1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 *
24 * Extended attributes (xattr) on Solaris are implemented as files
25 * which exist in a hidden xattr directory. These extended attributes
26 * can be accessed using the attropen() system call which opens
27 * the extended attribute. It can then be manipulated just like
28 * a standard file descriptor. This has a couple advantages such
29 * as practically no size limit on the file, and the extended
30 * attributes permissions may differ from those of the parent file.
31 * This interface is really quite clever, but it's also completely
32 * different than what is supported on Linux. It also comes with a
33 * steep performance penalty when accessing small xattrs because they
34 * are not stored with the parent file.
35 *
36 * Under Linux extended attributes are manipulated by the system
37 * calls getxattr(2), setxattr(2), and listxattr(2). They consider
38 * extended attributes to be name/value pairs where the name is a
39 * NULL terminated string. The name must also include one of the
40 * following namespace prefixes:
41 *
42 * user - No restrictions and is available to user applications.
43 * trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use.
44 * system - Used for access control lists (system.nfs4_acl, etc).
45 * security - Used by SELinux to store a files security context.
46 *
47 * The value under Linux to limited to 65536 bytes of binary data.
48 * In practice, individual xattrs tend to be much smaller than this
49 * and are typically less than 100 bytes. A good example of this
50 * are the security.selinux xattrs which are less than 100 bytes and
51 * exist for every file when xattr labeling is enabled.
52 *
53 * The Linux xattr implementation has been written to take advantage of
54 * this typical usage. When the dataset property 'xattr=sa' is set,
55 * then xattrs will be preferentially stored as System Attributes (SA).
56 * This allows tiny xattrs (~100 bytes) to be stored with the dnode and
57 * up to 64k of xattrs to be stored in the spill block. If additional
58 * xattr space is required, which is unlikely under Linux, they will
59 * be stored using the traditional directory approach.
60 *
61 * This optimization results in roughly a 3x performance improvement
62 * when accessing xattrs because it avoids the need to perform a seek
63 * for every xattr value. When multiple xattrs are stored per-file
64 * the performance improvements are even greater because all of the
65 * xattrs stored in the spill block will be cached.
66 *
67 * However, by default SA based xattrs are disabled in the Linux port
68 * to maximize compatibility with other implementations. If you do
69 * enable SA based xattrs then they will not be visible on platforms
70 * which do not support this feature.
71 *
72 * NOTE: One additional consequence of the xattr directory implementation
73 * is that when an extended attribute is manipulated an inode is created.
74 * This inode will exist in the Linux inode cache but there will be no
75 * associated entry in the dentry cache which references it. This is
76 * safe but it may result in some confusion. Enabling SA based xattrs
77 * largely avoids the issue except in the overflow case.
78 */
79
80 #include <sys/zfs_znode.h>
81 #include <sys/zfs_vfsops.h>
82 #include <sys/zfs_vnops.h>
83 #include <sys/zap.h>
84 #include <sys/vfs.h>
85 #include <sys/zpl.h>
86 #include <linux/vfs_compat.h>
87
88 enum xattr_permission {
89 XAPERM_DENY,
90 XAPERM_ALLOW,
91 XAPERM_COMPAT,
92 };
93
94 typedef struct xattr_filldir {
95 size_t size;
96 size_t offset;
97 char *buf;
98 struct dentry *dentry;
99 } xattr_filldir_t;
100
101 static enum xattr_permission zpl_xattr_permission(xattr_filldir_t *,
102 const char *, int);
103
104 static int zfs_xattr_compat = 0;
105
106 /*
107 * Determine is a given xattr name should be visible and if so copy it
108 * in to the provided buffer (xf->buf).
109 */
110 static int
111 zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len)
112 {
113 enum xattr_permission perm;
114
115 /* Check permissions using the per-namespace list xattr handler. */
116 perm = zpl_xattr_permission(xf, name, name_len);
117 if (perm == XAPERM_DENY)
118 return (0);
119
120 /* Prefix the name with "user." if it does not have a namespace. */
121 if (perm == XAPERM_COMPAT) {
122 if (xf->buf) {
123 if (xf->offset + XATTR_USER_PREFIX_LEN + 1 > xf->size)
124 return (-ERANGE);
125
126 memcpy(xf->buf + xf->offset, XATTR_USER_PREFIX,
127 XATTR_USER_PREFIX_LEN);
128 xf->buf[xf->offset + XATTR_USER_PREFIX_LEN] = '\0';
129 }
130
131 xf->offset += XATTR_USER_PREFIX_LEN;
132 }
133
134 /* When xf->buf is NULL only calculate the required size. */
135 if (xf->buf) {
136 if (xf->offset + name_len + 1 > xf->size)
137 return (-ERANGE);
138
139 memcpy(xf->buf + xf->offset, name, name_len);
140 xf->buf[xf->offset + name_len] = '\0';
141 }
142
143 xf->offset += (name_len + 1);
144
145 return (0);
146 }
147
148 /*
149 * Read as many directory entry names as will fit in to the provided buffer,
150 * or when no buffer is provided calculate the required buffer size.
151 */
152 static int
153 zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf)
154 {
155 zap_cursor_t zc;
156 zap_attribute_t zap;
157 int error;
158
159 zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id);
160
161 while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) {
162
163 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
164 error = -ENXIO;
165 break;
166 }
167
168 error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name));
169 if (error)
170 break;
171
172 zap_cursor_advance(&zc);
173 }
174
175 zap_cursor_fini(&zc);
176
177 if (error == -ENOENT)
178 error = 0;
179
180 return (error);
181 }
182
183 static ssize_t
184 zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr)
185 {
186 struct inode *ip = xf->dentry->d_inode;
187 struct inode *dxip = NULL;
188 znode_t *dxzp;
189 int error;
190
191 /* Lookup the xattr directory */
192 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR,
193 cr, NULL, NULL);
194 if (error) {
195 if (error == -ENOENT)
196 error = 0;
197
198 return (error);
199 }
200
201 dxip = ZTOI(dxzp);
202 error = zpl_xattr_readdir(dxip, xf);
203 iput(dxip);
204
205 return (error);
206 }
207
208 static ssize_t
209 zpl_xattr_list_sa(xattr_filldir_t *xf)
210 {
211 znode_t *zp = ITOZ(xf->dentry->d_inode);
212 nvpair_t *nvp = NULL;
213 int error = 0;
214
215 mutex_enter(&zp->z_lock);
216 if (zp->z_xattr_cached == NULL)
217 error = -zfs_sa_get_xattr(zp);
218 mutex_exit(&zp->z_lock);
219
220 if (error)
221 return (error);
222
223 ASSERT(zp->z_xattr_cached);
224
225 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
226 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
227
228 error = zpl_xattr_filldir(xf, nvpair_name(nvp),
229 strlen(nvpair_name(nvp)));
230 if (error)
231 return (error);
232 }
233
234 return (0);
235 }
236
237 ssize_t
238 zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size)
239 {
240 znode_t *zp = ITOZ(dentry->d_inode);
241 zfsvfs_t *zfsvfs = ZTOZSB(zp);
242 xattr_filldir_t xf = { buffer_size, 0, buffer, dentry };
243 cred_t *cr = CRED();
244 fstrans_cookie_t cookie;
245 int error = 0;
246
247 crhold(cr);
248 cookie = spl_fstrans_mark();
249 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
250 goto out1;
251 rw_enter(&zp->z_xattr_lock, RW_READER);
252
253 if (zfsvfs->z_use_sa && zp->z_is_sa) {
254 error = zpl_xattr_list_sa(&xf);
255 if (error)
256 goto out;
257 }
258
259 error = zpl_xattr_list_dir(&xf, cr);
260 if (error)
261 goto out;
262
263 error = xf.offset;
264 out:
265
266 rw_exit(&zp->z_xattr_lock);
267 zpl_exit(zfsvfs, FTAG);
268 out1:
269 spl_fstrans_unmark(cookie);
270 crfree(cr);
271
272 return (error);
273 }
274
275 static int
276 zpl_xattr_get_dir(struct inode *ip, const char *name, void *value,
277 size_t size, cred_t *cr)
278 {
279 fstrans_cookie_t cookie;
280 struct inode *xip = NULL;
281 znode_t *dxzp = NULL;
282 znode_t *xzp = NULL;
283 int error;
284
285 /* Lookup the xattr directory */
286 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR,
287 cr, NULL, NULL);
288 if (error)
289 goto out;
290
291 /* Lookup a specific xattr name in the directory */
292 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL);
293 if (error)
294 goto out;
295
296 xip = ZTOI(xzp);
297 if (!size) {
298 error = i_size_read(xip);
299 goto out;
300 }
301
302 if (size < i_size_read(xip)) {
303 error = -ERANGE;
304 goto out;
305 }
306
307 struct iovec iov;
308 iov.iov_base = (void *)value;
309 iov.iov_len = size;
310
311 zfs_uio_t uio;
312 zfs_uio_iovec_init(&uio, &iov, 1, 0, UIO_SYSSPACE, size, 0);
313
314 cookie = spl_fstrans_mark();
315 error = -zfs_read(ITOZ(xip), &uio, 0, cr);
316 spl_fstrans_unmark(cookie);
317
318 if (error == 0)
319 error = size - zfs_uio_resid(&uio);
320 out:
321 if (xzp)
322 zrele(xzp);
323
324 if (dxzp)
325 zrele(dxzp);
326
327 return (error);
328 }
329
330 static int
331 zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size)
332 {
333 znode_t *zp = ITOZ(ip);
334 uchar_t *nv_value;
335 uint_t nv_size;
336 int error = 0;
337
338 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
339
340 mutex_enter(&zp->z_lock);
341 if (zp->z_xattr_cached == NULL)
342 error = -zfs_sa_get_xattr(zp);
343 mutex_exit(&zp->z_lock);
344
345 if (error)
346 return (error);
347
348 ASSERT(zp->z_xattr_cached);
349 error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name,
350 &nv_value, &nv_size);
351 if (error)
352 return (error);
353
354 if (size == 0 || value == NULL)
355 return (nv_size);
356
357 if (size < nv_size)
358 return (-ERANGE);
359
360 memcpy(value, nv_value, nv_size);
361
362 return (nv_size);
363 }
364
365 static int
366 __zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size,
367 cred_t *cr)
368 {
369 znode_t *zp = ITOZ(ip);
370 zfsvfs_t *zfsvfs = ZTOZSB(zp);
371 int error;
372
373 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
374
375 if (zfsvfs->z_use_sa && zp->z_is_sa) {
376 error = zpl_xattr_get_sa(ip, name, value, size);
377 if (error != -ENOENT)
378 goto out;
379 }
380
381 error = zpl_xattr_get_dir(ip, name, value, size, cr);
382 out:
383 if (error == -ENOENT)
384 error = -ENODATA;
385
386 return (error);
387 }
388
389 #define XATTR_NOENT 0x0
390 #define XATTR_IN_SA 0x1
391 #define XATTR_IN_DIR 0x2
392 /* check where the xattr resides */
393 static int
394 __zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr)
395 {
396 znode_t *zp = ITOZ(ip);
397 zfsvfs_t *zfsvfs = ZTOZSB(zp);
398 int error;
399
400 ASSERT(where);
401 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
402
403 *where = XATTR_NOENT;
404 if (zfsvfs->z_use_sa && zp->z_is_sa) {
405 error = zpl_xattr_get_sa(ip, name, NULL, 0);
406 if (error >= 0)
407 *where |= XATTR_IN_SA;
408 else if (error != -ENOENT)
409 return (error);
410 }
411
412 error = zpl_xattr_get_dir(ip, name, NULL, 0, cr);
413 if (error >= 0)
414 *where |= XATTR_IN_DIR;
415 else if (error != -ENOENT)
416 return (error);
417
418 if (*where == (XATTR_IN_SA|XATTR_IN_DIR))
419 cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\""
420 " in both SA and dir", ip, name);
421 if (*where == XATTR_NOENT)
422 error = -ENODATA;
423 else
424 error = 0;
425 return (error);
426 }
427
428 static int
429 zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size)
430 {
431 znode_t *zp = ITOZ(ip);
432 zfsvfs_t *zfsvfs = ZTOZSB(zp);
433 cred_t *cr = CRED();
434 fstrans_cookie_t cookie;
435 int error;
436
437 crhold(cr);
438 cookie = spl_fstrans_mark();
439 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
440 goto out;
441 rw_enter(&zp->z_xattr_lock, RW_READER);
442 error = __zpl_xattr_get(ip, name, value, size, cr);
443 rw_exit(&zp->z_xattr_lock);
444 zpl_exit(zfsvfs, FTAG);
445 out:
446 spl_fstrans_unmark(cookie);
447 crfree(cr);
448
449 return (error);
450 }
451
452 static int
453 zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value,
454 size_t size, int flags, cred_t *cr)
455 {
456 znode_t *dxzp = NULL;
457 znode_t *xzp = NULL;
458 vattr_t *vap = NULL;
459 int lookup_flags, error;
460 const int xattr_mode = S_IFREG | 0644;
461 loff_t pos = 0;
462
463 /*
464 * Lookup the xattr directory. When we're adding an entry pass
465 * CREATE_XATTR_DIR to ensure the xattr directory is created.
466 * When removing an entry this flag is not passed to avoid
467 * unnecessarily creating a new xattr directory.
468 */
469 lookup_flags = LOOKUP_XATTR;
470 if (value != NULL)
471 lookup_flags |= CREATE_XATTR_DIR;
472
473 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, lookup_flags,
474 cr, NULL, NULL);
475 if (error)
476 goto out;
477
478 /* Lookup a specific xattr name in the directory */
479 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL);
480 if (error && (error != -ENOENT))
481 goto out;
482
483 error = 0;
484
485 /* Remove a specific name xattr when value is set to NULL. */
486 if (value == NULL) {
487 if (xzp)
488 error = -zfs_remove(dxzp, (char *)name, cr, 0);
489
490 goto out;
491 }
492
493 /* Lookup failed create a new xattr. */
494 if (xzp == NULL) {
495 vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP);
496 vap->va_mode = xattr_mode;
497 vap->va_mask = ATTR_MODE;
498 vap->va_uid = crgetuid(cr);
499 vap->va_gid = crgetgid(cr);
500
501 error = -zfs_create(dxzp, (char *)name, vap, 0, 0644, &xzp,
502 cr, ATTR_NOACLCHECK, NULL, kcred->user_ns);
503 if (error)
504 goto out;
505 }
506
507 ASSERT(xzp != NULL);
508
509 error = -zfs_freesp(xzp, 0, 0, xattr_mode, TRUE);
510 if (error)
511 goto out;
512
513 error = -zfs_write_simple(xzp, value, size, pos, NULL);
514 out:
515 if (error == 0) {
516 ip->i_ctime = current_time(ip);
517 zfs_mark_inode_dirty(ip);
518 }
519
520 if (vap)
521 kmem_free(vap, sizeof (vattr_t));
522
523 if (xzp)
524 zrele(xzp);
525
526 if (dxzp)
527 zrele(dxzp);
528
529 if (error == -ENOENT)
530 error = -ENODATA;
531
532 ASSERT3S(error, <=, 0);
533
534 return (error);
535 }
536
537 static int
538 zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value,
539 size_t size, int flags, cred_t *cr)
540 {
541 znode_t *zp = ITOZ(ip);
542 nvlist_t *nvl;
543 size_t sa_size;
544 int error = 0;
545
546 mutex_enter(&zp->z_lock);
547 if (zp->z_xattr_cached == NULL)
548 error = -zfs_sa_get_xattr(zp);
549 mutex_exit(&zp->z_lock);
550
551 if (error)
552 return (error);
553
554 ASSERT(zp->z_xattr_cached);
555 nvl = zp->z_xattr_cached;
556
557 if (value == NULL) {
558 error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY);
559 if (error == -ENOENT)
560 error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr);
561 } else {
562 /* Limited to 32k to keep nvpair memory allocations small */
563 if (size > DXATTR_MAX_ENTRY_SIZE)
564 return (-EFBIG);
565
566 /* Prevent the DXATTR SA from consuming the entire SA region */
567 error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
568 if (error)
569 return (error);
570
571 if (sa_size > DXATTR_MAX_SA_SIZE)
572 return (-EFBIG);
573
574 error = -nvlist_add_byte_array(nvl, name,
575 (uchar_t *)value, size);
576 }
577
578 /*
579 * Update the SA for additions, modifications, and removals. On
580 * error drop the inconsistent cached version of the nvlist, it
581 * will be reconstructed from the ARC when next accessed.
582 */
583 if (error == 0)
584 error = -zfs_sa_set_xattr(zp, name, value, size);
585
586 if (error) {
587 nvlist_free(nvl);
588 zp->z_xattr_cached = NULL;
589 }
590
591 ASSERT3S(error, <=, 0);
592
593 return (error);
594 }
595
596 static int
597 zpl_xattr_set(struct inode *ip, const char *name, const void *value,
598 size_t size, int flags)
599 {
600 znode_t *zp = ITOZ(ip);
601 zfsvfs_t *zfsvfs = ZTOZSB(zp);
602 cred_t *cr = CRED();
603 fstrans_cookie_t cookie;
604 int where;
605 int error;
606
607 crhold(cr);
608 cookie = spl_fstrans_mark();
609 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
610 goto out1;
611 rw_enter(&zp->z_xattr_lock, RW_WRITER);
612
613 /*
614 * Before setting the xattr check to see if it already exists.
615 * This is done to ensure the following optional flags are honored.
616 *
617 * XATTR_CREATE: fail if xattr already exists
618 * XATTR_REPLACE: fail if xattr does not exist
619 *
620 * We also want to know if it resides in sa or dir, so we can make
621 * sure we don't end up with duplicate in both places.
622 */
623 error = __zpl_xattr_where(ip, name, &where, cr);
624 if (error < 0) {
625 if (error != -ENODATA)
626 goto out;
627 if (flags & XATTR_REPLACE)
628 goto out;
629
630 /* The xattr to be removed already doesn't exist */
631 error = 0;
632 if (value == NULL)
633 goto out;
634 } else {
635 error = -EEXIST;
636 if (flags & XATTR_CREATE)
637 goto out;
638 }
639
640 /* Preferentially store the xattr as a SA for better performance */
641 if (zfsvfs->z_use_sa && zp->z_is_sa &&
642 (zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) {
643 error = zpl_xattr_set_sa(ip, name, value, size, flags, cr);
644 if (error == 0) {
645 /*
646 * Successfully put into SA, we need to clear the one
647 * in dir.
648 */
649 if (where & XATTR_IN_DIR)
650 zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr);
651 goto out;
652 }
653 }
654
655 error = zpl_xattr_set_dir(ip, name, value, size, flags, cr);
656 /*
657 * Successfully put into dir, we need to clear the one in SA.
658 */
659 if (error == 0 && (where & XATTR_IN_SA))
660 zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr);
661 out:
662 rw_exit(&zp->z_xattr_lock);
663 zpl_exit(zfsvfs, FTAG);
664 out1:
665 spl_fstrans_unmark(cookie);
666 crfree(cr);
667 ASSERT3S(error, <=, 0);
668
669 return (error);
670 }
671
672 /*
673 * Extended user attributes
674 *
675 * "Extended user attributes may be assigned to files and directories for
676 * storing arbitrary additional information such as the mime type,
677 * character set or encoding of a file. The access permissions for user
678 * attributes are defined by the file permission bits: read permission
679 * is required to retrieve the attribute value, and writer permission is
680 * required to change it.
681 *
682 * The file permission bits of regular files and directories are
683 * interpreted differently from the file permission bits of special
684 * files and symbolic links. For regular files and directories the file
685 * permission bits define access to the file's contents, while for
686 * device special files they define access to the device described by
687 * the special file. The file permissions of symbolic links are not
688 * used in access checks. These differences would allow users to
689 * consume filesystem resources in a way not controllable by disk quotas
690 * for group or world writable special files and directories.
691 *
692 * For this reason, extended user attributes are allowed only for
693 * regular files and directories, and access to extended user attributes
694 * is restricted to the owner and to users with appropriate capabilities
695 * for directories with the sticky bit set (see the chmod(1) manual page
696 * for an explanation of the sticky bit)." - xattr(7)
697 *
698 * ZFS allows extended user attributes to be disabled administratively
699 * by setting the 'xattr=off' property on the dataset.
700 */
701 static int
702 __zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size,
703 const char *name, size_t name_len)
704 {
705 return (ITOZSB(ip)->z_flags & ZSB_XATTR);
706 }
707 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list);
708
709 static int
710 __zpl_xattr_user_get(struct inode *ip, const char *name,
711 void *value, size_t size)
712 {
713 int error;
714 /* xattr_resolve_name will do this for us if this is defined */
715 #ifndef HAVE_XATTR_HANDLER_NAME
716 if (strcmp(name, "") == 0)
717 return (-EINVAL);
718 #endif
719 if (ZFS_XA_NS_PREFIX_FORBIDDEN(name))
720 return (-EINVAL);
721 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
722 return (-EOPNOTSUPP);
723
724 /*
725 * Try to look up the name with the namespace prefix first for
726 * compatibility with xattrs from this platform. If that fails,
727 * try again without the namespace prefix for compatibility with
728 * other platforms.
729 */
730 char *xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
731 error = zpl_xattr_get(ip, xattr_name, value, size);
732 kmem_strfree(xattr_name);
733 if (error == -ENODATA)
734 error = zpl_xattr_get(ip, name, value, size);
735
736 return (error);
737 }
738 ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get);
739
740 static int
741 __zpl_xattr_user_set(struct user_namespace *user_ns,
742 struct inode *ip, const char *name,
743 const void *value, size_t size, int flags)
744 {
745 (void) user_ns;
746 int error = 0;
747 /* xattr_resolve_name will do this for us if this is defined */
748 #ifndef HAVE_XATTR_HANDLER_NAME
749 if (strcmp(name, "") == 0)
750 return (-EINVAL);
751 #endif
752 if (ZFS_XA_NS_PREFIX_FORBIDDEN(name))
753 return (-EINVAL);
754 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
755 return (-EOPNOTSUPP);
756
757 /*
758 * Remove alternate compat version of the xattr so we only set the
759 * version specified by the zfs_xattr_compat tunable.
760 *
761 * The following flags must be handled correctly:
762 *
763 * XATTR_CREATE: fail if xattr already exists
764 * XATTR_REPLACE: fail if xattr does not exist
765 */
766 char *prefixed_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
767 const char *clear_name, *set_name;
768 if (zfs_xattr_compat) {
769 clear_name = prefixed_name;
770 set_name = name;
771 } else {
772 clear_name = name;
773 set_name = prefixed_name;
774 }
775 /*
776 * Clear the old value with the alternative name format, if it exists.
777 */
778 error = zpl_xattr_set(ip, clear_name, NULL, 0, flags);
779 /*
780 * XATTR_CREATE was specified and we failed to clear the xattr
781 * because it already exists. Stop here.
782 */
783 if (error == -EEXIST)
784 goto out;
785 /*
786 * If XATTR_REPLACE was specified and we succeeded to clear
787 * an xattr, we don't need to replace anything when setting
788 * the new value. If we failed with -ENODATA that's fine,
789 * there was nothing to be cleared and we can ignore the error.
790 */
791 if (error == 0)
792 flags &= ~XATTR_REPLACE;
793 /*
794 * Set the new value with the configured name format.
795 */
796 error = zpl_xattr_set(ip, set_name, value, size, flags);
797 out:
798 kmem_strfree(prefixed_name);
799 return (error);
800 }
801 ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set);
802
803 static xattr_handler_t zpl_xattr_user_handler =
804 {
805 .prefix = XATTR_USER_PREFIX,
806 .list = zpl_xattr_user_list,
807 .get = zpl_xattr_user_get,
808 .set = zpl_xattr_user_set,
809 };
810
811 /*
812 * Trusted extended attributes
813 *
814 * "Trusted extended attributes are visible and accessible only to
815 * processes that have the CAP_SYS_ADMIN capability. Attributes in this
816 * class are used to implement mechanisms in user space (i.e., outside
817 * the kernel) which keep information in extended attributes to which
818 * ordinary processes should not have access." - xattr(7)
819 */
820 static int
821 __zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size,
822 const char *name, size_t name_len)
823 {
824 return (capable(CAP_SYS_ADMIN));
825 }
826 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list);
827
828 static int
829 __zpl_xattr_trusted_get(struct inode *ip, const char *name,
830 void *value, size_t size)
831 {
832 char *xattr_name;
833 int error;
834
835 if (!capable(CAP_SYS_ADMIN))
836 return (-EACCES);
837 /* xattr_resolve_name will do this for us if this is defined */
838 #ifndef HAVE_XATTR_HANDLER_NAME
839 if (strcmp(name, "") == 0)
840 return (-EINVAL);
841 #endif
842 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
843 error = zpl_xattr_get(ip, xattr_name, value, size);
844 kmem_strfree(xattr_name);
845
846 return (error);
847 }
848 ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get);
849
850 static int
851 __zpl_xattr_trusted_set(struct user_namespace *user_ns,
852 struct inode *ip, const char *name,
853 const void *value, size_t size, int flags)
854 {
855 (void) user_ns;
856 char *xattr_name;
857 int error;
858
859 if (!capable(CAP_SYS_ADMIN))
860 return (-EACCES);
861 /* xattr_resolve_name will do this for us if this is defined */
862 #ifndef HAVE_XATTR_HANDLER_NAME
863 if (strcmp(name, "") == 0)
864 return (-EINVAL);
865 #endif
866 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
867 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
868 kmem_strfree(xattr_name);
869
870 return (error);
871 }
872 ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set);
873
874 static xattr_handler_t zpl_xattr_trusted_handler = {
875 .prefix = XATTR_TRUSTED_PREFIX,
876 .list = zpl_xattr_trusted_list,
877 .get = zpl_xattr_trusted_get,
878 .set = zpl_xattr_trusted_set,
879 };
880
881 /*
882 * Extended security attributes
883 *
884 * "The security attribute namespace is used by kernel security modules,
885 * such as Security Enhanced Linux, and also to implement file
886 * capabilities (see capabilities(7)). Read and write access
887 * permissions to security attributes depend on the policy implemented
888 * for each security attribute by the security module. When no security
889 * module is loaded, all processes have read access to extended security
890 * attributes, and write access is limited to processes that have the
891 * CAP_SYS_ADMIN capability." - xattr(7)
892 */
893 static int
894 __zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size,
895 const char *name, size_t name_len)
896 {
897 return (1);
898 }
899 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list);
900
901 static int
902 __zpl_xattr_security_get(struct inode *ip, const char *name,
903 void *value, size_t size)
904 {
905 char *xattr_name;
906 int error;
907 /* xattr_resolve_name will do this for us if this is defined */
908 #ifndef HAVE_XATTR_HANDLER_NAME
909 if (strcmp(name, "") == 0)
910 return (-EINVAL);
911 #endif
912 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
913 error = zpl_xattr_get(ip, xattr_name, value, size);
914 kmem_strfree(xattr_name);
915
916 return (error);
917 }
918 ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get);
919
920 static int
921 __zpl_xattr_security_set(struct user_namespace *user_ns,
922 struct inode *ip, const char *name,
923 const void *value, size_t size, int flags)
924 {
925 (void) user_ns;
926 char *xattr_name;
927 int error;
928 /* xattr_resolve_name will do this for us if this is defined */
929 #ifndef HAVE_XATTR_HANDLER_NAME
930 if (strcmp(name, "") == 0)
931 return (-EINVAL);
932 #endif
933 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
934 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
935 kmem_strfree(xattr_name);
936
937 return (error);
938 }
939 ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set);
940
941 static int
942 zpl_xattr_security_init_impl(struct inode *ip, const struct xattr *xattrs,
943 void *fs_info)
944 {
945 const struct xattr *xattr;
946 int error = 0;
947
948 for (xattr = xattrs; xattr->name != NULL; xattr++) {
949 error = __zpl_xattr_security_set(NULL, ip,
950 xattr->name, xattr->value, xattr->value_len, 0);
951
952 if (error < 0)
953 break;
954 }
955
956 return (error);
957 }
958
959 int
960 zpl_xattr_security_init(struct inode *ip, struct inode *dip,
961 const struct qstr *qstr)
962 {
963 return security_inode_init_security(ip, dip, qstr,
964 &zpl_xattr_security_init_impl, NULL);
965 }
966
967 /*
968 * Security xattr namespace handlers.
969 */
970 static xattr_handler_t zpl_xattr_security_handler = {
971 .prefix = XATTR_SECURITY_PREFIX,
972 .list = zpl_xattr_security_list,
973 .get = zpl_xattr_security_get,
974 .set = zpl_xattr_security_set,
975 };
976
977 /*
978 * Extended system attributes
979 *
980 * "Extended system attributes are used by the kernel to store system
981 * objects such as Access Control Lists. Read and write access permissions
982 * to system attributes depend on the policy implemented for each system
983 * attribute implemented by filesystems in the kernel." - xattr(7)
984 */
985 #ifdef CONFIG_FS_POSIX_ACL
986 static int
987 zpl_set_acl_impl(struct inode *ip, struct posix_acl *acl, int type)
988 {
989 char *name, *value = NULL;
990 int error = 0;
991 size_t size = 0;
992
993 if (S_ISLNK(ip->i_mode))
994 return (-EOPNOTSUPP);
995
996 switch (type) {
997 case ACL_TYPE_ACCESS:
998 name = XATTR_NAME_POSIX_ACL_ACCESS;
999 if (acl) {
1000 umode_t mode = ip->i_mode;
1001 error = posix_acl_equiv_mode(acl, &mode);
1002 if (error < 0) {
1003 return (error);
1004 } else {
1005 /*
1006 * The mode bits will have been set by
1007 * ->zfs_setattr()->zfs_acl_chmod_setattr()
1008 * using the ZFS ACL conversion. If they
1009 * differ from the Posix ACL conversion dirty
1010 * the inode to write the Posix mode bits.
1011 */
1012 if (ip->i_mode != mode) {
1013 ip->i_mode = ITOZ(ip)->z_mode = mode;
1014 ip->i_ctime = current_time(ip);
1015 zfs_mark_inode_dirty(ip);
1016 }
1017
1018 if (error == 0)
1019 acl = NULL;
1020 }
1021 }
1022 break;
1023
1024 case ACL_TYPE_DEFAULT:
1025 name = XATTR_NAME_POSIX_ACL_DEFAULT;
1026 if (!S_ISDIR(ip->i_mode))
1027 return (acl ? -EACCES : 0);
1028 break;
1029
1030 default:
1031 return (-EINVAL);
1032 }
1033
1034 if (acl) {
1035 size = posix_acl_xattr_size(acl->a_count);
1036 value = kmem_alloc(size, KM_SLEEP);
1037
1038 error = zpl_acl_to_xattr(acl, value, size);
1039 if (error < 0) {
1040 kmem_free(value, size);
1041 return (error);
1042 }
1043 }
1044
1045 error = zpl_xattr_set(ip, name, value, size, 0);
1046 if (value)
1047 kmem_free(value, size);
1048
1049 if (!error) {
1050 if (acl)
1051 zpl_set_cached_acl(ip, type, acl);
1052 else
1053 zpl_forget_cached_acl(ip, type);
1054 }
1055
1056 return (error);
1057 }
1058
1059 #ifdef HAVE_SET_ACL
1060 int
1061 #ifdef HAVE_SET_ACL_USERNS
1062 zpl_set_acl(struct user_namespace *userns, struct inode *ip,
1063 struct posix_acl *acl, int type)
1064 #elif defined(HAVE_SET_ACL_USERNS_DENTRY_ARG2)
1065 zpl_set_acl(struct user_namespace *userns, struct dentry *dentry,
1066 struct posix_acl *acl, int type)
1067 #else
1068 zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type)
1069 #endif /* HAVE_SET_ACL_USERNS */
1070 {
1071 #ifdef HAVE_SET_ACL_USERNS_DENTRY_ARG2
1072 return (zpl_set_acl_impl(d_inode(dentry), acl, type));
1073 #else
1074 return (zpl_set_acl_impl(ip, acl, type));
1075 #endif /* HAVE_SET_ACL_USERNS_DENTRY_ARG2 */
1076 }
1077 #endif /* HAVE_SET_ACL */
1078
1079 static struct posix_acl *
1080 zpl_get_acl_impl(struct inode *ip, int type)
1081 {
1082 struct posix_acl *acl;
1083 void *value = NULL;
1084 char *name;
1085
1086 /*
1087 * As of Linux 3.14, the kernel get_acl will check this for us.
1088 * Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong
1089 * as the kernel get_acl will set it to temporary sentinel value.
1090 */
1091 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1092 acl = get_cached_acl(ip, type);
1093 if (acl != ACL_NOT_CACHED)
1094 return (acl);
1095 #endif
1096
1097 switch (type) {
1098 case ACL_TYPE_ACCESS:
1099 name = XATTR_NAME_POSIX_ACL_ACCESS;
1100 break;
1101 case ACL_TYPE_DEFAULT:
1102 name = XATTR_NAME_POSIX_ACL_DEFAULT;
1103 break;
1104 default:
1105 return (ERR_PTR(-EINVAL));
1106 }
1107
1108 int size = zpl_xattr_get(ip, name, NULL, 0);
1109 if (size > 0) {
1110 value = kmem_alloc(size, KM_SLEEP);
1111 size = zpl_xattr_get(ip, name, value, size);
1112 }
1113
1114 if (size > 0) {
1115 acl = zpl_acl_from_xattr(value, size);
1116 } else if (size == -ENODATA || size == -ENOSYS) {
1117 acl = NULL;
1118 } else {
1119 acl = ERR_PTR(-EIO);
1120 }
1121
1122 if (size > 0)
1123 kmem_free(value, size);
1124
1125 /* As of Linux 4.7, the kernel get_acl will set this for us */
1126 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1127 if (!IS_ERR(acl))
1128 zpl_set_cached_acl(ip, type, acl);
1129 #endif
1130
1131 return (acl);
1132 }
1133
1134 #if defined(HAVE_GET_ACL_RCU) || defined(HAVE_GET_INODE_ACL)
1135 struct posix_acl *
1136 zpl_get_acl(struct inode *ip, int type, bool rcu)
1137 {
1138 if (rcu)
1139 return (ERR_PTR(-ECHILD));
1140
1141 return (zpl_get_acl_impl(ip, type));
1142 }
1143 #elif defined(HAVE_GET_ACL)
1144 struct posix_acl *
1145 zpl_get_acl(struct inode *ip, int type)
1146 {
1147 return (zpl_get_acl_impl(ip, type));
1148 }
1149 #else
1150 #error "Unsupported iops->get_acl() implementation"
1151 #endif /* HAVE_GET_ACL_RCU */
1152
1153 int
1154 zpl_init_acl(struct inode *ip, struct inode *dir)
1155 {
1156 struct posix_acl *acl = NULL;
1157 int error = 0;
1158
1159 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1160 return (0);
1161
1162 if (!S_ISLNK(ip->i_mode)) {
1163 acl = zpl_get_acl_impl(dir, ACL_TYPE_DEFAULT);
1164 if (IS_ERR(acl))
1165 return (PTR_ERR(acl));
1166 if (!acl) {
1167 ITOZ(ip)->z_mode = (ip->i_mode &= ~current_umask());
1168 ip->i_ctime = current_time(ip);
1169 zfs_mark_inode_dirty(ip);
1170 return (0);
1171 }
1172 }
1173
1174 if (acl) {
1175 umode_t mode;
1176
1177 if (S_ISDIR(ip->i_mode)) {
1178 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_DEFAULT);
1179 if (error)
1180 goto out;
1181 }
1182
1183 mode = ip->i_mode;
1184 error = __posix_acl_create(&acl, GFP_KERNEL, &mode);
1185 if (error >= 0) {
1186 ip->i_mode = ITOZ(ip)->z_mode = mode;
1187 zfs_mark_inode_dirty(ip);
1188 if (error > 0) {
1189 error = zpl_set_acl_impl(ip, acl,
1190 ACL_TYPE_ACCESS);
1191 }
1192 }
1193 }
1194 out:
1195 zpl_posix_acl_release(acl);
1196
1197 return (error);
1198 }
1199
1200 int
1201 zpl_chmod_acl(struct inode *ip)
1202 {
1203 struct posix_acl *acl;
1204 int error;
1205
1206 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1207 return (0);
1208
1209 if (S_ISLNK(ip->i_mode))
1210 return (-EOPNOTSUPP);
1211
1212 acl = zpl_get_acl_impl(ip, ACL_TYPE_ACCESS);
1213 if (IS_ERR(acl) || !acl)
1214 return (PTR_ERR(acl));
1215
1216 error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode);
1217 if (!error)
1218 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_ACCESS);
1219
1220 zpl_posix_acl_release(acl);
1221
1222 return (error);
1223 }
1224
1225 static int
1226 __zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size,
1227 const char *name, size_t name_len)
1228 {
1229 char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS;
1230 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS);
1231
1232 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1233 return (0);
1234
1235 if (list && xattr_size <= list_size)
1236 memcpy(list, xattr_name, xattr_size);
1237
1238 return (xattr_size);
1239 }
1240 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access);
1241
1242 static int
1243 __zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size,
1244 const char *name, size_t name_len)
1245 {
1246 char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT;
1247 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT);
1248
1249 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1250 return (0);
1251
1252 if (list && xattr_size <= list_size)
1253 memcpy(list, xattr_name, xattr_size);
1254
1255 return (xattr_size);
1256 }
1257 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default);
1258
1259 static int
1260 __zpl_xattr_acl_get_access(struct inode *ip, const char *name,
1261 void *buffer, size_t size)
1262 {
1263 struct posix_acl *acl;
1264 int type = ACL_TYPE_ACCESS;
1265 int error;
1266 /* xattr_resolve_name will do this for us if this is defined */
1267 #ifndef HAVE_XATTR_HANDLER_NAME
1268 if (strcmp(name, "") != 0)
1269 return (-EINVAL);
1270 #endif
1271 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1272 return (-EOPNOTSUPP);
1273
1274 acl = zpl_get_acl_impl(ip, type);
1275 if (IS_ERR(acl))
1276 return (PTR_ERR(acl));
1277 if (acl == NULL)
1278 return (-ENODATA);
1279
1280 error = zpl_acl_to_xattr(acl, buffer, size);
1281 zpl_posix_acl_release(acl);
1282
1283 return (error);
1284 }
1285 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access);
1286
1287 static int
1288 __zpl_xattr_acl_get_default(struct inode *ip, const char *name,
1289 void *buffer, size_t size)
1290 {
1291 struct posix_acl *acl;
1292 int type = ACL_TYPE_DEFAULT;
1293 int error;
1294 /* xattr_resolve_name will do this for us if this is defined */
1295 #ifndef HAVE_XATTR_HANDLER_NAME
1296 if (strcmp(name, "") != 0)
1297 return (-EINVAL);
1298 #endif
1299 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1300 return (-EOPNOTSUPP);
1301
1302 acl = zpl_get_acl_impl(ip, type);
1303 if (IS_ERR(acl))
1304 return (PTR_ERR(acl));
1305 if (acl == NULL)
1306 return (-ENODATA);
1307
1308 error = zpl_acl_to_xattr(acl, buffer, size);
1309 zpl_posix_acl_release(acl);
1310
1311 return (error);
1312 }
1313 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default);
1314
1315 static int
1316 __zpl_xattr_acl_set_access(struct user_namespace *mnt_ns,
1317 struct inode *ip, const char *name,
1318 const void *value, size_t size, int flags)
1319 {
1320 struct posix_acl *acl;
1321 int type = ACL_TYPE_ACCESS;
1322 int error = 0;
1323 /* xattr_resolve_name will do this for us if this is defined */
1324 #ifndef HAVE_XATTR_HANDLER_NAME
1325 if (strcmp(name, "") != 0)
1326 return (-EINVAL);
1327 #endif
1328 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1329 return (-EOPNOTSUPP);
1330
1331 #if defined(HAVE_XATTR_SET_USERNS)
1332 if (!zpl_inode_owner_or_capable(mnt_ns, ip))
1333 return (-EPERM);
1334 #else
1335 (void) mnt_ns;
1336 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1337 return (-EPERM);
1338 #endif
1339
1340 if (value) {
1341 acl = zpl_acl_from_xattr(value, size);
1342 if (IS_ERR(acl))
1343 return (PTR_ERR(acl));
1344 else if (acl) {
1345 error = zpl_posix_acl_valid(ip, acl);
1346 if (error) {
1347 zpl_posix_acl_release(acl);
1348 return (error);
1349 }
1350 }
1351 } else {
1352 acl = NULL;
1353 }
1354 error = zpl_set_acl_impl(ip, acl, type);
1355 zpl_posix_acl_release(acl);
1356
1357 return (error);
1358 }
1359 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access);
1360
1361 static int
1362 __zpl_xattr_acl_set_default(struct user_namespace *mnt_ns,
1363 struct inode *ip, const char *name,
1364 const void *value, size_t size, int flags)
1365 {
1366 struct posix_acl *acl;
1367 int type = ACL_TYPE_DEFAULT;
1368 int error = 0;
1369 /* xattr_resolve_name will do this for us if this is defined */
1370 #ifndef HAVE_XATTR_HANDLER_NAME
1371 if (strcmp(name, "") != 0)
1372 return (-EINVAL);
1373 #endif
1374 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1375 return (-EOPNOTSUPP);
1376
1377 #if defined(HAVE_XATTR_SET_USERNS)
1378 if (!zpl_inode_owner_or_capable(mnt_ns, ip))
1379 return (-EPERM);
1380 #else
1381 (void) mnt_ns;
1382 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1383 return (-EPERM);
1384 #endif
1385
1386 if (value) {
1387 acl = zpl_acl_from_xattr(value, size);
1388 if (IS_ERR(acl))
1389 return (PTR_ERR(acl));
1390 else if (acl) {
1391 error = zpl_posix_acl_valid(ip, acl);
1392 if (error) {
1393 zpl_posix_acl_release(acl);
1394 return (error);
1395 }
1396 }
1397 } else {
1398 acl = NULL;
1399 }
1400
1401 error = zpl_set_acl_impl(ip, acl, type);
1402 zpl_posix_acl_release(acl);
1403
1404 return (error);
1405 }
1406 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default);
1407
1408 /*
1409 * ACL access xattr namespace handlers.
1410 *
1411 * Use .name instead of .prefix when available. xattr_resolve_name will match
1412 * whole name and reject anything that has .name only as prefix.
1413 */
1414 static xattr_handler_t zpl_xattr_acl_access_handler = {
1415 #ifdef HAVE_XATTR_HANDLER_NAME
1416 .name = XATTR_NAME_POSIX_ACL_ACCESS,
1417 #else
1418 .prefix = XATTR_NAME_POSIX_ACL_ACCESS,
1419 #endif
1420 .list = zpl_xattr_acl_list_access,
1421 .get = zpl_xattr_acl_get_access,
1422 .set = zpl_xattr_acl_set_access,
1423 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1424 defined(HAVE_XATTR_LIST_DENTRY) || \
1425 defined(HAVE_XATTR_LIST_HANDLER)
1426 .flags = ACL_TYPE_ACCESS,
1427 #endif
1428 };
1429
1430 /*
1431 * ACL default xattr namespace handlers.
1432 *
1433 * Use .name instead of .prefix when available. xattr_resolve_name will match
1434 * whole name and reject anything that has .name only as prefix.
1435 */
1436 static xattr_handler_t zpl_xattr_acl_default_handler = {
1437 #ifdef HAVE_XATTR_HANDLER_NAME
1438 .name = XATTR_NAME_POSIX_ACL_DEFAULT,
1439 #else
1440 .prefix = XATTR_NAME_POSIX_ACL_DEFAULT,
1441 #endif
1442 .list = zpl_xattr_acl_list_default,
1443 .get = zpl_xattr_acl_get_default,
1444 .set = zpl_xattr_acl_set_default,
1445 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1446 defined(HAVE_XATTR_LIST_DENTRY) || \
1447 defined(HAVE_XATTR_LIST_HANDLER)
1448 .flags = ACL_TYPE_DEFAULT,
1449 #endif
1450 };
1451
1452 #endif /* CONFIG_FS_POSIX_ACL */
1453
1454 xattr_handler_t *zpl_xattr_handlers[] = {
1455 &zpl_xattr_security_handler,
1456 &zpl_xattr_trusted_handler,
1457 &zpl_xattr_user_handler,
1458 #ifdef CONFIG_FS_POSIX_ACL
1459 &zpl_xattr_acl_access_handler,
1460 &zpl_xattr_acl_default_handler,
1461 #endif /* CONFIG_FS_POSIX_ACL */
1462 NULL
1463 };
1464
1465 static const struct xattr_handler *
1466 zpl_xattr_handler(const char *name)
1467 {
1468 if (strncmp(name, XATTR_USER_PREFIX,
1469 XATTR_USER_PREFIX_LEN) == 0)
1470 return (&zpl_xattr_user_handler);
1471
1472 if (strncmp(name, XATTR_TRUSTED_PREFIX,
1473 XATTR_TRUSTED_PREFIX_LEN) == 0)
1474 return (&zpl_xattr_trusted_handler);
1475
1476 if (strncmp(name, XATTR_SECURITY_PREFIX,
1477 XATTR_SECURITY_PREFIX_LEN) == 0)
1478 return (&zpl_xattr_security_handler);
1479
1480 #ifdef CONFIG_FS_POSIX_ACL
1481 if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS,
1482 sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0)
1483 return (&zpl_xattr_acl_access_handler);
1484
1485 if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT,
1486 sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0)
1487 return (&zpl_xattr_acl_default_handler);
1488 #endif /* CONFIG_FS_POSIX_ACL */
1489
1490 return (NULL);
1491 }
1492
1493 static enum xattr_permission
1494 zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len)
1495 {
1496 const struct xattr_handler *handler;
1497 struct dentry *d __maybe_unused = xf->dentry;
1498 enum xattr_permission perm = XAPERM_ALLOW;
1499
1500 handler = zpl_xattr_handler(name);
1501 if (handler == NULL) {
1502 /* Do not expose FreeBSD system namespace xattrs. */
1503 if (ZFS_XA_NS_PREFIX_MATCH(FREEBSD, name))
1504 return (XAPERM_DENY);
1505 /*
1506 * Anything that doesn't match a known namespace gets put in the
1507 * user namespace for compatibility with other platforms.
1508 */
1509 perm = XAPERM_COMPAT;
1510 handler = &zpl_xattr_user_handler;
1511 }
1512
1513 if (handler->list) {
1514 #if defined(HAVE_XATTR_LIST_SIMPLE)
1515 if (!handler->list(d))
1516 return (XAPERM_DENY);
1517 #elif defined(HAVE_XATTR_LIST_DENTRY)
1518 if (!handler->list(d, NULL, 0, name, name_len, 0))
1519 return (XAPERM_DENY);
1520 #elif defined(HAVE_XATTR_LIST_HANDLER)
1521 if (!handler->list(handler, d, NULL, 0, name, name_len))
1522 return (XAPERM_DENY);
1523 #endif
1524 }
1525
1526 return (perm);
1527 }
1528
1529 #if defined(CONFIG_FS_POSIX_ACL) && \
1530 (!defined(HAVE_POSIX_ACL_RELEASE) || \
1531 defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY))
1532 struct acl_rel_struct {
1533 struct acl_rel_struct *next;
1534 struct posix_acl *acl;
1535 clock_t time;
1536 };
1537
1538 #define ACL_REL_GRACE (60*HZ)
1539 #define ACL_REL_WINDOW (1*HZ)
1540 #define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW)
1541
1542 /*
1543 * Lockless multi-producer single-consumer fifo list.
1544 * Nodes are added to tail and removed from head. Tail pointer is our
1545 * synchronization point. It always points to the next pointer of the last
1546 * node, or head if list is empty.
1547 */
1548 static struct acl_rel_struct *acl_rel_head = NULL;
1549 static struct acl_rel_struct **acl_rel_tail = &acl_rel_head;
1550
1551 static void
1552 zpl_posix_acl_free(void *arg)
1553 {
1554 struct acl_rel_struct *freelist = NULL;
1555 struct acl_rel_struct *a;
1556 clock_t new_time;
1557 boolean_t refire = B_FALSE;
1558
1559 ASSERT3P(acl_rel_head, !=, NULL);
1560 while (acl_rel_head) {
1561 a = acl_rel_head;
1562 if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) {
1563 /*
1564 * If a is the last node we need to reset tail, but we
1565 * need to use cmpxchg to make sure it is still the
1566 * last node.
1567 */
1568 if (acl_rel_tail == &a->next) {
1569 acl_rel_head = NULL;
1570 if (cmpxchg(&acl_rel_tail, &a->next,
1571 &acl_rel_head) == &a->next) {
1572 ASSERT3P(a->next, ==, NULL);
1573 a->next = freelist;
1574 freelist = a;
1575 break;
1576 }
1577 }
1578 /*
1579 * a is not last node, make sure next pointer is set
1580 * by the adder and advance the head.
1581 */
1582 while (READ_ONCE(a->next) == NULL)
1583 cpu_relax();
1584 acl_rel_head = a->next;
1585 a->next = freelist;
1586 freelist = a;
1587 } else {
1588 /*
1589 * a is still in grace period. We are responsible to
1590 * reschedule the free task, since adder will only do
1591 * so if list is empty.
1592 */
1593 new_time = a->time + ACL_REL_SCHED;
1594 refire = B_TRUE;
1595 break;
1596 }
1597 }
1598
1599 if (refire)
1600 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1601 NULL, TQ_SLEEP, new_time);
1602
1603 while (freelist) {
1604 a = freelist;
1605 freelist = a->next;
1606 kfree(a->acl);
1607 kmem_free(a, sizeof (struct acl_rel_struct));
1608 }
1609 }
1610
1611 void
1612 zpl_posix_acl_release_impl(struct posix_acl *acl)
1613 {
1614 struct acl_rel_struct *a, **prev;
1615
1616 a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP);
1617 a->next = NULL;
1618 a->acl = acl;
1619 a->time = ddi_get_lbolt();
1620 /* atomically points tail to us and get the previous tail */
1621 prev = xchg(&acl_rel_tail, &a->next);
1622 ASSERT3P(*prev, ==, NULL);
1623 *prev = a;
1624 /* if it was empty before, schedule the free task */
1625 if (prev == &acl_rel_head)
1626 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1627 NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED);
1628 }
1629 #endif
1630
1631 ZFS_MODULE_PARAM(zfs, zfs_, xattr_compat, INT, ZMOD_RW,
1632 "Use legacy ZFS xattr naming for writing new user namespace xattrs");
Cache object: 087513e999916fb75740419ca6000682
|