1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 *
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
22 *
23 * Solaris Porting Layer (SPL) Proc Implementation.
24 */
25
26 #include <sys/systeminfo.h>
27 #include <sys/kstat.h>
28 #include <sys/kmem.h>
29 #include <sys/kmem_cache.h>
30 #include <sys/vmem.h>
31 #include <sys/taskq.h>
32 #include <sys/proc.h>
33 #include <linux/ctype.h>
34 #include <linux/kmod.h>
35 #include <linux/seq_file.h>
36 #include <linux/uaccess.h>
37 #include <linux/version.h>
38 #include "zfs_gitrev.h"
39
40 #if defined(CONSTIFY_PLUGIN) && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)
41 typedef struct ctl_table __no_const spl_ctl_table;
42 #else
43 typedef struct ctl_table spl_ctl_table;
44 #endif
45
46 static unsigned long table_min = 0;
47 static unsigned long table_max = ~0;
48
49 static struct ctl_table_header *spl_header = NULL;
50 static struct proc_dir_entry *proc_spl = NULL;
51 static struct proc_dir_entry *proc_spl_kmem = NULL;
52 static struct proc_dir_entry *proc_spl_kmem_slab = NULL;
53 static struct proc_dir_entry *proc_spl_taskq_all = NULL;
54 static struct proc_dir_entry *proc_spl_taskq = NULL;
55 struct proc_dir_entry *proc_spl_kstat = NULL;
56
57 #ifdef DEBUG_KMEM
58 static int
59 proc_domemused(struct ctl_table *table, int write,
60 void __user *buffer, size_t *lenp, loff_t *ppos)
61 {
62 int rc = 0;
63 unsigned long val;
64 spl_ctl_table dummy = *table;
65
66 dummy.data = &val;
67 dummy.proc_handler = &proc_dointvec;
68 dummy.extra1 = &table_min;
69 dummy.extra2 = &table_max;
70
71 if (write) {
72 *ppos += *lenp;
73 } else {
74 #ifdef HAVE_ATOMIC64_T
75 val = atomic64_read((atomic64_t *)table->data);
76 #else
77 val = atomic_read((atomic_t *)table->data);
78 #endif /* HAVE_ATOMIC64_T */
79 rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
80 }
81
82 return (rc);
83 }
84 #endif /* DEBUG_KMEM */
85
86 static int
87 proc_doslab(struct ctl_table *table, int write,
88 void __user *buffer, size_t *lenp, loff_t *ppos)
89 {
90 int rc = 0;
91 unsigned long val = 0, mask;
92 spl_ctl_table dummy = *table;
93 spl_kmem_cache_t *skc = NULL;
94
95 dummy.data = &val;
96 dummy.proc_handler = &proc_dointvec;
97 dummy.extra1 = &table_min;
98 dummy.extra2 = &table_max;
99
100 if (write) {
101 *ppos += *lenp;
102 } else {
103 down_read(&spl_kmem_cache_sem);
104 mask = (unsigned long)table->data;
105
106 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
107
108 /* Only use slabs of the correct kmem/vmem type */
109 if (!(skc->skc_flags & mask))
110 continue;
111
112 /* Sum the specified field for selected slabs */
113 switch (mask & (KMC_TOTAL | KMC_ALLOC | KMC_MAX)) {
114 case KMC_TOTAL:
115 val += skc->skc_slab_size * skc->skc_slab_total;
116 break;
117 case KMC_ALLOC:
118 val += skc->skc_obj_size * skc->skc_obj_alloc;
119 break;
120 case KMC_MAX:
121 val += skc->skc_obj_size * skc->skc_obj_max;
122 break;
123 }
124 }
125
126 up_read(&spl_kmem_cache_sem);
127 rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
128 }
129
130 return (rc);
131 }
132
133 static int
134 proc_dohostid(struct ctl_table *table, int write,
135 void __user *buffer, size_t *lenp, loff_t *ppos)
136 {
137 char *end, str[32];
138 unsigned long hid;
139 spl_ctl_table dummy = *table;
140
141 dummy.data = str;
142 dummy.maxlen = sizeof (str) - 1;
143
144 if (!write)
145 snprintf(str, sizeof (str), "%lx",
146 (unsigned long) zone_get_hostid(NULL));
147
148 /* always returns 0 */
149 proc_dostring(&dummy, write, buffer, lenp, ppos);
150
151 if (write) {
152 /*
153 * We can't use proc_doulongvec_minmax() in the write
154 * case here because hostid, while a hex value, has no
155 * leading 0x, which confuses the helper function.
156 */
157
158 hid = simple_strtoul(str, &end, 16);
159 if (str == end)
160 return (-EINVAL);
161 spl_hostid = hid;
162 }
163
164 return (0);
165 }
166
167 static void
168 taskq_seq_show_headers(struct seq_file *f)
169 {
170 seq_printf(f, "%-25s %5s %5s %5s %5s %5s %5s %12s %5s %10s\n",
171 "taskq", "act", "nthr", "spwn", "maxt", "pri",
172 "mina", "maxa", "cura", "flags");
173 }
174
175 /* indices into the lheads array below */
176 #define LHEAD_PEND 0
177 #define LHEAD_PRIO 1
178 #define LHEAD_DELAY 2
179 #define LHEAD_WAIT 3
180 #define LHEAD_ACTIVE 4
181 #define LHEAD_SIZE 5
182
183 static unsigned int spl_max_show_tasks = 512;
184 /* CSTYLED */
185 module_param(spl_max_show_tasks, uint, 0644);
186 MODULE_PARM_DESC(spl_max_show_tasks, "Max number of tasks shown in taskq proc");
187
188 static int
189 taskq_seq_show_impl(struct seq_file *f, void *p, boolean_t allflag)
190 {
191 taskq_t *tq = p;
192 taskq_thread_t *tqt = NULL;
193 spl_wait_queue_entry_t *wq;
194 struct task_struct *tsk;
195 taskq_ent_t *tqe;
196 char name[100];
197 struct list_head *lheads[LHEAD_SIZE], *lh;
198 static char *list_names[LHEAD_SIZE] =
199 {"pend", "prio", "delay", "wait", "active" };
200 int i, j, have_lheads = 0;
201 unsigned long wflags, flags;
202
203 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
204 spin_lock_irqsave(&tq->tq_wait_waitq.lock, wflags);
205
206 /* get the various lists and check whether they're empty */
207 lheads[LHEAD_PEND] = &tq->tq_pend_list;
208 lheads[LHEAD_PRIO] = &tq->tq_prio_list;
209 lheads[LHEAD_DELAY] = &tq->tq_delay_list;
210 #ifdef HAVE_WAIT_QUEUE_HEAD_ENTRY
211 lheads[LHEAD_WAIT] = &tq->tq_wait_waitq.head;
212 #else
213 lheads[LHEAD_WAIT] = &tq->tq_wait_waitq.task_list;
214 #endif
215 lheads[LHEAD_ACTIVE] = &tq->tq_active_list;
216
217 for (i = 0; i < LHEAD_SIZE; ++i) {
218 if (list_empty(lheads[i]))
219 lheads[i] = NULL;
220 else
221 ++have_lheads;
222 }
223
224 /* early return in non-"all" mode if lists are all empty */
225 if (!allflag && !have_lheads) {
226 spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags);
227 spin_unlock_irqrestore(&tq->tq_lock, flags);
228 return (0);
229 }
230
231 /* unlock the waitq quickly */
232 if (!lheads[LHEAD_WAIT])
233 spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags);
234
235 /* show the base taskq contents */
236 snprintf(name, sizeof (name), "%s/%d", tq->tq_name, tq->tq_instance);
237 seq_printf(f, "%-25s ", name);
238 seq_printf(f, "%5d %5d %5d %5d %5d %5d %12d %5d %10x\n",
239 tq->tq_nactive, tq->tq_nthreads, tq->tq_nspawn,
240 tq->tq_maxthreads, tq->tq_pri, tq->tq_minalloc, tq->tq_maxalloc,
241 tq->tq_nalloc, tq->tq_flags);
242
243 /* show the active list */
244 if (lheads[LHEAD_ACTIVE]) {
245 j = 0;
246 list_for_each_entry(tqt, &tq->tq_active_list, tqt_active_list) {
247 if (j == 0)
248 seq_printf(f, "\t%s:",
249 list_names[LHEAD_ACTIVE]);
250 else if (j == 2) {
251 seq_printf(f, "\n\t ");
252 j = 0;
253 }
254 seq_printf(f, " [%d]%pf(%ps)",
255 tqt->tqt_thread->pid,
256 tqt->tqt_task->tqent_func,
257 tqt->tqt_task->tqent_arg);
258 ++j;
259 }
260 seq_printf(f, "\n");
261 }
262
263 for (i = LHEAD_PEND; i <= LHEAD_WAIT; ++i)
264 if (lheads[i]) {
265 j = 0;
266 list_for_each(lh, lheads[i]) {
267 if (spl_max_show_tasks != 0 &&
268 j >= spl_max_show_tasks) {
269 seq_printf(f, "\n\t(truncated)");
270 break;
271 }
272 /* show the wait waitq list */
273 if (i == LHEAD_WAIT) {
274 #ifdef HAVE_WAIT_QUEUE_HEAD_ENTRY
275 wq = list_entry(lh,
276 spl_wait_queue_entry_t, entry);
277 #else
278 wq = list_entry(lh,
279 spl_wait_queue_entry_t, task_list);
280 #endif
281 if (j == 0)
282 seq_printf(f, "\t%s:",
283 list_names[i]);
284 else if (j % 8 == 0)
285 seq_printf(f, "\n\t ");
286
287 tsk = wq->private;
288 seq_printf(f, " %d", tsk->pid);
289 /* pend, prio and delay lists */
290 } else {
291 tqe = list_entry(lh, taskq_ent_t,
292 tqent_list);
293 if (j == 0)
294 seq_printf(f, "\t%s:",
295 list_names[i]);
296 else if (j % 2 == 0)
297 seq_printf(f, "\n\t ");
298
299 seq_printf(f, " %pf(%ps)",
300 tqe->tqent_func,
301 tqe->tqent_arg);
302 }
303 ++j;
304 }
305 seq_printf(f, "\n");
306 }
307 if (lheads[LHEAD_WAIT])
308 spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags);
309 spin_unlock_irqrestore(&tq->tq_lock, flags);
310
311 return (0);
312 }
313
314 static int
315 taskq_all_seq_show(struct seq_file *f, void *p)
316 {
317 return (taskq_seq_show_impl(f, p, B_TRUE));
318 }
319
320 static int
321 taskq_seq_show(struct seq_file *f, void *p)
322 {
323 return (taskq_seq_show_impl(f, p, B_FALSE));
324 }
325
326 static void *
327 taskq_seq_start(struct seq_file *f, loff_t *pos)
328 {
329 struct list_head *p;
330 loff_t n = *pos;
331
332 down_read(&tq_list_sem);
333 if (!n)
334 taskq_seq_show_headers(f);
335
336 p = tq_list.next;
337 while (n--) {
338 p = p->next;
339 if (p == &tq_list)
340 return (NULL);
341 }
342
343 return (list_entry(p, taskq_t, tq_taskqs));
344 }
345
346 static void *
347 taskq_seq_next(struct seq_file *f, void *p, loff_t *pos)
348 {
349 taskq_t *tq = p;
350
351 ++*pos;
352 return ((tq->tq_taskqs.next == &tq_list) ?
353 NULL : list_entry(tq->tq_taskqs.next, taskq_t, tq_taskqs));
354 }
355
356 static void
357 slab_seq_show_headers(struct seq_file *f)
358 {
359 seq_printf(f,
360 "--------------------- cache ----------"
361 "--------------------------------------------- "
362 "----- slab ------ "
363 "---- object ----- "
364 "--- emergency ---\n");
365 seq_printf(f,
366 "name "
367 " flags size alloc slabsize objsize "
368 "total alloc max "
369 "total alloc max "
370 "dlock alloc max\n");
371 }
372
373 static int
374 slab_seq_show(struct seq_file *f, void *p)
375 {
376 spl_kmem_cache_t *skc = p;
377
378 ASSERT(skc->skc_magic == SKC_MAGIC);
379
380 if (skc->skc_flags & KMC_SLAB) {
381 /*
382 * This cache is backed by a generic Linux kmem cache which
383 * has its own accounting. For these caches we only track
384 * the number of active allocated objects that exist within
385 * the underlying Linux slabs. For the overall statistics of
386 * the underlying Linux cache please refer to /proc/slabinfo.
387 */
388 spin_lock(&skc->skc_lock);
389 uint64_t objs_allocated =
390 percpu_counter_sum(&skc->skc_linux_alloc);
391 seq_printf(f, "%-36s ", skc->skc_name);
392 seq_printf(f, "0x%05lx %9s %9lu %8s %8u "
393 "%5s %5s %5s %5s %5lu %5s %5s %5s %5s\n",
394 (long unsigned)skc->skc_flags,
395 "-",
396 (long unsigned)(skc->skc_obj_size * objs_allocated),
397 "-",
398 (unsigned)skc->skc_obj_size,
399 "-", "-", "-", "-",
400 (long unsigned)objs_allocated,
401 "-", "-", "-", "-");
402 spin_unlock(&skc->skc_lock);
403 return (0);
404 }
405
406 spin_lock(&skc->skc_lock);
407 seq_printf(f, "%-36s ", skc->skc_name);
408 seq_printf(f, "0x%05lx %9lu %9lu %8u %8u "
409 "%5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu\n",
410 (long unsigned)skc->skc_flags,
411 (long unsigned)(skc->skc_slab_size * skc->skc_slab_total),
412 (long unsigned)(skc->skc_obj_size * skc->skc_obj_alloc),
413 (unsigned)skc->skc_slab_size,
414 (unsigned)skc->skc_obj_size,
415 (long unsigned)skc->skc_slab_total,
416 (long unsigned)skc->skc_slab_alloc,
417 (long unsigned)skc->skc_slab_max,
418 (long unsigned)skc->skc_obj_total,
419 (long unsigned)skc->skc_obj_alloc,
420 (long unsigned)skc->skc_obj_max,
421 (long unsigned)skc->skc_obj_deadlock,
422 (long unsigned)skc->skc_obj_emergency,
423 (long unsigned)skc->skc_obj_emergency_max);
424 spin_unlock(&skc->skc_lock);
425 return (0);
426 }
427
428 static void *
429 slab_seq_start(struct seq_file *f, loff_t *pos)
430 {
431 struct list_head *p;
432 loff_t n = *pos;
433
434 down_read(&spl_kmem_cache_sem);
435 if (!n)
436 slab_seq_show_headers(f);
437
438 p = spl_kmem_cache_list.next;
439 while (n--) {
440 p = p->next;
441 if (p == &spl_kmem_cache_list)
442 return (NULL);
443 }
444
445 return (list_entry(p, spl_kmem_cache_t, skc_list));
446 }
447
448 static void *
449 slab_seq_next(struct seq_file *f, void *p, loff_t *pos)
450 {
451 spl_kmem_cache_t *skc = p;
452
453 ++*pos;
454 return ((skc->skc_list.next == &spl_kmem_cache_list) ?
455 NULL : list_entry(skc->skc_list.next, spl_kmem_cache_t, skc_list));
456 }
457
458 static void
459 slab_seq_stop(struct seq_file *f, void *v)
460 {
461 up_read(&spl_kmem_cache_sem);
462 }
463
464 static const struct seq_operations slab_seq_ops = {
465 .show = slab_seq_show,
466 .start = slab_seq_start,
467 .next = slab_seq_next,
468 .stop = slab_seq_stop,
469 };
470
471 static int
472 proc_slab_open(struct inode *inode, struct file *filp)
473 {
474 return (seq_open(filp, &slab_seq_ops));
475 }
476
477 static const kstat_proc_op_t proc_slab_operations = {
478 #ifdef HAVE_PROC_OPS_STRUCT
479 .proc_open = proc_slab_open,
480 .proc_read = seq_read,
481 .proc_lseek = seq_lseek,
482 .proc_release = seq_release,
483 #else
484 .open = proc_slab_open,
485 .read = seq_read,
486 .llseek = seq_lseek,
487 .release = seq_release,
488 #endif
489 };
490
491 static void
492 taskq_seq_stop(struct seq_file *f, void *v)
493 {
494 up_read(&tq_list_sem);
495 }
496
497 static const struct seq_operations taskq_all_seq_ops = {
498 .show = taskq_all_seq_show,
499 .start = taskq_seq_start,
500 .next = taskq_seq_next,
501 .stop = taskq_seq_stop,
502 };
503
504 static const struct seq_operations taskq_seq_ops = {
505 .show = taskq_seq_show,
506 .start = taskq_seq_start,
507 .next = taskq_seq_next,
508 .stop = taskq_seq_stop,
509 };
510
511 static int
512 proc_taskq_all_open(struct inode *inode, struct file *filp)
513 {
514 return (seq_open(filp, &taskq_all_seq_ops));
515 }
516
517 static int
518 proc_taskq_open(struct inode *inode, struct file *filp)
519 {
520 return (seq_open(filp, &taskq_seq_ops));
521 }
522
523 static const kstat_proc_op_t proc_taskq_all_operations = {
524 #ifdef HAVE_PROC_OPS_STRUCT
525 .proc_open = proc_taskq_all_open,
526 .proc_read = seq_read,
527 .proc_lseek = seq_lseek,
528 .proc_release = seq_release,
529 #else
530 .open = proc_taskq_all_open,
531 .read = seq_read,
532 .llseek = seq_lseek,
533 .release = seq_release,
534 #endif
535 };
536
537 static const kstat_proc_op_t proc_taskq_operations = {
538 #ifdef HAVE_PROC_OPS_STRUCT
539 .proc_open = proc_taskq_open,
540 .proc_read = seq_read,
541 .proc_lseek = seq_lseek,
542 .proc_release = seq_release,
543 #else
544 .open = proc_taskq_open,
545 .read = seq_read,
546 .llseek = seq_lseek,
547 .release = seq_release,
548 #endif
549 };
550
551 static struct ctl_table spl_kmem_table[] = {
552 #ifdef DEBUG_KMEM
553 {
554 .procname = "kmem_used",
555 .data = &kmem_alloc_used,
556 #ifdef HAVE_ATOMIC64_T
557 .maxlen = sizeof (atomic64_t),
558 #else
559 .maxlen = sizeof (atomic_t),
560 #endif /* HAVE_ATOMIC64_T */
561 .mode = 0444,
562 .proc_handler = &proc_domemused,
563 },
564 {
565 .procname = "kmem_max",
566 .data = &kmem_alloc_max,
567 .maxlen = sizeof (unsigned long),
568 .extra1 = &table_min,
569 .extra2 = &table_max,
570 .mode = 0444,
571 .proc_handler = &proc_doulongvec_minmax,
572 },
573 #endif /* DEBUG_KMEM */
574 {
575 .procname = "slab_kvmem_total",
576 .data = (void *)(KMC_KVMEM | KMC_TOTAL),
577 .maxlen = sizeof (unsigned long),
578 .extra1 = &table_min,
579 .extra2 = &table_max,
580 .mode = 0444,
581 .proc_handler = &proc_doslab,
582 },
583 {
584 .procname = "slab_kvmem_alloc",
585 .data = (void *)(KMC_KVMEM | KMC_ALLOC),
586 .maxlen = sizeof (unsigned long),
587 .extra1 = &table_min,
588 .extra2 = &table_max,
589 .mode = 0444,
590 .proc_handler = &proc_doslab,
591 },
592 {
593 .procname = "slab_kvmem_max",
594 .data = (void *)(KMC_KVMEM | KMC_MAX),
595 .maxlen = sizeof (unsigned long),
596 .extra1 = &table_min,
597 .extra2 = &table_max,
598 .mode = 0444,
599 .proc_handler = &proc_doslab,
600 },
601 {},
602 };
603
604 static struct ctl_table spl_kstat_table[] = {
605 {},
606 };
607
608 static struct ctl_table spl_table[] = {
609 /*
610 * NB No .strategy entries have been provided since
611 * sysctl(8) prefers to go via /proc for portability.
612 */
613 {
614 .procname = "gitrev",
615 .data = (char *)ZFS_META_GITREV,
616 .maxlen = sizeof (ZFS_META_GITREV),
617 .mode = 0444,
618 .proc_handler = &proc_dostring,
619 },
620 {
621 .procname = "hostid",
622 .data = &spl_hostid,
623 .maxlen = sizeof (unsigned long),
624 .mode = 0644,
625 .proc_handler = &proc_dohostid,
626 },
627 {
628 .procname = "kmem",
629 .mode = 0555,
630 .child = spl_kmem_table,
631 },
632 {
633 .procname = "kstat",
634 .mode = 0555,
635 .child = spl_kstat_table,
636 },
637 {},
638 };
639
640 static struct ctl_table spl_dir[] = {
641 {
642 .procname = "spl",
643 .mode = 0555,
644 .child = spl_table,
645 },
646 {}
647 };
648
649 static struct ctl_table spl_root[] = {
650 {
651 .procname = "kernel",
652 .mode = 0555,
653 .child = spl_dir,
654 },
655 {}
656 };
657
658 int
659 spl_proc_init(void)
660 {
661 int rc = 0;
662
663 spl_header = register_sysctl_table(spl_root);
664 if (spl_header == NULL)
665 return (-EUNATCH);
666
667 proc_spl = proc_mkdir("spl", NULL);
668 if (proc_spl == NULL) {
669 rc = -EUNATCH;
670 goto out;
671 }
672
673 proc_spl_taskq_all = proc_create_data("taskq-all", 0444, proc_spl,
674 &proc_taskq_all_operations, NULL);
675 if (proc_spl_taskq_all == NULL) {
676 rc = -EUNATCH;
677 goto out;
678 }
679
680 proc_spl_taskq = proc_create_data("taskq", 0444, proc_spl,
681 &proc_taskq_operations, NULL);
682 if (proc_spl_taskq == NULL) {
683 rc = -EUNATCH;
684 goto out;
685 }
686
687 proc_spl_kmem = proc_mkdir("kmem", proc_spl);
688 if (proc_spl_kmem == NULL) {
689 rc = -EUNATCH;
690 goto out;
691 }
692
693 proc_spl_kmem_slab = proc_create_data("slab", 0444, proc_spl_kmem,
694 &proc_slab_operations, NULL);
695 if (proc_spl_kmem_slab == NULL) {
696 rc = -EUNATCH;
697 goto out;
698 }
699
700 proc_spl_kstat = proc_mkdir("kstat", proc_spl);
701 if (proc_spl_kstat == NULL) {
702 rc = -EUNATCH;
703 goto out;
704 }
705 out:
706 if (rc) {
707 remove_proc_entry("kstat", proc_spl);
708 remove_proc_entry("slab", proc_spl_kmem);
709 remove_proc_entry("kmem", proc_spl);
710 remove_proc_entry("taskq-all", proc_spl);
711 remove_proc_entry("taskq", proc_spl);
712 remove_proc_entry("spl", NULL);
713 unregister_sysctl_table(spl_header);
714 }
715
716 return (rc);
717 }
718
719 void
720 spl_proc_fini(void)
721 {
722 remove_proc_entry("kstat", proc_spl);
723 remove_proc_entry("slab", proc_spl_kmem);
724 remove_proc_entry("kmem", proc_spl);
725 remove_proc_entry("taskq-all", proc_spl);
726 remove_proc_entry("taskq", proc_spl);
727 remove_proc_entry("spl", NULL);
728
729 ASSERT(spl_header != NULL);
730 unregister_sysctl_table(spl_header);
731 }
Cache object: 4b46c1d408080d780c127c52ef03787d
|