The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
   24  */
   25 
   26 /* Portions Copyright 2010 Robert Milkowski */
   27 
   28 #include <sys/types.h>
   29 #include <sys/param.h>
   30 #include <sys/sysmacros.h>
   31 #include <sys/kmem.h>
   32 #include <sys/pathname.h>
   33 #include <sys/vnode.h>
   34 #include <sys/vfs.h>
   35 #include <sys/mntent.h>
   36 #include <sys/cmn_err.h>
   37 #include <sys/zfs_znode.h>
   38 #include <sys/zfs_vnops.h>
   39 #include <sys/zfs_dir.h>
   40 #include <sys/zil.h>
   41 #include <sys/fs/zfs.h>
   42 #include <sys/dmu.h>
   43 #include <sys/dsl_prop.h>
   44 #include <sys/dsl_dataset.h>
   45 #include <sys/dsl_deleg.h>
   46 #include <sys/spa.h>
   47 #include <sys/zap.h>
   48 #include <sys/sa.h>
   49 #include <sys/sa_impl.h>
   50 #include <sys/policy.h>
   51 #include <sys/atomic.h>
   52 #include <sys/zfs_ioctl.h>
   53 #include <sys/zfs_ctldir.h>
   54 #include <sys/zfs_fuid.h>
   55 #include <sys/zfs_quota.h>
   56 #include <sys/sunddi.h>
   57 #include <sys/dmu_objset.h>
   58 #include <sys/dsl_dir.h>
   59 #include <sys/objlist.h>
   60 #include <sys/zpl.h>
   61 #include <linux/vfs_compat.h>
   62 #include "zfs_comutil.h"
   63 
   64 enum {
   65         TOKEN_RO,
   66         TOKEN_RW,
   67         TOKEN_SETUID,
   68         TOKEN_NOSETUID,
   69         TOKEN_EXEC,
   70         TOKEN_NOEXEC,
   71         TOKEN_DEVICES,
   72         TOKEN_NODEVICES,
   73         TOKEN_DIRXATTR,
   74         TOKEN_SAXATTR,
   75         TOKEN_XATTR,
   76         TOKEN_NOXATTR,
   77         TOKEN_ATIME,
   78         TOKEN_NOATIME,
   79         TOKEN_RELATIME,
   80         TOKEN_NORELATIME,
   81         TOKEN_NBMAND,
   82         TOKEN_NONBMAND,
   83         TOKEN_MNTPOINT,
   84         TOKEN_LAST,
   85 };
   86 
   87 static const match_table_t zpl_tokens = {
   88         { TOKEN_RO,             MNTOPT_RO },
   89         { TOKEN_RW,             MNTOPT_RW },
   90         { TOKEN_SETUID,         MNTOPT_SETUID },
   91         { TOKEN_NOSETUID,       MNTOPT_NOSETUID },
   92         { TOKEN_EXEC,           MNTOPT_EXEC },
   93         { TOKEN_NOEXEC,         MNTOPT_NOEXEC },
   94         { TOKEN_DEVICES,        MNTOPT_DEVICES },
   95         { TOKEN_NODEVICES,      MNTOPT_NODEVICES },
   96         { TOKEN_DIRXATTR,       MNTOPT_DIRXATTR },
   97         { TOKEN_SAXATTR,        MNTOPT_SAXATTR },
   98         { TOKEN_XATTR,          MNTOPT_XATTR },
   99         { TOKEN_NOXATTR,        MNTOPT_NOXATTR },
  100         { TOKEN_ATIME,          MNTOPT_ATIME },
  101         { TOKEN_NOATIME,        MNTOPT_NOATIME },
  102         { TOKEN_RELATIME,       MNTOPT_RELATIME },
  103         { TOKEN_NORELATIME,     MNTOPT_NORELATIME },
  104         { TOKEN_NBMAND,         MNTOPT_NBMAND },
  105         { TOKEN_NONBMAND,       MNTOPT_NONBMAND },
  106         { TOKEN_MNTPOINT,       MNTOPT_MNTPOINT "=%s" },
  107         { TOKEN_LAST,           NULL },
  108 };
  109 
  110 static void
  111 zfsvfs_vfs_free(vfs_t *vfsp)
  112 {
  113         if (vfsp != NULL) {
  114                 if (vfsp->vfs_mntpoint != NULL)
  115                         kmem_strfree(vfsp->vfs_mntpoint);
  116 
  117                 kmem_free(vfsp, sizeof (vfs_t));
  118         }
  119 }
  120 
  121 static int
  122 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
  123 {
  124         switch (token) {
  125         case TOKEN_RO:
  126                 vfsp->vfs_readonly = B_TRUE;
  127                 vfsp->vfs_do_readonly = B_TRUE;
  128                 break;
  129         case TOKEN_RW:
  130                 vfsp->vfs_readonly = B_FALSE;
  131                 vfsp->vfs_do_readonly = B_TRUE;
  132                 break;
  133         case TOKEN_SETUID:
  134                 vfsp->vfs_setuid = B_TRUE;
  135                 vfsp->vfs_do_setuid = B_TRUE;
  136                 break;
  137         case TOKEN_NOSETUID:
  138                 vfsp->vfs_setuid = B_FALSE;
  139                 vfsp->vfs_do_setuid = B_TRUE;
  140                 break;
  141         case TOKEN_EXEC:
  142                 vfsp->vfs_exec = B_TRUE;
  143                 vfsp->vfs_do_exec = B_TRUE;
  144                 break;
  145         case TOKEN_NOEXEC:
  146                 vfsp->vfs_exec = B_FALSE;
  147                 vfsp->vfs_do_exec = B_TRUE;
  148                 break;
  149         case TOKEN_DEVICES:
  150                 vfsp->vfs_devices = B_TRUE;
  151                 vfsp->vfs_do_devices = B_TRUE;
  152                 break;
  153         case TOKEN_NODEVICES:
  154                 vfsp->vfs_devices = B_FALSE;
  155                 vfsp->vfs_do_devices = B_TRUE;
  156                 break;
  157         case TOKEN_DIRXATTR:
  158                 vfsp->vfs_xattr = ZFS_XATTR_DIR;
  159                 vfsp->vfs_do_xattr = B_TRUE;
  160                 break;
  161         case TOKEN_SAXATTR:
  162                 vfsp->vfs_xattr = ZFS_XATTR_SA;
  163                 vfsp->vfs_do_xattr = B_TRUE;
  164                 break;
  165         case TOKEN_XATTR:
  166                 vfsp->vfs_xattr = ZFS_XATTR_DIR;
  167                 vfsp->vfs_do_xattr = B_TRUE;
  168                 break;
  169         case TOKEN_NOXATTR:
  170                 vfsp->vfs_xattr = ZFS_XATTR_OFF;
  171                 vfsp->vfs_do_xattr = B_TRUE;
  172                 break;
  173         case TOKEN_ATIME:
  174                 vfsp->vfs_atime = B_TRUE;
  175                 vfsp->vfs_do_atime = B_TRUE;
  176                 break;
  177         case TOKEN_NOATIME:
  178                 vfsp->vfs_atime = B_FALSE;
  179                 vfsp->vfs_do_atime = B_TRUE;
  180                 break;
  181         case TOKEN_RELATIME:
  182                 vfsp->vfs_relatime = B_TRUE;
  183                 vfsp->vfs_do_relatime = B_TRUE;
  184                 break;
  185         case TOKEN_NORELATIME:
  186                 vfsp->vfs_relatime = B_FALSE;
  187                 vfsp->vfs_do_relatime = B_TRUE;
  188                 break;
  189         case TOKEN_NBMAND:
  190                 vfsp->vfs_nbmand = B_TRUE;
  191                 vfsp->vfs_do_nbmand = B_TRUE;
  192                 break;
  193         case TOKEN_NONBMAND:
  194                 vfsp->vfs_nbmand = B_FALSE;
  195                 vfsp->vfs_do_nbmand = B_TRUE;
  196                 break;
  197         case TOKEN_MNTPOINT:
  198                 vfsp->vfs_mntpoint = match_strdup(&args[0]);
  199                 if (vfsp->vfs_mntpoint == NULL)
  200                         return (SET_ERROR(ENOMEM));
  201 
  202                 break;
  203         default:
  204                 break;
  205         }
  206 
  207         return (0);
  208 }
  209 
  210 /*
  211  * Parse the raw mntopts and return a vfs_t describing the options.
  212  */
  213 static int
  214 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
  215 {
  216         vfs_t *tmp_vfsp;
  217         int error;
  218 
  219         tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
  220 
  221         if (mntopts != NULL) {
  222                 substring_t args[MAX_OPT_ARGS];
  223                 char *tmp_mntopts, *p, *t;
  224                 int token;
  225 
  226                 tmp_mntopts = t = kmem_strdup(mntopts);
  227                 if (tmp_mntopts == NULL)
  228                         return (SET_ERROR(ENOMEM));
  229 
  230                 while ((p = strsep(&t, ",")) != NULL) {
  231                         if (!*p)
  232                                 continue;
  233 
  234                         args[0].to = args[0].from = NULL;
  235                         token = match_token(p, zpl_tokens, args);
  236                         error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
  237                         if (error) {
  238                                 kmem_strfree(tmp_mntopts);
  239                                 zfsvfs_vfs_free(tmp_vfsp);
  240                                 return (error);
  241                         }
  242                 }
  243 
  244                 kmem_strfree(tmp_mntopts);
  245         }
  246 
  247         *vfsp = tmp_vfsp;
  248 
  249         return (0);
  250 }
  251 
  252 boolean_t
  253 zfs_is_readonly(zfsvfs_t *zfsvfs)
  254 {
  255         return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
  256 }
  257 
  258 int
  259 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
  260 {
  261         (void) cr;
  262         zfsvfs_t *zfsvfs = sb->s_fs_info;
  263 
  264         /*
  265          * Semantically, the only requirement is that the sync be initiated.
  266          * The DMU syncs out txgs frequently, so there's nothing to do.
  267          */
  268         if (!wait)
  269                 return (0);
  270 
  271         if (zfsvfs != NULL) {
  272                 /*
  273                  * Sync a specific filesystem.
  274                  */
  275                 dsl_pool_t *dp;
  276                 int error;
  277 
  278                 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
  279                         return (error);
  280                 dp = dmu_objset_pool(zfsvfs->z_os);
  281 
  282                 /*
  283                  * If the system is shutting down, then skip any
  284                  * filesystems which may exist on a suspended pool.
  285                  */
  286                 if (spa_suspended(dp->dp_spa)) {
  287                         zfs_exit(zfsvfs, FTAG);
  288                         return (0);
  289                 }
  290 
  291                 if (zfsvfs->z_log != NULL)
  292                         zil_commit(zfsvfs->z_log, 0);
  293 
  294                 zfs_exit(zfsvfs, FTAG);
  295         } else {
  296                 /*
  297                  * Sync all ZFS filesystems.  This is what happens when you
  298                  * run sync(1).  Unlike other filesystems, ZFS honors the
  299                  * request by waiting for all pools to commit all dirty data.
  300                  */
  301                 spa_sync_allpools();
  302         }
  303 
  304         return (0);
  305 }
  306 
  307 static void
  308 atime_changed_cb(void *arg, uint64_t newval)
  309 {
  310         zfsvfs_t *zfsvfs = arg;
  311         struct super_block *sb = zfsvfs->z_sb;
  312 
  313         if (sb == NULL)
  314                 return;
  315         /*
  316          * Update SB_NOATIME bit in VFS super block.  Since atime update is
  317          * determined by atime_needs_update(), atime_needs_update() needs to
  318          * return false if atime is turned off, and not unconditionally return
  319          * false if atime is turned on.
  320          */
  321         if (newval)
  322                 sb->s_flags &= ~SB_NOATIME;
  323         else
  324                 sb->s_flags |= SB_NOATIME;
  325 }
  326 
  327 static void
  328 relatime_changed_cb(void *arg, uint64_t newval)
  329 {
  330         ((zfsvfs_t *)arg)->z_relatime = newval;
  331 }
  332 
  333 static void
  334 xattr_changed_cb(void *arg, uint64_t newval)
  335 {
  336         zfsvfs_t *zfsvfs = arg;
  337 
  338         if (newval == ZFS_XATTR_OFF) {
  339                 zfsvfs->z_flags &= ~ZSB_XATTR;
  340         } else {
  341                 zfsvfs->z_flags |= ZSB_XATTR;
  342 
  343                 if (newval == ZFS_XATTR_SA)
  344                         zfsvfs->z_xattr_sa = B_TRUE;
  345                 else
  346                         zfsvfs->z_xattr_sa = B_FALSE;
  347         }
  348 }
  349 
  350 static void
  351 acltype_changed_cb(void *arg, uint64_t newval)
  352 {
  353         zfsvfs_t *zfsvfs = arg;
  354 
  355         switch (newval) {
  356         case ZFS_ACLTYPE_NFSV4:
  357         case ZFS_ACLTYPE_OFF:
  358                 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
  359                 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
  360                 break;
  361         case ZFS_ACLTYPE_POSIX:
  362 #ifdef CONFIG_FS_POSIX_ACL
  363                 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
  364                 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
  365 #else
  366                 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
  367                 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
  368 #endif /* CONFIG_FS_POSIX_ACL */
  369                 break;
  370         default:
  371                 break;
  372         }
  373 }
  374 
  375 static void
  376 blksz_changed_cb(void *arg, uint64_t newval)
  377 {
  378         zfsvfs_t *zfsvfs = arg;
  379         ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
  380         ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
  381         ASSERT(ISP2(newval));
  382 
  383         zfsvfs->z_max_blksz = newval;
  384 }
  385 
  386 static void
  387 readonly_changed_cb(void *arg, uint64_t newval)
  388 {
  389         zfsvfs_t *zfsvfs = arg;
  390         struct super_block *sb = zfsvfs->z_sb;
  391 
  392         if (sb == NULL)
  393                 return;
  394 
  395         if (newval)
  396                 sb->s_flags |= SB_RDONLY;
  397         else
  398                 sb->s_flags &= ~SB_RDONLY;
  399 }
  400 
  401 static void
  402 devices_changed_cb(void *arg, uint64_t newval)
  403 {
  404 }
  405 
  406 static void
  407 setuid_changed_cb(void *arg, uint64_t newval)
  408 {
  409 }
  410 
  411 static void
  412 exec_changed_cb(void *arg, uint64_t newval)
  413 {
  414 }
  415 
  416 static void
  417 nbmand_changed_cb(void *arg, uint64_t newval)
  418 {
  419         zfsvfs_t *zfsvfs = arg;
  420         struct super_block *sb = zfsvfs->z_sb;
  421 
  422         if (sb == NULL)
  423                 return;
  424 
  425         if (newval == TRUE)
  426                 sb->s_flags |= SB_MANDLOCK;
  427         else
  428                 sb->s_flags &= ~SB_MANDLOCK;
  429 }
  430 
  431 static void
  432 snapdir_changed_cb(void *arg, uint64_t newval)
  433 {
  434         ((zfsvfs_t *)arg)->z_show_ctldir = newval;
  435 }
  436 
  437 static void
  438 acl_mode_changed_cb(void *arg, uint64_t newval)
  439 {
  440         zfsvfs_t *zfsvfs = arg;
  441 
  442         zfsvfs->z_acl_mode = newval;
  443 }
  444 
  445 static void
  446 acl_inherit_changed_cb(void *arg, uint64_t newval)
  447 {
  448         ((zfsvfs_t *)arg)->z_acl_inherit = newval;
  449 }
  450 
  451 static int
  452 zfs_register_callbacks(vfs_t *vfsp)
  453 {
  454         struct dsl_dataset *ds = NULL;
  455         objset_t *os = NULL;
  456         zfsvfs_t *zfsvfs = NULL;
  457         int error = 0;
  458 
  459         ASSERT(vfsp);
  460         zfsvfs = vfsp->vfs_data;
  461         ASSERT(zfsvfs);
  462         os = zfsvfs->z_os;
  463 
  464         /*
  465          * The act of registering our callbacks will destroy any mount
  466          * options we may have.  In order to enable temporary overrides
  467          * of mount options, we stash away the current values and
  468          * restore them after we register the callbacks.
  469          */
  470         if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
  471                 vfsp->vfs_do_readonly = B_TRUE;
  472                 vfsp->vfs_readonly = B_TRUE;
  473         }
  474 
  475         /*
  476          * Register property callbacks.
  477          *
  478          * It would probably be fine to just check for i/o error from
  479          * the first prop_register(), but I guess I like to go
  480          * overboard...
  481          */
  482         ds = dmu_objset_ds(os);
  483         dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
  484         error = dsl_prop_register(ds,
  485             zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
  486         error = error ? error : dsl_prop_register(ds,
  487             zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
  488         error = error ? error : dsl_prop_register(ds,
  489             zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
  490         error = error ? error : dsl_prop_register(ds,
  491             zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
  492         error = error ? error : dsl_prop_register(ds,
  493             zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
  494         error = error ? error : dsl_prop_register(ds,
  495             zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
  496         error = error ? error : dsl_prop_register(ds,
  497             zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
  498         error = error ? error : dsl_prop_register(ds,
  499             zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
  500         error = error ? error : dsl_prop_register(ds,
  501             zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
  502         error = error ? error : dsl_prop_register(ds,
  503             zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
  504         error = error ? error : dsl_prop_register(ds,
  505             zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
  506         error = error ? error : dsl_prop_register(ds,
  507             zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
  508             zfsvfs);
  509         error = error ? error : dsl_prop_register(ds,
  510             zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
  511         dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
  512         if (error)
  513                 goto unregister;
  514 
  515         /*
  516          * Invoke our callbacks to restore temporary mount options.
  517          */
  518         if (vfsp->vfs_do_readonly)
  519                 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
  520         if (vfsp->vfs_do_setuid)
  521                 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
  522         if (vfsp->vfs_do_exec)
  523                 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
  524         if (vfsp->vfs_do_devices)
  525                 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
  526         if (vfsp->vfs_do_xattr)
  527                 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
  528         if (vfsp->vfs_do_atime)
  529                 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
  530         if (vfsp->vfs_do_relatime)
  531                 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
  532         if (vfsp->vfs_do_nbmand)
  533                 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
  534 
  535         return (0);
  536 
  537 unregister:
  538         dsl_prop_unregister_all(ds, zfsvfs);
  539         return (error);
  540 }
  541 
  542 /*
  543  * Takes a dataset, a property, a value and that value's setpoint as
  544  * found in the ZAP. Checks if the property has been changed in the vfs.
  545  * If so, val and setpoint will be overwritten with updated content.
  546  * Otherwise, they are left unchanged.
  547  */
  548 int
  549 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
  550     char *setpoint)
  551 {
  552         int error;
  553         zfsvfs_t *zfvp;
  554         vfs_t *vfsp;
  555         objset_t *os;
  556         uint64_t tmp = *val;
  557 
  558         error = dmu_objset_from_ds(ds, &os);
  559         if (error != 0)
  560                 return (error);
  561 
  562         if (dmu_objset_type(os) != DMU_OST_ZFS)
  563                 return (EINVAL);
  564 
  565         mutex_enter(&os->os_user_ptr_lock);
  566         zfvp = dmu_objset_get_user(os);
  567         mutex_exit(&os->os_user_ptr_lock);
  568         if (zfvp == NULL)
  569                 return (ESRCH);
  570 
  571         vfsp = zfvp->z_vfs;
  572 
  573         switch (zfs_prop) {
  574         case ZFS_PROP_ATIME:
  575                 if (vfsp->vfs_do_atime)
  576                         tmp = vfsp->vfs_atime;
  577                 break;
  578         case ZFS_PROP_RELATIME:
  579                 if (vfsp->vfs_do_relatime)
  580                         tmp = vfsp->vfs_relatime;
  581                 break;
  582         case ZFS_PROP_DEVICES:
  583                 if (vfsp->vfs_do_devices)
  584                         tmp = vfsp->vfs_devices;
  585                 break;
  586         case ZFS_PROP_EXEC:
  587                 if (vfsp->vfs_do_exec)
  588                         tmp = vfsp->vfs_exec;
  589                 break;
  590         case ZFS_PROP_SETUID:
  591                 if (vfsp->vfs_do_setuid)
  592                         tmp = vfsp->vfs_setuid;
  593                 break;
  594         case ZFS_PROP_READONLY:
  595                 if (vfsp->vfs_do_readonly)
  596                         tmp = vfsp->vfs_readonly;
  597                 break;
  598         case ZFS_PROP_XATTR:
  599                 if (vfsp->vfs_do_xattr)
  600                         tmp = vfsp->vfs_xattr;
  601                 break;
  602         case ZFS_PROP_NBMAND:
  603                 if (vfsp->vfs_do_nbmand)
  604                         tmp = vfsp->vfs_nbmand;
  605                 break;
  606         default:
  607                 return (ENOENT);
  608         }
  609 
  610         if (tmp != *val) {
  611                 (void) strcpy(setpoint, "temporary");
  612                 *val = tmp;
  613         }
  614         return (0);
  615 }
  616 
  617 /*
  618  * Associate this zfsvfs with the given objset, which must be owned.
  619  * This will cache a bunch of on-disk state from the objset in the
  620  * zfsvfs.
  621  */
  622 static int
  623 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
  624 {
  625         int error;
  626         uint64_t val;
  627 
  628         zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
  629         zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
  630         zfsvfs->z_os = os;
  631 
  632         error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
  633         if (error != 0)
  634                 return (error);
  635         if (zfsvfs->z_version >
  636             zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
  637                 (void) printk("Can't mount a version %lld file system "
  638                     "on a version %lld pool\n. Pool must be upgraded to mount "
  639                     "this file system.\n", (u_longlong_t)zfsvfs->z_version,
  640                     (u_longlong_t)spa_version(dmu_objset_spa(os)));
  641                 return (SET_ERROR(ENOTSUP));
  642         }
  643         error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
  644         if (error != 0)
  645                 return (error);
  646         zfsvfs->z_norm = (int)val;
  647 
  648         error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
  649         if (error != 0)
  650                 return (error);
  651         zfsvfs->z_utf8 = (val != 0);
  652 
  653         error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
  654         if (error != 0)
  655                 return (error);
  656         zfsvfs->z_case = (uint_t)val;
  657 
  658         if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
  659                 return (error);
  660         zfsvfs->z_acl_type = (uint_t)val;
  661 
  662         /*
  663          * Fold case on file systems that are always or sometimes case
  664          * insensitive.
  665          */
  666         if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
  667             zfsvfs->z_case == ZFS_CASE_MIXED)
  668                 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
  669 
  670         zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
  671         zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
  672 
  673         uint64_t sa_obj = 0;
  674         if (zfsvfs->z_use_sa) {
  675                 /* should either have both of these objects or none */
  676                 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
  677                     &sa_obj);
  678                 if (error != 0)
  679                         return (error);
  680 
  681                 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
  682                 if ((error == 0) && (val == ZFS_XATTR_SA))
  683                         zfsvfs->z_xattr_sa = B_TRUE;
  684         }
  685 
  686         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
  687             &zfsvfs->z_root);
  688         if (error != 0)
  689                 return (error);
  690         ASSERT(zfsvfs->z_root != 0);
  691 
  692         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
  693             &zfsvfs->z_unlinkedobj);
  694         if (error != 0)
  695                 return (error);
  696 
  697         error = zap_lookup(os, MASTER_NODE_OBJ,
  698             zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
  699             8, 1, &zfsvfs->z_userquota_obj);
  700         if (error == ENOENT)
  701                 zfsvfs->z_userquota_obj = 0;
  702         else if (error != 0)
  703                 return (error);
  704 
  705         error = zap_lookup(os, MASTER_NODE_OBJ,
  706             zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
  707             8, 1, &zfsvfs->z_groupquota_obj);
  708         if (error == ENOENT)
  709                 zfsvfs->z_groupquota_obj = 0;
  710         else if (error != 0)
  711                 return (error);
  712 
  713         error = zap_lookup(os, MASTER_NODE_OBJ,
  714             zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
  715             8, 1, &zfsvfs->z_projectquota_obj);
  716         if (error == ENOENT)
  717                 zfsvfs->z_projectquota_obj = 0;
  718         else if (error != 0)
  719                 return (error);
  720 
  721         error = zap_lookup(os, MASTER_NODE_OBJ,
  722             zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
  723             8, 1, &zfsvfs->z_userobjquota_obj);
  724         if (error == ENOENT)
  725                 zfsvfs->z_userobjquota_obj = 0;
  726         else if (error != 0)
  727                 return (error);
  728 
  729         error = zap_lookup(os, MASTER_NODE_OBJ,
  730             zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
  731             8, 1, &zfsvfs->z_groupobjquota_obj);
  732         if (error == ENOENT)
  733                 zfsvfs->z_groupobjquota_obj = 0;
  734         else if (error != 0)
  735                 return (error);
  736 
  737         error = zap_lookup(os, MASTER_NODE_OBJ,
  738             zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
  739             8, 1, &zfsvfs->z_projectobjquota_obj);
  740         if (error == ENOENT)
  741                 zfsvfs->z_projectobjquota_obj = 0;
  742         else if (error != 0)
  743                 return (error);
  744 
  745         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
  746             &zfsvfs->z_fuid_obj);
  747         if (error == ENOENT)
  748                 zfsvfs->z_fuid_obj = 0;
  749         else if (error != 0)
  750                 return (error);
  751 
  752         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
  753             &zfsvfs->z_shares_dir);
  754         if (error == ENOENT)
  755                 zfsvfs->z_shares_dir = 0;
  756         else if (error != 0)
  757                 return (error);
  758 
  759         error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
  760             &zfsvfs->z_attr_table);
  761         if (error != 0)
  762                 return (error);
  763 
  764         if (zfsvfs->z_version >= ZPL_VERSION_SA)
  765                 sa_register_update_callback(os, zfs_sa_upgrade);
  766 
  767         return (0);
  768 }
  769 
  770 int
  771 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
  772 {
  773         objset_t *os;
  774         zfsvfs_t *zfsvfs;
  775         int error;
  776         boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
  777 
  778         zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
  779 
  780         error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
  781         if (error != 0) {
  782                 kmem_free(zfsvfs, sizeof (zfsvfs_t));
  783                 return (error);
  784         }
  785 
  786         error = zfsvfs_create_impl(zfvp, zfsvfs, os);
  787 
  788         return (error);
  789 }
  790 
  791 
  792 /*
  793  * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
  794  * on a failure.  Do not pass in a statically allocated zfsvfs.
  795  */
  796 int
  797 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
  798 {
  799         int error;
  800 
  801         zfsvfs->z_vfs = NULL;
  802         zfsvfs->z_sb = NULL;
  803         zfsvfs->z_parent = zfsvfs;
  804 
  805         mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
  806         mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
  807         list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
  808             offsetof(znode_t, z_link_node));
  809         ZFS_TEARDOWN_INIT(zfsvfs);
  810         rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
  811         rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
  812 
  813         int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
  814             ZFS_OBJ_MTX_MAX);
  815         zfsvfs->z_hold_size = size;
  816         zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
  817             KM_SLEEP);
  818         zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
  819         for (int i = 0; i != size; i++) {
  820                 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
  821                     sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
  822                 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
  823         }
  824 
  825         error = zfsvfs_init(zfsvfs, os);
  826         if (error != 0) {
  827                 dmu_objset_disown(os, B_TRUE, zfsvfs);
  828                 *zfvp = NULL;
  829                 zfsvfs_free(zfsvfs);
  830                 return (error);
  831         }
  832 
  833         zfsvfs->z_drain_task = TASKQID_INVALID;
  834         zfsvfs->z_draining = B_FALSE;
  835         zfsvfs->z_drain_cancel = B_TRUE;
  836 
  837         *zfvp = zfsvfs;
  838         return (0);
  839 }
  840 
  841 static int
  842 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
  843 {
  844         int error;
  845         boolean_t readonly = zfs_is_readonly(zfsvfs);
  846 
  847         error = zfs_register_callbacks(zfsvfs->z_vfs);
  848         if (error)
  849                 return (error);
  850 
  851         /*
  852          * If we are not mounting (ie: online recv), then we don't
  853          * have to worry about replaying the log as we blocked all
  854          * operations out since we closed the ZIL.
  855          */
  856         if (mounting) {
  857                 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
  858                 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
  859                 if (error)
  860                         return (error);
  861                 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
  862                     &zfsvfs->z_kstat.dk_zil_sums);
  863 
  864                 /*
  865                  * During replay we remove the read only flag to
  866                  * allow replays to succeed.
  867                  */
  868                 if (readonly != 0) {
  869                         readonly_changed_cb(zfsvfs, B_FALSE);
  870                 } else {
  871                         zap_stats_t zs;
  872                         if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
  873                             &zs) == 0) {
  874                                 dataset_kstats_update_nunlinks_kstat(
  875                                     &zfsvfs->z_kstat, zs.zs_num_entries);
  876                                 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
  877                                     "num_entries in unlinked set: %llu",
  878                                     zs.zs_num_entries);
  879                         }
  880                         zfs_unlinked_drain(zfsvfs);
  881                         dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
  882                         dd->dd_activity_cancelled = B_FALSE;
  883                 }
  884 
  885                 /*
  886                  * Parse and replay the intent log.
  887                  *
  888                  * Because of ziltest, this must be done after
  889                  * zfs_unlinked_drain().  (Further note: ziltest
  890                  * doesn't use readonly mounts, where
  891                  * zfs_unlinked_drain() isn't called.)  This is because
  892                  * ziltest causes spa_sync() to think it's committed,
  893                  * but actually it is not, so the intent log contains
  894                  * many txg's worth of changes.
  895                  *
  896                  * In particular, if object N is in the unlinked set in
  897                  * the last txg to actually sync, then it could be
  898                  * actually freed in a later txg and then reallocated
  899                  * in a yet later txg.  This would write a "create
  900                  * object N" record to the intent log.  Normally, this
  901                  * would be fine because the spa_sync() would have
  902                  * written out the fact that object N is free, before
  903                  * we could write the "create object N" intent log
  904                  * record.
  905                  *
  906                  * But when we are in ziltest mode, we advance the "open
  907                  * txg" without actually spa_sync()-ing the changes to
  908                  * disk.  So we would see that object N is still
  909                  * allocated and in the unlinked set, and there is an
  910                  * intent log record saying to allocate it.
  911                  */
  912                 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
  913                         if (zil_replay_disable) {
  914                                 zil_destroy(zfsvfs->z_log, B_FALSE);
  915                         } else {
  916                                 zfsvfs->z_replay = B_TRUE;
  917                                 zil_replay(zfsvfs->z_os, zfsvfs,
  918                                     zfs_replay_vector);
  919                                 zfsvfs->z_replay = B_FALSE;
  920                         }
  921                 }
  922 
  923                 /* restore readonly bit */
  924                 if (readonly != 0)
  925                         readonly_changed_cb(zfsvfs, B_TRUE);
  926         } else {
  927                 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
  928                 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
  929                     &zfsvfs->z_kstat.dk_zil_sums);
  930         }
  931 
  932         /*
  933          * Set the objset user_ptr to track its zfsvfs.
  934          */
  935         mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
  936         dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
  937         mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
  938 
  939         return (0);
  940 }
  941 
  942 void
  943 zfsvfs_free(zfsvfs_t *zfsvfs)
  944 {
  945         int i, size = zfsvfs->z_hold_size;
  946 
  947         zfs_fuid_destroy(zfsvfs);
  948 
  949         mutex_destroy(&zfsvfs->z_znodes_lock);
  950         mutex_destroy(&zfsvfs->z_lock);
  951         list_destroy(&zfsvfs->z_all_znodes);
  952         ZFS_TEARDOWN_DESTROY(zfsvfs);
  953         rw_destroy(&zfsvfs->z_teardown_inactive_lock);
  954         rw_destroy(&zfsvfs->z_fuid_lock);
  955         for (i = 0; i != size; i++) {
  956                 avl_destroy(&zfsvfs->z_hold_trees[i]);
  957                 mutex_destroy(&zfsvfs->z_hold_locks[i]);
  958         }
  959         vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
  960         vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
  961         zfsvfs_vfs_free(zfsvfs->z_vfs);
  962         dataset_kstats_destroy(&zfsvfs->z_kstat);
  963         kmem_free(zfsvfs, sizeof (zfsvfs_t));
  964 }
  965 
  966 static void
  967 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
  968 {
  969         zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
  970         zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
  971 }
  972 
  973 static void
  974 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
  975 {
  976         objset_t *os = zfsvfs->z_os;
  977 
  978         if (!dmu_objset_is_snapshot(os))
  979                 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
  980 }
  981 
  982 #ifdef HAVE_MLSLABEL
  983 /*
  984  * Check that the hex label string is appropriate for the dataset being
  985  * mounted into the global_zone proper.
  986  *
  987  * Return an error if the hex label string is not default or
  988  * admin_low/admin_high.  For admin_low labels, the corresponding
  989  * dataset must be readonly.
  990  */
  991 int
  992 zfs_check_global_label(const char *dsname, const char *hexsl)
  993 {
  994         if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
  995                 return (0);
  996         if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
  997                 return (0);
  998         if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
  999                 /* must be readonly */
 1000                 uint64_t rdonly;
 1001 
 1002                 if (dsl_prop_get_integer(dsname,
 1003                     zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
 1004                         return (SET_ERROR(EACCES));
 1005                 return (rdonly ? 0 : SET_ERROR(EACCES));
 1006         }
 1007         return (SET_ERROR(EACCES));
 1008 }
 1009 #endif /* HAVE_MLSLABEL */
 1010 
 1011 static int
 1012 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
 1013     uint32_t bshift)
 1014 {
 1015         char buf[20 + DMU_OBJACCT_PREFIX_LEN];
 1016         uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
 1017         uint64_t quota;
 1018         uint64_t used;
 1019         int err;
 1020 
 1021         strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
 1022         err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
 1023             sizeof (buf) - offset, B_FALSE);
 1024         if (err)
 1025                 return (err);
 1026 
 1027         if (zfsvfs->z_projectquota_obj == 0)
 1028                 goto objs;
 1029 
 1030         err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
 1031             buf + offset, 8, 1, &quota);
 1032         if (err == ENOENT)
 1033                 goto objs;
 1034         else if (err)
 1035                 return (err);
 1036 
 1037         err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
 1038             buf + offset, 8, 1, &used);
 1039         if (unlikely(err == ENOENT)) {
 1040                 uint32_t blksize;
 1041                 u_longlong_t nblocks;
 1042 
 1043                 /*
 1044                  * Quota accounting is async, so it is possible race case.
 1045                  * There is at least one object with the given project ID.
 1046                  */
 1047                 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
 1048                 if (unlikely(zp->z_blksz == 0))
 1049                         blksize = zfsvfs->z_max_blksz;
 1050 
 1051                 used = blksize * nblocks;
 1052         } else if (err) {
 1053                 return (err);
 1054         }
 1055 
 1056         statp->f_blocks = quota >> bshift;
 1057         statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
 1058         statp->f_bavail = statp->f_bfree;
 1059 
 1060 objs:
 1061         if (zfsvfs->z_projectobjquota_obj == 0)
 1062                 return (0);
 1063 
 1064         err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
 1065             buf + offset, 8, 1, &quota);
 1066         if (err == ENOENT)
 1067                 return (0);
 1068         else if (err)
 1069                 return (err);
 1070 
 1071         err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
 1072             buf, 8, 1, &used);
 1073         if (unlikely(err == ENOENT)) {
 1074                 /*
 1075                  * Quota accounting is async, so it is possible race case.
 1076                  * There is at least one object with the given project ID.
 1077                  */
 1078                 used = 1;
 1079         } else if (err) {
 1080                 return (err);
 1081         }
 1082 
 1083         statp->f_files = quota;
 1084         statp->f_ffree = (quota > used) ? (quota - used) : 0;
 1085 
 1086         return (0);
 1087 }
 1088 
 1089 int
 1090 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
 1091 {
 1092         zfsvfs_t *zfsvfs = ITOZSB(ip);
 1093         uint64_t refdbytes, availbytes, usedobjs, availobjs;
 1094         int err = 0;
 1095 
 1096         if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
 1097                 return (err);
 1098 
 1099         dmu_objset_space(zfsvfs->z_os,
 1100             &refdbytes, &availbytes, &usedobjs, &availobjs);
 1101 
 1102         uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
 1103         /*
 1104          * The underlying storage pool actually uses multiple block
 1105          * size.  Under Solaris frsize (fragment size) is reported as
 1106          * the smallest block size we support, and bsize (block size)
 1107          * as the filesystem's maximum block size.  Unfortunately,
 1108          * under Linux the fragment size and block size are often used
 1109          * interchangeably.  Thus we are forced to report both of them
 1110          * as the filesystem's maximum block size.
 1111          */
 1112         statp->f_frsize = zfsvfs->z_max_blksz;
 1113         statp->f_bsize = zfsvfs->z_max_blksz;
 1114         uint32_t bshift = fls(statp->f_bsize) - 1;
 1115 
 1116         /*
 1117          * The following report "total" blocks of various kinds in
 1118          * the file system, but reported in terms of f_bsize - the
 1119          * "preferred" size.
 1120          */
 1121 
 1122         /* Round up so we never have a filesystem using 0 blocks. */
 1123         refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
 1124         statp->f_blocks = (refdbytes + availbytes) >> bshift;
 1125         statp->f_bfree = availbytes >> bshift;
 1126         statp->f_bavail = statp->f_bfree; /* no root reservation */
 1127 
 1128         /*
 1129          * statvfs() should really be called statufs(), because it assumes
 1130          * static metadata.  ZFS doesn't preallocate files, so the best
 1131          * we can do is report the max that could possibly fit in f_files,
 1132          * and that minus the number actually used in f_ffree.
 1133          * For f_ffree, report the smaller of the number of objects available
 1134          * and the number of blocks (each object will take at least a block).
 1135          */
 1136         statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
 1137         statp->f_files = statp->f_ffree + usedobjs;
 1138         statp->f_fsid.val[0] = (uint32_t)fsid;
 1139         statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
 1140         statp->f_type = ZFS_SUPER_MAGIC;
 1141         statp->f_namelen = MAXNAMELEN - 1;
 1142 
 1143         /*
 1144          * We have all of 40 characters to stuff a string here.
 1145          * Is there anything useful we could/should provide?
 1146          */
 1147         memset(statp->f_spare, 0, sizeof (statp->f_spare));
 1148 
 1149         if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
 1150             dmu_objset_projectquota_present(zfsvfs->z_os)) {
 1151                 znode_t *zp = ITOZ(ip);
 1152 
 1153                 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
 1154                     zpl_is_valid_projid(zp->z_projid))
 1155                         err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
 1156         }
 1157 
 1158         zfs_exit(zfsvfs, FTAG);
 1159         return (err);
 1160 }
 1161 
 1162 static int
 1163 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
 1164 {
 1165         znode_t *rootzp;
 1166         int error;
 1167 
 1168         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 1169                 return (error);
 1170 
 1171         error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
 1172         if (error == 0)
 1173                 *ipp = ZTOI(rootzp);
 1174 
 1175         zfs_exit(zfsvfs, FTAG);
 1176         return (error);
 1177 }
 1178 
 1179 /*
 1180  * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
 1181  * To accommodate this we must improvise and manually walk the list of znodes
 1182  * attempting to prune dentries in order to be able to drop the inodes.
 1183  *
 1184  * To avoid scanning the same znodes multiple times they are always rotated
 1185  * to the end of the z_all_znodes list.  New znodes are inserted at the
 1186  * end of the list so we're always scanning the oldest znodes first.
 1187  */
 1188 static int
 1189 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
 1190 {
 1191         znode_t **zp_array, *zp;
 1192         int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
 1193         int objects = 0;
 1194         int i = 0, j = 0;
 1195 
 1196         zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
 1197 
 1198         mutex_enter(&zfsvfs->z_znodes_lock);
 1199         while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
 1200 
 1201                 if ((i++ > nr_to_scan) || (j >= max_array))
 1202                         break;
 1203 
 1204                 ASSERT(list_link_active(&zp->z_link_node));
 1205                 list_remove(&zfsvfs->z_all_znodes, zp);
 1206                 list_insert_tail(&zfsvfs->z_all_znodes, zp);
 1207 
 1208                 /* Skip active znodes and .zfs entries */
 1209                 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
 1210                         continue;
 1211 
 1212                 if (igrab(ZTOI(zp)) == NULL)
 1213                         continue;
 1214 
 1215                 zp_array[j] = zp;
 1216                 j++;
 1217         }
 1218         mutex_exit(&zfsvfs->z_znodes_lock);
 1219 
 1220         for (i = 0; i < j; i++) {
 1221                 zp = zp_array[i];
 1222 
 1223                 ASSERT3P(zp, !=, NULL);
 1224                 d_prune_aliases(ZTOI(zp));
 1225 
 1226                 if (atomic_read(&ZTOI(zp)->i_count) == 1)
 1227                         objects++;
 1228 
 1229                 zrele(zp);
 1230         }
 1231 
 1232         kmem_free(zp_array, max_array * sizeof (znode_t *));
 1233 
 1234         return (objects);
 1235 }
 1236 
 1237 /*
 1238  * The ARC has requested that the filesystem drop entries from the dentry
 1239  * and inode caches.  This can occur when the ARC needs to free meta data
 1240  * blocks but can't because they are all pinned by entries in these caches.
 1241  */
 1242 int
 1243 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
 1244 {
 1245         zfsvfs_t *zfsvfs = sb->s_fs_info;
 1246         int error = 0;
 1247         struct shrinker *shrinker = &sb->s_shrink;
 1248         struct shrink_control sc = {
 1249                 .nr_to_scan = nr_to_scan,
 1250                 .gfp_mask = GFP_KERNEL,
 1251         };
 1252 
 1253         if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 1254                 return (error);
 1255 
 1256 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
 1257         defined(SHRINK_CONTROL_HAS_NID) && \
 1258         defined(SHRINKER_NUMA_AWARE)
 1259         if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
 1260                 *objects = 0;
 1261                 for_each_online_node(sc.nid) {
 1262                         *objects += (*shrinker->scan_objects)(shrinker, &sc);
 1263                         /*
 1264                          * reset sc.nr_to_scan, modified by
 1265                          * scan_objects == super_cache_scan
 1266                          */
 1267                         sc.nr_to_scan = nr_to_scan;
 1268                 }
 1269         } else {
 1270                         *objects = (*shrinker->scan_objects)(shrinker, &sc);
 1271         }
 1272 
 1273 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
 1274         *objects = (*shrinker->scan_objects)(shrinker, &sc);
 1275 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
 1276         *objects = (*shrinker->shrink)(shrinker, &sc);
 1277 #elif defined(HAVE_D_PRUNE_ALIASES)
 1278 #define D_PRUNE_ALIASES_IS_DEFAULT
 1279         *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
 1280 #else
 1281 #error "No available dentry and inode cache pruning mechanism."
 1282 #endif
 1283 
 1284 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
 1285 #undef  D_PRUNE_ALIASES_IS_DEFAULT
 1286         /*
 1287          * Fall back to zfs_prune_aliases if the kernel's per-superblock
 1288          * shrinker couldn't free anything, possibly due to the inodes being
 1289          * allocated in a different memcg.
 1290          */
 1291         if (*objects == 0)
 1292                 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
 1293 #endif
 1294 
 1295         zfs_exit(zfsvfs, FTAG);
 1296 
 1297         dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
 1298             "pruning, nr_to_scan=%lu objects=%d error=%d\n",
 1299             nr_to_scan, *objects, error);
 1300 
 1301         return (error);
 1302 }
 1303 
 1304 /*
 1305  * Teardown the zfsvfs_t.
 1306  *
 1307  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
 1308  * and 'z_teardown_inactive_lock' held.
 1309  */
 1310 static int
 1311 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
 1312 {
 1313         znode_t *zp;
 1314 
 1315         zfs_unlinked_drain_stop_wait(zfsvfs);
 1316 
 1317         /*
 1318          * If someone has not already unmounted this file system,
 1319          * drain the zrele_taskq to ensure all active references to the
 1320          * zfsvfs_t have been handled only then can it be safely destroyed.
 1321          */
 1322         if (zfsvfs->z_os) {
 1323                 /*
 1324                  * If we're unmounting we have to wait for the list to
 1325                  * drain completely.
 1326                  *
 1327                  * If we're not unmounting there's no guarantee the list
 1328                  * will drain completely, but iputs run from the taskq
 1329                  * may add the parents of dir-based xattrs to the taskq
 1330                  * so we want to wait for these.
 1331                  *
 1332                  * We can safely read z_nr_znodes without locking because the
 1333                  * VFS has already blocked operations which add to the
 1334                  * z_all_znodes list and thus increment z_nr_znodes.
 1335                  */
 1336                 int round = 0;
 1337                 while (zfsvfs->z_nr_znodes > 0) {
 1338                         taskq_wait_outstanding(dsl_pool_zrele_taskq(
 1339                             dmu_objset_pool(zfsvfs->z_os)), 0);
 1340                         if (++round > 1 && !unmounting)
 1341                                 break;
 1342                 }
 1343         }
 1344 
 1345         ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
 1346 
 1347         if (!unmounting) {
 1348                 /*
 1349                  * We purge the parent filesystem's super block as the
 1350                  * parent filesystem and all of its snapshots have their
 1351                  * inode's super block set to the parent's filesystem's
 1352                  * super block.  Note,  'z_parent' is self referential
 1353                  * for non-snapshots.
 1354                  */
 1355                 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
 1356         }
 1357 
 1358         /*
 1359          * Close the zil. NB: Can't close the zil while zfs_inactive
 1360          * threads are blocked as zil_close can call zfs_inactive.
 1361          */
 1362         if (zfsvfs->z_log) {
 1363                 zil_close(zfsvfs->z_log);
 1364                 zfsvfs->z_log = NULL;
 1365         }
 1366 
 1367         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
 1368 
 1369         /*
 1370          * If we are not unmounting (ie: online recv) and someone already
 1371          * unmounted this file system while we were doing the switcheroo,
 1372          * or a reopen of z_os failed then just bail out now.
 1373          */
 1374         if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
 1375                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
 1376                 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 1377                 return (SET_ERROR(EIO));
 1378         }
 1379 
 1380         /*
 1381          * At this point there are no VFS ops active, and any new VFS ops
 1382          * will fail with EIO since we have z_teardown_lock for writer (only
 1383          * relevant for forced unmount).
 1384          *
 1385          * Release all holds on dbufs. We also grab an extra reference to all
 1386          * the remaining inodes so that the kernel does not attempt to free
 1387          * any inodes of a suspended fs. This can cause deadlocks since the
 1388          * zfs_resume_fs() process may involve starting threads, which might
 1389          * attempt to free unreferenced inodes to free up memory for the new
 1390          * thread.
 1391          */
 1392         if (!unmounting) {
 1393                 mutex_enter(&zfsvfs->z_znodes_lock);
 1394                 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
 1395                     zp = list_next(&zfsvfs->z_all_znodes, zp)) {
 1396                         if (zp->z_sa_hdl)
 1397                                 zfs_znode_dmu_fini(zp);
 1398                         if (igrab(ZTOI(zp)) != NULL)
 1399                                 zp->z_suspended = B_TRUE;
 1400 
 1401                 }
 1402                 mutex_exit(&zfsvfs->z_znodes_lock);
 1403         }
 1404 
 1405         /*
 1406          * If we are unmounting, set the unmounted flag and let new VFS ops
 1407          * unblock.  zfs_inactive will have the unmounted behavior, and all
 1408          * other VFS ops will fail with EIO.
 1409          */
 1410         if (unmounting) {
 1411                 zfsvfs->z_unmounted = B_TRUE;
 1412                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
 1413                 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 1414         }
 1415 
 1416         /*
 1417          * z_os will be NULL if there was an error in attempting to reopen
 1418          * zfsvfs, so just return as the properties had already been
 1419          *
 1420          * unregistered and cached data had been evicted before.
 1421          */
 1422         if (zfsvfs->z_os == NULL)
 1423                 return (0);
 1424 
 1425         /*
 1426          * Unregister properties.
 1427          */
 1428         zfs_unregister_callbacks(zfsvfs);
 1429 
 1430         /*
 1431          * Evict cached data. We must write out any dirty data before
 1432          * disowning the dataset.
 1433          */
 1434         objset_t *os = zfsvfs->z_os;
 1435         boolean_t os_dirty = B_FALSE;
 1436         for (int t = 0; t < TXG_SIZE; t++) {
 1437                 if (dmu_objset_is_dirty(os, t)) {
 1438                         os_dirty = B_TRUE;
 1439                         break;
 1440                 }
 1441         }
 1442         if (!zfs_is_readonly(zfsvfs) && os_dirty) {
 1443                 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
 1444         }
 1445         dmu_objset_evict_dbufs(zfsvfs->z_os);
 1446         dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
 1447         dsl_dir_cancel_waiters(dd);
 1448 
 1449         return (0);
 1450 }
 1451 
 1452 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
 1453 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
 1454 #endif
 1455 
 1456 int
 1457 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
 1458 {
 1459         const char *osname = zm->mnt_osname;
 1460         struct inode *root_inode = NULL;
 1461         uint64_t recordsize;
 1462         int error = 0;
 1463         zfsvfs_t *zfsvfs = NULL;
 1464         vfs_t *vfs = NULL;
 1465         int canwrite;
 1466         int dataset_visible_zone;
 1467 
 1468         ASSERT(zm);
 1469         ASSERT(osname);
 1470 
 1471         dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
 1472 
 1473         /*
 1474          * Refuse to mount a filesystem if we are in a namespace and the
 1475          * dataset is not visible or writable in that namespace.
 1476          */
 1477         if (!INGLOBALZONE(curproc) &&
 1478             (!dataset_visible_zone || !canwrite)) {
 1479                 return (SET_ERROR(EPERM));
 1480         }
 1481 
 1482         error = zfsvfs_parse_options(zm->mnt_data, &vfs);
 1483         if (error)
 1484                 return (error);
 1485 
 1486         /*
 1487          * If a non-writable filesystem is being mounted without the
 1488          * read-only flag, pretend it was set, as done for snapshots.
 1489          */
 1490         if (!canwrite)
 1491                 vfs->vfs_readonly = true;
 1492 
 1493         error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
 1494         if (error) {
 1495                 zfsvfs_vfs_free(vfs);
 1496                 goto out;
 1497         }
 1498 
 1499         if ((error = dsl_prop_get_integer(osname, "recordsize",
 1500             &recordsize, NULL))) {
 1501                 zfsvfs_vfs_free(vfs);
 1502                 goto out;
 1503         }
 1504 
 1505         vfs->vfs_data = zfsvfs;
 1506         zfsvfs->z_vfs = vfs;
 1507         zfsvfs->z_sb = sb;
 1508         sb->s_fs_info = zfsvfs;
 1509         sb->s_magic = ZFS_SUPER_MAGIC;
 1510         sb->s_maxbytes = MAX_LFS_FILESIZE;
 1511         sb->s_time_gran = 1;
 1512         sb->s_blocksize = recordsize;
 1513         sb->s_blocksize_bits = ilog2(recordsize);
 1514 
 1515         error = -zpl_bdi_setup(sb, "zfs");
 1516         if (error)
 1517                 goto out;
 1518 
 1519         sb->s_bdi->ra_pages = 0;
 1520 
 1521         /* Set callback operations for the file system. */
 1522         sb->s_op = &zpl_super_operations;
 1523         sb->s_xattr = zpl_xattr_handlers;
 1524         sb->s_export_op = &zpl_export_operations;
 1525 
 1526         /* Set features for file system. */
 1527         zfs_set_fuid_feature(zfsvfs);
 1528 
 1529         if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
 1530                 uint64_t pval;
 1531 
 1532                 atime_changed_cb(zfsvfs, B_FALSE);
 1533                 readonly_changed_cb(zfsvfs, B_TRUE);
 1534                 if ((error = dsl_prop_get_integer(osname,
 1535                     "xattr", &pval, NULL)))
 1536                         goto out;
 1537                 xattr_changed_cb(zfsvfs, pval);
 1538                 if ((error = dsl_prop_get_integer(osname,
 1539                     "acltype", &pval, NULL)))
 1540                         goto out;
 1541                 acltype_changed_cb(zfsvfs, pval);
 1542                 zfsvfs->z_issnap = B_TRUE;
 1543                 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
 1544                 zfsvfs->z_snap_defer_time = jiffies;
 1545 
 1546                 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
 1547                 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
 1548                 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
 1549         } else {
 1550                 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
 1551                         goto out;
 1552         }
 1553 
 1554         /* Allocate a root inode for the filesystem. */
 1555         error = zfs_root(zfsvfs, &root_inode);
 1556         if (error) {
 1557                 (void) zfs_umount(sb);
 1558                 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
 1559                 goto out;
 1560         }
 1561 
 1562         /* Allocate a root dentry for the filesystem */
 1563         sb->s_root = d_make_root(root_inode);
 1564         if (sb->s_root == NULL) {
 1565                 (void) zfs_umount(sb);
 1566                 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
 1567                 error = SET_ERROR(ENOMEM);
 1568                 goto out;
 1569         }
 1570 
 1571         if (!zfsvfs->z_issnap)
 1572                 zfsctl_create(zfsvfs);
 1573 
 1574         zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
 1575 out:
 1576         if (error) {
 1577                 if (zfsvfs != NULL) {
 1578                         dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
 1579                         zfsvfs_free(zfsvfs);
 1580                 }
 1581                 /*
 1582                  * make sure we don't have dangling sb->s_fs_info which
 1583                  * zfs_preumount will use.
 1584                  */
 1585                 sb->s_fs_info = NULL;
 1586         }
 1587 
 1588         return (error);
 1589 }
 1590 
 1591 /*
 1592  * Called when an unmount is requested and certain sanity checks have
 1593  * already passed.  At this point no dentries or inodes have been reclaimed
 1594  * from their respective caches.  We drop the extra reference on the .zfs
 1595  * control directory to allow everything to be reclaimed.  All snapshots
 1596  * must already have been unmounted to reach this point.
 1597  */
 1598 void
 1599 zfs_preumount(struct super_block *sb)
 1600 {
 1601         zfsvfs_t *zfsvfs = sb->s_fs_info;
 1602 
 1603         /* zfsvfs is NULL when zfs_domount fails during mount */
 1604         if (zfsvfs) {
 1605                 zfs_unlinked_drain_stop_wait(zfsvfs);
 1606                 zfsctl_destroy(sb->s_fs_info);
 1607                 /*
 1608                  * Wait for zrele_async before entering evict_inodes in
 1609                  * generic_shutdown_super. The reason we must finish before
 1610                  * evict_inodes is when lazytime is on, or when zfs_purgedir
 1611                  * calls zfs_zget, zrele would bump i_count from 0 to 1. This
 1612                  * would race with the i_count check in evict_inodes. This means
 1613                  * it could destroy the inode while we are still using it.
 1614                  *
 1615                  * We wait for two passes. xattr directories in the first pass
 1616                  * may add xattr entries in zfs_purgedir, so in the second pass
 1617                  * we wait for them. We don't use taskq_wait here because it is
 1618                  * a pool wide taskq. Other mounted filesystems can constantly
 1619                  * do zrele_async and there's no guarantee when taskq will be
 1620                  * empty.
 1621                  */
 1622                 taskq_wait_outstanding(dsl_pool_zrele_taskq(
 1623                     dmu_objset_pool(zfsvfs->z_os)), 0);
 1624                 taskq_wait_outstanding(dsl_pool_zrele_taskq(
 1625                     dmu_objset_pool(zfsvfs->z_os)), 0);
 1626         }
 1627 }
 1628 
 1629 /*
 1630  * Called once all other unmount released tear down has occurred.
 1631  * It is our responsibility to release any remaining infrastructure.
 1632  */
 1633 int
 1634 zfs_umount(struct super_block *sb)
 1635 {
 1636         zfsvfs_t *zfsvfs = sb->s_fs_info;
 1637         objset_t *os;
 1638 
 1639         if (zfsvfs->z_arc_prune != NULL)
 1640                 arc_remove_prune_callback(zfsvfs->z_arc_prune);
 1641         VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
 1642         os = zfsvfs->z_os;
 1643         zpl_bdi_destroy(sb);
 1644 
 1645         /*
 1646          * z_os will be NULL if there was an error in
 1647          * attempting to reopen zfsvfs.
 1648          */
 1649         if (os != NULL) {
 1650                 /*
 1651                  * Unset the objset user_ptr.
 1652                  */
 1653                 mutex_enter(&os->os_user_ptr_lock);
 1654                 dmu_objset_set_user(os, NULL);
 1655                 mutex_exit(&os->os_user_ptr_lock);
 1656 
 1657                 /*
 1658                  * Finally release the objset
 1659                  */
 1660                 dmu_objset_disown(os, B_TRUE, zfsvfs);
 1661         }
 1662 
 1663         zfsvfs_free(zfsvfs);
 1664         return (0);
 1665 }
 1666 
 1667 int
 1668 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
 1669 {
 1670         zfsvfs_t *zfsvfs = sb->s_fs_info;
 1671         vfs_t *vfsp;
 1672         boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
 1673         int error;
 1674 
 1675         if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
 1676             !(*flags & SB_RDONLY)) {
 1677                 *flags |= SB_RDONLY;
 1678                 return (EROFS);
 1679         }
 1680 
 1681         error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
 1682         if (error)
 1683                 return (error);
 1684 
 1685         if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
 1686                 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
 1687 
 1688         zfs_unregister_callbacks(zfsvfs);
 1689         zfsvfs_vfs_free(zfsvfs->z_vfs);
 1690 
 1691         vfsp->vfs_data = zfsvfs;
 1692         zfsvfs->z_vfs = vfsp;
 1693         if (!issnap)
 1694                 (void) zfs_register_callbacks(vfsp);
 1695 
 1696         return (error);
 1697 }
 1698 
 1699 int
 1700 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
 1701 {
 1702         zfsvfs_t        *zfsvfs = sb->s_fs_info;
 1703         znode_t         *zp;
 1704         uint64_t        object = 0;
 1705         uint64_t        fid_gen = 0;
 1706         uint64_t        gen_mask;
 1707         uint64_t        zp_gen;
 1708         int             i, err;
 1709 
 1710         *ipp = NULL;
 1711 
 1712         if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
 1713                 zfid_short_t    *zfid = (zfid_short_t *)fidp;
 1714 
 1715                 for (i = 0; i < sizeof (zfid->zf_object); i++)
 1716                         object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
 1717 
 1718                 for (i = 0; i < sizeof (zfid->zf_gen); i++)
 1719                         fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
 1720         } else {
 1721                 return (SET_ERROR(EINVAL));
 1722         }
 1723 
 1724         /* LONG_FID_LEN means snapdirs */
 1725         if (fidp->fid_len == LONG_FID_LEN) {
 1726                 zfid_long_t     *zlfid = (zfid_long_t *)fidp;
 1727                 uint64_t        objsetid = 0;
 1728                 uint64_t        setgen = 0;
 1729 
 1730                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
 1731                         objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
 1732 
 1733                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
 1734                         setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
 1735 
 1736                 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
 1737                         dprintf("snapdir fid: objsetid (%llu) != "
 1738                             "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
 1739                             objsetid, ZFSCTL_INO_SNAPDIRS, object);
 1740 
 1741                         return (SET_ERROR(EINVAL));
 1742                 }
 1743 
 1744                 if (fid_gen > 1 || setgen != 0) {
 1745                         dprintf("snapdir fid: fid_gen (%llu) and setgen "
 1746                             "(%llu)\n", fid_gen, setgen);
 1747                         return (SET_ERROR(EINVAL));
 1748                 }
 1749 
 1750                 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
 1751         }
 1752 
 1753         if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
 1754                 return (err);
 1755         /* A zero fid_gen means we are in the .zfs control directories */
 1756         if (fid_gen == 0 &&
 1757             (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
 1758                 *ipp = zfsvfs->z_ctldir;
 1759                 ASSERT(*ipp != NULL);
 1760                 if (object == ZFSCTL_INO_SNAPDIR) {
 1761                         VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
 1762                             0, kcred, NULL, NULL) == 0);
 1763                 } else {
 1764                         /*
 1765                          * Must have an existing ref, so igrab()
 1766                          * cannot return NULL
 1767                          */
 1768                         VERIFY3P(igrab(*ipp), !=, NULL);
 1769                 }
 1770                 zfs_exit(zfsvfs, FTAG);
 1771                 return (0);
 1772         }
 1773 
 1774         gen_mask = -1ULL >> (64 - 8 * i);
 1775 
 1776         dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
 1777         if ((err = zfs_zget(zfsvfs, object, &zp))) {
 1778                 zfs_exit(zfsvfs, FTAG);
 1779                 return (err);
 1780         }
 1781 
 1782         /* Don't export xattr stuff */
 1783         if (zp->z_pflags & ZFS_XATTR) {
 1784                 zrele(zp);
 1785                 zfs_exit(zfsvfs, FTAG);
 1786                 return (SET_ERROR(ENOENT));
 1787         }
 1788 
 1789         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
 1790             sizeof (uint64_t));
 1791         zp_gen = zp_gen & gen_mask;
 1792         if (zp_gen == 0)
 1793                 zp_gen = 1;
 1794         if ((fid_gen == 0) && (zfsvfs->z_root == object))
 1795                 fid_gen = zp_gen;
 1796         if (zp->z_unlinked || zp_gen != fid_gen) {
 1797                 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
 1798                     fid_gen);
 1799                 zrele(zp);
 1800                 zfs_exit(zfsvfs, FTAG);
 1801                 return (SET_ERROR(ENOENT));
 1802         }
 1803 
 1804         *ipp = ZTOI(zp);
 1805         if (*ipp)
 1806                 zfs_znode_update_vfs(ITOZ(*ipp));
 1807 
 1808         zfs_exit(zfsvfs, FTAG);
 1809         return (0);
 1810 }
 1811 
 1812 /*
 1813  * Block out VFS ops and close zfsvfs_t
 1814  *
 1815  * Note, if successful, then we return with the 'z_teardown_lock' and
 1816  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
 1817  * dataset and objset intact so that they can be atomically handed off during
 1818  * a subsequent rollback or recv operation and the resume thereafter.
 1819  */
 1820 int
 1821 zfs_suspend_fs(zfsvfs_t *zfsvfs)
 1822 {
 1823         int error;
 1824 
 1825         if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
 1826                 return (error);
 1827 
 1828         return (0);
 1829 }
 1830 
 1831 /*
 1832  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
 1833  * is an invariant across any of the operations that can be performed while the
 1834  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
 1835  * are the same: the relevant objset and associated dataset are owned by
 1836  * zfsvfs, held, and long held on entry.
 1837  */
 1838 int
 1839 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
 1840 {
 1841         int err, err2;
 1842         znode_t *zp;
 1843 
 1844         ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
 1845         ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
 1846 
 1847         /*
 1848          * We already own this, so just update the objset_t, as the one we
 1849          * had before may have been evicted.
 1850          */
 1851         objset_t *os;
 1852         VERIFY3P(ds->ds_owner, ==, zfsvfs);
 1853         VERIFY(dsl_dataset_long_held(ds));
 1854         dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
 1855         dsl_pool_config_enter(dp, FTAG);
 1856         VERIFY0(dmu_objset_from_ds(ds, &os));
 1857         dsl_pool_config_exit(dp, FTAG);
 1858 
 1859         err = zfsvfs_init(zfsvfs, os);
 1860         if (err != 0)
 1861                 goto bail;
 1862 
 1863         ds->ds_dir->dd_activity_cancelled = B_FALSE;
 1864         VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
 1865 
 1866         zfs_set_fuid_feature(zfsvfs);
 1867         zfsvfs->z_rollback_time = jiffies;
 1868 
 1869         /*
 1870          * Attempt to re-establish all the active inodes with their
 1871          * dbufs.  If a zfs_rezget() fails, then we unhash the inode
 1872          * and mark it stale.  This prevents a collision if a new
 1873          * inode/object is created which must use the same inode
 1874          * number.  The stale inode will be be released when the
 1875          * VFS prunes the dentry holding the remaining references
 1876          * on the stale inode.
 1877          */
 1878         mutex_enter(&zfsvfs->z_znodes_lock);
 1879         for (zp = list_head(&zfsvfs->z_all_znodes); zp;
 1880             zp = list_next(&zfsvfs->z_all_znodes, zp)) {
 1881                 err2 = zfs_rezget(zp);
 1882                 if (err2) {
 1883                         zpl_d_drop_aliases(ZTOI(zp));
 1884                         remove_inode_hash(ZTOI(zp));
 1885                 }
 1886 
 1887                 /* see comment in zfs_suspend_fs() */
 1888                 if (zp->z_suspended) {
 1889                         zfs_zrele_async(zp);
 1890                         zp->z_suspended = B_FALSE;
 1891                 }
 1892         }
 1893         mutex_exit(&zfsvfs->z_znodes_lock);
 1894 
 1895         if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
 1896                 /*
 1897                  * zfs_suspend_fs() could have interrupted freeing
 1898                  * of dnodes. We need to restart this freeing so
 1899                  * that we don't "leak" the space.
 1900                  */
 1901                 zfs_unlinked_drain(zfsvfs);
 1902         }
 1903 
 1904         /*
 1905          * Most of the time zfs_suspend_fs is used for changing the contents
 1906          * of the underlying dataset. ZFS rollback and receive operations
 1907          * might create files for which negative dentries are present in
 1908          * the cache. Since walking the dcache would require a lot of GPL-only
 1909          * code duplication, it's much easier on these rather rare occasions
 1910          * just to flush the whole dcache for the given dataset/filesystem.
 1911          */
 1912         shrink_dcache_sb(zfsvfs->z_sb);
 1913 
 1914 bail:
 1915         if (err != 0)
 1916                 zfsvfs->z_unmounted = B_TRUE;
 1917 
 1918         /* release the VFS ops */
 1919         rw_exit(&zfsvfs->z_teardown_inactive_lock);
 1920         ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 1921 
 1922         if (err != 0) {
 1923                 /*
 1924                  * Since we couldn't setup the sa framework, try to force
 1925                  * unmount this file system.
 1926                  */
 1927                 if (zfsvfs->z_os)
 1928                         (void) zfs_umount(zfsvfs->z_sb);
 1929         }
 1930         return (err);
 1931 }
 1932 
 1933 /*
 1934  * Release VOPs and unmount a suspended filesystem.
 1935  */
 1936 int
 1937 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
 1938 {
 1939         ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
 1940         ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
 1941 
 1942         /*
 1943          * We already own this, so just hold and rele it to update the
 1944          * objset_t, as the one we had before may have been evicted.
 1945          */
 1946         objset_t *os;
 1947         VERIFY3P(ds->ds_owner, ==, zfsvfs);
 1948         VERIFY(dsl_dataset_long_held(ds));
 1949         dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
 1950         dsl_pool_config_enter(dp, FTAG);
 1951         VERIFY0(dmu_objset_from_ds(ds, &os));
 1952         dsl_pool_config_exit(dp, FTAG);
 1953         zfsvfs->z_os = os;
 1954 
 1955         /* release the VOPs */
 1956         rw_exit(&zfsvfs->z_teardown_inactive_lock);
 1957         ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 1958 
 1959         /*
 1960          * Try to force unmount this file system.
 1961          */
 1962         (void) zfs_umount(zfsvfs->z_sb);
 1963         zfsvfs->z_unmounted = B_TRUE;
 1964         return (0);
 1965 }
 1966 
 1967 /*
 1968  * Automounted snapshots rely on periodic revalidation
 1969  * to defer snapshots from being automatically unmounted.
 1970  */
 1971 
 1972 inline void
 1973 zfs_exit_fs(zfsvfs_t *zfsvfs)
 1974 {
 1975         if (!zfsvfs->z_issnap)
 1976                 return;
 1977 
 1978         if (time_after(jiffies, zfsvfs->z_snap_defer_time +
 1979             MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
 1980                 zfsvfs->z_snap_defer_time = jiffies;
 1981                 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
 1982                     dmu_objset_id(zfsvfs->z_os),
 1983                     zfs_expire_snapshot);
 1984         }
 1985 }
 1986 
 1987 int
 1988 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
 1989 {
 1990         int error;
 1991         objset_t *os = zfsvfs->z_os;
 1992         dmu_tx_t *tx;
 1993 
 1994         if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
 1995                 return (SET_ERROR(EINVAL));
 1996 
 1997         if (newvers < zfsvfs->z_version)
 1998                 return (SET_ERROR(EINVAL));
 1999 
 2000         if (zfs_spa_version_map(newvers) >
 2001             spa_version(dmu_objset_spa(zfsvfs->z_os)))
 2002                 return (SET_ERROR(ENOTSUP));
 2003 
 2004         tx = dmu_tx_create(os);
 2005         dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
 2006         if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
 2007                 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
 2008                     ZFS_SA_ATTRS);
 2009                 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
 2010         }
 2011         error = dmu_tx_assign(tx, TXG_WAIT);
 2012         if (error) {
 2013                 dmu_tx_abort(tx);
 2014                 return (error);
 2015         }
 2016 
 2017         error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
 2018             8, 1, &newvers, tx);
 2019 
 2020         if (error) {
 2021                 dmu_tx_commit(tx);
 2022                 return (error);
 2023         }
 2024 
 2025         if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
 2026                 uint64_t sa_obj;
 2027 
 2028                 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
 2029                     SPA_VERSION_SA);
 2030                 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
 2031                     DMU_OT_NONE, 0, tx);
 2032 
 2033                 error = zap_add(os, MASTER_NODE_OBJ,
 2034                     ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
 2035                 ASSERT0(error);
 2036 
 2037                 VERIFY(0 == sa_set_sa_object(os, sa_obj));
 2038                 sa_register_update_callback(os, zfs_sa_upgrade);
 2039         }
 2040 
 2041         spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
 2042             "from %llu to %llu", zfsvfs->z_version, newvers);
 2043 
 2044         dmu_tx_commit(tx);
 2045 
 2046         zfsvfs->z_version = newvers;
 2047         os->os_version = newvers;
 2048 
 2049         zfs_set_fuid_feature(zfsvfs);
 2050 
 2051         return (0);
 2052 }
 2053 
 2054 /*
 2055  * Read a property stored within the master node.
 2056  */
 2057 int
 2058 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
 2059 {
 2060         uint64_t *cached_copy = NULL;
 2061 
 2062         /*
 2063          * Figure out where in the objset_t the cached copy would live, if it
 2064          * is available for the requested property.
 2065          */
 2066         if (os != NULL) {
 2067                 switch (prop) {
 2068                 case ZFS_PROP_VERSION:
 2069                         cached_copy = &os->os_version;
 2070                         break;
 2071                 case ZFS_PROP_NORMALIZE:
 2072                         cached_copy = &os->os_normalization;
 2073                         break;
 2074                 case ZFS_PROP_UTF8ONLY:
 2075                         cached_copy = &os->os_utf8only;
 2076                         break;
 2077                 case ZFS_PROP_CASE:
 2078                         cached_copy = &os->os_casesensitivity;
 2079                         break;
 2080                 default:
 2081                         break;
 2082                 }
 2083         }
 2084         if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
 2085                 *value = *cached_copy;
 2086                 return (0);
 2087         }
 2088 
 2089         /*
 2090          * If the property wasn't cached, look up the file system's value for
 2091          * the property. For the version property, we look up a slightly
 2092          * different string.
 2093          */
 2094         const char *pname;
 2095         int error = ENOENT;
 2096         if (prop == ZFS_PROP_VERSION)
 2097                 pname = ZPL_VERSION_STR;
 2098         else
 2099                 pname = zfs_prop_to_name(prop);
 2100 
 2101         if (os != NULL) {
 2102                 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
 2103                 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
 2104         }
 2105 
 2106         if (error == ENOENT) {
 2107                 /* No value set, use the default value */
 2108                 switch (prop) {
 2109                 case ZFS_PROP_VERSION:
 2110                         *value = ZPL_VERSION;
 2111                         break;
 2112                 case ZFS_PROP_NORMALIZE:
 2113                 case ZFS_PROP_UTF8ONLY:
 2114                         *value = 0;
 2115                         break;
 2116                 case ZFS_PROP_CASE:
 2117                         *value = ZFS_CASE_SENSITIVE;
 2118                         break;
 2119                 case ZFS_PROP_ACLTYPE:
 2120                         *value = ZFS_ACLTYPE_OFF;
 2121                         break;
 2122                 default:
 2123                         return (error);
 2124                 }
 2125                 error = 0;
 2126         }
 2127 
 2128         /*
 2129          * If one of the methods for getting the property value above worked,
 2130          * copy it into the objset_t's cache.
 2131          */
 2132         if (error == 0 && cached_copy != NULL) {
 2133                 *cached_copy = *value;
 2134         }
 2135 
 2136         return (error);
 2137 }
 2138 
 2139 /*
 2140  * Return true if the corresponding vfs's unmounted flag is set.
 2141  * Otherwise return false.
 2142  * If this function returns true we know VFS unmount has been initiated.
 2143  */
 2144 boolean_t
 2145 zfs_get_vfs_flag_unmounted(objset_t *os)
 2146 {
 2147         zfsvfs_t *zfvp;
 2148         boolean_t unmounted = B_FALSE;
 2149 
 2150         ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
 2151 
 2152         mutex_enter(&os->os_user_ptr_lock);
 2153         zfvp = dmu_objset_get_user(os);
 2154         if (zfvp != NULL && zfvp->z_unmounted)
 2155                 unmounted = B_TRUE;
 2156         mutex_exit(&os->os_user_ptr_lock);
 2157 
 2158         return (unmounted);
 2159 }
 2160 
 2161 void
 2162 zfsvfs_update_fromname(const char *oldname, const char *newname)
 2163 {
 2164         /*
 2165          * We don't need to do anything here, the devname is always current by
 2166          * virtue of zfsvfs->z_sb->s_op->show_devname.
 2167          */
 2168         (void) oldname, (void) newname;
 2169 }
 2170 
 2171 void
 2172 zfs_init(void)
 2173 {
 2174         zfsctl_init();
 2175         zfs_znode_init();
 2176         dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
 2177         register_filesystem(&zpl_fs_type);
 2178 }
 2179 
 2180 void
 2181 zfs_fini(void)
 2182 {
 2183         /*
 2184          * we don't use outstanding because zpl_posix_acl_free might add more.
 2185          */
 2186         taskq_wait(system_delay_taskq);
 2187         taskq_wait(system_taskq);
 2188         unregister_filesystem(&zpl_fs_type);
 2189         zfs_znode_fini();
 2190         zfsctl_fini();
 2191 }
 2192 
 2193 #if defined(_KERNEL)
 2194 EXPORT_SYMBOL(zfs_suspend_fs);
 2195 EXPORT_SYMBOL(zfs_resume_fs);
 2196 EXPORT_SYMBOL(zfs_set_version);
 2197 EXPORT_SYMBOL(zfsvfs_create);
 2198 EXPORT_SYMBOL(zfsvfs_free);
 2199 EXPORT_SYMBOL(zfs_is_readonly);
 2200 EXPORT_SYMBOL(zfs_domount);
 2201 EXPORT_SYMBOL(zfs_preumount);
 2202 EXPORT_SYMBOL(zfs_umount);
 2203 EXPORT_SYMBOL(zfs_remount);
 2204 EXPORT_SYMBOL(zfs_statvfs);
 2205 EXPORT_SYMBOL(zfs_vget);
 2206 EXPORT_SYMBOL(zfs_prune);
 2207 #endif

Cache object: ceb8a80d60392c22503826a5afa0fc6d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.