276 #define DEC_KS_UNROLL
277 #endif
278
279 /*
280 * 6. FAST FINITE FIELD OPERATIONS
281 *
282 * If this section is included, tables are used to provide faster finite
283 * field arithmetic. This has no effect if FIXED_TABLES is defined.
284 */
285 #if 1
286 #define FF_TABLES
287 #endif
288
289 /*
290 * 7. INTERNAL STATE VARIABLE FORMAT
291 *
292 * The internal state of Rijndael is stored in a number of local 32-bit
293 * word variables which can be defined either as an array or as individual
294 * names variables. Include this section if you want to store these local
295 * variables in arrays. Otherwise individual local variables will be used.
296 */
297 #if 1
298 #define ARRAYS
299 #endif
300
301 /*
302 * 8. FIXED OR DYNAMIC TABLES
303 *
304 * When this section is included the tables used by the code are compiled
305 * statically into the binary file. Otherwise the subroutine aes_init()
306 * must be called to compute them before the code is first used.
307 */
308 #if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800))
309 #define FIXED_TABLES
310 #endif
311
312 /*
313 * 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
314 *
315 * In some systems it is better to mask longer values to extract bytes
316 * rather than using a cast. This option allows this choice.
317 */
318 #if 0
319 #define to_byte(x) ((uint8_t)(x))
320 #else
321 #define to_byte(x) ((x) & 0xff)
322 #endif
323
324 /*
325 * 10. TABLE ALIGNMENT
326 *
327 * On some systems speed will be improved by aligning the AES large lookup
328 * tables on particular boundaries. This define should be set to a power of
329 * two giving the desired alignment. It can be left undefined if alignment
330 * is not needed. This option is specific to the Microsoft VC++ compiler -
331 * it seems to sometimes cause trouble for the VC++ version 6 compiler.
332 */
333
334 #if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300)
335 #define TABLE_ALIGN 32
336 #endif
337
338 /*
339 * 11. REDUCE CODE AND TABLE SIZE
340 *
341 * This replaces some expanded macros with function calls if AES_ASM_V2 or
342 * AES_ASM_V2C are defined
343 */
344
345 #if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C))
346 #define REDUCE_CODE_SIZE
347 #endif
348
349 /*
350 * 12. TABLE OPTIONS
351 *
352 * This cipher proceeds by repeating in a number of cycles known as rounds
353 * which are implemented by a round function which is optionally be speeded
354 * up using tables. The basic tables are 256 32-bit words, with either
355 * one or four tables being required for each round function depending on
356 * how much speed is required. Encryption and decryption round functions
357 * are different and the last encryption and decryption round functions are
358 * different again making four different round functions in all.
359 *
360 * This means that:
361 * 1. Normal encryption and decryption rounds can each use either 0, 1
362 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
363 * 2. The last encryption and decryption rounds can also use either 0, 1
364 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
365 *
366 * Include or exclude the appropriate definitions below to set the number
367 * of tables used by this implementation.
368 */
369
370 #if 1 /* set tables for the normal encryption round */
371 #define ENC_ROUND FOUR_TABLES
372 #elif 0
373 #define ENC_ROUND ONE_TABLE
374 #else
375 #define ENC_ROUND NO_TABLES
376 #endif
377
378 #if 1 /* set tables for the last encryption round */
379 #define LAST_ENC_ROUND FOUR_TABLES
380 #elif 0
381 #define LAST_ENC_ROUND ONE_TABLE
382 #else
383 #define LAST_ENC_ROUND NO_TABLES
384 #endif
385
386 #if 1 /* set tables for the normal decryption round */
387 #define DEC_ROUND FOUR_TABLES
388 #elif 0
389 #define DEC_ROUND ONE_TABLE
390 #else
391 #define DEC_ROUND NO_TABLES
392 #endif
393
394 #if 1 /* set tables for the last decryption round */
395 #define LAST_DEC_ROUND FOUR_TABLES
396 #elif 0
397 #define LAST_DEC_ROUND ONE_TABLE
398 #else
399 #define LAST_DEC_ROUND NO_TABLES
400 #endif
401
402 /*
403 * The decryption key schedule can be speeded up with tables in the same
404 * way that the round functions can. Include or exclude the following
405 * defines to set this requirement.
406 */
407 #if 1
408 #define KEY_SCHED FOUR_TABLES
409 #elif 0
410 #define KEY_SCHED ONE_TABLE
411 #else
412 #define KEY_SCHED NO_TABLES
413 #endif
414
415 /* ---- END OF USER CONFIGURED OPTIONS ---- */
416
417 /* VIA ACE support is only available for VC++ and GCC */
418
419 #if !defined(_MSC_VER) && !defined(__GNUC__)
420 #if defined(ASSUME_VIA_ACE_PRESENT)
421 #undef ASSUME_VIA_ACE_PRESENT
422 #endif
423 #if defined(USE_VIA_ACE_IF_PRESENT)
424 #undef USE_VIA_ACE_IF_PRESENT
425 #endif
426 #endif
427
428 #if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT)
429 #define USE_VIA_ACE_IF_PRESENT
430 #endif
431
432 #if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS)
433 #define AES_REV_DKS
434 #endif
435
436 /* Assembler support requires the use of platform byte order */
437
438 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \
439 (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
440 #undef ALGORITHM_BYTE_ORDER
441 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
442 #endif
443
444 /*
445 * In this implementation the columns of the state array are each held in
446 * 32-bit words. The state array can be held in various ways: in an array
447 * of words, in a number of individual word variables or in a number of
448 * processor registers. The following define maps a variable name x and
449 * a column number c to the way the state array variable is to be held.
450 * The first define below maps the state into an array x[c] whereas the
451 * second form maps the state into a number of individual variables x0,
452 * x1, etc. Another form could map individual state columns to machine
453 * register names.
454 */
455
456 #if defined(ARRAYS)
457 #define s(x, c) x[c]
458 #else
459 #define s(x, c) x##c
460 #endif
461
462 /*
463 * This implementation provides subroutines for encryption, decryption
464 * and for setting the three key lengths (separately) for encryption
465 * and decryption. Since not all functions are needed, masks are set
466 * up here to determine which will be implemented in C
467 */
468
469 #if !defined(AES_ENCRYPT)
470 #define EFUNCS_IN_C 0
471 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
472 defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
473 #define EFUNCS_IN_C ENC_KEYING_IN_C
474 #elif !defined(ASM_X86_V2)
475 #define EFUNCS_IN_C (ENCRYPTION_IN_C | ENC_KEYING_IN_C)
476 #else
477 #define EFUNCS_IN_C 0
478 #endif
479
480 #if !defined(AES_DECRYPT)
481 #define DFUNCS_IN_C 0
482 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
483 defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
484 #define DFUNCS_IN_C DEC_KEYING_IN_C
485 #elif !defined(ASM_X86_V2)
486 #define DFUNCS_IN_C (DECRYPTION_IN_C | DEC_KEYING_IN_C)
487 #else
488 #define DFUNCS_IN_C 0
489 #endif
490
491 #define FUNCS_IN_C (EFUNCS_IN_C | DFUNCS_IN_C)
492
493 /* END OF CONFIGURATION OPTIONS */
494
495 /* Disable or report errors on some combinations of options */
496
497 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
498 #undef LAST_ENC_ROUND
499 #define LAST_ENC_ROUND NO_TABLES
500 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
501 #undef LAST_ENC_ROUND
502 #define LAST_ENC_ROUND ONE_TABLE
503 #endif
504
505 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
506 #undef ENC_UNROLL
507 #define ENC_UNROLL NONE
508 #endif
509
510 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
511 #undef LAST_DEC_ROUND
512 #define LAST_DEC_ROUND NO_TABLES
513 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
514 #undef LAST_DEC_ROUND
515 #define LAST_DEC_ROUND ONE_TABLE
516 #endif
517
518 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
519 #undef DEC_UNROLL
520 #define DEC_UNROLL NONE
521 #endif
522
523 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
524 #define aes_sw32 htonl
525 #elif defined(bswap32)
526 #define aes_sw32 bswap32
527 #elif defined(bswap_32)
528 #define aes_sw32 bswap_32
529 #else
530 #define brot(x, n) (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
531 #define aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00))
532 #endif
533
534
535 /*
536 * upr(x, n): rotates bytes within words by n positions, moving bytes to
537 * higher index positions with wrap around into low positions
538 * ups(x, n): moves bytes by n positions to higher index positions in
539 * words but without wrap around
540 * bval(x, n): extracts a byte from a word
541 *
542 * WARNING: The definitions given here are intended only for use with
543 * unsigned variables and with shift counts that are compile
544 * time constants
545 */
546
547 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
548 #define upr(x, n) (((uint32_t)(x) << (8 * (n))) | \
549 ((uint32_t)(x) >> (32 - 8 * (n))))
550 #define ups(x, n) ((uint32_t)(x) << (8 * (n)))
551 #define bval(x, n) to_byte((x) >> (8 * (n)))
552 #define bytes2word(b0, b1, b2, b3) \
553 (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \
554 ((uint32_t)(b1) << 8) | (b0))
555 #endif
556
557 #if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN)
558 #define upr(x, n) (((uint32_t)(x) >> (8 * (n))) | \
559 ((uint32_t)(x) << (32 - 8 * (n))))
560 #define ups(x, n) ((uint32_t)(x) >> (8 * (n)))
561 #define bval(x, n) to_byte((x) >> (24 - 8 * (n)))
562 #define bytes2word(b0, b1, b2, b3) \
563 (((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \
564 ((uint32_t)(b2) << 8) | (b3))
565 #endif
566
567 #if defined(SAFE_IO)
568 #define word_in(x, c) bytes2word(((const uint8_t *)(x) + 4 * c)[0], \
569 ((const uint8_t *)(x) + 4 * c)[1], \
570 ((const uint8_t *)(x) + 4 * c)[2], \
571 ((const uint8_t *)(x) + 4 * c)[3])
572 #define word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \
573 ((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \
574 ((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \
575 ((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); }
576 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
577 #define word_in(x, c) (*((uint32_t *)(x) + (c)))
578 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v))
579 #else
580 #define word_in(x, c) aes_sw32(*((uint32_t *)(x) + (c)))
581 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v))
582 #endif
583
584 /* the finite field modular polynomial and elements */
585
586 #define WPOLY 0x011b
587 #define BPOLY 0x1b
588
589 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
590
591 #define m1 0x80808080
592 #define m2 0x7f7f7f7f
593 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
594
595 /*
596 * The following defines provide alternative definitions of gf_mulx that might
597 * give improved performance if a fast 32-bit multiply is not available. Note
598 * that a temporary variable u needs to be defined where gf_mulx is used.
599 *
600 * #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \
601 * ((u >> 3) | (u >> 6))
602 * #define m4 (0x01010101 * BPOLY)
603 * #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \
604 * & m4)
605 */
606
607 /* Work out which tables are needed for the different options */
608
609 #if defined(ASM_X86_V1C)
610 #if defined(ENC_ROUND)
611 #undef ENC_ROUND
612 #endif
613 #define ENC_ROUND FOUR_TABLES
614 #if defined(LAST_ENC_ROUND)
615 #undef LAST_ENC_ROUND
616 #endif
617 #define LAST_ENC_ROUND FOUR_TABLES
618 #if defined(DEC_ROUND)
619 #undef DEC_ROUND
620 #endif
621 #define DEC_ROUND FOUR_TABLES
622 #if defined(LAST_DEC_ROUND)
623 #undef LAST_DEC_ROUND
624 #endif
625 #define LAST_DEC_ROUND FOUR_TABLES
626 #if defined(KEY_SCHED)
627 #undef KEY_SCHED
628 #define KEY_SCHED FOUR_TABLES
629 #endif
630 #endif
631
632 #if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C)
633 #if ENC_ROUND == ONE_TABLE
634 #define FT1_SET
635 #elif ENC_ROUND == FOUR_TABLES
636 #define FT4_SET
637 #else
638 #define SBX_SET
639 #endif
640 #if LAST_ENC_ROUND == ONE_TABLE
641 #define FL1_SET
642 #elif LAST_ENC_ROUND == FOUR_TABLES
643 #define FL4_SET
644 #elif !defined(SBX_SET)
645 #define SBX_SET
646 #endif
647 #endif
648
649 #if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C)
650 #if DEC_ROUND == ONE_TABLE
651 #define IT1_SET
652 #elif DEC_ROUND == FOUR_TABLES
653 #define IT4_SET
654 #else
655 #define ISB_SET
656 #endif
657 #if LAST_DEC_ROUND == ONE_TABLE
658 #define IL1_SET
659 #elif LAST_DEC_ROUND == FOUR_TABLES
660 #define IL4_SET
661 #elif !defined(ISB_SET)
662 #define ISB_SET
663 #endif
664 #endif
665
666
667 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
668 defined(ASM_X86_V2C)))
669 #if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
670 #if KEY_SCHED == ONE_TABLE
671 #if !defined(FL1_SET) && !defined(FL4_SET)
672 #define LS1_SET
673 #endif
674 #elif KEY_SCHED == FOUR_TABLES
675 #if !defined(FL4_SET)
676 #define LS4_SET
677 #endif
678 #elif !defined(SBX_SET)
679 #define SBX_SET
680 #endif
681 #endif
682 #if (FUNCS_IN_C & DEC_KEYING_IN_C)
683 #if KEY_SCHED == ONE_TABLE
684 #define IM1_SET
685 #elif KEY_SCHED == FOUR_TABLES
686 #define IM4_SET
687 #elif !defined(SBX_SET)
688 #define SBX_SET
689 #endif
690 #endif
691 #endif
692
693 /* generic definitions of Rijndael macros that use tables */
694
695 #define no_table(x, box, vf, rf, c) bytes2word(\
696 box[bval(vf(x, 0, c), rf(0, c))], \
697 box[bval(vf(x, 1, c), rf(1, c))], \
698 box[bval(vf(x, 2, c), rf(2, c))], \
699 box[bval(vf(x, 3, c), rf(3, c))])
700
701 #define one_table(x, op, tab, vf, rf, c) \
702 (tab[bval(vf(x, 0, c), rf(0, c))] \
703 ^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \
704 ^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \
705 ^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3))
706
707 #define four_tables(x, tab, vf, rf, c) \
708 (tab[0][bval(vf(x, 0, c), rf(0, c))] \
709 ^ tab[1][bval(vf(x, 1, c), rf(1, c))] \
710 ^ tab[2][bval(vf(x, 2, c), rf(2, c))] \
711 ^ tab[3][bval(vf(x, 3, c), rf(3, c))])
712
713 #define vf1(x, r, c) (x)
714 #define rf1(r, c) (r)
715 #define rf2(r, c) ((8+r-c)&3)
716
717 /*
718 * Perform forward and inverse column mix operation on four bytes in long word
719 * x in parallel. NOTE: x must be a simple variable, NOT an expression in
720 * these macros.
721 */
722
723 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
724 defined(ASM_X86_V2C)))
725
726 #if defined(FM4_SET) /* not currently used */
727 #define fwd_mcol(x) four_tables(x, t_use(f, m), vf1, rf1, 0)
728 #elif defined(FM1_SET) /* not currently used */
729 #define fwd_mcol(x) one_table(x, upr, t_use(f, m), vf1, rf1, 0)
730 #else
731 #define dec_fmvars uint32_t g2
732 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \
733 upr((x), 2) ^ upr((x), 1))
734 #endif
735
736 #if defined(IM4_SET)
737 #define inv_mcol(x) four_tables(x, t_use(i, m), vf1, rf1, 0)
738 #elif defined(IM1_SET)
739 #define inv_mcol(x) one_table(x, upr, t_use(i, m), vf1, rf1, 0)
740 #else
741 #define dec_imvars uint32_t g2, g4, g9
742 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \
743 (x) ^ gf_mulx(g4), g4 ^= g9, \
744 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \
745 upr(g4, 2) ^ upr(g9, 1))
746 #endif
747
748 #if defined(FL4_SET)
749 #define ls_box(x, c) four_tables(x, t_use(f, l), vf1, rf2, c)
750 #elif defined(LS4_SET)
751 #define ls_box(x, c) four_tables(x, t_use(l, s), vf1, rf2, c)
752 #elif defined(FL1_SET)
753 #define ls_box(x, c) one_table(x, upr, t_use(f, l), vf1, rf2, c)
754 #elif defined(LS1_SET)
755 #define ls_box(x, c) one_table(x, upr, t_use(l, s), vf1, rf2, c)
756 #else
757 #define ls_box(x, c) no_table(x, t_use(s, box), vf1, rf2, c)
758 #endif
759
760 #endif
761
762 #if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET)
763 #define ISB_SET
764 #endif
765
766 #ifdef __cplusplus
767 }
768 #endif
769
770 #endif /* _AESOPT_H */
Cache object: 438c2ae5d3195ca7215b29f09e98fa0d
|