The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/os/linux/zfs/zio_crypt.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * This file and its contents are supplied under the terms of the
    5  * Common Development and Distribution License ("CDDL"), version 1.0.
    6  * You may only use this file in accordance with the terms of version
    7  * 1.0 of the CDDL.
    8  *
    9  * A full copy of the text of the CDDL should have accompanied this
   10  * source.  A copy of the CDDL is also available via the Internet at
   11  * http://www.illumos.org/license/CDDL.
   12  *
   13  * CDDL HEADER END
   14  */
   15 
   16 /*
   17  * Copyright (c) 2017, Datto, Inc. All rights reserved.
   18  */
   19 
   20 #include <sys/zio_crypt.h>
   21 #include <sys/dmu.h>
   22 #include <sys/dmu_objset.h>
   23 #include <sys/dnode.h>
   24 #include <sys/fs/zfs.h>
   25 #include <sys/zio.h>
   26 #include <sys/zil.h>
   27 #include <sys/sha2.h>
   28 #include <sys/hkdf.h>
   29 #include <sys/qat.h>
   30 
   31 /*
   32  * This file is responsible for handling all of the details of generating
   33  * encryption parameters and performing encryption and authentication.
   34  *
   35  * BLOCK ENCRYPTION PARAMETERS:
   36  * Encryption /Authentication Algorithm Suite (crypt):
   37  * The encryption algorithm, mode, and key length we are going to use. We
   38  * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
   39  * keys. All authentication is currently done with SHA512-HMAC.
   40  *
   41  * Plaintext:
   42  * The unencrypted data that we want to encrypt.
   43  *
   44  * Initialization Vector (IV):
   45  * An initialization vector for the encryption algorithms. This is used to
   46  * "tweak" the encryption algorithms so that two blocks of the same data are
   47  * encrypted into different ciphertext outputs, thus obfuscating block patterns.
   48  * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
   49  * never reused with the same encryption key. This value is stored unencrypted
   50  * and must simply be provided to the decryption function. We use a 96 bit IV
   51  * (as recommended by NIST) for all block encryption. For non-dedup blocks we
   52  * derive the IV randomly. The first 64 bits of the IV are stored in the second
   53  * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
   54  * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
   55  * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
   56  * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
   57  * level 0 blocks is the number of allocated dnodes in that block. The on-disk
   58  * format supports at most 2^15 slots per L0 dnode block, because the maximum
   59  * block size is 16MB (2^24). In either case, for level 0 blocks this number
   60  * will still be smaller than UINT32_MAX so it is safe to store the IV in the
   61  * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
   62  * for the dnode code.
   63  *
   64  * Master key:
   65  * This is the most important secret data of an encrypted dataset. It is used
   66  * along with the salt to generate that actual encryption keys via HKDF. We
   67  * do not use the master key to directly encrypt any data because there are
   68  * theoretical limits on how much data can actually be safely encrypted with
   69  * any encryption mode. The master key is stored encrypted on disk with the
   70  * user's wrapping key. Its length is determined by the encryption algorithm.
   71  * For details on how this is stored see the block comment in dsl_crypt.c
   72  *
   73  * Salt:
   74  * Used as an input to the HKDF function, along with the master key. We use a
   75  * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
   76  * can be used for encrypting many blocks, so we cache the current salt and the
   77  * associated derived key in zio_crypt_t so we do not need to derive it again
   78  * needlessly.
   79  *
   80  * Encryption Key:
   81  * A secret binary key, generated from an HKDF function used to encrypt and
   82  * decrypt data.
   83  *
   84  * Message Authentication Code (MAC)
   85  * The MAC is an output of authenticated encryption modes such as AES-GCM and
   86  * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
   87  * data on disk and return garbage to the application. Effectively, it is a
   88  * checksum that can not be reproduced by an attacker. We store the MAC in the
   89  * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
   90  * regular checksum of the ciphertext which can be used for scrubbing.
   91  *
   92  * OBJECT AUTHENTICATION:
   93  * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
   94  * they contain some info that always needs to be readable. To prevent this
   95  * data from being altered, we authenticate this data using SHA512-HMAC. This
   96  * will produce a MAC (similar to the one produced via encryption) which can
   97  * be used to verify the object was not modified. HMACs do not require key
   98  * rotation or IVs, so we can keep up to the full 3 copies of authenticated
   99  * data.
  100  *
  101  * ZIL ENCRYPTION:
  102  * ZIL blocks have their bp written to disk ahead of the associated data, so we
  103  * cannot store the MAC there as we normally do. For these blocks the MAC is
  104  * stored in the embedded checksum within the zil_chain_t header. The salt and
  105  * IV are generated for the block on bp allocation instead of at encryption
  106  * time. In addition, ZIL blocks have some pieces that must be left in plaintext
  107  * for claiming even though all of the sensitive user data still needs to be
  108  * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
  109  * pieces of the block need to be encrypted. All data that is not encrypted is
  110  * authenticated using the AAD mechanisms that the supported encryption modes
  111  * provide for. In order to preserve the semantics of the ZIL for encrypted
  112  * datasets, the ZIL is not protected at the objset level as described below.
  113  *
  114  * DNODE ENCRYPTION:
  115  * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
  116  * in plaintext for scrubbing and claiming, but the bonus buffers might contain
  117  * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
  118  * which pieces of the block need to be encrypted. For more details about
  119  * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
  120  *
  121  * OBJECT SET AUTHENTICATION:
  122  * Up to this point, everything we have encrypted and authenticated has been
  123  * at level 0 (or -2 for the ZIL). If we did not do any further work the
  124  * on-disk format would be susceptible to attacks that deleted or rearranged
  125  * the order of level 0 blocks. Ideally, the cleanest solution would be to
  126  * maintain a tree of authentication MACs going up the bp tree. However, this
  127  * presents a problem for raw sends. Send files do not send information about
  128  * indirect blocks so there would be no convenient way to transfer the MACs and
  129  * they cannot be recalculated on the receive side without the master key which
  130  * would defeat one of the purposes of raw sends in the first place. Instead,
  131  * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
  132  * from the level below. We also include some portable fields from blk_prop such
  133  * as the lsize and compression algorithm to prevent the data from being
  134  * misinterpreted.
  135  *
  136  * At the objset level, we maintain 2 separate 256 bit MACs in the
  137  * objset_phys_t. The first one is "portable" and is the logical root of the
  138  * MAC tree maintained in the metadnode's bps. The second, is "local" and is
  139  * used as the root MAC for the user accounting objects, which are also not
  140  * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
  141  * of the send file. The useraccounting code ensures that the useraccounting
  142  * info is not present upon a receive, so the local MAC can simply be cleared
  143  * out at that time. For more info about objset_phys_t authentication, see
  144  * zio_crypt_do_objset_hmacs().
  145  *
  146  * CONSIDERATIONS FOR DEDUP:
  147  * In order for dedup to work, blocks that we want to dedup with one another
  148  * need to use the same IV and encryption key, so that they will have the same
  149  * ciphertext. Normally, one should never reuse an IV with the same encryption
  150  * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
  151  * blocks. In this case, however, since we are using the same plaintext as
  152  * well all that we end up with is a duplicate of the original ciphertext we
  153  * already had. As a result, an attacker with read access to the raw disk will
  154  * be able to tell which blocks are the same but this information is given away
  155  * by dedup anyway. In order to get the same IVs and encryption keys for
  156  * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
  157  * here so that a reproducible checksum of the plaintext is never available to
  158  * the attacker. The HMAC key is kept alongside the master key, encrypted on
  159  * disk. The first 64 bits of the HMAC are used in place of the random salt, and
  160  * the next 96 bits are used as the IV. As a result of this mechanism, dedup
  161  * will only work within a clone family since encrypted dedup requires use of
  162  * the same master and HMAC keys.
  163  */
  164 
  165 /*
  166  * After encrypting many blocks with the same key we may start to run up
  167  * against the theoretical limits of how much data can securely be encrypted
  168  * with a single key using the supported encryption modes. The most obvious
  169  * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
  170  * the more IVs we generate (which both GCM and CCM modes strictly forbid).
  171  * This risk actually grows surprisingly quickly over time according to the
  172  * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
  173  * generated n IVs with a cryptographically secure RNG, the approximate
  174  * probability p(n) of a collision is given as:
  175  *
  176  * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
  177  *
  178  * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
  179  *
  180  * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
  181  * we must not write more than 398,065,730 blocks with the same encryption key.
  182  * Therefore, we rotate our keys after 400,000,000 blocks have been written by
  183  * generating a new random 64 bit salt for our HKDF encryption key generation
  184  * function.
  185  */
  186 #define ZFS_KEY_MAX_SALT_USES_DEFAULT   400000000
  187 #define ZFS_CURRENT_MAX_SALT_USES       \
  188         (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
  189 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
  190 
  191 typedef struct blkptr_auth_buf {
  192         uint64_t bab_prop;                      /* blk_prop - portable mask */
  193         uint8_t bab_mac[ZIO_DATA_MAC_LEN];      /* MAC from blk_cksum */
  194         uint64_t bab_pad;                       /* reserved for future use */
  195 } blkptr_auth_buf_t;
  196 
  197 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
  198         {"",                    ZC_TYPE_NONE,   0,      "inherit"},
  199         {"",                    ZC_TYPE_NONE,   0,      "on"},
  200         {"",                    ZC_TYPE_NONE,   0,      "off"},
  201         {SUN_CKM_AES_CCM,       ZC_TYPE_CCM,    16,     "aes-128-ccm"},
  202         {SUN_CKM_AES_CCM,       ZC_TYPE_CCM,    24,     "aes-192-ccm"},
  203         {SUN_CKM_AES_CCM,       ZC_TYPE_CCM,    32,     "aes-256-ccm"},
  204         {SUN_CKM_AES_GCM,       ZC_TYPE_GCM,    16,     "aes-128-gcm"},
  205         {SUN_CKM_AES_GCM,       ZC_TYPE_GCM,    24,     "aes-192-gcm"},
  206         {SUN_CKM_AES_GCM,       ZC_TYPE_GCM,    32,     "aes-256-gcm"}
  207 };
  208 
  209 void
  210 zio_crypt_key_destroy(zio_crypt_key_t *key)
  211 {
  212         rw_destroy(&key->zk_salt_lock);
  213 
  214         /* free crypto templates */
  215         crypto_destroy_ctx_template(key->zk_current_tmpl);
  216         crypto_destroy_ctx_template(key->zk_hmac_tmpl);
  217 
  218         /* zero out sensitive data */
  219         memset(key, 0, sizeof (zio_crypt_key_t));
  220 }
  221 
  222 int
  223 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
  224 {
  225         int ret;
  226         crypto_mechanism_t mech;
  227         uint_t keydata_len;
  228 
  229         ASSERT(key != NULL);
  230         ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
  231 
  232 /*
  233  * Workaround for GCC 12+ with UBSan enabled deficencies.
  234  *
  235  * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
  236  * below as violating -Warray-bounds
  237  */
  238 #if defined(__GNUC__) && !defined(__clang__) && \
  239         ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
  240             defined(CONFIG_UBSAN))
  241 #pragma GCC diagnostic push
  242 #pragma GCC diagnostic ignored "-Warray-bounds"
  243 #endif
  244         keydata_len = zio_crypt_table[crypt].ci_keylen;
  245 #if defined(__GNUC__) && !defined(__clang__) && \
  246         ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
  247             defined(CONFIG_UBSAN))
  248 #pragma GCC diagnostic pop
  249 #endif
  250         memset(key, 0, sizeof (zio_crypt_key_t));
  251         rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
  252 
  253         /* fill keydata buffers and salt with random data */
  254         ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
  255         if (ret != 0)
  256                 goto error;
  257 
  258         ret = random_get_bytes(key->zk_master_keydata, keydata_len);
  259         if (ret != 0)
  260                 goto error;
  261 
  262         ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
  263         if (ret != 0)
  264                 goto error;
  265 
  266         ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
  267         if (ret != 0)
  268                 goto error;
  269 
  270         /* derive the current key from the master key */
  271         ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
  272             key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
  273             keydata_len);
  274         if (ret != 0)
  275                 goto error;
  276 
  277         /* initialize keys for the ICP */
  278         key->zk_current_key.ck_data = key->zk_current_keydata;
  279         key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
  280 
  281         key->zk_hmac_key.ck_data = &key->zk_hmac_key;
  282         key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
  283 
  284         /*
  285          * Initialize the crypto templates. It's ok if this fails because
  286          * this is just an optimization.
  287          */
  288         mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
  289         ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
  290             &key->zk_current_tmpl);
  291         if (ret != CRYPTO_SUCCESS)
  292                 key->zk_current_tmpl = NULL;
  293 
  294         mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
  295         ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
  296             &key->zk_hmac_tmpl);
  297         if (ret != CRYPTO_SUCCESS)
  298                 key->zk_hmac_tmpl = NULL;
  299 
  300         key->zk_crypt = crypt;
  301         key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
  302         key->zk_salt_count = 0;
  303 
  304         return (0);
  305 
  306 error:
  307         zio_crypt_key_destroy(key);
  308         return (ret);
  309 }
  310 
  311 static int
  312 zio_crypt_key_change_salt(zio_crypt_key_t *key)
  313 {
  314         int ret = 0;
  315         uint8_t salt[ZIO_DATA_SALT_LEN];
  316         crypto_mechanism_t mech;
  317         uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
  318 
  319         /* generate a new salt */
  320         ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
  321         if (ret != 0)
  322                 goto error;
  323 
  324         rw_enter(&key->zk_salt_lock, RW_WRITER);
  325 
  326         /* someone beat us to the salt rotation, just unlock and return */
  327         if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
  328                 goto out_unlock;
  329 
  330         /* derive the current key from the master key and the new salt */
  331         ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
  332             salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
  333         if (ret != 0)
  334                 goto out_unlock;
  335 
  336         /* assign the salt and reset the usage count */
  337         memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
  338         key->zk_salt_count = 0;
  339 
  340         /* destroy the old context template and create the new one */
  341         crypto_destroy_ctx_template(key->zk_current_tmpl);
  342         ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
  343             &key->zk_current_tmpl);
  344         if (ret != CRYPTO_SUCCESS)
  345                 key->zk_current_tmpl = NULL;
  346 
  347         rw_exit(&key->zk_salt_lock);
  348 
  349         return (0);
  350 
  351 out_unlock:
  352         rw_exit(&key->zk_salt_lock);
  353 error:
  354         return (ret);
  355 }
  356 
  357 /* See comment above zfs_key_max_salt_uses definition for details */
  358 int
  359 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
  360 {
  361         int ret;
  362         boolean_t salt_change;
  363 
  364         rw_enter(&key->zk_salt_lock, RW_READER);
  365 
  366         memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
  367         salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
  368             ZFS_CURRENT_MAX_SALT_USES);
  369 
  370         rw_exit(&key->zk_salt_lock);
  371 
  372         if (salt_change) {
  373                 ret = zio_crypt_key_change_salt(key);
  374                 if (ret != 0)
  375                         goto error;
  376         }
  377 
  378         return (0);
  379 
  380 error:
  381         return (ret);
  382 }
  383 
  384 /*
  385  * This function handles all encryption and decryption in zfs. When
  386  * encrypting it expects puio to reference the plaintext and cuio to
  387  * reference the ciphertext. cuio must have enough space for the
  388  * ciphertext + room for a MAC. datalen should be the length of the
  389  * plaintext / ciphertext alone.
  390  */
  391 static int
  392 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
  393     crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
  394     zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
  395 {
  396         int ret;
  397         crypto_data_t plaindata, cipherdata;
  398         CK_AES_CCM_PARAMS ccmp;
  399         CK_AES_GCM_PARAMS gcmp;
  400         crypto_mechanism_t mech;
  401         zio_crypt_info_t crypt_info;
  402         uint_t plain_full_len, maclen;
  403 
  404         ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
  405 
  406         /* lookup the encryption info */
  407         crypt_info = zio_crypt_table[crypt];
  408 
  409         /* the mac will always be the last iovec_t in the cipher uio */
  410         maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
  411 
  412         ASSERT(maclen <= ZIO_DATA_MAC_LEN);
  413 
  414         /* setup encryption mechanism (same as crypt) */
  415         mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
  416 
  417         /*
  418          * Strangely, the ICP requires that plain_full_len must include
  419          * the MAC length when decrypting, even though the UIO does not
  420          * need to have the extra space allocated.
  421          */
  422         if (encrypt) {
  423                 plain_full_len = datalen;
  424         } else {
  425                 plain_full_len = datalen + maclen;
  426         }
  427 
  428         /*
  429          * setup encryption params (currently only AES CCM and AES GCM
  430          * are supported)
  431          */
  432         if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
  433                 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
  434                 ccmp.ulAuthDataSize = auth_len;
  435                 ccmp.authData = authbuf;
  436                 ccmp.ulMACSize = maclen;
  437                 ccmp.nonce = ivbuf;
  438                 ccmp.ulDataSize = plain_full_len;
  439 
  440                 mech.cm_param = (char *)(&ccmp);
  441                 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
  442         } else {
  443                 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
  444                 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
  445                 gcmp.ulAADLen = auth_len;
  446                 gcmp.pAAD = authbuf;
  447                 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
  448                 gcmp.pIv = ivbuf;
  449 
  450                 mech.cm_param = (char *)(&gcmp);
  451                 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
  452         }
  453 
  454         /* populate the cipher and plain data structs. */
  455         plaindata.cd_format = CRYPTO_DATA_UIO;
  456         plaindata.cd_offset = 0;
  457         plaindata.cd_uio = puio;
  458         plaindata.cd_length = plain_full_len;
  459 
  460         cipherdata.cd_format = CRYPTO_DATA_UIO;
  461         cipherdata.cd_offset = 0;
  462         cipherdata.cd_uio = cuio;
  463         cipherdata.cd_length = datalen + maclen;
  464 
  465         /* perform the actual encryption */
  466         if (encrypt) {
  467                 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
  468                 if (ret != CRYPTO_SUCCESS) {
  469                         ret = SET_ERROR(EIO);
  470                         goto error;
  471                 }
  472         } else {
  473                 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
  474                 if (ret != CRYPTO_SUCCESS) {
  475                         ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
  476                         ret = SET_ERROR(ECKSUM);
  477                         goto error;
  478                 }
  479         }
  480 
  481         return (0);
  482 
  483 error:
  484         return (ret);
  485 }
  486 
  487 int
  488 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
  489     uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
  490 {
  491         int ret;
  492         zfs_uio_t puio, cuio;
  493         uint64_t aad[3];
  494         iovec_t plain_iovecs[2], cipher_iovecs[3];
  495         uint64_t crypt = key->zk_crypt;
  496         uint_t enc_len, keydata_len, aad_len;
  497 
  498         ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
  499 
  500         keydata_len = zio_crypt_table[crypt].ci_keylen;
  501 
  502         /* generate iv for wrapping the master and hmac key */
  503         ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
  504         if (ret != 0)
  505                 goto error;
  506 
  507         /* initialize zfs_uio_ts */
  508         plain_iovecs[0].iov_base = key->zk_master_keydata;
  509         plain_iovecs[0].iov_len = keydata_len;
  510         plain_iovecs[1].iov_base = key->zk_hmac_keydata;
  511         plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
  512 
  513         cipher_iovecs[0].iov_base = keydata_out;
  514         cipher_iovecs[0].iov_len = keydata_len;
  515         cipher_iovecs[1].iov_base = hmac_keydata_out;
  516         cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
  517         cipher_iovecs[2].iov_base = mac;
  518         cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
  519 
  520         /*
  521          * Although we don't support writing to the old format, we do
  522          * support rewrapping the key so that the user can move and
  523          * quarantine datasets on the old format.
  524          */
  525         if (key->zk_version == 0) {
  526                 aad_len = sizeof (uint64_t);
  527                 aad[0] = LE_64(key->zk_guid);
  528         } else {
  529                 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
  530                 aad_len = sizeof (uint64_t) * 3;
  531                 aad[0] = LE_64(key->zk_guid);
  532                 aad[1] = LE_64(crypt);
  533                 aad[2] = LE_64(key->zk_version);
  534         }
  535 
  536         enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
  537         puio.uio_iov = plain_iovecs;
  538         puio.uio_iovcnt = 2;
  539         puio.uio_segflg = UIO_SYSSPACE;
  540         cuio.uio_iov = cipher_iovecs;
  541         cuio.uio_iovcnt = 3;
  542         cuio.uio_segflg = UIO_SYSSPACE;
  543 
  544         /* encrypt the keys and store the resulting ciphertext and mac */
  545         ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
  546             &puio, &cuio, (uint8_t *)aad, aad_len);
  547         if (ret != 0)
  548                 goto error;
  549 
  550         return (0);
  551 
  552 error:
  553         return (ret);
  554 }
  555 
  556 int
  557 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
  558     uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
  559     uint8_t *mac, zio_crypt_key_t *key)
  560 {
  561         crypto_mechanism_t mech;
  562         zfs_uio_t puio, cuio;
  563         uint64_t aad[3];
  564         iovec_t plain_iovecs[2], cipher_iovecs[3];
  565         uint_t enc_len, keydata_len, aad_len;
  566         int ret;
  567 
  568         ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
  569 
  570         rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
  571 
  572         keydata_len = zio_crypt_table[crypt].ci_keylen;
  573 
  574         /* initialize zfs_uio_ts */
  575         plain_iovecs[0].iov_base = key->zk_master_keydata;
  576         plain_iovecs[0].iov_len = keydata_len;
  577         plain_iovecs[1].iov_base = key->zk_hmac_keydata;
  578         plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
  579 
  580         cipher_iovecs[0].iov_base = keydata;
  581         cipher_iovecs[0].iov_len = keydata_len;
  582         cipher_iovecs[1].iov_base = hmac_keydata;
  583         cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
  584         cipher_iovecs[2].iov_base = mac;
  585         cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
  586 
  587         if (version == 0) {
  588                 aad_len = sizeof (uint64_t);
  589                 aad[0] = LE_64(guid);
  590         } else {
  591                 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
  592                 aad_len = sizeof (uint64_t) * 3;
  593                 aad[0] = LE_64(guid);
  594                 aad[1] = LE_64(crypt);
  595                 aad[2] = LE_64(version);
  596         }
  597 
  598         enc_len = keydata_len + SHA512_HMAC_KEYLEN;
  599         puio.uio_iov = plain_iovecs;
  600         puio.uio_segflg = UIO_SYSSPACE;
  601         puio.uio_iovcnt = 2;
  602         cuio.uio_iov = cipher_iovecs;
  603         cuio.uio_iovcnt = 3;
  604         cuio.uio_segflg = UIO_SYSSPACE;
  605 
  606         /* decrypt the keys and store the result in the output buffers */
  607         ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
  608             &puio, &cuio, (uint8_t *)aad, aad_len);
  609         if (ret != 0)
  610                 goto error;
  611 
  612         /* generate a fresh salt */
  613         ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
  614         if (ret != 0)
  615                 goto error;
  616 
  617         /* derive the current key from the master key */
  618         ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
  619             key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
  620             keydata_len);
  621         if (ret != 0)
  622                 goto error;
  623 
  624         /* initialize keys for ICP */
  625         key->zk_current_key.ck_data = key->zk_current_keydata;
  626         key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
  627 
  628         key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
  629         key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
  630 
  631         /*
  632          * Initialize the crypto templates. It's ok if this fails because
  633          * this is just an optimization.
  634          */
  635         mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
  636         ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
  637             &key->zk_current_tmpl);
  638         if (ret != CRYPTO_SUCCESS)
  639                 key->zk_current_tmpl = NULL;
  640 
  641         mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
  642         ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
  643             &key->zk_hmac_tmpl);
  644         if (ret != CRYPTO_SUCCESS)
  645                 key->zk_hmac_tmpl = NULL;
  646 
  647         key->zk_crypt = crypt;
  648         key->zk_version = version;
  649         key->zk_guid = guid;
  650         key->zk_salt_count = 0;
  651 
  652         return (0);
  653 
  654 error:
  655         zio_crypt_key_destroy(key);
  656         return (ret);
  657 }
  658 
  659 int
  660 zio_crypt_generate_iv(uint8_t *ivbuf)
  661 {
  662         int ret;
  663 
  664         /* randomly generate the IV */
  665         ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
  666         if (ret != 0)
  667                 goto error;
  668 
  669         return (0);
  670 
  671 error:
  672         memset(ivbuf, 0, ZIO_DATA_IV_LEN);
  673         return (ret);
  674 }
  675 
  676 int
  677 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
  678     uint8_t *digestbuf, uint_t digestlen)
  679 {
  680         int ret;
  681         crypto_mechanism_t mech;
  682         crypto_data_t in_data, digest_data;
  683         uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
  684 
  685         ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
  686 
  687         /* initialize sha512-hmac mechanism and crypto data */
  688         mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
  689         mech.cm_param = NULL;
  690         mech.cm_param_len = 0;
  691 
  692         /* initialize the crypto data */
  693         in_data.cd_format = CRYPTO_DATA_RAW;
  694         in_data.cd_offset = 0;
  695         in_data.cd_length = datalen;
  696         in_data.cd_raw.iov_base = (char *)data;
  697         in_data.cd_raw.iov_len = in_data.cd_length;
  698 
  699         digest_data.cd_format = CRYPTO_DATA_RAW;
  700         digest_data.cd_offset = 0;
  701         digest_data.cd_length = SHA512_DIGEST_LENGTH;
  702         digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
  703         digest_data.cd_raw.iov_len = digest_data.cd_length;
  704 
  705         /* generate the hmac */
  706         ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
  707             &digest_data);
  708         if (ret != CRYPTO_SUCCESS) {
  709                 ret = SET_ERROR(EIO);
  710                 goto error;
  711         }
  712 
  713         memcpy(digestbuf, raw_digestbuf, digestlen);
  714 
  715         return (0);
  716 
  717 error:
  718         memset(digestbuf, 0, digestlen);
  719         return (ret);
  720 }
  721 
  722 int
  723 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
  724     uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
  725 {
  726         int ret;
  727         uint8_t digestbuf[SHA512_DIGEST_LENGTH];
  728 
  729         ret = zio_crypt_do_hmac(key, data, datalen,
  730             digestbuf, SHA512_DIGEST_LENGTH);
  731         if (ret != 0)
  732                 return (ret);
  733 
  734         memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
  735         memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
  736 
  737         return (0);
  738 }
  739 
  740 /*
  741  * The following functions are used to encode and decode encryption parameters
  742  * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
  743  * byte strings, which normally means that these strings would not need to deal
  744  * with byteswapping at all. However, both blkptr_t and zil_header_t may be
  745  * byteswapped by lower layers and so we must "undo" that byteswap here upon
  746  * decoding and encoding in a non-native byteorder. These functions require
  747  * that the byteorder bit is correct before being called.
  748  */
  749 void
  750 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
  751 {
  752         uint64_t val64;
  753         uint32_t val32;
  754 
  755         ASSERT(BP_IS_ENCRYPTED(bp));
  756 
  757         if (!BP_SHOULD_BYTESWAP(bp)) {
  758                 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
  759                 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
  760                 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
  761                 BP_SET_IV2(bp, val32);
  762         } else {
  763                 memcpy(&val64, salt, sizeof (uint64_t));
  764                 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
  765 
  766                 memcpy(&val64, iv, sizeof (uint64_t));
  767                 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
  768 
  769                 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
  770                 BP_SET_IV2(bp, BSWAP_32(val32));
  771         }
  772 }
  773 
  774 void
  775 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
  776 {
  777         uint64_t val64;
  778         uint32_t val32;
  779 
  780         ASSERT(BP_IS_PROTECTED(bp));
  781 
  782         /* for convenience, so callers don't need to check */
  783         if (BP_IS_AUTHENTICATED(bp)) {
  784                 memset(salt, 0, ZIO_DATA_SALT_LEN);
  785                 memset(iv, 0, ZIO_DATA_IV_LEN);
  786                 return;
  787         }
  788 
  789         if (!BP_SHOULD_BYTESWAP(bp)) {
  790                 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
  791                 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
  792 
  793                 val32 = (uint32_t)BP_GET_IV2(bp);
  794                 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
  795         } else {
  796                 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
  797                 memcpy(salt, &val64, sizeof (uint64_t));
  798 
  799                 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
  800                 memcpy(iv, &val64, sizeof (uint64_t));
  801 
  802                 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
  803                 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
  804         }
  805 }
  806 
  807 void
  808 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
  809 {
  810         uint64_t val64;
  811 
  812         ASSERT(BP_USES_CRYPT(bp));
  813         ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
  814 
  815         if (!BP_SHOULD_BYTESWAP(bp)) {
  816                 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
  817                 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
  818                     sizeof (uint64_t));
  819         } else {
  820                 memcpy(&val64, mac, sizeof (uint64_t));
  821                 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
  822 
  823                 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
  824                 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
  825         }
  826 }
  827 
  828 void
  829 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
  830 {
  831         uint64_t val64;
  832 
  833         ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
  834 
  835         /* for convenience, so callers don't need to check */
  836         if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
  837                 memset(mac, 0, ZIO_DATA_MAC_LEN);
  838                 return;
  839         }
  840 
  841         if (!BP_SHOULD_BYTESWAP(bp)) {
  842                 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
  843                 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
  844                     sizeof (uint64_t));
  845         } else {
  846                 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
  847                 memcpy(mac, &val64, sizeof (uint64_t));
  848 
  849                 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
  850                 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
  851         }
  852 }
  853 
  854 void
  855 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
  856 {
  857         zil_chain_t *zilc = data;
  858 
  859         memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
  860         memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
  861             sizeof (uint64_t));
  862 }
  863 
  864 void
  865 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
  866 {
  867         /*
  868          * The ZIL MAC is embedded in the block it protects, which will
  869          * not have been byteswapped by the time this function has been called.
  870          * As a result, we don't need to worry about byteswapping the MAC.
  871          */
  872         const zil_chain_t *zilc = data;
  873 
  874         memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
  875         memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
  876             sizeof (uint64_t));
  877 }
  878 
  879 /*
  880  * This routine takes a block of dnodes (src_abd) and copies only the bonus
  881  * buffers to the same offsets in the dst buffer. datalen should be the size
  882  * of both the src_abd and the dst buffer (not just the length of the bonus
  883  * buffers).
  884  */
  885 void
  886 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
  887 {
  888         uint_t i, max_dnp = datalen >> DNODE_SHIFT;
  889         uint8_t *src;
  890         dnode_phys_t *dnp, *sdnp, *ddnp;
  891 
  892         src = abd_borrow_buf_copy(src_abd, datalen);
  893 
  894         sdnp = (dnode_phys_t *)src;
  895         ddnp = (dnode_phys_t *)dst;
  896 
  897         for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
  898                 dnp = &sdnp[i];
  899                 if (dnp->dn_type != DMU_OT_NONE &&
  900                     DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
  901                     dnp->dn_bonuslen != 0) {
  902                         memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
  903                             DN_MAX_BONUS_LEN(dnp));
  904                 }
  905         }
  906 
  907         abd_return_buf(src_abd, src, datalen);
  908 }
  909 
  910 /*
  911  * This function decides what fields from blk_prop are included in
  912  * the on-disk various MAC algorithms.
  913  */
  914 static void
  915 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
  916 {
  917         /*
  918          * Version 0 did not properly zero out all non-portable fields
  919          * as it should have done. We maintain this code so that we can
  920          * do read-only imports of pools on this version.
  921          */
  922         if (version == 0) {
  923                 BP_SET_DEDUP(bp, 0);
  924                 BP_SET_CHECKSUM(bp, 0);
  925                 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
  926                 return;
  927         }
  928 
  929         ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
  930 
  931         /*
  932          * The hole_birth feature might set these fields even if this bp
  933          * is a hole. We zero them out here to guarantee that raw sends
  934          * will function with or without the feature.
  935          */
  936         if (BP_IS_HOLE(bp)) {
  937                 bp->blk_prop = 0ULL;
  938                 return;
  939         }
  940 
  941         /*
  942          * At L0 we want to verify these fields to ensure that data blocks
  943          * can not be reinterpreted. For instance, we do not want an attacker
  944          * to trick us into returning raw lz4 compressed data to the user
  945          * by modifying the compression bits. At higher levels, we cannot
  946          * enforce this policy since raw sends do not convey any information
  947          * about indirect blocks, so these values might be different on the
  948          * receive side. Fortunately, this does not open any new attack
  949          * vectors, since any alterations that can be made to a higher level
  950          * bp must still verify the correct order of the layer below it.
  951          */
  952         if (BP_GET_LEVEL(bp) != 0) {
  953                 BP_SET_BYTEORDER(bp, 0);
  954                 BP_SET_COMPRESS(bp, 0);
  955 
  956                 /*
  957                  * psize cannot be set to zero or it will trigger
  958                  * asserts, but the value doesn't really matter as
  959                  * long as it is constant.
  960                  */
  961                 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
  962         }
  963 
  964         BP_SET_DEDUP(bp, 0);
  965         BP_SET_CHECKSUM(bp, 0);
  966 }
  967 
  968 static void
  969 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
  970     blkptr_auth_buf_t *bab, uint_t *bab_len)
  971 {
  972         blkptr_t tmpbp = *bp;
  973 
  974         if (should_bswap)
  975                 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
  976 
  977         ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
  978         ASSERT0(BP_IS_EMBEDDED(&tmpbp));
  979 
  980         zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
  981 
  982         /*
  983          * We always MAC blk_prop in LE to ensure portability. This
  984          * must be done after decoding the mac, since the endianness
  985          * will get zero'd out here.
  986          */
  987         zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
  988         bab->bab_prop = LE_64(tmpbp.blk_prop);
  989         bab->bab_pad = 0ULL;
  990 
  991         /* version 0 did not include the padding */
  992         *bab_len = sizeof (blkptr_auth_buf_t);
  993         if (version == 0)
  994                 *bab_len -= sizeof (uint64_t);
  995 }
  996 
  997 static int
  998 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
  999     boolean_t should_bswap, blkptr_t *bp)
 1000 {
 1001         int ret;
 1002         uint_t bab_len;
 1003         blkptr_auth_buf_t bab;
 1004         crypto_data_t cd;
 1005 
 1006         zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 1007         cd.cd_format = CRYPTO_DATA_RAW;
 1008         cd.cd_offset = 0;
 1009         cd.cd_length = bab_len;
 1010         cd.cd_raw.iov_base = (char *)&bab;
 1011         cd.cd_raw.iov_len = cd.cd_length;
 1012 
 1013         ret = crypto_mac_update(ctx, &cd);
 1014         if (ret != CRYPTO_SUCCESS) {
 1015                 ret = SET_ERROR(EIO);
 1016                 goto error;
 1017         }
 1018 
 1019         return (0);
 1020 
 1021 error:
 1022         return (ret);
 1023 }
 1024 
 1025 static void
 1026 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
 1027     boolean_t should_bswap, blkptr_t *bp)
 1028 {
 1029         uint_t bab_len;
 1030         blkptr_auth_buf_t bab;
 1031 
 1032         zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 1033         SHA2Update(ctx, &bab, bab_len);
 1034 }
 1035 
 1036 static void
 1037 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
 1038     boolean_t should_bswap, blkptr_t *bp)
 1039 {
 1040         uint_t bab_len;
 1041         blkptr_auth_buf_t bab;
 1042 
 1043         zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 1044         memcpy(*aadp, &bab, bab_len);
 1045         *aadp += bab_len;
 1046         *aad_len += bab_len;
 1047 }
 1048 
 1049 static int
 1050 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
 1051     boolean_t should_bswap, dnode_phys_t *dnp)
 1052 {
 1053         int ret, i;
 1054         dnode_phys_t *adnp, tmp_dncore;
 1055         size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
 1056         boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
 1057         crypto_data_t cd;
 1058 
 1059         cd.cd_format = CRYPTO_DATA_RAW;
 1060         cd.cd_offset = 0;
 1061 
 1062         /*
 1063          * Authenticate the core dnode (masking out non-portable bits).
 1064          * We only copy the first 64 bytes we operate on to avoid the overhead
 1065          * of copying 512-64 unneeded bytes. The compiler seems to be fine
 1066          * with that.
 1067          */
 1068         memcpy(&tmp_dncore, dnp, dn_core_size);
 1069         adnp = &tmp_dncore;
 1070 
 1071         if (le_bswap) {
 1072                 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
 1073                 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
 1074                 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
 1075                 adnp->dn_used = BSWAP_64(adnp->dn_used);
 1076         }
 1077         adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
 1078         adnp->dn_used = 0;
 1079 
 1080         cd.cd_length = dn_core_size;
 1081         cd.cd_raw.iov_base = (char *)adnp;
 1082         cd.cd_raw.iov_len = cd.cd_length;
 1083 
 1084         ret = crypto_mac_update(ctx, &cd);
 1085         if (ret != CRYPTO_SUCCESS) {
 1086                 ret = SET_ERROR(EIO);
 1087                 goto error;
 1088         }
 1089 
 1090         for (i = 0; i < dnp->dn_nblkptr; i++) {
 1091                 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
 1092                     should_bswap, &dnp->dn_blkptr[i]);
 1093                 if (ret != 0)
 1094                         goto error;
 1095         }
 1096 
 1097         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 1098                 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
 1099                     should_bswap, DN_SPILL_BLKPTR(dnp));
 1100                 if (ret != 0)
 1101                         goto error;
 1102         }
 1103 
 1104         return (0);
 1105 
 1106 error:
 1107         return (ret);
 1108 }
 1109 
 1110 /*
 1111  * objset_phys_t blocks introduce a number of exceptions to the normal
 1112  * authentication process. objset_phys_t's contain 2 separate HMACS for
 1113  * protecting the integrity of their data. The portable_mac protects the
 1114  * metadnode. This MAC can be sent with a raw send and protects against
 1115  * reordering of data within the metadnode. The local_mac protects the user
 1116  * accounting objects which are not sent from one system to another.
 1117  *
 1118  * In addition, objset blocks are the only blocks that can be modified and
 1119  * written to disk without the key loaded under certain circumstances. During
 1120  * zil_claim() we need to be able to update the zil_header_t to complete
 1121  * claiming log blocks and during raw receives we need to write out the
 1122  * portable_mac from the send file. Both of these actions are possible
 1123  * because these fields are not protected by either MAC so neither one will
 1124  * need to modify the MACs without the key. However, when the modified blocks
 1125  * are written out they will be byteswapped into the host machine's native
 1126  * endianness which will modify fields protected by the MAC. As a result, MAC
 1127  * calculation for objset blocks works slightly differently from other block
 1128  * types. Where other block types MAC the data in whatever endianness is
 1129  * written to disk, objset blocks always MAC little endian version of their
 1130  * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
 1131  * and le_bswap indicates whether a byteswap is needed to get this block
 1132  * into little endian format.
 1133  */
 1134 int
 1135 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
 1136     boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
 1137 {
 1138         int ret;
 1139         crypto_mechanism_t mech;
 1140         crypto_context_t ctx;
 1141         crypto_data_t cd;
 1142         objset_phys_t *osp = data;
 1143         uint64_t intval;
 1144         boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
 1145         uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
 1146         uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
 1147 
 1148         /* initialize HMAC mechanism */
 1149         mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
 1150         mech.cm_param = NULL;
 1151         mech.cm_param_len = 0;
 1152 
 1153         cd.cd_format = CRYPTO_DATA_RAW;
 1154         cd.cd_offset = 0;
 1155 
 1156         /* calculate the portable MAC from the portable fields and metadnode */
 1157         ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
 1158         if (ret != CRYPTO_SUCCESS) {
 1159                 ret = SET_ERROR(EIO);
 1160                 goto error;
 1161         }
 1162 
 1163         /* add in the os_type */
 1164         intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
 1165         cd.cd_length = sizeof (uint64_t);
 1166         cd.cd_raw.iov_base = (char *)&intval;
 1167         cd.cd_raw.iov_len = cd.cd_length;
 1168 
 1169         ret = crypto_mac_update(ctx, &cd);
 1170         if (ret != CRYPTO_SUCCESS) {
 1171                 ret = SET_ERROR(EIO);
 1172                 goto error;
 1173         }
 1174 
 1175         /* add in the portable os_flags */
 1176         intval = osp->os_flags;
 1177         if (should_bswap)
 1178                 intval = BSWAP_64(intval);
 1179         intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
 1180         if (!ZFS_HOST_BYTEORDER)
 1181                 intval = BSWAP_64(intval);
 1182 
 1183         cd.cd_length = sizeof (uint64_t);
 1184         cd.cd_raw.iov_base = (char *)&intval;
 1185         cd.cd_raw.iov_len = cd.cd_length;
 1186 
 1187         ret = crypto_mac_update(ctx, &cd);
 1188         if (ret != CRYPTO_SUCCESS) {
 1189                 ret = SET_ERROR(EIO);
 1190                 goto error;
 1191         }
 1192 
 1193         /* add in fields from the metadnode */
 1194         ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 1195             should_bswap, &osp->os_meta_dnode);
 1196         if (ret)
 1197                 goto error;
 1198 
 1199         /* store the final digest in a temporary buffer and copy what we need */
 1200         cd.cd_length = SHA512_DIGEST_LENGTH;
 1201         cd.cd_raw.iov_base = (char *)raw_portable_mac;
 1202         cd.cd_raw.iov_len = cd.cd_length;
 1203 
 1204         ret = crypto_mac_final(ctx, &cd);
 1205         if (ret != CRYPTO_SUCCESS) {
 1206                 ret = SET_ERROR(EIO);
 1207                 goto error;
 1208         }
 1209 
 1210         memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
 1211 
 1212         /*
 1213          * This is necessary here as we check next whether
 1214          * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
 1215          * decide if the local_mac should be zeroed out. That flag will always
 1216          * be set by dmu_objset_id_quota_upgrade_cb() and
 1217          * dmu_objset_userspace_upgrade_cb() if useraccounting has been
 1218          * completed.
 1219          */
 1220         intval = osp->os_flags;
 1221         if (should_bswap)
 1222                 intval = BSWAP_64(intval);
 1223         boolean_t uacct_incomplete =
 1224             !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
 1225 
 1226         /*
 1227          * The local MAC protects the user, group and project accounting.
 1228          * If these objects are not present, the local MAC is zeroed out.
 1229          */
 1230         if (uacct_incomplete ||
 1231             (datalen >= OBJSET_PHYS_SIZE_V3 &&
 1232             osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
 1233             osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
 1234             osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
 1235             (datalen >= OBJSET_PHYS_SIZE_V2 &&
 1236             osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
 1237             osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
 1238             (datalen <= OBJSET_PHYS_SIZE_V1)) {
 1239                 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
 1240                 return (0);
 1241         }
 1242 
 1243         /* calculate the local MAC from the userused and groupused dnodes */
 1244         ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
 1245         if (ret != CRYPTO_SUCCESS) {
 1246                 ret = SET_ERROR(EIO);
 1247                 goto error;
 1248         }
 1249 
 1250         /* add in the non-portable os_flags */
 1251         intval = osp->os_flags;
 1252         if (should_bswap)
 1253                 intval = BSWAP_64(intval);
 1254         intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
 1255         if (!ZFS_HOST_BYTEORDER)
 1256                 intval = BSWAP_64(intval);
 1257 
 1258         cd.cd_length = sizeof (uint64_t);
 1259         cd.cd_raw.iov_base = (char *)&intval;
 1260         cd.cd_raw.iov_len = cd.cd_length;
 1261 
 1262         ret = crypto_mac_update(ctx, &cd);
 1263         if (ret != CRYPTO_SUCCESS) {
 1264                 ret = SET_ERROR(EIO);
 1265                 goto error;
 1266         }
 1267 
 1268         /* add in fields from the user accounting dnodes */
 1269         if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
 1270                 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 1271                     should_bswap, &osp->os_userused_dnode);
 1272                 if (ret)
 1273                         goto error;
 1274         }
 1275 
 1276         if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
 1277                 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 1278                     should_bswap, &osp->os_groupused_dnode);
 1279                 if (ret)
 1280                         goto error;
 1281         }
 1282 
 1283         if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
 1284             datalen >= OBJSET_PHYS_SIZE_V3) {
 1285                 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 1286                     should_bswap, &osp->os_projectused_dnode);
 1287                 if (ret)
 1288                         goto error;
 1289         }
 1290 
 1291         /* store the final digest in a temporary buffer and copy what we need */
 1292         cd.cd_length = SHA512_DIGEST_LENGTH;
 1293         cd.cd_raw.iov_base = (char *)raw_local_mac;
 1294         cd.cd_raw.iov_len = cd.cd_length;
 1295 
 1296         ret = crypto_mac_final(ctx, &cd);
 1297         if (ret != CRYPTO_SUCCESS) {
 1298                 ret = SET_ERROR(EIO);
 1299                 goto error;
 1300         }
 1301 
 1302         memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
 1303 
 1304         return (0);
 1305 
 1306 error:
 1307         memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
 1308         memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
 1309         return (ret);
 1310 }
 1311 
 1312 static void
 1313 zio_crypt_destroy_uio(zfs_uio_t *uio)
 1314 {
 1315         if (uio->uio_iov)
 1316                 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
 1317 }
 1318 
 1319 /*
 1320  * This function parses an uncompressed indirect block and returns a checksum
 1321  * of all the portable fields from all of the contained bps. The portable
 1322  * fields are the MAC and all of the fields from blk_prop except for the dedup,
 1323  * checksum, and psize bits. For an explanation of the purpose of this, see
 1324  * the comment block on object set authentication.
 1325  */
 1326 static int
 1327 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
 1328     uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
 1329 {
 1330         blkptr_t *bp;
 1331         int i, epb = datalen >> SPA_BLKPTRSHIFT;
 1332         SHA2_CTX ctx;
 1333         uint8_t digestbuf[SHA512_DIGEST_LENGTH];
 1334 
 1335         /* checksum all of the MACs from the layer below */
 1336         SHA2Init(SHA512, &ctx);
 1337         for (i = 0, bp = buf; i < epb; i++, bp++) {
 1338                 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
 1339                     byteswap, bp);
 1340         }
 1341         SHA2Final(digestbuf, &ctx);
 1342 
 1343         if (generate) {
 1344                 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
 1345                 return (0);
 1346         }
 1347 
 1348         if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
 1349                 return (SET_ERROR(ECKSUM));
 1350 
 1351         return (0);
 1352 }
 1353 
 1354 int
 1355 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
 1356     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
 1357 {
 1358         int ret;
 1359 
 1360         /*
 1361          * Unfortunately, callers of this function will not always have
 1362          * easy access to the on-disk format version. This info is
 1363          * normally found in the DSL Crypto Key, but the checksum-of-MACs
 1364          * is expected to be verifiable even when the key isn't loaded.
 1365          * Here, instead of doing a ZAP lookup for the version for each
 1366          * zio, we simply try both existing formats.
 1367          */
 1368         ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
 1369             datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
 1370         if (ret == ECKSUM) {
 1371                 ASSERT(!generate);
 1372                 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
 1373                     buf, datalen, 0, byteswap, cksum);
 1374         }
 1375 
 1376         return (ret);
 1377 }
 1378 
 1379 int
 1380 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
 1381     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
 1382 {
 1383         int ret;
 1384         void *buf;
 1385 
 1386         buf = abd_borrow_buf_copy(abd, datalen);
 1387         ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
 1388             byteswap, cksum);
 1389         abd_return_buf(abd, buf, datalen);
 1390 
 1391         return (ret);
 1392 }
 1393 
 1394 /*
 1395  * Special case handling routine for encrypting / decrypting ZIL blocks.
 1396  * We do not check for the older ZIL chain because the encryption feature
 1397  * was not available before the newer ZIL chain was introduced. The goal
 1398  * here is to encrypt everything except the blkptr_t of a lr_write_t and
 1399  * the zil_chain_t header. Everything that is not encrypted is authenticated.
 1400  */
 1401 static int
 1402 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
 1403     uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
 1404     zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
 1405     boolean_t *no_crypt)
 1406 {
 1407         int ret;
 1408         uint64_t txtype, lr_len;
 1409         uint_t nr_src, nr_dst, crypt_len;
 1410         uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
 1411         iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
 1412         uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
 1413         zil_chain_t *zilc;
 1414         lr_t *lr;
 1415         uint8_t *aadbuf = zio_buf_alloc(datalen);
 1416 
 1417         /* cipherbuf always needs an extra iovec for the MAC */
 1418         if (encrypt) {
 1419                 src = plainbuf;
 1420                 dst = cipherbuf;
 1421                 nr_src = 0;
 1422                 nr_dst = 1;
 1423         } else {
 1424                 src = cipherbuf;
 1425                 dst = plainbuf;
 1426                 nr_src = 1;
 1427                 nr_dst = 0;
 1428         }
 1429         memset(dst, 0, datalen);
 1430 
 1431         /* find the start and end record of the log block */
 1432         zilc = (zil_chain_t *)src;
 1433         slrp = src + sizeof (zil_chain_t);
 1434         aadp = aadbuf;
 1435         blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
 1436 
 1437         /* calculate the number of encrypted iovecs we will need */
 1438         for (; slrp < blkend; slrp += lr_len) {
 1439                 lr = (lr_t *)slrp;
 1440 
 1441                 if (!byteswap) {
 1442                         txtype = lr->lrc_txtype;
 1443                         lr_len = lr->lrc_reclen;
 1444                 } else {
 1445                         txtype = BSWAP_64(lr->lrc_txtype);
 1446                         lr_len = BSWAP_64(lr->lrc_reclen);
 1447                 }
 1448 
 1449                 nr_iovecs++;
 1450                 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
 1451                         nr_iovecs++;
 1452         }
 1453 
 1454         nr_src += nr_iovecs;
 1455         nr_dst += nr_iovecs;
 1456 
 1457         /* allocate the iovec arrays */
 1458         if (nr_src != 0) {
 1459                 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
 1460                 if (src_iovecs == NULL) {
 1461                         ret = SET_ERROR(ENOMEM);
 1462                         goto error;
 1463                 }
 1464         }
 1465 
 1466         if (nr_dst != 0) {
 1467                 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
 1468                 if (dst_iovecs == NULL) {
 1469                         ret = SET_ERROR(ENOMEM);
 1470                         goto error;
 1471                 }
 1472         }
 1473 
 1474         /*
 1475          * Copy the plain zil header over and authenticate everything except
 1476          * the checksum that will store our MAC. If we are writing the data
 1477          * the embedded checksum will not have been calculated yet, so we don't
 1478          * authenticate that.
 1479          */
 1480         memcpy(dst, src, sizeof (zil_chain_t));
 1481         memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
 1482         aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
 1483         aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
 1484 
 1485         /* loop over records again, filling in iovecs */
 1486         nr_iovecs = 0;
 1487         slrp = src + sizeof (zil_chain_t);
 1488         dlrp = dst + sizeof (zil_chain_t);
 1489 
 1490         for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
 1491                 lr = (lr_t *)slrp;
 1492 
 1493                 if (!byteswap) {
 1494                         txtype = lr->lrc_txtype;
 1495                         lr_len = lr->lrc_reclen;
 1496                 } else {
 1497                         txtype = BSWAP_64(lr->lrc_txtype);
 1498                         lr_len = BSWAP_64(lr->lrc_reclen);
 1499                 }
 1500 
 1501                 /* copy the common lr_t */
 1502                 memcpy(dlrp, slrp, sizeof (lr_t));
 1503                 memcpy(aadp, slrp, sizeof (lr_t));
 1504                 aadp += sizeof (lr_t);
 1505                 aad_len += sizeof (lr_t);
 1506 
 1507                 ASSERT3P(src_iovecs, !=, NULL);
 1508                 ASSERT3P(dst_iovecs, !=, NULL);
 1509 
 1510                 /*
 1511                  * If this is a TX_WRITE record we want to encrypt everything
 1512                  * except the bp if exists. If the bp does exist we want to
 1513                  * authenticate it.
 1514                  */
 1515                 if (txtype == TX_WRITE) {
 1516                         crypt_len = sizeof (lr_write_t) -
 1517                             sizeof (lr_t) - sizeof (blkptr_t);
 1518                         src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
 1519                         src_iovecs[nr_iovecs].iov_len = crypt_len;
 1520                         dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
 1521                         dst_iovecs[nr_iovecs].iov_len = crypt_len;
 1522 
 1523                         /* copy the bp now since it will not be encrypted */
 1524                         memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 1525                             slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 1526                             sizeof (blkptr_t));
 1527                         memcpy(aadp,
 1528                             slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 1529                             sizeof (blkptr_t));
 1530                         aadp += sizeof (blkptr_t);
 1531                         aad_len += sizeof (blkptr_t);
 1532                         nr_iovecs++;
 1533                         total_len += crypt_len;
 1534 
 1535                         if (lr_len != sizeof (lr_write_t)) {
 1536                                 crypt_len = lr_len - sizeof (lr_write_t);
 1537                                 src_iovecs[nr_iovecs].iov_base =
 1538                                     slrp + sizeof (lr_write_t);
 1539                                 src_iovecs[nr_iovecs].iov_len = crypt_len;
 1540                                 dst_iovecs[nr_iovecs].iov_base =
 1541                                     dlrp + sizeof (lr_write_t);
 1542                                 dst_iovecs[nr_iovecs].iov_len = crypt_len;
 1543                                 nr_iovecs++;
 1544                                 total_len += crypt_len;
 1545                         }
 1546                 } else {
 1547                         crypt_len = lr_len - sizeof (lr_t);
 1548                         src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
 1549                         src_iovecs[nr_iovecs].iov_len = crypt_len;
 1550                         dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
 1551                         dst_iovecs[nr_iovecs].iov_len = crypt_len;
 1552                         nr_iovecs++;
 1553                         total_len += crypt_len;
 1554                 }
 1555         }
 1556 
 1557         *no_crypt = (nr_iovecs == 0);
 1558         *enc_len = total_len;
 1559         *authbuf = aadbuf;
 1560         *auth_len = aad_len;
 1561 
 1562         if (encrypt) {
 1563                 puio->uio_iov = src_iovecs;
 1564                 puio->uio_iovcnt = nr_src;
 1565                 cuio->uio_iov = dst_iovecs;
 1566                 cuio->uio_iovcnt = nr_dst;
 1567         } else {
 1568                 puio->uio_iov = dst_iovecs;
 1569                 puio->uio_iovcnt = nr_dst;
 1570                 cuio->uio_iov = src_iovecs;
 1571                 cuio->uio_iovcnt = nr_src;
 1572         }
 1573 
 1574         return (0);
 1575 
 1576 error:
 1577         zio_buf_free(aadbuf, datalen);
 1578         if (src_iovecs != NULL)
 1579                 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
 1580         if (dst_iovecs != NULL)
 1581                 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
 1582 
 1583         *enc_len = 0;
 1584         *authbuf = NULL;
 1585         *auth_len = 0;
 1586         *no_crypt = B_FALSE;
 1587         puio->uio_iov = NULL;
 1588         puio->uio_iovcnt = 0;
 1589         cuio->uio_iov = NULL;
 1590         cuio->uio_iovcnt = 0;
 1591         return (ret);
 1592 }
 1593 
 1594 /*
 1595  * Special case handling routine for encrypting / decrypting dnode blocks.
 1596  */
 1597 static int
 1598 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
 1599     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
 1600     zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
 1601     uint_t *auth_len, boolean_t *no_crypt)
 1602 {
 1603         int ret;
 1604         uint_t nr_src, nr_dst, crypt_len;
 1605         uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
 1606         uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
 1607         iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
 1608         uint8_t *src, *dst, *aadp;
 1609         dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
 1610         uint8_t *aadbuf = zio_buf_alloc(datalen);
 1611 
 1612         if (encrypt) {
 1613                 src = plainbuf;
 1614                 dst = cipherbuf;
 1615                 nr_src = 0;
 1616                 nr_dst = 1;
 1617         } else {
 1618                 src = cipherbuf;
 1619                 dst = plainbuf;
 1620                 nr_src = 1;
 1621                 nr_dst = 0;
 1622         }
 1623 
 1624         sdnp = (dnode_phys_t *)src;
 1625         ddnp = (dnode_phys_t *)dst;
 1626         aadp = aadbuf;
 1627 
 1628         /*
 1629          * Count the number of iovecs we will need to do the encryption by
 1630          * counting the number of bonus buffers that need to be encrypted.
 1631          */
 1632         for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 1633                 /*
 1634                  * This block may still be byteswapped. However, all of the
 1635                  * values we use are either uint8_t's (for which byteswapping
 1636                  * is a noop) or a * != 0 check, which will work regardless
 1637                  * of whether or not we byteswap.
 1638                  */
 1639                 if (sdnp[i].dn_type != DMU_OT_NONE &&
 1640                     DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
 1641                     sdnp[i].dn_bonuslen != 0) {
 1642                         nr_iovecs++;
 1643                 }
 1644         }
 1645 
 1646         nr_src += nr_iovecs;
 1647         nr_dst += nr_iovecs;
 1648 
 1649         if (nr_src != 0) {
 1650                 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
 1651                 if (src_iovecs == NULL) {
 1652                         ret = SET_ERROR(ENOMEM);
 1653                         goto error;
 1654                 }
 1655         }
 1656 
 1657         if (nr_dst != 0) {
 1658                 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
 1659                 if (dst_iovecs == NULL) {
 1660                         ret = SET_ERROR(ENOMEM);
 1661                         goto error;
 1662                 }
 1663         }
 1664 
 1665         nr_iovecs = 0;
 1666 
 1667         /*
 1668          * Iterate through the dnodes again, this time filling in the uios
 1669          * we allocated earlier. We also concatenate any data we want to
 1670          * authenticate onto aadbuf.
 1671          */
 1672         for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 1673                 dnp = &sdnp[i];
 1674 
 1675                 /* copy over the core fields and blkptrs (kept as plaintext) */
 1676                 memcpy(&ddnp[i], dnp,
 1677                     (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
 1678 
 1679                 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 1680                         memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
 1681                             sizeof (blkptr_t));
 1682                 }
 1683 
 1684                 /*
 1685                  * Handle authenticated data. We authenticate everything in
 1686                  * the dnode that can be brought over when we do a raw send.
 1687                  * This includes all of the core fields as well as the MACs
 1688                  * stored in the bp checksums and all of the portable bits
 1689                  * from blk_prop. We include the dnode padding here in case it
 1690                  * ever gets used in the future. Some dn_flags and dn_used are
 1691                  * not portable so we mask those out values out of the
 1692                  * authenticated data.
 1693                  */
 1694                 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
 1695                 memcpy(aadp, dnp, crypt_len);
 1696                 adnp = (dnode_phys_t *)aadp;
 1697                 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
 1698                 adnp->dn_used = 0;
 1699                 aadp += crypt_len;
 1700                 aad_len += crypt_len;
 1701 
 1702                 for (j = 0; j < dnp->dn_nblkptr; j++) {
 1703                         zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
 1704                             version, byteswap, &dnp->dn_blkptr[j]);
 1705                 }
 1706 
 1707                 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 1708                         zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
 1709                             version, byteswap, DN_SPILL_BLKPTR(dnp));
 1710                 }
 1711 
 1712                 /*
 1713                  * If this bonus buffer needs to be encrypted, we prepare an
 1714                  * iovec_t. The encryption / decryption functions will fill
 1715                  * this in for us with the encrypted or decrypted data.
 1716                  * Otherwise we add the bonus buffer to the authenticated
 1717                  * data buffer and copy it over to the destination. The
 1718                  * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
 1719                  * we can guarantee alignment with the AES block size
 1720                  * (128 bits).
 1721                  */
 1722                 crypt_len = DN_MAX_BONUS_LEN(dnp);
 1723                 if (dnp->dn_type != DMU_OT_NONE &&
 1724                     DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
 1725                     dnp->dn_bonuslen != 0) {
 1726                         ASSERT3U(nr_iovecs, <, nr_src);
 1727                         ASSERT3U(nr_iovecs, <, nr_dst);
 1728                         ASSERT3P(src_iovecs, !=, NULL);
 1729                         ASSERT3P(dst_iovecs, !=, NULL);
 1730                         src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
 1731                         src_iovecs[nr_iovecs].iov_len = crypt_len;
 1732                         dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
 1733                         dst_iovecs[nr_iovecs].iov_len = crypt_len;
 1734 
 1735                         nr_iovecs++;
 1736                         total_len += crypt_len;
 1737                 } else {
 1738                         memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
 1739                         memcpy(aadp, DN_BONUS(dnp), crypt_len);
 1740                         aadp += crypt_len;
 1741                         aad_len += crypt_len;
 1742                 }
 1743         }
 1744 
 1745         *no_crypt = (nr_iovecs == 0);
 1746         *enc_len = total_len;
 1747         *authbuf = aadbuf;
 1748         *auth_len = aad_len;
 1749 
 1750         if (encrypt) {
 1751                 puio->uio_iov = src_iovecs;
 1752                 puio->uio_iovcnt = nr_src;
 1753                 cuio->uio_iov = dst_iovecs;
 1754                 cuio->uio_iovcnt = nr_dst;
 1755         } else {
 1756                 puio->uio_iov = dst_iovecs;
 1757                 puio->uio_iovcnt = nr_dst;
 1758                 cuio->uio_iov = src_iovecs;
 1759                 cuio->uio_iovcnt = nr_src;
 1760         }
 1761 
 1762         return (0);
 1763 
 1764 error:
 1765         zio_buf_free(aadbuf, datalen);
 1766         if (src_iovecs != NULL)
 1767                 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
 1768         if (dst_iovecs != NULL)
 1769                 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
 1770 
 1771         *enc_len = 0;
 1772         *authbuf = NULL;
 1773         *auth_len = 0;
 1774         *no_crypt = B_FALSE;
 1775         puio->uio_iov = NULL;
 1776         puio->uio_iovcnt = 0;
 1777         cuio->uio_iov = NULL;
 1778         cuio->uio_iovcnt = 0;
 1779         return (ret);
 1780 }
 1781 
 1782 static int
 1783 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
 1784     uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
 1785     uint_t *enc_len)
 1786 {
 1787         (void) encrypt;
 1788         int ret;
 1789         uint_t nr_plain = 1, nr_cipher = 2;
 1790         iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
 1791 
 1792         /* allocate the iovecs for the plain and cipher data */
 1793         plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
 1794             KM_SLEEP);
 1795         if (!plain_iovecs) {
 1796                 ret = SET_ERROR(ENOMEM);
 1797                 goto error;
 1798         }
 1799 
 1800         cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
 1801             KM_SLEEP);
 1802         if (!cipher_iovecs) {
 1803                 ret = SET_ERROR(ENOMEM);
 1804                 goto error;
 1805         }
 1806 
 1807         plain_iovecs[0].iov_base = plainbuf;
 1808         plain_iovecs[0].iov_len = datalen;
 1809         cipher_iovecs[0].iov_base = cipherbuf;
 1810         cipher_iovecs[0].iov_len = datalen;
 1811 
 1812         *enc_len = datalen;
 1813         puio->uio_iov = plain_iovecs;
 1814         puio->uio_iovcnt = nr_plain;
 1815         cuio->uio_iov = cipher_iovecs;
 1816         cuio->uio_iovcnt = nr_cipher;
 1817 
 1818         return (0);
 1819 
 1820 error:
 1821         if (plain_iovecs != NULL)
 1822                 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
 1823         if (cipher_iovecs != NULL)
 1824                 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
 1825 
 1826         *enc_len = 0;
 1827         puio->uio_iov = NULL;
 1828         puio->uio_iovcnt = 0;
 1829         cuio->uio_iov = NULL;
 1830         cuio->uio_iovcnt = 0;
 1831         return (ret);
 1832 }
 1833 
 1834 /*
 1835  * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
 1836  * that they can be used for encryption and decryption by zio_do_crypt_uio().
 1837  * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
 1838  * requiring special handling to parse out pieces that are to be encrypted. The
 1839  * authbuf is used by these special cases to store additional authenticated
 1840  * data (AAD) for the encryption modes.
 1841  */
 1842 static int
 1843 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
 1844     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
 1845     uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
 1846     uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
 1847 {
 1848         int ret;
 1849         iovec_t *mac_iov;
 1850 
 1851         ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
 1852 
 1853         /* route to handler */
 1854         switch (ot) {
 1855         case DMU_OT_INTENT_LOG:
 1856                 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
 1857                     datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
 1858                     no_crypt);
 1859                 break;
 1860         case DMU_OT_DNODE:
 1861                 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
 1862                     cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
 1863                     auth_len, no_crypt);
 1864                 break;
 1865         default:
 1866                 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
 1867                     datalen, puio, cuio, enc_len);
 1868                 *authbuf = NULL;
 1869                 *auth_len = 0;
 1870                 *no_crypt = B_FALSE;
 1871                 break;
 1872         }
 1873 
 1874         if (ret != 0)
 1875                 goto error;
 1876 
 1877         /* populate the uios */
 1878         puio->uio_segflg = UIO_SYSSPACE;
 1879         cuio->uio_segflg = UIO_SYSSPACE;
 1880 
 1881         mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
 1882         mac_iov->iov_base = mac;
 1883         mac_iov->iov_len = ZIO_DATA_MAC_LEN;
 1884 
 1885         return (0);
 1886 
 1887 error:
 1888         return (ret);
 1889 }
 1890 
 1891 /*
 1892  * Primary encryption / decryption entrypoint for zio data.
 1893  */
 1894 int
 1895 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
 1896     dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
 1897     uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
 1898     boolean_t *no_crypt)
 1899 {
 1900         int ret;
 1901         boolean_t locked = B_FALSE;
 1902         uint64_t crypt = key->zk_crypt;
 1903         uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
 1904         uint_t enc_len, auth_len;
 1905         zfs_uio_t puio, cuio;
 1906         uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
 1907         crypto_key_t tmp_ckey, *ckey = NULL;
 1908         crypto_ctx_template_t tmpl;
 1909         uint8_t *authbuf = NULL;
 1910 
 1911         memset(&puio, 0, sizeof (puio));
 1912         memset(&cuio, 0, sizeof (cuio));
 1913 
 1914         /*
 1915          * If the needed key is the current one, just use it. Otherwise we
 1916          * need to generate a temporary one from the given salt + master key.
 1917          * If we are encrypting, we must return a copy of the current salt
 1918          * so that it can be stored in the blkptr_t.
 1919          */
 1920         rw_enter(&key->zk_salt_lock, RW_READER);
 1921         locked = B_TRUE;
 1922 
 1923         if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
 1924                 ckey = &key->zk_current_key;
 1925                 tmpl = key->zk_current_tmpl;
 1926         } else {
 1927                 rw_exit(&key->zk_salt_lock);
 1928                 locked = B_FALSE;
 1929 
 1930                 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 1931                     salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
 1932                 if (ret != 0)
 1933                         goto error;
 1934 
 1935                 tmp_ckey.ck_data = enc_keydata;
 1936                 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
 1937 
 1938                 ckey = &tmp_ckey;
 1939                 tmpl = NULL;
 1940         }
 1941 
 1942         /*
 1943          * Attempt to use QAT acceleration if we can. We currently don't
 1944          * do this for metadnode and ZIL blocks, since they have a much
 1945          * more involved buffer layout and the qat_crypt() function only
 1946          * works in-place.
 1947          */
 1948         if (qat_crypt_use_accel(datalen) &&
 1949             ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
 1950                 uint8_t *srcbuf, *dstbuf;
 1951 
 1952                 if (encrypt) {
 1953                         srcbuf = plainbuf;
 1954                         dstbuf = cipherbuf;
 1955                 } else {
 1956                         srcbuf = cipherbuf;
 1957                         dstbuf = plainbuf;
 1958                 }
 1959 
 1960                 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
 1961                     dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
 1962                 if (ret == CPA_STATUS_SUCCESS) {
 1963                         if (locked) {
 1964                                 rw_exit(&key->zk_salt_lock);
 1965                                 locked = B_FALSE;
 1966                         }
 1967 
 1968                         return (0);
 1969                 }
 1970                 /* If the hardware implementation fails fall back to software */
 1971         }
 1972 
 1973         /* create uios for encryption */
 1974         ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
 1975             cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
 1976             &authbuf, &auth_len, no_crypt);
 1977         if (ret != 0)
 1978                 goto error;
 1979 
 1980         /* perform the encryption / decryption in software */
 1981         ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
 1982             &puio, &cuio, authbuf, auth_len);
 1983         if (ret != 0)
 1984                 goto error;
 1985 
 1986         if (locked) {
 1987                 rw_exit(&key->zk_salt_lock);
 1988         }
 1989 
 1990         if (authbuf != NULL)
 1991                 zio_buf_free(authbuf, datalen);
 1992         if (ckey == &tmp_ckey)
 1993                 memset(enc_keydata, 0, keydata_len);
 1994         zio_crypt_destroy_uio(&puio);
 1995         zio_crypt_destroy_uio(&cuio);
 1996 
 1997         return (0);
 1998 
 1999 error:
 2000         if (locked)
 2001                 rw_exit(&key->zk_salt_lock);
 2002         if (authbuf != NULL)
 2003                 zio_buf_free(authbuf, datalen);
 2004         if (ckey == &tmp_ckey)
 2005                 memset(enc_keydata, 0, keydata_len);
 2006         zio_crypt_destroy_uio(&puio);
 2007         zio_crypt_destroy_uio(&cuio);
 2008 
 2009         return (ret);
 2010 }
 2011 
 2012 /*
 2013  * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
 2014  * linear buffers.
 2015  */
 2016 int
 2017 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
 2018     boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
 2019     uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
 2020 {
 2021         int ret;
 2022         void *ptmp, *ctmp;
 2023 
 2024         if (encrypt) {
 2025                 ptmp = abd_borrow_buf_copy(pabd, datalen);
 2026                 ctmp = abd_borrow_buf(cabd, datalen);
 2027         } else {
 2028                 ptmp = abd_borrow_buf(pabd, datalen);
 2029                 ctmp = abd_borrow_buf_copy(cabd, datalen);
 2030         }
 2031 
 2032         ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
 2033             datalen, ptmp, ctmp, no_crypt);
 2034         if (ret != 0)
 2035                 goto error;
 2036 
 2037         if (encrypt) {
 2038                 abd_return_buf(pabd, ptmp, datalen);
 2039                 abd_return_buf_copy(cabd, ctmp, datalen);
 2040         } else {
 2041                 abd_return_buf_copy(pabd, ptmp, datalen);
 2042                 abd_return_buf(cabd, ctmp, datalen);
 2043         }
 2044 
 2045         return (0);
 2046 
 2047 error:
 2048         if (encrypt) {
 2049                 abd_return_buf(pabd, ptmp, datalen);
 2050                 abd_return_buf_copy(cabd, ctmp, datalen);
 2051         } else {
 2052                 abd_return_buf_copy(pabd, ptmp, datalen);
 2053                 abd_return_buf(cabd, ctmp, datalen);
 2054         }
 2055 
 2056         return (ret);
 2057 }
 2058 
 2059 #if defined(_KERNEL)
 2060 /* CSTYLED */
 2061 module_param(zfs_key_max_salt_uses, ulong, 0644);
 2062 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
 2063         "can be used for generating encryption keys before it is rotated");
 2064 #endif

Cache object: eae9e4df2be2f20c588c4bdaa82162b2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.