The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/os/linux/zfs/zfs_ctldir.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  *
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
   25  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
   26  * LLNL-CODE-403049.
   27  * Rewritten for Linux by:
   28  *   Rohan Puri <rohan.puri15@gmail.com>
   29  *   Brian Behlendorf <behlendorf1@llnl.gov>
   30  * Copyright (c) 2013 by Delphix. All rights reserved.
   31  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
   32  * Copyright (c) 2018 George Melikov. All Rights Reserved.
   33  * Copyright (c) 2019 Datto, Inc. All rights reserved.
   34  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
   35  */
   36 
   37 /*
   38  * ZFS control directory (a.k.a. ".zfs")
   39  *
   40  * This directory provides a common location for all ZFS meta-objects.
   41  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
   42  * expand in the future.  The elements are built dynamically, as the hierarchy
   43  * does not actually exist on disk.
   44  *
   45  * For 'snapshot', we don't want to have all snapshots always mounted, because
   46  * this would take up a huge amount of space in /etc/mnttab.  We have three
   47  * types of objects:
   48  *
   49  *      ctldir ------> snapshotdir -------> snapshot
   50  *                                             |
   51  *                                             |
   52  *                                             V
   53  *                                         mounted fs
   54  *
   55  * The 'snapshot' node contains just enough information to lookup '..' and act
   56  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
   57  * perform an automount of the underlying filesystem and return the
   58  * corresponding inode.
   59  *
   60  * All mounts are handled automatically by an user mode helper which invokes
   61  * the mount procedure.  Unmounts are handled by allowing the mount
   62  * point to expire so the kernel may automatically unmount it.
   63  *
   64  * The '.zfs', '.zfs/snapshot', and all directories created under
   65  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
   66  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
   67  *
   68  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
   69  * (ie: snapshots) are complete ZFS filesystems and have their own unique
   70  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
   71  * as that used by the parent zfsvfs_t to make NFS happy.
   72  */
   73 
   74 #include <sys/types.h>
   75 #include <sys/param.h>
   76 #include <sys/time.h>
   77 #include <sys/sysmacros.h>
   78 #include <sys/pathname.h>
   79 #include <sys/vfs.h>
   80 #include <sys/zfs_ctldir.h>
   81 #include <sys/zfs_ioctl.h>
   82 #include <sys/zfs_vfsops.h>
   83 #include <sys/zfs_vnops.h>
   84 #include <sys/stat.h>
   85 #include <sys/dmu.h>
   86 #include <sys/dmu_objset.h>
   87 #include <sys/dsl_destroy.h>
   88 #include <sys/dsl_deleg.h>
   89 #include <sys/zpl.h>
   90 #include <sys/mntent.h>
   91 #include "zfs_namecheck.h"
   92 
   93 /*
   94  * Two AVL trees are maintained which contain all currently automounted
   95  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
   96  * entry which MUST:
   97  *
   98  *   - be attached to both trees, and
   99  *   - be unique, no duplicate entries are allowed.
  100  *
  101  * The zfs_snapshots_by_name tree is indexed by the full dataset name
  102  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
  103  * objsetid.  This allows for fast lookups either by name or objsetid.
  104  */
  105 static avl_tree_t zfs_snapshots_by_name;
  106 static avl_tree_t zfs_snapshots_by_objsetid;
  107 static krwlock_t zfs_snapshot_lock;
  108 
  109 /*
  110  * Control Directory Tunables (.zfs)
  111  */
  112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
  113 static int zfs_admin_snapshot = 0;
  114 
  115 typedef struct {
  116         char            *se_name;       /* full snapshot name */
  117         char            *se_path;       /* full mount path */
  118         spa_t           *se_spa;        /* pool spa */
  119         uint64_t        se_objsetid;    /* snapshot objset id */
  120         struct dentry   *se_root_dentry; /* snapshot root dentry */
  121         krwlock_t       se_taskqid_lock;  /* scheduled unmount taskqid lock */
  122         taskqid_t       se_taskqid;     /* scheduled unmount taskqid */
  123         avl_node_t      se_node_name;   /* zfs_snapshots_by_name link */
  124         avl_node_t      se_node_objsetid; /* zfs_snapshots_by_objsetid link */
  125         zfs_refcount_t  se_refcount;    /* reference count */
  126 } zfs_snapentry_t;
  127 
  128 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
  129 
  130 /*
  131  * Allocate a new zfs_snapentry_t being careful to make a copy of the
  132  * the snapshot name and provided mount point.  No reference is taken.
  133  */
  134 static zfs_snapentry_t *
  135 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
  136     uint64_t objsetid, struct dentry *root_dentry)
  137 {
  138         zfs_snapentry_t *se;
  139 
  140         se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
  141 
  142         se->se_name = kmem_strdup(full_name);
  143         se->se_path = kmem_strdup(full_path);
  144         se->se_spa = spa;
  145         se->se_objsetid = objsetid;
  146         se->se_root_dentry = root_dentry;
  147         se->se_taskqid = TASKQID_INVALID;
  148         rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
  149 
  150         zfs_refcount_create(&se->se_refcount);
  151 
  152         return (se);
  153 }
  154 
  155 /*
  156  * Free a zfs_snapentry_t the caller must ensure there are no active
  157  * references.
  158  */
  159 static void
  160 zfsctl_snapshot_free(zfs_snapentry_t *se)
  161 {
  162         zfs_refcount_destroy(&se->se_refcount);
  163         kmem_strfree(se->se_name);
  164         kmem_strfree(se->se_path);
  165         rw_destroy(&se->se_taskqid_lock);
  166 
  167         kmem_free(se, sizeof (zfs_snapentry_t));
  168 }
  169 
  170 /*
  171  * Hold a reference on the zfs_snapentry_t.
  172  */
  173 static void
  174 zfsctl_snapshot_hold(zfs_snapentry_t *se)
  175 {
  176         zfs_refcount_add(&se->se_refcount, NULL);
  177 }
  178 
  179 /*
  180  * Release a reference on the zfs_snapentry_t.  When the number of
  181  * references drops to zero the structure will be freed.
  182  */
  183 static void
  184 zfsctl_snapshot_rele(zfs_snapentry_t *se)
  185 {
  186         if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
  187                 zfsctl_snapshot_free(se);
  188 }
  189 
  190 /*
  191  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
  192  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
  193  * of the trees a reference is held.
  194  */
  195 static void
  196 zfsctl_snapshot_add(zfs_snapentry_t *se)
  197 {
  198         ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
  199         zfsctl_snapshot_hold(se);
  200         avl_add(&zfs_snapshots_by_name, se);
  201         avl_add(&zfs_snapshots_by_objsetid, se);
  202 }
  203 
  204 /*
  205  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
  206  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
  207  * this can result in the structure being freed if that was the last
  208  * remaining reference.
  209  */
  210 static void
  211 zfsctl_snapshot_remove(zfs_snapentry_t *se)
  212 {
  213         ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
  214         avl_remove(&zfs_snapshots_by_name, se);
  215         avl_remove(&zfs_snapshots_by_objsetid, se);
  216         zfsctl_snapshot_rele(se);
  217 }
  218 
  219 /*
  220  * Snapshot name comparison function for the zfs_snapshots_by_name.
  221  */
  222 static int
  223 snapentry_compare_by_name(const void *a, const void *b)
  224 {
  225         const zfs_snapentry_t *se_a = a;
  226         const zfs_snapentry_t *se_b = b;
  227         int ret;
  228 
  229         ret = strcmp(se_a->se_name, se_b->se_name);
  230 
  231         if (ret < 0)
  232                 return (-1);
  233         else if (ret > 0)
  234                 return (1);
  235         else
  236                 return (0);
  237 }
  238 
  239 /*
  240  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
  241  */
  242 static int
  243 snapentry_compare_by_objsetid(const void *a, const void *b)
  244 {
  245         const zfs_snapentry_t *se_a = a;
  246         const zfs_snapentry_t *se_b = b;
  247 
  248         if (se_a->se_spa != se_b->se_spa)
  249                 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
  250 
  251         if (se_a->se_objsetid < se_b->se_objsetid)
  252                 return (-1);
  253         else if (se_a->se_objsetid > se_b->se_objsetid)
  254                 return (1);
  255         else
  256                 return (0);
  257 }
  258 
  259 /*
  260  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
  261  * is found a pointer to the zfs_snapentry_t is returned and a reference
  262  * taken on the structure.  The caller is responsible for dropping the
  263  * reference with zfsctl_snapshot_rele().  If the snapname is not found
  264  * NULL will be returned.
  265  */
  266 static zfs_snapentry_t *
  267 zfsctl_snapshot_find_by_name(const char *snapname)
  268 {
  269         zfs_snapentry_t *se, search;
  270 
  271         ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
  272 
  273         search.se_name = (char *)snapname;
  274         se = avl_find(&zfs_snapshots_by_name, &search, NULL);
  275         if (se)
  276                 zfsctl_snapshot_hold(se);
  277 
  278         return (se);
  279 }
  280 
  281 /*
  282  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
  283  * rather than the snapname.  In all other respects it behaves the same
  284  * as zfsctl_snapshot_find_by_name().
  285  */
  286 static zfs_snapentry_t *
  287 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
  288 {
  289         zfs_snapentry_t *se, search;
  290 
  291         ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
  292 
  293         search.se_spa = spa;
  294         search.se_objsetid = objsetid;
  295         se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
  296         if (se)
  297                 zfsctl_snapshot_hold(se);
  298 
  299         return (se);
  300 }
  301 
  302 /*
  303  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
  304  * removed, renamed, and added back to the new correct location in the tree.
  305  */
  306 static int
  307 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
  308 {
  309         zfs_snapentry_t *se;
  310 
  311         ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
  312 
  313         se = zfsctl_snapshot_find_by_name(old_snapname);
  314         if (se == NULL)
  315                 return (SET_ERROR(ENOENT));
  316 
  317         zfsctl_snapshot_remove(se);
  318         kmem_strfree(se->se_name);
  319         se->se_name = kmem_strdup(new_snapname);
  320         zfsctl_snapshot_add(se);
  321         zfsctl_snapshot_rele(se);
  322 
  323         return (0);
  324 }
  325 
  326 /*
  327  * Delayed task responsible for unmounting an expired automounted snapshot.
  328  */
  329 static void
  330 snapentry_expire(void *data)
  331 {
  332         zfs_snapentry_t *se = (zfs_snapentry_t *)data;
  333         spa_t *spa = se->se_spa;
  334         uint64_t objsetid = se->se_objsetid;
  335 
  336         if (zfs_expire_snapshot <= 0) {
  337                 zfsctl_snapshot_rele(se);
  338                 return;
  339         }
  340 
  341         rw_enter(&se->se_taskqid_lock, RW_WRITER);
  342         se->se_taskqid = TASKQID_INVALID;
  343         rw_exit(&se->se_taskqid_lock);
  344         (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
  345         zfsctl_snapshot_rele(se);
  346 
  347         /*
  348          * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
  349          * This can occur when the snapshot is busy.
  350          */
  351         rw_enter(&zfs_snapshot_lock, RW_READER);
  352         if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
  353                 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
  354                 zfsctl_snapshot_rele(se);
  355         }
  356         rw_exit(&zfs_snapshot_lock);
  357 }
  358 
  359 /*
  360  * Cancel an automatic unmount of a snapname.  This callback is responsible
  361  * for dropping the reference on the zfs_snapentry_t which was taken when
  362  * during dispatch.
  363  */
  364 static void
  365 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
  366 {
  367         int err = 0;
  368         rw_enter(&se->se_taskqid_lock, RW_WRITER);
  369         err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
  370         /*
  371          * if we get ENOENT, the taskq couldn't be found to be
  372          * canceled, so we can just mark it as invalid because
  373          * it's already gone. If we got EBUSY, then we already
  374          * blocked until it was gone _anyway_, so we don't care.
  375          */
  376         se->se_taskqid = TASKQID_INVALID;
  377         rw_exit(&se->se_taskqid_lock);
  378         if (err == 0) {
  379                 zfsctl_snapshot_rele(se);
  380         }
  381 }
  382 
  383 /*
  384  * Dispatch the unmount task for delayed handling with a hold protecting it.
  385  */
  386 static void
  387 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
  388 {
  389 
  390         if (delay <= 0)
  391                 return;
  392 
  393         zfsctl_snapshot_hold(se);
  394         rw_enter(&se->se_taskqid_lock, RW_WRITER);
  395         ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
  396         se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
  397             snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
  398         rw_exit(&se->se_taskqid_lock);
  399 }
  400 
  401 /*
  402  * Schedule an automatic unmount of objset id to occur in delay seconds from
  403  * now.  Any previous delayed unmount will be cancelled in favor of the
  404  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
  405  * and held until the outstanding task is handled or cancelled.
  406  */
  407 int
  408 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
  409 {
  410         zfs_snapentry_t *se;
  411         int error = ENOENT;
  412 
  413         rw_enter(&zfs_snapshot_lock, RW_READER);
  414         if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
  415                 zfsctl_snapshot_unmount_cancel(se);
  416                 zfsctl_snapshot_unmount_delay_impl(se, delay);
  417                 zfsctl_snapshot_rele(se);
  418                 error = 0;
  419         }
  420         rw_exit(&zfs_snapshot_lock);
  421 
  422         return (error);
  423 }
  424 
  425 /*
  426  * Check if snapname is currently mounted.  Returned non-zero when mounted
  427  * and zero when unmounted.
  428  */
  429 static boolean_t
  430 zfsctl_snapshot_ismounted(const char *snapname)
  431 {
  432         zfs_snapentry_t *se;
  433         boolean_t ismounted = B_FALSE;
  434 
  435         rw_enter(&zfs_snapshot_lock, RW_READER);
  436         if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
  437                 zfsctl_snapshot_rele(se);
  438                 ismounted = B_TRUE;
  439         }
  440         rw_exit(&zfs_snapshot_lock);
  441 
  442         return (ismounted);
  443 }
  444 
  445 /*
  446  * Check if the given inode is a part of the virtual .zfs directory.
  447  */
  448 boolean_t
  449 zfsctl_is_node(struct inode *ip)
  450 {
  451         return (ITOZ(ip)->z_is_ctldir);
  452 }
  453 
  454 /*
  455  * Check if the given inode is a .zfs/snapshots/snapname directory.
  456  */
  457 boolean_t
  458 zfsctl_is_snapdir(struct inode *ip)
  459 {
  460         return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
  461 }
  462 
  463 /*
  464  * Allocate a new inode with the passed id and ops.
  465  */
  466 static struct inode *
  467 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
  468     const struct file_operations *fops, const struct inode_operations *ops)
  469 {
  470         inode_timespec_t now;
  471         struct inode *ip;
  472         znode_t *zp;
  473 
  474         ip = new_inode(zfsvfs->z_sb);
  475         if (ip == NULL)
  476                 return (NULL);
  477 
  478         now = current_time(ip);
  479         zp = ITOZ(ip);
  480         ASSERT3P(zp->z_dirlocks, ==, NULL);
  481         ASSERT3P(zp->z_acl_cached, ==, NULL);
  482         ASSERT3P(zp->z_xattr_cached, ==, NULL);
  483         zp->z_id = id;
  484         zp->z_unlinked = B_FALSE;
  485         zp->z_atime_dirty = B_FALSE;
  486         zp->z_zn_prefetch = B_FALSE;
  487         zp->z_is_sa = B_FALSE;
  488         zp->z_is_mapped = B_FALSE;
  489         zp->z_is_ctldir = B_TRUE;
  490         zp->z_sa_hdl = NULL;
  491         zp->z_blksz = 0;
  492         zp->z_seq = 0;
  493         zp->z_mapcnt = 0;
  494         zp->z_size = 0;
  495         zp->z_pflags = 0;
  496         zp->z_mode = 0;
  497         zp->z_sync_cnt = 0;
  498         zp->z_sync_writes_cnt = 0;
  499         zp->z_async_writes_cnt = 0;
  500         ip->i_generation = 0;
  501         ip->i_ino = id;
  502         ip->i_mode = (S_IFDIR | S_IRWXUGO);
  503         ip->i_uid = SUID_TO_KUID(0);
  504         ip->i_gid = SGID_TO_KGID(0);
  505         ip->i_blkbits = SPA_MINBLOCKSHIFT;
  506         ip->i_atime = now;
  507         ip->i_mtime = now;
  508         ip->i_ctime = now;
  509         ip->i_fop = fops;
  510         ip->i_op = ops;
  511 #if defined(IOP_XATTR)
  512         ip->i_opflags &= ~IOP_XATTR;
  513 #endif
  514 
  515         if (insert_inode_locked(ip)) {
  516                 unlock_new_inode(ip);
  517                 iput(ip);
  518                 return (NULL);
  519         }
  520 
  521         mutex_enter(&zfsvfs->z_znodes_lock);
  522         list_insert_tail(&zfsvfs->z_all_znodes, zp);
  523         zfsvfs->z_nr_znodes++;
  524         membar_producer();
  525         mutex_exit(&zfsvfs->z_znodes_lock);
  526 
  527         unlock_new_inode(ip);
  528 
  529         return (ip);
  530 }
  531 
  532 /*
  533  * Lookup the inode with given id, it will be allocated if needed.
  534  */
  535 static struct inode *
  536 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
  537     const struct file_operations *fops, const struct inode_operations *ops)
  538 {
  539         struct inode *ip = NULL;
  540 
  541         while (ip == NULL) {
  542                 ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
  543                 if (ip)
  544                         break;
  545 
  546                 /* May fail due to concurrent zfsctl_inode_alloc() */
  547                 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
  548         }
  549 
  550         return (ip);
  551 }
  552 
  553 /*
  554  * Create the '.zfs' directory.  This directory is cached as part of the VFS
  555  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
  556  * therefore checks against a vfs_count of 2 instead of 1.  This reference
  557  * is removed when the ctldir is destroyed in the unmount.  All other entities
  558  * under the '.zfs' directory are created dynamically as needed.
  559  *
  560  * Because the dynamically created '.zfs' directory entries assume the use
  561  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
  562  */
  563 int
  564 zfsctl_create(zfsvfs_t *zfsvfs)
  565 {
  566         ASSERT(zfsvfs->z_ctldir == NULL);
  567 
  568         zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
  569             &zpl_fops_root, &zpl_ops_root);
  570         if (zfsvfs->z_ctldir == NULL)
  571                 return (SET_ERROR(ENOENT));
  572 
  573         return (0);
  574 }
  575 
  576 /*
  577  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
  578  * Only called when the filesystem is unmounted.
  579  */
  580 void
  581 zfsctl_destroy(zfsvfs_t *zfsvfs)
  582 {
  583         if (zfsvfs->z_issnap) {
  584                 zfs_snapentry_t *se;
  585                 spa_t *spa = zfsvfs->z_os->os_spa;
  586                 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
  587 
  588                 rw_enter(&zfs_snapshot_lock, RW_WRITER);
  589                 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
  590                 if (se != NULL)
  591                         zfsctl_snapshot_remove(se);
  592                 rw_exit(&zfs_snapshot_lock);
  593                 if (se != NULL) {
  594                         zfsctl_snapshot_unmount_cancel(se);
  595                         zfsctl_snapshot_rele(se);
  596                 }
  597         } else if (zfsvfs->z_ctldir) {
  598                 iput(zfsvfs->z_ctldir);
  599                 zfsvfs->z_ctldir = NULL;
  600         }
  601 }
  602 
  603 /*
  604  * Given a root znode, retrieve the associated .zfs directory.
  605  * Add a hold to the vnode and return it.
  606  */
  607 struct inode *
  608 zfsctl_root(znode_t *zp)
  609 {
  610         ASSERT(zfs_has_ctldir(zp));
  611         /* Must have an existing ref, so igrab() cannot return NULL */
  612         VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
  613         return (ZTOZSB(zp)->z_ctldir);
  614 }
  615 
  616 /*
  617  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
  618  * already mounted in gen field. We do this because nfsd lookup will not
  619  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
  620  * this and do automount and return ESTALE to force nfsd revalidate and follow
  621  * mount.
  622  */
  623 static int
  624 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
  625 {
  626         zfid_short_t *zfid = (zfid_short_t *)fidp;
  627         zfid_long_t *zlfid = (zfid_long_t *)fidp;
  628         uint32_t gen = 0;
  629         uint64_t object;
  630         uint64_t objsetid;
  631         int i;
  632         struct dentry *dentry;
  633 
  634         if (fidp->fid_len < LONG_FID_LEN) {
  635                 fidp->fid_len = LONG_FID_LEN;
  636                 return (SET_ERROR(ENOSPC));
  637         }
  638 
  639         object = ip->i_ino;
  640         objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
  641         zfid->zf_len = LONG_FID_LEN;
  642 
  643         dentry = d_obtain_alias(igrab(ip));
  644         if (!IS_ERR(dentry)) {
  645                 gen = !!d_mountpoint(dentry);
  646                 dput(dentry);
  647         }
  648 
  649         for (i = 0; i < sizeof (zfid->zf_object); i++)
  650                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
  651 
  652         for (i = 0; i < sizeof (zfid->zf_gen); i++)
  653                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
  654 
  655         for (i = 0; i < sizeof (zlfid->zf_setid); i++)
  656                 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
  657 
  658         for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
  659                 zlfid->zf_setgen[i] = 0;
  660 
  661         return (0);
  662 }
  663 
  664 /*
  665  * Generate an appropriate fid for an entry in the .zfs directory.
  666  */
  667 int
  668 zfsctl_fid(struct inode *ip, fid_t *fidp)
  669 {
  670         znode_t         *zp = ITOZ(ip);
  671         zfsvfs_t        *zfsvfs = ITOZSB(ip);
  672         uint64_t        object = zp->z_id;
  673         zfid_short_t    *zfid;
  674         int             i;
  675         int             error;
  676 
  677         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
  678                 return (error);
  679 
  680         if (zfsctl_is_snapdir(ip)) {
  681                 zfs_exit(zfsvfs, FTAG);
  682                 return (zfsctl_snapdir_fid(ip, fidp));
  683         }
  684 
  685         if (fidp->fid_len < SHORT_FID_LEN) {
  686                 fidp->fid_len = SHORT_FID_LEN;
  687                 zfs_exit(zfsvfs, FTAG);
  688                 return (SET_ERROR(ENOSPC));
  689         }
  690 
  691         zfid = (zfid_short_t *)fidp;
  692 
  693         zfid->zf_len = SHORT_FID_LEN;
  694 
  695         for (i = 0; i < sizeof (zfid->zf_object); i++)
  696                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
  697 
  698         /* .zfs znodes always have a generation number of 0 */
  699         for (i = 0; i < sizeof (zfid->zf_gen); i++)
  700                 zfid->zf_gen[i] = 0;
  701 
  702         zfs_exit(zfsvfs, FTAG);
  703         return (0);
  704 }
  705 
  706 /*
  707  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
  708  */
  709 static int
  710 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
  711     char *full_name)
  712 {
  713         objset_t *os = zfsvfs->z_os;
  714 
  715         if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
  716                 return (SET_ERROR(EILSEQ));
  717 
  718         dmu_objset_name(os, full_name);
  719         if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
  720                 return (SET_ERROR(ENAMETOOLONG));
  721 
  722         (void) strcat(full_name, "@");
  723         (void) strcat(full_name, snap_name);
  724 
  725         return (0);
  726 }
  727 
  728 /*
  729  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
  730  */
  731 static int
  732 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
  733     int path_len, char *full_path)
  734 {
  735         objset_t *os = zfsvfs->z_os;
  736         fstrans_cookie_t cookie;
  737         char *snapname;
  738         boolean_t case_conflict;
  739         uint64_t id, pos = 0;
  740         int error = 0;
  741 
  742         if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
  743                 return (SET_ERROR(ENOENT));
  744 
  745         cookie = spl_fstrans_mark();
  746         snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  747 
  748         while (error == 0) {
  749                 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
  750                 error = dmu_snapshot_list_next(zfsvfs->z_os,
  751                     ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
  752                     &case_conflict);
  753                 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
  754                 if (error)
  755                         goto out;
  756 
  757                 if (id == objsetid)
  758                         break;
  759         }
  760 
  761         snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
  762             zfsvfs->z_vfs->vfs_mntpoint, snapname);
  763 out:
  764         kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
  765         spl_fstrans_unmark(cookie);
  766 
  767         return (error);
  768 }
  769 
  770 /*
  771  * Special case the handling of "..".
  772  */
  773 int
  774 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
  775     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
  776 {
  777         zfsvfs_t *zfsvfs = ITOZSB(dip);
  778         int error = 0;
  779 
  780         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
  781                 return (error);
  782 
  783         if (strcmp(name, "..") == 0) {
  784                 *ipp = dip->i_sb->s_root->d_inode;
  785         } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
  786                 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
  787                     &zpl_fops_snapdir, &zpl_ops_snapdir);
  788         } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
  789                 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
  790                     &zpl_fops_shares, &zpl_ops_shares);
  791         } else {
  792                 *ipp = NULL;
  793         }
  794 
  795         if (*ipp == NULL)
  796                 error = SET_ERROR(ENOENT);
  797 
  798         zfs_exit(zfsvfs, FTAG);
  799 
  800         return (error);
  801 }
  802 
  803 /*
  804  * Lookup entry point for the 'snapshot' directory.  Try to open the
  805  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
  806  */
  807 int
  808 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
  809     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
  810 {
  811         zfsvfs_t *zfsvfs = ITOZSB(dip);
  812         uint64_t id;
  813         int error;
  814 
  815         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
  816                 return (error);
  817 
  818         error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
  819         if (error) {
  820                 zfs_exit(zfsvfs, FTAG);
  821                 return (error);
  822         }
  823 
  824         *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
  825             &simple_dir_operations, &simple_dir_inode_operations);
  826         if (*ipp == NULL)
  827                 error = SET_ERROR(ENOENT);
  828 
  829         zfs_exit(zfsvfs, FTAG);
  830 
  831         return (error);
  832 }
  833 
  834 /*
  835  * Renaming a directory under '.zfs/snapshot' will automatically trigger
  836  * a rename of the snapshot to the new given name.  The rename is confined
  837  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
  838  */
  839 int
  840 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
  841     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
  842 {
  843         zfsvfs_t *zfsvfs = ITOZSB(sdip);
  844         char *to, *from, *real, *fsname;
  845         int error;
  846 
  847         if (!zfs_admin_snapshot)
  848                 return (SET_ERROR(EACCES));
  849 
  850         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
  851                 return (error);
  852 
  853         to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  854         from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  855         real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  856         fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  857 
  858         if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
  859                 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
  860                     ZFS_MAX_DATASET_NAME_LEN, NULL);
  861                 if (error == 0) {
  862                         snm = real;
  863                 } else if (error != ENOTSUP) {
  864                         goto out;
  865                 }
  866         }
  867 
  868         dmu_objset_name(zfsvfs->z_os, fsname);
  869 
  870         error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
  871             ZFS_MAX_DATASET_NAME_LEN, from);
  872         if (error == 0)
  873                 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
  874                     ZFS_MAX_DATASET_NAME_LEN, to);
  875         if (error == 0)
  876                 error = zfs_secpolicy_rename_perms(from, to, cr);
  877         if (error != 0)
  878                 goto out;
  879 
  880         /*
  881          * Cannot move snapshots out of the snapdir.
  882          */
  883         if (sdip != tdip) {
  884                 error = SET_ERROR(EINVAL);
  885                 goto out;
  886         }
  887 
  888         /*
  889          * No-op when names are identical.
  890          */
  891         if (strcmp(snm, tnm) == 0) {
  892                 error = 0;
  893                 goto out;
  894         }
  895 
  896         rw_enter(&zfs_snapshot_lock, RW_WRITER);
  897 
  898         error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
  899         if (error == 0)
  900                 (void) zfsctl_snapshot_rename(snm, tnm);
  901 
  902         rw_exit(&zfs_snapshot_lock);
  903 out:
  904         kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
  905         kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
  906         kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
  907         kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
  908 
  909         zfs_exit(zfsvfs, FTAG);
  910 
  911         return (error);
  912 }
  913 
  914 /*
  915  * Removing a directory under '.zfs/snapshot' will automatically trigger
  916  * the removal of the snapshot with the given name.
  917  */
  918 int
  919 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
  920     int flags)
  921 {
  922         zfsvfs_t *zfsvfs = ITOZSB(dip);
  923         char *snapname, *real;
  924         int error;
  925 
  926         if (!zfs_admin_snapshot)
  927                 return (SET_ERROR(EACCES));
  928 
  929         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
  930                 return (error);
  931 
  932         snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  933         real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  934 
  935         if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
  936                 error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
  937                     ZFS_MAX_DATASET_NAME_LEN, NULL);
  938                 if (error == 0) {
  939                         name = real;
  940                 } else if (error != ENOTSUP) {
  941                         goto out;
  942                 }
  943         }
  944 
  945         error = zfsctl_snapshot_name(ITOZSB(dip), name,
  946             ZFS_MAX_DATASET_NAME_LEN, snapname);
  947         if (error == 0)
  948                 error = zfs_secpolicy_destroy_perms(snapname, cr);
  949         if (error != 0)
  950                 goto out;
  951 
  952         error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
  953         if ((error == 0) || (error == ENOENT))
  954                 error = dsl_destroy_snapshot(snapname, B_FALSE);
  955 out:
  956         kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
  957         kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
  958 
  959         zfs_exit(zfsvfs, FTAG);
  960 
  961         return (error);
  962 }
  963 
  964 /*
  965  * Creating a directory under '.zfs/snapshot' will automatically trigger
  966  * the creation of a new snapshot with the given name.
  967  */
  968 int
  969 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
  970     struct inode **ipp, cred_t *cr, int flags)
  971 {
  972         zfsvfs_t *zfsvfs = ITOZSB(dip);
  973         char *dsname;
  974         int error;
  975 
  976         if (!zfs_admin_snapshot)
  977                 return (SET_ERROR(EACCES));
  978 
  979         dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
  980 
  981         if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
  982                 error = SET_ERROR(EILSEQ);
  983                 goto out;
  984         }
  985 
  986         dmu_objset_name(zfsvfs->z_os, dsname);
  987 
  988         error = zfs_secpolicy_snapshot_perms(dsname, cr);
  989         if (error != 0)
  990                 goto out;
  991 
  992         if (error == 0) {
  993                 error = dmu_objset_snapshot_one(dsname, dirname);
  994                 if (error != 0)
  995                         goto out;
  996 
  997                 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
  998                     0, cr, NULL, NULL);
  999         }
 1000 out:
 1001         kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
 1002 
 1003         return (error);
 1004 }
 1005 
 1006 /*
 1007  * Flush everything out of the kernel's export table and such.
 1008  * This is needed as once the snapshot is used over NFS, its
 1009  * entries in svc_export and svc_expkey caches hold reference
 1010  * to the snapshot mount point. There is no known way of flushing
 1011  * only the entries related to the snapshot.
 1012  */
 1013 static void
 1014 exportfs_flush(void)
 1015 {
 1016         char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
 1017         char *envp[] = { NULL };
 1018 
 1019         (void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
 1020 }
 1021 
 1022 /*
 1023  * Attempt to unmount a snapshot by making a call to user space.
 1024  * There is no assurance that this can or will succeed, is just a
 1025  * best effort.  In the case where it does fail, perhaps because
 1026  * it's in use, the unmount will fail harmlessly.
 1027  */
 1028 int
 1029 zfsctl_snapshot_unmount(const char *snapname, int flags)
 1030 {
 1031         char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
 1032             NULL };
 1033         char *envp[] = { NULL };
 1034         zfs_snapentry_t *se;
 1035         int error;
 1036 
 1037         rw_enter(&zfs_snapshot_lock, RW_READER);
 1038         if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
 1039                 rw_exit(&zfs_snapshot_lock);
 1040                 return (SET_ERROR(ENOENT));
 1041         }
 1042         rw_exit(&zfs_snapshot_lock);
 1043 
 1044         exportfs_flush();
 1045 
 1046         if (flags & MNT_FORCE)
 1047                 argv[4] = "-fn";
 1048         argv[5] = se->se_path;
 1049         dprintf("unmount; path=%s\n", se->se_path);
 1050         error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
 1051         zfsctl_snapshot_rele(se);
 1052 
 1053 
 1054         /*
 1055          * The umount system utility will return 256 on error.  We must
 1056          * assume this error is because the file system is busy so it is
 1057          * converted to the more sensible EBUSY.
 1058          */
 1059         if (error)
 1060                 error = SET_ERROR(EBUSY);
 1061 
 1062         return (error);
 1063 }
 1064 
 1065 int
 1066 zfsctl_snapshot_mount(struct path *path, int flags)
 1067 {
 1068         struct dentry *dentry = path->dentry;
 1069         struct inode *ip = dentry->d_inode;
 1070         zfsvfs_t *zfsvfs;
 1071         zfsvfs_t *snap_zfsvfs;
 1072         zfs_snapentry_t *se;
 1073         char *full_name, *full_path;
 1074         char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
 1075             NULL };
 1076         char *envp[] = { NULL };
 1077         int error;
 1078         struct path spath;
 1079 
 1080         if (ip == NULL)
 1081                 return (SET_ERROR(EISDIR));
 1082 
 1083         zfsvfs = ITOZSB(ip);
 1084         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 1085                 return (error);
 1086 
 1087         full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 1088         full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
 1089 
 1090         error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
 1091             ZFS_MAX_DATASET_NAME_LEN, full_name);
 1092         if (error)
 1093                 goto error;
 1094 
 1095         /*
 1096          * Construct a mount point path from sb of the ctldir inode and dirent
 1097          * name, instead of from d_path(), so that chroot'd process doesn't fail
 1098          * on mount.zfs(8).
 1099          */
 1100         snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
 1101             zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
 1102             dname(dentry));
 1103 
 1104         /*
 1105          * Multiple concurrent automounts of a snapshot are never allowed.
 1106          * The snapshot may be manually mounted as many times as desired.
 1107          */
 1108         if (zfsctl_snapshot_ismounted(full_name)) {
 1109                 error = 0;
 1110                 goto error;
 1111         }
 1112 
 1113         /*
 1114          * Attempt to mount the snapshot from user space.  Normally this
 1115          * would be done using the vfs_kern_mount() function, however that
 1116          * function is marked GPL-only and cannot be used.  On error we
 1117          * careful to log the real error to the console and return EISDIR
 1118          * to safely abort the automount.  This should be very rare.
 1119          *
 1120          * If the user mode helper happens to return EBUSY, a concurrent
 1121          * mount is already in progress in which case the error is ignored.
 1122          * Take note that if the program was executed successfully the return
 1123          * value from call_usermodehelper() will be (exitcode << 8 + signal).
 1124          */
 1125         dprintf("mount; name=%s path=%s\n", full_name, full_path);
 1126         argv[5] = full_name;
 1127         argv[6] = full_path;
 1128         error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
 1129         if (error) {
 1130                 if (!(error & MOUNT_BUSY << 8)) {
 1131                         zfs_dbgmsg("Unable to automount %s error=%d",
 1132                             full_path, error);
 1133                         error = SET_ERROR(EISDIR);
 1134                 } else {
 1135                         /*
 1136                          * EBUSY, this could mean a concurrent mount, or the
 1137                          * snapshot has already been mounted at completely
 1138                          * different place. We return 0 so VFS will retry. For
 1139                          * the latter case the VFS will retry several times
 1140                          * and return ELOOP, which is probably not a very good
 1141                          * behavior.
 1142                          */
 1143                         error = 0;
 1144                 }
 1145                 goto error;
 1146         }
 1147 
 1148         /*
 1149          * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
 1150          * to identify this as an automounted filesystem.
 1151          */
 1152         spath = *path;
 1153         path_get(&spath);
 1154         if (follow_down_one(&spath)) {
 1155                 snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
 1156                 snap_zfsvfs->z_parent = zfsvfs;
 1157                 dentry = spath.dentry;
 1158                 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
 1159 
 1160                 rw_enter(&zfs_snapshot_lock, RW_WRITER);
 1161                 se = zfsctl_snapshot_alloc(full_name, full_path,
 1162                     snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
 1163                     dentry);
 1164                 zfsctl_snapshot_add(se);
 1165                 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
 1166                 rw_exit(&zfs_snapshot_lock);
 1167         }
 1168         path_put(&spath);
 1169 error:
 1170         kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
 1171         kmem_free(full_path, MAXPATHLEN);
 1172 
 1173         zfs_exit(zfsvfs, FTAG);
 1174 
 1175         return (error);
 1176 }
 1177 
 1178 /*
 1179  * Get the snapdir inode from fid
 1180  */
 1181 int
 1182 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
 1183     struct inode **ipp)
 1184 {
 1185         int error;
 1186         struct path path;
 1187         char *mnt;
 1188         struct dentry *dentry;
 1189 
 1190         mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
 1191 
 1192         error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
 1193             MAXPATHLEN, mnt);
 1194         if (error)
 1195                 goto out;
 1196 
 1197         /* Trigger automount */
 1198         error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
 1199         if (error)
 1200                 goto out;
 1201 
 1202         path_put(&path);
 1203         /*
 1204          * Get the snapdir inode. Note, we don't want to use the above
 1205          * path because it contains the root of the snapshot rather
 1206          * than the snapdir.
 1207          */
 1208         *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
 1209         if (*ipp == NULL) {
 1210                 error = SET_ERROR(ENOENT);
 1211                 goto out;
 1212         }
 1213 
 1214         /* check gen, see zfsctl_snapdir_fid */
 1215         dentry = d_obtain_alias(igrab(*ipp));
 1216         if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
 1217                 iput(*ipp);
 1218                 *ipp = NULL;
 1219                 error = SET_ERROR(ENOENT);
 1220         }
 1221         if (!IS_ERR(dentry))
 1222                 dput(dentry);
 1223 out:
 1224         kmem_free(mnt, MAXPATHLEN);
 1225         return (error);
 1226 }
 1227 
 1228 int
 1229 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
 1230     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
 1231 {
 1232         zfsvfs_t *zfsvfs = ITOZSB(dip);
 1233         znode_t *zp;
 1234         znode_t *dzp;
 1235         int error;
 1236 
 1237         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 1238                 return (error);
 1239 
 1240         if (zfsvfs->z_shares_dir == 0) {
 1241                 zfs_exit(zfsvfs, FTAG);
 1242                 return (SET_ERROR(ENOTSUP));
 1243         }
 1244 
 1245         if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
 1246                 error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
 1247                 zrele(dzp);
 1248         }
 1249 
 1250         zfs_exit(zfsvfs, FTAG);
 1251 
 1252         return (error);
 1253 }
 1254 
 1255 /*
 1256  * Initialize the various pieces we'll need to create and manipulate .zfs
 1257  * directories.  Currently this is unused but available.
 1258  */
 1259 void
 1260 zfsctl_init(void)
 1261 {
 1262         avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
 1263             sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
 1264             se_node_name));
 1265         avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
 1266             sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
 1267             se_node_objsetid));
 1268         rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
 1269 }
 1270 
 1271 /*
 1272  * Cleanup the various pieces we needed for .zfs directories.  In particular
 1273  * ensure the expiry timer is canceled safely.
 1274  */
 1275 void
 1276 zfsctl_fini(void)
 1277 {
 1278         avl_destroy(&zfs_snapshots_by_name);
 1279         avl_destroy(&zfs_snapshots_by_objsetid);
 1280         rw_destroy(&zfs_snapshot_lock);
 1281 }
 1282 
 1283 module_param(zfs_admin_snapshot, int, 0644);
 1284 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
 1285 
 1286 module_param(zfs_expire_snapshot, int, 0644);
 1287 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");

Cache object: 1ff3d8fb156ae98765787972068596e1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.