The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
   23  */
   24 
   25 #include <sys/dataset_kstats.h>
   26 #include <sys/dbuf.h>
   27 #include <sys/dmu_traverse.h>
   28 #include <sys/dsl_dataset.h>
   29 #include <sys/dsl_prop.h>
   30 #include <sys/dsl_dir.h>
   31 #include <sys/zap.h>
   32 #include <sys/zfeature.h>
   33 #include <sys/zil_impl.h>
   34 #include <sys/dmu_tx.h>
   35 #include <sys/zio.h>
   36 #include <sys/zfs_rlock.h>
   37 #include <sys/spa_impl.h>
   38 #include <sys/zvol.h>
   39 #include <sys/zvol_impl.h>
   40 
   41 #include <linux/blkdev_compat.h>
   42 #include <linux/task_io_accounting_ops.h>
   43 
   44 #ifdef HAVE_BLK_MQ
   45 #include <linux/blk-mq.h>
   46 #endif
   47 
   48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
   49     struct request *rq, boolean_t force_sync);
   50 
   51 static unsigned int zvol_major = ZVOL_MAJOR;
   52 static unsigned int zvol_request_sync = 0;
   53 static unsigned int zvol_prefetch_bytes = (128 * 1024);
   54 static unsigned long zvol_max_discard_blocks = 16384;
   55 
   56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
   57 static const unsigned int zvol_open_timeout_ms = 1000;
   58 #endif
   59 
   60 static unsigned int zvol_threads = 0;
   61 #ifdef HAVE_BLK_MQ
   62 static unsigned int zvol_blk_mq_threads = 0;
   63 static unsigned int zvol_blk_mq_actual_threads;
   64 static boolean_t zvol_use_blk_mq = B_FALSE;
   65 
   66 /*
   67  * The maximum number of volblocksize blocks to process per thread.  Typically,
   68  * write heavy workloads preform better with higher values here, and read
   69  * heavy workloads preform better with lower values, but that's not a hard
   70  * and fast rule.  It's basically a knob to tune between "less overhead with
   71  * less parallelism" and "more overhead, but more parallelism".
   72  *
   73  * '8' was chosen as a reasonable, balanced, default based off of sequential
   74  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
   75  */
   76 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
   77 #endif
   78 
   79 #ifndef BLKDEV_DEFAULT_RQ
   80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
   81 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
   82 #endif
   83 
   84 /*
   85  * Finalize our BIO or request.
   86  */
   87 #ifdef  HAVE_BLK_MQ
   88 #define END_IO(zv, bio, rq, error)  do { \
   89         if (bio) { \
   90                 BIO_END_IO(bio, error); \
   91         } else { \
   92                 blk_mq_end_request(rq, errno_to_bi_status(error)); \
   93         } \
   94 } while (0)
   95 #else
   96 #define END_IO(zv, bio, rq, error)      BIO_END_IO(bio, error)
   97 #endif
   98 
   99 #ifdef HAVE_BLK_MQ
  100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
  101 static unsigned int zvol_actual_blk_mq_queue_depth;
  102 #endif
  103 
  104 struct zvol_state_os {
  105         struct gendisk          *zvo_disk;      /* generic disk */
  106         struct request_queue    *zvo_queue;     /* request queue */
  107         dev_t                   zvo_dev;        /* device id */
  108 
  109 #ifdef HAVE_BLK_MQ
  110         struct blk_mq_tag_set tag_set;
  111 #endif
  112 
  113         /* Set from the global 'zvol_use_blk_mq' at zvol load */
  114         boolean_t use_blk_mq;
  115 };
  116 
  117 static taskq_t *zvol_taskq;
  118 static struct ida zvol_ida;
  119 
  120 typedef struct zv_request_stack {
  121         zvol_state_t    *zv;
  122         struct bio      *bio;
  123         struct request *rq;
  124 } zv_request_t;
  125 
  126 typedef struct zv_work {
  127         struct request  *rq;
  128         struct work_struct work;
  129 } zv_work_t;
  130 
  131 typedef struct zv_request_task {
  132         zv_request_t zvr;
  133         taskq_ent_t     ent;
  134 } zv_request_task_t;
  135 
  136 static zv_request_task_t *
  137 zv_request_task_create(zv_request_t zvr)
  138 {
  139         zv_request_task_t *task;
  140         task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
  141         taskq_init_ent(&task->ent);
  142         task->zvr = zvr;
  143         return (task);
  144 }
  145 
  146 static void
  147 zv_request_task_free(zv_request_task_t *task)
  148 {
  149         kmem_free(task, sizeof (*task));
  150 }
  151 
  152 #ifdef HAVE_BLK_MQ
  153 
  154 /*
  155  * This is called when a new block multiqueue request comes in.  A request
  156  * contains one or more BIOs.
  157  */
  158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
  159     const struct blk_mq_queue_data *bd)
  160 {
  161         struct request *rq = bd->rq;
  162         zvol_state_t *zv = rq->q->queuedata;
  163 
  164         /* Tell the kernel that we are starting to process this request */
  165         blk_mq_start_request(rq);
  166 
  167         if (blk_rq_is_passthrough(rq)) {
  168                 /* Skip non filesystem request */
  169                 blk_mq_end_request(rq, BLK_STS_IOERR);
  170                 return (BLK_STS_IOERR);
  171         }
  172 
  173         zvol_request_impl(zv, NULL, rq, 0);
  174 
  175         /* Acknowledge to the kernel that we got this request */
  176         return (BLK_STS_OK);
  177 }
  178 
  179 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
  180         .queue_rq = zvol_mq_queue_rq,
  181 };
  182 
  183 /* Initialize our blk-mq struct */
  184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
  185 {
  186         struct zvol_state_os *zso = zv->zv_zso;
  187 
  188         memset(&zso->tag_set, 0, sizeof (zso->tag_set));
  189 
  190         /* Initialize tag set. */
  191         zso->tag_set.ops = &zvol_blk_mq_queue_ops;
  192         zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
  193         zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
  194         zso->tag_set.numa_node = NUMA_NO_NODE;
  195         zso->tag_set.cmd_size = 0;
  196 
  197         /*
  198          * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
  199          * zvol_request_impl()
  200          */
  201         zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
  202         zso->tag_set.driver_data = zv;
  203 
  204         return (blk_mq_alloc_tag_set(&zso->tag_set));
  205 }
  206 #endif /* HAVE_BLK_MQ */
  207 
  208 /*
  209  * Given a path, return TRUE if path is a ZVOL.
  210  */
  211 boolean_t
  212 zvol_os_is_zvol(const char *path)
  213 {
  214         dev_t dev = 0;
  215 
  216         if (vdev_lookup_bdev(path, &dev) != 0)
  217                 return (B_FALSE);
  218 
  219         if (MAJOR(dev) == zvol_major)
  220                 return (B_TRUE);
  221 
  222         return (B_FALSE);
  223 }
  224 
  225 static void
  226 zvol_write(zv_request_t *zvr)
  227 {
  228         struct bio *bio = zvr->bio;
  229         struct request *rq = zvr->rq;
  230         int error = 0;
  231         zfs_uio_t uio;
  232         zvol_state_t *zv = zvr->zv;
  233         struct request_queue *q;
  234         struct gendisk *disk;
  235         unsigned long start_time = 0;
  236         boolean_t acct = B_FALSE;
  237 
  238         ASSERT3P(zv, !=, NULL);
  239         ASSERT3U(zv->zv_open_count, >, 0);
  240         ASSERT3P(zv->zv_zilog, !=, NULL);
  241 
  242         q = zv->zv_zso->zvo_queue;
  243         disk = zv->zv_zso->zvo_disk;
  244 
  245         /* bio marked as FLUSH need to flush before write */
  246         if (io_is_flush(bio, rq))
  247                 zil_commit(zv->zv_zilog, ZVOL_OBJ);
  248 
  249         /* Some requests are just for flush and nothing else. */
  250         if (io_size(bio, rq) == 0) {
  251                 rw_exit(&zv->zv_suspend_lock);
  252                 END_IO(zv, bio, rq, 0);
  253                 return;
  254         }
  255 
  256         zfs_uio_bvec_init(&uio, bio, rq);
  257 
  258         ssize_t start_resid = uio.uio_resid;
  259 
  260         /*
  261          * With use_blk_mq, accounting is done by blk_mq_start_request()
  262          * and blk_mq_end_request(), so we can skip it here.
  263          */
  264         if (bio) {
  265                 acct = blk_queue_io_stat(q);
  266                 if (acct) {
  267                         start_time = blk_generic_start_io_acct(q, disk, WRITE,
  268                             bio);
  269                 }
  270         }
  271 
  272         boolean_t sync =
  273             io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
  274 
  275         zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
  276             uio.uio_loffset, uio.uio_resid, RL_WRITER);
  277 
  278         uint64_t volsize = zv->zv_volsize;
  279         while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
  280                 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
  281                 uint64_t off = uio.uio_loffset;
  282                 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
  283 
  284                 if (bytes > volsize - off)      /* don't write past the end */
  285                         bytes = volsize - off;
  286 
  287                 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
  288 
  289                 /* This will only fail for ENOSPC */
  290                 error = dmu_tx_assign(tx, TXG_WAIT);
  291                 if (error) {
  292                         dmu_tx_abort(tx);
  293                         break;
  294                 }
  295                 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
  296                 if (error == 0) {
  297                         zvol_log_write(zv, tx, off, bytes, sync);
  298                 }
  299                 dmu_tx_commit(tx);
  300 
  301                 if (error)
  302                         break;
  303         }
  304         zfs_rangelock_exit(lr);
  305 
  306         int64_t nwritten = start_resid - uio.uio_resid;
  307         dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
  308         task_io_account_write(nwritten);
  309 
  310         if (sync)
  311                 zil_commit(zv->zv_zilog, ZVOL_OBJ);
  312 
  313         rw_exit(&zv->zv_suspend_lock);
  314 
  315         if (bio && acct) {
  316                 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
  317         }
  318 
  319         END_IO(zv, bio, rq, -error);
  320 }
  321 
  322 static void
  323 zvol_write_task(void *arg)
  324 {
  325         zv_request_task_t *task = arg;
  326         zvol_write(&task->zvr);
  327         zv_request_task_free(task);
  328 }
  329 
  330 static void
  331 zvol_discard(zv_request_t *zvr)
  332 {
  333         struct bio *bio = zvr->bio;
  334         struct request *rq = zvr->rq;
  335         zvol_state_t *zv = zvr->zv;
  336         uint64_t start = io_offset(bio, rq);
  337         uint64_t size = io_size(bio, rq);
  338         uint64_t end = start + size;
  339         boolean_t sync;
  340         int error = 0;
  341         dmu_tx_t *tx;
  342         struct request_queue *q = zv->zv_zso->zvo_queue;
  343         struct gendisk *disk = zv->zv_zso->zvo_disk;
  344         unsigned long start_time = 0;
  345 
  346         boolean_t acct = blk_queue_io_stat(q);
  347 
  348         ASSERT3P(zv, !=, NULL);
  349         ASSERT3U(zv->zv_open_count, >, 0);
  350         ASSERT3P(zv->zv_zilog, !=, NULL);
  351 
  352         if (bio) {
  353                 acct = blk_queue_io_stat(q);
  354                 if (acct) {
  355                         start_time = blk_generic_start_io_acct(q, disk, WRITE,
  356                             bio);
  357                 }
  358         }
  359 
  360         sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
  361 
  362         if (end > zv->zv_volsize) {
  363                 error = SET_ERROR(EIO);
  364                 goto unlock;
  365         }
  366 
  367         /*
  368          * Align the request to volume block boundaries when a secure erase is
  369          * not required.  This will prevent dnode_free_range() from zeroing out
  370          * the unaligned parts which is slow (read-modify-write) and useless
  371          * since we are not freeing any space by doing so.
  372          */
  373         if (!io_is_secure_erase(bio, rq)) {
  374                 start = P2ROUNDUP(start, zv->zv_volblocksize);
  375                 end = P2ALIGN(end, zv->zv_volblocksize);
  376                 size = end - start;
  377         }
  378 
  379         if (start >= end)
  380                 goto unlock;
  381 
  382         zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
  383             start, size, RL_WRITER);
  384 
  385         tx = dmu_tx_create(zv->zv_objset);
  386         dmu_tx_mark_netfree(tx);
  387         error = dmu_tx_assign(tx, TXG_WAIT);
  388         if (error != 0) {
  389                 dmu_tx_abort(tx);
  390         } else {
  391                 zvol_log_truncate(zv, tx, start, size, B_TRUE);
  392                 dmu_tx_commit(tx);
  393                 error = dmu_free_long_range(zv->zv_objset,
  394                     ZVOL_OBJ, start, size);
  395         }
  396         zfs_rangelock_exit(lr);
  397 
  398         if (error == 0 && sync)
  399                 zil_commit(zv->zv_zilog, ZVOL_OBJ);
  400 
  401 unlock:
  402         rw_exit(&zv->zv_suspend_lock);
  403 
  404         if (bio && acct) {
  405                 blk_generic_end_io_acct(q, disk, WRITE, bio,
  406                     start_time);
  407         }
  408 
  409         END_IO(zv, bio, rq, -error);
  410 }
  411 
  412 static void
  413 zvol_discard_task(void *arg)
  414 {
  415         zv_request_task_t *task = arg;
  416         zvol_discard(&task->zvr);
  417         zv_request_task_free(task);
  418 }
  419 
  420 static void
  421 zvol_read(zv_request_t *zvr)
  422 {
  423         struct bio *bio = zvr->bio;
  424         struct request *rq = zvr->rq;
  425         int error = 0;
  426         zfs_uio_t uio;
  427         boolean_t acct = B_FALSE;
  428         zvol_state_t *zv = zvr->zv;
  429         struct request_queue *q;
  430         struct gendisk *disk;
  431         unsigned long start_time = 0;
  432 
  433         ASSERT3P(zv, !=, NULL);
  434         ASSERT3U(zv->zv_open_count, >, 0);
  435 
  436         zfs_uio_bvec_init(&uio, bio, rq);
  437 
  438         q = zv->zv_zso->zvo_queue;
  439         disk = zv->zv_zso->zvo_disk;
  440 
  441         ssize_t start_resid = uio.uio_resid;
  442 
  443         /*
  444          * When blk-mq is being used, accounting is done by
  445          * blk_mq_start_request() and blk_mq_end_request().
  446          */
  447         if (bio) {
  448                 acct = blk_queue_io_stat(q);
  449                 if (acct)
  450                         start_time = blk_generic_start_io_acct(q, disk, READ,
  451                             bio);
  452         }
  453 
  454         zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
  455             uio.uio_loffset, uio.uio_resid, RL_READER);
  456 
  457         uint64_t volsize = zv->zv_volsize;
  458 
  459         while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
  460                 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
  461 
  462                 /* don't read past the end */
  463                 if (bytes > volsize - uio.uio_loffset)
  464                         bytes = volsize - uio.uio_loffset;
  465 
  466                 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
  467                 if (error) {
  468                         /* convert checksum errors into IO errors */
  469                         if (error == ECKSUM)
  470                                 error = SET_ERROR(EIO);
  471                         break;
  472                 }
  473         }
  474         zfs_rangelock_exit(lr);
  475 
  476         int64_t nread = start_resid - uio.uio_resid;
  477         dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
  478         task_io_account_read(nread);
  479 
  480         rw_exit(&zv->zv_suspend_lock);
  481 
  482         if (bio && acct) {
  483                 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
  484         }
  485 
  486         END_IO(zv, bio, rq, -error);
  487 }
  488 
  489 static void
  490 zvol_read_task(void *arg)
  491 {
  492         zv_request_task_t *task = arg;
  493         zvol_read(&task->zvr);
  494         zv_request_task_free(task);
  495 }
  496 
  497 
  498 /*
  499  * Process a BIO or request
  500  *
  501  * Either 'bio' or 'rq' should be set depending on if we are processing a
  502  * bio or a request (both should not be set).
  503  *
  504  * force_sync:  Set to 0 to defer processing to a background taskq
  505  *                      Set to 1 to process data synchronously
  506  */
  507 static void
  508 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
  509     boolean_t force_sync)
  510 {
  511         fstrans_cookie_t cookie = spl_fstrans_mark();
  512         uint64_t offset = io_offset(bio, rq);
  513         uint64_t size = io_size(bio, rq);
  514         int rw = io_data_dir(bio, rq);
  515 
  516         if (zvol_request_sync)
  517                 force_sync = 1;
  518 
  519         zv_request_t zvr = {
  520                 .zv = zv,
  521                 .bio = bio,
  522                 .rq = rq,
  523         };
  524 
  525         if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
  526                 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
  527                     zv->zv_zso->zvo_disk->disk_name,
  528                     (long long unsigned)offset,
  529                     (long unsigned)size);
  530 
  531                 END_IO(zv, bio, rq, -SET_ERROR(EIO));
  532                 goto out;
  533         }
  534 
  535         zv_request_task_t *task;
  536 
  537         if (rw == WRITE) {
  538                 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
  539                         END_IO(zv, bio, rq, -SET_ERROR(EROFS));
  540                         goto out;
  541                 }
  542 
  543                 /*
  544                  * Prevents the zvol from being suspended, or the ZIL being
  545                  * concurrently opened.  Will be released after the i/o
  546                  * completes.
  547                  */
  548                 rw_enter(&zv->zv_suspend_lock, RW_READER);
  549 
  550                 /*
  551                  * Open a ZIL if this is the first time we have written to this
  552                  * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
  553                  * than zv_state_lock so that we don't need to acquire an
  554                  * additional lock in this path.
  555                  */
  556                 if (zv->zv_zilog == NULL) {
  557                         rw_exit(&zv->zv_suspend_lock);
  558                         rw_enter(&zv->zv_suspend_lock, RW_WRITER);
  559                         if (zv->zv_zilog == NULL) {
  560                                 zv->zv_zilog = zil_open(zv->zv_objset,
  561                                     zvol_get_data, &zv->zv_kstat.dk_zil_sums);
  562                                 zv->zv_flags |= ZVOL_WRITTEN_TO;
  563                                 /* replay / destroy done in zvol_create_minor */
  564                                 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
  565                                     ZIL_REPLAY_NEEDED));
  566                         }
  567                         rw_downgrade(&zv->zv_suspend_lock);
  568                 }
  569 
  570                 /*
  571                  * We don't want this thread to be blocked waiting for i/o to
  572                  * complete, so we instead wait from a taskq callback. The
  573                  * i/o may be a ZIL write (via zil_commit()), or a read of an
  574                  * indirect block, or a read of a data block (if this is a
  575                  * partial-block write).  We will indicate that the i/o is
  576                  * complete by calling END_IO() from the taskq callback.
  577                  *
  578                  * This design allows the calling thread to continue and
  579                  * initiate more concurrent operations by calling
  580                  * zvol_request() again. There are typically only a small
  581                  * number of threads available to call zvol_request() (e.g.
  582                  * one per iSCSI target), so keeping the latency of
  583                  * zvol_request() low is important for performance.
  584                  *
  585                  * The zvol_request_sync module parameter allows this
  586                  * behavior to be altered, for performance evaluation
  587                  * purposes.  If the callback blocks, setting
  588                  * zvol_request_sync=1 will result in much worse performance.
  589                  *
  590                  * We can have up to zvol_threads concurrent i/o's being
  591                  * processed for all zvols on the system.  This is typically
  592                  * a vast improvement over the zvol_request_sync=1 behavior
  593                  * of one i/o at a time per zvol.  However, an even better
  594                  * design would be for zvol_request() to initiate the zio
  595                  * directly, and then be notified by the zio_done callback,
  596                  * which would call END_IO().  Unfortunately, the DMU/ZIL
  597                  * interfaces lack this functionality (they block waiting for
  598                  * the i/o to complete).
  599                  */
  600                 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
  601                         if (force_sync) {
  602                                 zvol_discard(&zvr);
  603                         } else {
  604                                 task = zv_request_task_create(zvr);
  605                                 taskq_dispatch_ent(zvol_taskq,
  606                                     zvol_discard_task, task, 0, &task->ent);
  607                         }
  608                 } else {
  609                         if (force_sync) {
  610                                 zvol_write(&zvr);
  611                         } else {
  612                                 task = zv_request_task_create(zvr);
  613                                 taskq_dispatch_ent(zvol_taskq,
  614                                     zvol_write_task, task, 0, &task->ent);
  615                         }
  616                 }
  617         } else {
  618                 /*
  619                  * The SCST driver, and possibly others, may issue READ I/Os
  620                  * with a length of zero bytes.  These empty I/Os contain no
  621                  * data and require no additional handling.
  622                  */
  623                 if (size == 0) {
  624                         END_IO(zv, bio, rq, 0);
  625                         goto out;
  626                 }
  627 
  628                 rw_enter(&zv->zv_suspend_lock, RW_READER);
  629 
  630                 /* See comment in WRITE case above. */
  631                 if (force_sync) {
  632                         zvol_read(&zvr);
  633                 } else {
  634                         task = zv_request_task_create(zvr);
  635                         taskq_dispatch_ent(zvol_taskq,
  636                             zvol_read_task, task, 0, &task->ent);
  637                 }
  638         }
  639 
  640 out:
  641         spl_fstrans_unmark(cookie);
  642 }
  643 
  644 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
  645 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
  646 static void
  647 zvol_submit_bio(struct bio *bio)
  648 #else
  649 static blk_qc_t
  650 zvol_submit_bio(struct bio *bio)
  651 #endif
  652 #else
  653 static MAKE_REQUEST_FN_RET
  654 zvol_request(struct request_queue *q, struct bio *bio)
  655 #endif
  656 {
  657 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
  658 #if defined(HAVE_BIO_BDEV_DISK)
  659         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
  660 #else
  661         struct request_queue *q = bio->bi_disk->queue;
  662 #endif
  663 #endif
  664         zvol_state_t *zv = q->queuedata;
  665 
  666         zvol_request_impl(zv, bio, NULL, 0);
  667 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
  668         defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
  669         !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
  670         return (BLK_QC_T_NONE);
  671 #endif
  672 }
  673 
  674 static int
  675 zvol_open(struct block_device *bdev, fmode_t flag)
  676 {
  677         zvol_state_t *zv;
  678         int error = 0;
  679         boolean_t drop_suspend = B_FALSE;
  680 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
  681         hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
  682         hrtime_t start = gethrtime();
  683 
  684 retry:
  685 #endif
  686         rw_enter(&zvol_state_lock, RW_READER);
  687         /*
  688          * Obtain a copy of private_data under the zvol_state_lock to make
  689          * sure that either the result of zvol free code path setting
  690          * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
  691          * is not called on this zv because of the positive zv_open_count.
  692          */
  693         zv = bdev->bd_disk->private_data;
  694         if (zv == NULL) {
  695                 rw_exit(&zvol_state_lock);
  696                 return (SET_ERROR(-ENXIO));
  697         }
  698 
  699         mutex_enter(&zv->zv_state_lock);
  700         /*
  701          * Make sure zvol is not suspended during first open
  702          * (hold zv_suspend_lock) and respect proper lock acquisition
  703          * ordering - zv_suspend_lock before zv_state_lock
  704          */
  705         if (zv->zv_open_count == 0) {
  706                 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
  707                         mutex_exit(&zv->zv_state_lock);
  708                         rw_enter(&zv->zv_suspend_lock, RW_READER);
  709                         mutex_enter(&zv->zv_state_lock);
  710                         /* check to see if zv_suspend_lock is needed */
  711                         if (zv->zv_open_count != 0) {
  712                                 rw_exit(&zv->zv_suspend_lock);
  713                         } else {
  714                                 drop_suspend = B_TRUE;
  715                         }
  716                 } else {
  717                         drop_suspend = B_TRUE;
  718                 }
  719         }
  720         rw_exit(&zvol_state_lock);
  721 
  722         ASSERT(MUTEX_HELD(&zv->zv_state_lock));
  723 
  724         if (zv->zv_open_count == 0) {
  725                 boolean_t drop_namespace = B_FALSE;
  726 
  727                 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
  728 
  729                 /*
  730                  * In all other call paths the spa_namespace_lock is taken
  731                  * before the bdev->bd_mutex lock.  However, on open(2)
  732                  * the __blkdev_get() function calls fops->open() with the
  733                  * bdev->bd_mutex lock held.  This can result in a deadlock
  734                  * when zvols from one pool are used as vdevs in another.
  735                  *
  736                  * To prevent a lock inversion deadlock we preemptively
  737                  * take the spa_namespace_lock.  Normally the lock will not
  738                  * be contended and this is safe because spa_open_common()
  739                  * handles the case where the caller already holds the
  740                  * spa_namespace_lock.
  741                  *
  742                  * When the lock cannot be aquired after multiple retries
  743                  * this must be the vdev on zvol deadlock case and we have
  744                  * no choice but to return an error.  For 5.12 and older
  745                  * kernels returning -ERESTARTSYS will result in the
  746                  * bdev->bd_mutex being dropped, then reacquired, and
  747                  * fops->open() being called again.  This process can be
  748                  * repeated safely until both locks are acquired.  For 5.13
  749                  * and newer the -ERESTARTSYS retry logic was removed from
  750                  * the kernel so the only option is to return the error for
  751                  * the caller to handle it.
  752                  */
  753                 if (!mutex_owned(&spa_namespace_lock)) {
  754                         if (!mutex_tryenter(&spa_namespace_lock)) {
  755                                 mutex_exit(&zv->zv_state_lock);
  756                                 rw_exit(&zv->zv_suspend_lock);
  757 
  758 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
  759                                 schedule();
  760                                 return (SET_ERROR(-ERESTARTSYS));
  761 #else
  762                                 if ((gethrtime() - start) > timeout)
  763                                         return (SET_ERROR(-ERESTARTSYS));
  764 
  765                                 schedule_timeout(MSEC_TO_TICK(10));
  766                                 goto retry;
  767 #endif
  768                         } else {
  769                                 drop_namespace = B_TRUE;
  770                         }
  771                 }
  772 
  773                 error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
  774 
  775                 if (drop_namespace)
  776                         mutex_exit(&spa_namespace_lock);
  777         }
  778 
  779         if (error == 0) {
  780                 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
  781                         if (zv->zv_open_count == 0)
  782                                 zvol_last_close(zv);
  783 
  784                         error = SET_ERROR(-EROFS);
  785                 } else {
  786                         zv->zv_open_count++;
  787                 }
  788         }
  789 
  790         mutex_exit(&zv->zv_state_lock);
  791         if (drop_suspend)
  792                 rw_exit(&zv->zv_suspend_lock);
  793 
  794         if (error == 0)
  795                 zfs_check_media_change(bdev);
  796 
  797         return (error);
  798 }
  799 
  800 static void
  801 zvol_release(struct gendisk *disk, fmode_t mode)
  802 {
  803         zvol_state_t *zv;
  804         boolean_t drop_suspend = B_TRUE;
  805 
  806         rw_enter(&zvol_state_lock, RW_READER);
  807         zv = disk->private_data;
  808 
  809         mutex_enter(&zv->zv_state_lock);
  810         ASSERT3U(zv->zv_open_count, >, 0);
  811         /*
  812          * make sure zvol is not suspended during last close
  813          * (hold zv_suspend_lock) and respect proper lock acquisition
  814          * ordering - zv_suspend_lock before zv_state_lock
  815          */
  816         if (zv->zv_open_count == 1) {
  817                 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
  818                         mutex_exit(&zv->zv_state_lock);
  819                         rw_enter(&zv->zv_suspend_lock, RW_READER);
  820                         mutex_enter(&zv->zv_state_lock);
  821                         /* check to see if zv_suspend_lock is needed */
  822                         if (zv->zv_open_count != 1) {
  823                                 rw_exit(&zv->zv_suspend_lock);
  824                                 drop_suspend = B_FALSE;
  825                         }
  826                 }
  827         } else {
  828                 drop_suspend = B_FALSE;
  829         }
  830         rw_exit(&zvol_state_lock);
  831 
  832         ASSERT(MUTEX_HELD(&zv->zv_state_lock));
  833 
  834         zv->zv_open_count--;
  835         if (zv->zv_open_count == 0) {
  836                 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
  837                 zvol_last_close(zv);
  838         }
  839 
  840         mutex_exit(&zv->zv_state_lock);
  841 
  842         if (drop_suspend)
  843                 rw_exit(&zv->zv_suspend_lock);
  844 }
  845 
  846 static int
  847 zvol_ioctl(struct block_device *bdev, fmode_t mode,
  848     unsigned int cmd, unsigned long arg)
  849 {
  850         zvol_state_t *zv = bdev->bd_disk->private_data;
  851         int error = 0;
  852 
  853         ASSERT3U(zv->zv_open_count, >, 0);
  854 
  855         switch (cmd) {
  856         case BLKFLSBUF:
  857                 fsync_bdev(bdev);
  858                 invalidate_bdev(bdev);
  859                 rw_enter(&zv->zv_suspend_lock, RW_READER);
  860 
  861                 if (!(zv->zv_flags & ZVOL_RDONLY))
  862                         txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
  863 
  864                 rw_exit(&zv->zv_suspend_lock);
  865                 break;
  866 
  867         case BLKZNAME:
  868                 mutex_enter(&zv->zv_state_lock);
  869                 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
  870                 mutex_exit(&zv->zv_state_lock);
  871                 break;
  872 
  873         default:
  874                 error = -ENOTTY;
  875                 break;
  876         }
  877 
  878         return (SET_ERROR(error));
  879 }
  880 
  881 #ifdef CONFIG_COMPAT
  882 static int
  883 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
  884     unsigned cmd, unsigned long arg)
  885 {
  886         return (zvol_ioctl(bdev, mode, cmd, arg));
  887 }
  888 #else
  889 #define zvol_compat_ioctl       NULL
  890 #endif
  891 
  892 static unsigned int
  893 zvol_check_events(struct gendisk *disk, unsigned int clearing)
  894 {
  895         unsigned int mask = 0;
  896 
  897         rw_enter(&zvol_state_lock, RW_READER);
  898 
  899         zvol_state_t *zv = disk->private_data;
  900         if (zv != NULL) {
  901                 mutex_enter(&zv->zv_state_lock);
  902                 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
  903                 zv->zv_changed = 0;
  904                 mutex_exit(&zv->zv_state_lock);
  905         }
  906 
  907         rw_exit(&zvol_state_lock);
  908 
  909         return (mask);
  910 }
  911 
  912 static int
  913 zvol_revalidate_disk(struct gendisk *disk)
  914 {
  915         rw_enter(&zvol_state_lock, RW_READER);
  916 
  917         zvol_state_t *zv = disk->private_data;
  918         if (zv != NULL) {
  919                 mutex_enter(&zv->zv_state_lock);
  920                 set_capacity(zv->zv_zso->zvo_disk,
  921                     zv->zv_volsize >> SECTOR_BITS);
  922                 mutex_exit(&zv->zv_state_lock);
  923         }
  924 
  925         rw_exit(&zvol_state_lock);
  926 
  927         return (0);
  928 }
  929 
  930 int
  931 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
  932 {
  933         struct gendisk *disk = zv->zv_zso->zvo_disk;
  934 
  935 #if defined(HAVE_REVALIDATE_DISK_SIZE)
  936         revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
  937 #elif defined(HAVE_REVALIDATE_DISK)
  938         revalidate_disk(disk);
  939 #else
  940         zvol_revalidate_disk(disk);
  941 #endif
  942         return (0);
  943 }
  944 
  945 void
  946 zvol_os_clear_private(zvol_state_t *zv)
  947 {
  948         /*
  949          * Cleared while holding zvol_state_lock as a writer
  950          * which will prevent zvol_open() from opening it.
  951          */
  952         zv->zv_zso->zvo_disk->private_data = NULL;
  953 }
  954 
  955 /*
  956  * Provide a simple virtual geometry for legacy compatibility.  For devices
  957  * smaller than 1 MiB a small head and sector count is used to allow very
  958  * tiny devices.  For devices over 1 Mib a standard head and sector count
  959  * is used to keep the cylinders count reasonable.
  960  */
  961 static int
  962 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  963 {
  964         zvol_state_t *zv = bdev->bd_disk->private_data;
  965         sector_t sectors;
  966 
  967         ASSERT3U(zv->zv_open_count, >, 0);
  968 
  969         sectors = get_capacity(zv->zv_zso->zvo_disk);
  970 
  971         if (sectors > 2048) {
  972                 geo->heads = 16;
  973                 geo->sectors = 63;
  974         } else {
  975                 geo->heads = 2;
  976                 geo->sectors = 4;
  977         }
  978 
  979         geo->start = 0;
  980         geo->cylinders = sectors / (geo->heads * geo->sectors);
  981 
  982         return (0);
  983 }
  984 
  985 /*
  986  * Why have two separate block_device_operations structs?
  987  *
  988  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
  989  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
  990  * can't just change submit_bio dynamically at runtime.  So just create two
  991  * separate structs to get around this.
  992  */
  993 static const struct block_device_operations zvol_ops_blk_mq = {
  994         .open                   = zvol_open,
  995         .release                = zvol_release,
  996         .ioctl                  = zvol_ioctl,
  997         .compat_ioctl           = zvol_compat_ioctl,
  998         .check_events           = zvol_check_events,
  999 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 1000         .revalidate_disk        = zvol_revalidate_disk,
 1001 #endif
 1002         .getgeo                 = zvol_getgeo,
 1003         .owner                  = THIS_MODULE,
 1004 };
 1005 
 1006 static const struct block_device_operations zvol_ops = {
 1007         .open                   = zvol_open,
 1008         .release                = zvol_release,
 1009         .ioctl                  = zvol_ioctl,
 1010         .compat_ioctl           = zvol_compat_ioctl,
 1011         .check_events           = zvol_check_events,
 1012 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 1013         .revalidate_disk        = zvol_revalidate_disk,
 1014 #endif
 1015         .getgeo                 = zvol_getgeo,
 1016         .owner                  = THIS_MODULE,
 1017 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 1018         .submit_bio             = zvol_submit_bio,
 1019 #endif
 1020 };
 1021 
 1022 static int
 1023 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
 1024 {
 1025 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
 1026 #if defined(HAVE_BLK_ALLOC_DISK)
 1027         zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
 1028         if (zso->zvo_disk == NULL)
 1029                 return (1);
 1030 
 1031         zso->zvo_disk->minors = ZVOL_MINORS;
 1032         zso->zvo_queue = zso->zvo_disk->queue;
 1033 #else
 1034         zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
 1035         if (zso->zvo_queue == NULL)
 1036                 return (1);
 1037 
 1038         zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 1039         if (zso->zvo_disk == NULL) {
 1040                 blk_cleanup_queue(zso->zvo_queue);
 1041                 return (1);
 1042         }
 1043 
 1044         zso->zvo_disk->queue = zso->zvo_queue;
 1045 #endif /* HAVE_BLK_ALLOC_DISK */
 1046 #else
 1047         zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
 1048         if (zso->zvo_queue == NULL)
 1049                 return (1);
 1050 
 1051         zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 1052         if (zso->zvo_disk == NULL) {
 1053                 blk_cleanup_queue(zso->zvo_queue);
 1054                 return (1);
 1055         }
 1056 
 1057         zso->zvo_disk->queue = zso->zvo_queue;
 1058 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
 1059         return (0);
 1060 
 1061 }
 1062 
 1063 static int
 1064 zvol_alloc_blk_mq(zvol_state_t *zv)
 1065 {
 1066 #ifdef HAVE_BLK_MQ
 1067         struct zvol_state_os *zso = zv->zv_zso;
 1068 
 1069         /* Allocate our blk-mq tag_set */
 1070         if (zvol_blk_mq_alloc_tag_set(zv) != 0)
 1071                 return (1);
 1072 
 1073 #if defined(HAVE_BLK_ALLOC_DISK)
 1074         zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
 1075         if (zso->zvo_disk == NULL) {
 1076                 blk_mq_free_tag_set(&zso->tag_set);
 1077                 return (1);
 1078         }
 1079         zso->zvo_queue = zso->zvo_disk->queue;
 1080         zso->zvo_disk->minors = ZVOL_MINORS;
 1081 #else
 1082         zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 1083         if (zso->zvo_disk == NULL) {
 1084                 blk_cleanup_queue(zso->zvo_queue);
 1085                 blk_mq_free_tag_set(&zso->tag_set);
 1086                 return (1);
 1087         }
 1088         /* Allocate queue */
 1089         zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
 1090         if (IS_ERR(zso->zvo_queue)) {
 1091                 blk_mq_free_tag_set(&zso->tag_set);
 1092                 return (1);
 1093         }
 1094 
 1095         /* Our queue is now created, assign it to our disk */
 1096         zso->zvo_disk->queue = zso->zvo_queue;
 1097 
 1098 #endif
 1099 #endif
 1100         return (0);
 1101 }
 1102 
 1103 /*
 1104  * Allocate memory for a new zvol_state_t and setup the required
 1105  * request queue and generic disk structures for the block device.
 1106  */
 1107 static zvol_state_t *
 1108 zvol_alloc(dev_t dev, const char *name)
 1109 {
 1110         zvol_state_t *zv;
 1111         struct zvol_state_os *zso;
 1112         uint64_t volmode;
 1113         int ret;
 1114 
 1115         if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
 1116                 return (NULL);
 1117 
 1118         if (volmode == ZFS_VOLMODE_DEFAULT)
 1119                 volmode = zvol_volmode;
 1120 
 1121         if (volmode == ZFS_VOLMODE_NONE)
 1122                 return (NULL);
 1123 
 1124         zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
 1125         zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
 1126         zv->zv_zso = zso;
 1127         zv->zv_volmode = volmode;
 1128 
 1129         list_link_init(&zv->zv_next);
 1130         mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
 1131 
 1132 #ifdef HAVE_BLK_MQ
 1133         zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
 1134 #endif
 1135 
 1136         /*
 1137          * The block layer has 3 interfaces for getting BIOs:
 1138          *
 1139          * 1. blk-mq request queues (new)
 1140          * 2. submit_bio() (oldest)
 1141          * 3. regular request queues (old).
 1142          *
 1143          * Each of those interfaces has two permutations:
 1144          *
 1145          * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
 1146          *    both the disk and its queue (5.14 kernel or newer)
 1147          *
 1148          * b) We don't have blk_*alloc_disk(), and have to allocate the
 1149          *    disk and the queue separately. (5.13 kernel or older)
 1150          */
 1151         if (zv->zv_zso->use_blk_mq) {
 1152                 ret = zvol_alloc_blk_mq(zv);
 1153                 zso->zvo_disk->fops = &zvol_ops_blk_mq;
 1154         } else {
 1155                 ret = zvol_alloc_non_blk_mq(zso);
 1156                 zso->zvo_disk->fops = &zvol_ops;
 1157         }
 1158         if (ret != 0)
 1159                 goto out_kmem;
 1160 
 1161         blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
 1162 
 1163         /* Limit read-ahead to a single page to prevent over-prefetching. */
 1164         blk_queue_set_read_ahead(zso->zvo_queue, 1);
 1165 
 1166         if (!zv->zv_zso->use_blk_mq) {
 1167                 /* Disable write merging in favor of the ZIO pipeline. */
 1168                 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
 1169         }
 1170 
 1171         /* Enable /proc/diskstats */
 1172         blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
 1173 
 1174         zso->zvo_queue->queuedata = zv;
 1175         zso->zvo_dev = dev;
 1176         zv->zv_open_count = 0;
 1177         strlcpy(zv->zv_name, name, MAXNAMELEN);
 1178 
 1179         zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
 1180         rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
 1181 
 1182         zso->zvo_disk->major = zvol_major;
 1183         zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
 1184 
 1185         /*
 1186          * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
 1187          * This is accomplished by limiting the number of minors for the
 1188          * device to one and explicitly disabling partition scanning.
 1189          */
 1190         if (volmode == ZFS_VOLMODE_DEV) {
 1191                 zso->zvo_disk->minors = 1;
 1192                 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
 1193                 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
 1194         }
 1195 
 1196         zso->zvo_disk->first_minor = (dev & MINORMASK);
 1197         zso->zvo_disk->private_data = zv;
 1198         snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
 1199             ZVOL_DEV_NAME, (dev & MINORMASK));
 1200 
 1201         return (zv);
 1202 
 1203 out_kmem:
 1204         kmem_free(zso, sizeof (struct zvol_state_os));
 1205         kmem_free(zv, sizeof (zvol_state_t));
 1206         return (NULL);
 1207 }
 1208 
 1209 /*
 1210  * Cleanup then free a zvol_state_t which was created by zvol_alloc().
 1211  * At this time, the structure is not opened by anyone, is taken off
 1212  * the zvol_state_list, and has its private data set to NULL.
 1213  * The zvol_state_lock is dropped.
 1214  *
 1215  * This function may take many milliseconds to complete (e.g. we've seen
 1216  * it take over 256ms), due to the calls to "blk_cleanup_queue" and
 1217  * "del_gendisk". Thus, consumers need to be careful to account for this
 1218  * latency when calling this function.
 1219  */
 1220 void
 1221 zvol_os_free(zvol_state_t *zv)
 1222 {
 1223 
 1224         ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
 1225         ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
 1226         ASSERT0(zv->zv_open_count);
 1227         ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
 1228 
 1229         rw_destroy(&zv->zv_suspend_lock);
 1230         zfs_rangelock_fini(&zv->zv_rangelock);
 1231 
 1232         del_gendisk(zv->zv_zso->zvo_disk);
 1233 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
 1234         defined(HAVE_BLK_ALLOC_DISK)
 1235 #if defined(HAVE_BLK_CLEANUP_DISK)
 1236         blk_cleanup_disk(zv->zv_zso->zvo_disk);
 1237 #else
 1238         put_disk(zv->zv_zso->zvo_disk);
 1239 #endif
 1240 #else
 1241         blk_cleanup_queue(zv->zv_zso->zvo_queue);
 1242         put_disk(zv->zv_zso->zvo_disk);
 1243 #endif
 1244 
 1245 #ifdef HAVE_BLK_MQ
 1246         if (zv->zv_zso->use_blk_mq)
 1247                 blk_mq_free_tag_set(&zv->zv_zso->tag_set);
 1248 #endif
 1249 
 1250         ida_simple_remove(&zvol_ida,
 1251             MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
 1252 
 1253         mutex_destroy(&zv->zv_state_lock);
 1254         dataset_kstats_destroy(&zv->zv_kstat);
 1255 
 1256         kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
 1257         kmem_free(zv, sizeof (zvol_state_t));
 1258 }
 1259 
 1260 void
 1261 zvol_wait_close(zvol_state_t *zv)
 1262 {
 1263 }
 1264 
 1265 /*
 1266  * Create a block device minor node and setup the linkage between it
 1267  * and the specified volume.  Once this function returns the block
 1268  * device is live and ready for use.
 1269  */
 1270 int
 1271 zvol_os_create_minor(const char *name)
 1272 {
 1273         zvol_state_t *zv;
 1274         objset_t *os;
 1275         dmu_object_info_t *doi;
 1276         uint64_t volsize;
 1277         uint64_t len;
 1278         unsigned minor = 0;
 1279         int error = 0;
 1280         int idx;
 1281         uint64_t hash = zvol_name_hash(name);
 1282         bool replayed_zil = B_FALSE;
 1283 
 1284         if (zvol_inhibit_dev)
 1285                 return (0);
 1286 
 1287         idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
 1288         if (idx < 0)
 1289                 return (SET_ERROR(-idx));
 1290         minor = idx << ZVOL_MINOR_BITS;
 1291 
 1292         zv = zvol_find_by_name_hash(name, hash, RW_NONE);
 1293         if (zv) {
 1294                 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 1295                 mutex_exit(&zv->zv_state_lock);
 1296                 ida_simple_remove(&zvol_ida, idx);
 1297                 return (SET_ERROR(EEXIST));
 1298         }
 1299 
 1300         doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
 1301 
 1302         error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
 1303         if (error)
 1304                 goto out_doi;
 1305 
 1306         error = dmu_object_info(os, ZVOL_OBJ, doi);
 1307         if (error)
 1308                 goto out_dmu_objset_disown;
 1309 
 1310         error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
 1311         if (error)
 1312                 goto out_dmu_objset_disown;
 1313 
 1314         zv = zvol_alloc(MKDEV(zvol_major, minor), name);
 1315         if (zv == NULL) {
 1316                 error = SET_ERROR(EAGAIN);
 1317                 goto out_dmu_objset_disown;
 1318         }
 1319         zv->zv_hash = hash;
 1320 
 1321         if (dmu_objset_is_snapshot(os))
 1322                 zv->zv_flags |= ZVOL_RDONLY;
 1323 
 1324         zv->zv_volblocksize = doi->doi_data_block_size;
 1325         zv->zv_volsize = volsize;
 1326         zv->zv_objset = os;
 1327 
 1328         set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
 1329 
 1330         blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
 1331             (DMU_MAX_ACCESS / 4) >> 9);
 1332 
 1333         if (zv->zv_zso->use_blk_mq) {
 1334                 /*
 1335                  * IO requests can be really big (1MB).  When an IO request
 1336                  * comes in, it is passed off to zvol_read() or zvol_write()
 1337                  * in a new thread, where it is chunked up into 'volblocksize'
 1338                  * sized pieces and processed.  So for example, if the request
 1339                  * is a 1MB write and your volblocksize is 128k, one zvol_write
 1340                  * thread will take that request and sequentially do ten 128k
 1341                  * IOs.  This is due to the fact that the thread needs to lock
 1342                  * each volblocksize sized block.  So you might be wondering:
 1343                  * "instead of passing the whole 1MB request to one thread,
 1344                  * why not pass ten individual 128k chunks to ten threads and
 1345                  * process the whole write in parallel?"  The short answer is
 1346                  * that there's a sweet spot number of chunks that balances
 1347                  * the greater parallelism with the added overhead of more
 1348                  * threads. The sweet spot can be different depending on if you
 1349                  * have a read or write  heavy workload.  Writes typically want
 1350                  * high chunk counts while reads typically want lower ones.  On
 1351                  * a test pool with 6 NVMe drives in a 3x 2-disk mirror
 1352                  * configuration, with volblocksize=8k, the sweet spot for good
 1353                  * sequential reads and writes was at 8 chunks.
 1354                  */
 1355 
 1356                 /*
 1357                  * Below we tell the kernel how big we want our requests
 1358                  * to be.  You would think that blk_queue_io_opt() would be
 1359                  * used to do this since it is used to "set optimal request
 1360                  * size for the queue", but that doesn't seem to do
 1361                  * anything - the kernel still gives you huge requests
 1362                  * with tons of little PAGE_SIZE segments contained within it.
 1363                  *
 1364                  * Knowing that the kernel will just give you PAGE_SIZE segments
 1365                  * no matter what, you can say "ok, I want PAGE_SIZE byte
 1366                  * segments, and I want 'N' of them per request", where N is
 1367                  * the correct number of segments for the volblocksize and
 1368                  * number of chunks you want.
 1369                  */
 1370 #ifdef HAVE_BLK_MQ
 1371                 if (zvol_blk_mq_blocks_per_thread != 0) {
 1372                         unsigned int chunks;
 1373                         chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
 1374 
 1375                         blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
 1376                             PAGE_SIZE);
 1377                         blk_queue_max_segments(zv->zv_zso->zvo_queue,
 1378                             (zv->zv_volblocksize * chunks) / PAGE_SIZE);
 1379                 } else {
 1380                         /*
 1381                          * Special case: zvol_blk_mq_blocks_per_thread = 0
 1382                          * Max everything out.
 1383                          */
 1384                         blk_queue_max_segments(zv->zv_zso->zvo_queue,
 1385                             UINT16_MAX);
 1386                         blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
 1387                             UINT_MAX);
 1388                 }
 1389 #endif
 1390         } else {
 1391                 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
 1392                 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
 1393         }
 1394 
 1395         blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
 1396             zv->zv_volblocksize);
 1397         blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
 1398         blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
 1399             (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
 1400         blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
 1401             zv->zv_volblocksize);
 1402 #ifdef QUEUE_FLAG_DISCARD
 1403         blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
 1404 #endif
 1405 #ifdef QUEUE_FLAG_NONROT
 1406         blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
 1407 #endif
 1408 #ifdef QUEUE_FLAG_ADD_RANDOM
 1409         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
 1410 #endif
 1411         /* This flag was introduced in kernel version 4.12. */
 1412 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
 1413         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
 1414 #endif
 1415 
 1416         ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
 1417         error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
 1418         if (error)
 1419                 goto out_dmu_objset_disown;
 1420         ASSERT3P(zv->zv_zilog, ==, NULL);
 1421         zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
 1422         if (spa_writeable(dmu_objset_spa(os))) {
 1423                 if (zil_replay_disable)
 1424                         replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
 1425                 else
 1426                         replayed_zil = zil_replay(os, zv, zvol_replay_vector);
 1427         }
 1428         if (replayed_zil)
 1429                 zil_close(zv->zv_zilog);
 1430         zv->zv_zilog = NULL;
 1431 
 1432         /*
 1433          * When udev detects the addition of the device it will immediately
 1434          * invoke blkid(8) to determine the type of content on the device.
 1435          * Prefetching the blocks commonly scanned by blkid(8) will speed
 1436          * up this process.
 1437          */
 1438         len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
 1439         if (len > 0) {
 1440                 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
 1441                 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
 1442                     ZIO_PRIORITY_SYNC_READ);
 1443         }
 1444 
 1445         zv->zv_objset = NULL;
 1446 out_dmu_objset_disown:
 1447         dmu_objset_disown(os, B_TRUE, FTAG);
 1448 out_doi:
 1449         kmem_free(doi, sizeof (dmu_object_info_t));
 1450 
 1451         /*
 1452          * Keep in mind that once add_disk() is called, the zvol is
 1453          * announced to the world, and zvol_open()/zvol_release() can
 1454          * be called at any time. Incidentally, add_disk() itself calls
 1455          * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
 1456          * directly as well.
 1457          */
 1458         if (error == 0) {
 1459                 rw_enter(&zvol_state_lock, RW_WRITER);
 1460                 zvol_insert(zv);
 1461                 rw_exit(&zvol_state_lock);
 1462 #ifdef HAVE_ADD_DISK_RET
 1463                 error = add_disk(zv->zv_zso->zvo_disk);
 1464 #else
 1465                 add_disk(zv->zv_zso->zvo_disk);
 1466 #endif
 1467         } else {
 1468                 ida_simple_remove(&zvol_ida, idx);
 1469         }
 1470 
 1471         return (error);
 1472 }
 1473 
 1474 void
 1475 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
 1476 {
 1477         int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
 1478 
 1479         ASSERT(RW_LOCK_HELD(&zvol_state_lock));
 1480         ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 1481 
 1482         strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
 1483 
 1484         /* move to new hashtable entry  */
 1485         zv->zv_hash = zvol_name_hash(zv->zv_name);
 1486         hlist_del(&zv->zv_hlink);
 1487         hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
 1488 
 1489         /*
 1490          * The block device's read-only state is briefly changed causing
 1491          * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
 1492          * the name change and fixes the symlinks.  This does not change
 1493          * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
 1494          * changes.  This would normally be done using kobject_uevent() but
 1495          * that is a GPL-only symbol which is why we need this workaround.
 1496          */
 1497         set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
 1498         set_disk_ro(zv->zv_zso->zvo_disk, readonly);
 1499 }
 1500 
 1501 void
 1502 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
 1503 {
 1504 
 1505         set_disk_ro(zv->zv_zso->zvo_disk, flags);
 1506 }
 1507 
 1508 void
 1509 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
 1510 {
 1511 
 1512         set_capacity(zv->zv_zso->zvo_disk, capacity);
 1513 }
 1514 
 1515 int
 1516 zvol_init(void)
 1517 {
 1518         int error;
 1519 
 1520         /*
 1521          * zvol_threads is the module param the user passes in.
 1522          *
 1523          * zvol_actual_threads is what we use internally, since the user can
 1524          * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
 1525          */
 1526         static unsigned int zvol_actual_threads;
 1527 
 1528         if (zvol_threads == 0) {
 1529                 /*
 1530                  * See dde9380a1 for why 32 was chosen here.  This should
 1531                  * probably be refined to be some multiple of the number
 1532                  * of CPUs.
 1533                  */
 1534                 zvol_actual_threads = MAX(num_online_cpus(), 32);
 1535         } else {
 1536                 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
 1537         }
 1538 
 1539         error = register_blkdev(zvol_major, ZVOL_DRIVER);
 1540         if (error) {
 1541                 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
 1542                 return (error);
 1543         }
 1544 
 1545 #ifdef HAVE_BLK_MQ
 1546         if (zvol_blk_mq_queue_depth == 0) {
 1547                 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
 1548         } else {
 1549                 zvol_actual_blk_mq_queue_depth =
 1550                     MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
 1551         }
 1552 
 1553         if (zvol_blk_mq_threads == 0) {
 1554                 zvol_blk_mq_actual_threads = num_online_cpus();
 1555         } else {
 1556                 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
 1557                     1024);
 1558         }
 1559 #endif
 1560         zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
 1561             zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
 1562         if (zvol_taskq == NULL) {
 1563                 unregister_blkdev(zvol_major, ZVOL_DRIVER);
 1564                 return (-ENOMEM);
 1565         }
 1566 
 1567         zvol_init_impl();
 1568         ida_init(&zvol_ida);
 1569         return (0);
 1570 }
 1571 
 1572 void
 1573 zvol_fini(void)
 1574 {
 1575         zvol_fini_impl();
 1576         unregister_blkdev(zvol_major, ZVOL_DRIVER);
 1577         taskq_destroy(zvol_taskq);
 1578         ida_destroy(&zvol_ida);
 1579 }
 1580 
 1581 /* BEGIN CSTYLED */
 1582 module_param(zvol_inhibit_dev, uint, 0644);
 1583 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
 1584 
 1585 module_param(zvol_major, uint, 0444);
 1586 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
 1587 
 1588 module_param(zvol_threads, uint, 0444);
 1589 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
 1590     "to 0 to use all active CPUs");
 1591 
 1592 module_param(zvol_request_sync, uint, 0644);
 1593 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
 1594 
 1595 module_param(zvol_max_discard_blocks, ulong, 0444);
 1596 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
 1597 
 1598 module_param(zvol_prefetch_bytes, uint, 0644);
 1599 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
 1600 
 1601 module_param(zvol_volmode, uint, 0644);
 1602 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
 1603 
 1604 #ifdef HAVE_BLK_MQ
 1605 module_param(zvol_blk_mq_queue_depth, uint, 0644);
 1606 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
 1607 
 1608 module_param(zvol_use_blk_mq, uint, 0644);
 1609 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
 1610 
 1611 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
 1612 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
 1613     "Process volblocksize blocks per thread");
 1614 #endif
 1615 
 1616 /* END CSTYLED */

Cache object: 7ac034ba56af9dede328ff1980a330da


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.