The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/os/linux/spl/spl-kmem-cache.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
    3  *  Copyright (C) 2007 The Regents of the University of California.
    4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
    5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
    6  *  UCRL-CODE-235197
    7  *
    8  *  This file is part of the SPL, Solaris Porting Layer.
    9  *
   10  *  The SPL is free software; you can redistribute it and/or modify it
   11  *  under the terms of the GNU General Public License as published by the
   12  *  Free Software Foundation; either version 2 of the License, or (at your
   13  *  option) any later version.
   14  *
   15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
   16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   18  *  for more details.
   19  *
   20  *  You should have received a copy of the GNU General Public License along
   21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
   22  */
   23 
   24 #include <linux/percpu_compat.h>
   25 #include <sys/kmem.h>
   26 #include <sys/kmem_cache.h>
   27 #include <sys/taskq.h>
   28 #include <sys/timer.h>
   29 #include <sys/vmem.h>
   30 #include <sys/wait.h>
   31 #include <linux/slab.h>
   32 #include <linux/swap.h>
   33 #include <linux/prefetch.h>
   34 
   35 /*
   36  * Within the scope of spl-kmem.c file the kmem_cache_* definitions
   37  * are removed to allow access to the real Linux slab allocator.
   38  */
   39 #undef kmem_cache_destroy
   40 #undef kmem_cache_create
   41 #undef kmem_cache_alloc
   42 #undef kmem_cache_free
   43 
   44 
   45 /*
   46  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
   47  * with smp_mb__{before,after}_atomic() because they were redundant. This is
   48  * only used inside our SLAB allocator, so we implement an internal wrapper
   49  * here to give us smp_mb__{before,after}_atomic() on older kernels.
   50  */
   51 #ifndef smp_mb__before_atomic
   52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
   53 #endif
   54 
   55 #ifndef smp_mb__after_atomic
   56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
   57 #endif
   58 
   59 /* BEGIN CSTYLED */
   60 /*
   61  * Cache magazines are an optimization designed to minimize the cost of
   62  * allocating memory.  They do this by keeping a per-cpu cache of recently
   63  * freed objects, which can then be reallocated without taking a lock. This
   64  * can improve performance on highly contended caches.  However, because
   65  * objects in magazines will prevent otherwise empty slabs from being
   66  * immediately released this may not be ideal for low memory machines.
   67  *
   68  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
   69  * magazine size.  When this value is set to 0 the magazine size will be
   70  * automatically determined based on the object size.  Otherwise magazines
   71  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
   72  * may never be entirely disabled in this implementation.
   73  */
   74 static unsigned int spl_kmem_cache_magazine_size = 0;
   75 module_param(spl_kmem_cache_magazine_size, uint, 0444);
   76 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
   77         "Default magazine size (2-256), set automatically (0)");
   78 
   79 /*
   80  * The default behavior is to report the number of objects remaining in the
   81  * cache.  This allows the Linux VM to repeatedly reclaim objects from the
   82  * cache when memory is low satisfy other memory allocations.  Alternately,
   83  * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
   84  * is reclaimed.  This may increase the likelihood of out of memory events.
   85  */
   86 static unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
   87 module_param(spl_kmem_cache_reclaim, uint, 0644);
   88 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
   89 
   90 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
   91 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
   92 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
   93 
   94 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
   95 module_param(spl_kmem_cache_max_size, uint, 0644);
   96 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
   97 
   98 /*
   99  * For small objects the Linux slab allocator should be used to make the most
  100  * efficient use of the memory.  However, large objects are not supported by
  101  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
  102  * of 16K was determined to be optimal for architectures using 4K pages and
  103  * to also work well on architecutres using larger 64K page sizes.
  104  */
  105 static unsigned int spl_kmem_cache_slab_limit = 16384;
  106 module_param(spl_kmem_cache_slab_limit, uint, 0644);
  107 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
  108         "Objects less than N bytes use the Linux slab");
  109 
  110 /*
  111  * The number of threads available to allocate new slabs for caches.  This
  112  * should not need to be tuned but it is available for performance analysis.
  113  */
  114 static unsigned int spl_kmem_cache_kmem_threads = 4;
  115 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
  116 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
  117         "Number of spl_kmem_cache threads");
  118 /* END CSTYLED */
  119 
  120 /*
  121  * Slab allocation interfaces
  122  *
  123  * While the Linux slab implementation was inspired by the Solaris
  124  * implementation I cannot use it to emulate the Solaris APIs.  I
  125  * require two features which are not provided by the Linux slab.
  126  *
  127  * 1) Constructors AND destructors.  Recent versions of the Linux
  128  *    kernel have removed support for destructors.  This is a deal
  129  *    breaker for the SPL which contains particularly expensive
  130  *    initializers for mutex's, condition variables, etc.  We also
  131  *    require a minimal level of cleanup for these data types unlike
  132  *    many Linux data types which do need to be explicitly destroyed.
  133  *
  134  * 2) Virtual address space backed slab.  Callers of the Solaris slab
  135  *    expect it to work well for both small are very large allocations.
  136  *    Because of memory fragmentation the Linux slab which is backed
  137  *    by kmalloc'ed memory performs very badly when confronted with
  138  *    large numbers of large allocations.  Basing the slab on the
  139  *    virtual address space removes the need for contiguous pages
  140  *    and greatly improve performance for large allocations.
  141  *
  142  * For these reasons, the SPL has its own slab implementation with
  143  * the needed features.  It is not as highly optimized as either the
  144  * Solaris or Linux slabs, but it should get me most of what is
  145  * needed until it can be optimized or obsoleted by another approach.
  146  *
  147  * One serious concern I do have about this method is the relatively
  148  * small virtual address space on 32bit arches.  This will seriously
  149  * constrain the size of the slab caches and their performance.
  150  */
  151 
  152 struct list_head spl_kmem_cache_list;   /* List of caches */
  153 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
  154 static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
  155 
  156 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
  157 
  158 static void *
  159 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
  160 {
  161         gfp_t lflags = kmem_flags_convert(flags);
  162         void *ptr;
  163 
  164         ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
  165 
  166         /* Resulting allocated memory will be page aligned */
  167         ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
  168 
  169         return (ptr);
  170 }
  171 
  172 static void
  173 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
  174 {
  175         ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
  176 
  177         /*
  178          * The Linux direct reclaim path uses this out of band value to
  179          * determine if forward progress is being made.  Normally this is
  180          * incremented by kmem_freepages() which is part of the various
  181          * Linux slab implementations.  However, since we are using none
  182          * of that infrastructure we are responsible for incrementing it.
  183          */
  184         if (current->reclaim_state)
  185                 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
  186 
  187         vfree(ptr);
  188 }
  189 
  190 /*
  191  * Required space for each aligned sks.
  192  */
  193 static inline uint32_t
  194 spl_sks_size(spl_kmem_cache_t *skc)
  195 {
  196         return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
  197             skc->skc_obj_align, uint32_t));
  198 }
  199 
  200 /*
  201  * Required space for each aligned object.
  202  */
  203 static inline uint32_t
  204 spl_obj_size(spl_kmem_cache_t *skc)
  205 {
  206         uint32_t align = skc->skc_obj_align;
  207 
  208         return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
  209             P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
  210 }
  211 
  212 uint64_t
  213 spl_kmem_cache_inuse(kmem_cache_t *cache)
  214 {
  215         return (cache->skc_obj_total);
  216 }
  217 EXPORT_SYMBOL(spl_kmem_cache_inuse);
  218 
  219 uint64_t
  220 spl_kmem_cache_entry_size(kmem_cache_t *cache)
  221 {
  222         return (cache->skc_obj_size);
  223 }
  224 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
  225 
  226 /*
  227  * Lookup the spl_kmem_object_t for an object given that object.
  228  */
  229 static inline spl_kmem_obj_t *
  230 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
  231 {
  232         return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
  233             skc->skc_obj_align, uint32_t));
  234 }
  235 
  236 /*
  237  * It's important that we pack the spl_kmem_obj_t structure and the
  238  * actual objects in to one large address space to minimize the number
  239  * of calls to the allocator.  It is far better to do a few large
  240  * allocations and then subdivide it ourselves.  Now which allocator
  241  * we use requires balancing a few trade offs.
  242  *
  243  * For small objects we use kmem_alloc() because as long as you are
  244  * only requesting a small number of pages (ideally just one) its cheap.
  245  * However, when you start requesting multiple pages with kmem_alloc()
  246  * it gets increasingly expensive since it requires contiguous pages.
  247  * For this reason we shift to vmem_alloc() for slabs of large objects
  248  * which removes the need for contiguous pages.  We do not use
  249  * vmem_alloc() in all cases because there is significant locking
  250  * overhead in __get_vm_area_node().  This function takes a single
  251  * global lock when acquiring an available virtual address range which
  252  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
  253  * different allocation functions for small and large objects should
  254  * give us the best of both worlds.
  255  *
  256  * +------------------------+
  257  * | spl_kmem_slab_t --+-+  |
  258  * | skc_obj_size    <-+ |  |
  259  * | spl_kmem_obj_t      |  |
  260  * | skc_obj_size    <---+  |
  261  * | spl_kmem_obj_t      |  |
  262  * | ...                 v  |
  263  * +------------------------+
  264  */
  265 static spl_kmem_slab_t *
  266 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
  267 {
  268         spl_kmem_slab_t *sks;
  269         void *base;
  270         uint32_t obj_size;
  271 
  272         base = kv_alloc(skc, skc->skc_slab_size, flags);
  273         if (base == NULL)
  274                 return (NULL);
  275 
  276         sks = (spl_kmem_slab_t *)base;
  277         sks->sks_magic = SKS_MAGIC;
  278         sks->sks_objs = skc->skc_slab_objs;
  279         sks->sks_age = jiffies;
  280         sks->sks_cache = skc;
  281         INIT_LIST_HEAD(&sks->sks_list);
  282         INIT_LIST_HEAD(&sks->sks_free_list);
  283         sks->sks_ref = 0;
  284         obj_size = spl_obj_size(skc);
  285 
  286         for (int i = 0; i < sks->sks_objs; i++) {
  287                 void *obj = base + spl_sks_size(skc) + (i * obj_size);
  288 
  289                 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
  290                 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
  291                 sko->sko_addr = obj;
  292                 sko->sko_magic = SKO_MAGIC;
  293                 sko->sko_slab = sks;
  294                 INIT_LIST_HEAD(&sko->sko_list);
  295                 list_add_tail(&sko->sko_list, &sks->sks_free_list);
  296         }
  297 
  298         return (sks);
  299 }
  300 
  301 /*
  302  * Remove a slab from complete or partial list, it must be called with
  303  * the 'skc->skc_lock' held but the actual free must be performed
  304  * outside the lock to prevent deadlocking on vmem addresses.
  305  */
  306 static void
  307 spl_slab_free(spl_kmem_slab_t *sks,
  308     struct list_head *sks_list, struct list_head *sko_list)
  309 {
  310         spl_kmem_cache_t *skc;
  311 
  312         ASSERT(sks->sks_magic == SKS_MAGIC);
  313         ASSERT(sks->sks_ref == 0);
  314 
  315         skc = sks->sks_cache;
  316         ASSERT(skc->skc_magic == SKC_MAGIC);
  317 
  318         /*
  319          * Update slab/objects counters in the cache, then remove the
  320          * slab from the skc->skc_partial_list.  Finally add the slab
  321          * and all its objects in to the private work lists where the
  322          * destructors will be called and the memory freed to the system.
  323          */
  324         skc->skc_obj_total -= sks->sks_objs;
  325         skc->skc_slab_total--;
  326         list_del(&sks->sks_list);
  327         list_add(&sks->sks_list, sks_list);
  328         list_splice_init(&sks->sks_free_list, sko_list);
  329 }
  330 
  331 /*
  332  * Reclaim empty slabs at the end of the partial list.
  333  */
  334 static void
  335 spl_slab_reclaim(spl_kmem_cache_t *skc)
  336 {
  337         spl_kmem_slab_t *sks = NULL, *m = NULL;
  338         spl_kmem_obj_t *sko = NULL, *n = NULL;
  339         LIST_HEAD(sks_list);
  340         LIST_HEAD(sko_list);
  341 
  342         /*
  343          * Empty slabs and objects must be moved to a private list so they
  344          * can be safely freed outside the spin lock.  All empty slabs are
  345          * at the end of skc->skc_partial_list, therefore once a non-empty
  346          * slab is found we can stop scanning.
  347          */
  348         spin_lock(&skc->skc_lock);
  349         list_for_each_entry_safe_reverse(sks, m,
  350             &skc->skc_partial_list, sks_list) {
  351 
  352                 if (sks->sks_ref > 0)
  353                         break;
  354 
  355                 spl_slab_free(sks, &sks_list, &sko_list);
  356         }
  357         spin_unlock(&skc->skc_lock);
  358 
  359         /*
  360          * The following two loops ensure all the object destructors are run,
  361          * and the slabs themselves are freed.  This is all done outside the
  362          * skc->skc_lock since this allows the destructor to sleep, and
  363          * allows us to perform a conditional reschedule when a freeing a
  364          * large number of objects and slabs back to the system.
  365          */
  366 
  367         list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
  368                 ASSERT(sko->sko_magic == SKO_MAGIC);
  369         }
  370 
  371         list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
  372                 ASSERT(sks->sks_magic == SKS_MAGIC);
  373                 kv_free(skc, sks, skc->skc_slab_size);
  374         }
  375 }
  376 
  377 static spl_kmem_emergency_t *
  378 spl_emergency_search(struct rb_root *root, void *obj)
  379 {
  380         struct rb_node *node = root->rb_node;
  381         spl_kmem_emergency_t *ske;
  382         unsigned long address = (unsigned long)obj;
  383 
  384         while (node) {
  385                 ske = container_of(node, spl_kmem_emergency_t, ske_node);
  386 
  387                 if (address < ske->ske_obj)
  388                         node = node->rb_left;
  389                 else if (address > ske->ske_obj)
  390                         node = node->rb_right;
  391                 else
  392                         return (ske);
  393         }
  394 
  395         return (NULL);
  396 }
  397 
  398 static int
  399 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
  400 {
  401         struct rb_node **new = &(root->rb_node), *parent = NULL;
  402         spl_kmem_emergency_t *ske_tmp;
  403         unsigned long address = ske->ske_obj;
  404 
  405         while (*new) {
  406                 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
  407 
  408                 parent = *new;
  409                 if (address < ske_tmp->ske_obj)
  410                         new = &((*new)->rb_left);
  411                 else if (address > ske_tmp->ske_obj)
  412                         new = &((*new)->rb_right);
  413                 else
  414                         return (0);
  415         }
  416 
  417         rb_link_node(&ske->ske_node, parent, new);
  418         rb_insert_color(&ske->ske_node, root);
  419 
  420         return (1);
  421 }
  422 
  423 /*
  424  * Allocate a single emergency object and track it in a red black tree.
  425  */
  426 static int
  427 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
  428 {
  429         gfp_t lflags = kmem_flags_convert(flags);
  430         spl_kmem_emergency_t *ske;
  431         int order = get_order(skc->skc_obj_size);
  432         int empty;
  433 
  434         /* Last chance use a partial slab if one now exists */
  435         spin_lock(&skc->skc_lock);
  436         empty = list_empty(&skc->skc_partial_list);
  437         spin_unlock(&skc->skc_lock);
  438         if (!empty)
  439                 return (-EEXIST);
  440 
  441         ske = kmalloc(sizeof (*ske), lflags);
  442         if (ske == NULL)
  443                 return (-ENOMEM);
  444 
  445         ske->ske_obj = __get_free_pages(lflags, order);
  446         if (ske->ske_obj == 0) {
  447                 kfree(ske);
  448                 return (-ENOMEM);
  449         }
  450 
  451         spin_lock(&skc->skc_lock);
  452         empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
  453         if (likely(empty)) {
  454                 skc->skc_obj_total++;
  455                 skc->skc_obj_emergency++;
  456                 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
  457                         skc->skc_obj_emergency_max = skc->skc_obj_emergency;
  458         }
  459         spin_unlock(&skc->skc_lock);
  460 
  461         if (unlikely(!empty)) {
  462                 free_pages(ske->ske_obj, order);
  463                 kfree(ske);
  464                 return (-EINVAL);
  465         }
  466 
  467         *obj = (void *)ske->ske_obj;
  468 
  469         return (0);
  470 }
  471 
  472 /*
  473  * Locate the passed object in the red black tree and free it.
  474  */
  475 static int
  476 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
  477 {
  478         spl_kmem_emergency_t *ske;
  479         int order = get_order(skc->skc_obj_size);
  480 
  481         spin_lock(&skc->skc_lock);
  482         ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
  483         if (ske) {
  484                 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
  485                 skc->skc_obj_emergency--;
  486                 skc->skc_obj_total--;
  487         }
  488         spin_unlock(&skc->skc_lock);
  489 
  490         if (ske == NULL)
  491                 return (-ENOENT);
  492 
  493         free_pages(ske->ske_obj, order);
  494         kfree(ske);
  495 
  496         return (0);
  497 }
  498 
  499 /*
  500  * Release objects from the per-cpu magazine back to their slab.  The flush
  501  * argument contains the max number of entries to remove from the magazine.
  502  */
  503 static void
  504 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
  505 {
  506         spin_lock(&skc->skc_lock);
  507 
  508         ASSERT(skc->skc_magic == SKC_MAGIC);
  509         ASSERT(skm->skm_magic == SKM_MAGIC);
  510 
  511         int count = MIN(flush, skm->skm_avail);
  512         for (int i = 0; i < count; i++)
  513                 spl_cache_shrink(skc, skm->skm_objs[i]);
  514 
  515         skm->skm_avail -= count;
  516         memmove(skm->skm_objs, &(skm->skm_objs[count]),
  517             sizeof (void *) * skm->skm_avail);
  518 
  519         spin_unlock(&skc->skc_lock);
  520 }
  521 
  522 /*
  523  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
  524  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
  525  * for very small objects we may end up with more than this so as not
  526  * to waste space in the minimal allocation of a single page.
  527  */
  528 static int
  529 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
  530 {
  531         uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
  532 
  533         sks_size = spl_sks_size(skc);
  534         obj_size = spl_obj_size(skc);
  535         max_size = (spl_kmem_cache_max_size * 1024 * 1024);
  536         tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
  537 
  538         if (tgt_size <= max_size) {
  539                 tgt_objs = (tgt_size - sks_size) / obj_size;
  540         } else {
  541                 tgt_objs = (max_size - sks_size) / obj_size;
  542                 tgt_size = (tgt_objs * obj_size) + sks_size;
  543         }
  544 
  545         if (tgt_objs == 0)
  546                 return (-ENOSPC);
  547 
  548         *objs = tgt_objs;
  549         *size = tgt_size;
  550 
  551         return (0);
  552 }
  553 
  554 /*
  555  * Make a guess at reasonable per-cpu magazine size based on the size of
  556  * each object and the cost of caching N of them in each magazine.  Long
  557  * term this should really adapt based on an observed usage heuristic.
  558  */
  559 static int
  560 spl_magazine_size(spl_kmem_cache_t *skc)
  561 {
  562         uint32_t obj_size = spl_obj_size(skc);
  563         int size;
  564 
  565         if (spl_kmem_cache_magazine_size > 0)
  566                 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
  567 
  568         /* Per-magazine sizes below assume a 4Kib page size */
  569         if (obj_size > (PAGE_SIZE * 256))
  570                 size = 4;  /* Minimum 4Mib per-magazine */
  571         else if (obj_size > (PAGE_SIZE * 32))
  572                 size = 16; /* Minimum 2Mib per-magazine */
  573         else if (obj_size > (PAGE_SIZE))
  574                 size = 64; /* Minimum 256Kib per-magazine */
  575         else if (obj_size > (PAGE_SIZE / 4))
  576                 size = 128; /* Minimum 128Kib per-magazine */
  577         else
  578                 size = 256;
  579 
  580         return (size);
  581 }
  582 
  583 /*
  584  * Allocate a per-cpu magazine to associate with a specific core.
  585  */
  586 static spl_kmem_magazine_t *
  587 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
  588 {
  589         spl_kmem_magazine_t *skm;
  590         int size = sizeof (spl_kmem_magazine_t) +
  591             sizeof (void *) * skc->skc_mag_size;
  592 
  593         skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
  594         if (skm) {
  595                 skm->skm_magic = SKM_MAGIC;
  596                 skm->skm_avail = 0;
  597                 skm->skm_size = skc->skc_mag_size;
  598                 skm->skm_refill = skc->skc_mag_refill;
  599                 skm->skm_cache = skc;
  600                 skm->skm_cpu = cpu;
  601         }
  602 
  603         return (skm);
  604 }
  605 
  606 /*
  607  * Free a per-cpu magazine associated with a specific core.
  608  */
  609 static void
  610 spl_magazine_free(spl_kmem_magazine_t *skm)
  611 {
  612         ASSERT(skm->skm_magic == SKM_MAGIC);
  613         ASSERT(skm->skm_avail == 0);
  614         kfree(skm);
  615 }
  616 
  617 /*
  618  * Create all pre-cpu magazines of reasonable sizes.
  619  */
  620 static int
  621 spl_magazine_create(spl_kmem_cache_t *skc)
  622 {
  623         int i = 0;
  624 
  625         ASSERT((skc->skc_flags & KMC_SLAB) == 0);
  626 
  627         skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
  628             num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
  629         skc->skc_mag_size = spl_magazine_size(skc);
  630         skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
  631 
  632         for_each_possible_cpu(i) {
  633                 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
  634                 if (!skc->skc_mag[i]) {
  635                         for (i--; i >= 0; i--)
  636                                 spl_magazine_free(skc->skc_mag[i]);
  637 
  638                         kfree(skc->skc_mag);
  639                         return (-ENOMEM);
  640                 }
  641         }
  642 
  643         return (0);
  644 }
  645 
  646 /*
  647  * Destroy all pre-cpu magazines.
  648  */
  649 static void
  650 spl_magazine_destroy(spl_kmem_cache_t *skc)
  651 {
  652         spl_kmem_magazine_t *skm;
  653         int i = 0;
  654 
  655         ASSERT((skc->skc_flags & KMC_SLAB) == 0);
  656 
  657         for_each_possible_cpu(i) {
  658                 skm = skc->skc_mag[i];
  659                 spl_cache_flush(skc, skm, skm->skm_avail);
  660                 spl_magazine_free(skm);
  661         }
  662 
  663         kfree(skc->skc_mag);
  664 }
  665 
  666 /*
  667  * Create a object cache based on the following arguments:
  668  * name         cache name
  669  * size         cache object size
  670  * align        cache object alignment
  671  * ctor         cache object constructor
  672  * dtor         cache object destructor
  673  * reclaim      cache object reclaim
  674  * priv         cache private data for ctor/dtor/reclaim
  675  * vmp          unused must be NULL
  676  * flags
  677  *      KMC_KVMEM       Force kvmem backed SPL cache
  678  *      KMC_SLAB        Force Linux slab backed cache
  679  *      KMC_NODEBUG     Disable debugging (unsupported)
  680  */
  681 spl_kmem_cache_t *
  682 spl_kmem_cache_create(const char *name, size_t size, size_t align,
  683     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
  684     void *priv, void *vmp, int flags)
  685 {
  686         gfp_t lflags = kmem_flags_convert(KM_SLEEP);
  687         spl_kmem_cache_t *skc;
  688         int rc;
  689 
  690         /*
  691          * Unsupported flags
  692          */
  693         ASSERT(vmp == NULL);
  694         ASSERT(reclaim == NULL);
  695 
  696         might_sleep();
  697 
  698         skc = kzalloc(sizeof (*skc), lflags);
  699         if (skc == NULL)
  700                 return (NULL);
  701 
  702         skc->skc_magic = SKC_MAGIC;
  703         skc->skc_name_size = strlen(name) + 1;
  704         skc->skc_name = kmalloc(skc->skc_name_size, lflags);
  705         if (skc->skc_name == NULL) {
  706                 kfree(skc);
  707                 return (NULL);
  708         }
  709         strlcpy(skc->skc_name, name, skc->skc_name_size);
  710 
  711         skc->skc_ctor = ctor;
  712         skc->skc_dtor = dtor;
  713         skc->skc_private = priv;
  714         skc->skc_vmp = vmp;
  715         skc->skc_linux_cache = NULL;
  716         skc->skc_flags = flags;
  717         skc->skc_obj_size = size;
  718         skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
  719         atomic_set(&skc->skc_ref, 0);
  720 
  721         INIT_LIST_HEAD(&skc->skc_list);
  722         INIT_LIST_HEAD(&skc->skc_complete_list);
  723         INIT_LIST_HEAD(&skc->skc_partial_list);
  724         skc->skc_emergency_tree = RB_ROOT;
  725         spin_lock_init(&skc->skc_lock);
  726         init_waitqueue_head(&skc->skc_waitq);
  727         skc->skc_slab_fail = 0;
  728         skc->skc_slab_create = 0;
  729         skc->skc_slab_destroy = 0;
  730         skc->skc_slab_total = 0;
  731         skc->skc_slab_alloc = 0;
  732         skc->skc_slab_max = 0;
  733         skc->skc_obj_total = 0;
  734         skc->skc_obj_alloc = 0;
  735         skc->skc_obj_max = 0;
  736         skc->skc_obj_deadlock = 0;
  737         skc->skc_obj_emergency = 0;
  738         skc->skc_obj_emergency_max = 0;
  739 
  740         rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
  741             GFP_KERNEL);
  742         if (rc != 0) {
  743                 kfree(skc);
  744                 return (NULL);
  745         }
  746 
  747         /*
  748          * Verify the requested alignment restriction is sane.
  749          */
  750         if (align) {
  751                 VERIFY(ISP2(align));
  752                 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
  753                 VERIFY3U(align, <=, PAGE_SIZE);
  754                 skc->skc_obj_align = align;
  755         }
  756 
  757         /*
  758          * When no specific type of slab is requested (kmem, vmem, or
  759          * linuxslab) then select a cache type based on the object size
  760          * and default tunables.
  761          */
  762         if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
  763                 if (spl_kmem_cache_slab_limit &&
  764                     size <= (size_t)spl_kmem_cache_slab_limit) {
  765                         /*
  766                          * Objects smaller than spl_kmem_cache_slab_limit can
  767                          * use the Linux slab for better space-efficiency.
  768                          */
  769                         skc->skc_flags |= KMC_SLAB;
  770                 } else {
  771                         /*
  772                          * All other objects are considered large and are
  773                          * placed on kvmem backed slabs.
  774                          */
  775                         skc->skc_flags |= KMC_KVMEM;
  776                 }
  777         }
  778 
  779         /*
  780          * Given the type of slab allocate the required resources.
  781          */
  782         if (skc->skc_flags & KMC_KVMEM) {
  783                 rc = spl_slab_size(skc,
  784                     &skc->skc_slab_objs, &skc->skc_slab_size);
  785                 if (rc)
  786                         goto out;
  787 
  788                 rc = spl_magazine_create(skc);
  789                 if (rc)
  790                         goto out;
  791         } else {
  792                 unsigned long slabflags = 0;
  793 
  794                 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE))
  795                         goto out;
  796 
  797 #if defined(SLAB_USERCOPY)
  798                 /*
  799                  * Required for PAX-enabled kernels if the slab is to be
  800                  * used for copying between user and kernel space.
  801                  */
  802                 slabflags |= SLAB_USERCOPY;
  803 #endif
  804 
  805 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
  806                 /*
  807                  * Newer grsec patchset uses kmem_cache_create_usercopy()
  808                  * instead of SLAB_USERCOPY flag
  809                  */
  810                 skc->skc_linux_cache = kmem_cache_create_usercopy(
  811                     skc->skc_name, size, align, slabflags, 0, size, NULL);
  812 #else
  813                 skc->skc_linux_cache = kmem_cache_create(
  814                     skc->skc_name, size, align, slabflags, NULL);
  815 #endif
  816                 if (skc->skc_linux_cache == NULL)
  817                         goto out;
  818         }
  819 
  820         down_write(&spl_kmem_cache_sem);
  821         list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
  822         up_write(&spl_kmem_cache_sem);
  823 
  824         return (skc);
  825 out:
  826         kfree(skc->skc_name);
  827         percpu_counter_destroy(&skc->skc_linux_alloc);
  828         kfree(skc);
  829         return (NULL);
  830 }
  831 EXPORT_SYMBOL(spl_kmem_cache_create);
  832 
  833 /*
  834  * Register a move callback for cache defragmentation.
  835  * XXX: Unimplemented but harmless to stub out for now.
  836  */
  837 void
  838 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
  839     kmem_cbrc_t (move)(void *, void *, size_t, void *))
  840 {
  841         ASSERT(move != NULL);
  842 }
  843 EXPORT_SYMBOL(spl_kmem_cache_set_move);
  844 
  845 /*
  846  * Destroy a cache and all objects associated with the cache.
  847  */
  848 void
  849 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
  850 {
  851         DECLARE_WAIT_QUEUE_HEAD(wq);
  852         taskqid_t id;
  853 
  854         ASSERT(skc->skc_magic == SKC_MAGIC);
  855         ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
  856 
  857         down_write(&spl_kmem_cache_sem);
  858         list_del_init(&skc->skc_list);
  859         up_write(&spl_kmem_cache_sem);
  860 
  861         /* Cancel any and wait for any pending delayed tasks */
  862         VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
  863 
  864         spin_lock(&skc->skc_lock);
  865         id = skc->skc_taskqid;
  866         spin_unlock(&skc->skc_lock);
  867 
  868         taskq_cancel_id(spl_kmem_cache_taskq, id);
  869 
  870         /*
  871          * Wait until all current callers complete, this is mainly
  872          * to catch the case where a low memory situation triggers a
  873          * cache reaping action which races with this destroy.
  874          */
  875         wait_event(wq, atomic_read(&skc->skc_ref) == 0);
  876 
  877         if (skc->skc_flags & KMC_KVMEM) {
  878                 spl_magazine_destroy(skc);
  879                 spl_slab_reclaim(skc);
  880         } else {
  881                 ASSERT(skc->skc_flags & KMC_SLAB);
  882                 kmem_cache_destroy(skc->skc_linux_cache);
  883         }
  884 
  885         spin_lock(&skc->skc_lock);
  886 
  887         /*
  888          * Validate there are no objects in use and free all the
  889          * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
  890          */
  891         ASSERT3U(skc->skc_slab_alloc, ==, 0);
  892         ASSERT3U(skc->skc_obj_alloc, ==, 0);
  893         ASSERT3U(skc->skc_slab_total, ==, 0);
  894         ASSERT3U(skc->skc_obj_total, ==, 0);
  895         ASSERT3U(skc->skc_obj_emergency, ==, 0);
  896         ASSERT(list_empty(&skc->skc_complete_list));
  897 
  898         ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
  899         percpu_counter_destroy(&skc->skc_linux_alloc);
  900 
  901         spin_unlock(&skc->skc_lock);
  902 
  903         kfree(skc->skc_name);
  904         kfree(skc);
  905 }
  906 EXPORT_SYMBOL(spl_kmem_cache_destroy);
  907 
  908 /*
  909  * Allocate an object from a slab attached to the cache.  This is used to
  910  * repopulate the per-cpu magazine caches in batches when they run low.
  911  */
  912 static void *
  913 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
  914 {
  915         spl_kmem_obj_t *sko;
  916 
  917         ASSERT(skc->skc_magic == SKC_MAGIC);
  918         ASSERT(sks->sks_magic == SKS_MAGIC);
  919 
  920         sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
  921         ASSERT(sko->sko_magic == SKO_MAGIC);
  922         ASSERT(sko->sko_addr != NULL);
  923 
  924         /* Remove from sks_free_list */
  925         list_del_init(&sko->sko_list);
  926 
  927         sks->sks_age = jiffies;
  928         sks->sks_ref++;
  929         skc->skc_obj_alloc++;
  930 
  931         /* Track max obj usage statistics */
  932         if (skc->skc_obj_alloc > skc->skc_obj_max)
  933                 skc->skc_obj_max = skc->skc_obj_alloc;
  934 
  935         /* Track max slab usage statistics */
  936         if (sks->sks_ref == 1) {
  937                 skc->skc_slab_alloc++;
  938 
  939                 if (skc->skc_slab_alloc > skc->skc_slab_max)
  940                         skc->skc_slab_max = skc->skc_slab_alloc;
  941         }
  942 
  943         return (sko->sko_addr);
  944 }
  945 
  946 /*
  947  * Generic slab allocation function to run by the global work queues.
  948  * It is responsible for allocating a new slab, linking it in to the list
  949  * of partial slabs, and then waking any waiters.
  950  */
  951 static int
  952 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
  953 {
  954         spl_kmem_slab_t *sks;
  955 
  956         fstrans_cookie_t cookie = spl_fstrans_mark();
  957         sks = spl_slab_alloc(skc, flags);
  958         spl_fstrans_unmark(cookie);
  959 
  960         spin_lock(&skc->skc_lock);
  961         if (sks) {
  962                 skc->skc_slab_total++;
  963                 skc->skc_obj_total += sks->sks_objs;
  964                 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
  965 
  966                 smp_mb__before_atomic();
  967                 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
  968                 smp_mb__after_atomic();
  969         }
  970         spin_unlock(&skc->skc_lock);
  971 
  972         return (sks == NULL ? -ENOMEM : 0);
  973 }
  974 
  975 static void
  976 spl_cache_grow_work(void *data)
  977 {
  978         spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
  979         spl_kmem_cache_t *skc = ska->ska_cache;
  980 
  981         int error = __spl_cache_grow(skc, ska->ska_flags);
  982 
  983         atomic_dec(&skc->skc_ref);
  984         smp_mb__before_atomic();
  985         clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
  986         smp_mb__after_atomic();
  987         if (error == 0)
  988                 wake_up_all(&skc->skc_waitq);
  989 
  990         kfree(ska);
  991 }
  992 
  993 /*
  994  * Returns non-zero when a new slab should be available.
  995  */
  996 static int
  997 spl_cache_grow_wait(spl_kmem_cache_t *skc)
  998 {
  999         return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
 1000 }
 1001 
 1002 /*
 1003  * No available objects on any slabs, create a new slab.  Note that this
 1004  * functionality is disabled for KMC_SLAB caches which are backed by the
 1005  * Linux slab.
 1006  */
 1007 static int
 1008 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
 1009 {
 1010         int remaining, rc = 0;
 1011 
 1012         ASSERT0(flags & ~KM_PUBLIC_MASK);
 1013         ASSERT(skc->skc_magic == SKC_MAGIC);
 1014         ASSERT((skc->skc_flags & KMC_SLAB) == 0);
 1015         might_sleep();
 1016         *obj = NULL;
 1017 
 1018         /*
 1019          * Before allocating a new slab wait for any reaping to complete and
 1020          * then return so the local magazine can be rechecked for new objects.
 1021          */
 1022         if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
 1023                 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
 1024                     TASK_UNINTERRUPTIBLE);
 1025                 return (rc ? rc : -EAGAIN);
 1026         }
 1027 
 1028         /*
 1029          * Note: It would be nice to reduce the overhead of context switch
 1030          * and improve NUMA locality, by trying to allocate a new slab in the
 1031          * current process context with KM_NOSLEEP flag.
 1032          *
 1033          * However, this can't be applied to vmem/kvmem due to a bug that
 1034          * spl_vmalloc() doesn't honor gfp flags in page table allocation.
 1035          */
 1036 
 1037         /*
 1038          * This is handled by dispatching a work request to the global work
 1039          * queue.  This allows us to asynchronously allocate a new slab while
 1040          * retaining the ability to safely fall back to a smaller synchronous
 1041          * allocations to ensure forward progress is always maintained.
 1042          */
 1043         if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
 1044                 spl_kmem_alloc_t *ska;
 1045 
 1046                 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
 1047                 if (ska == NULL) {
 1048                         clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
 1049                         smp_mb__after_atomic();
 1050                         wake_up_all(&skc->skc_waitq);
 1051                         return (-ENOMEM);
 1052                 }
 1053 
 1054                 atomic_inc(&skc->skc_ref);
 1055                 ska->ska_cache = skc;
 1056                 ska->ska_flags = flags;
 1057                 taskq_init_ent(&ska->ska_tqe);
 1058                 taskq_dispatch_ent(spl_kmem_cache_taskq,
 1059                     spl_cache_grow_work, ska, 0, &ska->ska_tqe);
 1060         }
 1061 
 1062         /*
 1063          * The goal here is to only detect the rare case where a virtual slab
 1064          * allocation has deadlocked.  We must be careful to minimize the use
 1065          * of emergency objects which are more expensive to track.  Therefore,
 1066          * we set a very long timeout for the asynchronous allocation and if
 1067          * the timeout is reached the cache is flagged as deadlocked.  From
 1068          * this point only new emergency objects will be allocated until the
 1069          * asynchronous allocation completes and clears the deadlocked flag.
 1070          */
 1071         if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
 1072                 rc = spl_emergency_alloc(skc, flags, obj);
 1073         } else {
 1074                 remaining = wait_event_timeout(skc->skc_waitq,
 1075                     spl_cache_grow_wait(skc), HZ / 10);
 1076 
 1077                 if (!remaining) {
 1078                         spin_lock(&skc->skc_lock);
 1079                         if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
 1080                                 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
 1081                                 skc->skc_obj_deadlock++;
 1082                         }
 1083                         spin_unlock(&skc->skc_lock);
 1084                 }
 1085 
 1086                 rc = -ENOMEM;
 1087         }
 1088 
 1089         return (rc);
 1090 }
 1091 
 1092 /*
 1093  * Refill a per-cpu magazine with objects from the slabs for this cache.
 1094  * Ideally the magazine can be repopulated using existing objects which have
 1095  * been released, however if we are unable to locate enough free objects new
 1096  * slabs of objects will be created.  On success NULL is returned, otherwise
 1097  * the address of a single emergency object is returned for use by the caller.
 1098  */
 1099 static void *
 1100 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
 1101 {
 1102         spl_kmem_slab_t *sks;
 1103         int count = 0, rc, refill;
 1104         void *obj = NULL;
 1105 
 1106         ASSERT(skc->skc_magic == SKC_MAGIC);
 1107         ASSERT(skm->skm_magic == SKM_MAGIC);
 1108 
 1109         refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
 1110         spin_lock(&skc->skc_lock);
 1111 
 1112         while (refill > 0) {
 1113                 /* No slabs available we may need to grow the cache */
 1114                 if (list_empty(&skc->skc_partial_list)) {
 1115                         spin_unlock(&skc->skc_lock);
 1116 
 1117                         local_irq_enable();
 1118                         rc = spl_cache_grow(skc, flags, &obj);
 1119                         local_irq_disable();
 1120 
 1121                         /* Emergency object for immediate use by caller */
 1122                         if (rc == 0 && obj != NULL)
 1123                                 return (obj);
 1124 
 1125                         if (rc)
 1126                                 goto out;
 1127 
 1128                         /* Rescheduled to different CPU skm is not local */
 1129                         if (skm != skc->skc_mag[smp_processor_id()])
 1130                                 goto out;
 1131 
 1132                         /*
 1133                          * Potentially rescheduled to the same CPU but
 1134                          * allocations may have occurred from this CPU while
 1135                          * we were sleeping so recalculate max refill.
 1136                          */
 1137                         refill = MIN(refill, skm->skm_size - skm->skm_avail);
 1138 
 1139                         spin_lock(&skc->skc_lock);
 1140                         continue;
 1141                 }
 1142 
 1143                 /* Grab the next available slab */
 1144                 sks = list_entry((&skc->skc_partial_list)->next,
 1145                     spl_kmem_slab_t, sks_list);
 1146                 ASSERT(sks->sks_magic == SKS_MAGIC);
 1147                 ASSERT(sks->sks_ref < sks->sks_objs);
 1148                 ASSERT(!list_empty(&sks->sks_free_list));
 1149 
 1150                 /*
 1151                  * Consume as many objects as needed to refill the requested
 1152                  * cache.  We must also be careful not to overfill it.
 1153                  */
 1154                 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
 1155                     ++count) {
 1156                         ASSERT(skm->skm_avail < skm->skm_size);
 1157                         ASSERT(count < skm->skm_size);
 1158                         skm->skm_objs[skm->skm_avail++] =
 1159                             spl_cache_obj(skc, sks);
 1160                 }
 1161 
 1162                 /* Move slab to skc_complete_list when full */
 1163                 if (sks->sks_ref == sks->sks_objs) {
 1164                         list_del(&sks->sks_list);
 1165                         list_add(&sks->sks_list, &skc->skc_complete_list);
 1166                 }
 1167         }
 1168 
 1169         spin_unlock(&skc->skc_lock);
 1170 out:
 1171         return (NULL);
 1172 }
 1173 
 1174 /*
 1175  * Release an object back to the slab from which it came.
 1176  */
 1177 static void
 1178 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
 1179 {
 1180         spl_kmem_slab_t *sks = NULL;
 1181         spl_kmem_obj_t *sko = NULL;
 1182 
 1183         ASSERT(skc->skc_magic == SKC_MAGIC);
 1184 
 1185         sko = spl_sko_from_obj(skc, obj);
 1186         ASSERT(sko->sko_magic == SKO_MAGIC);
 1187         sks = sko->sko_slab;
 1188         ASSERT(sks->sks_magic == SKS_MAGIC);
 1189         ASSERT(sks->sks_cache == skc);
 1190         list_add(&sko->sko_list, &sks->sks_free_list);
 1191 
 1192         sks->sks_age = jiffies;
 1193         sks->sks_ref--;
 1194         skc->skc_obj_alloc--;
 1195 
 1196         /*
 1197          * Move slab to skc_partial_list when no longer full.  Slabs
 1198          * are added to the head to keep the partial list is quasi-full
 1199          * sorted order.  Fuller at the head, emptier at the tail.
 1200          */
 1201         if (sks->sks_ref == (sks->sks_objs - 1)) {
 1202                 list_del(&sks->sks_list);
 1203                 list_add(&sks->sks_list, &skc->skc_partial_list);
 1204         }
 1205 
 1206         /*
 1207          * Move empty slabs to the end of the partial list so
 1208          * they can be easily found and freed during reclamation.
 1209          */
 1210         if (sks->sks_ref == 0) {
 1211                 list_del(&sks->sks_list);
 1212                 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
 1213                 skc->skc_slab_alloc--;
 1214         }
 1215 }
 1216 
 1217 /*
 1218  * Allocate an object from the per-cpu magazine, or if the magazine
 1219  * is empty directly allocate from a slab and repopulate the magazine.
 1220  */
 1221 void *
 1222 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
 1223 {
 1224         spl_kmem_magazine_t *skm;
 1225         void *obj = NULL;
 1226 
 1227         ASSERT0(flags & ~KM_PUBLIC_MASK);
 1228         ASSERT(skc->skc_magic == SKC_MAGIC);
 1229         ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
 1230 
 1231         /*
 1232          * Allocate directly from a Linux slab.  All optimizations are left
 1233          * to the underlying cache we only need to guarantee that KM_SLEEP
 1234          * callers will never fail.
 1235          */
 1236         if (skc->skc_flags & KMC_SLAB) {
 1237                 struct kmem_cache *slc = skc->skc_linux_cache;
 1238                 do {
 1239                         obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
 1240                 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
 1241 
 1242                 if (obj != NULL) {
 1243                         /*
 1244                          * Even though we leave everything up to the
 1245                          * underlying cache we still keep track of
 1246                          * how many objects we've allocated in it for
 1247                          * better debuggability.
 1248                          */
 1249                         percpu_counter_inc(&skc->skc_linux_alloc);
 1250                 }
 1251                 goto ret;
 1252         }
 1253 
 1254         local_irq_disable();
 1255 
 1256 restart:
 1257         /*
 1258          * Safe to update per-cpu structure without lock, but
 1259          * in the restart case we must be careful to reacquire
 1260          * the local magazine since this may have changed
 1261          * when we need to grow the cache.
 1262          */
 1263         skm = skc->skc_mag[smp_processor_id()];
 1264         ASSERT(skm->skm_magic == SKM_MAGIC);
 1265 
 1266         if (likely(skm->skm_avail)) {
 1267                 /* Object available in CPU cache, use it */
 1268                 obj = skm->skm_objs[--skm->skm_avail];
 1269         } else {
 1270                 obj = spl_cache_refill(skc, skm, flags);
 1271                 if ((obj == NULL) && !(flags & KM_NOSLEEP))
 1272                         goto restart;
 1273 
 1274                 local_irq_enable();
 1275                 goto ret;
 1276         }
 1277 
 1278         local_irq_enable();
 1279         ASSERT(obj);
 1280         ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
 1281 
 1282 ret:
 1283         /* Pre-emptively migrate object to CPU L1 cache */
 1284         if (obj) {
 1285                 if (obj && skc->skc_ctor)
 1286                         skc->skc_ctor(obj, skc->skc_private, flags);
 1287                 else
 1288                         prefetchw(obj);
 1289         }
 1290 
 1291         return (obj);
 1292 }
 1293 EXPORT_SYMBOL(spl_kmem_cache_alloc);
 1294 
 1295 /*
 1296  * Free an object back to the local per-cpu magazine, there is no
 1297  * guarantee that this is the same magazine the object was originally
 1298  * allocated from.  We may need to flush entire from the magazine
 1299  * back to the slabs to make space.
 1300  */
 1301 void
 1302 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
 1303 {
 1304         spl_kmem_magazine_t *skm;
 1305         unsigned long flags;
 1306         int do_reclaim = 0;
 1307         int do_emergency = 0;
 1308 
 1309         ASSERT(skc->skc_magic == SKC_MAGIC);
 1310         ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
 1311 
 1312         /*
 1313          * Run the destructor
 1314          */
 1315         if (skc->skc_dtor)
 1316                 skc->skc_dtor(obj, skc->skc_private);
 1317 
 1318         /*
 1319          * Free the object from the Linux underlying Linux slab.
 1320          */
 1321         if (skc->skc_flags & KMC_SLAB) {
 1322                 kmem_cache_free(skc->skc_linux_cache, obj);
 1323                 percpu_counter_dec(&skc->skc_linux_alloc);
 1324                 return;
 1325         }
 1326 
 1327         /*
 1328          * While a cache has outstanding emergency objects all freed objects
 1329          * must be checked.  However, since emergency objects will never use
 1330          * a virtual address these objects can be safely excluded as an
 1331          * optimization.
 1332          */
 1333         if (!is_vmalloc_addr(obj)) {
 1334                 spin_lock(&skc->skc_lock);
 1335                 do_emergency = (skc->skc_obj_emergency > 0);
 1336                 spin_unlock(&skc->skc_lock);
 1337 
 1338                 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
 1339                         return;
 1340         }
 1341 
 1342         local_irq_save(flags);
 1343 
 1344         /*
 1345          * Safe to update per-cpu structure without lock, but
 1346          * no remote memory allocation tracking is being performed
 1347          * it is entirely possible to allocate an object from one
 1348          * CPU cache and return it to another.
 1349          */
 1350         skm = skc->skc_mag[smp_processor_id()];
 1351         ASSERT(skm->skm_magic == SKM_MAGIC);
 1352 
 1353         /*
 1354          * Per-CPU cache full, flush it to make space for this object,
 1355          * this may result in an empty slab which can be reclaimed once
 1356          * interrupts are re-enabled.
 1357          */
 1358         if (unlikely(skm->skm_avail >= skm->skm_size)) {
 1359                 spl_cache_flush(skc, skm, skm->skm_refill);
 1360                 do_reclaim = 1;
 1361         }
 1362 
 1363         /* Available space in cache, use it */
 1364         skm->skm_objs[skm->skm_avail++] = obj;
 1365 
 1366         local_irq_restore(flags);
 1367 
 1368         if (do_reclaim)
 1369                 spl_slab_reclaim(skc);
 1370 }
 1371 EXPORT_SYMBOL(spl_kmem_cache_free);
 1372 
 1373 /*
 1374  * Depending on how many and which objects are released it may simply
 1375  * repopulate the local magazine which will then need to age-out.  Objects
 1376  * which cannot fit in the magazine will be released back to their slabs
 1377  * which will also need to age out before being released.  This is all just
 1378  * best effort and we do not want to thrash creating and destroying slabs.
 1379  */
 1380 void
 1381 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
 1382 {
 1383         ASSERT(skc->skc_magic == SKC_MAGIC);
 1384         ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
 1385 
 1386         if (skc->skc_flags & KMC_SLAB)
 1387                 return;
 1388 
 1389         atomic_inc(&skc->skc_ref);
 1390 
 1391         /*
 1392          * Prevent concurrent cache reaping when contended.
 1393          */
 1394         if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
 1395                 goto out;
 1396 
 1397         /* Reclaim from the magazine and free all now empty slabs. */
 1398         unsigned long irq_flags;
 1399         local_irq_save(irq_flags);
 1400         spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
 1401         spl_cache_flush(skc, skm, skm->skm_avail);
 1402         local_irq_restore(irq_flags);
 1403 
 1404         spl_slab_reclaim(skc);
 1405         clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
 1406         smp_mb__after_atomic();
 1407         wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
 1408 out:
 1409         atomic_dec(&skc->skc_ref);
 1410 }
 1411 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
 1412 
 1413 /*
 1414  * This is stubbed out for code consistency with other platforms.  There
 1415  * is existing logic to prevent concurrent reaping so while this is ugly
 1416  * it should do no harm.
 1417  */
 1418 int
 1419 spl_kmem_cache_reap_active(void)
 1420 {
 1421         return (0);
 1422 }
 1423 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
 1424 
 1425 /*
 1426  * Reap all free slabs from all registered caches.
 1427  */
 1428 void
 1429 spl_kmem_reap(void)
 1430 {
 1431         spl_kmem_cache_t *skc = NULL;
 1432 
 1433         down_read(&spl_kmem_cache_sem);
 1434         list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
 1435                 spl_kmem_cache_reap_now(skc);
 1436         }
 1437         up_read(&spl_kmem_cache_sem);
 1438 }
 1439 EXPORT_SYMBOL(spl_kmem_reap);
 1440 
 1441 int
 1442 spl_kmem_cache_init(void)
 1443 {
 1444         init_rwsem(&spl_kmem_cache_sem);
 1445         INIT_LIST_HEAD(&spl_kmem_cache_list);
 1446         spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
 1447             spl_kmem_cache_kmem_threads, maxclsyspri,
 1448             spl_kmem_cache_kmem_threads * 8, INT_MAX,
 1449             TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
 1450 
 1451         if (spl_kmem_cache_taskq == NULL)
 1452                 return (-ENOMEM);
 1453 
 1454         return (0);
 1455 }
 1456 
 1457 void
 1458 spl_kmem_cache_fini(void)
 1459 {
 1460         taskq_destroy(spl_kmem_cache_taskq);
 1461 }

Cache object: c2de3c34e2a73972d9877dc8ddddc6f4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.