1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/objlist.h>
60 #include <sys/zpl.h>
61 #include <linux/vfs_compat.h>
62 #include "zfs_comutil.h"
63
64 enum {
65 TOKEN_RO,
66 TOKEN_RW,
67 TOKEN_SETUID,
68 TOKEN_NOSETUID,
69 TOKEN_EXEC,
70 TOKEN_NOEXEC,
71 TOKEN_DEVICES,
72 TOKEN_NODEVICES,
73 TOKEN_DIRXATTR,
74 TOKEN_SAXATTR,
75 TOKEN_XATTR,
76 TOKEN_NOXATTR,
77 TOKEN_ATIME,
78 TOKEN_NOATIME,
79 TOKEN_RELATIME,
80 TOKEN_NORELATIME,
81 TOKEN_NBMAND,
82 TOKEN_NONBMAND,
83 TOKEN_MNTPOINT,
84 TOKEN_LAST,
85 };
86
87 static const match_table_t zpl_tokens = {
88 { TOKEN_RO, MNTOPT_RO },
89 { TOKEN_RW, MNTOPT_RW },
90 { TOKEN_SETUID, MNTOPT_SETUID },
91 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
92 { TOKEN_EXEC, MNTOPT_EXEC },
93 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
94 { TOKEN_DEVICES, MNTOPT_DEVICES },
95 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
96 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
97 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
98 { TOKEN_XATTR, MNTOPT_XATTR },
99 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
100 { TOKEN_ATIME, MNTOPT_ATIME },
101 { TOKEN_NOATIME, MNTOPT_NOATIME },
102 { TOKEN_RELATIME, MNTOPT_RELATIME },
103 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
104 { TOKEN_NBMAND, MNTOPT_NBMAND },
105 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
106 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
107 { TOKEN_LAST, NULL },
108 };
109
110 static void
111 zfsvfs_vfs_free(vfs_t *vfsp)
112 {
113 if (vfsp != NULL) {
114 if (vfsp->vfs_mntpoint != NULL)
115 kmem_strfree(vfsp->vfs_mntpoint);
116
117 kmem_free(vfsp, sizeof (vfs_t));
118 }
119 }
120
121 static int
122 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
123 {
124 switch (token) {
125 case TOKEN_RO:
126 vfsp->vfs_readonly = B_TRUE;
127 vfsp->vfs_do_readonly = B_TRUE;
128 break;
129 case TOKEN_RW:
130 vfsp->vfs_readonly = B_FALSE;
131 vfsp->vfs_do_readonly = B_TRUE;
132 break;
133 case TOKEN_SETUID:
134 vfsp->vfs_setuid = B_TRUE;
135 vfsp->vfs_do_setuid = B_TRUE;
136 break;
137 case TOKEN_NOSETUID:
138 vfsp->vfs_setuid = B_FALSE;
139 vfsp->vfs_do_setuid = B_TRUE;
140 break;
141 case TOKEN_EXEC:
142 vfsp->vfs_exec = B_TRUE;
143 vfsp->vfs_do_exec = B_TRUE;
144 break;
145 case TOKEN_NOEXEC:
146 vfsp->vfs_exec = B_FALSE;
147 vfsp->vfs_do_exec = B_TRUE;
148 break;
149 case TOKEN_DEVICES:
150 vfsp->vfs_devices = B_TRUE;
151 vfsp->vfs_do_devices = B_TRUE;
152 break;
153 case TOKEN_NODEVICES:
154 vfsp->vfs_devices = B_FALSE;
155 vfsp->vfs_do_devices = B_TRUE;
156 break;
157 case TOKEN_DIRXATTR:
158 vfsp->vfs_xattr = ZFS_XATTR_DIR;
159 vfsp->vfs_do_xattr = B_TRUE;
160 break;
161 case TOKEN_SAXATTR:
162 vfsp->vfs_xattr = ZFS_XATTR_SA;
163 vfsp->vfs_do_xattr = B_TRUE;
164 break;
165 case TOKEN_XATTR:
166 vfsp->vfs_xattr = ZFS_XATTR_DIR;
167 vfsp->vfs_do_xattr = B_TRUE;
168 break;
169 case TOKEN_NOXATTR:
170 vfsp->vfs_xattr = ZFS_XATTR_OFF;
171 vfsp->vfs_do_xattr = B_TRUE;
172 break;
173 case TOKEN_ATIME:
174 vfsp->vfs_atime = B_TRUE;
175 vfsp->vfs_do_atime = B_TRUE;
176 break;
177 case TOKEN_NOATIME:
178 vfsp->vfs_atime = B_FALSE;
179 vfsp->vfs_do_atime = B_TRUE;
180 break;
181 case TOKEN_RELATIME:
182 vfsp->vfs_relatime = B_TRUE;
183 vfsp->vfs_do_relatime = B_TRUE;
184 break;
185 case TOKEN_NORELATIME:
186 vfsp->vfs_relatime = B_FALSE;
187 vfsp->vfs_do_relatime = B_TRUE;
188 break;
189 case TOKEN_NBMAND:
190 vfsp->vfs_nbmand = B_TRUE;
191 vfsp->vfs_do_nbmand = B_TRUE;
192 break;
193 case TOKEN_NONBMAND:
194 vfsp->vfs_nbmand = B_FALSE;
195 vfsp->vfs_do_nbmand = B_TRUE;
196 break;
197 case TOKEN_MNTPOINT:
198 vfsp->vfs_mntpoint = match_strdup(&args[0]);
199 if (vfsp->vfs_mntpoint == NULL)
200 return (SET_ERROR(ENOMEM));
201
202 break;
203 default:
204 break;
205 }
206
207 return (0);
208 }
209
210 /*
211 * Parse the raw mntopts and return a vfs_t describing the options.
212 */
213 static int
214 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
215 {
216 vfs_t *tmp_vfsp;
217 int error;
218
219 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
220
221 if (mntopts != NULL) {
222 substring_t args[MAX_OPT_ARGS];
223 char *tmp_mntopts, *p, *t;
224 int token;
225
226 tmp_mntopts = t = kmem_strdup(mntopts);
227 if (tmp_mntopts == NULL)
228 return (SET_ERROR(ENOMEM));
229
230 while ((p = strsep(&t, ",")) != NULL) {
231 if (!*p)
232 continue;
233
234 args[0].to = args[0].from = NULL;
235 token = match_token(p, zpl_tokens, args);
236 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
237 if (error) {
238 kmem_strfree(tmp_mntopts);
239 zfsvfs_vfs_free(tmp_vfsp);
240 return (error);
241 }
242 }
243
244 kmem_strfree(tmp_mntopts);
245 }
246
247 *vfsp = tmp_vfsp;
248
249 return (0);
250 }
251
252 boolean_t
253 zfs_is_readonly(zfsvfs_t *zfsvfs)
254 {
255 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
256 }
257
258 int
259 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
260 {
261 (void) cr;
262 zfsvfs_t *zfsvfs = sb->s_fs_info;
263
264 /*
265 * Semantically, the only requirement is that the sync be initiated.
266 * The DMU syncs out txgs frequently, so there's nothing to do.
267 */
268 if (!wait)
269 return (0);
270
271 if (zfsvfs != NULL) {
272 /*
273 * Sync a specific filesystem.
274 */
275 dsl_pool_t *dp;
276 int error;
277
278 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
279 return (error);
280 dp = dmu_objset_pool(zfsvfs->z_os);
281
282 /*
283 * If the system is shutting down, then skip any
284 * filesystems which may exist on a suspended pool.
285 */
286 if (spa_suspended(dp->dp_spa)) {
287 zfs_exit(zfsvfs, FTAG);
288 return (0);
289 }
290
291 if (zfsvfs->z_log != NULL)
292 zil_commit(zfsvfs->z_log, 0);
293
294 zfs_exit(zfsvfs, FTAG);
295 } else {
296 /*
297 * Sync all ZFS filesystems. This is what happens when you
298 * run sync(1). Unlike other filesystems, ZFS honors the
299 * request by waiting for all pools to commit all dirty data.
300 */
301 spa_sync_allpools();
302 }
303
304 return (0);
305 }
306
307 static void
308 atime_changed_cb(void *arg, uint64_t newval)
309 {
310 zfsvfs_t *zfsvfs = arg;
311 struct super_block *sb = zfsvfs->z_sb;
312
313 if (sb == NULL)
314 return;
315 /*
316 * Update SB_NOATIME bit in VFS super block. Since atime update is
317 * determined by atime_needs_update(), atime_needs_update() needs to
318 * return false if atime is turned off, and not unconditionally return
319 * false if atime is turned on.
320 */
321 if (newval)
322 sb->s_flags &= ~SB_NOATIME;
323 else
324 sb->s_flags |= SB_NOATIME;
325 }
326
327 static void
328 relatime_changed_cb(void *arg, uint64_t newval)
329 {
330 ((zfsvfs_t *)arg)->z_relatime = newval;
331 }
332
333 static void
334 xattr_changed_cb(void *arg, uint64_t newval)
335 {
336 zfsvfs_t *zfsvfs = arg;
337
338 if (newval == ZFS_XATTR_OFF) {
339 zfsvfs->z_flags &= ~ZSB_XATTR;
340 } else {
341 zfsvfs->z_flags |= ZSB_XATTR;
342
343 if (newval == ZFS_XATTR_SA)
344 zfsvfs->z_xattr_sa = B_TRUE;
345 else
346 zfsvfs->z_xattr_sa = B_FALSE;
347 }
348 }
349
350 static void
351 acltype_changed_cb(void *arg, uint64_t newval)
352 {
353 zfsvfs_t *zfsvfs = arg;
354
355 switch (newval) {
356 case ZFS_ACLTYPE_NFSV4:
357 case ZFS_ACLTYPE_OFF:
358 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
359 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
360 break;
361 case ZFS_ACLTYPE_POSIX:
362 #ifdef CONFIG_FS_POSIX_ACL
363 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
364 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
365 #else
366 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
367 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
368 #endif /* CONFIG_FS_POSIX_ACL */
369 break;
370 default:
371 break;
372 }
373 }
374
375 static void
376 blksz_changed_cb(void *arg, uint64_t newval)
377 {
378 zfsvfs_t *zfsvfs = arg;
379 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
380 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
381 ASSERT(ISP2(newval));
382
383 zfsvfs->z_max_blksz = newval;
384 }
385
386 static void
387 readonly_changed_cb(void *arg, uint64_t newval)
388 {
389 zfsvfs_t *zfsvfs = arg;
390 struct super_block *sb = zfsvfs->z_sb;
391
392 if (sb == NULL)
393 return;
394
395 if (newval)
396 sb->s_flags |= SB_RDONLY;
397 else
398 sb->s_flags &= ~SB_RDONLY;
399 }
400
401 static void
402 devices_changed_cb(void *arg, uint64_t newval)
403 {
404 }
405
406 static void
407 setuid_changed_cb(void *arg, uint64_t newval)
408 {
409 }
410
411 static void
412 exec_changed_cb(void *arg, uint64_t newval)
413 {
414 }
415
416 static void
417 nbmand_changed_cb(void *arg, uint64_t newval)
418 {
419 zfsvfs_t *zfsvfs = arg;
420 struct super_block *sb = zfsvfs->z_sb;
421
422 if (sb == NULL)
423 return;
424
425 if (newval == TRUE)
426 sb->s_flags |= SB_MANDLOCK;
427 else
428 sb->s_flags &= ~SB_MANDLOCK;
429 }
430
431 static void
432 snapdir_changed_cb(void *arg, uint64_t newval)
433 {
434 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
435 }
436
437 static void
438 acl_mode_changed_cb(void *arg, uint64_t newval)
439 {
440 zfsvfs_t *zfsvfs = arg;
441
442 zfsvfs->z_acl_mode = newval;
443 }
444
445 static void
446 acl_inherit_changed_cb(void *arg, uint64_t newval)
447 {
448 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
449 }
450
451 static int
452 zfs_register_callbacks(vfs_t *vfsp)
453 {
454 struct dsl_dataset *ds = NULL;
455 objset_t *os = NULL;
456 zfsvfs_t *zfsvfs = NULL;
457 int error = 0;
458
459 ASSERT(vfsp);
460 zfsvfs = vfsp->vfs_data;
461 ASSERT(zfsvfs);
462 os = zfsvfs->z_os;
463
464 /*
465 * The act of registering our callbacks will destroy any mount
466 * options we may have. In order to enable temporary overrides
467 * of mount options, we stash away the current values and
468 * restore them after we register the callbacks.
469 */
470 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
471 vfsp->vfs_do_readonly = B_TRUE;
472 vfsp->vfs_readonly = B_TRUE;
473 }
474
475 /*
476 * Register property callbacks.
477 *
478 * It would probably be fine to just check for i/o error from
479 * the first prop_register(), but I guess I like to go
480 * overboard...
481 */
482 ds = dmu_objset_ds(os);
483 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
484 error = dsl_prop_register(ds,
485 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
486 error = error ? error : dsl_prop_register(ds,
487 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
488 error = error ? error : dsl_prop_register(ds,
489 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
490 error = error ? error : dsl_prop_register(ds,
491 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
492 error = error ? error : dsl_prop_register(ds,
493 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
494 error = error ? error : dsl_prop_register(ds,
495 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
496 error = error ? error : dsl_prop_register(ds,
497 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
498 error = error ? error : dsl_prop_register(ds,
499 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
500 error = error ? error : dsl_prop_register(ds,
501 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
502 error = error ? error : dsl_prop_register(ds,
503 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
504 error = error ? error : dsl_prop_register(ds,
505 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
506 error = error ? error : dsl_prop_register(ds,
507 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
508 zfsvfs);
509 error = error ? error : dsl_prop_register(ds,
510 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
511 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
512 if (error)
513 goto unregister;
514
515 /*
516 * Invoke our callbacks to restore temporary mount options.
517 */
518 if (vfsp->vfs_do_readonly)
519 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
520 if (vfsp->vfs_do_setuid)
521 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
522 if (vfsp->vfs_do_exec)
523 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
524 if (vfsp->vfs_do_devices)
525 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
526 if (vfsp->vfs_do_xattr)
527 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
528 if (vfsp->vfs_do_atime)
529 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
530 if (vfsp->vfs_do_relatime)
531 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
532 if (vfsp->vfs_do_nbmand)
533 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
534
535 return (0);
536
537 unregister:
538 dsl_prop_unregister_all(ds, zfsvfs);
539 return (error);
540 }
541
542 /*
543 * Takes a dataset, a property, a value and that value's setpoint as
544 * found in the ZAP. Checks if the property has been changed in the vfs.
545 * If so, val and setpoint will be overwritten with updated content.
546 * Otherwise, they are left unchanged.
547 */
548 int
549 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
550 char *setpoint)
551 {
552 int error;
553 zfsvfs_t *zfvp;
554 vfs_t *vfsp;
555 objset_t *os;
556 uint64_t tmp = *val;
557
558 error = dmu_objset_from_ds(ds, &os);
559 if (error != 0)
560 return (error);
561
562 if (dmu_objset_type(os) != DMU_OST_ZFS)
563 return (EINVAL);
564
565 mutex_enter(&os->os_user_ptr_lock);
566 zfvp = dmu_objset_get_user(os);
567 mutex_exit(&os->os_user_ptr_lock);
568 if (zfvp == NULL)
569 return (ESRCH);
570
571 vfsp = zfvp->z_vfs;
572
573 switch (zfs_prop) {
574 case ZFS_PROP_ATIME:
575 if (vfsp->vfs_do_atime)
576 tmp = vfsp->vfs_atime;
577 break;
578 case ZFS_PROP_RELATIME:
579 if (vfsp->vfs_do_relatime)
580 tmp = vfsp->vfs_relatime;
581 break;
582 case ZFS_PROP_DEVICES:
583 if (vfsp->vfs_do_devices)
584 tmp = vfsp->vfs_devices;
585 break;
586 case ZFS_PROP_EXEC:
587 if (vfsp->vfs_do_exec)
588 tmp = vfsp->vfs_exec;
589 break;
590 case ZFS_PROP_SETUID:
591 if (vfsp->vfs_do_setuid)
592 tmp = vfsp->vfs_setuid;
593 break;
594 case ZFS_PROP_READONLY:
595 if (vfsp->vfs_do_readonly)
596 tmp = vfsp->vfs_readonly;
597 break;
598 case ZFS_PROP_XATTR:
599 if (vfsp->vfs_do_xattr)
600 tmp = vfsp->vfs_xattr;
601 break;
602 case ZFS_PROP_NBMAND:
603 if (vfsp->vfs_do_nbmand)
604 tmp = vfsp->vfs_nbmand;
605 break;
606 default:
607 return (ENOENT);
608 }
609
610 if (tmp != *val) {
611 (void) strcpy(setpoint, "temporary");
612 *val = tmp;
613 }
614 return (0);
615 }
616
617 /*
618 * Associate this zfsvfs with the given objset, which must be owned.
619 * This will cache a bunch of on-disk state from the objset in the
620 * zfsvfs.
621 */
622 static int
623 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
624 {
625 int error;
626 uint64_t val;
627
628 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
629 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
630 zfsvfs->z_os = os;
631
632 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
633 if (error != 0)
634 return (error);
635 if (zfsvfs->z_version >
636 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
637 (void) printk("Can't mount a version %lld file system "
638 "on a version %lld pool\n. Pool must be upgraded to mount "
639 "this file system.\n", (u_longlong_t)zfsvfs->z_version,
640 (u_longlong_t)spa_version(dmu_objset_spa(os)));
641 return (SET_ERROR(ENOTSUP));
642 }
643 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
644 if (error != 0)
645 return (error);
646 zfsvfs->z_norm = (int)val;
647
648 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
649 if (error != 0)
650 return (error);
651 zfsvfs->z_utf8 = (val != 0);
652
653 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
654 if (error != 0)
655 return (error);
656 zfsvfs->z_case = (uint_t)val;
657
658 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
659 return (error);
660 zfsvfs->z_acl_type = (uint_t)val;
661
662 /*
663 * Fold case on file systems that are always or sometimes case
664 * insensitive.
665 */
666 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
667 zfsvfs->z_case == ZFS_CASE_MIXED)
668 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
669
670 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
671 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
672
673 uint64_t sa_obj = 0;
674 if (zfsvfs->z_use_sa) {
675 /* should either have both of these objects or none */
676 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
677 &sa_obj);
678 if (error != 0)
679 return (error);
680
681 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
682 if ((error == 0) && (val == ZFS_XATTR_SA))
683 zfsvfs->z_xattr_sa = B_TRUE;
684 }
685
686 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
687 &zfsvfs->z_root);
688 if (error != 0)
689 return (error);
690 ASSERT(zfsvfs->z_root != 0);
691
692 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
693 &zfsvfs->z_unlinkedobj);
694 if (error != 0)
695 return (error);
696
697 error = zap_lookup(os, MASTER_NODE_OBJ,
698 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
699 8, 1, &zfsvfs->z_userquota_obj);
700 if (error == ENOENT)
701 zfsvfs->z_userquota_obj = 0;
702 else if (error != 0)
703 return (error);
704
705 error = zap_lookup(os, MASTER_NODE_OBJ,
706 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
707 8, 1, &zfsvfs->z_groupquota_obj);
708 if (error == ENOENT)
709 zfsvfs->z_groupquota_obj = 0;
710 else if (error != 0)
711 return (error);
712
713 error = zap_lookup(os, MASTER_NODE_OBJ,
714 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
715 8, 1, &zfsvfs->z_projectquota_obj);
716 if (error == ENOENT)
717 zfsvfs->z_projectquota_obj = 0;
718 else if (error != 0)
719 return (error);
720
721 error = zap_lookup(os, MASTER_NODE_OBJ,
722 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
723 8, 1, &zfsvfs->z_userobjquota_obj);
724 if (error == ENOENT)
725 zfsvfs->z_userobjquota_obj = 0;
726 else if (error != 0)
727 return (error);
728
729 error = zap_lookup(os, MASTER_NODE_OBJ,
730 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
731 8, 1, &zfsvfs->z_groupobjquota_obj);
732 if (error == ENOENT)
733 zfsvfs->z_groupobjquota_obj = 0;
734 else if (error != 0)
735 return (error);
736
737 error = zap_lookup(os, MASTER_NODE_OBJ,
738 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
739 8, 1, &zfsvfs->z_projectobjquota_obj);
740 if (error == ENOENT)
741 zfsvfs->z_projectobjquota_obj = 0;
742 else if (error != 0)
743 return (error);
744
745 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
746 &zfsvfs->z_fuid_obj);
747 if (error == ENOENT)
748 zfsvfs->z_fuid_obj = 0;
749 else if (error != 0)
750 return (error);
751
752 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
753 &zfsvfs->z_shares_dir);
754 if (error == ENOENT)
755 zfsvfs->z_shares_dir = 0;
756 else if (error != 0)
757 return (error);
758
759 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
760 &zfsvfs->z_attr_table);
761 if (error != 0)
762 return (error);
763
764 if (zfsvfs->z_version >= ZPL_VERSION_SA)
765 sa_register_update_callback(os, zfs_sa_upgrade);
766
767 return (0);
768 }
769
770 int
771 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
772 {
773 objset_t *os;
774 zfsvfs_t *zfsvfs;
775 int error;
776 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
777
778 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
779
780 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
781 if (error != 0) {
782 kmem_free(zfsvfs, sizeof (zfsvfs_t));
783 return (error);
784 }
785
786 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
787
788 return (error);
789 }
790
791
792 /*
793 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
794 * on a failure. Do not pass in a statically allocated zfsvfs.
795 */
796 int
797 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
798 {
799 int error;
800
801 zfsvfs->z_vfs = NULL;
802 zfsvfs->z_sb = NULL;
803 zfsvfs->z_parent = zfsvfs;
804
805 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
806 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
807 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
808 offsetof(znode_t, z_link_node));
809 ZFS_TEARDOWN_INIT(zfsvfs);
810 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
811 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
812
813 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
814 ZFS_OBJ_MTX_MAX);
815 zfsvfs->z_hold_size = size;
816 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
817 KM_SLEEP);
818 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
819 for (int i = 0; i != size; i++) {
820 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
821 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
822 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
823 }
824
825 error = zfsvfs_init(zfsvfs, os);
826 if (error != 0) {
827 dmu_objset_disown(os, B_TRUE, zfsvfs);
828 *zfvp = NULL;
829 zfsvfs_free(zfsvfs);
830 return (error);
831 }
832
833 zfsvfs->z_drain_task = TASKQID_INVALID;
834 zfsvfs->z_draining = B_FALSE;
835 zfsvfs->z_drain_cancel = B_TRUE;
836
837 *zfvp = zfsvfs;
838 return (0);
839 }
840
841 static int
842 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
843 {
844 int error;
845 boolean_t readonly = zfs_is_readonly(zfsvfs);
846
847 error = zfs_register_callbacks(zfsvfs->z_vfs);
848 if (error)
849 return (error);
850
851 /*
852 * If we are not mounting (ie: online recv), then we don't
853 * have to worry about replaying the log as we blocked all
854 * operations out since we closed the ZIL.
855 */
856 if (mounting) {
857 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
858 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
859 if (error)
860 return (error);
861 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
862 &zfsvfs->z_kstat.dk_zil_sums);
863
864 /*
865 * During replay we remove the read only flag to
866 * allow replays to succeed.
867 */
868 if (readonly != 0) {
869 readonly_changed_cb(zfsvfs, B_FALSE);
870 } else {
871 zap_stats_t zs;
872 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
873 &zs) == 0) {
874 dataset_kstats_update_nunlinks_kstat(
875 &zfsvfs->z_kstat, zs.zs_num_entries);
876 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
877 "num_entries in unlinked set: %llu",
878 zs.zs_num_entries);
879 }
880 zfs_unlinked_drain(zfsvfs);
881 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
882 dd->dd_activity_cancelled = B_FALSE;
883 }
884
885 /*
886 * Parse and replay the intent log.
887 *
888 * Because of ziltest, this must be done after
889 * zfs_unlinked_drain(). (Further note: ziltest
890 * doesn't use readonly mounts, where
891 * zfs_unlinked_drain() isn't called.) This is because
892 * ziltest causes spa_sync() to think it's committed,
893 * but actually it is not, so the intent log contains
894 * many txg's worth of changes.
895 *
896 * In particular, if object N is in the unlinked set in
897 * the last txg to actually sync, then it could be
898 * actually freed in a later txg and then reallocated
899 * in a yet later txg. This would write a "create
900 * object N" record to the intent log. Normally, this
901 * would be fine because the spa_sync() would have
902 * written out the fact that object N is free, before
903 * we could write the "create object N" intent log
904 * record.
905 *
906 * But when we are in ziltest mode, we advance the "open
907 * txg" without actually spa_sync()-ing the changes to
908 * disk. So we would see that object N is still
909 * allocated and in the unlinked set, and there is an
910 * intent log record saying to allocate it.
911 */
912 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
913 if (zil_replay_disable) {
914 zil_destroy(zfsvfs->z_log, B_FALSE);
915 } else {
916 zfsvfs->z_replay = B_TRUE;
917 zil_replay(zfsvfs->z_os, zfsvfs,
918 zfs_replay_vector);
919 zfsvfs->z_replay = B_FALSE;
920 }
921 }
922
923 /* restore readonly bit */
924 if (readonly != 0)
925 readonly_changed_cb(zfsvfs, B_TRUE);
926 } else {
927 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
928 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
929 &zfsvfs->z_kstat.dk_zil_sums);
930 }
931
932 /*
933 * Set the objset user_ptr to track its zfsvfs.
934 */
935 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
936 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
937 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
938
939 return (0);
940 }
941
942 void
943 zfsvfs_free(zfsvfs_t *zfsvfs)
944 {
945 int i, size = zfsvfs->z_hold_size;
946
947 zfs_fuid_destroy(zfsvfs);
948
949 mutex_destroy(&zfsvfs->z_znodes_lock);
950 mutex_destroy(&zfsvfs->z_lock);
951 list_destroy(&zfsvfs->z_all_znodes);
952 ZFS_TEARDOWN_DESTROY(zfsvfs);
953 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
954 rw_destroy(&zfsvfs->z_fuid_lock);
955 for (i = 0; i != size; i++) {
956 avl_destroy(&zfsvfs->z_hold_trees[i]);
957 mutex_destroy(&zfsvfs->z_hold_locks[i]);
958 }
959 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
960 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
961 zfsvfs_vfs_free(zfsvfs->z_vfs);
962 dataset_kstats_destroy(&zfsvfs->z_kstat);
963 kmem_free(zfsvfs, sizeof (zfsvfs_t));
964 }
965
966 static void
967 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
968 {
969 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
970 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
971 }
972
973 static void
974 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
975 {
976 objset_t *os = zfsvfs->z_os;
977
978 if (!dmu_objset_is_snapshot(os))
979 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
980 }
981
982 #ifdef HAVE_MLSLABEL
983 /*
984 * Check that the hex label string is appropriate for the dataset being
985 * mounted into the global_zone proper.
986 *
987 * Return an error if the hex label string is not default or
988 * admin_low/admin_high. For admin_low labels, the corresponding
989 * dataset must be readonly.
990 */
991 int
992 zfs_check_global_label(const char *dsname, const char *hexsl)
993 {
994 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
995 return (0);
996 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
997 return (0);
998 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
999 /* must be readonly */
1000 uint64_t rdonly;
1001
1002 if (dsl_prop_get_integer(dsname,
1003 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1004 return (SET_ERROR(EACCES));
1005 return (rdonly ? 0 : SET_ERROR(EACCES));
1006 }
1007 return (SET_ERROR(EACCES));
1008 }
1009 #endif /* HAVE_MLSLABEL */
1010
1011 static int
1012 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1013 uint32_t bshift)
1014 {
1015 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1016 uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1017 uint64_t quota;
1018 uint64_t used;
1019 int err;
1020
1021 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1022 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1023 sizeof (buf) - offset, B_FALSE);
1024 if (err)
1025 return (err);
1026
1027 if (zfsvfs->z_projectquota_obj == 0)
1028 goto objs;
1029
1030 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1031 buf + offset, 8, 1, "a);
1032 if (err == ENOENT)
1033 goto objs;
1034 else if (err)
1035 return (err);
1036
1037 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1038 buf + offset, 8, 1, &used);
1039 if (unlikely(err == ENOENT)) {
1040 uint32_t blksize;
1041 u_longlong_t nblocks;
1042
1043 /*
1044 * Quota accounting is async, so it is possible race case.
1045 * There is at least one object with the given project ID.
1046 */
1047 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1048 if (unlikely(zp->z_blksz == 0))
1049 blksize = zfsvfs->z_max_blksz;
1050
1051 used = blksize * nblocks;
1052 } else if (err) {
1053 return (err);
1054 }
1055
1056 statp->f_blocks = quota >> bshift;
1057 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1058 statp->f_bavail = statp->f_bfree;
1059
1060 objs:
1061 if (zfsvfs->z_projectobjquota_obj == 0)
1062 return (0);
1063
1064 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1065 buf + offset, 8, 1, "a);
1066 if (err == ENOENT)
1067 return (0);
1068 else if (err)
1069 return (err);
1070
1071 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1072 buf, 8, 1, &used);
1073 if (unlikely(err == ENOENT)) {
1074 /*
1075 * Quota accounting is async, so it is possible race case.
1076 * There is at least one object with the given project ID.
1077 */
1078 used = 1;
1079 } else if (err) {
1080 return (err);
1081 }
1082
1083 statp->f_files = quota;
1084 statp->f_ffree = (quota > used) ? (quota - used) : 0;
1085
1086 return (0);
1087 }
1088
1089 int
1090 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1091 {
1092 zfsvfs_t *zfsvfs = ITOZSB(ip);
1093 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1094 int err = 0;
1095
1096 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1097 return (err);
1098
1099 dmu_objset_space(zfsvfs->z_os,
1100 &refdbytes, &availbytes, &usedobjs, &availobjs);
1101
1102 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1103 /*
1104 * The underlying storage pool actually uses multiple block
1105 * size. Under Solaris frsize (fragment size) is reported as
1106 * the smallest block size we support, and bsize (block size)
1107 * as the filesystem's maximum block size. Unfortunately,
1108 * under Linux the fragment size and block size are often used
1109 * interchangeably. Thus we are forced to report both of them
1110 * as the filesystem's maximum block size.
1111 */
1112 statp->f_frsize = zfsvfs->z_max_blksz;
1113 statp->f_bsize = zfsvfs->z_max_blksz;
1114 uint32_t bshift = fls(statp->f_bsize) - 1;
1115
1116 /*
1117 * The following report "total" blocks of various kinds in
1118 * the file system, but reported in terms of f_bsize - the
1119 * "preferred" size.
1120 */
1121
1122 /* Round up so we never have a filesystem using 0 blocks. */
1123 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1124 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1125 statp->f_bfree = availbytes >> bshift;
1126 statp->f_bavail = statp->f_bfree; /* no root reservation */
1127
1128 /*
1129 * statvfs() should really be called statufs(), because it assumes
1130 * static metadata. ZFS doesn't preallocate files, so the best
1131 * we can do is report the max that could possibly fit in f_files,
1132 * and that minus the number actually used in f_ffree.
1133 * For f_ffree, report the smaller of the number of objects available
1134 * and the number of blocks (each object will take at least a block).
1135 */
1136 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1137 statp->f_files = statp->f_ffree + usedobjs;
1138 statp->f_fsid.val[0] = (uint32_t)fsid;
1139 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1140 statp->f_type = ZFS_SUPER_MAGIC;
1141 statp->f_namelen = MAXNAMELEN - 1;
1142
1143 /*
1144 * We have all of 40 characters to stuff a string here.
1145 * Is there anything useful we could/should provide?
1146 */
1147 memset(statp->f_spare, 0, sizeof (statp->f_spare));
1148
1149 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1150 dmu_objset_projectquota_present(zfsvfs->z_os)) {
1151 znode_t *zp = ITOZ(ip);
1152
1153 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1154 zpl_is_valid_projid(zp->z_projid))
1155 err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1156 }
1157
1158 zfs_exit(zfsvfs, FTAG);
1159 return (err);
1160 }
1161
1162 static int
1163 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1164 {
1165 znode_t *rootzp;
1166 int error;
1167
1168 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1169 return (error);
1170
1171 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1172 if (error == 0)
1173 *ipp = ZTOI(rootzp);
1174
1175 zfs_exit(zfsvfs, FTAG);
1176 return (error);
1177 }
1178
1179 /*
1180 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1181 * To accommodate this we must improvise and manually walk the list of znodes
1182 * attempting to prune dentries in order to be able to drop the inodes.
1183 *
1184 * To avoid scanning the same znodes multiple times they are always rotated
1185 * to the end of the z_all_znodes list. New znodes are inserted at the
1186 * end of the list so we're always scanning the oldest znodes first.
1187 */
1188 static int
1189 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1190 {
1191 znode_t **zp_array, *zp;
1192 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1193 int objects = 0;
1194 int i = 0, j = 0;
1195
1196 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1197
1198 mutex_enter(&zfsvfs->z_znodes_lock);
1199 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1200
1201 if ((i++ > nr_to_scan) || (j >= max_array))
1202 break;
1203
1204 ASSERT(list_link_active(&zp->z_link_node));
1205 list_remove(&zfsvfs->z_all_znodes, zp);
1206 list_insert_tail(&zfsvfs->z_all_znodes, zp);
1207
1208 /* Skip active znodes and .zfs entries */
1209 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1210 continue;
1211
1212 if (igrab(ZTOI(zp)) == NULL)
1213 continue;
1214
1215 zp_array[j] = zp;
1216 j++;
1217 }
1218 mutex_exit(&zfsvfs->z_znodes_lock);
1219
1220 for (i = 0; i < j; i++) {
1221 zp = zp_array[i];
1222
1223 ASSERT3P(zp, !=, NULL);
1224 d_prune_aliases(ZTOI(zp));
1225
1226 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1227 objects++;
1228
1229 zrele(zp);
1230 }
1231
1232 kmem_free(zp_array, max_array * sizeof (znode_t *));
1233
1234 return (objects);
1235 }
1236
1237 /*
1238 * The ARC has requested that the filesystem drop entries from the dentry
1239 * and inode caches. This can occur when the ARC needs to free meta data
1240 * blocks but can't because they are all pinned by entries in these caches.
1241 */
1242 int
1243 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1244 {
1245 zfsvfs_t *zfsvfs = sb->s_fs_info;
1246 int error = 0;
1247 struct shrinker *shrinker = &sb->s_shrink;
1248 struct shrink_control sc = {
1249 .nr_to_scan = nr_to_scan,
1250 .gfp_mask = GFP_KERNEL,
1251 };
1252
1253 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1254 return (error);
1255
1256 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1257 defined(SHRINK_CONTROL_HAS_NID) && \
1258 defined(SHRINKER_NUMA_AWARE)
1259 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1260 *objects = 0;
1261 for_each_online_node(sc.nid) {
1262 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1263 /*
1264 * reset sc.nr_to_scan, modified by
1265 * scan_objects == super_cache_scan
1266 */
1267 sc.nr_to_scan = nr_to_scan;
1268 }
1269 } else {
1270 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1271 }
1272
1273 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1274 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1275 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1276 *objects = (*shrinker->shrink)(shrinker, &sc);
1277 #elif defined(HAVE_D_PRUNE_ALIASES)
1278 #define D_PRUNE_ALIASES_IS_DEFAULT
1279 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1280 #else
1281 #error "No available dentry and inode cache pruning mechanism."
1282 #endif
1283
1284 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1285 #undef D_PRUNE_ALIASES_IS_DEFAULT
1286 /*
1287 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1288 * shrinker couldn't free anything, possibly due to the inodes being
1289 * allocated in a different memcg.
1290 */
1291 if (*objects == 0)
1292 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1293 #endif
1294
1295 zfs_exit(zfsvfs, FTAG);
1296
1297 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1298 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1299 nr_to_scan, *objects, error);
1300
1301 return (error);
1302 }
1303
1304 /*
1305 * Teardown the zfsvfs_t.
1306 *
1307 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1308 * and 'z_teardown_inactive_lock' held.
1309 */
1310 static int
1311 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1312 {
1313 znode_t *zp;
1314
1315 zfs_unlinked_drain_stop_wait(zfsvfs);
1316
1317 /*
1318 * If someone has not already unmounted this file system,
1319 * drain the zrele_taskq to ensure all active references to the
1320 * zfsvfs_t have been handled only then can it be safely destroyed.
1321 */
1322 if (zfsvfs->z_os) {
1323 /*
1324 * If we're unmounting we have to wait for the list to
1325 * drain completely.
1326 *
1327 * If we're not unmounting there's no guarantee the list
1328 * will drain completely, but iputs run from the taskq
1329 * may add the parents of dir-based xattrs to the taskq
1330 * so we want to wait for these.
1331 *
1332 * We can safely read z_nr_znodes without locking because the
1333 * VFS has already blocked operations which add to the
1334 * z_all_znodes list and thus increment z_nr_znodes.
1335 */
1336 int round = 0;
1337 while (zfsvfs->z_nr_znodes > 0) {
1338 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1339 dmu_objset_pool(zfsvfs->z_os)), 0);
1340 if (++round > 1 && !unmounting)
1341 break;
1342 }
1343 }
1344
1345 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1346
1347 if (!unmounting) {
1348 /*
1349 * We purge the parent filesystem's super block as the
1350 * parent filesystem and all of its snapshots have their
1351 * inode's super block set to the parent's filesystem's
1352 * super block. Note, 'z_parent' is self referential
1353 * for non-snapshots.
1354 */
1355 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1356 }
1357
1358 /*
1359 * Close the zil. NB: Can't close the zil while zfs_inactive
1360 * threads are blocked as zil_close can call zfs_inactive.
1361 */
1362 if (zfsvfs->z_log) {
1363 zil_close(zfsvfs->z_log);
1364 zfsvfs->z_log = NULL;
1365 }
1366
1367 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1368
1369 /*
1370 * If we are not unmounting (ie: online recv) and someone already
1371 * unmounted this file system while we were doing the switcheroo,
1372 * or a reopen of z_os failed then just bail out now.
1373 */
1374 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1375 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1376 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1377 return (SET_ERROR(EIO));
1378 }
1379
1380 /*
1381 * At this point there are no VFS ops active, and any new VFS ops
1382 * will fail with EIO since we have z_teardown_lock for writer (only
1383 * relevant for forced unmount).
1384 *
1385 * Release all holds on dbufs. We also grab an extra reference to all
1386 * the remaining inodes so that the kernel does not attempt to free
1387 * any inodes of a suspended fs. This can cause deadlocks since the
1388 * zfs_resume_fs() process may involve starting threads, which might
1389 * attempt to free unreferenced inodes to free up memory for the new
1390 * thread.
1391 */
1392 if (!unmounting) {
1393 mutex_enter(&zfsvfs->z_znodes_lock);
1394 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1395 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1396 if (zp->z_sa_hdl)
1397 zfs_znode_dmu_fini(zp);
1398 if (igrab(ZTOI(zp)) != NULL)
1399 zp->z_suspended = B_TRUE;
1400
1401 }
1402 mutex_exit(&zfsvfs->z_znodes_lock);
1403 }
1404
1405 /*
1406 * If we are unmounting, set the unmounted flag and let new VFS ops
1407 * unblock. zfs_inactive will have the unmounted behavior, and all
1408 * other VFS ops will fail with EIO.
1409 */
1410 if (unmounting) {
1411 zfsvfs->z_unmounted = B_TRUE;
1412 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1413 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1414 }
1415
1416 /*
1417 * z_os will be NULL if there was an error in attempting to reopen
1418 * zfsvfs, so just return as the properties had already been
1419 *
1420 * unregistered and cached data had been evicted before.
1421 */
1422 if (zfsvfs->z_os == NULL)
1423 return (0);
1424
1425 /*
1426 * Unregister properties.
1427 */
1428 zfs_unregister_callbacks(zfsvfs);
1429
1430 /*
1431 * Evict cached data. We must write out any dirty data before
1432 * disowning the dataset.
1433 */
1434 objset_t *os = zfsvfs->z_os;
1435 boolean_t os_dirty = B_FALSE;
1436 for (int t = 0; t < TXG_SIZE; t++) {
1437 if (dmu_objset_is_dirty(os, t)) {
1438 os_dirty = B_TRUE;
1439 break;
1440 }
1441 }
1442 if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1443 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1444 }
1445 dmu_objset_evict_dbufs(zfsvfs->z_os);
1446 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1447 dsl_dir_cancel_waiters(dd);
1448
1449 return (0);
1450 }
1451
1452 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
1453 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1454 #endif
1455
1456 int
1457 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1458 {
1459 const char *osname = zm->mnt_osname;
1460 struct inode *root_inode = NULL;
1461 uint64_t recordsize;
1462 int error = 0;
1463 zfsvfs_t *zfsvfs = NULL;
1464 vfs_t *vfs = NULL;
1465 int canwrite;
1466 int dataset_visible_zone;
1467
1468 ASSERT(zm);
1469 ASSERT(osname);
1470
1471 dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1472
1473 /*
1474 * Refuse to mount a filesystem if we are in a namespace and the
1475 * dataset is not visible or writable in that namespace.
1476 */
1477 if (!INGLOBALZONE(curproc) &&
1478 (!dataset_visible_zone || !canwrite)) {
1479 return (SET_ERROR(EPERM));
1480 }
1481
1482 error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1483 if (error)
1484 return (error);
1485
1486 /*
1487 * If a non-writable filesystem is being mounted without the
1488 * read-only flag, pretend it was set, as done for snapshots.
1489 */
1490 if (!canwrite)
1491 vfs->vfs_readonly = true;
1492
1493 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1494 if (error) {
1495 zfsvfs_vfs_free(vfs);
1496 goto out;
1497 }
1498
1499 if ((error = dsl_prop_get_integer(osname, "recordsize",
1500 &recordsize, NULL))) {
1501 zfsvfs_vfs_free(vfs);
1502 goto out;
1503 }
1504
1505 vfs->vfs_data = zfsvfs;
1506 zfsvfs->z_vfs = vfs;
1507 zfsvfs->z_sb = sb;
1508 sb->s_fs_info = zfsvfs;
1509 sb->s_magic = ZFS_SUPER_MAGIC;
1510 sb->s_maxbytes = MAX_LFS_FILESIZE;
1511 sb->s_time_gran = 1;
1512 sb->s_blocksize = recordsize;
1513 sb->s_blocksize_bits = ilog2(recordsize);
1514
1515 error = -zpl_bdi_setup(sb, "zfs");
1516 if (error)
1517 goto out;
1518
1519 sb->s_bdi->ra_pages = 0;
1520
1521 /* Set callback operations for the file system. */
1522 sb->s_op = &zpl_super_operations;
1523 sb->s_xattr = zpl_xattr_handlers;
1524 sb->s_export_op = &zpl_export_operations;
1525
1526 /* Set features for file system. */
1527 zfs_set_fuid_feature(zfsvfs);
1528
1529 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1530 uint64_t pval;
1531
1532 atime_changed_cb(zfsvfs, B_FALSE);
1533 readonly_changed_cb(zfsvfs, B_TRUE);
1534 if ((error = dsl_prop_get_integer(osname,
1535 "xattr", &pval, NULL)))
1536 goto out;
1537 xattr_changed_cb(zfsvfs, pval);
1538 if ((error = dsl_prop_get_integer(osname,
1539 "acltype", &pval, NULL)))
1540 goto out;
1541 acltype_changed_cb(zfsvfs, pval);
1542 zfsvfs->z_issnap = B_TRUE;
1543 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1544 zfsvfs->z_snap_defer_time = jiffies;
1545
1546 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1547 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1548 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1549 } else {
1550 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1551 goto out;
1552 }
1553
1554 /* Allocate a root inode for the filesystem. */
1555 error = zfs_root(zfsvfs, &root_inode);
1556 if (error) {
1557 (void) zfs_umount(sb);
1558 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1559 goto out;
1560 }
1561
1562 /* Allocate a root dentry for the filesystem */
1563 sb->s_root = d_make_root(root_inode);
1564 if (sb->s_root == NULL) {
1565 (void) zfs_umount(sb);
1566 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1567 error = SET_ERROR(ENOMEM);
1568 goto out;
1569 }
1570
1571 if (!zfsvfs->z_issnap)
1572 zfsctl_create(zfsvfs);
1573
1574 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1575 out:
1576 if (error) {
1577 if (zfsvfs != NULL) {
1578 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1579 zfsvfs_free(zfsvfs);
1580 }
1581 /*
1582 * make sure we don't have dangling sb->s_fs_info which
1583 * zfs_preumount will use.
1584 */
1585 sb->s_fs_info = NULL;
1586 }
1587
1588 return (error);
1589 }
1590
1591 /*
1592 * Called when an unmount is requested and certain sanity checks have
1593 * already passed. At this point no dentries or inodes have been reclaimed
1594 * from their respective caches. We drop the extra reference on the .zfs
1595 * control directory to allow everything to be reclaimed. All snapshots
1596 * must already have been unmounted to reach this point.
1597 */
1598 void
1599 zfs_preumount(struct super_block *sb)
1600 {
1601 zfsvfs_t *zfsvfs = sb->s_fs_info;
1602
1603 /* zfsvfs is NULL when zfs_domount fails during mount */
1604 if (zfsvfs) {
1605 zfs_unlinked_drain_stop_wait(zfsvfs);
1606 zfsctl_destroy(sb->s_fs_info);
1607 /*
1608 * Wait for zrele_async before entering evict_inodes in
1609 * generic_shutdown_super. The reason we must finish before
1610 * evict_inodes is when lazytime is on, or when zfs_purgedir
1611 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1612 * would race with the i_count check in evict_inodes. This means
1613 * it could destroy the inode while we are still using it.
1614 *
1615 * We wait for two passes. xattr directories in the first pass
1616 * may add xattr entries in zfs_purgedir, so in the second pass
1617 * we wait for them. We don't use taskq_wait here because it is
1618 * a pool wide taskq. Other mounted filesystems can constantly
1619 * do zrele_async and there's no guarantee when taskq will be
1620 * empty.
1621 */
1622 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1623 dmu_objset_pool(zfsvfs->z_os)), 0);
1624 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1625 dmu_objset_pool(zfsvfs->z_os)), 0);
1626 }
1627 }
1628
1629 /*
1630 * Called once all other unmount released tear down has occurred.
1631 * It is our responsibility to release any remaining infrastructure.
1632 */
1633 int
1634 zfs_umount(struct super_block *sb)
1635 {
1636 zfsvfs_t *zfsvfs = sb->s_fs_info;
1637 objset_t *os;
1638
1639 if (zfsvfs->z_arc_prune != NULL)
1640 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1641 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1642 os = zfsvfs->z_os;
1643 zpl_bdi_destroy(sb);
1644
1645 /*
1646 * z_os will be NULL if there was an error in
1647 * attempting to reopen zfsvfs.
1648 */
1649 if (os != NULL) {
1650 /*
1651 * Unset the objset user_ptr.
1652 */
1653 mutex_enter(&os->os_user_ptr_lock);
1654 dmu_objset_set_user(os, NULL);
1655 mutex_exit(&os->os_user_ptr_lock);
1656
1657 /*
1658 * Finally release the objset
1659 */
1660 dmu_objset_disown(os, B_TRUE, zfsvfs);
1661 }
1662
1663 zfsvfs_free(zfsvfs);
1664 return (0);
1665 }
1666
1667 int
1668 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1669 {
1670 zfsvfs_t *zfsvfs = sb->s_fs_info;
1671 vfs_t *vfsp;
1672 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1673 int error;
1674
1675 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1676 !(*flags & SB_RDONLY)) {
1677 *flags |= SB_RDONLY;
1678 return (EROFS);
1679 }
1680
1681 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1682 if (error)
1683 return (error);
1684
1685 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1686 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1687
1688 zfs_unregister_callbacks(zfsvfs);
1689 zfsvfs_vfs_free(zfsvfs->z_vfs);
1690
1691 vfsp->vfs_data = zfsvfs;
1692 zfsvfs->z_vfs = vfsp;
1693 if (!issnap)
1694 (void) zfs_register_callbacks(vfsp);
1695
1696 return (error);
1697 }
1698
1699 int
1700 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1701 {
1702 zfsvfs_t *zfsvfs = sb->s_fs_info;
1703 znode_t *zp;
1704 uint64_t object = 0;
1705 uint64_t fid_gen = 0;
1706 uint64_t gen_mask;
1707 uint64_t zp_gen;
1708 int i, err;
1709
1710 *ipp = NULL;
1711
1712 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1713 zfid_short_t *zfid = (zfid_short_t *)fidp;
1714
1715 for (i = 0; i < sizeof (zfid->zf_object); i++)
1716 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1717
1718 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1719 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1720 } else {
1721 return (SET_ERROR(EINVAL));
1722 }
1723
1724 /* LONG_FID_LEN means snapdirs */
1725 if (fidp->fid_len == LONG_FID_LEN) {
1726 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1727 uint64_t objsetid = 0;
1728 uint64_t setgen = 0;
1729
1730 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1731 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1732
1733 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1734 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1735
1736 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1737 dprintf("snapdir fid: objsetid (%llu) != "
1738 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1739 objsetid, ZFSCTL_INO_SNAPDIRS, object);
1740
1741 return (SET_ERROR(EINVAL));
1742 }
1743
1744 if (fid_gen > 1 || setgen != 0) {
1745 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1746 "(%llu)\n", fid_gen, setgen);
1747 return (SET_ERROR(EINVAL));
1748 }
1749
1750 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1751 }
1752
1753 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1754 return (err);
1755 /* A zero fid_gen means we are in the .zfs control directories */
1756 if (fid_gen == 0 &&
1757 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1758 *ipp = zfsvfs->z_ctldir;
1759 ASSERT(*ipp != NULL);
1760 if (object == ZFSCTL_INO_SNAPDIR) {
1761 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1762 0, kcred, NULL, NULL) == 0);
1763 } else {
1764 /*
1765 * Must have an existing ref, so igrab()
1766 * cannot return NULL
1767 */
1768 VERIFY3P(igrab(*ipp), !=, NULL);
1769 }
1770 zfs_exit(zfsvfs, FTAG);
1771 return (0);
1772 }
1773
1774 gen_mask = -1ULL >> (64 - 8 * i);
1775
1776 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1777 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1778 zfs_exit(zfsvfs, FTAG);
1779 return (err);
1780 }
1781
1782 /* Don't export xattr stuff */
1783 if (zp->z_pflags & ZFS_XATTR) {
1784 zrele(zp);
1785 zfs_exit(zfsvfs, FTAG);
1786 return (SET_ERROR(ENOENT));
1787 }
1788
1789 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1790 sizeof (uint64_t));
1791 zp_gen = zp_gen & gen_mask;
1792 if (zp_gen == 0)
1793 zp_gen = 1;
1794 if ((fid_gen == 0) && (zfsvfs->z_root == object))
1795 fid_gen = zp_gen;
1796 if (zp->z_unlinked || zp_gen != fid_gen) {
1797 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1798 fid_gen);
1799 zrele(zp);
1800 zfs_exit(zfsvfs, FTAG);
1801 return (SET_ERROR(ENOENT));
1802 }
1803
1804 *ipp = ZTOI(zp);
1805 if (*ipp)
1806 zfs_znode_update_vfs(ITOZ(*ipp));
1807
1808 zfs_exit(zfsvfs, FTAG);
1809 return (0);
1810 }
1811
1812 /*
1813 * Block out VFS ops and close zfsvfs_t
1814 *
1815 * Note, if successful, then we return with the 'z_teardown_lock' and
1816 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1817 * dataset and objset intact so that they can be atomically handed off during
1818 * a subsequent rollback or recv operation and the resume thereafter.
1819 */
1820 int
1821 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1822 {
1823 int error;
1824
1825 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1826 return (error);
1827
1828 return (0);
1829 }
1830
1831 /*
1832 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1833 * is an invariant across any of the operations that can be performed while the
1834 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1835 * are the same: the relevant objset and associated dataset are owned by
1836 * zfsvfs, held, and long held on entry.
1837 */
1838 int
1839 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1840 {
1841 int err, err2;
1842 znode_t *zp;
1843
1844 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1845 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1846
1847 /*
1848 * We already own this, so just update the objset_t, as the one we
1849 * had before may have been evicted.
1850 */
1851 objset_t *os;
1852 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1853 VERIFY(dsl_dataset_long_held(ds));
1854 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1855 dsl_pool_config_enter(dp, FTAG);
1856 VERIFY0(dmu_objset_from_ds(ds, &os));
1857 dsl_pool_config_exit(dp, FTAG);
1858
1859 err = zfsvfs_init(zfsvfs, os);
1860 if (err != 0)
1861 goto bail;
1862
1863 ds->ds_dir->dd_activity_cancelled = B_FALSE;
1864 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1865
1866 zfs_set_fuid_feature(zfsvfs);
1867 zfsvfs->z_rollback_time = jiffies;
1868
1869 /*
1870 * Attempt to re-establish all the active inodes with their
1871 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1872 * and mark it stale. This prevents a collision if a new
1873 * inode/object is created which must use the same inode
1874 * number. The stale inode will be be released when the
1875 * VFS prunes the dentry holding the remaining references
1876 * on the stale inode.
1877 */
1878 mutex_enter(&zfsvfs->z_znodes_lock);
1879 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1880 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1881 err2 = zfs_rezget(zp);
1882 if (err2) {
1883 zpl_d_drop_aliases(ZTOI(zp));
1884 remove_inode_hash(ZTOI(zp));
1885 }
1886
1887 /* see comment in zfs_suspend_fs() */
1888 if (zp->z_suspended) {
1889 zfs_zrele_async(zp);
1890 zp->z_suspended = B_FALSE;
1891 }
1892 }
1893 mutex_exit(&zfsvfs->z_znodes_lock);
1894
1895 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1896 /*
1897 * zfs_suspend_fs() could have interrupted freeing
1898 * of dnodes. We need to restart this freeing so
1899 * that we don't "leak" the space.
1900 */
1901 zfs_unlinked_drain(zfsvfs);
1902 }
1903
1904 /*
1905 * Most of the time zfs_suspend_fs is used for changing the contents
1906 * of the underlying dataset. ZFS rollback and receive operations
1907 * might create files for which negative dentries are present in
1908 * the cache. Since walking the dcache would require a lot of GPL-only
1909 * code duplication, it's much easier on these rather rare occasions
1910 * just to flush the whole dcache for the given dataset/filesystem.
1911 */
1912 shrink_dcache_sb(zfsvfs->z_sb);
1913
1914 bail:
1915 if (err != 0)
1916 zfsvfs->z_unmounted = B_TRUE;
1917
1918 /* release the VFS ops */
1919 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1920 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1921
1922 if (err != 0) {
1923 /*
1924 * Since we couldn't setup the sa framework, try to force
1925 * unmount this file system.
1926 */
1927 if (zfsvfs->z_os)
1928 (void) zfs_umount(zfsvfs->z_sb);
1929 }
1930 return (err);
1931 }
1932
1933 /*
1934 * Release VOPs and unmount a suspended filesystem.
1935 */
1936 int
1937 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1938 {
1939 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1940 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1941
1942 /*
1943 * We already own this, so just hold and rele it to update the
1944 * objset_t, as the one we had before may have been evicted.
1945 */
1946 objset_t *os;
1947 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1948 VERIFY(dsl_dataset_long_held(ds));
1949 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1950 dsl_pool_config_enter(dp, FTAG);
1951 VERIFY0(dmu_objset_from_ds(ds, &os));
1952 dsl_pool_config_exit(dp, FTAG);
1953 zfsvfs->z_os = os;
1954
1955 /* release the VOPs */
1956 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1957 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1958
1959 /*
1960 * Try to force unmount this file system.
1961 */
1962 (void) zfs_umount(zfsvfs->z_sb);
1963 zfsvfs->z_unmounted = B_TRUE;
1964 return (0);
1965 }
1966
1967 /*
1968 * Automounted snapshots rely on periodic revalidation
1969 * to defer snapshots from being automatically unmounted.
1970 */
1971
1972 inline void
1973 zfs_exit_fs(zfsvfs_t *zfsvfs)
1974 {
1975 if (!zfsvfs->z_issnap)
1976 return;
1977
1978 if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1979 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1980 zfsvfs->z_snap_defer_time = jiffies;
1981 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1982 dmu_objset_id(zfsvfs->z_os),
1983 zfs_expire_snapshot);
1984 }
1985 }
1986
1987 int
1988 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1989 {
1990 int error;
1991 objset_t *os = zfsvfs->z_os;
1992 dmu_tx_t *tx;
1993
1994 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1995 return (SET_ERROR(EINVAL));
1996
1997 if (newvers < zfsvfs->z_version)
1998 return (SET_ERROR(EINVAL));
1999
2000 if (zfs_spa_version_map(newvers) >
2001 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2002 return (SET_ERROR(ENOTSUP));
2003
2004 tx = dmu_tx_create(os);
2005 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2006 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2007 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2008 ZFS_SA_ATTRS);
2009 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2010 }
2011 error = dmu_tx_assign(tx, TXG_WAIT);
2012 if (error) {
2013 dmu_tx_abort(tx);
2014 return (error);
2015 }
2016
2017 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2018 8, 1, &newvers, tx);
2019
2020 if (error) {
2021 dmu_tx_commit(tx);
2022 return (error);
2023 }
2024
2025 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2026 uint64_t sa_obj;
2027
2028 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2029 SPA_VERSION_SA);
2030 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2031 DMU_OT_NONE, 0, tx);
2032
2033 error = zap_add(os, MASTER_NODE_OBJ,
2034 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2035 ASSERT0(error);
2036
2037 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2038 sa_register_update_callback(os, zfs_sa_upgrade);
2039 }
2040
2041 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2042 "from %llu to %llu", zfsvfs->z_version, newvers);
2043
2044 dmu_tx_commit(tx);
2045
2046 zfsvfs->z_version = newvers;
2047 os->os_version = newvers;
2048
2049 zfs_set_fuid_feature(zfsvfs);
2050
2051 return (0);
2052 }
2053
2054 /*
2055 * Read a property stored within the master node.
2056 */
2057 int
2058 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2059 {
2060 uint64_t *cached_copy = NULL;
2061
2062 /*
2063 * Figure out where in the objset_t the cached copy would live, if it
2064 * is available for the requested property.
2065 */
2066 if (os != NULL) {
2067 switch (prop) {
2068 case ZFS_PROP_VERSION:
2069 cached_copy = &os->os_version;
2070 break;
2071 case ZFS_PROP_NORMALIZE:
2072 cached_copy = &os->os_normalization;
2073 break;
2074 case ZFS_PROP_UTF8ONLY:
2075 cached_copy = &os->os_utf8only;
2076 break;
2077 case ZFS_PROP_CASE:
2078 cached_copy = &os->os_casesensitivity;
2079 break;
2080 default:
2081 break;
2082 }
2083 }
2084 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2085 *value = *cached_copy;
2086 return (0);
2087 }
2088
2089 /*
2090 * If the property wasn't cached, look up the file system's value for
2091 * the property. For the version property, we look up a slightly
2092 * different string.
2093 */
2094 const char *pname;
2095 int error = ENOENT;
2096 if (prop == ZFS_PROP_VERSION)
2097 pname = ZPL_VERSION_STR;
2098 else
2099 pname = zfs_prop_to_name(prop);
2100
2101 if (os != NULL) {
2102 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2103 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2104 }
2105
2106 if (error == ENOENT) {
2107 /* No value set, use the default value */
2108 switch (prop) {
2109 case ZFS_PROP_VERSION:
2110 *value = ZPL_VERSION;
2111 break;
2112 case ZFS_PROP_NORMALIZE:
2113 case ZFS_PROP_UTF8ONLY:
2114 *value = 0;
2115 break;
2116 case ZFS_PROP_CASE:
2117 *value = ZFS_CASE_SENSITIVE;
2118 break;
2119 case ZFS_PROP_ACLTYPE:
2120 *value = ZFS_ACLTYPE_OFF;
2121 break;
2122 default:
2123 return (error);
2124 }
2125 error = 0;
2126 }
2127
2128 /*
2129 * If one of the methods for getting the property value above worked,
2130 * copy it into the objset_t's cache.
2131 */
2132 if (error == 0 && cached_copy != NULL) {
2133 *cached_copy = *value;
2134 }
2135
2136 return (error);
2137 }
2138
2139 /*
2140 * Return true if the corresponding vfs's unmounted flag is set.
2141 * Otherwise return false.
2142 * If this function returns true we know VFS unmount has been initiated.
2143 */
2144 boolean_t
2145 zfs_get_vfs_flag_unmounted(objset_t *os)
2146 {
2147 zfsvfs_t *zfvp;
2148 boolean_t unmounted = B_FALSE;
2149
2150 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2151
2152 mutex_enter(&os->os_user_ptr_lock);
2153 zfvp = dmu_objset_get_user(os);
2154 if (zfvp != NULL && zfvp->z_unmounted)
2155 unmounted = B_TRUE;
2156 mutex_exit(&os->os_user_ptr_lock);
2157
2158 return (unmounted);
2159 }
2160
2161 void
2162 zfsvfs_update_fromname(const char *oldname, const char *newname)
2163 {
2164 /*
2165 * We don't need to do anything here, the devname is always current by
2166 * virtue of zfsvfs->z_sb->s_op->show_devname.
2167 */
2168 (void) oldname, (void) newname;
2169 }
2170
2171 void
2172 zfs_init(void)
2173 {
2174 zfsctl_init();
2175 zfs_znode_init();
2176 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2177 register_filesystem(&zpl_fs_type);
2178 }
2179
2180 void
2181 zfs_fini(void)
2182 {
2183 /*
2184 * we don't use outstanding because zpl_posix_acl_free might add more.
2185 */
2186 taskq_wait(system_delay_taskq);
2187 taskq_wait(system_taskq);
2188 unregister_filesystem(&zpl_fs_type);
2189 zfs_znode_fini();
2190 zfsctl_fini();
2191 }
2192
2193 #if defined(_KERNEL)
2194 EXPORT_SYMBOL(zfs_suspend_fs);
2195 EXPORT_SYMBOL(zfs_resume_fs);
2196 EXPORT_SYMBOL(zfs_set_version);
2197 EXPORT_SYMBOL(zfsvfs_create);
2198 EXPORT_SYMBOL(zfsvfs_free);
2199 EXPORT_SYMBOL(zfs_is_readonly);
2200 EXPORT_SYMBOL(zfs_domount);
2201 EXPORT_SYMBOL(zfs_preumount);
2202 EXPORT_SYMBOL(zfs_umount);
2203 EXPORT_SYMBOL(zfs_remount);
2204 EXPORT_SYMBOL(zfs_statvfs);
2205 EXPORT_SYMBOL(zfs_vget);
2206 EXPORT_SYMBOL(zfs_prune);
2207 #endif
Cache object: ceb8a80d60392c22503826a5afa0fc6d
|