The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/btree.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * This file and its contents are supplied under the terms of the
    5  * Common Development and Distribution License ("CDDL"), version 1.0.
    6  * You may only use this file in accordance with the terms of version
    7  * 1.0 of the CDDL.
    8  *
    9  * A full copy of the text of the CDDL should have accompanied this
   10  * source.  A copy of the CDDL is also available via the Internet at
   11  * http://www.illumos.org/license/CDDL.
   12  *
   13  * CDDL HEADER END
   14  */
   15 /*
   16  * Copyright (c) 2019 by Delphix. All rights reserved.
   17  */
   18 
   19 #include        <sys/btree.h>
   20 #include        <sys/bitops.h>
   21 #include        <sys/zfs_context.h>
   22 
   23 kmem_cache_t *zfs_btree_leaf_cache;
   24 
   25 /*
   26  * Control the extent of the verification that occurs when zfs_btree_verify is
   27  * called. Primarily used for debugging when extending the btree logic and
   28  * functionality. As the intensity is increased, new verification steps are
   29  * added. These steps are cumulative; intensity = 3 includes the intensity = 1
   30  * and intensity = 2 steps as well.
   31  *
   32  * Intensity 1: Verify that the tree's height is consistent throughout.
   33  * Intensity 2: Verify that a core node's children's parent pointers point
   34  * to the core node.
   35  * Intensity 3: Verify that the total number of elements in the tree matches the
   36  * sum of the number of elements in each node. Also verifies that each node's
   37  * count obeys the invariants (less than or equal to maximum value, greater than
   38  * or equal to half the maximum minus one).
   39  * Intensity 4: Verify that each element compares less than the element
   40  * immediately after it and greater than the one immediately before it using the
   41  * comparator function. For core nodes, also checks that each element is greater
   42  * than the last element in the first of the two nodes it separates, and less
   43  * than the first element in the second of the two nodes.
   44  * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
   45  * of each node is poisoned appropriately. Note that poisoning always occurs if
   46  * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
   47  * operation.
   48  *
   49  * Intensity 4 and 5 are particularly expensive to perform; the previous levels
   50  * are a few memory operations per node, while these levels require multiple
   51  * operations per element. In addition, when creating large btrees, these
   52  * operations are called at every step, resulting in extremely slow operation
   53  * (while the asymptotic complexity of the other steps is the same, the
   54  * importance of the constant factors cannot be denied).
   55  */
   56 uint_t zfs_btree_verify_intensity = 0;
   57 
   58 /*
   59  * Convenience functions to silence warnings from memcpy/memmove's
   60  * return values and change argument order to src, dest.
   61  */
   62 static void
   63 bcpy(const void *src, void *dest, size_t size)
   64 {
   65         (void) memcpy(dest, src, size);
   66 }
   67 
   68 static void
   69 bmov(const void *src, void *dest, size_t size)
   70 {
   71         (void) memmove(dest, src, size);
   72 }
   73 
   74 static boolean_t
   75 zfs_btree_is_core(struct zfs_btree_hdr *hdr)
   76 {
   77         return (hdr->bth_first == -1);
   78 }
   79 
   80 #ifdef _ILP32
   81 #define BTREE_POISON 0xabadb10c
   82 #else
   83 #define BTREE_POISON 0xabadb10cdeadbeef
   84 #endif
   85 
   86 static void
   87 zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
   88 {
   89 #ifdef ZFS_DEBUG
   90         size_t size = tree->bt_elem_size;
   91         if (zfs_btree_is_core(hdr)) {
   92                 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
   93                 for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
   94                     i++) {
   95                         node->btc_children[i] =
   96                             (zfs_btree_hdr_t *)BTREE_POISON;
   97                 }
   98                 (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
   99                     (BTREE_CORE_ELEMS - hdr->bth_count) * size);
  100         } else {
  101                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
  102                 (void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size);
  103                 (void) memset(leaf->btl_elems +
  104                     (hdr->bth_first + hdr->bth_count) * size, 0x0f,
  105                     tree->bt_leaf_size - offsetof(zfs_btree_leaf_t, btl_elems) -
  106                     (hdr->bth_first + hdr->bth_count) * size);
  107         }
  108 #endif
  109 }
  110 
  111 static inline void
  112 zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
  113     uint32_t idx, uint32_t count)
  114 {
  115 #ifdef ZFS_DEBUG
  116         size_t size = tree->bt_elem_size;
  117         if (zfs_btree_is_core(hdr)) {
  118                 ASSERT3U(idx, >=, hdr->bth_count);
  119                 ASSERT3U(idx, <=, BTREE_CORE_ELEMS);
  120                 ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS);
  121                 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
  122                 for (uint32_t i = 1; i <= count; i++) {
  123                         node->btc_children[idx + i] =
  124                             (zfs_btree_hdr_t *)BTREE_POISON;
  125                 }
  126                 (void) memset(node->btc_elems + idx * size, 0x0f, count * size);
  127         } else {
  128                 ASSERT3U(idx, <=, tree->bt_leaf_cap);
  129                 ASSERT3U(idx + count, <=, tree->bt_leaf_cap);
  130                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
  131                 (void) memset(leaf->btl_elems +
  132                     (hdr->bth_first + idx) * size, 0x0f, count * size);
  133         }
  134 #endif
  135 }
  136 
  137 static inline void
  138 zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
  139     uint32_t idx)
  140 {
  141 #ifdef ZFS_DEBUG
  142         size_t size = tree->bt_elem_size;
  143         if (zfs_btree_is_core(hdr)) {
  144                 ASSERT3U(idx, <, BTREE_CORE_ELEMS);
  145                 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
  146                 zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
  147                 VERIFY3P(node->btc_children[idx + 1], ==, cval);
  148                 for (size_t i = 0; i < size; i++)
  149                         VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f);
  150         } else  {
  151                 ASSERT3U(idx, <, tree->bt_leaf_cap);
  152                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
  153                 if (idx >= tree->bt_leaf_cap - hdr->bth_first)
  154                         return;
  155                 for (size_t i = 0; i < size; i++) {
  156                         VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx)
  157                             * size + i], ==, 0x0f);
  158                 }
  159         }
  160 #endif
  161 }
  162 
  163 void
  164 zfs_btree_init(void)
  165 {
  166         zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
  167             BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
  168 }
  169 
  170 void
  171 zfs_btree_fini(void)
  172 {
  173         kmem_cache_destroy(zfs_btree_leaf_cache);
  174 }
  175 
  176 static void *
  177 zfs_btree_leaf_alloc(zfs_btree_t *tree)
  178 {
  179         if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
  180                 return (kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP));
  181         else
  182                 return (kmem_alloc(tree->bt_leaf_size, KM_SLEEP));
  183 }
  184 
  185 static void
  186 zfs_btree_leaf_free(zfs_btree_t *tree, void *ptr)
  187 {
  188         if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
  189                 return (kmem_cache_free(zfs_btree_leaf_cache, ptr));
  190         else
  191                 return (kmem_free(ptr, tree->bt_leaf_size));
  192 }
  193 
  194 void
  195 zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
  196     size_t size)
  197 {
  198         zfs_btree_create_custom(tree, compar, size, BTREE_LEAF_SIZE);
  199 }
  200 
  201 void
  202 zfs_btree_create_custom(zfs_btree_t *tree,
  203     int (*compar) (const void *, const void *),
  204     size_t size, size_t lsize)
  205 {
  206         size_t esize = lsize - offsetof(zfs_btree_leaf_t, btl_elems);
  207 
  208         ASSERT3U(size, <=, esize / 2);
  209         memset(tree, 0, sizeof (*tree));
  210         tree->bt_compar = compar;
  211         tree->bt_elem_size = size;
  212         tree->bt_leaf_size = lsize;
  213         tree->bt_leaf_cap = P2ALIGN(esize / size, 2);
  214         tree->bt_height = -1;
  215         tree->bt_bulk = NULL;
  216 }
  217 
  218 /*
  219  * Find value in the array of elements provided. Uses a simple binary search.
  220  */
  221 static void *
  222 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
  223     const void *value, zfs_btree_index_t *where)
  224 {
  225         uint32_t max = nelems;
  226         uint32_t min = 0;
  227         while (max > min) {
  228                 uint32_t idx = (min + max) / 2;
  229                 uint8_t *cur = buf + idx * tree->bt_elem_size;
  230                 int comp = tree->bt_compar(cur, value);
  231                 if (comp < 0) {
  232                         min = idx + 1;
  233                 } else if (comp > 0) {
  234                         max = idx;
  235                 } else {
  236                         where->bti_offset = idx;
  237                         where->bti_before = B_FALSE;
  238                         return (cur);
  239                 }
  240         }
  241 
  242         where->bti_offset = max;
  243         where->bti_before = B_TRUE;
  244         return (NULL);
  245 }
  246 
  247 /*
  248  * Find the given value in the tree. where may be passed as null to use as a
  249  * membership test or if the btree is being used as a map.
  250  */
  251 void *
  252 zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
  253 {
  254         if (tree->bt_height == -1) {
  255                 if (where != NULL) {
  256                         where->bti_node = NULL;
  257                         where->bti_offset = 0;
  258                 }
  259                 ASSERT0(tree->bt_num_elems);
  260                 return (NULL);
  261         }
  262 
  263         /*
  264          * If we're in bulk-insert mode, we check the last spot in the tree
  265          * and the last leaf in the tree before doing the normal search,
  266          * because for most workloads the vast majority of finds in
  267          * bulk-insert mode are to insert new elements.
  268          */
  269         zfs_btree_index_t idx;
  270         size_t size = tree->bt_elem_size;
  271         if (tree->bt_bulk != NULL) {
  272                 zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
  273                 int comp = tree->bt_compar(last_leaf->btl_elems +
  274                     (last_leaf->btl_hdr.bth_first +
  275                     last_leaf->btl_hdr.bth_count - 1) * size, value);
  276                 if (comp < 0) {
  277                         /*
  278                          * If what they're looking for is after the last
  279                          * element, it's not in the tree.
  280                          */
  281                         if (where != NULL) {
  282                                 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
  283                                 where->bti_offset =
  284                                     last_leaf->btl_hdr.bth_count;
  285                                 where->bti_before = B_TRUE;
  286                         }
  287                         return (NULL);
  288                 } else if (comp == 0) {
  289                         if (where != NULL) {
  290                                 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
  291                                 where->bti_offset =
  292                                     last_leaf->btl_hdr.bth_count - 1;
  293                                 where->bti_before = B_FALSE;
  294                         }
  295                         return (last_leaf->btl_elems +
  296                             (last_leaf->btl_hdr.bth_first +
  297                             last_leaf->btl_hdr.bth_count - 1) * size);
  298                 }
  299                 if (tree->bt_compar(last_leaf->btl_elems +
  300                     last_leaf->btl_hdr.bth_first * size, value) <= 0) {
  301                         /*
  302                          * If what they're looking for is after the first
  303                          * element in the last leaf, it's in the last leaf or
  304                          * it's not in the tree.
  305                          */
  306                         void *d = zfs_btree_find_in_buf(tree,
  307                             last_leaf->btl_elems +
  308                             last_leaf->btl_hdr.bth_first * size,
  309                             last_leaf->btl_hdr.bth_count, value, &idx);
  310 
  311                         if (where != NULL) {
  312                                 idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
  313                                 *where = idx;
  314                         }
  315                         return (d);
  316                 }
  317         }
  318 
  319         zfs_btree_core_t *node = NULL;
  320         uint32_t child = 0;
  321         uint32_t depth = 0;
  322 
  323         /*
  324          * Iterate down the tree, finding which child the value should be in
  325          * by comparing with the separators.
  326          */
  327         for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
  328             node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
  329                 ASSERT3P(node, !=, NULL);
  330                 void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
  331                     node->btc_hdr.bth_count, value, &idx);
  332                 EQUIV(d != NULL, !idx.bti_before);
  333                 if (d != NULL) {
  334                         if (where != NULL) {
  335                                 idx.bti_node = (zfs_btree_hdr_t *)node;
  336                                 *where = idx;
  337                         }
  338                         return (d);
  339                 }
  340                 ASSERT(idx.bti_before);
  341                 child = idx.bti_offset;
  342         }
  343 
  344         /*
  345          * The value is in this leaf, or it would be if it were in the
  346          * tree. Find its proper location and return it.
  347          */
  348         zfs_btree_leaf_t *leaf = (depth == 0 ?
  349             (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
  350         void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems +
  351             leaf->btl_hdr.bth_first * size,
  352             leaf->btl_hdr.bth_count, value, &idx);
  353 
  354         if (where != NULL) {
  355                 idx.bti_node = (zfs_btree_hdr_t *)leaf;
  356                 *where = idx;
  357         }
  358 
  359         return (d);
  360 }
  361 
  362 /*
  363  * To explain the following functions, it is useful to understand the four
  364  * kinds of shifts used in btree operation. First, a shift is a movement of
  365  * elements within a node. It is used to create gaps for inserting new
  366  * elements and children, or cover gaps created when things are removed. A
  367  * shift has two fundamental properties, each of which can be one of two
  368  * values, making four types of shifts.  There is the direction of the shift
  369  * (left or right) and the shape of the shift (parallelogram or isoceles
  370  * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
  371  * applies to shifts of core nodes.
  372  *
  373  * The names derive from the following imagining of the layout of a node:
  374  *
  375  *  Elements:       *   *   *   *   *   *   *   ...   *   *   *
  376  *  Children:     *   *   *   *   *   *   *   *   ...   *   *   *
  377  *
  378  * This layout follows from the fact that the elements act as separators
  379  * between pairs of children, and that children root subtrees "below" the
  380  * current node. A left and right shift are fairly self-explanatory; a left
  381  * shift moves things to the left, while a right shift moves things to the
  382  * right. A parallelogram shift is a shift with the same number of elements
  383  * and children being moved, while a trapezoid shift is a shift that moves one
  384  * more children than elements. An example follows:
  385  *
  386  * A parallelogram shift could contain the following:
  387  *      _______________
  388  *      \*   *   *   * \ *   *   *   ...   *   *   *
  389  *     * \ *   *   *   *\  *   *   *   ...   *   *   *
  390  *        ---------------
  391  * A trapezoid shift could contain the following:
  392  *          ___________
  393  *       * / *   *   * \ *   *   *   ...   *   *   *
  394  *     *  / *  *   *   *\  *   *   *   ...   *   *   *
  395  *        ---------------
  396  *
  397  * Note that a parallelogram shift is always shaped like a "left-leaning"
  398  * parallelogram, where the starting index of the children being moved is
  399  * always one higher than the starting index of the elements being moved. No
  400  * "right-leaning" parallelogram shifts are needed (shifts where the starting
  401  * element index and starting child index being moved are the same) to achieve
  402  * any btree operations, so we ignore them.
  403  */
  404 
  405 enum bt_shift_shape {
  406         BSS_TRAPEZOID,
  407         BSS_PARALLELOGRAM
  408 };
  409 
  410 enum bt_shift_direction {
  411         BSD_LEFT,
  412         BSD_RIGHT
  413 };
  414 
  415 /*
  416  * Shift elements and children in the provided core node by off spots.  The
  417  * first element moved is idx, and count elements are moved. The shape of the
  418  * shift is determined by shape. The direction is determined by dir.
  419  */
  420 static inline void
  421 bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
  422     uint32_t count, uint32_t off, enum bt_shift_shape shape,
  423     enum bt_shift_direction dir)
  424 {
  425         size_t size = tree->bt_elem_size;
  426         ASSERT(zfs_btree_is_core(&node->btc_hdr));
  427 
  428         uint8_t *e_start = node->btc_elems + idx * size;
  429         uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size :
  430             e_start + off * size);
  431         bmov(e_start, e_out, count * size);
  432 
  433         zfs_btree_hdr_t **c_start = node->btc_children + idx +
  434             (shape == BSS_TRAPEZOID ? 0 : 1);
  435         zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
  436             c_start + off);
  437         uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
  438         bmov(c_start, c_out, c_count * sizeof (*c_start));
  439 }
  440 
  441 /*
  442  * Shift elements and children in the provided core node left by one spot.
  443  * The first element moved is idx, and count elements are moved. The
  444  * shape of the shift is determined by trap; true if the shift is a trapezoid,
  445  * false if it is a parallelogram.
  446  */
  447 static inline void
  448 bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
  449     uint32_t count, enum bt_shift_shape shape)
  450 {
  451         bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
  452 }
  453 
  454 /*
  455  * Shift elements and children in the provided core node right by one spot.
  456  * Starts with elements[idx] and children[idx] and one more child than element.
  457  */
  458 static inline void
  459 bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
  460     uint32_t count, enum bt_shift_shape shape)
  461 {
  462         bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
  463 }
  464 
  465 /*
  466  * Shift elements and children in the provided leaf node by off spots.
  467  * The first element moved is idx, and count elements are moved. The direction
  468  * is determined by left.
  469  */
  470 static inline void
  471 bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx,
  472     uint32_t count, uint32_t off, enum bt_shift_direction dir)
  473 {
  474         size_t size = tree->bt_elem_size;
  475         zfs_btree_hdr_t *hdr = &node->btl_hdr;
  476         ASSERT(!zfs_btree_is_core(hdr));
  477 
  478         if (count == 0)
  479                 return;
  480         uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size;
  481         uint8_t *out = (dir == BSD_LEFT ? start - off * size :
  482             start + off * size);
  483         bmov(start, out, count * size);
  484 }
  485 
  486 /*
  487  * Grow leaf for n new elements before idx.
  488  */
  489 static void
  490 bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
  491     uint32_t n)
  492 {
  493         zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
  494         ASSERT(!zfs_btree_is_core(hdr));
  495         ASSERT3U(idx, <=, hdr->bth_count);
  496         uint32_t capacity = tree->bt_leaf_cap;
  497         ASSERT3U(hdr->bth_count + n, <=, capacity);
  498         boolean_t cl = (hdr->bth_first >= n);
  499         boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity);
  500 
  501         if (cl && (!cr || idx <= hdr->bth_count / 2)) {
  502                 /* Grow left. */
  503                 hdr->bth_first -= n;
  504                 bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT);
  505         } else if (cr) {
  506                 /* Grow right. */
  507                 bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n,
  508                     BSD_RIGHT);
  509         } else {
  510                 /* Grow both ways. */
  511                 uint32_t fn = hdr->bth_first -
  512                     (capacity - (hdr->bth_count + n)) / 2;
  513                 hdr->bth_first -= fn;
  514                 bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT);
  515                 bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx,
  516                     n - fn, BSD_RIGHT);
  517         }
  518         hdr->bth_count += n;
  519 }
  520 
  521 /*
  522  * Shrink leaf for count elements starting from idx.
  523  */
  524 static void
  525 bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
  526     uint32_t n)
  527 {
  528         zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
  529         ASSERT(!zfs_btree_is_core(hdr));
  530         ASSERT3U(idx, <=, hdr->bth_count);
  531         ASSERT3U(idx + n, <=, hdr->bth_count);
  532 
  533         if (idx <= (hdr->bth_count - n) / 2) {
  534                 bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT);
  535                 zfs_btree_poison_node_at(tree, hdr, 0, n);
  536                 hdr->bth_first += n;
  537         } else {
  538                 bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n,
  539                     BSD_LEFT);
  540                 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n);
  541         }
  542         hdr->bth_count -= n;
  543 }
  544 
  545 /*
  546  * Move children and elements from one core node to another. The shape
  547  * parameter behaves the same as it does in the shift logic.
  548  */
  549 static inline void
  550 bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx,
  551     uint32_t count, zfs_btree_core_t *dest, uint32_t didx,
  552     enum bt_shift_shape shape)
  553 {
  554         size_t size = tree->bt_elem_size;
  555         ASSERT(zfs_btree_is_core(&source->btc_hdr));
  556         ASSERT(zfs_btree_is_core(&dest->btc_hdr));
  557 
  558         bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
  559             count * size);
  560 
  561         uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
  562         bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
  563             dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
  564             c_count * sizeof (*source->btc_children));
  565 }
  566 
  567 static inline void
  568 bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx,
  569     uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx)
  570 {
  571         size_t size = tree->bt_elem_size;
  572         ASSERT(!zfs_btree_is_core(&source->btl_hdr));
  573         ASSERT(!zfs_btree_is_core(&dest->btl_hdr));
  574 
  575         bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size,
  576             dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size,
  577             count * size);
  578 }
  579 
  580 /*
  581  * Find the first element in the subtree rooted at hdr, return its value and
  582  * put its location in where if non-null.
  583  */
  584 static void *
  585 zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
  586     zfs_btree_index_t *where)
  587 {
  588         zfs_btree_hdr_t *node;
  589 
  590         for (node = hdr; zfs_btree_is_core(node);
  591             node = ((zfs_btree_core_t *)node)->btc_children[0])
  592                 ;
  593 
  594         ASSERT(!zfs_btree_is_core(node));
  595         zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
  596         if (where != NULL) {
  597                 where->bti_node = node;
  598                 where->bti_offset = 0;
  599                 where->bti_before = B_FALSE;
  600         }
  601         return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]);
  602 }
  603 
  604 /* Insert an element and a child into a core node at the given offset. */
  605 static void
  606 zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
  607     uint32_t offset, zfs_btree_hdr_t *new_node, void *buf)
  608 {
  609         size_t size = tree->bt_elem_size;
  610         zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
  611         ASSERT3P(par_hdr, ==, new_node->bth_parent);
  612         ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
  613 
  614         if (zfs_btree_verify_intensity >= 5) {
  615                 zfs_btree_verify_poison_at(tree, par_hdr,
  616                     par_hdr->bth_count);
  617         }
  618         /* Shift existing elements and children */
  619         uint32_t count = par_hdr->bth_count - offset;
  620         bt_shift_core_right(tree, parent, offset, count,
  621             BSS_PARALLELOGRAM);
  622 
  623         /* Insert new values */
  624         parent->btc_children[offset + 1] = new_node;
  625         bcpy(buf, parent->btc_elems + offset * size, size);
  626         par_hdr->bth_count++;
  627 }
  628 
  629 /*
  630  * Insert new_node into the parent of old_node directly after old_node, with
  631  * buf as the dividing element between the two.
  632  */
  633 static void
  634 zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
  635     zfs_btree_hdr_t *new_node, void *buf)
  636 {
  637         ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
  638         size_t size = tree->bt_elem_size;
  639         zfs_btree_core_t *parent = old_node->bth_parent;
  640 
  641         /*
  642          * If this is the root node we were splitting, we create a new root
  643          * and increase the height of the tree.
  644          */
  645         if (parent == NULL) {
  646                 ASSERT3P(old_node, ==, tree->bt_root);
  647                 tree->bt_num_nodes++;
  648                 zfs_btree_core_t *new_root =
  649                     kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
  650                     size, KM_SLEEP);
  651                 zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
  652                 new_root_hdr->bth_parent = NULL;
  653                 new_root_hdr->bth_first = -1;
  654                 new_root_hdr->bth_count = 1;
  655 
  656                 old_node->bth_parent = new_node->bth_parent = new_root;
  657                 new_root->btc_children[0] = old_node;
  658                 new_root->btc_children[1] = new_node;
  659                 bcpy(buf, new_root->btc_elems, size);
  660 
  661                 tree->bt_height++;
  662                 tree->bt_root = new_root_hdr;
  663                 zfs_btree_poison_node(tree, new_root_hdr);
  664                 return;
  665         }
  666 
  667         /*
  668          * Since we have the new separator, binary search for where to put
  669          * new_node.
  670          */
  671         zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
  672         zfs_btree_index_t idx;
  673         ASSERT(zfs_btree_is_core(par_hdr));
  674         VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
  675             par_hdr->bth_count, buf, &idx), ==, NULL);
  676         ASSERT(idx.bti_before);
  677         uint32_t offset = idx.bti_offset;
  678         ASSERT3U(offset, <=, par_hdr->bth_count);
  679         ASSERT3P(parent->btc_children[offset], ==, old_node);
  680 
  681         /*
  682          * If the parent isn't full, shift things to accommodate our insertions
  683          * and return.
  684          */
  685         if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
  686                 zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
  687                 return;
  688         }
  689 
  690         /*
  691          * We need to split this core node into two. Currently there are
  692          * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
  693          * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
  694          * current node, and the others will be moved to the new core node.
  695          * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
  696          * will be used as the new separator in our parent, and the others
  697          * will be split among the two core nodes.
  698          *
  699          * Usually we will split the node in half evenly, with
  700          * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
  701          * instead move only about a quarter of the elements (and children) to
  702          * the new node. Since the average state after a long time is a 3/4
  703          * full node, shortcutting directly to that state improves efficiency.
  704          *
  705          * We do this in two stages: first we split into two nodes, and then we
  706          * reuse our existing logic to insert the new element and child.
  707          */
  708         uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
  709             2 : 4)) - 1, 2);
  710         uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
  711         ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
  712         tree->bt_num_nodes++;
  713         zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
  714             BTREE_CORE_ELEMS * size, KM_SLEEP);
  715         zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
  716         new_par_hdr->bth_parent = par_hdr->bth_parent;
  717         new_par_hdr->bth_first = -1;
  718         new_par_hdr->bth_count = move_count;
  719         zfs_btree_poison_node(tree, new_par_hdr);
  720 
  721         par_hdr->bth_count = keep_count;
  722 
  723         bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
  724             0, BSS_TRAPEZOID);
  725 
  726         /* Store the new separator in a buffer. */
  727         uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
  728         bcpy(parent->btc_elems + keep_count * size, tmp_buf,
  729             size);
  730         zfs_btree_poison_node(tree, par_hdr);
  731 
  732         if (offset < keep_count) {
  733                 /* Insert the new node into the left half */
  734                 zfs_btree_insert_core_impl(tree, parent, offset, new_node,
  735                     buf);
  736 
  737                 /*
  738                  * Move the new separator to the existing buffer.
  739                  */
  740                 bcpy(tmp_buf, buf, size);
  741         } else if (offset > keep_count) {
  742                 /* Insert the new node into the right half */
  743                 new_node->bth_parent = new_parent;
  744                 zfs_btree_insert_core_impl(tree, new_parent,
  745                     offset - keep_count - 1, new_node, buf);
  746 
  747                 /*
  748                  * Move the new separator to the existing buffer.
  749                  */
  750                 bcpy(tmp_buf, buf, size);
  751         } else {
  752                 /*
  753                  * Move the new separator into the right half, and replace it
  754                  * with buf. We also need to shift back the elements in the
  755                  * right half to accommodate new_node.
  756                  */
  757                 bt_shift_core_right(tree, new_parent, 0, move_count,
  758                     BSS_TRAPEZOID);
  759                 new_parent->btc_children[0] = new_node;
  760                 bcpy(tmp_buf, new_parent->btc_elems, size);
  761                 new_par_hdr->bth_count++;
  762         }
  763         kmem_free(tmp_buf, size);
  764         zfs_btree_poison_node(tree, par_hdr);
  765 
  766         for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++)
  767                 new_parent->btc_children[i]->bth_parent = new_parent;
  768 
  769         for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++)
  770                 ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
  771 
  772         /*
  773          * Now that the node is split, we need to insert the new node into its
  774          * parent. This may cause further splitting.
  775          */
  776         zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
  777             &new_parent->btc_hdr, buf);
  778 }
  779 
  780 /* Insert an element into a leaf node at the given offset. */
  781 static void
  782 zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
  783     uint32_t idx, const void *value)
  784 {
  785         size_t size = tree->bt_elem_size;
  786         zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
  787         ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap);
  788 
  789         if (zfs_btree_verify_intensity >= 5) {
  790                 zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
  791                     leaf->btl_hdr.bth_count);
  792         }
  793 
  794         bt_grow_leaf(tree, leaf, idx, 1);
  795         uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size;
  796         bcpy(value, start, size);
  797 }
  798 
  799 static void
  800 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr);
  801 
  802 /* Helper function for inserting a new value into leaf at the given index. */
  803 static void
  804 zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
  805     const void *value, uint32_t idx)
  806 {
  807         size_t size = tree->bt_elem_size;
  808         uint32_t capacity = tree->bt_leaf_cap;
  809 
  810         /*
  811          * If the leaf isn't full, shift the elements after idx and insert
  812          * value.
  813          */
  814         if (leaf->btl_hdr.bth_count != capacity) {
  815                 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
  816                 return;
  817         }
  818 
  819         /*
  820          * Otherwise, we split the leaf node into two nodes. If we're not bulk
  821          * inserting, each is of size (capacity / 2).  If we are bulk
  822          * inserting, we move a quarter of the elements to the new node so
  823          * inserts into the old node don't cause immediate splitting but the
  824          * tree stays relatively dense. Since the average state after a long
  825          * time is a 3/4 full node, shortcutting directly to that state
  826          * improves efficiency.  At the end of the bulk insertion process
  827          * we'll need to go through and fix up any nodes (the last leaf and
  828          * its ancestors, potentially) that are below the minimum.
  829          *
  830          * In either case, we're left with one extra element. The leftover
  831          * element will become the new dividing element between the two nodes.
  832          */
  833         uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1;
  834         uint32_t keep_count = capacity - move_count - 1;
  835         ASSERT3U(keep_count, >=, 1);
  836         /* If we insert on left. move one more to keep leaves balanced.  */
  837         if (idx < keep_count) {
  838                 keep_count--;
  839                 move_count++;
  840         }
  841         tree->bt_num_nodes++;
  842         zfs_btree_leaf_t *new_leaf = zfs_btree_leaf_alloc(tree);
  843         zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
  844         new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
  845         new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) +
  846             (idx >= keep_count && idx <= keep_count + move_count / 2);
  847         new_hdr->bth_count = move_count;
  848         zfs_btree_poison_node(tree, new_hdr);
  849 
  850         if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
  851                 tree->bt_bulk = new_leaf;
  852 
  853         /* Copy the back part to the new leaf. */
  854         bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0);
  855 
  856         /* We store the new separator in a buffer we control for simplicity. */
  857         uint8_t *buf = kmem_alloc(size, KM_SLEEP);
  858         bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size,
  859             buf, size);
  860 
  861         bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count);
  862 
  863         if (idx < keep_count) {
  864                 /* Insert into the existing leaf. */
  865                 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
  866         } else if (idx > keep_count) {
  867                 /* Insert into the new leaf. */
  868                 zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
  869                     1, value);
  870         } else {
  871                 /*
  872                  * Insert planned separator into the new leaf, and use
  873                  * the new value as the new separator.
  874                  */
  875                 zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf);
  876                 bcpy(value, buf, size);
  877         }
  878 
  879         /*
  880          * Now that the node is split, we need to insert the new node into its
  881          * parent. This may cause further splitting, bur only of core nodes.
  882          */
  883         zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
  884             buf);
  885         kmem_free(buf, size);
  886 }
  887 
  888 static uint32_t
  889 zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
  890 {
  891         void *buf;
  892         if (zfs_btree_is_core(hdr)) {
  893                 buf = ((zfs_btree_core_t *)hdr)->btc_elems;
  894         } else {
  895                 buf = ((zfs_btree_leaf_t *)hdr)->btl_elems +
  896                     hdr->bth_first * tree->bt_elem_size;
  897         }
  898         zfs_btree_index_t idx;
  899         zfs_btree_core_t *parent = hdr->bth_parent;
  900         VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
  901             parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
  902         ASSERT(idx.bti_before);
  903         ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
  904         ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
  905         return (idx.bti_offset);
  906 }
  907 
  908 /*
  909  * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
  910  * nodes may violate the invariant that non-root nodes must be at least half
  911  * full. All nodes violating this invariant should be the last node in their
  912  * particular level. To correct the invariant, we take values from their left
  913  * neighbor until they are half full. They must have a left neighbor at their
  914  * level because the last node at a level is not the first node unless it's
  915  * the root.
  916  */
  917 static void
  918 zfs_btree_bulk_finish(zfs_btree_t *tree)
  919 {
  920         ASSERT3P(tree->bt_bulk, !=, NULL);
  921         ASSERT3P(tree->bt_root, !=, NULL);
  922         zfs_btree_leaf_t *leaf = tree->bt_bulk;
  923         zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
  924         zfs_btree_core_t *parent = hdr->bth_parent;
  925         size_t size = tree->bt_elem_size;
  926         uint32_t capacity = tree->bt_leaf_cap;
  927 
  928         /*
  929          * The invariant doesn't apply to the root node, if that's the only
  930          * node in the tree we're done.
  931          */
  932         if (parent == NULL) {
  933                 tree->bt_bulk = NULL;
  934                 return;
  935         }
  936 
  937         /* First, take elements to rebalance the leaf node. */
  938         if (hdr->bth_count < capacity / 2) {
  939                 /*
  940                  * First, find the left neighbor. The simplest way to do this
  941                  * is to call zfs_btree_prev twice; the first time finds some
  942                  * ancestor of this node, and the second time finds the left
  943                  * neighbor. The ancestor found is the lowest common ancestor
  944                  * of leaf and the neighbor.
  945                  */
  946                 zfs_btree_index_t idx = {
  947                         .bti_node = hdr,
  948                         .bti_offset = 0
  949                 };
  950                 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
  951                 ASSERT(zfs_btree_is_core(idx.bti_node));
  952                 zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
  953                 uint32_t common_idx = idx.bti_offset;
  954 
  955                 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
  956                 ASSERT(!zfs_btree_is_core(idx.bti_node));
  957                 zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
  958                 zfs_btree_hdr_t *l_hdr = idx.bti_node;
  959                 uint32_t move_count = (capacity / 2) - hdr->bth_count;
  960                 ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
  961                     capacity / 2);
  962 
  963                 if (zfs_btree_verify_intensity >= 5) {
  964                         for (uint32_t i = 0; i < move_count; i++) {
  965                                 zfs_btree_verify_poison_at(tree, hdr,
  966                                     leaf->btl_hdr.bth_count + i);
  967                         }
  968                 }
  969 
  970                 /* First, shift elements in leaf back. */
  971                 bt_grow_leaf(tree, leaf, 0, move_count);
  972 
  973                 /* Next, move the separator from the common ancestor to leaf. */
  974                 uint8_t *separator = common->btc_elems + common_idx * size;
  975                 uint8_t *out = leaf->btl_elems +
  976                     (hdr->bth_first + move_count - 1) * size;
  977                 bcpy(separator, out, size);
  978 
  979                 /*
  980                  * Now we move elements from the tail of the left neighbor to
  981                  * fill the remaining spots in leaf.
  982                  */
  983                 bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
  984                     (move_count - 1), move_count - 1, leaf, 0);
  985 
  986                 /*
  987                  * Finally, move the new last element in the left neighbor to
  988                  * the separator.
  989                  */
  990                 bcpy(l_neighbor->btl_elems + (l_hdr->bth_first +
  991                     l_hdr->bth_count - move_count) * size, separator, size);
  992 
  993                 /* Adjust the node's counts, and we're done. */
  994                 bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count,
  995                     move_count);
  996 
  997                 ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
  998                 ASSERT3U(hdr->bth_count, >=, capacity / 2);
  999         }
 1000 
 1001         /*
 1002          * Now we have to rebalance any ancestors of leaf that may also
 1003          * violate the invariant.
 1004          */
 1005         capacity = BTREE_CORE_ELEMS;
 1006         while (parent->btc_hdr.bth_parent != NULL) {
 1007                 zfs_btree_core_t *cur = parent;
 1008                 zfs_btree_hdr_t *hdr = &cur->btc_hdr;
 1009                 parent = hdr->bth_parent;
 1010                 /*
 1011                  * If the invariant isn't violated, move on to the next
 1012                  * ancestor.
 1013                  */
 1014                 if (hdr->bth_count >= capacity / 2)
 1015                         continue;
 1016 
 1017                 /*
 1018                  * Because the smallest number of nodes we can move when
 1019                  * splitting is 2, we never need to worry about not having a
 1020                  * left sibling (a sibling is a neighbor with the same parent).
 1021                  */
 1022                 uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
 1023                 ASSERT3U(parent_idx, >, 0);
 1024                 zfs_btree_core_t *l_neighbor =
 1025                     (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
 1026                 uint32_t move_count = (capacity / 2) - hdr->bth_count;
 1027                 ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
 1028                     capacity / 2);
 1029 
 1030                 if (zfs_btree_verify_intensity >= 5) {
 1031                         for (uint32_t i = 0; i < move_count; i++) {
 1032                                 zfs_btree_verify_poison_at(tree, hdr,
 1033                                     hdr->bth_count + i);
 1034                         }
 1035                 }
 1036                 /* First, shift things in the right node back. */
 1037                 bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
 1038                     BSS_TRAPEZOID, BSD_RIGHT);
 1039 
 1040                 /* Next, move the separator to the right node. */
 1041                 uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
 1042                     size);
 1043                 uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
 1044                 bcpy(separator, e_out, size);
 1045 
 1046                 /*
 1047                  * Now, move elements and children from the left node to the
 1048                  * right.  We move one more child than elements.
 1049                  */
 1050                 move_count--;
 1051                 uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
 1052                 bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
 1053                     BSS_TRAPEZOID);
 1054 
 1055                 /*
 1056                  * Finally, move the last element in the left node to the
 1057                  * separator's position.
 1058                  */
 1059                 move_idx--;
 1060                 bcpy(l_neighbor->btc_elems + move_idx * size, separator, size);
 1061 
 1062                 l_neighbor->btc_hdr.bth_count -= move_count + 1;
 1063                 hdr->bth_count += move_count + 1;
 1064 
 1065                 ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
 1066                 ASSERT3U(hdr->bth_count, >=, capacity / 2);
 1067 
 1068                 zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
 1069 
 1070                 for (uint32_t i = 0; i <= hdr->bth_count; i++)
 1071                         cur->btc_children[i]->bth_parent = cur;
 1072         }
 1073 
 1074         tree->bt_bulk = NULL;
 1075         zfs_btree_verify(tree);
 1076 }
 1077 
 1078 /*
 1079  * Insert value into tree at the location specified by where.
 1080  */
 1081 void
 1082 zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
 1083     const zfs_btree_index_t *where)
 1084 {
 1085         zfs_btree_index_t idx = {0};
 1086 
 1087         /* If we're not inserting in the last leaf, end bulk insert mode. */
 1088         if (tree->bt_bulk != NULL) {
 1089                 if (where->bti_node != &tree->bt_bulk->btl_hdr) {
 1090                         zfs_btree_bulk_finish(tree);
 1091                         VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
 1092                         where = &idx;
 1093                 }
 1094         }
 1095 
 1096         tree->bt_num_elems++;
 1097         /*
 1098          * If this is the first element in the tree, create a leaf root node
 1099          * and add the value to it.
 1100          */
 1101         if (where->bti_node == NULL) {
 1102                 ASSERT3U(tree->bt_num_elems, ==, 1);
 1103                 ASSERT3S(tree->bt_height, ==, -1);
 1104                 ASSERT3P(tree->bt_root, ==, NULL);
 1105                 ASSERT0(where->bti_offset);
 1106 
 1107                 tree->bt_num_nodes++;
 1108                 zfs_btree_leaf_t *leaf = zfs_btree_leaf_alloc(tree);
 1109                 tree->bt_root = &leaf->btl_hdr;
 1110                 tree->bt_height++;
 1111 
 1112                 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
 1113                 hdr->bth_parent = NULL;
 1114                 hdr->bth_first = 0;
 1115                 hdr->bth_count = 0;
 1116                 zfs_btree_poison_node(tree, hdr);
 1117 
 1118                 zfs_btree_insert_into_leaf(tree, leaf, value, 0);
 1119                 tree->bt_bulk = leaf;
 1120         } else if (!zfs_btree_is_core(where->bti_node)) {
 1121                 /*
 1122                  * If we're inserting into a leaf, go directly to the helper
 1123                  * function.
 1124                  */
 1125                 zfs_btree_insert_into_leaf(tree,
 1126                     (zfs_btree_leaf_t *)where->bti_node, value,
 1127                     where->bti_offset);
 1128         } else {
 1129                 /*
 1130                  * If we're inserting into a core node, we can't just shift
 1131                  * the existing element in that slot in the same node without
 1132                  * breaking our ordering invariants. Instead we place the new
 1133                  * value in the node at that spot and then insert the old
 1134                  * separator into the first slot in the subtree to the right.
 1135                  */
 1136                 zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
 1137 
 1138                 /*
 1139                  * We can ignore bti_before, because either way the value
 1140                  * should end up in bti_offset.
 1141                  */
 1142                 uint32_t off = where->bti_offset;
 1143                 zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
 1144                 size_t size = tree->bt_elem_size;
 1145                 uint8_t *buf = kmem_alloc(size, KM_SLEEP);
 1146                 bcpy(node->btc_elems + off * size, buf, size);
 1147                 bcpy(value, node->btc_elems + off * size, size);
 1148 
 1149                 /*
 1150                  * Find the first slot in the subtree to the right, insert
 1151                  * there.
 1152                  */
 1153                 zfs_btree_index_t new_idx;
 1154                 VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=,
 1155                     NULL);
 1156                 ASSERT0(new_idx.bti_offset);
 1157                 ASSERT(!zfs_btree_is_core(new_idx.bti_node));
 1158                 zfs_btree_insert_into_leaf(tree,
 1159                     (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
 1160                 kmem_free(buf, size);
 1161         }
 1162         zfs_btree_verify(tree);
 1163 }
 1164 
 1165 /*
 1166  * Return the first element in the tree, and put its location in where if
 1167  * non-null.
 1168  */
 1169 void *
 1170 zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
 1171 {
 1172         if (tree->bt_height == -1) {
 1173                 ASSERT0(tree->bt_num_elems);
 1174                 return (NULL);
 1175         }
 1176         return (zfs_btree_first_helper(tree, tree->bt_root, where));
 1177 }
 1178 
 1179 /*
 1180  * Find the last element in the subtree rooted at hdr, return its value and
 1181  * put its location in where if non-null.
 1182  */
 1183 static void *
 1184 zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
 1185     zfs_btree_index_t *where)
 1186 {
 1187         zfs_btree_hdr_t *node;
 1188 
 1189         for (node = hdr; zfs_btree_is_core(node); node =
 1190             ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
 1191                 ;
 1192 
 1193         zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
 1194         if (where != NULL) {
 1195                 where->bti_node = node;
 1196                 where->bti_offset = node->bth_count - 1;
 1197                 where->bti_before = B_FALSE;
 1198         }
 1199         return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) *
 1200             btree->bt_elem_size);
 1201 }
 1202 
 1203 /*
 1204  * Return the last element in the tree, and put its location in where if
 1205  * non-null.
 1206  */
 1207 void *
 1208 zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
 1209 {
 1210         if (tree->bt_height == -1) {
 1211                 ASSERT0(tree->bt_num_elems);
 1212                 return (NULL);
 1213         }
 1214         return (zfs_btree_last_helper(tree, tree->bt_root, where));
 1215 }
 1216 
 1217 /*
 1218  * This function contains the logic to find the next node in the tree. A
 1219  * helper function is used because there are multiple internal consumemrs of
 1220  * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
 1221  * node after we've finished with it.
 1222  */
 1223 static void *
 1224 zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
 1225     zfs_btree_index_t *out_idx,
 1226     void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
 1227 {
 1228         if (idx->bti_node == NULL) {
 1229                 ASSERT3S(tree->bt_height, ==, -1);
 1230                 return (NULL);
 1231         }
 1232 
 1233         uint32_t offset = idx->bti_offset;
 1234         if (!zfs_btree_is_core(idx->bti_node)) {
 1235                 /*
 1236                  * When finding the next element of an element in a leaf,
 1237                  * there are two cases. If the element isn't the last one in
 1238                  * the leaf, in which case we just return the next element in
 1239                  * the leaf. Otherwise, we need to traverse up our parents
 1240                  * until we find one where our ancestor isn't the last child
 1241                  * of its parent. Once we do, the next element is the
 1242                  * separator after our ancestor in its parent.
 1243                  */
 1244                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
 1245                 uint32_t new_off = offset + (idx->bti_before ? 0 : 1);
 1246                 if (leaf->btl_hdr.bth_count > new_off) {
 1247                         out_idx->bti_node = &leaf->btl_hdr;
 1248                         out_idx->bti_offset = new_off;
 1249                         out_idx->bti_before = B_FALSE;
 1250                         return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
 1251                             new_off) * tree->bt_elem_size);
 1252                 }
 1253 
 1254                 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
 1255                 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
 1256                     node != NULL; node = node->btc_hdr.bth_parent) {
 1257                         zfs_btree_hdr_t *hdr = &node->btc_hdr;
 1258                         ASSERT(zfs_btree_is_core(hdr));
 1259                         uint32_t i = zfs_btree_find_parent_idx(tree, prev);
 1260                         if (done_func != NULL)
 1261                                 done_func(tree, prev);
 1262                         if (i == hdr->bth_count) {
 1263                                 prev = hdr;
 1264                                 continue;
 1265                         }
 1266                         out_idx->bti_node = hdr;
 1267                         out_idx->bti_offset = i;
 1268                         out_idx->bti_before = B_FALSE;
 1269                         return (node->btc_elems + i * tree->bt_elem_size);
 1270                 }
 1271                 if (done_func != NULL)
 1272                         done_func(tree, prev);
 1273                 /*
 1274                  * We've traversed all the way up and been at the end of the
 1275                  * node every time, so this was the last element in the tree.
 1276                  */
 1277                 return (NULL);
 1278         }
 1279 
 1280         /* If we were before an element in a core node, return that element. */
 1281         ASSERT(zfs_btree_is_core(idx->bti_node));
 1282         zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
 1283         if (idx->bti_before) {
 1284                 out_idx->bti_before = B_FALSE;
 1285                 return (node->btc_elems + offset * tree->bt_elem_size);
 1286         }
 1287 
 1288         /*
 1289          * The next element from one in a core node is the first element in
 1290          * the subtree just to the right of the separator.
 1291          */
 1292         zfs_btree_hdr_t *child = node->btc_children[offset + 1];
 1293         return (zfs_btree_first_helper(tree, child, out_idx));
 1294 }
 1295 
 1296 /*
 1297  * Return the next valued node in the tree.  The same address can be safely
 1298  * passed for idx and out_idx.
 1299  */
 1300 void *
 1301 zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
 1302     zfs_btree_index_t *out_idx)
 1303 {
 1304         return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
 1305 }
 1306 
 1307 /*
 1308  * Return the previous valued node in the tree.  The same value can be safely
 1309  * passed for idx and out_idx.
 1310  */
 1311 void *
 1312 zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
 1313     zfs_btree_index_t *out_idx)
 1314 {
 1315         if (idx->bti_node == NULL) {
 1316                 ASSERT3S(tree->bt_height, ==, -1);
 1317                 return (NULL);
 1318         }
 1319 
 1320         uint32_t offset = idx->bti_offset;
 1321         if (!zfs_btree_is_core(idx->bti_node)) {
 1322                 /*
 1323                  * When finding the previous element of an element in a leaf,
 1324                  * there are two cases. If the element isn't the first one in
 1325                  * the leaf, in which case we just return the previous element
 1326                  * in the leaf. Otherwise, we need to traverse up our parents
 1327                  * until we find one where our previous ancestor isn't the
 1328                  * first child. Once we do, the previous element is the
 1329                  * separator after our previous ancestor.
 1330                  */
 1331                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
 1332                 if (offset != 0) {
 1333                         out_idx->bti_node = &leaf->btl_hdr;
 1334                         out_idx->bti_offset = offset - 1;
 1335                         out_idx->bti_before = B_FALSE;
 1336                         return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
 1337                             offset - 1) * tree->bt_elem_size);
 1338                 }
 1339                 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
 1340                 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
 1341                     node != NULL; node = node->btc_hdr.bth_parent) {
 1342                         zfs_btree_hdr_t *hdr = &node->btc_hdr;
 1343                         ASSERT(zfs_btree_is_core(hdr));
 1344                         uint32_t i = zfs_btree_find_parent_idx(tree, prev);
 1345                         if (i == 0) {
 1346                                 prev = hdr;
 1347                                 continue;
 1348                         }
 1349                         out_idx->bti_node = hdr;
 1350                         out_idx->bti_offset = i - 1;
 1351                         out_idx->bti_before = B_FALSE;
 1352                         return (node->btc_elems + (i - 1) * tree->bt_elem_size);
 1353                 }
 1354                 /*
 1355                  * We've traversed all the way up and been at the start of the
 1356                  * node every time, so this was the first node in the tree.
 1357                  */
 1358                 return (NULL);
 1359         }
 1360 
 1361         /*
 1362          * The previous element from one in a core node is the last element in
 1363          * the subtree just to the left of the separator.
 1364          */
 1365         ASSERT(zfs_btree_is_core(idx->bti_node));
 1366         zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
 1367         zfs_btree_hdr_t *child = node->btc_children[offset];
 1368         return (zfs_btree_last_helper(tree, child, out_idx));
 1369 }
 1370 
 1371 /*
 1372  * Get the value at the provided index in the tree.
 1373  *
 1374  * Note that the value returned from this function can be mutated, but only
 1375  * if it will not change the ordering of the element with respect to any other
 1376  * elements that could be in the tree.
 1377  */
 1378 void *
 1379 zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
 1380 {
 1381         ASSERT(!idx->bti_before);
 1382         size_t size = tree->bt_elem_size;
 1383         if (!zfs_btree_is_core(idx->bti_node)) {
 1384                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
 1385                 return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
 1386                     idx->bti_offset) * size);
 1387         }
 1388         zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
 1389         return (node->btc_elems + idx->bti_offset * size);
 1390 }
 1391 
 1392 /* Add the given value to the tree. Must not already be in the tree. */
 1393 void
 1394 zfs_btree_add(zfs_btree_t *tree, const void *node)
 1395 {
 1396         zfs_btree_index_t where = {0};
 1397         VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
 1398         zfs_btree_add_idx(tree, node, &where);
 1399 }
 1400 
 1401 /* Helper function to free a tree node. */
 1402 static void
 1403 zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
 1404 {
 1405         tree->bt_num_nodes--;
 1406         if (!zfs_btree_is_core(node)) {
 1407                 zfs_btree_leaf_free(tree, node);
 1408         } else {
 1409                 kmem_free(node, sizeof (zfs_btree_core_t) +
 1410                     BTREE_CORE_ELEMS * tree->bt_elem_size);
 1411         }
 1412 }
 1413 
 1414 /*
 1415  * Remove the rm_hdr and the separator to its left from the parent node. The
 1416  * buffer that rm_hdr was stored in may already be freed, so its contents
 1417  * cannot be accessed.
 1418  */
 1419 static void
 1420 zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
 1421     zfs_btree_hdr_t *rm_hdr)
 1422 {
 1423         size_t size = tree->bt_elem_size;
 1424         uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
 1425         zfs_btree_hdr_t *hdr = &node->btc_hdr;
 1426         /*
 1427          * If the node is the root node and rm_hdr is one of two children,
 1428          * promote the other child to the root.
 1429          */
 1430         if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
 1431                 ASSERT3U(hdr->bth_count, ==, 1);
 1432                 ASSERT3P(tree->bt_root, ==, node);
 1433                 ASSERT3P(node->btc_children[1], ==, rm_hdr);
 1434                 tree->bt_root = node->btc_children[0];
 1435                 node->btc_children[0]->bth_parent = NULL;
 1436                 zfs_btree_node_destroy(tree, hdr);
 1437                 tree->bt_height--;
 1438                 return;
 1439         }
 1440 
 1441         uint32_t idx;
 1442         for (idx = 0; idx <= hdr->bth_count; idx++) {
 1443                 if (node->btc_children[idx] == rm_hdr)
 1444                         break;
 1445         }
 1446         ASSERT3U(idx, <=, hdr->bth_count);
 1447 
 1448         /*
 1449          * If the node is the root or it has more than the minimum number of
 1450          * children, just remove the child and separator, and return.
 1451          */
 1452         if (hdr->bth_parent == NULL ||
 1453             hdr->bth_count > min_count) {
 1454                 /*
 1455                  * Shift the element and children to the right of rm_hdr to
 1456                  * the left by one spot.
 1457                  */
 1458                 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
 1459                     BSS_PARALLELOGRAM);
 1460                 hdr->bth_count--;
 1461                 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1);
 1462                 return;
 1463         }
 1464 
 1465         ASSERT3U(hdr->bth_count, ==, min_count);
 1466 
 1467         /*
 1468          * Now we try to take a node from a neighbor. We check left, then
 1469          * right. If the neighbor exists and has more than the minimum number
 1470          * of elements, we move the separator between us and them to our
 1471          * node, move their closest element (last for left, first for right)
 1472          * to the separator, and move their closest child to our node. Along
 1473          * the way we need to collapse the gap made by idx, and (for our right
 1474          * neighbor) the gap made by removing their first element and child.
 1475          *
 1476          * Note: this logic currently doesn't support taking from a neighbor
 1477          * that isn't a sibling (i.e. a neighbor with a different
 1478          * parent). This isn't critical functionality, but may be worth
 1479          * implementing in the future for completeness' sake.
 1480          */
 1481         zfs_btree_core_t *parent = hdr->bth_parent;
 1482         uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
 1483 
 1484         zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
 1485             parent->btc_children[parent_idx - 1]);
 1486         if (l_hdr != NULL && l_hdr->bth_count > min_count) {
 1487                 /* We can take a node from the left neighbor. */
 1488                 ASSERT(zfs_btree_is_core(l_hdr));
 1489                 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
 1490 
 1491                 /*
 1492                  * Start by shifting the elements and children in the current
 1493                  * node to the right by one spot.
 1494                  */
 1495                 bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
 1496 
 1497                 /*
 1498                  * Move the separator between node and neighbor to the first
 1499                  * element slot in the current node.
 1500                  */
 1501                 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
 1502                     size;
 1503                 bcpy(separator, node->btc_elems, size);
 1504 
 1505                 /* Move the last child of neighbor to our first child slot. */
 1506                 node->btc_children[0] =
 1507                     neighbor->btc_children[l_hdr->bth_count];
 1508                 node->btc_children[0]->bth_parent = node;
 1509 
 1510                 /* Move the last element of neighbor to the separator spot. */
 1511                 uint8_t *take_elem = neighbor->btc_elems +
 1512                     (l_hdr->bth_count - 1) * size;
 1513                 bcpy(take_elem, separator, size);
 1514                 l_hdr->bth_count--;
 1515                 zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1);
 1516                 return;
 1517         }
 1518 
 1519         zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
 1520             NULL : parent->btc_children[parent_idx + 1]);
 1521         if (r_hdr != NULL && r_hdr->bth_count > min_count) {
 1522                 /* We can take a node from the right neighbor. */
 1523                 ASSERT(zfs_btree_is_core(r_hdr));
 1524                 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
 1525 
 1526                 /*
 1527                  * Shift elements in node left by one spot to overwrite rm_hdr
 1528                  * and the separator before it.
 1529                  */
 1530                 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
 1531                     BSS_PARALLELOGRAM);
 1532 
 1533                 /*
 1534                  * Move the separator between node and neighbor to the last
 1535                  * element spot in node.
 1536                  */
 1537                 uint8_t *separator = parent->btc_elems + parent_idx * size;
 1538                 bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size,
 1539                     size);
 1540 
 1541                 /*
 1542                  * Move the first child of neighbor to the last child spot in
 1543                  * node.
 1544                  */
 1545                 node->btc_children[hdr->bth_count] = neighbor->btc_children[0];
 1546                 node->btc_children[hdr->bth_count]->bth_parent = node;
 1547 
 1548                 /* Move the first element of neighbor to the separator spot. */
 1549                 uint8_t *take_elem = neighbor->btc_elems;
 1550                 bcpy(take_elem, separator, size);
 1551                 r_hdr->bth_count--;
 1552 
 1553                 /*
 1554                  * Shift the elements and children of neighbor to cover the
 1555                  * stolen elements.
 1556                  */
 1557                 bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
 1558                     BSS_TRAPEZOID);
 1559                 zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1);
 1560                 return;
 1561         }
 1562 
 1563         /*
 1564          * In this case, neither of our neighbors can spare an element, so we
 1565          * need to merge with one of them. We prefer the left one,
 1566          * arbitrarily. Move the separator into the leftmost merging node
 1567          * (which may be us or the left neighbor), and then move the right
 1568          * merging node's elements. Once that's done, we go back and delete
 1569          * the element we're removing. Finally, go into the parent and delete
 1570          * the right merging node and the separator. This may cause further
 1571          * merging.
 1572          */
 1573         zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
 1574         uint32_t new_idx = idx;
 1575         if (l_hdr != NULL) {
 1576                 keep_hdr = l_hdr;
 1577                 new_rm_hdr = hdr;
 1578                 new_idx += keep_hdr->bth_count + 1;
 1579         } else {
 1580                 ASSERT3P(r_hdr, !=, NULL);
 1581                 keep_hdr = hdr;
 1582                 new_rm_hdr = r_hdr;
 1583                 parent_idx++;
 1584         }
 1585 
 1586         ASSERT(zfs_btree_is_core(keep_hdr));
 1587         ASSERT(zfs_btree_is_core(new_rm_hdr));
 1588 
 1589         zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
 1590         zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
 1591 
 1592         if (zfs_btree_verify_intensity >= 5) {
 1593                 for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) {
 1594                         zfs_btree_verify_poison_at(tree, keep_hdr,
 1595                             keep_hdr->bth_count + i);
 1596                 }
 1597         }
 1598 
 1599         /* Move the separator into the left node. */
 1600         uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
 1601         uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
 1602             size;
 1603         bcpy(separator, e_out, size);
 1604         keep_hdr->bth_count++;
 1605 
 1606         /* Move all our elements and children into the left node. */
 1607         bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
 1608             keep_hdr->bth_count, BSS_TRAPEZOID);
 1609 
 1610         uint32_t old_count = keep_hdr->bth_count;
 1611 
 1612         /* Update bookkeeping */
 1613         keep_hdr->bth_count += new_rm_hdr->bth_count;
 1614         ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
 1615 
 1616         /*
 1617          * Shift the element and children to the right of rm_hdr to
 1618          * the left by one spot.
 1619          */
 1620         ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
 1621         bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
 1622             BSS_PARALLELOGRAM);
 1623         keep_hdr->bth_count--;
 1624 
 1625         /* Reparent all our children to point to the left node. */
 1626         zfs_btree_hdr_t **new_start = keep->btc_children +
 1627             old_count - 1;
 1628         for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++)
 1629                 new_start[i]->bth_parent = keep;
 1630         for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) {
 1631                 ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
 1632                 ASSERT3P(keep->btc_children[i], !=, rm_hdr);
 1633         }
 1634         zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1);
 1635 
 1636         new_rm_hdr->bth_count = 0;
 1637         zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
 1638         zfs_btree_node_destroy(tree, new_rm_hdr);
 1639 }
 1640 
 1641 /* Remove the element at the specific location. */
 1642 void
 1643 zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
 1644 {
 1645         size_t size = tree->bt_elem_size;
 1646         zfs_btree_hdr_t *hdr = where->bti_node;
 1647         uint32_t idx = where->bti_offset;
 1648 
 1649         ASSERT(!where->bti_before);
 1650         if (tree->bt_bulk != NULL) {
 1651                 /*
 1652                  * Leave bulk insert mode. Note that our index would be
 1653                  * invalid after we correct the tree, so we copy the value
 1654                  * we're planning to remove and find it again after
 1655                  * bulk_finish.
 1656                  */
 1657                 uint8_t *value = zfs_btree_get(tree, where);
 1658                 uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
 1659                 bcpy(value, tmp, size);
 1660                 zfs_btree_bulk_finish(tree);
 1661                 VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
 1662                 kmem_free(tmp, size);
 1663                 hdr = where->bti_node;
 1664                 idx = where->bti_offset;
 1665         }
 1666 
 1667         tree->bt_num_elems--;
 1668         /*
 1669          * If the element happens to be in a core node, we move a leaf node's
 1670          * element into its place and then remove the leaf node element. This
 1671          * makes the rebalance logic not need to be recursive both upwards and
 1672          * downwards.
 1673          */
 1674         if (zfs_btree_is_core(hdr)) {
 1675                 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
 1676                 zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
 1677                 void *new_value = zfs_btree_last_helper(tree, left_subtree,
 1678                     where);
 1679                 ASSERT3P(new_value, !=, NULL);
 1680 
 1681                 bcpy(new_value, node->btc_elems + idx * size, size);
 1682 
 1683                 hdr = where->bti_node;
 1684                 idx = where->bti_offset;
 1685                 ASSERT(!where->bti_before);
 1686         }
 1687 
 1688         /*
 1689          * First, we'll update the leaf's metadata. Then, we shift any
 1690          * elements after the idx to the left. After that, we rebalance if
 1691          * needed.
 1692          */
 1693         ASSERT(!zfs_btree_is_core(hdr));
 1694         zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
 1695         ASSERT3U(hdr->bth_count, >, 0);
 1696 
 1697         uint32_t min_count = (tree->bt_leaf_cap / 2) - 1;
 1698 
 1699         /*
 1700          * If we're over the minimum size or this is the root, just overwrite
 1701          * the value and return.
 1702          */
 1703         if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
 1704                 bt_shrink_leaf(tree, leaf, idx, 1);
 1705                 if (hdr->bth_parent == NULL) {
 1706                         ASSERT0(tree->bt_height);
 1707                         if (hdr->bth_count == 0) {
 1708                                 tree->bt_root = NULL;
 1709                                 tree->bt_height--;
 1710                                 zfs_btree_node_destroy(tree, &leaf->btl_hdr);
 1711                         }
 1712                 }
 1713                 zfs_btree_verify(tree);
 1714                 return;
 1715         }
 1716         ASSERT3U(hdr->bth_count, ==, min_count);
 1717 
 1718         /*
 1719          * Now we try to take a node from a sibling. We check left, then
 1720          * right. If they exist and have more than the minimum number of
 1721          * elements, we move the separator between us and them to our node
 1722          * and move their closest element (last for left, first for right) to
 1723          * the separator. Along the way we need to collapse the gap made by
 1724          * idx, and (for our right neighbor) the gap made by removing their
 1725          * first element.
 1726          *
 1727          * Note: this logic currently doesn't support taking from a neighbor
 1728          * that isn't a sibling. This isn't critical functionality, but may be
 1729          * worth implementing in the future for completeness' sake.
 1730          */
 1731         zfs_btree_core_t *parent = hdr->bth_parent;
 1732         uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
 1733 
 1734         zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
 1735             parent->btc_children[parent_idx - 1]);
 1736         if (l_hdr != NULL && l_hdr->bth_count > min_count) {
 1737                 /* We can take a node from the left neighbor. */
 1738                 ASSERT(!zfs_btree_is_core(l_hdr));
 1739                 zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr;
 1740 
 1741                 /*
 1742                  * Move our elements back by one spot to make room for the
 1743                  * stolen element and overwrite the element being removed.
 1744                  */
 1745                 bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT);
 1746 
 1747                 /* Move the separator to our first spot. */
 1748                 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
 1749                     size;
 1750                 bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size);
 1751 
 1752                 /* Move our neighbor's last element to the separator. */
 1753                 uint8_t *take_elem = neighbor->btl_elems +
 1754                     (l_hdr->bth_first + l_hdr->bth_count - 1) * size;
 1755                 bcpy(take_elem, separator, size);
 1756 
 1757                 /* Delete our neighbor's last element. */
 1758                 bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1);
 1759                 zfs_btree_verify(tree);
 1760                 return;
 1761         }
 1762 
 1763         zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
 1764             NULL : parent->btc_children[parent_idx + 1]);
 1765         if (r_hdr != NULL && r_hdr->bth_count > min_count) {
 1766                 /* We can take a node from the right neighbor. */
 1767                 ASSERT(!zfs_btree_is_core(r_hdr));
 1768                 zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
 1769 
 1770                 /*
 1771                  * Move our elements after the element being removed forwards
 1772                  * by one spot to make room for the stolen element and
 1773                  * overwrite the element being removed.
 1774                  */
 1775                 bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1,
 1776                     1, BSD_LEFT);
 1777 
 1778                 /* Move the separator between us to our last spot. */
 1779                 uint8_t *separator = parent->btc_elems + parent_idx * size;
 1780                 bcpy(separator, leaf->btl_elems + (hdr->bth_first +
 1781                     hdr->bth_count - 1) * size, size);
 1782 
 1783                 /* Move our neighbor's first element to the separator. */
 1784                 uint8_t *take_elem = neighbor->btl_elems +
 1785                     r_hdr->bth_first * size;
 1786                 bcpy(take_elem, separator, size);
 1787 
 1788                 /* Delete our neighbor's first element. */
 1789                 bt_shrink_leaf(tree, neighbor, 0, 1);
 1790                 zfs_btree_verify(tree);
 1791                 return;
 1792         }
 1793 
 1794         /*
 1795          * In this case, neither of our neighbors can spare an element, so we
 1796          * need to merge with one of them. We prefer the left one, arbitrarily.
 1797          * After remove we move the separator into the leftmost merging node
 1798          * (which may be us or the left neighbor), and then move the right
 1799          * merging node's elements. Once that's done, we go back and delete
 1800          * the element we're removing. Finally, go into the parent and delete
 1801          * the right merging node and the separator. This may cause further
 1802          * merging.
 1803          */
 1804         zfs_btree_hdr_t *rm_hdr, *k_hdr;
 1805         if (l_hdr != NULL) {
 1806                 k_hdr = l_hdr;
 1807                 rm_hdr = hdr;
 1808         } else {
 1809                 ASSERT3P(r_hdr, !=, NULL);
 1810                 k_hdr = hdr;
 1811                 rm_hdr = r_hdr;
 1812                 parent_idx++;
 1813         }
 1814         ASSERT(!zfs_btree_is_core(k_hdr));
 1815         ASSERT(!zfs_btree_is_core(rm_hdr));
 1816         ASSERT3U(k_hdr->bth_count, ==, min_count);
 1817         ASSERT3U(rm_hdr->bth_count, ==, min_count);
 1818         zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr;
 1819         zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
 1820 
 1821         if (zfs_btree_verify_intensity >= 5) {
 1822                 for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) {
 1823                         zfs_btree_verify_poison_at(tree, k_hdr,
 1824                             k_hdr->bth_count + i);
 1825                 }
 1826         }
 1827 
 1828         /*
 1829          * Remove the value from the node.  It will go below the minimum,
 1830          * but we'll fix it in no time.
 1831          */
 1832         bt_shrink_leaf(tree, leaf, idx, 1);
 1833 
 1834         /* Prepare space for elements to be moved from the right. */
 1835         uint32_t k_count = k_hdr->bth_count;
 1836         bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count);
 1837         ASSERT3U(k_hdr->bth_count, ==, min_count * 2);
 1838 
 1839         /* Move the separator into the first open spot. */
 1840         uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size;
 1841         uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size;
 1842         bcpy(separator, out, size);
 1843 
 1844         /* Move our elements to the left neighbor. */
 1845         bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1);
 1846 
 1847         /* Remove the emptied node from the parent. */
 1848         zfs_btree_remove_from_node(tree, parent, rm_hdr);
 1849         zfs_btree_node_destroy(tree, rm_hdr);
 1850         zfs_btree_verify(tree);
 1851 }
 1852 
 1853 /* Remove the given value from the tree. */
 1854 void
 1855 zfs_btree_remove(zfs_btree_t *tree, const void *value)
 1856 {
 1857         zfs_btree_index_t where = {0};
 1858         VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
 1859         zfs_btree_remove_idx(tree, &where);
 1860 }
 1861 
 1862 /* Return the number of elements in the tree. */
 1863 ulong_t
 1864 zfs_btree_numnodes(zfs_btree_t *tree)
 1865 {
 1866         return (tree->bt_num_elems);
 1867 }
 1868 
 1869 /*
 1870  * This function is used to visit all the elements in the tree before
 1871  * destroying the tree. This allows the calling code to perform any cleanup it
 1872  * needs to do. This is more efficient than just removing the first element
 1873  * over and over, because it removes all rebalancing. Once the destroy_nodes()
 1874  * function has been called, no other btree operations are valid until it
 1875  * returns NULL, which point the only valid operation is zfs_btree_destroy().
 1876  *
 1877  * example:
 1878  *
 1879  *      zfs_btree_index_t *cookie = NULL;
 1880  *      my_data_t *node;
 1881  *
 1882  *      while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
 1883  *              free(node->ptr);
 1884  *      zfs_btree_destroy(tree);
 1885  *
 1886  */
 1887 void *
 1888 zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
 1889 {
 1890         if (*cookie == NULL) {
 1891                 if (tree->bt_height == -1)
 1892                         return (NULL);
 1893                 *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
 1894                 return (zfs_btree_first(tree, *cookie));
 1895         }
 1896 
 1897         void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
 1898             zfs_btree_node_destroy);
 1899         if (rval == NULL)   {
 1900                 tree->bt_root = NULL;
 1901                 tree->bt_height = -1;
 1902                 tree->bt_num_elems = 0;
 1903                 kmem_free(*cookie, sizeof (**cookie));
 1904                 tree->bt_bulk = NULL;
 1905         }
 1906         return (rval);
 1907 }
 1908 
 1909 static void
 1910 zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
 1911 {
 1912         if (zfs_btree_is_core(hdr)) {
 1913                 zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
 1914                 for (uint32_t i = 0; i <= hdr->bth_count; i++)
 1915                         zfs_btree_clear_helper(tree, btc->btc_children[i]);
 1916         }
 1917 
 1918         zfs_btree_node_destroy(tree, hdr);
 1919 }
 1920 
 1921 void
 1922 zfs_btree_clear(zfs_btree_t *tree)
 1923 {
 1924         if (tree->bt_root == NULL) {
 1925                 ASSERT0(tree->bt_num_elems);
 1926                 return;
 1927         }
 1928 
 1929         zfs_btree_clear_helper(tree, tree->bt_root);
 1930         tree->bt_num_elems = 0;
 1931         tree->bt_root = NULL;
 1932         tree->bt_num_nodes = 0;
 1933         tree->bt_height = -1;
 1934         tree->bt_bulk = NULL;
 1935 }
 1936 
 1937 void
 1938 zfs_btree_destroy(zfs_btree_t *tree)
 1939 {
 1940         ASSERT0(tree->bt_num_elems);
 1941         ASSERT3P(tree->bt_root, ==, NULL);
 1942 }
 1943 
 1944 /* Verify that every child of this node has the correct parent pointer. */
 1945 static void
 1946 zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
 1947 {
 1948         if (!zfs_btree_is_core(hdr))
 1949                 return;
 1950 
 1951         zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
 1952         for (uint32_t i = 0; i <= hdr->bth_count; i++) {
 1953                 VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
 1954                 zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
 1955         }
 1956 }
 1957 
 1958 /* Verify that every node has the correct parent pointer. */
 1959 static void
 1960 zfs_btree_verify_pointers(zfs_btree_t *tree)
 1961 {
 1962         if (tree->bt_height == -1) {
 1963                 VERIFY3P(tree->bt_root, ==, NULL);
 1964                 return;
 1965         }
 1966         VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
 1967         zfs_btree_verify_pointers_helper(tree, tree->bt_root);
 1968 }
 1969 
 1970 /*
 1971  * Verify that all the current node and its children satisfy the count
 1972  * invariants, and return the total count in the subtree rooted in this node.
 1973  */
 1974 static uint64_t
 1975 zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
 1976 {
 1977         if (!zfs_btree_is_core(hdr)) {
 1978                 if (tree->bt_root != hdr && tree->bt_bulk &&
 1979                     hdr != &tree->bt_bulk->btl_hdr) {
 1980                         VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1);
 1981                 }
 1982 
 1983                 return (hdr->bth_count);
 1984         } else {
 1985 
 1986                 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
 1987                 uint64_t ret = hdr->bth_count;
 1988                 if (tree->bt_root != hdr && tree->bt_bulk == NULL)
 1989                         VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
 1990                 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
 1991                         ret += zfs_btree_verify_counts_helper(tree,
 1992                             node->btc_children[i]);
 1993                 }
 1994 
 1995                 return (ret);
 1996         }
 1997 }
 1998 
 1999 /*
 2000  * Verify that all nodes satisfy the invariants and that the total number of
 2001  * elements is correct.
 2002  */
 2003 static void
 2004 zfs_btree_verify_counts(zfs_btree_t *tree)
 2005 {
 2006         EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
 2007         if (tree->bt_height == -1) {
 2008                 return;
 2009         }
 2010         VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
 2011             tree->bt_num_elems);
 2012 }
 2013 
 2014 /*
 2015  * Check that the subtree rooted at this node has a uniform height. Returns
 2016  * the number of nodes under this node, to help verify bt_num_nodes.
 2017  */
 2018 static uint64_t
 2019 zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
 2020     int32_t height)
 2021 {
 2022         if (!zfs_btree_is_core(hdr)) {
 2023                 VERIFY0(height);
 2024                 return (1);
 2025         }
 2026 
 2027         zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
 2028         uint64_t ret = 1;
 2029         for (uint32_t i = 0; i <= hdr->bth_count; i++) {
 2030                 ret += zfs_btree_verify_height_helper(tree,
 2031                     node->btc_children[i], height - 1);
 2032         }
 2033         return (ret);
 2034 }
 2035 
 2036 /*
 2037  * Check that the tree rooted at this node has a uniform height, and that the
 2038  * bt_height in the tree is correct.
 2039  */
 2040 static void
 2041 zfs_btree_verify_height(zfs_btree_t *tree)
 2042 {
 2043         EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
 2044         if (tree->bt_height == -1) {
 2045                 return;
 2046         }
 2047 
 2048         VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
 2049             tree->bt_height), ==, tree->bt_num_nodes);
 2050 }
 2051 
 2052 /*
 2053  * Check that the elements in this node are sorted, and that if this is a core
 2054  * node, the separators are properly between the subtrees they separaate and
 2055  * that the children also satisfy this requirement.
 2056  */
 2057 static void
 2058 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
 2059 {
 2060         size_t size = tree->bt_elem_size;
 2061         if (!zfs_btree_is_core(hdr)) {
 2062                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
 2063                 for (uint32_t i = 1; i < hdr->bth_count; i++) {
 2064                         VERIFY3S(tree->bt_compar(leaf->btl_elems +
 2065                             (hdr->bth_first + i - 1) * size,
 2066                             leaf->btl_elems +
 2067                             (hdr->bth_first + i) * size), ==, -1);
 2068                 }
 2069                 return;
 2070         }
 2071 
 2072         zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
 2073         for (uint32_t i = 1; i < hdr->bth_count; i++) {
 2074                 VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
 2075                     node->btc_elems + i * size), ==, -1);
 2076         }
 2077         for (uint32_t i = 0; i < hdr->bth_count; i++) {
 2078                 uint8_t *left_child_last = NULL;
 2079                 zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
 2080                 if (zfs_btree_is_core(left_child_hdr)) {
 2081                         zfs_btree_core_t *left_child =
 2082                             (zfs_btree_core_t *)left_child_hdr;
 2083                         left_child_last = left_child->btc_elems +
 2084                             (left_child_hdr->bth_count - 1) * size;
 2085                 } else {
 2086                         zfs_btree_leaf_t *left_child =
 2087                             (zfs_btree_leaf_t *)left_child_hdr;
 2088                         left_child_last = left_child->btl_elems +
 2089                             (left_child_hdr->bth_first +
 2090                             left_child_hdr->bth_count - 1) * size;
 2091                 }
 2092                 int comp = tree->bt_compar(node->btc_elems + i * size,
 2093                     left_child_last);
 2094                 if (comp <= 0) {
 2095                         panic("btree: compar returned %d (expected 1) at "
 2096                             "%px %d: compar(%px,  %px)", comp, node, i,
 2097                             node->btc_elems + i * size, left_child_last);
 2098                 }
 2099 
 2100                 uint8_t *right_child_first = NULL;
 2101                 zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
 2102                 if (zfs_btree_is_core(right_child_hdr)) {
 2103                         zfs_btree_core_t *right_child =
 2104                             (zfs_btree_core_t *)right_child_hdr;
 2105                         right_child_first = right_child->btc_elems;
 2106                 } else {
 2107                         zfs_btree_leaf_t *right_child =
 2108                             (zfs_btree_leaf_t *)right_child_hdr;
 2109                         right_child_first = right_child->btl_elems +
 2110                             right_child_hdr->bth_first * size;
 2111                 }
 2112                 comp = tree->bt_compar(node->btc_elems + i * size,
 2113                     right_child_first);
 2114                 if (comp >= 0) {
 2115                         panic("btree: compar returned %d (expected -1) at "
 2116                             "%px %d: compar(%px,  %px)", comp, node, i,
 2117                             node->btc_elems + i * size, right_child_first);
 2118                 }
 2119         }
 2120         for (uint32_t i = 0; i <= hdr->bth_count; i++)
 2121                 zfs_btree_verify_order_helper(tree, node->btc_children[i]);
 2122 }
 2123 
 2124 /* Check that all elements in the tree are in sorted order. */
 2125 static void
 2126 zfs_btree_verify_order(zfs_btree_t *tree)
 2127 {
 2128         EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
 2129         if (tree->bt_height == -1) {
 2130                 return;
 2131         }
 2132 
 2133         zfs_btree_verify_order_helper(tree, tree->bt_root);
 2134 }
 2135 
 2136 #ifdef ZFS_DEBUG
 2137 /* Check that all unused memory is poisoned correctly. */
 2138 static void
 2139 zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
 2140 {
 2141         size_t size = tree->bt_elem_size;
 2142         if (!zfs_btree_is_core(hdr)) {
 2143                 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
 2144                 for (size_t i = 0; i < hdr->bth_first * size; i++)
 2145                         VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
 2146                 size_t esize = tree->bt_leaf_size -
 2147                     offsetof(zfs_btree_leaf_t, btl_elems);
 2148                 for (size_t i = (hdr->bth_first + hdr->bth_count) * size;
 2149                     i < esize; i++)
 2150                         VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
 2151         } else {
 2152                 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
 2153                 for (size_t i = hdr->bth_count * size;
 2154                     i < BTREE_CORE_ELEMS * size; i++)
 2155                         VERIFY3U(node->btc_elems[i], ==, 0x0f);
 2156 
 2157                 for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
 2158                     i++) {
 2159                         VERIFY3P(node->btc_children[i], ==,
 2160                             (zfs_btree_hdr_t *)BTREE_POISON);
 2161                 }
 2162 
 2163                 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
 2164                         zfs_btree_verify_poison_helper(tree,
 2165                             node->btc_children[i]);
 2166                 }
 2167         }
 2168 }
 2169 #endif
 2170 
 2171 /* Check that unused memory in the tree is still poisoned. */
 2172 static void
 2173 zfs_btree_verify_poison(zfs_btree_t *tree)
 2174 {
 2175 #ifdef ZFS_DEBUG
 2176         if (tree->bt_height == -1)
 2177                 return;
 2178         zfs_btree_verify_poison_helper(tree, tree->bt_root);
 2179 #endif
 2180 }
 2181 
 2182 void
 2183 zfs_btree_verify(zfs_btree_t *tree)
 2184 {
 2185         if (zfs_btree_verify_intensity == 0)
 2186                 return;
 2187         zfs_btree_verify_height(tree);
 2188         if (zfs_btree_verify_intensity == 1)
 2189                 return;
 2190         zfs_btree_verify_pointers(tree);
 2191         if (zfs_btree_verify_intensity == 2)
 2192                 return;
 2193         zfs_btree_verify_counts(tree);
 2194         if (zfs_btree_verify_intensity == 3)
 2195                 return;
 2196         zfs_btree_verify_order(tree);
 2197 
 2198         if (zfs_btree_verify_intensity == 4)
 2199                 return;
 2200         zfs_btree_verify_poison(tree);
 2201 }
 2202 
 2203 /* BEGIN CSTYLED */
 2204 ZFS_MODULE_PARAM(zfs, zfs_, btree_verify_intensity, UINT, ZMOD_RW,
 2205         "Enable btree verification. Levels above 4 require ZFS be built "
 2206         "with debugging");
 2207 /* END CSTYLED */

Cache object: 2ebd19c843a6adb5c075935d3166bdb3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.