1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 *
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include <linux/percpu_compat.h>
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <sys/wait.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/prefetch.h>
34
35 /*
36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37 * are removed to allow access to the real Linux slab allocator.
38 */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43
44
45 /*
46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47 * with smp_mb__{before,after}_atomic() because they were redundant. This is
48 * only used inside our SLAB allocator, so we implement an internal wrapper
49 * here to give us smp_mb__{before,after}_atomic() on older kernels.
50 */
51 #ifndef smp_mb__before_atomic
52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53 #endif
54
55 #ifndef smp_mb__after_atomic
56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57 #endif
58
59 /* BEGIN CSTYLED */
60 /*
61 * Cache magazines are an optimization designed to minimize the cost of
62 * allocating memory. They do this by keeping a per-cpu cache of recently
63 * freed objects, which can then be reallocated without taking a lock. This
64 * can improve performance on highly contended caches. However, because
65 * objects in magazines will prevent otherwise empty slabs from being
66 * immediately released this may not be ideal for low memory machines.
67 *
68 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
69 * magazine size. When this value is set to 0 the magazine size will be
70 * automatically determined based on the object size. Otherwise magazines
71 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
72 * may never be entirely disabled in this implementation.
73 */
74 static unsigned int spl_kmem_cache_magazine_size = 0;
75 module_param(spl_kmem_cache_magazine_size, uint, 0444);
76 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
77 "Default magazine size (2-256), set automatically (0)");
78
79 /*
80 * The default behavior is to report the number of objects remaining in the
81 * cache. This allows the Linux VM to repeatedly reclaim objects from the
82 * cache when memory is low satisfy other memory allocations. Alternately,
83 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
84 * is reclaimed. This may increase the likelihood of out of memory events.
85 */
86 static unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
87 module_param(spl_kmem_cache_reclaim, uint, 0644);
88 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
89
90 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
91 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
92 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
93
94 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
95 module_param(spl_kmem_cache_max_size, uint, 0644);
96 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
97
98 /*
99 * For small objects the Linux slab allocator should be used to make the most
100 * efficient use of the memory. However, large objects are not supported by
101 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
102 * of 16K was determined to be optimal for architectures using 4K pages and
103 * to also work well on architecutres using larger 64K page sizes.
104 */
105 static unsigned int spl_kmem_cache_slab_limit = 16384;
106 module_param(spl_kmem_cache_slab_limit, uint, 0644);
107 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
108 "Objects less than N bytes use the Linux slab");
109
110 /*
111 * The number of threads available to allocate new slabs for caches. This
112 * should not need to be tuned but it is available for performance analysis.
113 */
114 static unsigned int spl_kmem_cache_kmem_threads = 4;
115 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
116 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
117 "Number of spl_kmem_cache threads");
118 /* END CSTYLED */
119
120 /*
121 * Slab allocation interfaces
122 *
123 * While the Linux slab implementation was inspired by the Solaris
124 * implementation I cannot use it to emulate the Solaris APIs. I
125 * require two features which are not provided by the Linux slab.
126 *
127 * 1) Constructors AND destructors. Recent versions of the Linux
128 * kernel have removed support for destructors. This is a deal
129 * breaker for the SPL which contains particularly expensive
130 * initializers for mutex's, condition variables, etc. We also
131 * require a minimal level of cleanup for these data types unlike
132 * many Linux data types which do need to be explicitly destroyed.
133 *
134 * 2) Virtual address space backed slab. Callers of the Solaris slab
135 * expect it to work well for both small are very large allocations.
136 * Because of memory fragmentation the Linux slab which is backed
137 * by kmalloc'ed memory performs very badly when confronted with
138 * large numbers of large allocations. Basing the slab on the
139 * virtual address space removes the need for contiguous pages
140 * and greatly improve performance for large allocations.
141 *
142 * For these reasons, the SPL has its own slab implementation with
143 * the needed features. It is not as highly optimized as either the
144 * Solaris or Linux slabs, but it should get me most of what is
145 * needed until it can be optimized or obsoleted by another approach.
146 *
147 * One serious concern I do have about this method is the relatively
148 * small virtual address space on 32bit arches. This will seriously
149 * constrain the size of the slab caches and their performance.
150 */
151
152 struct list_head spl_kmem_cache_list; /* List of caches */
153 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
154 static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */
155
156 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
157
158 static void *
159 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
160 {
161 gfp_t lflags = kmem_flags_convert(flags);
162 void *ptr;
163
164 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
165
166 /* Resulting allocated memory will be page aligned */
167 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
168
169 return (ptr);
170 }
171
172 static void
173 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
174 {
175 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
176
177 /*
178 * The Linux direct reclaim path uses this out of band value to
179 * determine if forward progress is being made. Normally this is
180 * incremented by kmem_freepages() which is part of the various
181 * Linux slab implementations. However, since we are using none
182 * of that infrastructure we are responsible for incrementing it.
183 */
184 if (current->reclaim_state)
185 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
186
187 vfree(ptr);
188 }
189
190 /*
191 * Required space for each aligned sks.
192 */
193 static inline uint32_t
194 spl_sks_size(spl_kmem_cache_t *skc)
195 {
196 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
197 skc->skc_obj_align, uint32_t));
198 }
199
200 /*
201 * Required space for each aligned object.
202 */
203 static inline uint32_t
204 spl_obj_size(spl_kmem_cache_t *skc)
205 {
206 uint32_t align = skc->skc_obj_align;
207
208 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
209 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
210 }
211
212 uint64_t
213 spl_kmem_cache_inuse(kmem_cache_t *cache)
214 {
215 return (cache->skc_obj_total);
216 }
217 EXPORT_SYMBOL(spl_kmem_cache_inuse);
218
219 uint64_t
220 spl_kmem_cache_entry_size(kmem_cache_t *cache)
221 {
222 return (cache->skc_obj_size);
223 }
224 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
225
226 /*
227 * Lookup the spl_kmem_object_t for an object given that object.
228 */
229 static inline spl_kmem_obj_t *
230 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
231 {
232 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
233 skc->skc_obj_align, uint32_t));
234 }
235
236 /*
237 * It's important that we pack the spl_kmem_obj_t structure and the
238 * actual objects in to one large address space to minimize the number
239 * of calls to the allocator. It is far better to do a few large
240 * allocations and then subdivide it ourselves. Now which allocator
241 * we use requires balancing a few trade offs.
242 *
243 * For small objects we use kmem_alloc() because as long as you are
244 * only requesting a small number of pages (ideally just one) its cheap.
245 * However, when you start requesting multiple pages with kmem_alloc()
246 * it gets increasingly expensive since it requires contiguous pages.
247 * For this reason we shift to vmem_alloc() for slabs of large objects
248 * which removes the need for contiguous pages. We do not use
249 * vmem_alloc() in all cases because there is significant locking
250 * overhead in __get_vm_area_node(). This function takes a single
251 * global lock when acquiring an available virtual address range which
252 * serializes all vmem_alloc()'s for all slab caches. Using slightly
253 * different allocation functions for small and large objects should
254 * give us the best of both worlds.
255 *
256 * +------------------------+
257 * | spl_kmem_slab_t --+-+ |
258 * | skc_obj_size <-+ | |
259 * | spl_kmem_obj_t | |
260 * | skc_obj_size <---+ |
261 * | spl_kmem_obj_t | |
262 * | ... v |
263 * +------------------------+
264 */
265 static spl_kmem_slab_t *
266 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
267 {
268 spl_kmem_slab_t *sks;
269 void *base;
270 uint32_t obj_size;
271
272 base = kv_alloc(skc, skc->skc_slab_size, flags);
273 if (base == NULL)
274 return (NULL);
275
276 sks = (spl_kmem_slab_t *)base;
277 sks->sks_magic = SKS_MAGIC;
278 sks->sks_objs = skc->skc_slab_objs;
279 sks->sks_age = jiffies;
280 sks->sks_cache = skc;
281 INIT_LIST_HEAD(&sks->sks_list);
282 INIT_LIST_HEAD(&sks->sks_free_list);
283 sks->sks_ref = 0;
284 obj_size = spl_obj_size(skc);
285
286 for (int i = 0; i < sks->sks_objs; i++) {
287 void *obj = base + spl_sks_size(skc) + (i * obj_size);
288
289 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
290 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
291 sko->sko_addr = obj;
292 sko->sko_magic = SKO_MAGIC;
293 sko->sko_slab = sks;
294 INIT_LIST_HEAD(&sko->sko_list);
295 list_add_tail(&sko->sko_list, &sks->sks_free_list);
296 }
297
298 return (sks);
299 }
300
301 /*
302 * Remove a slab from complete or partial list, it must be called with
303 * the 'skc->skc_lock' held but the actual free must be performed
304 * outside the lock to prevent deadlocking on vmem addresses.
305 */
306 static void
307 spl_slab_free(spl_kmem_slab_t *sks,
308 struct list_head *sks_list, struct list_head *sko_list)
309 {
310 spl_kmem_cache_t *skc;
311
312 ASSERT(sks->sks_magic == SKS_MAGIC);
313 ASSERT(sks->sks_ref == 0);
314
315 skc = sks->sks_cache;
316 ASSERT(skc->skc_magic == SKC_MAGIC);
317
318 /*
319 * Update slab/objects counters in the cache, then remove the
320 * slab from the skc->skc_partial_list. Finally add the slab
321 * and all its objects in to the private work lists where the
322 * destructors will be called and the memory freed to the system.
323 */
324 skc->skc_obj_total -= sks->sks_objs;
325 skc->skc_slab_total--;
326 list_del(&sks->sks_list);
327 list_add(&sks->sks_list, sks_list);
328 list_splice_init(&sks->sks_free_list, sko_list);
329 }
330
331 /*
332 * Reclaim empty slabs at the end of the partial list.
333 */
334 static void
335 spl_slab_reclaim(spl_kmem_cache_t *skc)
336 {
337 spl_kmem_slab_t *sks = NULL, *m = NULL;
338 spl_kmem_obj_t *sko = NULL, *n = NULL;
339 LIST_HEAD(sks_list);
340 LIST_HEAD(sko_list);
341
342 /*
343 * Empty slabs and objects must be moved to a private list so they
344 * can be safely freed outside the spin lock. All empty slabs are
345 * at the end of skc->skc_partial_list, therefore once a non-empty
346 * slab is found we can stop scanning.
347 */
348 spin_lock(&skc->skc_lock);
349 list_for_each_entry_safe_reverse(sks, m,
350 &skc->skc_partial_list, sks_list) {
351
352 if (sks->sks_ref > 0)
353 break;
354
355 spl_slab_free(sks, &sks_list, &sko_list);
356 }
357 spin_unlock(&skc->skc_lock);
358
359 /*
360 * The following two loops ensure all the object destructors are run,
361 * and the slabs themselves are freed. This is all done outside the
362 * skc->skc_lock since this allows the destructor to sleep, and
363 * allows us to perform a conditional reschedule when a freeing a
364 * large number of objects and slabs back to the system.
365 */
366
367 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
368 ASSERT(sko->sko_magic == SKO_MAGIC);
369 }
370
371 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
372 ASSERT(sks->sks_magic == SKS_MAGIC);
373 kv_free(skc, sks, skc->skc_slab_size);
374 }
375 }
376
377 static spl_kmem_emergency_t *
378 spl_emergency_search(struct rb_root *root, void *obj)
379 {
380 struct rb_node *node = root->rb_node;
381 spl_kmem_emergency_t *ske;
382 unsigned long address = (unsigned long)obj;
383
384 while (node) {
385 ske = container_of(node, spl_kmem_emergency_t, ske_node);
386
387 if (address < ske->ske_obj)
388 node = node->rb_left;
389 else if (address > ske->ske_obj)
390 node = node->rb_right;
391 else
392 return (ske);
393 }
394
395 return (NULL);
396 }
397
398 static int
399 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
400 {
401 struct rb_node **new = &(root->rb_node), *parent = NULL;
402 spl_kmem_emergency_t *ske_tmp;
403 unsigned long address = ske->ske_obj;
404
405 while (*new) {
406 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
407
408 parent = *new;
409 if (address < ske_tmp->ske_obj)
410 new = &((*new)->rb_left);
411 else if (address > ske_tmp->ske_obj)
412 new = &((*new)->rb_right);
413 else
414 return (0);
415 }
416
417 rb_link_node(&ske->ske_node, parent, new);
418 rb_insert_color(&ske->ske_node, root);
419
420 return (1);
421 }
422
423 /*
424 * Allocate a single emergency object and track it in a red black tree.
425 */
426 static int
427 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
428 {
429 gfp_t lflags = kmem_flags_convert(flags);
430 spl_kmem_emergency_t *ske;
431 int order = get_order(skc->skc_obj_size);
432 int empty;
433
434 /* Last chance use a partial slab if one now exists */
435 spin_lock(&skc->skc_lock);
436 empty = list_empty(&skc->skc_partial_list);
437 spin_unlock(&skc->skc_lock);
438 if (!empty)
439 return (-EEXIST);
440
441 ske = kmalloc(sizeof (*ske), lflags);
442 if (ske == NULL)
443 return (-ENOMEM);
444
445 ske->ske_obj = __get_free_pages(lflags, order);
446 if (ske->ske_obj == 0) {
447 kfree(ske);
448 return (-ENOMEM);
449 }
450
451 spin_lock(&skc->skc_lock);
452 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
453 if (likely(empty)) {
454 skc->skc_obj_total++;
455 skc->skc_obj_emergency++;
456 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
457 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
458 }
459 spin_unlock(&skc->skc_lock);
460
461 if (unlikely(!empty)) {
462 free_pages(ske->ske_obj, order);
463 kfree(ske);
464 return (-EINVAL);
465 }
466
467 *obj = (void *)ske->ske_obj;
468
469 return (0);
470 }
471
472 /*
473 * Locate the passed object in the red black tree and free it.
474 */
475 static int
476 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
477 {
478 spl_kmem_emergency_t *ske;
479 int order = get_order(skc->skc_obj_size);
480
481 spin_lock(&skc->skc_lock);
482 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
483 if (ske) {
484 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
485 skc->skc_obj_emergency--;
486 skc->skc_obj_total--;
487 }
488 spin_unlock(&skc->skc_lock);
489
490 if (ske == NULL)
491 return (-ENOENT);
492
493 free_pages(ske->ske_obj, order);
494 kfree(ske);
495
496 return (0);
497 }
498
499 /*
500 * Release objects from the per-cpu magazine back to their slab. The flush
501 * argument contains the max number of entries to remove from the magazine.
502 */
503 static void
504 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
505 {
506 spin_lock(&skc->skc_lock);
507
508 ASSERT(skc->skc_magic == SKC_MAGIC);
509 ASSERT(skm->skm_magic == SKM_MAGIC);
510
511 int count = MIN(flush, skm->skm_avail);
512 for (int i = 0; i < count; i++)
513 spl_cache_shrink(skc, skm->skm_objs[i]);
514
515 skm->skm_avail -= count;
516 memmove(skm->skm_objs, &(skm->skm_objs[count]),
517 sizeof (void *) * skm->skm_avail);
518
519 spin_unlock(&skc->skc_lock);
520 }
521
522 /*
523 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
524 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
525 * for very small objects we may end up with more than this so as not
526 * to waste space in the minimal allocation of a single page.
527 */
528 static int
529 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
530 {
531 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
532
533 sks_size = spl_sks_size(skc);
534 obj_size = spl_obj_size(skc);
535 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
536 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
537
538 if (tgt_size <= max_size) {
539 tgt_objs = (tgt_size - sks_size) / obj_size;
540 } else {
541 tgt_objs = (max_size - sks_size) / obj_size;
542 tgt_size = (tgt_objs * obj_size) + sks_size;
543 }
544
545 if (tgt_objs == 0)
546 return (-ENOSPC);
547
548 *objs = tgt_objs;
549 *size = tgt_size;
550
551 return (0);
552 }
553
554 /*
555 * Make a guess at reasonable per-cpu magazine size based on the size of
556 * each object and the cost of caching N of them in each magazine. Long
557 * term this should really adapt based on an observed usage heuristic.
558 */
559 static int
560 spl_magazine_size(spl_kmem_cache_t *skc)
561 {
562 uint32_t obj_size = spl_obj_size(skc);
563 int size;
564
565 if (spl_kmem_cache_magazine_size > 0)
566 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
567
568 /* Per-magazine sizes below assume a 4Kib page size */
569 if (obj_size > (PAGE_SIZE * 256))
570 size = 4; /* Minimum 4Mib per-magazine */
571 else if (obj_size > (PAGE_SIZE * 32))
572 size = 16; /* Minimum 2Mib per-magazine */
573 else if (obj_size > (PAGE_SIZE))
574 size = 64; /* Minimum 256Kib per-magazine */
575 else if (obj_size > (PAGE_SIZE / 4))
576 size = 128; /* Minimum 128Kib per-magazine */
577 else
578 size = 256;
579
580 return (size);
581 }
582
583 /*
584 * Allocate a per-cpu magazine to associate with a specific core.
585 */
586 static spl_kmem_magazine_t *
587 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
588 {
589 spl_kmem_magazine_t *skm;
590 int size = sizeof (spl_kmem_magazine_t) +
591 sizeof (void *) * skc->skc_mag_size;
592
593 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
594 if (skm) {
595 skm->skm_magic = SKM_MAGIC;
596 skm->skm_avail = 0;
597 skm->skm_size = skc->skc_mag_size;
598 skm->skm_refill = skc->skc_mag_refill;
599 skm->skm_cache = skc;
600 skm->skm_cpu = cpu;
601 }
602
603 return (skm);
604 }
605
606 /*
607 * Free a per-cpu magazine associated with a specific core.
608 */
609 static void
610 spl_magazine_free(spl_kmem_magazine_t *skm)
611 {
612 ASSERT(skm->skm_magic == SKM_MAGIC);
613 ASSERT(skm->skm_avail == 0);
614 kfree(skm);
615 }
616
617 /*
618 * Create all pre-cpu magazines of reasonable sizes.
619 */
620 static int
621 spl_magazine_create(spl_kmem_cache_t *skc)
622 {
623 int i = 0;
624
625 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
626
627 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
628 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
629 skc->skc_mag_size = spl_magazine_size(skc);
630 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
631
632 for_each_possible_cpu(i) {
633 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
634 if (!skc->skc_mag[i]) {
635 for (i--; i >= 0; i--)
636 spl_magazine_free(skc->skc_mag[i]);
637
638 kfree(skc->skc_mag);
639 return (-ENOMEM);
640 }
641 }
642
643 return (0);
644 }
645
646 /*
647 * Destroy all pre-cpu magazines.
648 */
649 static void
650 spl_magazine_destroy(spl_kmem_cache_t *skc)
651 {
652 spl_kmem_magazine_t *skm;
653 int i = 0;
654
655 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
656
657 for_each_possible_cpu(i) {
658 skm = skc->skc_mag[i];
659 spl_cache_flush(skc, skm, skm->skm_avail);
660 spl_magazine_free(skm);
661 }
662
663 kfree(skc->skc_mag);
664 }
665
666 /*
667 * Create a object cache based on the following arguments:
668 * name cache name
669 * size cache object size
670 * align cache object alignment
671 * ctor cache object constructor
672 * dtor cache object destructor
673 * reclaim cache object reclaim
674 * priv cache private data for ctor/dtor/reclaim
675 * vmp unused must be NULL
676 * flags
677 * KMC_KVMEM Force kvmem backed SPL cache
678 * KMC_SLAB Force Linux slab backed cache
679 * KMC_NODEBUG Disable debugging (unsupported)
680 */
681 spl_kmem_cache_t *
682 spl_kmem_cache_create(const char *name, size_t size, size_t align,
683 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
684 void *priv, void *vmp, int flags)
685 {
686 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
687 spl_kmem_cache_t *skc;
688 int rc;
689
690 /*
691 * Unsupported flags
692 */
693 ASSERT(vmp == NULL);
694 ASSERT(reclaim == NULL);
695
696 might_sleep();
697
698 skc = kzalloc(sizeof (*skc), lflags);
699 if (skc == NULL)
700 return (NULL);
701
702 skc->skc_magic = SKC_MAGIC;
703 skc->skc_name_size = strlen(name) + 1;
704 skc->skc_name = kmalloc(skc->skc_name_size, lflags);
705 if (skc->skc_name == NULL) {
706 kfree(skc);
707 return (NULL);
708 }
709 strlcpy(skc->skc_name, name, skc->skc_name_size);
710
711 skc->skc_ctor = ctor;
712 skc->skc_dtor = dtor;
713 skc->skc_private = priv;
714 skc->skc_vmp = vmp;
715 skc->skc_linux_cache = NULL;
716 skc->skc_flags = flags;
717 skc->skc_obj_size = size;
718 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
719 atomic_set(&skc->skc_ref, 0);
720
721 INIT_LIST_HEAD(&skc->skc_list);
722 INIT_LIST_HEAD(&skc->skc_complete_list);
723 INIT_LIST_HEAD(&skc->skc_partial_list);
724 skc->skc_emergency_tree = RB_ROOT;
725 spin_lock_init(&skc->skc_lock);
726 init_waitqueue_head(&skc->skc_waitq);
727 skc->skc_slab_fail = 0;
728 skc->skc_slab_create = 0;
729 skc->skc_slab_destroy = 0;
730 skc->skc_slab_total = 0;
731 skc->skc_slab_alloc = 0;
732 skc->skc_slab_max = 0;
733 skc->skc_obj_total = 0;
734 skc->skc_obj_alloc = 0;
735 skc->skc_obj_max = 0;
736 skc->skc_obj_deadlock = 0;
737 skc->skc_obj_emergency = 0;
738 skc->skc_obj_emergency_max = 0;
739
740 rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
741 GFP_KERNEL);
742 if (rc != 0) {
743 kfree(skc);
744 return (NULL);
745 }
746
747 /*
748 * Verify the requested alignment restriction is sane.
749 */
750 if (align) {
751 VERIFY(ISP2(align));
752 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
753 VERIFY3U(align, <=, PAGE_SIZE);
754 skc->skc_obj_align = align;
755 }
756
757 /*
758 * When no specific type of slab is requested (kmem, vmem, or
759 * linuxslab) then select a cache type based on the object size
760 * and default tunables.
761 */
762 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
763 if (spl_kmem_cache_slab_limit &&
764 size <= (size_t)spl_kmem_cache_slab_limit) {
765 /*
766 * Objects smaller than spl_kmem_cache_slab_limit can
767 * use the Linux slab for better space-efficiency.
768 */
769 skc->skc_flags |= KMC_SLAB;
770 } else {
771 /*
772 * All other objects are considered large and are
773 * placed on kvmem backed slabs.
774 */
775 skc->skc_flags |= KMC_KVMEM;
776 }
777 }
778
779 /*
780 * Given the type of slab allocate the required resources.
781 */
782 if (skc->skc_flags & KMC_KVMEM) {
783 rc = spl_slab_size(skc,
784 &skc->skc_slab_objs, &skc->skc_slab_size);
785 if (rc)
786 goto out;
787
788 rc = spl_magazine_create(skc);
789 if (rc)
790 goto out;
791 } else {
792 unsigned long slabflags = 0;
793
794 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE))
795 goto out;
796
797 #if defined(SLAB_USERCOPY)
798 /*
799 * Required for PAX-enabled kernels if the slab is to be
800 * used for copying between user and kernel space.
801 */
802 slabflags |= SLAB_USERCOPY;
803 #endif
804
805 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
806 /*
807 * Newer grsec patchset uses kmem_cache_create_usercopy()
808 * instead of SLAB_USERCOPY flag
809 */
810 skc->skc_linux_cache = kmem_cache_create_usercopy(
811 skc->skc_name, size, align, slabflags, 0, size, NULL);
812 #else
813 skc->skc_linux_cache = kmem_cache_create(
814 skc->skc_name, size, align, slabflags, NULL);
815 #endif
816 if (skc->skc_linux_cache == NULL)
817 goto out;
818 }
819
820 down_write(&spl_kmem_cache_sem);
821 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
822 up_write(&spl_kmem_cache_sem);
823
824 return (skc);
825 out:
826 kfree(skc->skc_name);
827 percpu_counter_destroy(&skc->skc_linux_alloc);
828 kfree(skc);
829 return (NULL);
830 }
831 EXPORT_SYMBOL(spl_kmem_cache_create);
832
833 /*
834 * Register a move callback for cache defragmentation.
835 * XXX: Unimplemented but harmless to stub out for now.
836 */
837 void
838 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
839 kmem_cbrc_t (move)(void *, void *, size_t, void *))
840 {
841 ASSERT(move != NULL);
842 }
843 EXPORT_SYMBOL(spl_kmem_cache_set_move);
844
845 /*
846 * Destroy a cache and all objects associated with the cache.
847 */
848 void
849 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
850 {
851 DECLARE_WAIT_QUEUE_HEAD(wq);
852 taskqid_t id;
853
854 ASSERT(skc->skc_magic == SKC_MAGIC);
855 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
856
857 down_write(&spl_kmem_cache_sem);
858 list_del_init(&skc->skc_list);
859 up_write(&spl_kmem_cache_sem);
860
861 /* Cancel any and wait for any pending delayed tasks */
862 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
863
864 spin_lock(&skc->skc_lock);
865 id = skc->skc_taskqid;
866 spin_unlock(&skc->skc_lock);
867
868 taskq_cancel_id(spl_kmem_cache_taskq, id);
869
870 /*
871 * Wait until all current callers complete, this is mainly
872 * to catch the case where a low memory situation triggers a
873 * cache reaping action which races with this destroy.
874 */
875 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
876
877 if (skc->skc_flags & KMC_KVMEM) {
878 spl_magazine_destroy(skc);
879 spl_slab_reclaim(skc);
880 } else {
881 ASSERT(skc->skc_flags & KMC_SLAB);
882 kmem_cache_destroy(skc->skc_linux_cache);
883 }
884
885 spin_lock(&skc->skc_lock);
886
887 /*
888 * Validate there are no objects in use and free all the
889 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
890 */
891 ASSERT3U(skc->skc_slab_alloc, ==, 0);
892 ASSERT3U(skc->skc_obj_alloc, ==, 0);
893 ASSERT3U(skc->skc_slab_total, ==, 0);
894 ASSERT3U(skc->skc_obj_total, ==, 0);
895 ASSERT3U(skc->skc_obj_emergency, ==, 0);
896 ASSERT(list_empty(&skc->skc_complete_list));
897
898 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
899 percpu_counter_destroy(&skc->skc_linux_alloc);
900
901 spin_unlock(&skc->skc_lock);
902
903 kfree(skc->skc_name);
904 kfree(skc);
905 }
906 EXPORT_SYMBOL(spl_kmem_cache_destroy);
907
908 /*
909 * Allocate an object from a slab attached to the cache. This is used to
910 * repopulate the per-cpu magazine caches in batches when they run low.
911 */
912 static void *
913 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
914 {
915 spl_kmem_obj_t *sko;
916
917 ASSERT(skc->skc_magic == SKC_MAGIC);
918 ASSERT(sks->sks_magic == SKS_MAGIC);
919
920 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
921 ASSERT(sko->sko_magic == SKO_MAGIC);
922 ASSERT(sko->sko_addr != NULL);
923
924 /* Remove from sks_free_list */
925 list_del_init(&sko->sko_list);
926
927 sks->sks_age = jiffies;
928 sks->sks_ref++;
929 skc->skc_obj_alloc++;
930
931 /* Track max obj usage statistics */
932 if (skc->skc_obj_alloc > skc->skc_obj_max)
933 skc->skc_obj_max = skc->skc_obj_alloc;
934
935 /* Track max slab usage statistics */
936 if (sks->sks_ref == 1) {
937 skc->skc_slab_alloc++;
938
939 if (skc->skc_slab_alloc > skc->skc_slab_max)
940 skc->skc_slab_max = skc->skc_slab_alloc;
941 }
942
943 return (sko->sko_addr);
944 }
945
946 /*
947 * Generic slab allocation function to run by the global work queues.
948 * It is responsible for allocating a new slab, linking it in to the list
949 * of partial slabs, and then waking any waiters.
950 */
951 static int
952 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
953 {
954 spl_kmem_slab_t *sks;
955
956 fstrans_cookie_t cookie = spl_fstrans_mark();
957 sks = spl_slab_alloc(skc, flags);
958 spl_fstrans_unmark(cookie);
959
960 spin_lock(&skc->skc_lock);
961 if (sks) {
962 skc->skc_slab_total++;
963 skc->skc_obj_total += sks->sks_objs;
964 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
965
966 smp_mb__before_atomic();
967 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
968 smp_mb__after_atomic();
969 }
970 spin_unlock(&skc->skc_lock);
971
972 return (sks == NULL ? -ENOMEM : 0);
973 }
974
975 static void
976 spl_cache_grow_work(void *data)
977 {
978 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
979 spl_kmem_cache_t *skc = ska->ska_cache;
980
981 int error = __spl_cache_grow(skc, ska->ska_flags);
982
983 atomic_dec(&skc->skc_ref);
984 smp_mb__before_atomic();
985 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
986 smp_mb__after_atomic();
987 if (error == 0)
988 wake_up_all(&skc->skc_waitq);
989
990 kfree(ska);
991 }
992
993 /*
994 * Returns non-zero when a new slab should be available.
995 */
996 static int
997 spl_cache_grow_wait(spl_kmem_cache_t *skc)
998 {
999 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1000 }
1001
1002 /*
1003 * No available objects on any slabs, create a new slab. Note that this
1004 * functionality is disabled for KMC_SLAB caches which are backed by the
1005 * Linux slab.
1006 */
1007 static int
1008 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1009 {
1010 int remaining, rc = 0;
1011
1012 ASSERT0(flags & ~KM_PUBLIC_MASK);
1013 ASSERT(skc->skc_magic == SKC_MAGIC);
1014 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1015 might_sleep();
1016 *obj = NULL;
1017
1018 /*
1019 * Before allocating a new slab wait for any reaping to complete and
1020 * then return so the local magazine can be rechecked for new objects.
1021 */
1022 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1023 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1024 TASK_UNINTERRUPTIBLE);
1025 return (rc ? rc : -EAGAIN);
1026 }
1027
1028 /*
1029 * Note: It would be nice to reduce the overhead of context switch
1030 * and improve NUMA locality, by trying to allocate a new slab in the
1031 * current process context with KM_NOSLEEP flag.
1032 *
1033 * However, this can't be applied to vmem/kvmem due to a bug that
1034 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1035 */
1036
1037 /*
1038 * This is handled by dispatching a work request to the global work
1039 * queue. This allows us to asynchronously allocate a new slab while
1040 * retaining the ability to safely fall back to a smaller synchronous
1041 * allocations to ensure forward progress is always maintained.
1042 */
1043 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1044 spl_kmem_alloc_t *ska;
1045
1046 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1047 if (ska == NULL) {
1048 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1049 smp_mb__after_atomic();
1050 wake_up_all(&skc->skc_waitq);
1051 return (-ENOMEM);
1052 }
1053
1054 atomic_inc(&skc->skc_ref);
1055 ska->ska_cache = skc;
1056 ska->ska_flags = flags;
1057 taskq_init_ent(&ska->ska_tqe);
1058 taskq_dispatch_ent(spl_kmem_cache_taskq,
1059 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1060 }
1061
1062 /*
1063 * The goal here is to only detect the rare case where a virtual slab
1064 * allocation has deadlocked. We must be careful to minimize the use
1065 * of emergency objects which are more expensive to track. Therefore,
1066 * we set a very long timeout for the asynchronous allocation and if
1067 * the timeout is reached the cache is flagged as deadlocked. From
1068 * this point only new emergency objects will be allocated until the
1069 * asynchronous allocation completes and clears the deadlocked flag.
1070 */
1071 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1072 rc = spl_emergency_alloc(skc, flags, obj);
1073 } else {
1074 remaining = wait_event_timeout(skc->skc_waitq,
1075 spl_cache_grow_wait(skc), HZ / 10);
1076
1077 if (!remaining) {
1078 spin_lock(&skc->skc_lock);
1079 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1080 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1081 skc->skc_obj_deadlock++;
1082 }
1083 spin_unlock(&skc->skc_lock);
1084 }
1085
1086 rc = -ENOMEM;
1087 }
1088
1089 return (rc);
1090 }
1091
1092 /*
1093 * Refill a per-cpu magazine with objects from the slabs for this cache.
1094 * Ideally the magazine can be repopulated using existing objects which have
1095 * been released, however if we are unable to locate enough free objects new
1096 * slabs of objects will be created. On success NULL is returned, otherwise
1097 * the address of a single emergency object is returned for use by the caller.
1098 */
1099 static void *
1100 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1101 {
1102 spl_kmem_slab_t *sks;
1103 int count = 0, rc, refill;
1104 void *obj = NULL;
1105
1106 ASSERT(skc->skc_magic == SKC_MAGIC);
1107 ASSERT(skm->skm_magic == SKM_MAGIC);
1108
1109 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1110 spin_lock(&skc->skc_lock);
1111
1112 while (refill > 0) {
1113 /* No slabs available we may need to grow the cache */
1114 if (list_empty(&skc->skc_partial_list)) {
1115 spin_unlock(&skc->skc_lock);
1116
1117 local_irq_enable();
1118 rc = spl_cache_grow(skc, flags, &obj);
1119 local_irq_disable();
1120
1121 /* Emergency object for immediate use by caller */
1122 if (rc == 0 && obj != NULL)
1123 return (obj);
1124
1125 if (rc)
1126 goto out;
1127
1128 /* Rescheduled to different CPU skm is not local */
1129 if (skm != skc->skc_mag[smp_processor_id()])
1130 goto out;
1131
1132 /*
1133 * Potentially rescheduled to the same CPU but
1134 * allocations may have occurred from this CPU while
1135 * we were sleeping so recalculate max refill.
1136 */
1137 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1138
1139 spin_lock(&skc->skc_lock);
1140 continue;
1141 }
1142
1143 /* Grab the next available slab */
1144 sks = list_entry((&skc->skc_partial_list)->next,
1145 spl_kmem_slab_t, sks_list);
1146 ASSERT(sks->sks_magic == SKS_MAGIC);
1147 ASSERT(sks->sks_ref < sks->sks_objs);
1148 ASSERT(!list_empty(&sks->sks_free_list));
1149
1150 /*
1151 * Consume as many objects as needed to refill the requested
1152 * cache. We must also be careful not to overfill it.
1153 */
1154 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1155 ++count) {
1156 ASSERT(skm->skm_avail < skm->skm_size);
1157 ASSERT(count < skm->skm_size);
1158 skm->skm_objs[skm->skm_avail++] =
1159 spl_cache_obj(skc, sks);
1160 }
1161
1162 /* Move slab to skc_complete_list when full */
1163 if (sks->sks_ref == sks->sks_objs) {
1164 list_del(&sks->sks_list);
1165 list_add(&sks->sks_list, &skc->skc_complete_list);
1166 }
1167 }
1168
1169 spin_unlock(&skc->skc_lock);
1170 out:
1171 return (NULL);
1172 }
1173
1174 /*
1175 * Release an object back to the slab from which it came.
1176 */
1177 static void
1178 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1179 {
1180 spl_kmem_slab_t *sks = NULL;
1181 spl_kmem_obj_t *sko = NULL;
1182
1183 ASSERT(skc->skc_magic == SKC_MAGIC);
1184
1185 sko = spl_sko_from_obj(skc, obj);
1186 ASSERT(sko->sko_magic == SKO_MAGIC);
1187 sks = sko->sko_slab;
1188 ASSERT(sks->sks_magic == SKS_MAGIC);
1189 ASSERT(sks->sks_cache == skc);
1190 list_add(&sko->sko_list, &sks->sks_free_list);
1191
1192 sks->sks_age = jiffies;
1193 sks->sks_ref--;
1194 skc->skc_obj_alloc--;
1195
1196 /*
1197 * Move slab to skc_partial_list when no longer full. Slabs
1198 * are added to the head to keep the partial list is quasi-full
1199 * sorted order. Fuller at the head, emptier at the tail.
1200 */
1201 if (sks->sks_ref == (sks->sks_objs - 1)) {
1202 list_del(&sks->sks_list);
1203 list_add(&sks->sks_list, &skc->skc_partial_list);
1204 }
1205
1206 /*
1207 * Move empty slabs to the end of the partial list so
1208 * they can be easily found and freed during reclamation.
1209 */
1210 if (sks->sks_ref == 0) {
1211 list_del(&sks->sks_list);
1212 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1213 skc->skc_slab_alloc--;
1214 }
1215 }
1216
1217 /*
1218 * Allocate an object from the per-cpu magazine, or if the magazine
1219 * is empty directly allocate from a slab and repopulate the magazine.
1220 */
1221 void *
1222 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1223 {
1224 spl_kmem_magazine_t *skm;
1225 void *obj = NULL;
1226
1227 ASSERT0(flags & ~KM_PUBLIC_MASK);
1228 ASSERT(skc->skc_magic == SKC_MAGIC);
1229 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1230
1231 /*
1232 * Allocate directly from a Linux slab. All optimizations are left
1233 * to the underlying cache we only need to guarantee that KM_SLEEP
1234 * callers will never fail.
1235 */
1236 if (skc->skc_flags & KMC_SLAB) {
1237 struct kmem_cache *slc = skc->skc_linux_cache;
1238 do {
1239 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1240 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1241
1242 if (obj != NULL) {
1243 /*
1244 * Even though we leave everything up to the
1245 * underlying cache we still keep track of
1246 * how many objects we've allocated in it for
1247 * better debuggability.
1248 */
1249 percpu_counter_inc(&skc->skc_linux_alloc);
1250 }
1251 goto ret;
1252 }
1253
1254 local_irq_disable();
1255
1256 restart:
1257 /*
1258 * Safe to update per-cpu structure without lock, but
1259 * in the restart case we must be careful to reacquire
1260 * the local magazine since this may have changed
1261 * when we need to grow the cache.
1262 */
1263 skm = skc->skc_mag[smp_processor_id()];
1264 ASSERT(skm->skm_magic == SKM_MAGIC);
1265
1266 if (likely(skm->skm_avail)) {
1267 /* Object available in CPU cache, use it */
1268 obj = skm->skm_objs[--skm->skm_avail];
1269 } else {
1270 obj = spl_cache_refill(skc, skm, flags);
1271 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1272 goto restart;
1273
1274 local_irq_enable();
1275 goto ret;
1276 }
1277
1278 local_irq_enable();
1279 ASSERT(obj);
1280 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1281
1282 ret:
1283 /* Pre-emptively migrate object to CPU L1 cache */
1284 if (obj) {
1285 if (obj && skc->skc_ctor)
1286 skc->skc_ctor(obj, skc->skc_private, flags);
1287 else
1288 prefetchw(obj);
1289 }
1290
1291 return (obj);
1292 }
1293 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1294
1295 /*
1296 * Free an object back to the local per-cpu magazine, there is no
1297 * guarantee that this is the same magazine the object was originally
1298 * allocated from. We may need to flush entire from the magazine
1299 * back to the slabs to make space.
1300 */
1301 void
1302 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1303 {
1304 spl_kmem_magazine_t *skm;
1305 unsigned long flags;
1306 int do_reclaim = 0;
1307 int do_emergency = 0;
1308
1309 ASSERT(skc->skc_magic == SKC_MAGIC);
1310 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1311
1312 /*
1313 * Run the destructor
1314 */
1315 if (skc->skc_dtor)
1316 skc->skc_dtor(obj, skc->skc_private);
1317
1318 /*
1319 * Free the object from the Linux underlying Linux slab.
1320 */
1321 if (skc->skc_flags & KMC_SLAB) {
1322 kmem_cache_free(skc->skc_linux_cache, obj);
1323 percpu_counter_dec(&skc->skc_linux_alloc);
1324 return;
1325 }
1326
1327 /*
1328 * While a cache has outstanding emergency objects all freed objects
1329 * must be checked. However, since emergency objects will never use
1330 * a virtual address these objects can be safely excluded as an
1331 * optimization.
1332 */
1333 if (!is_vmalloc_addr(obj)) {
1334 spin_lock(&skc->skc_lock);
1335 do_emergency = (skc->skc_obj_emergency > 0);
1336 spin_unlock(&skc->skc_lock);
1337
1338 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1339 return;
1340 }
1341
1342 local_irq_save(flags);
1343
1344 /*
1345 * Safe to update per-cpu structure without lock, but
1346 * no remote memory allocation tracking is being performed
1347 * it is entirely possible to allocate an object from one
1348 * CPU cache and return it to another.
1349 */
1350 skm = skc->skc_mag[smp_processor_id()];
1351 ASSERT(skm->skm_magic == SKM_MAGIC);
1352
1353 /*
1354 * Per-CPU cache full, flush it to make space for this object,
1355 * this may result in an empty slab which can be reclaimed once
1356 * interrupts are re-enabled.
1357 */
1358 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1359 spl_cache_flush(skc, skm, skm->skm_refill);
1360 do_reclaim = 1;
1361 }
1362
1363 /* Available space in cache, use it */
1364 skm->skm_objs[skm->skm_avail++] = obj;
1365
1366 local_irq_restore(flags);
1367
1368 if (do_reclaim)
1369 spl_slab_reclaim(skc);
1370 }
1371 EXPORT_SYMBOL(spl_kmem_cache_free);
1372
1373 /*
1374 * Depending on how many and which objects are released it may simply
1375 * repopulate the local magazine which will then need to age-out. Objects
1376 * which cannot fit in the magazine will be released back to their slabs
1377 * which will also need to age out before being released. This is all just
1378 * best effort and we do not want to thrash creating and destroying slabs.
1379 */
1380 void
1381 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1382 {
1383 ASSERT(skc->skc_magic == SKC_MAGIC);
1384 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1385
1386 if (skc->skc_flags & KMC_SLAB)
1387 return;
1388
1389 atomic_inc(&skc->skc_ref);
1390
1391 /*
1392 * Prevent concurrent cache reaping when contended.
1393 */
1394 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1395 goto out;
1396
1397 /* Reclaim from the magazine and free all now empty slabs. */
1398 unsigned long irq_flags;
1399 local_irq_save(irq_flags);
1400 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1401 spl_cache_flush(skc, skm, skm->skm_avail);
1402 local_irq_restore(irq_flags);
1403
1404 spl_slab_reclaim(skc);
1405 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1406 smp_mb__after_atomic();
1407 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1408 out:
1409 atomic_dec(&skc->skc_ref);
1410 }
1411 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1412
1413 /*
1414 * This is stubbed out for code consistency with other platforms. There
1415 * is existing logic to prevent concurrent reaping so while this is ugly
1416 * it should do no harm.
1417 */
1418 int
1419 spl_kmem_cache_reap_active(void)
1420 {
1421 return (0);
1422 }
1423 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1424
1425 /*
1426 * Reap all free slabs from all registered caches.
1427 */
1428 void
1429 spl_kmem_reap(void)
1430 {
1431 spl_kmem_cache_t *skc = NULL;
1432
1433 down_read(&spl_kmem_cache_sem);
1434 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1435 spl_kmem_cache_reap_now(skc);
1436 }
1437 up_read(&spl_kmem_cache_sem);
1438 }
1439 EXPORT_SYMBOL(spl_kmem_reap);
1440
1441 int
1442 spl_kmem_cache_init(void)
1443 {
1444 init_rwsem(&spl_kmem_cache_sem);
1445 INIT_LIST_HEAD(&spl_kmem_cache_list);
1446 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1447 spl_kmem_cache_kmem_threads, maxclsyspri,
1448 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1449 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1450
1451 if (spl_kmem_cache_taskq == NULL)
1452 return (-ENOMEM);
1453
1454 return (0);
1455 }
1456
1457 void
1458 spl_kmem_cache_fini(void)
1459 {
1460 taskq_destroy(spl_kmem_cache_taskq);
1461 }
Cache object: c2de3c34e2a73972d9877dc8ddddc6f4
|