The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/lua/lopcodes.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2 ** $Id: lopcodes.h,v 1.142.1.2 2014/10/20 18:32:09 roberto Exp $
    3 ** Opcodes for Lua virtual machine
    4 ** See Copyright Notice in lua.h
    5 */
    6 
    7 #ifndef lopcodes_h
    8 #define lopcodes_h
    9 
   10 #include "llimits.h"
   11 
   12 
   13 /*===========================================================================
   14   We assume that instructions are unsigned numbers.
   15   All instructions have an opcode in the first 6 bits.
   16   Instructions can have the following fields:
   17         `A' : 8 bits
   18         `B' : 9 bits
   19         `C' : 9 bits
   20         'Ax' : 26 bits ('A', 'B', and 'C' together)
   21         `Bx' : 18 bits (`B' and `C' together)
   22         `sBx' : signed Bx
   23 
   24   A signed argument is represented in excess K; that is, the number
   25   value is the unsigned value minus K. K is exactly the maximum value
   26   for that argument (so that -max is represented by 0, and +max is
   27   represented by 2*max), which is half the maximum for the corresponding
   28   unsigned argument.
   29 ===========================================================================*/
   30 
   31 
   32 enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */
   33 
   34 
   35 /*
   36 ** size and position of opcode arguments.
   37 */
   38 #define SIZE_C          9
   39 #define SIZE_B          9
   40 #define SIZE_Bx         (SIZE_C + SIZE_B)
   41 #define SIZE_A          8
   42 #define SIZE_Ax         (SIZE_C + SIZE_B + SIZE_A)
   43 
   44 #define SIZE_OP         6
   45 
   46 #define POS_OP          0
   47 #define POS_A           (POS_OP + SIZE_OP)
   48 #define POS_C           (POS_A + SIZE_A)
   49 #define POS_B           (POS_C + SIZE_C)
   50 #define POS_Bx          POS_C
   51 #define POS_Ax          POS_A
   52 
   53 
   54 /*
   55 ** limits for opcode arguments.
   56 ** we use (signed) int to manipulate most arguments,
   57 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
   58 */
   59 #if SIZE_Bx < LUAI_BITSINT-1
   60 #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
   61 #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
   62 #else
   63 #define MAXARG_Bx        MAX_INT
   64 #define MAXARG_sBx        MAX_INT
   65 #endif
   66 
   67 #if SIZE_Ax < LUAI_BITSINT-1
   68 #define MAXARG_Ax       ((1<<SIZE_Ax)-1)
   69 #else
   70 #define MAXARG_Ax       MAX_INT
   71 #endif
   72 
   73 
   74 #define MAXARG_A        ((1<<SIZE_A)-1)
   75 #define MAXARG_B        ((1<<SIZE_B)-1)
   76 #define MAXARG_C        ((1<<SIZE_C)-1)
   77 
   78 
   79 /* creates a mask with `n' 1 bits at position `p' */
   80 #define MASK1(n,p)      ((~((~(Instruction)0)<<(n)))<<(p))
   81 
   82 /* creates a mask with `n' 0 bits at position `p' */
   83 #define MASK0(n,p)      (~MASK1(n,p))
   84 
   85 /*
   86 ** the following macros help to manipulate instructions
   87 */
   88 
   89 #define GET_OPCODE(i)   (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
   90 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
   91                 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
   92 
   93 #define getarg(i,pos,size)      (cast(int, ((i)>>pos) & MASK1(size,0)))
   94 #define setarg(i,v,pos,size)    ((i) = (((i)&MASK0(size,pos)) | \
   95                 ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
   96 
   97 #define GETARG_A(i)     getarg(i, POS_A, SIZE_A)
   98 #define SETARG_A(i,v)   setarg(i, v, POS_A, SIZE_A)
   99 
  100 #define GETARG_B(i)     getarg(i, POS_B, SIZE_B)
  101 #define SETARG_B(i,v)   setarg(i, v, POS_B, SIZE_B)
  102 
  103 #define GETARG_C(i)     getarg(i, POS_C, SIZE_C)
  104 #define SETARG_C(i,v)   setarg(i, v, POS_C, SIZE_C)
  105 
  106 #define GETARG_Bx(i)    getarg(i, POS_Bx, SIZE_Bx)
  107 #define SETARG_Bx(i,v)  setarg(i, v, POS_Bx, SIZE_Bx)
  108 
  109 #define GETARG_Ax(i)    getarg(i, POS_Ax, SIZE_Ax)
  110 #define SETARG_Ax(i,v)  setarg(i, v, POS_Ax, SIZE_Ax)
  111 
  112 #define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx)
  113 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
  114 
  115 
  116 #define CREATE_ABC(o,a,b,c)     ((cast(Instruction, o)<<POS_OP) \
  117                         | (cast(Instruction, a)<<POS_A) \
  118                         | (cast(Instruction, b)<<POS_B) \
  119                         | (cast(Instruction, c)<<POS_C))
  120 
  121 #define CREATE_ABx(o,a,bc)      ((cast(Instruction, o)<<POS_OP) \
  122                         | (cast(Instruction, a)<<POS_A) \
  123                         | (cast(Instruction, bc)<<POS_Bx))
  124 
  125 #define CREATE_Ax(o,a)          ((cast(Instruction, o)<<POS_OP) \
  126                         | (cast(Instruction, a)<<POS_Ax))
  127 
  128 
  129 /*
  130 ** Macros to operate RK indices
  131 */
  132 
  133 /* this bit 1 means constant (0 means register) */
  134 #define BITRK           (1 << (SIZE_B - 1))
  135 
  136 /* test whether value is a constant */
  137 #define ISK(x)          ((x) & BITRK)
  138 
  139 /* gets the index of the constant */
  140 #define INDEXK(r)       ((int)(r) & ~BITRK)
  141 
  142 #define MAXINDEXRK      (BITRK - 1)
  143 
  144 /* code a constant index as a RK value */
  145 #define RKASK(x)        ((x) | BITRK)
  146 
  147 
  148 /*
  149 ** invalid register that fits in 8 bits
  150 */
  151 #define NO_REG          MAXARG_A
  152 
  153 
  154 /*
  155 ** R(x) - register
  156 ** Kst(x) - constant (in constant table)
  157 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
  158 */
  159 
  160 
  161 /*
  162 ** grep "ORDER OP" if you change these enums
  163 */
  164 
  165 typedef enum {
  166 /*----------------------------------------------------------------------
  167 name            args    description
  168 ------------------------------------------------------------------------*/
  169 OP_MOVE,/*      A B     R(A) := R(B)                                    */
  170 OP_LOADK,/*     A Bx    R(A) := Kst(Bx)                                 */
  171 OP_LOADKX,/*    A       R(A) := Kst(extra arg)                          */
  172 OP_LOADBOOL,/*  A B C   R(A) := (Bool)B; if (C) pc++                    */
  173 OP_LOADNIL,/*   A B     R(A), R(A+1), ..., R(A+B) := nil                */
  174 OP_GETUPVAL,/*  A B     R(A) := UpValue[B]                              */
  175 
  176 OP_GETTABUP,/*  A B C   R(A) := UpValue[B][RK(C)]                       */
  177 OP_GETTABLE,/*  A B C   R(A) := R(B)[RK(C)]                             */
  178 
  179 OP_SETTABUP,/*  A B C   UpValue[A][RK(B)] := RK(C)                      */
  180 OP_SETUPVAL,/*  A B     UpValue[B] := R(A)                              */
  181 OP_SETTABLE,/*  A B C   R(A)[RK(B)] := RK(C)                            */
  182 
  183 OP_NEWTABLE,/*  A B C   R(A) := {} (size = B,C)                         */
  184 
  185 OP_SELF,/*      A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]             */
  186 
  187 OP_ADD,/*       A B C   R(A) := RK(B) + RK(C)                           */
  188 OP_SUB,/*       A B C   R(A) := RK(B) - RK(C)                           */
  189 OP_MUL,/*       A B C   R(A) := RK(B) * RK(C)                           */
  190 OP_DIV,/*       A B C   R(A) := RK(B) / RK(C)                           */
  191 OP_MOD,/*       A B C   R(A) := RK(B) % RK(C)                           */
  192 OP_POW,/*       A B C   R(A) := RK(B) ^ RK(C)                           */
  193 OP_UNM,/*       A B     R(A) := -R(B)                                   */
  194 OP_NOT,/*       A B     R(A) := not R(B)                                */
  195 OP_LEN,/*       A B     R(A) := length of R(B)                          */
  196 
  197 OP_CONCAT,/*    A B C   R(A) := R(B).. ... ..R(C)                       */
  198 
  199 OP_JMP,/*       A sBx   pc+=sBx; if (A) close all upvalues >= R(A - 1)  */
  200 OP_EQ,/*        A B C   if ((RK(B) == RK(C)) ~= A) then pc++            */
  201 OP_LT,/*        A B C   if ((RK(B) <  RK(C)) ~= A) then pc++            */
  202 OP_LE,/*        A B C   if ((RK(B) <= RK(C)) ~= A) then pc++            */
  203 
  204 OP_TEST,/*      A C     if not (R(A) <=> C) then pc++                   */
  205 OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++     */
  206 
  207 OP_CALL,/*      A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
  208 OP_TAILCALL,/*  A B C   return R(A)(R(A+1), ... ,R(A+B-1))              */
  209 OP_RETURN,/*    A B     return R(A), ... ,R(A+B-2)      (see note)      */
  210 
  211 OP_FORLOOP,/*   A sBx   R(A)+=R(A+2);
  212                         if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
  213 OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx                           */
  214 
  215 OP_TFORCALL,/*  A C     R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));  */
  216 OP_TFORLOOP,/*  A sBx   if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
  217 
  218 OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B        */
  219 
  220 OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx])                     */
  221 
  222 OP_VARARG,/*    A B     R(A), R(A+1), ..., R(A+B-2) = vararg            */
  223 
  224 OP_EXTRAARG/*   Ax      extra (larger) argument for previous opcode     */
  225 } OpCode;
  226 
  227 
  228 #define NUM_OPCODES     (cast(int, OP_EXTRAARG) + 1)
  229 
  230 
  231 
  232 /*===========================================================================
  233   Notes:
  234   (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
  235   set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
  236   OP_SETLIST) may use `top'.
  237 
  238   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
  239   set top (like in OP_CALL with C == 0).
  240 
  241   (*) In OP_RETURN, if (B == 0) then return up to `top'.
  242 
  243   (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
  244   'instruction' is EXTRAARG(real C).
  245 
  246   (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
  247 
  248   (*) For comparisons, A specifies what condition the test should accept
  249   (true or false).
  250 
  251   (*) All `skips' (pc++) assume that next instruction is a jump.
  252 
  253 ===========================================================================*/
  254 
  255 
  256 /*
  257 ** masks for instruction properties. The format is:
  258 ** bits 0-1: op mode
  259 ** bits 2-3: C arg mode
  260 ** bits 4-5: B arg mode
  261 ** bit 6: instruction set register A
  262 ** bit 7: operator is a test (next instruction must be a jump)
  263 */
  264 
  265 enum OpArgMask {
  266   OpArgN,  /* argument is not used */
  267   OpArgU,  /* argument is used */
  268   OpArgR,  /* argument is a register or a jump offset */
  269   OpArgK   /* argument is a constant or register/constant */
  270 };
  271 
  272 LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
  273 
  274 #define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3))
  275 #define getBMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
  276 #define getCMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
  277 #define testAMode(m)    (luaP_opmodes[m] & (1 << 6))
  278 #define testTMode(m)    (luaP_opmodes[m] & (1 << 7))
  279 
  280 
  281 LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
  282 
  283 
  284 /* number of list items to accumulate before a SETLIST instruction */
  285 #define LFIELDS_PER_FLUSH       50
  286 
  287 
  288 #endif

Cache object: 25807cc4c55d8e22a63bcd434f8144e6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.