1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15 /*
16 * Copyright (c) 2019 by Delphix. All rights reserved.
17 */
18
19 #include <sys/btree.h>
20 #include <sys/bitops.h>
21 #include <sys/zfs_context.h>
22
23 kmem_cache_t *zfs_btree_leaf_cache;
24
25 /*
26 * Control the extent of the verification that occurs when zfs_btree_verify is
27 * called. Primarily used for debugging when extending the btree logic and
28 * functionality. As the intensity is increased, new verification steps are
29 * added. These steps are cumulative; intensity = 3 includes the intensity = 1
30 * and intensity = 2 steps as well.
31 *
32 * Intensity 1: Verify that the tree's height is consistent throughout.
33 * Intensity 2: Verify that a core node's children's parent pointers point
34 * to the core node.
35 * Intensity 3: Verify that the total number of elements in the tree matches the
36 * sum of the number of elements in each node. Also verifies that each node's
37 * count obeys the invariants (less than or equal to maximum value, greater than
38 * or equal to half the maximum minus one).
39 * Intensity 4: Verify that each element compares less than the element
40 * immediately after it and greater than the one immediately before it using the
41 * comparator function. For core nodes, also checks that each element is greater
42 * than the last element in the first of the two nodes it separates, and less
43 * than the first element in the second of the two nodes.
44 * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
45 * of each node is poisoned appropriately. Note that poisoning always occurs if
46 * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
47 * operation.
48 *
49 * Intensity 4 and 5 are particularly expensive to perform; the previous levels
50 * are a few memory operations per node, while these levels require multiple
51 * operations per element. In addition, when creating large btrees, these
52 * operations are called at every step, resulting in extremely slow operation
53 * (while the asymptotic complexity of the other steps is the same, the
54 * importance of the constant factors cannot be denied).
55 */
56 uint_t zfs_btree_verify_intensity = 0;
57
58 /*
59 * Convenience functions to silence warnings from memcpy/memmove's
60 * return values and change argument order to src, dest.
61 */
62 static void
63 bcpy(const void *src, void *dest, size_t size)
64 {
65 (void) memcpy(dest, src, size);
66 }
67
68 static void
69 bmov(const void *src, void *dest, size_t size)
70 {
71 (void) memmove(dest, src, size);
72 }
73
74 static boolean_t
75 zfs_btree_is_core(struct zfs_btree_hdr *hdr)
76 {
77 return (hdr->bth_first == -1);
78 }
79
80 #ifdef _ILP32
81 #define BTREE_POISON 0xabadb10c
82 #else
83 #define BTREE_POISON 0xabadb10cdeadbeef
84 #endif
85
86 static void
87 zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
88 {
89 #ifdef ZFS_DEBUG
90 size_t size = tree->bt_elem_size;
91 if (zfs_btree_is_core(hdr)) {
92 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
93 for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
94 i++) {
95 node->btc_children[i] =
96 (zfs_btree_hdr_t *)BTREE_POISON;
97 }
98 (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
99 (BTREE_CORE_ELEMS - hdr->bth_count) * size);
100 } else {
101 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
102 (void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size);
103 (void) memset(leaf->btl_elems +
104 (hdr->bth_first + hdr->bth_count) * size, 0x0f,
105 tree->bt_leaf_size - offsetof(zfs_btree_leaf_t, btl_elems) -
106 (hdr->bth_first + hdr->bth_count) * size);
107 }
108 #endif
109 }
110
111 static inline void
112 zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
113 uint32_t idx, uint32_t count)
114 {
115 #ifdef ZFS_DEBUG
116 size_t size = tree->bt_elem_size;
117 if (zfs_btree_is_core(hdr)) {
118 ASSERT3U(idx, >=, hdr->bth_count);
119 ASSERT3U(idx, <=, BTREE_CORE_ELEMS);
120 ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS);
121 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
122 for (uint32_t i = 1; i <= count; i++) {
123 node->btc_children[idx + i] =
124 (zfs_btree_hdr_t *)BTREE_POISON;
125 }
126 (void) memset(node->btc_elems + idx * size, 0x0f, count * size);
127 } else {
128 ASSERT3U(idx, <=, tree->bt_leaf_cap);
129 ASSERT3U(idx + count, <=, tree->bt_leaf_cap);
130 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
131 (void) memset(leaf->btl_elems +
132 (hdr->bth_first + idx) * size, 0x0f, count * size);
133 }
134 #endif
135 }
136
137 static inline void
138 zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
139 uint32_t idx)
140 {
141 #ifdef ZFS_DEBUG
142 size_t size = tree->bt_elem_size;
143 if (zfs_btree_is_core(hdr)) {
144 ASSERT3U(idx, <, BTREE_CORE_ELEMS);
145 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
146 zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
147 VERIFY3P(node->btc_children[idx + 1], ==, cval);
148 for (size_t i = 0; i < size; i++)
149 VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f);
150 } else {
151 ASSERT3U(idx, <, tree->bt_leaf_cap);
152 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
153 if (idx >= tree->bt_leaf_cap - hdr->bth_first)
154 return;
155 for (size_t i = 0; i < size; i++) {
156 VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx)
157 * size + i], ==, 0x0f);
158 }
159 }
160 #endif
161 }
162
163 void
164 zfs_btree_init(void)
165 {
166 zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
167 BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
168 }
169
170 void
171 zfs_btree_fini(void)
172 {
173 kmem_cache_destroy(zfs_btree_leaf_cache);
174 }
175
176 static void *
177 zfs_btree_leaf_alloc(zfs_btree_t *tree)
178 {
179 if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
180 return (kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP));
181 else
182 return (kmem_alloc(tree->bt_leaf_size, KM_SLEEP));
183 }
184
185 static void
186 zfs_btree_leaf_free(zfs_btree_t *tree, void *ptr)
187 {
188 if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
189 return (kmem_cache_free(zfs_btree_leaf_cache, ptr));
190 else
191 return (kmem_free(ptr, tree->bt_leaf_size));
192 }
193
194 void
195 zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
196 size_t size)
197 {
198 zfs_btree_create_custom(tree, compar, size, BTREE_LEAF_SIZE);
199 }
200
201 void
202 zfs_btree_create_custom(zfs_btree_t *tree,
203 int (*compar) (const void *, const void *),
204 size_t size, size_t lsize)
205 {
206 size_t esize = lsize - offsetof(zfs_btree_leaf_t, btl_elems);
207
208 ASSERT3U(size, <=, esize / 2);
209 memset(tree, 0, sizeof (*tree));
210 tree->bt_compar = compar;
211 tree->bt_elem_size = size;
212 tree->bt_leaf_size = lsize;
213 tree->bt_leaf_cap = P2ALIGN(esize / size, 2);
214 tree->bt_height = -1;
215 tree->bt_bulk = NULL;
216 }
217
218 /*
219 * Find value in the array of elements provided. Uses a simple binary search.
220 */
221 static void *
222 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
223 const void *value, zfs_btree_index_t *where)
224 {
225 uint32_t max = nelems;
226 uint32_t min = 0;
227 while (max > min) {
228 uint32_t idx = (min + max) / 2;
229 uint8_t *cur = buf + idx * tree->bt_elem_size;
230 int comp = tree->bt_compar(cur, value);
231 if (comp < 0) {
232 min = idx + 1;
233 } else if (comp > 0) {
234 max = idx;
235 } else {
236 where->bti_offset = idx;
237 where->bti_before = B_FALSE;
238 return (cur);
239 }
240 }
241
242 where->bti_offset = max;
243 where->bti_before = B_TRUE;
244 return (NULL);
245 }
246
247 /*
248 * Find the given value in the tree. where may be passed as null to use as a
249 * membership test or if the btree is being used as a map.
250 */
251 void *
252 zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
253 {
254 if (tree->bt_height == -1) {
255 if (where != NULL) {
256 where->bti_node = NULL;
257 where->bti_offset = 0;
258 }
259 ASSERT0(tree->bt_num_elems);
260 return (NULL);
261 }
262
263 /*
264 * If we're in bulk-insert mode, we check the last spot in the tree
265 * and the last leaf in the tree before doing the normal search,
266 * because for most workloads the vast majority of finds in
267 * bulk-insert mode are to insert new elements.
268 */
269 zfs_btree_index_t idx;
270 size_t size = tree->bt_elem_size;
271 if (tree->bt_bulk != NULL) {
272 zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
273 int comp = tree->bt_compar(last_leaf->btl_elems +
274 (last_leaf->btl_hdr.bth_first +
275 last_leaf->btl_hdr.bth_count - 1) * size, value);
276 if (comp < 0) {
277 /*
278 * If what they're looking for is after the last
279 * element, it's not in the tree.
280 */
281 if (where != NULL) {
282 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
283 where->bti_offset =
284 last_leaf->btl_hdr.bth_count;
285 where->bti_before = B_TRUE;
286 }
287 return (NULL);
288 } else if (comp == 0) {
289 if (where != NULL) {
290 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
291 where->bti_offset =
292 last_leaf->btl_hdr.bth_count - 1;
293 where->bti_before = B_FALSE;
294 }
295 return (last_leaf->btl_elems +
296 (last_leaf->btl_hdr.bth_first +
297 last_leaf->btl_hdr.bth_count - 1) * size);
298 }
299 if (tree->bt_compar(last_leaf->btl_elems +
300 last_leaf->btl_hdr.bth_first * size, value) <= 0) {
301 /*
302 * If what they're looking for is after the first
303 * element in the last leaf, it's in the last leaf or
304 * it's not in the tree.
305 */
306 void *d = zfs_btree_find_in_buf(tree,
307 last_leaf->btl_elems +
308 last_leaf->btl_hdr.bth_first * size,
309 last_leaf->btl_hdr.bth_count, value, &idx);
310
311 if (where != NULL) {
312 idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
313 *where = idx;
314 }
315 return (d);
316 }
317 }
318
319 zfs_btree_core_t *node = NULL;
320 uint32_t child = 0;
321 uint32_t depth = 0;
322
323 /*
324 * Iterate down the tree, finding which child the value should be in
325 * by comparing with the separators.
326 */
327 for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
328 node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
329 ASSERT3P(node, !=, NULL);
330 void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
331 node->btc_hdr.bth_count, value, &idx);
332 EQUIV(d != NULL, !idx.bti_before);
333 if (d != NULL) {
334 if (where != NULL) {
335 idx.bti_node = (zfs_btree_hdr_t *)node;
336 *where = idx;
337 }
338 return (d);
339 }
340 ASSERT(idx.bti_before);
341 child = idx.bti_offset;
342 }
343
344 /*
345 * The value is in this leaf, or it would be if it were in the
346 * tree. Find its proper location and return it.
347 */
348 zfs_btree_leaf_t *leaf = (depth == 0 ?
349 (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
350 void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems +
351 leaf->btl_hdr.bth_first * size,
352 leaf->btl_hdr.bth_count, value, &idx);
353
354 if (where != NULL) {
355 idx.bti_node = (zfs_btree_hdr_t *)leaf;
356 *where = idx;
357 }
358
359 return (d);
360 }
361
362 /*
363 * To explain the following functions, it is useful to understand the four
364 * kinds of shifts used in btree operation. First, a shift is a movement of
365 * elements within a node. It is used to create gaps for inserting new
366 * elements and children, or cover gaps created when things are removed. A
367 * shift has two fundamental properties, each of which can be one of two
368 * values, making four types of shifts. There is the direction of the shift
369 * (left or right) and the shape of the shift (parallelogram or isoceles
370 * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
371 * applies to shifts of core nodes.
372 *
373 * The names derive from the following imagining of the layout of a node:
374 *
375 * Elements: * * * * * * * ... * * *
376 * Children: * * * * * * * * ... * * *
377 *
378 * This layout follows from the fact that the elements act as separators
379 * between pairs of children, and that children root subtrees "below" the
380 * current node. A left and right shift are fairly self-explanatory; a left
381 * shift moves things to the left, while a right shift moves things to the
382 * right. A parallelogram shift is a shift with the same number of elements
383 * and children being moved, while a trapezoid shift is a shift that moves one
384 * more children than elements. An example follows:
385 *
386 * A parallelogram shift could contain the following:
387 * _______________
388 * \* * * * \ * * * ... * * *
389 * * \ * * * *\ * * * ... * * *
390 * ---------------
391 * A trapezoid shift could contain the following:
392 * ___________
393 * * / * * * \ * * * ... * * *
394 * * / * * * *\ * * * ... * * *
395 * ---------------
396 *
397 * Note that a parallelogram shift is always shaped like a "left-leaning"
398 * parallelogram, where the starting index of the children being moved is
399 * always one higher than the starting index of the elements being moved. No
400 * "right-leaning" parallelogram shifts are needed (shifts where the starting
401 * element index and starting child index being moved are the same) to achieve
402 * any btree operations, so we ignore them.
403 */
404
405 enum bt_shift_shape {
406 BSS_TRAPEZOID,
407 BSS_PARALLELOGRAM
408 };
409
410 enum bt_shift_direction {
411 BSD_LEFT,
412 BSD_RIGHT
413 };
414
415 /*
416 * Shift elements and children in the provided core node by off spots. The
417 * first element moved is idx, and count elements are moved. The shape of the
418 * shift is determined by shape. The direction is determined by dir.
419 */
420 static inline void
421 bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
422 uint32_t count, uint32_t off, enum bt_shift_shape shape,
423 enum bt_shift_direction dir)
424 {
425 size_t size = tree->bt_elem_size;
426 ASSERT(zfs_btree_is_core(&node->btc_hdr));
427
428 uint8_t *e_start = node->btc_elems + idx * size;
429 uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size :
430 e_start + off * size);
431 bmov(e_start, e_out, count * size);
432
433 zfs_btree_hdr_t **c_start = node->btc_children + idx +
434 (shape == BSS_TRAPEZOID ? 0 : 1);
435 zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
436 c_start + off);
437 uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
438 bmov(c_start, c_out, c_count * sizeof (*c_start));
439 }
440
441 /*
442 * Shift elements and children in the provided core node left by one spot.
443 * The first element moved is idx, and count elements are moved. The
444 * shape of the shift is determined by trap; true if the shift is a trapezoid,
445 * false if it is a parallelogram.
446 */
447 static inline void
448 bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
449 uint32_t count, enum bt_shift_shape shape)
450 {
451 bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
452 }
453
454 /*
455 * Shift elements and children in the provided core node right by one spot.
456 * Starts with elements[idx] and children[idx] and one more child than element.
457 */
458 static inline void
459 bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
460 uint32_t count, enum bt_shift_shape shape)
461 {
462 bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
463 }
464
465 /*
466 * Shift elements and children in the provided leaf node by off spots.
467 * The first element moved is idx, and count elements are moved. The direction
468 * is determined by left.
469 */
470 static inline void
471 bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx,
472 uint32_t count, uint32_t off, enum bt_shift_direction dir)
473 {
474 size_t size = tree->bt_elem_size;
475 zfs_btree_hdr_t *hdr = &node->btl_hdr;
476 ASSERT(!zfs_btree_is_core(hdr));
477
478 if (count == 0)
479 return;
480 uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size;
481 uint8_t *out = (dir == BSD_LEFT ? start - off * size :
482 start + off * size);
483 bmov(start, out, count * size);
484 }
485
486 /*
487 * Grow leaf for n new elements before idx.
488 */
489 static void
490 bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
491 uint32_t n)
492 {
493 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
494 ASSERT(!zfs_btree_is_core(hdr));
495 ASSERT3U(idx, <=, hdr->bth_count);
496 uint32_t capacity = tree->bt_leaf_cap;
497 ASSERT3U(hdr->bth_count + n, <=, capacity);
498 boolean_t cl = (hdr->bth_first >= n);
499 boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity);
500
501 if (cl && (!cr || idx <= hdr->bth_count / 2)) {
502 /* Grow left. */
503 hdr->bth_first -= n;
504 bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT);
505 } else if (cr) {
506 /* Grow right. */
507 bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n,
508 BSD_RIGHT);
509 } else {
510 /* Grow both ways. */
511 uint32_t fn = hdr->bth_first -
512 (capacity - (hdr->bth_count + n)) / 2;
513 hdr->bth_first -= fn;
514 bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT);
515 bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx,
516 n - fn, BSD_RIGHT);
517 }
518 hdr->bth_count += n;
519 }
520
521 /*
522 * Shrink leaf for count elements starting from idx.
523 */
524 static void
525 bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
526 uint32_t n)
527 {
528 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
529 ASSERT(!zfs_btree_is_core(hdr));
530 ASSERT3U(idx, <=, hdr->bth_count);
531 ASSERT3U(idx + n, <=, hdr->bth_count);
532
533 if (idx <= (hdr->bth_count - n) / 2) {
534 bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT);
535 zfs_btree_poison_node_at(tree, hdr, 0, n);
536 hdr->bth_first += n;
537 } else {
538 bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n,
539 BSD_LEFT);
540 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n);
541 }
542 hdr->bth_count -= n;
543 }
544
545 /*
546 * Move children and elements from one core node to another. The shape
547 * parameter behaves the same as it does in the shift logic.
548 */
549 static inline void
550 bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx,
551 uint32_t count, zfs_btree_core_t *dest, uint32_t didx,
552 enum bt_shift_shape shape)
553 {
554 size_t size = tree->bt_elem_size;
555 ASSERT(zfs_btree_is_core(&source->btc_hdr));
556 ASSERT(zfs_btree_is_core(&dest->btc_hdr));
557
558 bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
559 count * size);
560
561 uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
562 bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
563 dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
564 c_count * sizeof (*source->btc_children));
565 }
566
567 static inline void
568 bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx,
569 uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx)
570 {
571 size_t size = tree->bt_elem_size;
572 ASSERT(!zfs_btree_is_core(&source->btl_hdr));
573 ASSERT(!zfs_btree_is_core(&dest->btl_hdr));
574
575 bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size,
576 dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size,
577 count * size);
578 }
579
580 /*
581 * Find the first element in the subtree rooted at hdr, return its value and
582 * put its location in where if non-null.
583 */
584 static void *
585 zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
586 zfs_btree_index_t *where)
587 {
588 zfs_btree_hdr_t *node;
589
590 for (node = hdr; zfs_btree_is_core(node);
591 node = ((zfs_btree_core_t *)node)->btc_children[0])
592 ;
593
594 ASSERT(!zfs_btree_is_core(node));
595 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
596 if (where != NULL) {
597 where->bti_node = node;
598 where->bti_offset = 0;
599 where->bti_before = B_FALSE;
600 }
601 return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]);
602 }
603
604 /* Insert an element and a child into a core node at the given offset. */
605 static void
606 zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
607 uint32_t offset, zfs_btree_hdr_t *new_node, void *buf)
608 {
609 size_t size = tree->bt_elem_size;
610 zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
611 ASSERT3P(par_hdr, ==, new_node->bth_parent);
612 ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
613
614 if (zfs_btree_verify_intensity >= 5) {
615 zfs_btree_verify_poison_at(tree, par_hdr,
616 par_hdr->bth_count);
617 }
618 /* Shift existing elements and children */
619 uint32_t count = par_hdr->bth_count - offset;
620 bt_shift_core_right(tree, parent, offset, count,
621 BSS_PARALLELOGRAM);
622
623 /* Insert new values */
624 parent->btc_children[offset + 1] = new_node;
625 bcpy(buf, parent->btc_elems + offset * size, size);
626 par_hdr->bth_count++;
627 }
628
629 /*
630 * Insert new_node into the parent of old_node directly after old_node, with
631 * buf as the dividing element between the two.
632 */
633 static void
634 zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
635 zfs_btree_hdr_t *new_node, void *buf)
636 {
637 ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
638 size_t size = tree->bt_elem_size;
639 zfs_btree_core_t *parent = old_node->bth_parent;
640
641 /*
642 * If this is the root node we were splitting, we create a new root
643 * and increase the height of the tree.
644 */
645 if (parent == NULL) {
646 ASSERT3P(old_node, ==, tree->bt_root);
647 tree->bt_num_nodes++;
648 zfs_btree_core_t *new_root =
649 kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
650 size, KM_SLEEP);
651 zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
652 new_root_hdr->bth_parent = NULL;
653 new_root_hdr->bth_first = -1;
654 new_root_hdr->bth_count = 1;
655
656 old_node->bth_parent = new_node->bth_parent = new_root;
657 new_root->btc_children[0] = old_node;
658 new_root->btc_children[1] = new_node;
659 bcpy(buf, new_root->btc_elems, size);
660
661 tree->bt_height++;
662 tree->bt_root = new_root_hdr;
663 zfs_btree_poison_node(tree, new_root_hdr);
664 return;
665 }
666
667 /*
668 * Since we have the new separator, binary search for where to put
669 * new_node.
670 */
671 zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
672 zfs_btree_index_t idx;
673 ASSERT(zfs_btree_is_core(par_hdr));
674 VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
675 par_hdr->bth_count, buf, &idx), ==, NULL);
676 ASSERT(idx.bti_before);
677 uint32_t offset = idx.bti_offset;
678 ASSERT3U(offset, <=, par_hdr->bth_count);
679 ASSERT3P(parent->btc_children[offset], ==, old_node);
680
681 /*
682 * If the parent isn't full, shift things to accommodate our insertions
683 * and return.
684 */
685 if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
686 zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
687 return;
688 }
689
690 /*
691 * We need to split this core node into two. Currently there are
692 * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
693 * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
694 * current node, and the others will be moved to the new core node.
695 * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
696 * will be used as the new separator in our parent, and the others
697 * will be split among the two core nodes.
698 *
699 * Usually we will split the node in half evenly, with
700 * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
701 * instead move only about a quarter of the elements (and children) to
702 * the new node. Since the average state after a long time is a 3/4
703 * full node, shortcutting directly to that state improves efficiency.
704 *
705 * We do this in two stages: first we split into two nodes, and then we
706 * reuse our existing logic to insert the new element and child.
707 */
708 uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
709 2 : 4)) - 1, 2);
710 uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
711 ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
712 tree->bt_num_nodes++;
713 zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
714 BTREE_CORE_ELEMS * size, KM_SLEEP);
715 zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
716 new_par_hdr->bth_parent = par_hdr->bth_parent;
717 new_par_hdr->bth_first = -1;
718 new_par_hdr->bth_count = move_count;
719 zfs_btree_poison_node(tree, new_par_hdr);
720
721 par_hdr->bth_count = keep_count;
722
723 bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
724 0, BSS_TRAPEZOID);
725
726 /* Store the new separator in a buffer. */
727 uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
728 bcpy(parent->btc_elems + keep_count * size, tmp_buf,
729 size);
730 zfs_btree_poison_node(tree, par_hdr);
731
732 if (offset < keep_count) {
733 /* Insert the new node into the left half */
734 zfs_btree_insert_core_impl(tree, parent, offset, new_node,
735 buf);
736
737 /*
738 * Move the new separator to the existing buffer.
739 */
740 bcpy(tmp_buf, buf, size);
741 } else if (offset > keep_count) {
742 /* Insert the new node into the right half */
743 new_node->bth_parent = new_parent;
744 zfs_btree_insert_core_impl(tree, new_parent,
745 offset - keep_count - 1, new_node, buf);
746
747 /*
748 * Move the new separator to the existing buffer.
749 */
750 bcpy(tmp_buf, buf, size);
751 } else {
752 /*
753 * Move the new separator into the right half, and replace it
754 * with buf. We also need to shift back the elements in the
755 * right half to accommodate new_node.
756 */
757 bt_shift_core_right(tree, new_parent, 0, move_count,
758 BSS_TRAPEZOID);
759 new_parent->btc_children[0] = new_node;
760 bcpy(tmp_buf, new_parent->btc_elems, size);
761 new_par_hdr->bth_count++;
762 }
763 kmem_free(tmp_buf, size);
764 zfs_btree_poison_node(tree, par_hdr);
765
766 for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++)
767 new_parent->btc_children[i]->bth_parent = new_parent;
768
769 for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++)
770 ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
771
772 /*
773 * Now that the node is split, we need to insert the new node into its
774 * parent. This may cause further splitting.
775 */
776 zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
777 &new_parent->btc_hdr, buf);
778 }
779
780 /* Insert an element into a leaf node at the given offset. */
781 static void
782 zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
783 uint32_t idx, const void *value)
784 {
785 size_t size = tree->bt_elem_size;
786 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
787 ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap);
788
789 if (zfs_btree_verify_intensity >= 5) {
790 zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
791 leaf->btl_hdr.bth_count);
792 }
793
794 bt_grow_leaf(tree, leaf, idx, 1);
795 uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size;
796 bcpy(value, start, size);
797 }
798
799 static void
800 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr);
801
802 /* Helper function for inserting a new value into leaf at the given index. */
803 static void
804 zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
805 const void *value, uint32_t idx)
806 {
807 size_t size = tree->bt_elem_size;
808 uint32_t capacity = tree->bt_leaf_cap;
809
810 /*
811 * If the leaf isn't full, shift the elements after idx and insert
812 * value.
813 */
814 if (leaf->btl_hdr.bth_count != capacity) {
815 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
816 return;
817 }
818
819 /*
820 * Otherwise, we split the leaf node into two nodes. If we're not bulk
821 * inserting, each is of size (capacity / 2). If we are bulk
822 * inserting, we move a quarter of the elements to the new node so
823 * inserts into the old node don't cause immediate splitting but the
824 * tree stays relatively dense. Since the average state after a long
825 * time is a 3/4 full node, shortcutting directly to that state
826 * improves efficiency. At the end of the bulk insertion process
827 * we'll need to go through and fix up any nodes (the last leaf and
828 * its ancestors, potentially) that are below the minimum.
829 *
830 * In either case, we're left with one extra element. The leftover
831 * element will become the new dividing element between the two nodes.
832 */
833 uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1;
834 uint32_t keep_count = capacity - move_count - 1;
835 ASSERT3U(keep_count, >=, 1);
836 /* If we insert on left. move one more to keep leaves balanced. */
837 if (idx < keep_count) {
838 keep_count--;
839 move_count++;
840 }
841 tree->bt_num_nodes++;
842 zfs_btree_leaf_t *new_leaf = zfs_btree_leaf_alloc(tree);
843 zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
844 new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
845 new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) +
846 (idx >= keep_count && idx <= keep_count + move_count / 2);
847 new_hdr->bth_count = move_count;
848 zfs_btree_poison_node(tree, new_hdr);
849
850 if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
851 tree->bt_bulk = new_leaf;
852
853 /* Copy the back part to the new leaf. */
854 bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0);
855
856 /* We store the new separator in a buffer we control for simplicity. */
857 uint8_t *buf = kmem_alloc(size, KM_SLEEP);
858 bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size,
859 buf, size);
860
861 bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count);
862
863 if (idx < keep_count) {
864 /* Insert into the existing leaf. */
865 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
866 } else if (idx > keep_count) {
867 /* Insert into the new leaf. */
868 zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
869 1, value);
870 } else {
871 /*
872 * Insert planned separator into the new leaf, and use
873 * the new value as the new separator.
874 */
875 zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf);
876 bcpy(value, buf, size);
877 }
878
879 /*
880 * Now that the node is split, we need to insert the new node into its
881 * parent. This may cause further splitting, bur only of core nodes.
882 */
883 zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
884 buf);
885 kmem_free(buf, size);
886 }
887
888 static uint32_t
889 zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
890 {
891 void *buf;
892 if (zfs_btree_is_core(hdr)) {
893 buf = ((zfs_btree_core_t *)hdr)->btc_elems;
894 } else {
895 buf = ((zfs_btree_leaf_t *)hdr)->btl_elems +
896 hdr->bth_first * tree->bt_elem_size;
897 }
898 zfs_btree_index_t idx;
899 zfs_btree_core_t *parent = hdr->bth_parent;
900 VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
901 parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
902 ASSERT(idx.bti_before);
903 ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
904 ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
905 return (idx.bti_offset);
906 }
907
908 /*
909 * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
910 * nodes may violate the invariant that non-root nodes must be at least half
911 * full. All nodes violating this invariant should be the last node in their
912 * particular level. To correct the invariant, we take values from their left
913 * neighbor until they are half full. They must have a left neighbor at their
914 * level because the last node at a level is not the first node unless it's
915 * the root.
916 */
917 static void
918 zfs_btree_bulk_finish(zfs_btree_t *tree)
919 {
920 ASSERT3P(tree->bt_bulk, !=, NULL);
921 ASSERT3P(tree->bt_root, !=, NULL);
922 zfs_btree_leaf_t *leaf = tree->bt_bulk;
923 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
924 zfs_btree_core_t *parent = hdr->bth_parent;
925 size_t size = tree->bt_elem_size;
926 uint32_t capacity = tree->bt_leaf_cap;
927
928 /*
929 * The invariant doesn't apply to the root node, if that's the only
930 * node in the tree we're done.
931 */
932 if (parent == NULL) {
933 tree->bt_bulk = NULL;
934 return;
935 }
936
937 /* First, take elements to rebalance the leaf node. */
938 if (hdr->bth_count < capacity / 2) {
939 /*
940 * First, find the left neighbor. The simplest way to do this
941 * is to call zfs_btree_prev twice; the first time finds some
942 * ancestor of this node, and the second time finds the left
943 * neighbor. The ancestor found is the lowest common ancestor
944 * of leaf and the neighbor.
945 */
946 zfs_btree_index_t idx = {
947 .bti_node = hdr,
948 .bti_offset = 0
949 };
950 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
951 ASSERT(zfs_btree_is_core(idx.bti_node));
952 zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
953 uint32_t common_idx = idx.bti_offset;
954
955 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
956 ASSERT(!zfs_btree_is_core(idx.bti_node));
957 zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
958 zfs_btree_hdr_t *l_hdr = idx.bti_node;
959 uint32_t move_count = (capacity / 2) - hdr->bth_count;
960 ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
961 capacity / 2);
962
963 if (zfs_btree_verify_intensity >= 5) {
964 for (uint32_t i = 0; i < move_count; i++) {
965 zfs_btree_verify_poison_at(tree, hdr,
966 leaf->btl_hdr.bth_count + i);
967 }
968 }
969
970 /* First, shift elements in leaf back. */
971 bt_grow_leaf(tree, leaf, 0, move_count);
972
973 /* Next, move the separator from the common ancestor to leaf. */
974 uint8_t *separator = common->btc_elems + common_idx * size;
975 uint8_t *out = leaf->btl_elems +
976 (hdr->bth_first + move_count - 1) * size;
977 bcpy(separator, out, size);
978
979 /*
980 * Now we move elements from the tail of the left neighbor to
981 * fill the remaining spots in leaf.
982 */
983 bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
984 (move_count - 1), move_count - 1, leaf, 0);
985
986 /*
987 * Finally, move the new last element in the left neighbor to
988 * the separator.
989 */
990 bcpy(l_neighbor->btl_elems + (l_hdr->bth_first +
991 l_hdr->bth_count - move_count) * size, separator, size);
992
993 /* Adjust the node's counts, and we're done. */
994 bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count,
995 move_count);
996
997 ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
998 ASSERT3U(hdr->bth_count, >=, capacity / 2);
999 }
1000
1001 /*
1002 * Now we have to rebalance any ancestors of leaf that may also
1003 * violate the invariant.
1004 */
1005 capacity = BTREE_CORE_ELEMS;
1006 while (parent->btc_hdr.bth_parent != NULL) {
1007 zfs_btree_core_t *cur = parent;
1008 zfs_btree_hdr_t *hdr = &cur->btc_hdr;
1009 parent = hdr->bth_parent;
1010 /*
1011 * If the invariant isn't violated, move on to the next
1012 * ancestor.
1013 */
1014 if (hdr->bth_count >= capacity / 2)
1015 continue;
1016
1017 /*
1018 * Because the smallest number of nodes we can move when
1019 * splitting is 2, we never need to worry about not having a
1020 * left sibling (a sibling is a neighbor with the same parent).
1021 */
1022 uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1023 ASSERT3U(parent_idx, >, 0);
1024 zfs_btree_core_t *l_neighbor =
1025 (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
1026 uint32_t move_count = (capacity / 2) - hdr->bth_count;
1027 ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
1028 capacity / 2);
1029
1030 if (zfs_btree_verify_intensity >= 5) {
1031 for (uint32_t i = 0; i < move_count; i++) {
1032 zfs_btree_verify_poison_at(tree, hdr,
1033 hdr->bth_count + i);
1034 }
1035 }
1036 /* First, shift things in the right node back. */
1037 bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
1038 BSS_TRAPEZOID, BSD_RIGHT);
1039
1040 /* Next, move the separator to the right node. */
1041 uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
1042 size);
1043 uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
1044 bcpy(separator, e_out, size);
1045
1046 /*
1047 * Now, move elements and children from the left node to the
1048 * right. We move one more child than elements.
1049 */
1050 move_count--;
1051 uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
1052 bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
1053 BSS_TRAPEZOID);
1054
1055 /*
1056 * Finally, move the last element in the left node to the
1057 * separator's position.
1058 */
1059 move_idx--;
1060 bcpy(l_neighbor->btc_elems + move_idx * size, separator, size);
1061
1062 l_neighbor->btc_hdr.bth_count -= move_count + 1;
1063 hdr->bth_count += move_count + 1;
1064
1065 ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
1066 ASSERT3U(hdr->bth_count, >=, capacity / 2);
1067
1068 zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
1069
1070 for (uint32_t i = 0; i <= hdr->bth_count; i++)
1071 cur->btc_children[i]->bth_parent = cur;
1072 }
1073
1074 tree->bt_bulk = NULL;
1075 zfs_btree_verify(tree);
1076 }
1077
1078 /*
1079 * Insert value into tree at the location specified by where.
1080 */
1081 void
1082 zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
1083 const zfs_btree_index_t *where)
1084 {
1085 zfs_btree_index_t idx = {0};
1086
1087 /* If we're not inserting in the last leaf, end bulk insert mode. */
1088 if (tree->bt_bulk != NULL) {
1089 if (where->bti_node != &tree->bt_bulk->btl_hdr) {
1090 zfs_btree_bulk_finish(tree);
1091 VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
1092 where = &idx;
1093 }
1094 }
1095
1096 tree->bt_num_elems++;
1097 /*
1098 * If this is the first element in the tree, create a leaf root node
1099 * and add the value to it.
1100 */
1101 if (where->bti_node == NULL) {
1102 ASSERT3U(tree->bt_num_elems, ==, 1);
1103 ASSERT3S(tree->bt_height, ==, -1);
1104 ASSERT3P(tree->bt_root, ==, NULL);
1105 ASSERT0(where->bti_offset);
1106
1107 tree->bt_num_nodes++;
1108 zfs_btree_leaf_t *leaf = zfs_btree_leaf_alloc(tree);
1109 tree->bt_root = &leaf->btl_hdr;
1110 tree->bt_height++;
1111
1112 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
1113 hdr->bth_parent = NULL;
1114 hdr->bth_first = 0;
1115 hdr->bth_count = 0;
1116 zfs_btree_poison_node(tree, hdr);
1117
1118 zfs_btree_insert_into_leaf(tree, leaf, value, 0);
1119 tree->bt_bulk = leaf;
1120 } else if (!zfs_btree_is_core(where->bti_node)) {
1121 /*
1122 * If we're inserting into a leaf, go directly to the helper
1123 * function.
1124 */
1125 zfs_btree_insert_into_leaf(tree,
1126 (zfs_btree_leaf_t *)where->bti_node, value,
1127 where->bti_offset);
1128 } else {
1129 /*
1130 * If we're inserting into a core node, we can't just shift
1131 * the existing element in that slot in the same node without
1132 * breaking our ordering invariants. Instead we place the new
1133 * value in the node at that spot and then insert the old
1134 * separator into the first slot in the subtree to the right.
1135 */
1136 zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
1137
1138 /*
1139 * We can ignore bti_before, because either way the value
1140 * should end up in bti_offset.
1141 */
1142 uint32_t off = where->bti_offset;
1143 zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
1144 size_t size = tree->bt_elem_size;
1145 uint8_t *buf = kmem_alloc(size, KM_SLEEP);
1146 bcpy(node->btc_elems + off * size, buf, size);
1147 bcpy(value, node->btc_elems + off * size, size);
1148
1149 /*
1150 * Find the first slot in the subtree to the right, insert
1151 * there.
1152 */
1153 zfs_btree_index_t new_idx;
1154 VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=,
1155 NULL);
1156 ASSERT0(new_idx.bti_offset);
1157 ASSERT(!zfs_btree_is_core(new_idx.bti_node));
1158 zfs_btree_insert_into_leaf(tree,
1159 (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
1160 kmem_free(buf, size);
1161 }
1162 zfs_btree_verify(tree);
1163 }
1164
1165 /*
1166 * Return the first element in the tree, and put its location in where if
1167 * non-null.
1168 */
1169 void *
1170 zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
1171 {
1172 if (tree->bt_height == -1) {
1173 ASSERT0(tree->bt_num_elems);
1174 return (NULL);
1175 }
1176 return (zfs_btree_first_helper(tree, tree->bt_root, where));
1177 }
1178
1179 /*
1180 * Find the last element in the subtree rooted at hdr, return its value and
1181 * put its location in where if non-null.
1182 */
1183 static void *
1184 zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
1185 zfs_btree_index_t *where)
1186 {
1187 zfs_btree_hdr_t *node;
1188
1189 for (node = hdr; zfs_btree_is_core(node); node =
1190 ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
1191 ;
1192
1193 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
1194 if (where != NULL) {
1195 where->bti_node = node;
1196 where->bti_offset = node->bth_count - 1;
1197 where->bti_before = B_FALSE;
1198 }
1199 return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) *
1200 btree->bt_elem_size);
1201 }
1202
1203 /*
1204 * Return the last element in the tree, and put its location in where if
1205 * non-null.
1206 */
1207 void *
1208 zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
1209 {
1210 if (tree->bt_height == -1) {
1211 ASSERT0(tree->bt_num_elems);
1212 return (NULL);
1213 }
1214 return (zfs_btree_last_helper(tree, tree->bt_root, where));
1215 }
1216
1217 /*
1218 * This function contains the logic to find the next node in the tree. A
1219 * helper function is used because there are multiple internal consumemrs of
1220 * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
1221 * node after we've finished with it.
1222 */
1223 static void *
1224 zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1225 zfs_btree_index_t *out_idx,
1226 void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
1227 {
1228 if (idx->bti_node == NULL) {
1229 ASSERT3S(tree->bt_height, ==, -1);
1230 return (NULL);
1231 }
1232
1233 uint32_t offset = idx->bti_offset;
1234 if (!zfs_btree_is_core(idx->bti_node)) {
1235 /*
1236 * When finding the next element of an element in a leaf,
1237 * there are two cases. If the element isn't the last one in
1238 * the leaf, in which case we just return the next element in
1239 * the leaf. Otherwise, we need to traverse up our parents
1240 * until we find one where our ancestor isn't the last child
1241 * of its parent. Once we do, the next element is the
1242 * separator after our ancestor in its parent.
1243 */
1244 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1245 uint32_t new_off = offset + (idx->bti_before ? 0 : 1);
1246 if (leaf->btl_hdr.bth_count > new_off) {
1247 out_idx->bti_node = &leaf->btl_hdr;
1248 out_idx->bti_offset = new_off;
1249 out_idx->bti_before = B_FALSE;
1250 return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1251 new_off) * tree->bt_elem_size);
1252 }
1253
1254 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1255 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1256 node != NULL; node = node->btc_hdr.bth_parent) {
1257 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1258 ASSERT(zfs_btree_is_core(hdr));
1259 uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1260 if (done_func != NULL)
1261 done_func(tree, prev);
1262 if (i == hdr->bth_count) {
1263 prev = hdr;
1264 continue;
1265 }
1266 out_idx->bti_node = hdr;
1267 out_idx->bti_offset = i;
1268 out_idx->bti_before = B_FALSE;
1269 return (node->btc_elems + i * tree->bt_elem_size);
1270 }
1271 if (done_func != NULL)
1272 done_func(tree, prev);
1273 /*
1274 * We've traversed all the way up and been at the end of the
1275 * node every time, so this was the last element in the tree.
1276 */
1277 return (NULL);
1278 }
1279
1280 /* If we were before an element in a core node, return that element. */
1281 ASSERT(zfs_btree_is_core(idx->bti_node));
1282 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1283 if (idx->bti_before) {
1284 out_idx->bti_before = B_FALSE;
1285 return (node->btc_elems + offset * tree->bt_elem_size);
1286 }
1287
1288 /*
1289 * The next element from one in a core node is the first element in
1290 * the subtree just to the right of the separator.
1291 */
1292 zfs_btree_hdr_t *child = node->btc_children[offset + 1];
1293 return (zfs_btree_first_helper(tree, child, out_idx));
1294 }
1295
1296 /*
1297 * Return the next valued node in the tree. The same address can be safely
1298 * passed for idx and out_idx.
1299 */
1300 void *
1301 zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1302 zfs_btree_index_t *out_idx)
1303 {
1304 return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
1305 }
1306
1307 /*
1308 * Return the previous valued node in the tree. The same value can be safely
1309 * passed for idx and out_idx.
1310 */
1311 void *
1312 zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1313 zfs_btree_index_t *out_idx)
1314 {
1315 if (idx->bti_node == NULL) {
1316 ASSERT3S(tree->bt_height, ==, -1);
1317 return (NULL);
1318 }
1319
1320 uint32_t offset = idx->bti_offset;
1321 if (!zfs_btree_is_core(idx->bti_node)) {
1322 /*
1323 * When finding the previous element of an element in a leaf,
1324 * there are two cases. If the element isn't the first one in
1325 * the leaf, in which case we just return the previous element
1326 * in the leaf. Otherwise, we need to traverse up our parents
1327 * until we find one where our previous ancestor isn't the
1328 * first child. Once we do, the previous element is the
1329 * separator after our previous ancestor.
1330 */
1331 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1332 if (offset != 0) {
1333 out_idx->bti_node = &leaf->btl_hdr;
1334 out_idx->bti_offset = offset - 1;
1335 out_idx->bti_before = B_FALSE;
1336 return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1337 offset - 1) * tree->bt_elem_size);
1338 }
1339 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1340 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1341 node != NULL; node = node->btc_hdr.bth_parent) {
1342 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1343 ASSERT(zfs_btree_is_core(hdr));
1344 uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1345 if (i == 0) {
1346 prev = hdr;
1347 continue;
1348 }
1349 out_idx->bti_node = hdr;
1350 out_idx->bti_offset = i - 1;
1351 out_idx->bti_before = B_FALSE;
1352 return (node->btc_elems + (i - 1) * tree->bt_elem_size);
1353 }
1354 /*
1355 * We've traversed all the way up and been at the start of the
1356 * node every time, so this was the first node in the tree.
1357 */
1358 return (NULL);
1359 }
1360
1361 /*
1362 * The previous element from one in a core node is the last element in
1363 * the subtree just to the left of the separator.
1364 */
1365 ASSERT(zfs_btree_is_core(idx->bti_node));
1366 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1367 zfs_btree_hdr_t *child = node->btc_children[offset];
1368 return (zfs_btree_last_helper(tree, child, out_idx));
1369 }
1370
1371 /*
1372 * Get the value at the provided index in the tree.
1373 *
1374 * Note that the value returned from this function can be mutated, but only
1375 * if it will not change the ordering of the element with respect to any other
1376 * elements that could be in the tree.
1377 */
1378 void *
1379 zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
1380 {
1381 ASSERT(!idx->bti_before);
1382 size_t size = tree->bt_elem_size;
1383 if (!zfs_btree_is_core(idx->bti_node)) {
1384 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1385 return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1386 idx->bti_offset) * size);
1387 }
1388 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1389 return (node->btc_elems + idx->bti_offset * size);
1390 }
1391
1392 /* Add the given value to the tree. Must not already be in the tree. */
1393 void
1394 zfs_btree_add(zfs_btree_t *tree, const void *node)
1395 {
1396 zfs_btree_index_t where = {0};
1397 VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
1398 zfs_btree_add_idx(tree, node, &where);
1399 }
1400
1401 /* Helper function to free a tree node. */
1402 static void
1403 zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
1404 {
1405 tree->bt_num_nodes--;
1406 if (!zfs_btree_is_core(node)) {
1407 zfs_btree_leaf_free(tree, node);
1408 } else {
1409 kmem_free(node, sizeof (zfs_btree_core_t) +
1410 BTREE_CORE_ELEMS * tree->bt_elem_size);
1411 }
1412 }
1413
1414 /*
1415 * Remove the rm_hdr and the separator to its left from the parent node. The
1416 * buffer that rm_hdr was stored in may already be freed, so its contents
1417 * cannot be accessed.
1418 */
1419 static void
1420 zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
1421 zfs_btree_hdr_t *rm_hdr)
1422 {
1423 size_t size = tree->bt_elem_size;
1424 uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
1425 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1426 /*
1427 * If the node is the root node and rm_hdr is one of two children,
1428 * promote the other child to the root.
1429 */
1430 if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
1431 ASSERT3U(hdr->bth_count, ==, 1);
1432 ASSERT3P(tree->bt_root, ==, node);
1433 ASSERT3P(node->btc_children[1], ==, rm_hdr);
1434 tree->bt_root = node->btc_children[0];
1435 node->btc_children[0]->bth_parent = NULL;
1436 zfs_btree_node_destroy(tree, hdr);
1437 tree->bt_height--;
1438 return;
1439 }
1440
1441 uint32_t idx;
1442 for (idx = 0; idx <= hdr->bth_count; idx++) {
1443 if (node->btc_children[idx] == rm_hdr)
1444 break;
1445 }
1446 ASSERT3U(idx, <=, hdr->bth_count);
1447
1448 /*
1449 * If the node is the root or it has more than the minimum number of
1450 * children, just remove the child and separator, and return.
1451 */
1452 if (hdr->bth_parent == NULL ||
1453 hdr->bth_count > min_count) {
1454 /*
1455 * Shift the element and children to the right of rm_hdr to
1456 * the left by one spot.
1457 */
1458 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1459 BSS_PARALLELOGRAM);
1460 hdr->bth_count--;
1461 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1);
1462 return;
1463 }
1464
1465 ASSERT3U(hdr->bth_count, ==, min_count);
1466
1467 /*
1468 * Now we try to take a node from a neighbor. We check left, then
1469 * right. If the neighbor exists and has more than the minimum number
1470 * of elements, we move the separator between us and them to our
1471 * node, move their closest element (last for left, first for right)
1472 * to the separator, and move their closest child to our node. Along
1473 * the way we need to collapse the gap made by idx, and (for our right
1474 * neighbor) the gap made by removing their first element and child.
1475 *
1476 * Note: this logic currently doesn't support taking from a neighbor
1477 * that isn't a sibling (i.e. a neighbor with a different
1478 * parent). This isn't critical functionality, but may be worth
1479 * implementing in the future for completeness' sake.
1480 */
1481 zfs_btree_core_t *parent = hdr->bth_parent;
1482 uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1483
1484 zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1485 parent->btc_children[parent_idx - 1]);
1486 if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1487 /* We can take a node from the left neighbor. */
1488 ASSERT(zfs_btree_is_core(l_hdr));
1489 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
1490
1491 /*
1492 * Start by shifting the elements and children in the current
1493 * node to the right by one spot.
1494 */
1495 bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
1496
1497 /*
1498 * Move the separator between node and neighbor to the first
1499 * element slot in the current node.
1500 */
1501 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1502 size;
1503 bcpy(separator, node->btc_elems, size);
1504
1505 /* Move the last child of neighbor to our first child slot. */
1506 node->btc_children[0] =
1507 neighbor->btc_children[l_hdr->bth_count];
1508 node->btc_children[0]->bth_parent = node;
1509
1510 /* Move the last element of neighbor to the separator spot. */
1511 uint8_t *take_elem = neighbor->btc_elems +
1512 (l_hdr->bth_count - 1) * size;
1513 bcpy(take_elem, separator, size);
1514 l_hdr->bth_count--;
1515 zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1);
1516 return;
1517 }
1518
1519 zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1520 NULL : parent->btc_children[parent_idx + 1]);
1521 if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1522 /* We can take a node from the right neighbor. */
1523 ASSERT(zfs_btree_is_core(r_hdr));
1524 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
1525
1526 /*
1527 * Shift elements in node left by one spot to overwrite rm_hdr
1528 * and the separator before it.
1529 */
1530 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1531 BSS_PARALLELOGRAM);
1532
1533 /*
1534 * Move the separator between node and neighbor to the last
1535 * element spot in node.
1536 */
1537 uint8_t *separator = parent->btc_elems + parent_idx * size;
1538 bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size,
1539 size);
1540
1541 /*
1542 * Move the first child of neighbor to the last child spot in
1543 * node.
1544 */
1545 node->btc_children[hdr->bth_count] = neighbor->btc_children[0];
1546 node->btc_children[hdr->bth_count]->bth_parent = node;
1547
1548 /* Move the first element of neighbor to the separator spot. */
1549 uint8_t *take_elem = neighbor->btc_elems;
1550 bcpy(take_elem, separator, size);
1551 r_hdr->bth_count--;
1552
1553 /*
1554 * Shift the elements and children of neighbor to cover the
1555 * stolen elements.
1556 */
1557 bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
1558 BSS_TRAPEZOID);
1559 zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1);
1560 return;
1561 }
1562
1563 /*
1564 * In this case, neither of our neighbors can spare an element, so we
1565 * need to merge with one of them. We prefer the left one,
1566 * arbitrarily. Move the separator into the leftmost merging node
1567 * (which may be us or the left neighbor), and then move the right
1568 * merging node's elements. Once that's done, we go back and delete
1569 * the element we're removing. Finally, go into the parent and delete
1570 * the right merging node and the separator. This may cause further
1571 * merging.
1572 */
1573 zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
1574 uint32_t new_idx = idx;
1575 if (l_hdr != NULL) {
1576 keep_hdr = l_hdr;
1577 new_rm_hdr = hdr;
1578 new_idx += keep_hdr->bth_count + 1;
1579 } else {
1580 ASSERT3P(r_hdr, !=, NULL);
1581 keep_hdr = hdr;
1582 new_rm_hdr = r_hdr;
1583 parent_idx++;
1584 }
1585
1586 ASSERT(zfs_btree_is_core(keep_hdr));
1587 ASSERT(zfs_btree_is_core(new_rm_hdr));
1588
1589 zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
1590 zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
1591
1592 if (zfs_btree_verify_intensity >= 5) {
1593 for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) {
1594 zfs_btree_verify_poison_at(tree, keep_hdr,
1595 keep_hdr->bth_count + i);
1596 }
1597 }
1598
1599 /* Move the separator into the left node. */
1600 uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
1601 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1602 size;
1603 bcpy(separator, e_out, size);
1604 keep_hdr->bth_count++;
1605
1606 /* Move all our elements and children into the left node. */
1607 bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
1608 keep_hdr->bth_count, BSS_TRAPEZOID);
1609
1610 uint32_t old_count = keep_hdr->bth_count;
1611
1612 /* Update bookkeeping */
1613 keep_hdr->bth_count += new_rm_hdr->bth_count;
1614 ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
1615
1616 /*
1617 * Shift the element and children to the right of rm_hdr to
1618 * the left by one spot.
1619 */
1620 ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
1621 bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
1622 BSS_PARALLELOGRAM);
1623 keep_hdr->bth_count--;
1624
1625 /* Reparent all our children to point to the left node. */
1626 zfs_btree_hdr_t **new_start = keep->btc_children +
1627 old_count - 1;
1628 for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++)
1629 new_start[i]->bth_parent = keep;
1630 for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) {
1631 ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
1632 ASSERT3P(keep->btc_children[i], !=, rm_hdr);
1633 }
1634 zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1);
1635
1636 new_rm_hdr->bth_count = 0;
1637 zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
1638 zfs_btree_node_destroy(tree, new_rm_hdr);
1639 }
1640
1641 /* Remove the element at the specific location. */
1642 void
1643 zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
1644 {
1645 size_t size = tree->bt_elem_size;
1646 zfs_btree_hdr_t *hdr = where->bti_node;
1647 uint32_t idx = where->bti_offset;
1648
1649 ASSERT(!where->bti_before);
1650 if (tree->bt_bulk != NULL) {
1651 /*
1652 * Leave bulk insert mode. Note that our index would be
1653 * invalid after we correct the tree, so we copy the value
1654 * we're planning to remove and find it again after
1655 * bulk_finish.
1656 */
1657 uint8_t *value = zfs_btree_get(tree, where);
1658 uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
1659 bcpy(value, tmp, size);
1660 zfs_btree_bulk_finish(tree);
1661 VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
1662 kmem_free(tmp, size);
1663 hdr = where->bti_node;
1664 idx = where->bti_offset;
1665 }
1666
1667 tree->bt_num_elems--;
1668 /*
1669 * If the element happens to be in a core node, we move a leaf node's
1670 * element into its place and then remove the leaf node element. This
1671 * makes the rebalance logic not need to be recursive both upwards and
1672 * downwards.
1673 */
1674 if (zfs_btree_is_core(hdr)) {
1675 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1676 zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
1677 void *new_value = zfs_btree_last_helper(tree, left_subtree,
1678 where);
1679 ASSERT3P(new_value, !=, NULL);
1680
1681 bcpy(new_value, node->btc_elems + idx * size, size);
1682
1683 hdr = where->bti_node;
1684 idx = where->bti_offset;
1685 ASSERT(!where->bti_before);
1686 }
1687
1688 /*
1689 * First, we'll update the leaf's metadata. Then, we shift any
1690 * elements after the idx to the left. After that, we rebalance if
1691 * needed.
1692 */
1693 ASSERT(!zfs_btree_is_core(hdr));
1694 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1695 ASSERT3U(hdr->bth_count, >, 0);
1696
1697 uint32_t min_count = (tree->bt_leaf_cap / 2) - 1;
1698
1699 /*
1700 * If we're over the minimum size or this is the root, just overwrite
1701 * the value and return.
1702 */
1703 if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
1704 bt_shrink_leaf(tree, leaf, idx, 1);
1705 if (hdr->bth_parent == NULL) {
1706 ASSERT0(tree->bt_height);
1707 if (hdr->bth_count == 0) {
1708 tree->bt_root = NULL;
1709 tree->bt_height--;
1710 zfs_btree_node_destroy(tree, &leaf->btl_hdr);
1711 }
1712 }
1713 zfs_btree_verify(tree);
1714 return;
1715 }
1716 ASSERT3U(hdr->bth_count, ==, min_count);
1717
1718 /*
1719 * Now we try to take a node from a sibling. We check left, then
1720 * right. If they exist and have more than the minimum number of
1721 * elements, we move the separator between us and them to our node
1722 * and move their closest element (last for left, first for right) to
1723 * the separator. Along the way we need to collapse the gap made by
1724 * idx, and (for our right neighbor) the gap made by removing their
1725 * first element.
1726 *
1727 * Note: this logic currently doesn't support taking from a neighbor
1728 * that isn't a sibling. This isn't critical functionality, but may be
1729 * worth implementing in the future for completeness' sake.
1730 */
1731 zfs_btree_core_t *parent = hdr->bth_parent;
1732 uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1733
1734 zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1735 parent->btc_children[parent_idx - 1]);
1736 if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1737 /* We can take a node from the left neighbor. */
1738 ASSERT(!zfs_btree_is_core(l_hdr));
1739 zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr;
1740
1741 /*
1742 * Move our elements back by one spot to make room for the
1743 * stolen element and overwrite the element being removed.
1744 */
1745 bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT);
1746
1747 /* Move the separator to our first spot. */
1748 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1749 size;
1750 bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size);
1751
1752 /* Move our neighbor's last element to the separator. */
1753 uint8_t *take_elem = neighbor->btl_elems +
1754 (l_hdr->bth_first + l_hdr->bth_count - 1) * size;
1755 bcpy(take_elem, separator, size);
1756
1757 /* Delete our neighbor's last element. */
1758 bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1);
1759 zfs_btree_verify(tree);
1760 return;
1761 }
1762
1763 zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1764 NULL : parent->btc_children[parent_idx + 1]);
1765 if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1766 /* We can take a node from the right neighbor. */
1767 ASSERT(!zfs_btree_is_core(r_hdr));
1768 zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
1769
1770 /*
1771 * Move our elements after the element being removed forwards
1772 * by one spot to make room for the stolen element and
1773 * overwrite the element being removed.
1774 */
1775 bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1,
1776 1, BSD_LEFT);
1777
1778 /* Move the separator between us to our last spot. */
1779 uint8_t *separator = parent->btc_elems + parent_idx * size;
1780 bcpy(separator, leaf->btl_elems + (hdr->bth_first +
1781 hdr->bth_count - 1) * size, size);
1782
1783 /* Move our neighbor's first element to the separator. */
1784 uint8_t *take_elem = neighbor->btl_elems +
1785 r_hdr->bth_first * size;
1786 bcpy(take_elem, separator, size);
1787
1788 /* Delete our neighbor's first element. */
1789 bt_shrink_leaf(tree, neighbor, 0, 1);
1790 zfs_btree_verify(tree);
1791 return;
1792 }
1793
1794 /*
1795 * In this case, neither of our neighbors can spare an element, so we
1796 * need to merge with one of them. We prefer the left one, arbitrarily.
1797 * After remove we move the separator into the leftmost merging node
1798 * (which may be us or the left neighbor), and then move the right
1799 * merging node's elements. Once that's done, we go back and delete
1800 * the element we're removing. Finally, go into the parent and delete
1801 * the right merging node and the separator. This may cause further
1802 * merging.
1803 */
1804 zfs_btree_hdr_t *rm_hdr, *k_hdr;
1805 if (l_hdr != NULL) {
1806 k_hdr = l_hdr;
1807 rm_hdr = hdr;
1808 } else {
1809 ASSERT3P(r_hdr, !=, NULL);
1810 k_hdr = hdr;
1811 rm_hdr = r_hdr;
1812 parent_idx++;
1813 }
1814 ASSERT(!zfs_btree_is_core(k_hdr));
1815 ASSERT(!zfs_btree_is_core(rm_hdr));
1816 ASSERT3U(k_hdr->bth_count, ==, min_count);
1817 ASSERT3U(rm_hdr->bth_count, ==, min_count);
1818 zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr;
1819 zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
1820
1821 if (zfs_btree_verify_intensity >= 5) {
1822 for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) {
1823 zfs_btree_verify_poison_at(tree, k_hdr,
1824 k_hdr->bth_count + i);
1825 }
1826 }
1827
1828 /*
1829 * Remove the value from the node. It will go below the minimum,
1830 * but we'll fix it in no time.
1831 */
1832 bt_shrink_leaf(tree, leaf, idx, 1);
1833
1834 /* Prepare space for elements to be moved from the right. */
1835 uint32_t k_count = k_hdr->bth_count;
1836 bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count);
1837 ASSERT3U(k_hdr->bth_count, ==, min_count * 2);
1838
1839 /* Move the separator into the first open spot. */
1840 uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size;
1841 uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size;
1842 bcpy(separator, out, size);
1843
1844 /* Move our elements to the left neighbor. */
1845 bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1);
1846
1847 /* Remove the emptied node from the parent. */
1848 zfs_btree_remove_from_node(tree, parent, rm_hdr);
1849 zfs_btree_node_destroy(tree, rm_hdr);
1850 zfs_btree_verify(tree);
1851 }
1852
1853 /* Remove the given value from the tree. */
1854 void
1855 zfs_btree_remove(zfs_btree_t *tree, const void *value)
1856 {
1857 zfs_btree_index_t where = {0};
1858 VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
1859 zfs_btree_remove_idx(tree, &where);
1860 }
1861
1862 /* Return the number of elements in the tree. */
1863 ulong_t
1864 zfs_btree_numnodes(zfs_btree_t *tree)
1865 {
1866 return (tree->bt_num_elems);
1867 }
1868
1869 /*
1870 * This function is used to visit all the elements in the tree before
1871 * destroying the tree. This allows the calling code to perform any cleanup it
1872 * needs to do. This is more efficient than just removing the first element
1873 * over and over, because it removes all rebalancing. Once the destroy_nodes()
1874 * function has been called, no other btree operations are valid until it
1875 * returns NULL, which point the only valid operation is zfs_btree_destroy().
1876 *
1877 * example:
1878 *
1879 * zfs_btree_index_t *cookie = NULL;
1880 * my_data_t *node;
1881 *
1882 * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
1883 * free(node->ptr);
1884 * zfs_btree_destroy(tree);
1885 *
1886 */
1887 void *
1888 zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
1889 {
1890 if (*cookie == NULL) {
1891 if (tree->bt_height == -1)
1892 return (NULL);
1893 *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
1894 return (zfs_btree_first(tree, *cookie));
1895 }
1896
1897 void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
1898 zfs_btree_node_destroy);
1899 if (rval == NULL) {
1900 tree->bt_root = NULL;
1901 tree->bt_height = -1;
1902 tree->bt_num_elems = 0;
1903 kmem_free(*cookie, sizeof (**cookie));
1904 tree->bt_bulk = NULL;
1905 }
1906 return (rval);
1907 }
1908
1909 static void
1910 zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1911 {
1912 if (zfs_btree_is_core(hdr)) {
1913 zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
1914 for (uint32_t i = 0; i <= hdr->bth_count; i++)
1915 zfs_btree_clear_helper(tree, btc->btc_children[i]);
1916 }
1917
1918 zfs_btree_node_destroy(tree, hdr);
1919 }
1920
1921 void
1922 zfs_btree_clear(zfs_btree_t *tree)
1923 {
1924 if (tree->bt_root == NULL) {
1925 ASSERT0(tree->bt_num_elems);
1926 return;
1927 }
1928
1929 zfs_btree_clear_helper(tree, tree->bt_root);
1930 tree->bt_num_elems = 0;
1931 tree->bt_root = NULL;
1932 tree->bt_num_nodes = 0;
1933 tree->bt_height = -1;
1934 tree->bt_bulk = NULL;
1935 }
1936
1937 void
1938 zfs_btree_destroy(zfs_btree_t *tree)
1939 {
1940 ASSERT0(tree->bt_num_elems);
1941 ASSERT3P(tree->bt_root, ==, NULL);
1942 }
1943
1944 /* Verify that every child of this node has the correct parent pointer. */
1945 static void
1946 zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1947 {
1948 if (!zfs_btree_is_core(hdr))
1949 return;
1950
1951 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1952 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1953 VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
1954 zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
1955 }
1956 }
1957
1958 /* Verify that every node has the correct parent pointer. */
1959 static void
1960 zfs_btree_verify_pointers(zfs_btree_t *tree)
1961 {
1962 if (tree->bt_height == -1) {
1963 VERIFY3P(tree->bt_root, ==, NULL);
1964 return;
1965 }
1966 VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
1967 zfs_btree_verify_pointers_helper(tree, tree->bt_root);
1968 }
1969
1970 /*
1971 * Verify that all the current node and its children satisfy the count
1972 * invariants, and return the total count in the subtree rooted in this node.
1973 */
1974 static uint64_t
1975 zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1976 {
1977 if (!zfs_btree_is_core(hdr)) {
1978 if (tree->bt_root != hdr && tree->bt_bulk &&
1979 hdr != &tree->bt_bulk->btl_hdr) {
1980 VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1);
1981 }
1982
1983 return (hdr->bth_count);
1984 } else {
1985
1986 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1987 uint64_t ret = hdr->bth_count;
1988 if (tree->bt_root != hdr && tree->bt_bulk == NULL)
1989 VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
1990 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1991 ret += zfs_btree_verify_counts_helper(tree,
1992 node->btc_children[i]);
1993 }
1994
1995 return (ret);
1996 }
1997 }
1998
1999 /*
2000 * Verify that all nodes satisfy the invariants and that the total number of
2001 * elements is correct.
2002 */
2003 static void
2004 zfs_btree_verify_counts(zfs_btree_t *tree)
2005 {
2006 EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
2007 if (tree->bt_height == -1) {
2008 return;
2009 }
2010 VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
2011 tree->bt_num_elems);
2012 }
2013
2014 /*
2015 * Check that the subtree rooted at this node has a uniform height. Returns
2016 * the number of nodes under this node, to help verify bt_num_nodes.
2017 */
2018 static uint64_t
2019 zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
2020 int32_t height)
2021 {
2022 if (!zfs_btree_is_core(hdr)) {
2023 VERIFY0(height);
2024 return (1);
2025 }
2026
2027 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2028 uint64_t ret = 1;
2029 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2030 ret += zfs_btree_verify_height_helper(tree,
2031 node->btc_children[i], height - 1);
2032 }
2033 return (ret);
2034 }
2035
2036 /*
2037 * Check that the tree rooted at this node has a uniform height, and that the
2038 * bt_height in the tree is correct.
2039 */
2040 static void
2041 zfs_btree_verify_height(zfs_btree_t *tree)
2042 {
2043 EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2044 if (tree->bt_height == -1) {
2045 return;
2046 }
2047
2048 VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
2049 tree->bt_height), ==, tree->bt_num_nodes);
2050 }
2051
2052 /*
2053 * Check that the elements in this node are sorted, and that if this is a core
2054 * node, the separators are properly between the subtrees they separaate and
2055 * that the children also satisfy this requirement.
2056 */
2057 static void
2058 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2059 {
2060 size_t size = tree->bt_elem_size;
2061 if (!zfs_btree_is_core(hdr)) {
2062 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2063 for (uint32_t i = 1; i < hdr->bth_count; i++) {
2064 VERIFY3S(tree->bt_compar(leaf->btl_elems +
2065 (hdr->bth_first + i - 1) * size,
2066 leaf->btl_elems +
2067 (hdr->bth_first + i) * size), ==, -1);
2068 }
2069 return;
2070 }
2071
2072 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2073 for (uint32_t i = 1; i < hdr->bth_count; i++) {
2074 VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
2075 node->btc_elems + i * size), ==, -1);
2076 }
2077 for (uint32_t i = 0; i < hdr->bth_count; i++) {
2078 uint8_t *left_child_last = NULL;
2079 zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
2080 if (zfs_btree_is_core(left_child_hdr)) {
2081 zfs_btree_core_t *left_child =
2082 (zfs_btree_core_t *)left_child_hdr;
2083 left_child_last = left_child->btc_elems +
2084 (left_child_hdr->bth_count - 1) * size;
2085 } else {
2086 zfs_btree_leaf_t *left_child =
2087 (zfs_btree_leaf_t *)left_child_hdr;
2088 left_child_last = left_child->btl_elems +
2089 (left_child_hdr->bth_first +
2090 left_child_hdr->bth_count - 1) * size;
2091 }
2092 int comp = tree->bt_compar(node->btc_elems + i * size,
2093 left_child_last);
2094 if (comp <= 0) {
2095 panic("btree: compar returned %d (expected 1) at "
2096 "%px %d: compar(%px, %px)", comp, node, i,
2097 node->btc_elems + i * size, left_child_last);
2098 }
2099
2100 uint8_t *right_child_first = NULL;
2101 zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
2102 if (zfs_btree_is_core(right_child_hdr)) {
2103 zfs_btree_core_t *right_child =
2104 (zfs_btree_core_t *)right_child_hdr;
2105 right_child_first = right_child->btc_elems;
2106 } else {
2107 zfs_btree_leaf_t *right_child =
2108 (zfs_btree_leaf_t *)right_child_hdr;
2109 right_child_first = right_child->btl_elems +
2110 right_child_hdr->bth_first * size;
2111 }
2112 comp = tree->bt_compar(node->btc_elems + i * size,
2113 right_child_first);
2114 if (comp >= 0) {
2115 panic("btree: compar returned %d (expected -1) at "
2116 "%px %d: compar(%px, %px)", comp, node, i,
2117 node->btc_elems + i * size, right_child_first);
2118 }
2119 }
2120 for (uint32_t i = 0; i <= hdr->bth_count; i++)
2121 zfs_btree_verify_order_helper(tree, node->btc_children[i]);
2122 }
2123
2124 /* Check that all elements in the tree are in sorted order. */
2125 static void
2126 zfs_btree_verify_order(zfs_btree_t *tree)
2127 {
2128 EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2129 if (tree->bt_height == -1) {
2130 return;
2131 }
2132
2133 zfs_btree_verify_order_helper(tree, tree->bt_root);
2134 }
2135
2136 #ifdef ZFS_DEBUG
2137 /* Check that all unused memory is poisoned correctly. */
2138 static void
2139 zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2140 {
2141 size_t size = tree->bt_elem_size;
2142 if (!zfs_btree_is_core(hdr)) {
2143 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2144 for (size_t i = 0; i < hdr->bth_first * size; i++)
2145 VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2146 size_t esize = tree->bt_leaf_size -
2147 offsetof(zfs_btree_leaf_t, btl_elems);
2148 for (size_t i = (hdr->bth_first + hdr->bth_count) * size;
2149 i < esize; i++)
2150 VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2151 } else {
2152 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2153 for (size_t i = hdr->bth_count * size;
2154 i < BTREE_CORE_ELEMS * size; i++)
2155 VERIFY3U(node->btc_elems[i], ==, 0x0f);
2156
2157 for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
2158 i++) {
2159 VERIFY3P(node->btc_children[i], ==,
2160 (zfs_btree_hdr_t *)BTREE_POISON);
2161 }
2162
2163 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2164 zfs_btree_verify_poison_helper(tree,
2165 node->btc_children[i]);
2166 }
2167 }
2168 }
2169 #endif
2170
2171 /* Check that unused memory in the tree is still poisoned. */
2172 static void
2173 zfs_btree_verify_poison(zfs_btree_t *tree)
2174 {
2175 #ifdef ZFS_DEBUG
2176 if (tree->bt_height == -1)
2177 return;
2178 zfs_btree_verify_poison_helper(tree, tree->bt_root);
2179 #endif
2180 }
2181
2182 void
2183 zfs_btree_verify(zfs_btree_t *tree)
2184 {
2185 if (zfs_btree_verify_intensity == 0)
2186 return;
2187 zfs_btree_verify_height(tree);
2188 if (zfs_btree_verify_intensity == 1)
2189 return;
2190 zfs_btree_verify_pointers(tree);
2191 if (zfs_btree_verify_intensity == 2)
2192 return;
2193 zfs_btree_verify_counts(tree);
2194 if (zfs_btree_verify_intensity == 3)
2195 return;
2196 zfs_btree_verify_order(tree);
2197
2198 if (zfs_btree_verify_intensity == 4)
2199 return;
2200 zfs_btree_verify_poison(tree);
2201 }
2202
2203 /* BEGIN CSTYLED */
2204 ZFS_MODULE_PARAM(zfs, zfs_, btree_verify_intensity, UINT, ZMOD_RW,
2205 "Enable btree verification. Levels above 4 require ZFS be built "
2206 "with debugging");
2207 /* END CSTYLED */
Cache object: 2ebd19c843a6adb5c075935d3166bdb3
|