The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/os/linux/spl/spl-generic.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
    3  *  Copyright (C) 2007 The Regents of the University of California.
    4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
    5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
    6  *  UCRL-CODE-235197
    7  *
    8  *  This file is part of the SPL, Solaris Porting Layer.
    9  *
   10  *  The SPL is free software; you can redistribute it and/or modify it
   11  *  under the terms of the GNU General Public License as published by the
   12  *  Free Software Foundation; either version 2 of the License, or (at your
   13  *  option) any later version.
   14  *
   15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
   16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   18  *  for more details.
   19  *
   20  *  You should have received a copy of the GNU General Public License along
   21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
   22  *
   23  *  Solaris Porting Layer (SPL) Generic Implementation.
   24  */
   25 
   26 #include <sys/isa_defs.h>
   27 #include <sys/sysmacros.h>
   28 #include <sys/systeminfo.h>
   29 #include <sys/vmsystm.h>
   30 #include <sys/kmem.h>
   31 #include <sys/kmem_cache.h>
   32 #include <sys/vmem.h>
   33 #include <sys/mutex.h>
   34 #include <sys/rwlock.h>
   35 #include <sys/taskq.h>
   36 #include <sys/tsd.h>
   37 #include <sys/zmod.h>
   38 #include <sys/debug.h>
   39 #include <sys/proc.h>
   40 #include <sys/kstat.h>
   41 #include <sys/file.h>
   42 #include <sys/sunddi.h>
   43 #include <linux/ctype.h>
   44 #include <sys/disp.h>
   45 #include <sys/random.h>
   46 #include <sys/string.h>
   47 #include <linux/kmod.h>
   48 #include <linux/mod_compat.h>
   49 #include <sys/cred.h>
   50 #include <sys/vnode.h>
   51 #include <sys/misc.h>
   52 #include <linux/mod_compat.h>
   53 
   54 unsigned long spl_hostid = 0;
   55 EXPORT_SYMBOL(spl_hostid);
   56 
   57 /* CSTYLED */
   58 module_param(spl_hostid, ulong, 0644);
   59 MODULE_PARM_DESC(spl_hostid, "The system hostid.");
   60 
   61 proc_t p0;
   62 EXPORT_SYMBOL(p0);
   63 
   64 /*
   65  * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
   66  *
   67  * "Scrambled Linear Pseudorandom Number Generators∗"
   68  * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
   69  *
   70  * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
   71  * is to provide bytes containing random numbers. It is mapped to /dev/urandom
   72  * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
   73  * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
   74  * we can implement it using a fast PRNG that we seed using Linux' actual
   75  * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
   76  * with an independent seed so that all calls to random_get_pseudo_bytes() are
   77  * free of atomic instructions.
   78  *
   79  * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
   80  * to generate words larger than 256 bits will paradoxically be limited to
   81  * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
   82  * 256-bit words and selecting the first will implicitly select the second. If
   83  * a caller finds this behavior undesirable, random_get_bytes() should be used
   84  * instead.
   85  *
   86  * XXX: Linux interrupt handlers that trigger within the critical section
   87  * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
   88  * see the same numbers. Nothing in the code currently calls this in an
   89  * interrupt handler, so this is considered to be okay. If that becomes a
   90  * problem, we could create a set of per-cpu variables for interrupt handlers
   91  * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
   92  * true.
   93  */
   94 static void __percpu *spl_pseudo_entropy;
   95 
   96 /*
   97  * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
   98  * licensed file:
   99  *
  100  * https://prng.di.unimi.it/xoshiro256plusplus.c
  101  */
  102 
  103 static inline uint64_t rotl(const uint64_t x, int k)
  104 {
  105         return ((x << k) | (x >> (64 - k)));
  106 }
  107 
  108 static inline uint64_t
  109 spl_rand_next(uint64_t *s)
  110 {
  111         const uint64_t result = rotl(s[0] + s[3], 23) + s[0];
  112 
  113         const uint64_t t = s[1] << 17;
  114 
  115         s[2] ^= s[0];
  116         s[3] ^= s[1];
  117         s[1] ^= s[2];
  118         s[0] ^= s[3];
  119 
  120         s[2] ^= t;
  121 
  122         s[3] = rotl(s[3], 45);
  123 
  124         return (result);
  125 }
  126 
  127 static inline void
  128 spl_rand_jump(uint64_t *s)
  129 {
  130         static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
  131             0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
  132 
  133         uint64_t s0 = 0;
  134         uint64_t s1 = 0;
  135         uint64_t s2 = 0;
  136         uint64_t s3 = 0;
  137         int i, b;
  138         for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
  139                 for (b = 0; b < 64; b++) {
  140                         if (JUMP[i] & 1ULL << b) {
  141                                 s0 ^= s[0];
  142                                 s1 ^= s[1];
  143                                 s2 ^= s[2];
  144                                 s3 ^= s[3];
  145                         }
  146                         (void) spl_rand_next(s);
  147                 }
  148 
  149         s[0] = s0;
  150         s[1] = s1;
  151         s[2] = s2;
  152         s[3] = s3;
  153 }
  154 
  155 int
  156 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
  157 {
  158         uint64_t *xp, s[4];
  159 
  160         ASSERT(ptr);
  161 
  162         xp = get_cpu_ptr(spl_pseudo_entropy);
  163 
  164         s[0] = xp[0];
  165         s[1] = xp[1];
  166         s[2] = xp[2];
  167         s[3] = xp[3];
  168 
  169         while (len) {
  170                 union {
  171                         uint64_t ui64;
  172                         uint8_t byte[sizeof (uint64_t)];
  173                 }entropy;
  174                 int i = MIN(len, sizeof (uint64_t));
  175 
  176                 len -= i;
  177                 entropy.ui64 = spl_rand_next(s);
  178 
  179                 /*
  180                  * xoshiro256++ has low entropy lower bytes, so we copy the
  181                  * higher order bytes first.
  182                  */
  183                 while (i--)
  184 #ifdef _ZFS_BIG_ENDIAN
  185                         *ptr++ = entropy.byte[i];
  186 #else
  187                         *ptr++ = entropy.byte[7 - i];
  188 #endif
  189         }
  190 
  191         xp[0] = s[0];
  192         xp[1] = s[1];
  193         xp[2] = s[2];
  194         xp[3] = s[3];
  195 
  196         put_cpu_ptr(spl_pseudo_entropy);
  197 
  198         return (0);
  199 }
  200 
  201 
  202 EXPORT_SYMBOL(random_get_pseudo_bytes);
  203 
  204 #if BITS_PER_LONG == 32
  205 
  206 /*
  207  * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
  208  * provides a div64_u64() function for this we do not use it because the
  209  * implementation is flawed.  There are cases which return incorrect
  210  * results as late as linux-2.6.35.  Until this is fixed upstream the
  211  * spl must provide its own implementation.
  212  *
  213  * This implementation is a slightly modified version of the algorithm
  214  * proposed by the book 'Hacker's Delight'.  The original source can be
  215  * found here and is available for use without restriction.
  216  *
  217  * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
  218  */
  219 
  220 /*
  221  * Calculate number of leading of zeros for a 64-bit value.
  222  */
  223 static int
  224 nlz64(uint64_t x)
  225 {
  226         register int n = 0;
  227 
  228         if (x == 0)
  229                 return (64);
  230 
  231         if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
  232         if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
  233         if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n +  8; x = x <<  8; }
  234         if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n +  4; x = x <<  4; }
  235         if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n +  2; x = x <<  2; }
  236         if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n +  1; }
  237 
  238         return (n);
  239 }
  240 
  241 /*
  242  * Newer kernels have a div_u64() function but we define our own
  243  * to simplify portability between kernel versions.
  244  */
  245 static inline uint64_t
  246 __div_u64(uint64_t u, uint32_t v)
  247 {
  248         (void) do_div(u, v);
  249         return (u);
  250 }
  251 
  252 /*
  253  * Turn off missing prototypes warning for these functions. They are
  254  * replacements for libgcc-provided functions and will never be called
  255  * directly.
  256  */
  257 #if defined(__GNUC__) && !defined(__clang__)
  258 #pragma GCC diagnostic push
  259 #pragma GCC diagnostic ignored "-Wmissing-prototypes"
  260 #endif
  261 
  262 /*
  263  * Implementation of 64-bit unsigned division for 32-bit machines.
  264  *
  265  * First the procedure takes care of the case in which the divisor is a
  266  * 32-bit quantity. There are two subcases: (1) If the left half of the
  267  * dividend is less than the divisor, one execution of do_div() is all that
  268  * is required (overflow is not possible). (2) Otherwise it does two
  269  * divisions, using the grade school method.
  270  */
  271 uint64_t
  272 __udivdi3(uint64_t u, uint64_t v)
  273 {
  274         uint64_t u0, u1, v1, q0, q1, k;
  275         int n;
  276 
  277         if (v >> 32 == 0) {                     // If v < 2**32:
  278                 if (u >> 32 < v) {              // If u/v cannot overflow,
  279                         return (__div_u64(u, v)); // just do one division.
  280                 } else {                        // If u/v would overflow:
  281                         u1 = u >> 32;           // Break u into two halves.
  282                         u0 = u & 0xFFFFFFFF;
  283                         q1 = __div_u64(u1, v);  // First quotient digit.
  284                         k  = u1 - q1 * v;       // First remainder, < v.
  285                         u0 += (k << 32);
  286                         q0 = __div_u64(u0, v);  // Seconds quotient digit.
  287                         return ((q1 << 32) + q0);
  288                 }
  289         } else {                                // If v >= 2**32:
  290                 n = nlz64(v);                   // 0 <= n <= 31.
  291                 v1 = (v << n) >> 32;            // Normalize divisor, MSB is 1.
  292                 u1 = u >> 1;                    // To ensure no overflow.
  293                 q1 = __div_u64(u1, v1);         // Get quotient from
  294                 q0 = (q1 << n) >> 31;           // Undo normalization and
  295                                                 // division of u by 2.
  296                 if (q0 != 0)                    // Make q0 correct or
  297                         q0 = q0 - 1;            // too small by 1.
  298                 if ((u - q0 * v) >= v)
  299                         q0 = q0 + 1;            // Now q0 is correct.
  300 
  301                 return (q0);
  302         }
  303 }
  304 EXPORT_SYMBOL(__udivdi3);
  305 
  306 #ifndef abs64
  307 /* CSTYLED */
  308 #define abs64(x)        ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
  309 #endif
  310 
  311 /*
  312  * Implementation of 64-bit signed division for 32-bit machines.
  313  */
  314 int64_t
  315 __divdi3(int64_t u, int64_t v)
  316 {
  317         int64_t q, t;
  318         q = __udivdi3(abs64(u), abs64(v));
  319         t = (u ^ v) >> 63;      // If u, v have different
  320         return ((q ^ t) - t);   // signs, negate q.
  321 }
  322 EXPORT_SYMBOL(__divdi3);
  323 
  324 /*
  325  * Implementation of 64-bit unsigned modulo for 32-bit machines.
  326  */
  327 uint64_t
  328 __umoddi3(uint64_t dividend, uint64_t divisor)
  329 {
  330         return (dividend - (divisor * __udivdi3(dividend, divisor)));
  331 }
  332 EXPORT_SYMBOL(__umoddi3);
  333 
  334 /* 64-bit signed modulo for 32-bit machines. */
  335 int64_t
  336 __moddi3(int64_t n, int64_t d)
  337 {
  338         int64_t q;
  339         boolean_t nn = B_FALSE;
  340 
  341         if (n < 0) {
  342                 nn = B_TRUE;
  343                 n = -n;
  344         }
  345         if (d < 0)
  346                 d = -d;
  347 
  348         q = __umoddi3(n, d);
  349 
  350         return (nn ? -q : q);
  351 }
  352 EXPORT_SYMBOL(__moddi3);
  353 
  354 /*
  355  * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
  356  */
  357 uint64_t
  358 __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
  359 {
  360         uint64_t q = __udivdi3(n, d);
  361         if (r)
  362                 *r = n - d * q;
  363         return (q);
  364 }
  365 EXPORT_SYMBOL(__udivmoddi4);
  366 
  367 /*
  368  * Implementation of 64-bit signed division/modulo for 32-bit machines.
  369  */
  370 int64_t
  371 __divmoddi4(int64_t n, int64_t d, int64_t *r)
  372 {
  373         int64_t q, rr;
  374         boolean_t nn = B_FALSE;
  375         boolean_t nd = B_FALSE;
  376         if (n < 0) {
  377                 nn = B_TRUE;
  378                 n = -n;
  379         }
  380         if (d < 0) {
  381                 nd = B_TRUE;
  382                 d = -d;
  383         }
  384 
  385         q = __udivmoddi4(n, d, (uint64_t *)&rr);
  386 
  387         if (nn != nd)
  388                 q = -q;
  389         if (nn)
  390                 rr = -rr;
  391         if (r)
  392                 *r = rr;
  393         return (q);
  394 }
  395 EXPORT_SYMBOL(__divmoddi4);
  396 
  397 #if defined(__arm) || defined(__arm__)
  398 /*
  399  * Implementation of 64-bit (un)signed division for 32-bit arm machines.
  400  *
  401  * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
  402  * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
  403  * and the remainder in {r2, r3}.  The return type is specifically left
  404  * set to 'void' to ensure the compiler does not overwrite these registers
  405  * during the return.  All results are in registers as per ABI
  406  */
  407 void
  408 __aeabi_uldivmod(uint64_t u, uint64_t v)
  409 {
  410         uint64_t res;
  411         uint64_t mod;
  412 
  413         res = __udivdi3(u, v);
  414         mod = __umoddi3(u, v);
  415         {
  416                 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
  417                 register uint32_t r1 asm("r1") = (res >> 32);
  418                 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
  419                 register uint32_t r3 asm("r3") = (mod >> 32);
  420 
  421                 asm volatile(""
  422                     : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
  423                     : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
  424 
  425                 return; /* r0; */
  426         }
  427 }
  428 EXPORT_SYMBOL(__aeabi_uldivmod);
  429 
  430 void
  431 __aeabi_ldivmod(int64_t u, int64_t v)
  432 {
  433         int64_t res;
  434         uint64_t mod;
  435 
  436         res =  __divdi3(u, v);
  437         mod = __umoddi3(u, v);
  438         {
  439                 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
  440                 register uint32_t r1 asm("r1") = (res >> 32);
  441                 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
  442                 register uint32_t r3 asm("r3") = (mod >> 32);
  443 
  444                 asm volatile(""
  445                     : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
  446                     : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
  447 
  448                 return; /* r0; */
  449         }
  450 }
  451 EXPORT_SYMBOL(__aeabi_ldivmod);
  452 #endif /* __arm || __arm__ */
  453 
  454 #if defined(__GNUC__) && !defined(__clang__)
  455 #pragma GCC diagnostic pop
  456 #endif
  457 
  458 #endif /* BITS_PER_LONG */
  459 
  460 /*
  461  * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
  462  * ddi_strtol(9F) man page.  I have not verified the behavior of these
  463  * functions against their Solaris counterparts.  It is possible that I
  464  * may have misinterpreted the man page or the man page is incorrect.
  465  */
  466 int ddi_strtol(const char *, char **, int, long *);
  467 int ddi_strtoull(const char *, char **, int, unsigned long long *);
  468 int ddi_strtoll(const char *, char **, int, long long *);
  469 
  470 #define define_ddi_strtox(type, valtype)                                \
  471 int ddi_strto##type(const char *str, char **endptr,                     \
  472     int base, valtype *result)                                          \
  473 {                                                                       \
  474         valtype last_value, value = 0;                                  \
  475         char *ptr = (char *)str;                                        \
  476         int digit, minus = 0;                                           \
  477                                                                         \
  478         while (strchr(" \t\n\r\f", *ptr))                               \
  479                 ++ptr;                                                  \
  480                                                                         \
  481         if (strlen(ptr) == 0)                                           \
  482                 return (EINVAL);                                        \
  483                                                                         \
  484         switch (*ptr) {                                                 \
  485         case '-':                                                       \
  486                 minus = 1;                                              \
  487                 zfs_fallthrough;                                        \
  488         case '+':                                                       \
  489                 ++ptr;                                                  \
  490                 break;                                                  \
  491         }                                                               \
  492                                                                         \
  493         /* Auto-detect base based on prefix */                          \
  494         if (!base) {                                                    \
  495                 if (str[0] == '') {                                    \
  496                         if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
  497                                 base = 16; /* hex */                    \
  498                                 ptr += 2;                               \
  499                         } else if (str[1] >= '' && str[1] < 8) {       \
  500                                 base = 8; /* octal */                   \
  501                                 ptr += 1;                               \
  502                         } else {                                        \
  503                                 return (EINVAL);                        \
  504                         }                                               \
  505                 } else {                                                \
  506                         base = 10; /* decimal */                        \
  507                 }                                                       \
  508         }                                                               \
  509                                                                         \
  510         while (1) {                                                     \
  511                 if (isdigit(*ptr))                                      \
  512                         digit = *ptr - '';                             \
  513                 else if (isalpha(*ptr))                                 \
  514                         digit = tolower(*ptr) - 'a' + 10;               \
  515                 else                                                    \
  516                         break;                                          \
  517                                                                         \
  518                 if (digit >= base)                                      \
  519                         break;                                          \
  520                                                                         \
  521                 last_value = value;                                     \
  522                 value = value * base + digit;                           \
  523                 if (last_value > value) /* Overflow */                  \
  524                         return (ERANGE);                                \
  525                                                                         \
  526                 ptr++;                                                  \
  527         }                                                               \
  528                                                                         \
  529         *result = minus ? -value : value;                               \
  530                                                                         \
  531         if (endptr)                                                     \
  532                 *endptr = ptr;                                          \
  533                                                                         \
  534         return (0);                                                     \
  535 }                                                                       \
  536 
  537 define_ddi_strtox(l, long)
  538 define_ddi_strtox(ull, unsigned long long)
  539 define_ddi_strtox(ll, long long)
  540 
  541 EXPORT_SYMBOL(ddi_strtol);
  542 EXPORT_SYMBOL(ddi_strtoll);
  543 EXPORT_SYMBOL(ddi_strtoull);
  544 
  545 int
  546 ddi_copyin(const void *from, void *to, size_t len, int flags)
  547 {
  548         /* Fake ioctl() issued by kernel, 'from' is a kernel address */
  549         if (flags & FKIOCTL) {
  550                 memcpy(to, from, len);
  551                 return (0);
  552         }
  553 
  554         return (copyin(from, to, len));
  555 }
  556 EXPORT_SYMBOL(ddi_copyin);
  557 
  558 #define define_spl_param(type, fmt)                                     \
  559 int                                                                     \
  560 spl_param_get_##type(char *buf, zfs_kernel_param_t *kp)                 \
  561 {                                                                       \
  562         return (scnprintf(buf, PAGE_SIZE, fmt "\n",                     \
  563             *(type *)kp->arg));                                         \
  564 }                                                                       \
  565 int                                                                     \
  566 spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp)           \
  567 {                                                                       \
  568         return (kstrto##type(buf, 0, (type *)kp->arg));                 \
  569 }                                                                       \
  570 const struct kernel_param_ops spl_param_ops_##type = {                  \
  571         .set = spl_param_set_##type,                                    \
  572         .get = spl_param_get_##type,                                    \
  573 };                                                                      \
  574 EXPORT_SYMBOL(spl_param_get_##type);                                    \
  575 EXPORT_SYMBOL(spl_param_set_##type);                                    \
  576 EXPORT_SYMBOL(spl_param_ops_##type);
  577 
  578 define_spl_param(s64, "%lld")
  579 define_spl_param(u64, "%llu")
  580 
  581 /*
  582  * Post a uevent to userspace whenever a new vdev adds to the pool. It is
  583  * necessary to sync blkid information with udev, which zed daemon uses
  584  * during device hotplug to identify the vdev.
  585  */
  586 void
  587 spl_signal_kobj_evt(struct block_device *bdev)
  588 {
  589 #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
  590 #ifdef HAVE_BDEV_KOBJ
  591         struct kobject *disk_kobj = bdev_kobj(bdev);
  592 #else
  593         struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
  594 #endif
  595         if (disk_kobj) {
  596                 int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
  597                 if (ret) {
  598                         pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
  599                             " (%p): failed(ret:%d)\n", KOBJ_CHANGE,
  600                             kobject_name(disk_kobj), disk_kobj, ret);
  601                 }
  602         }
  603 #else
  604 /*
  605  * This is encountered if neither bdev_kobj() nor part_to_dev() is available
  606  * in the kernel - likely due to an API change that needs to be chased down.
  607  */
  608 #error "Unsupported kernel: unable to get struct kobj from bdev"
  609 #endif
  610 }
  611 EXPORT_SYMBOL(spl_signal_kobj_evt);
  612 
  613 int
  614 ddi_copyout(const void *from, void *to, size_t len, int flags)
  615 {
  616         /* Fake ioctl() issued by kernel, 'from' is a kernel address */
  617         if (flags & FKIOCTL) {
  618                 memcpy(to, from, len);
  619                 return (0);
  620         }
  621 
  622         return (copyout(from, to, len));
  623 }
  624 EXPORT_SYMBOL(ddi_copyout);
  625 
  626 static ssize_t
  627 spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
  628 {
  629 #if defined(HAVE_KERNEL_READ_PPOS)
  630         return (kernel_read(file, buf, count, pos));
  631 #else
  632         mm_segment_t saved_fs;
  633         ssize_t ret;
  634 
  635         saved_fs = get_fs();
  636         set_fs(KERNEL_DS);
  637 
  638         ret = vfs_read(file, (void __user *)buf, count, pos);
  639 
  640         set_fs(saved_fs);
  641 
  642         return (ret);
  643 #endif
  644 }
  645 
  646 static int
  647 spl_getattr(struct file *filp, struct kstat *stat)
  648 {
  649         int rc;
  650 
  651         ASSERT(filp);
  652         ASSERT(stat);
  653 
  654 #if defined(HAVE_4ARGS_VFS_GETATTR)
  655         rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
  656             AT_STATX_SYNC_AS_STAT);
  657 #elif defined(HAVE_2ARGS_VFS_GETATTR)
  658         rc = vfs_getattr(&filp->f_path, stat);
  659 #elif defined(HAVE_3ARGS_VFS_GETATTR)
  660         rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
  661 #else
  662 #error "No available vfs_getattr()"
  663 #endif
  664         if (rc)
  665                 return (-rc);
  666 
  667         return (0);
  668 }
  669 
  670 /*
  671  * Read the unique system identifier from the /etc/hostid file.
  672  *
  673  * The behavior of /usr/bin/hostid on Linux systems with the
  674  * regular eglibc and coreutils is:
  675  *
  676  *   1. Generate the value if the /etc/hostid file does not exist
  677  *      or if the /etc/hostid file is less than four bytes in size.
  678  *
  679  *   2. If the /etc/hostid file is at least 4 bytes, then return
  680  *      the first four bytes [0..3] in native endian order.
  681  *
  682  *   3. Always ignore bytes [4..] if they exist in the file.
  683  *
  684  * Only the first four bytes are significant, even on systems that
  685  * have a 64-bit word size.
  686  *
  687  * See:
  688  *
  689  *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
  690  *   coreutils: src/hostid.c
  691  *
  692  * Notes:
  693  *
  694  * The /etc/hostid file on Solaris is a text file that often reads:
  695  *
  696  *   # DO NOT EDIT
  697  *   "0123456789"
  698  *
  699  * Directly copying this file to Linux results in a constant
  700  * hostid of 4f442023 because the default comment constitutes
  701  * the first four bytes of the file.
  702  *
  703  */
  704 
  705 static char *spl_hostid_path = HW_HOSTID_PATH;
  706 module_param(spl_hostid_path, charp, 0444);
  707 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
  708 
  709 static int
  710 hostid_read(uint32_t *hostid)
  711 {
  712         uint64_t size;
  713         uint32_t value = 0;
  714         int error;
  715         loff_t off;
  716         struct file *filp;
  717         struct kstat stat;
  718 
  719         filp = filp_open(spl_hostid_path, 0, 0);
  720 
  721         if (IS_ERR(filp))
  722                 return (ENOENT);
  723 
  724         error = spl_getattr(filp, &stat);
  725         if (error) {
  726                 filp_close(filp, 0);
  727                 return (error);
  728         }
  729         size = stat.size;
  730         // cppcheck-suppress sizeofwithnumericparameter
  731         if (size < sizeof (HW_HOSTID_MASK)) {
  732                 filp_close(filp, 0);
  733                 return (EINVAL);
  734         }
  735 
  736         off = 0;
  737         /*
  738          * Read directly into the variable like eglibc does.
  739          * Short reads are okay; native behavior is preserved.
  740          */
  741         error = spl_kernel_read(filp, &value, sizeof (value), &off);
  742         if (error < 0) {
  743                 filp_close(filp, 0);
  744                 return (EIO);
  745         }
  746 
  747         /* Mask down to 32 bits like coreutils does. */
  748         *hostid = (value & HW_HOSTID_MASK);
  749         filp_close(filp, 0);
  750 
  751         return (0);
  752 }
  753 
  754 /*
  755  * Return the system hostid.  Preferentially use the spl_hostid module option
  756  * when set, otherwise use the value in the /etc/hostid file.
  757  */
  758 uint32_t
  759 zone_get_hostid(void *zone)
  760 {
  761         uint32_t hostid;
  762 
  763         ASSERT3P(zone, ==, NULL);
  764 
  765         if (spl_hostid != 0)
  766                 return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
  767 
  768         if (hostid_read(&hostid) == 0)
  769                 return (hostid);
  770 
  771         return (0);
  772 }
  773 EXPORT_SYMBOL(zone_get_hostid);
  774 
  775 static int
  776 spl_kvmem_init(void)
  777 {
  778         int rc = 0;
  779 
  780         rc = spl_kmem_init();
  781         if (rc)
  782                 return (rc);
  783 
  784         rc = spl_vmem_init();
  785         if (rc) {
  786                 spl_kmem_fini();
  787                 return (rc);
  788         }
  789 
  790         return (rc);
  791 }
  792 
  793 /*
  794  * We initialize the random number generator with 128 bits of entropy from the
  795  * system random number generator. In the improbable case that we have a zero
  796  * seed, we fallback to the system jiffies, unless it is also zero, in which
  797  * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
  798  * initialize each of the per-cpu seeds so that the sequences generated on each
  799  * CPU are guaranteed to never overlap in practice.
  800  */
  801 static int __init
  802 spl_random_init(void)
  803 {
  804         uint64_t s[4];
  805         int i = 0;
  806 
  807         spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
  808             sizeof (uint64_t));
  809 
  810         if (!spl_pseudo_entropy)
  811                 return (-ENOMEM);
  812 
  813         get_random_bytes(s, sizeof (s));
  814 
  815         if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
  816                 if (jiffies != 0) {
  817                         s[0] = jiffies;
  818                         s[1] = ~0 - jiffies;
  819                         s[2] = ~jiffies;
  820                         s[3] = jiffies - ~0;
  821                 } else {
  822                         (void) memcpy(s, "improbable seed", 16);
  823                 }
  824                 printk("SPL: get_random_bytes() returned 0 "
  825                     "when generating random seed. Setting initial seed to "
  826                     "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
  827                     cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
  828         }
  829 
  830         for_each_possible_cpu(i) {
  831                 uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
  832 
  833                 spl_rand_jump(s);
  834 
  835                 wordp[0] = s[0];
  836                 wordp[1] = s[1];
  837                 wordp[2] = s[2];
  838                 wordp[3] = s[3];
  839         }
  840 
  841         return (0);
  842 }
  843 
  844 static void
  845 spl_random_fini(void)
  846 {
  847         free_percpu(spl_pseudo_entropy);
  848 }
  849 
  850 static void
  851 spl_kvmem_fini(void)
  852 {
  853         spl_vmem_fini();
  854         spl_kmem_fini();
  855 }
  856 
  857 static int __init
  858 spl_init(void)
  859 {
  860         int rc = 0;
  861 
  862         if ((rc = spl_random_init()))
  863                 goto out0;
  864 
  865         if ((rc = spl_kvmem_init()))
  866                 goto out1;
  867 
  868         if ((rc = spl_tsd_init()))
  869                 goto out2;
  870 
  871         if ((rc = spl_taskq_init()))
  872                 goto out3;
  873 
  874         if ((rc = spl_kmem_cache_init()))
  875                 goto out4;
  876 
  877         if ((rc = spl_proc_init()))
  878                 goto out5;
  879 
  880         if ((rc = spl_kstat_init()))
  881                 goto out6;
  882 
  883         if ((rc = spl_zlib_init()))
  884                 goto out7;
  885 
  886         if ((rc = spl_zone_init()))
  887                 goto out8;
  888 
  889         return (rc);
  890 
  891 out8:
  892         spl_zlib_fini();
  893 out7:
  894         spl_kstat_fini();
  895 out6:
  896         spl_proc_fini();
  897 out5:
  898         spl_kmem_cache_fini();
  899 out4:
  900         spl_taskq_fini();
  901 out3:
  902         spl_tsd_fini();
  903 out2:
  904         spl_kvmem_fini();
  905 out1:
  906         spl_random_fini();
  907 out0:
  908         return (rc);
  909 }
  910 
  911 static void __exit
  912 spl_fini(void)
  913 {
  914         spl_zone_fini();
  915         spl_zlib_fini();
  916         spl_kstat_fini();
  917         spl_proc_fini();
  918         spl_kmem_cache_fini();
  919         spl_taskq_fini();
  920         spl_tsd_fini();
  921         spl_kvmem_fini();
  922         spl_random_fini();
  923 }
  924 
  925 module_init(spl_init);
  926 module_exit(spl_fini);
  927 
  928 MODULE_DESCRIPTION("Solaris Porting Layer");
  929 MODULE_AUTHOR(ZFS_META_AUTHOR);
  930 MODULE_LICENSE("GPL");
  931 MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);

Cache object: 9708ca51771cf407f7022c7d5964467b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.