The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/dbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
   24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
   25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
   26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
   27  * Copyright (c) 2019, Klara Inc.
   28  * Copyright (c) 2019, Allan Jude
   29  */
   30 
   31 #include <sys/zfs_context.h>
   32 #include <sys/arc.h>
   33 #include <sys/dmu.h>
   34 #include <sys/dmu_send.h>
   35 #include <sys/dmu_impl.h>
   36 #include <sys/dbuf.h>
   37 #include <sys/dmu_objset.h>
   38 #include <sys/dsl_dataset.h>
   39 #include <sys/dsl_dir.h>
   40 #include <sys/dmu_tx.h>
   41 #include <sys/spa.h>
   42 #include <sys/zio.h>
   43 #include <sys/dmu_zfetch.h>
   44 #include <sys/sa.h>
   45 #include <sys/sa_impl.h>
   46 #include <sys/zfeature.h>
   47 #include <sys/blkptr.h>
   48 #include <sys/range_tree.h>
   49 #include <sys/trace_zfs.h>
   50 #include <sys/callb.h>
   51 #include <sys/abd.h>
   52 #include <sys/vdev.h>
   53 #include <cityhash.h>
   54 #include <sys/spa_impl.h>
   55 #include <sys/wmsum.h>
   56 #include <sys/vdev_impl.h>
   57 
   58 static kstat_t *dbuf_ksp;
   59 
   60 typedef struct dbuf_stats {
   61         /*
   62          * Various statistics about the size of the dbuf cache.
   63          */
   64         kstat_named_t cache_count;
   65         kstat_named_t cache_size_bytes;
   66         kstat_named_t cache_size_bytes_max;
   67         /*
   68          * Statistics regarding the bounds on the dbuf cache size.
   69          */
   70         kstat_named_t cache_target_bytes;
   71         kstat_named_t cache_lowater_bytes;
   72         kstat_named_t cache_hiwater_bytes;
   73         /*
   74          * Total number of dbuf cache evictions that have occurred.
   75          */
   76         kstat_named_t cache_total_evicts;
   77         /*
   78          * The distribution of dbuf levels in the dbuf cache and
   79          * the total size of all dbufs at each level.
   80          */
   81         kstat_named_t cache_levels[DN_MAX_LEVELS];
   82         kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
   83         /*
   84          * Statistics about the dbuf hash table.
   85          */
   86         kstat_named_t hash_hits;
   87         kstat_named_t hash_misses;
   88         kstat_named_t hash_collisions;
   89         kstat_named_t hash_elements;
   90         kstat_named_t hash_elements_max;
   91         /*
   92          * Number of sublists containing more than one dbuf in the dbuf
   93          * hash table. Keep track of the longest hash chain.
   94          */
   95         kstat_named_t hash_chains;
   96         kstat_named_t hash_chain_max;
   97         /*
   98          * Number of times a dbuf_create() discovers that a dbuf was
   99          * already created and in the dbuf hash table.
  100          */
  101         kstat_named_t hash_insert_race;
  102         /*
  103          * Number of entries in the hash table dbuf and mutex arrays.
  104          */
  105         kstat_named_t hash_table_count;
  106         kstat_named_t hash_mutex_count;
  107         /*
  108          * Statistics about the size of the metadata dbuf cache.
  109          */
  110         kstat_named_t metadata_cache_count;
  111         kstat_named_t metadata_cache_size_bytes;
  112         kstat_named_t metadata_cache_size_bytes_max;
  113         /*
  114          * For diagnostic purposes, this is incremented whenever we can't add
  115          * something to the metadata cache because it's full, and instead put
  116          * the data in the regular dbuf cache.
  117          */
  118         kstat_named_t metadata_cache_overflow;
  119 } dbuf_stats_t;
  120 
  121 dbuf_stats_t dbuf_stats = {
  122         { "cache_count",                        KSTAT_DATA_UINT64 },
  123         { "cache_size_bytes",                   KSTAT_DATA_UINT64 },
  124         { "cache_size_bytes_max",               KSTAT_DATA_UINT64 },
  125         { "cache_target_bytes",                 KSTAT_DATA_UINT64 },
  126         { "cache_lowater_bytes",                KSTAT_DATA_UINT64 },
  127         { "cache_hiwater_bytes",                KSTAT_DATA_UINT64 },
  128         { "cache_total_evicts",                 KSTAT_DATA_UINT64 },
  129         { { "cache_levels_N",                   KSTAT_DATA_UINT64 } },
  130         { { "cache_levels_bytes_N",             KSTAT_DATA_UINT64 } },
  131         { "hash_hits",                          KSTAT_DATA_UINT64 },
  132         { "hash_misses",                        KSTAT_DATA_UINT64 },
  133         { "hash_collisions",                    KSTAT_DATA_UINT64 },
  134         { "hash_elements",                      KSTAT_DATA_UINT64 },
  135         { "hash_elements_max",                  KSTAT_DATA_UINT64 },
  136         { "hash_chains",                        KSTAT_DATA_UINT64 },
  137         { "hash_chain_max",                     KSTAT_DATA_UINT64 },
  138         { "hash_insert_race",                   KSTAT_DATA_UINT64 },
  139         { "hash_table_count",                   KSTAT_DATA_UINT64 },
  140         { "hash_mutex_count",                   KSTAT_DATA_UINT64 },
  141         { "metadata_cache_count",               KSTAT_DATA_UINT64 },
  142         { "metadata_cache_size_bytes",          KSTAT_DATA_UINT64 },
  143         { "metadata_cache_size_bytes_max",      KSTAT_DATA_UINT64 },
  144         { "metadata_cache_overflow",            KSTAT_DATA_UINT64 }
  145 };
  146 
  147 struct {
  148         wmsum_t cache_count;
  149         wmsum_t cache_total_evicts;
  150         wmsum_t cache_levels[DN_MAX_LEVELS];
  151         wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
  152         wmsum_t hash_hits;
  153         wmsum_t hash_misses;
  154         wmsum_t hash_collisions;
  155         wmsum_t hash_chains;
  156         wmsum_t hash_insert_race;
  157         wmsum_t metadata_cache_count;
  158         wmsum_t metadata_cache_overflow;
  159 } dbuf_sums;
  160 
  161 #define DBUF_STAT_INCR(stat, val)       \
  162         wmsum_add(&dbuf_sums.stat, val);
  163 #define DBUF_STAT_DECR(stat, val)       \
  164         DBUF_STAT_INCR(stat, -(val));
  165 #define DBUF_STAT_BUMP(stat)            \
  166         DBUF_STAT_INCR(stat, 1);
  167 #define DBUF_STAT_BUMPDOWN(stat)        \
  168         DBUF_STAT_INCR(stat, -1);
  169 #define DBUF_STAT_MAX(stat, v) {                                        \
  170         uint64_t _m;                                                    \
  171         while ((v) > (_m = dbuf_stats.stat.value.ui64) &&               \
  172             (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
  173                 continue;                                               \
  174 }
  175 
  176 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
  177 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
  178 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
  179 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
  180 
  181 /*
  182  * Global data structures and functions for the dbuf cache.
  183  */
  184 static kmem_cache_t *dbuf_kmem_cache;
  185 static taskq_t *dbu_evict_taskq;
  186 
  187 static kthread_t *dbuf_cache_evict_thread;
  188 static kmutex_t dbuf_evict_lock;
  189 static kcondvar_t dbuf_evict_cv;
  190 static boolean_t dbuf_evict_thread_exit;
  191 
  192 /*
  193  * There are two dbuf caches; each dbuf can only be in one of them at a time.
  194  *
  195  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
  196  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
  197  *    that represent the metadata that describes filesystems/snapshots/
  198  *    bookmarks/properties/etc. We only evict from this cache when we export a
  199  *    pool, to short-circuit as much I/O as possible for all administrative
  200  *    commands that need the metadata. There is no eviction policy for this
  201  *    cache, because we try to only include types in it which would occupy a
  202  *    very small amount of space per object but create a large impact on the
  203  *    performance of these commands. Instead, after it reaches a maximum size
  204  *    (which should only happen on very small memory systems with a very large
  205  *    number of filesystem objects), we stop taking new dbufs into the
  206  *    metadata cache, instead putting them in the normal dbuf cache.
  207  *
  208  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
  209  *    are not currently held but have been recently released. These dbufs
  210  *    are not eligible for arc eviction until they are aged out of the cache.
  211  *    Dbufs that are aged out of the cache will be immediately destroyed and
  212  *    become eligible for arc eviction.
  213  *
  214  * Dbufs are added to these caches once the last hold is released. If a dbuf is
  215  * later accessed and still exists in the dbuf cache, then it will be removed
  216  * from the cache and later re-added to the head of the cache.
  217  *
  218  * If a given dbuf meets the requirements for the metadata cache, it will go
  219  * there, otherwise it will be considered for the generic LRU dbuf cache. The
  220  * caches and the refcounts tracking their sizes are stored in an array indexed
  221  * by those caches' matching enum values (from dbuf_cached_state_t).
  222  */
  223 typedef struct dbuf_cache {
  224         multilist_t cache;
  225         zfs_refcount_t size ____cacheline_aligned;
  226 } dbuf_cache_t;
  227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
  228 
  229 /* Size limits for the caches */
  230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
  231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
  232 
  233 /* Set the default sizes of the caches to log2 fraction of arc size */
  234 static uint_t dbuf_cache_shift = 5;
  235 static uint_t dbuf_metadata_cache_shift = 6;
  236 
  237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
  238 static uint_t dbuf_mutex_cache_shift = 0;
  239 
  240 static unsigned long dbuf_cache_target_bytes(void);
  241 static unsigned long dbuf_metadata_cache_target_bytes(void);
  242 
  243 /*
  244  * The LRU dbuf cache uses a three-stage eviction policy:
  245  *      - A low water marker designates when the dbuf eviction thread
  246  *      should stop evicting from the dbuf cache.
  247  *      - When we reach the maximum size (aka mid water mark), we
  248  *      signal the eviction thread to run.
  249  *      - The high water mark indicates when the eviction thread
  250  *      is unable to keep up with the incoming load and eviction must
  251  *      happen in the context of the calling thread.
  252  *
  253  * The dbuf cache:
  254  *                                                 (max size)
  255  *                                      low water   mid water   hi water
  256  * +----------------------------------------+----------+----------+
  257  * |                                        |          |          |
  258  * |                                        |          |          |
  259  * |                                        |          |          |
  260  * |                                        |          |          |
  261  * +----------------------------------------+----------+----------+
  262  *                                        stop        signal     evict
  263  *                                      evicting     eviction   directly
  264  *                                                    thread
  265  *
  266  * The high and low water marks indicate the operating range for the eviction
  267  * thread. The low water mark is, by default, 90% of the total size of the
  268  * cache and the high water mark is at 110% (both of these percentages can be
  269  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
  270  * respectively). The eviction thread will try to ensure that the cache remains
  271  * within this range by waking up every second and checking if the cache is
  272  * above the low water mark. The thread can also be woken up by callers adding
  273  * elements into the cache if the cache is larger than the mid water (i.e max
  274  * cache size). Once the eviction thread is woken up and eviction is required,
  275  * it will continue evicting buffers until it's able to reduce the cache size
  276  * to the low water mark. If the cache size continues to grow and hits the high
  277  * water mark, then callers adding elements to the cache will begin to evict
  278  * directly from the cache until the cache is no longer above the high water
  279  * mark.
  280  */
  281 
  282 /*
  283  * The percentage above and below the maximum cache size.
  284  */
  285 static uint_t dbuf_cache_hiwater_pct = 10;
  286 static uint_t dbuf_cache_lowater_pct = 10;
  287 
  288 static int
  289 dbuf_cons(void *vdb, void *unused, int kmflag)
  290 {
  291         (void) unused, (void) kmflag;
  292         dmu_buf_impl_t *db = vdb;
  293         memset(db, 0, sizeof (dmu_buf_impl_t));
  294 
  295         mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
  296         rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
  297         cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
  298         multilist_link_init(&db->db_cache_link);
  299         zfs_refcount_create(&db->db_holds);
  300 
  301         return (0);
  302 }
  303 
  304 static void
  305 dbuf_dest(void *vdb, void *unused)
  306 {
  307         (void) unused;
  308         dmu_buf_impl_t *db = vdb;
  309         mutex_destroy(&db->db_mtx);
  310         rw_destroy(&db->db_rwlock);
  311         cv_destroy(&db->db_changed);
  312         ASSERT(!multilist_link_active(&db->db_cache_link));
  313         zfs_refcount_destroy(&db->db_holds);
  314 }
  315 
  316 /*
  317  * dbuf hash table routines
  318  */
  319 static dbuf_hash_table_t dbuf_hash_table;
  320 
  321 /*
  322  * We use Cityhash for this. It's fast, and has good hash properties without
  323  * requiring any large static buffers.
  324  */
  325 static uint64_t
  326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
  327 {
  328         return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
  329 }
  330 
  331 #define DTRACE_SET_STATE(db, why) \
  332         DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
  333             const char *, why)
  334 
  335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid)         \
  336         ((dbuf)->db.db_object == (obj) &&               \
  337         (dbuf)->db_objset == (os) &&                    \
  338         (dbuf)->db_level == (level) &&                  \
  339         (dbuf)->db_blkid == (blkid))
  340 
  341 dmu_buf_impl_t *
  342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
  343     uint64_t *hash_out)
  344 {
  345         dbuf_hash_table_t *h = &dbuf_hash_table;
  346         uint64_t hv;
  347         uint64_t idx;
  348         dmu_buf_impl_t *db;
  349 
  350         hv = dbuf_hash(os, obj, level, blkid);
  351         idx = hv & h->hash_table_mask;
  352 
  353         mutex_enter(DBUF_HASH_MUTEX(h, idx));
  354         for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
  355                 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
  356                         mutex_enter(&db->db_mtx);
  357                         if (db->db_state != DB_EVICTING) {
  358                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
  359                                 return (db);
  360                         }
  361                         mutex_exit(&db->db_mtx);
  362                 }
  363         }
  364         mutex_exit(DBUF_HASH_MUTEX(h, idx));
  365         if (hash_out != NULL)
  366                 *hash_out = hv;
  367         return (NULL);
  368 }
  369 
  370 static dmu_buf_impl_t *
  371 dbuf_find_bonus(objset_t *os, uint64_t object)
  372 {
  373         dnode_t *dn;
  374         dmu_buf_impl_t *db = NULL;
  375 
  376         if (dnode_hold(os, object, FTAG, &dn) == 0) {
  377                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
  378                 if (dn->dn_bonus != NULL) {
  379                         db = dn->dn_bonus;
  380                         mutex_enter(&db->db_mtx);
  381                 }
  382                 rw_exit(&dn->dn_struct_rwlock);
  383                 dnode_rele(dn, FTAG);
  384         }
  385         return (db);
  386 }
  387 
  388 /*
  389  * Insert an entry into the hash table.  If there is already an element
  390  * equal to elem in the hash table, then the already existing element
  391  * will be returned and the new element will not be inserted.
  392  * Otherwise returns NULL.
  393  */
  394 static dmu_buf_impl_t *
  395 dbuf_hash_insert(dmu_buf_impl_t *db)
  396 {
  397         dbuf_hash_table_t *h = &dbuf_hash_table;
  398         objset_t *os = db->db_objset;
  399         uint64_t obj = db->db.db_object;
  400         int level = db->db_level;
  401         uint64_t blkid, idx;
  402         dmu_buf_impl_t *dbf;
  403         uint32_t i;
  404 
  405         blkid = db->db_blkid;
  406         ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
  407         idx = db->db_hash & h->hash_table_mask;
  408 
  409         mutex_enter(DBUF_HASH_MUTEX(h, idx));
  410         for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
  411             dbf = dbf->db_hash_next, i++) {
  412                 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
  413                         mutex_enter(&dbf->db_mtx);
  414                         if (dbf->db_state != DB_EVICTING) {
  415                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
  416                                 return (dbf);
  417                         }
  418                         mutex_exit(&dbf->db_mtx);
  419                 }
  420         }
  421 
  422         if (i > 0) {
  423                 DBUF_STAT_BUMP(hash_collisions);
  424                 if (i == 1)
  425                         DBUF_STAT_BUMP(hash_chains);
  426 
  427                 DBUF_STAT_MAX(hash_chain_max, i);
  428         }
  429 
  430         mutex_enter(&db->db_mtx);
  431         db->db_hash_next = h->hash_table[idx];
  432         h->hash_table[idx] = db;
  433         mutex_exit(DBUF_HASH_MUTEX(h, idx));
  434         uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
  435         DBUF_STAT_MAX(hash_elements_max, he);
  436 
  437         return (NULL);
  438 }
  439 
  440 /*
  441  * This returns whether this dbuf should be stored in the metadata cache, which
  442  * is based on whether it's from one of the dnode types that store data related
  443  * to traversing dataset hierarchies.
  444  */
  445 static boolean_t
  446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
  447 {
  448         DB_DNODE_ENTER(db);
  449         dmu_object_type_t type = DB_DNODE(db)->dn_type;
  450         DB_DNODE_EXIT(db);
  451 
  452         /* Check if this dbuf is one of the types we care about */
  453         if (DMU_OT_IS_METADATA_CACHED(type)) {
  454                 /* If we hit this, then we set something up wrong in dmu_ot */
  455                 ASSERT(DMU_OT_IS_METADATA(type));
  456 
  457                 /*
  458                  * Sanity check for small-memory systems: don't allocate too
  459                  * much memory for this purpose.
  460                  */
  461                 if (zfs_refcount_count(
  462                     &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
  463                     dbuf_metadata_cache_target_bytes()) {
  464                         DBUF_STAT_BUMP(metadata_cache_overflow);
  465                         return (B_FALSE);
  466                 }
  467 
  468                 return (B_TRUE);
  469         }
  470 
  471         return (B_FALSE);
  472 }
  473 
  474 /*
  475  * Remove an entry from the hash table.  It must be in the EVICTING state.
  476  */
  477 static void
  478 dbuf_hash_remove(dmu_buf_impl_t *db)
  479 {
  480         dbuf_hash_table_t *h = &dbuf_hash_table;
  481         uint64_t idx;
  482         dmu_buf_impl_t *dbf, **dbp;
  483 
  484         ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
  485             db->db_blkid), ==, db->db_hash);
  486         idx = db->db_hash & h->hash_table_mask;
  487 
  488         /*
  489          * We mustn't hold db_mtx to maintain lock ordering:
  490          * DBUF_HASH_MUTEX > db_mtx.
  491          */
  492         ASSERT(zfs_refcount_is_zero(&db->db_holds));
  493         ASSERT(db->db_state == DB_EVICTING);
  494         ASSERT(!MUTEX_HELD(&db->db_mtx));
  495 
  496         mutex_enter(DBUF_HASH_MUTEX(h, idx));
  497         dbp = &h->hash_table[idx];
  498         while ((dbf = *dbp) != db) {
  499                 dbp = &dbf->db_hash_next;
  500                 ASSERT(dbf != NULL);
  501         }
  502         *dbp = db->db_hash_next;
  503         db->db_hash_next = NULL;
  504         if (h->hash_table[idx] &&
  505             h->hash_table[idx]->db_hash_next == NULL)
  506                 DBUF_STAT_BUMPDOWN(hash_chains);
  507         mutex_exit(DBUF_HASH_MUTEX(h, idx));
  508         atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
  509 }
  510 
  511 typedef enum {
  512         DBVU_EVICTING,
  513         DBVU_NOT_EVICTING
  514 } dbvu_verify_type_t;
  515 
  516 static void
  517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
  518 {
  519 #ifdef ZFS_DEBUG
  520         int64_t holds;
  521 
  522         if (db->db_user == NULL)
  523                 return;
  524 
  525         /* Only data blocks support the attachment of user data. */
  526         ASSERT(db->db_level == 0);
  527 
  528         /* Clients must resolve a dbuf before attaching user data. */
  529         ASSERT(db->db.db_data != NULL);
  530         ASSERT3U(db->db_state, ==, DB_CACHED);
  531 
  532         holds = zfs_refcount_count(&db->db_holds);
  533         if (verify_type == DBVU_EVICTING) {
  534                 /*
  535                  * Immediate eviction occurs when holds == dirtycnt.
  536                  * For normal eviction buffers, holds is zero on
  537                  * eviction, except when dbuf_fix_old_data() calls
  538                  * dbuf_clear_data().  However, the hold count can grow
  539                  * during eviction even though db_mtx is held (see
  540                  * dmu_bonus_hold() for an example), so we can only
  541                  * test the generic invariant that holds >= dirtycnt.
  542                  */
  543                 ASSERT3U(holds, >=, db->db_dirtycnt);
  544         } else {
  545                 if (db->db_user_immediate_evict == TRUE)
  546                         ASSERT3U(holds, >=, db->db_dirtycnt);
  547                 else
  548                         ASSERT3U(holds, >, 0);
  549         }
  550 #endif
  551 }
  552 
  553 static void
  554 dbuf_evict_user(dmu_buf_impl_t *db)
  555 {
  556         dmu_buf_user_t *dbu = db->db_user;
  557 
  558         ASSERT(MUTEX_HELD(&db->db_mtx));
  559 
  560         if (dbu == NULL)
  561                 return;
  562 
  563         dbuf_verify_user(db, DBVU_EVICTING);
  564         db->db_user = NULL;
  565 
  566 #ifdef ZFS_DEBUG
  567         if (dbu->dbu_clear_on_evict_dbufp != NULL)
  568                 *dbu->dbu_clear_on_evict_dbufp = NULL;
  569 #endif
  570 
  571         /*
  572          * There are two eviction callbacks - one that we call synchronously
  573          * and one that we invoke via a taskq.  The async one is useful for
  574          * avoiding lock order reversals and limiting stack depth.
  575          *
  576          * Note that if we have a sync callback but no async callback,
  577          * it's likely that the sync callback will free the structure
  578          * containing the dbu.  In that case we need to take care to not
  579          * dereference dbu after calling the sync evict func.
  580          */
  581         boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
  582 
  583         if (dbu->dbu_evict_func_sync != NULL)
  584                 dbu->dbu_evict_func_sync(dbu);
  585 
  586         if (has_async) {
  587                 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
  588                     dbu, 0, &dbu->dbu_tqent);
  589         }
  590 }
  591 
  592 boolean_t
  593 dbuf_is_metadata(dmu_buf_impl_t *db)
  594 {
  595         /*
  596          * Consider indirect blocks and spill blocks to be meta data.
  597          */
  598         if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
  599                 return (B_TRUE);
  600         } else {
  601                 boolean_t is_metadata;
  602 
  603                 DB_DNODE_ENTER(db);
  604                 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
  605                 DB_DNODE_EXIT(db);
  606 
  607                 return (is_metadata);
  608         }
  609 }
  610 
  611 /*
  612  * We want to exclude buffers that are on a special allocation class from
  613  * L2ARC.
  614  */
  615 boolean_t
  616 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
  617 {
  618         vdev_t *vd = NULL;
  619         zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
  620         blkptr_t *bp = db->db_blkptr;
  621 
  622         if (bp != NULL && !BP_IS_HOLE(bp)) {
  623                 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
  624                 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
  625 
  626                 if (vdev < rvd->vdev_children)
  627                         vd = rvd->vdev_child[vdev];
  628 
  629                 if (cache == ZFS_CACHE_ALL ||
  630                     (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
  631                         if (vd == NULL)
  632                                 return (B_TRUE);
  633 
  634                         if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
  635                             vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
  636                             l2arc_exclude_special == 0)
  637                                 return (B_TRUE);
  638                 }
  639         }
  640 
  641         return (B_FALSE);
  642 }
  643 
  644 static inline boolean_t
  645 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
  646 {
  647         vdev_t *vd = NULL;
  648         zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
  649 
  650         if (bp != NULL && !BP_IS_HOLE(bp)) {
  651                 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
  652                 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
  653 
  654                 if (vdev < rvd->vdev_children)
  655                         vd = rvd->vdev_child[vdev];
  656 
  657                 if (cache == ZFS_CACHE_ALL || ((level > 0 ||
  658                     DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
  659                     cache == ZFS_CACHE_METADATA)) {
  660                         if (vd == NULL)
  661                                 return (B_TRUE);
  662 
  663                         if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
  664                             vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
  665                             l2arc_exclude_special == 0)
  666                                 return (B_TRUE);
  667                 }
  668         }
  669 
  670         return (B_FALSE);
  671 }
  672 
  673 
  674 /*
  675  * This function *must* return indices evenly distributed between all
  676  * sublists of the multilist. This is needed due to how the dbuf eviction
  677  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
  678  * distributed between all sublists and uses this assumption when
  679  * deciding which sublist to evict from and how much to evict from it.
  680  */
  681 static unsigned int
  682 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
  683 {
  684         dmu_buf_impl_t *db = obj;
  685 
  686         /*
  687          * The assumption here, is the hash value for a given
  688          * dmu_buf_impl_t will remain constant throughout it's lifetime
  689          * (i.e. it's objset, object, level and blkid fields don't change).
  690          * Thus, we don't need to store the dbuf's sublist index
  691          * on insertion, as this index can be recalculated on removal.
  692          *
  693          * Also, the low order bits of the hash value are thought to be
  694          * distributed evenly. Otherwise, in the case that the multilist
  695          * has a power of two number of sublists, each sublists' usage
  696          * would not be evenly distributed. In this context full 64bit
  697          * division would be a waste of time, so limit it to 32 bits.
  698          */
  699         return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
  700             db->db_level, db->db_blkid) %
  701             multilist_get_num_sublists(ml));
  702 }
  703 
  704 /*
  705  * The target size of the dbuf cache can grow with the ARC target,
  706  * unless limited by the tunable dbuf_cache_max_bytes.
  707  */
  708 static inline unsigned long
  709 dbuf_cache_target_bytes(void)
  710 {
  711         return (MIN(dbuf_cache_max_bytes,
  712             arc_target_bytes() >> dbuf_cache_shift));
  713 }
  714 
  715 /*
  716  * The target size of the dbuf metadata cache can grow with the ARC target,
  717  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
  718  */
  719 static inline unsigned long
  720 dbuf_metadata_cache_target_bytes(void)
  721 {
  722         return (MIN(dbuf_metadata_cache_max_bytes,
  723             arc_target_bytes() >> dbuf_metadata_cache_shift));
  724 }
  725 
  726 static inline uint64_t
  727 dbuf_cache_hiwater_bytes(void)
  728 {
  729         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
  730         return (dbuf_cache_target +
  731             (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
  732 }
  733 
  734 static inline uint64_t
  735 dbuf_cache_lowater_bytes(void)
  736 {
  737         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
  738         return (dbuf_cache_target -
  739             (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
  740 }
  741 
  742 static inline boolean_t
  743 dbuf_cache_above_lowater(void)
  744 {
  745         return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
  746             dbuf_cache_lowater_bytes());
  747 }
  748 
  749 /*
  750  * Evict the oldest eligible dbuf from the dbuf cache.
  751  */
  752 static void
  753 dbuf_evict_one(void)
  754 {
  755         int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
  756         multilist_sublist_t *mls = multilist_sublist_lock(
  757             &dbuf_caches[DB_DBUF_CACHE].cache, idx);
  758 
  759         ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
  760 
  761         dmu_buf_impl_t *db = multilist_sublist_tail(mls);
  762         while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
  763                 db = multilist_sublist_prev(mls, db);
  764         }
  765 
  766         DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
  767             multilist_sublist_t *, mls);
  768 
  769         if (db != NULL) {
  770                 multilist_sublist_remove(mls, db);
  771                 multilist_sublist_unlock(mls);
  772                 (void) zfs_refcount_remove_many(
  773                     &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
  774                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
  775                 DBUF_STAT_BUMPDOWN(cache_count);
  776                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
  777                     db->db.db_size);
  778                 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
  779                 db->db_caching_status = DB_NO_CACHE;
  780                 dbuf_destroy(db);
  781                 DBUF_STAT_BUMP(cache_total_evicts);
  782         } else {
  783                 multilist_sublist_unlock(mls);
  784         }
  785 }
  786 
  787 /*
  788  * The dbuf evict thread is responsible for aging out dbufs from the
  789  * cache. Once the cache has reached it's maximum size, dbufs are removed
  790  * and destroyed. The eviction thread will continue running until the size
  791  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
  792  * out of the cache it is destroyed and becomes eligible for arc eviction.
  793  */
  794 static __attribute__((noreturn)) void
  795 dbuf_evict_thread(void *unused)
  796 {
  797         (void) unused;
  798         callb_cpr_t cpr;
  799 
  800         CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
  801 
  802         mutex_enter(&dbuf_evict_lock);
  803         while (!dbuf_evict_thread_exit) {
  804                 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
  805                         CALLB_CPR_SAFE_BEGIN(&cpr);
  806                         (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
  807                             &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
  808                         CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
  809                 }
  810                 mutex_exit(&dbuf_evict_lock);
  811 
  812                 /*
  813                  * Keep evicting as long as we're above the low water mark
  814                  * for the cache. We do this without holding the locks to
  815                  * minimize lock contention.
  816                  */
  817                 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
  818                         dbuf_evict_one();
  819                 }
  820 
  821                 mutex_enter(&dbuf_evict_lock);
  822         }
  823 
  824         dbuf_evict_thread_exit = B_FALSE;
  825         cv_broadcast(&dbuf_evict_cv);
  826         CALLB_CPR_EXIT(&cpr);   /* drops dbuf_evict_lock */
  827         thread_exit();
  828 }
  829 
  830 /*
  831  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
  832  * If the dbuf cache is at its high water mark, then evict a dbuf from the
  833  * dbuf cache using the caller's context.
  834  */
  835 static void
  836 dbuf_evict_notify(uint64_t size)
  837 {
  838         /*
  839          * We check if we should evict without holding the dbuf_evict_lock,
  840          * because it's OK to occasionally make the wrong decision here,
  841          * and grabbing the lock results in massive lock contention.
  842          */
  843         if (size > dbuf_cache_target_bytes()) {
  844                 if (size > dbuf_cache_hiwater_bytes())
  845                         dbuf_evict_one();
  846                 cv_signal(&dbuf_evict_cv);
  847         }
  848 }
  849 
  850 static int
  851 dbuf_kstat_update(kstat_t *ksp, int rw)
  852 {
  853         dbuf_stats_t *ds = ksp->ks_data;
  854         dbuf_hash_table_t *h = &dbuf_hash_table;
  855 
  856         if (rw == KSTAT_WRITE)
  857                 return (SET_ERROR(EACCES));
  858 
  859         ds->cache_count.value.ui64 =
  860             wmsum_value(&dbuf_sums.cache_count);
  861         ds->cache_size_bytes.value.ui64 =
  862             zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
  863         ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
  864         ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
  865         ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
  866         ds->cache_total_evicts.value.ui64 =
  867             wmsum_value(&dbuf_sums.cache_total_evicts);
  868         for (int i = 0; i < DN_MAX_LEVELS; i++) {
  869                 ds->cache_levels[i].value.ui64 =
  870                     wmsum_value(&dbuf_sums.cache_levels[i]);
  871                 ds->cache_levels_bytes[i].value.ui64 =
  872                     wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
  873         }
  874         ds->hash_hits.value.ui64 =
  875             wmsum_value(&dbuf_sums.hash_hits);
  876         ds->hash_misses.value.ui64 =
  877             wmsum_value(&dbuf_sums.hash_misses);
  878         ds->hash_collisions.value.ui64 =
  879             wmsum_value(&dbuf_sums.hash_collisions);
  880         ds->hash_chains.value.ui64 =
  881             wmsum_value(&dbuf_sums.hash_chains);
  882         ds->hash_insert_race.value.ui64 =
  883             wmsum_value(&dbuf_sums.hash_insert_race);
  884         ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
  885         ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
  886         ds->metadata_cache_count.value.ui64 =
  887             wmsum_value(&dbuf_sums.metadata_cache_count);
  888         ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
  889             &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
  890         ds->metadata_cache_overflow.value.ui64 =
  891             wmsum_value(&dbuf_sums.metadata_cache_overflow);
  892         return (0);
  893 }
  894 
  895 void
  896 dbuf_init(void)
  897 {
  898         uint64_t hmsize, hsize = 1ULL << 16;
  899         dbuf_hash_table_t *h = &dbuf_hash_table;
  900 
  901         /*
  902          * The hash table is big enough to fill one eighth of physical memory
  903          * with an average block size of zfs_arc_average_blocksize (default 8K).
  904          * By default, the table will take up
  905          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
  906          */
  907         while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
  908                 hsize <<= 1;
  909 
  910         h->hash_table = NULL;
  911         while (h->hash_table == NULL) {
  912                 h->hash_table_mask = hsize - 1;
  913 
  914                 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
  915                 if (h->hash_table == NULL)
  916                         hsize >>= 1;
  917 
  918                 ASSERT3U(hsize, >=, 1ULL << 10);
  919         }
  920 
  921         /*
  922          * The hash table buckets are protected by an array of mutexes where
  923          * each mutex is reponsible for protecting 128 buckets.  A minimum
  924          * array size of 8192 is targeted to avoid contention.
  925          */
  926         if (dbuf_mutex_cache_shift == 0)
  927                 hmsize = MAX(hsize >> 7, 1ULL << 13);
  928         else
  929                 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
  930 
  931         h->hash_mutexes = NULL;
  932         while (h->hash_mutexes == NULL) {
  933                 h->hash_mutex_mask = hmsize - 1;
  934 
  935                 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
  936                     KM_SLEEP);
  937                 if (h->hash_mutexes == NULL)
  938                         hmsize >>= 1;
  939         }
  940 
  941         dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
  942             sizeof (dmu_buf_impl_t),
  943             0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
  944 
  945         for (int i = 0; i < hmsize; i++)
  946                 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
  947 
  948         dbuf_stats_init(h);
  949 
  950         /*
  951          * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
  952          * configuration is not required.
  953          */
  954         dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
  955 
  956         for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
  957                 multilist_create(&dbuf_caches[dcs].cache,
  958                     sizeof (dmu_buf_impl_t),
  959                     offsetof(dmu_buf_impl_t, db_cache_link),
  960                     dbuf_cache_multilist_index_func);
  961                 zfs_refcount_create(&dbuf_caches[dcs].size);
  962         }
  963 
  964         dbuf_evict_thread_exit = B_FALSE;
  965         mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
  966         cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
  967         dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
  968             NULL, 0, &p0, TS_RUN, minclsyspri);
  969 
  970         wmsum_init(&dbuf_sums.cache_count, 0);
  971         wmsum_init(&dbuf_sums.cache_total_evicts, 0);
  972         for (int i = 0; i < DN_MAX_LEVELS; i++) {
  973                 wmsum_init(&dbuf_sums.cache_levels[i], 0);
  974                 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
  975         }
  976         wmsum_init(&dbuf_sums.hash_hits, 0);
  977         wmsum_init(&dbuf_sums.hash_misses, 0);
  978         wmsum_init(&dbuf_sums.hash_collisions, 0);
  979         wmsum_init(&dbuf_sums.hash_chains, 0);
  980         wmsum_init(&dbuf_sums.hash_insert_race, 0);
  981         wmsum_init(&dbuf_sums.metadata_cache_count, 0);
  982         wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
  983 
  984         dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
  985             KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
  986             KSTAT_FLAG_VIRTUAL);
  987         if (dbuf_ksp != NULL) {
  988                 for (int i = 0; i < DN_MAX_LEVELS; i++) {
  989                         snprintf(dbuf_stats.cache_levels[i].name,
  990                             KSTAT_STRLEN, "cache_level_%d", i);
  991                         dbuf_stats.cache_levels[i].data_type =
  992                             KSTAT_DATA_UINT64;
  993                         snprintf(dbuf_stats.cache_levels_bytes[i].name,
  994                             KSTAT_STRLEN, "cache_level_%d_bytes", i);
  995                         dbuf_stats.cache_levels_bytes[i].data_type =
  996                             KSTAT_DATA_UINT64;
  997                 }
  998                 dbuf_ksp->ks_data = &dbuf_stats;
  999                 dbuf_ksp->ks_update = dbuf_kstat_update;
 1000                 kstat_install(dbuf_ksp);
 1001         }
 1002 }
 1003 
 1004 void
 1005 dbuf_fini(void)
 1006 {
 1007         dbuf_hash_table_t *h = &dbuf_hash_table;
 1008 
 1009         dbuf_stats_destroy();
 1010 
 1011         for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
 1012                 mutex_destroy(&h->hash_mutexes[i]);
 1013 
 1014         vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
 1015         vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
 1016             sizeof (kmutex_t));
 1017 
 1018         kmem_cache_destroy(dbuf_kmem_cache);
 1019         taskq_destroy(dbu_evict_taskq);
 1020 
 1021         mutex_enter(&dbuf_evict_lock);
 1022         dbuf_evict_thread_exit = B_TRUE;
 1023         while (dbuf_evict_thread_exit) {
 1024                 cv_signal(&dbuf_evict_cv);
 1025                 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
 1026         }
 1027         mutex_exit(&dbuf_evict_lock);
 1028 
 1029         mutex_destroy(&dbuf_evict_lock);
 1030         cv_destroy(&dbuf_evict_cv);
 1031 
 1032         for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
 1033                 zfs_refcount_destroy(&dbuf_caches[dcs].size);
 1034                 multilist_destroy(&dbuf_caches[dcs].cache);
 1035         }
 1036 
 1037         if (dbuf_ksp != NULL) {
 1038                 kstat_delete(dbuf_ksp);
 1039                 dbuf_ksp = NULL;
 1040         }
 1041 
 1042         wmsum_fini(&dbuf_sums.cache_count);
 1043         wmsum_fini(&dbuf_sums.cache_total_evicts);
 1044         for (int i = 0; i < DN_MAX_LEVELS; i++) {
 1045                 wmsum_fini(&dbuf_sums.cache_levels[i]);
 1046                 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
 1047         }
 1048         wmsum_fini(&dbuf_sums.hash_hits);
 1049         wmsum_fini(&dbuf_sums.hash_misses);
 1050         wmsum_fini(&dbuf_sums.hash_collisions);
 1051         wmsum_fini(&dbuf_sums.hash_chains);
 1052         wmsum_fini(&dbuf_sums.hash_insert_race);
 1053         wmsum_fini(&dbuf_sums.metadata_cache_count);
 1054         wmsum_fini(&dbuf_sums.metadata_cache_overflow);
 1055 }
 1056 
 1057 /*
 1058  * Other stuff.
 1059  */
 1060 
 1061 #ifdef ZFS_DEBUG
 1062 static void
 1063 dbuf_verify(dmu_buf_impl_t *db)
 1064 {
 1065         dnode_t *dn;
 1066         dbuf_dirty_record_t *dr;
 1067         uint32_t txg_prev;
 1068 
 1069         ASSERT(MUTEX_HELD(&db->db_mtx));
 1070 
 1071         if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
 1072                 return;
 1073 
 1074         ASSERT(db->db_objset != NULL);
 1075         DB_DNODE_ENTER(db);
 1076         dn = DB_DNODE(db);
 1077         if (dn == NULL) {
 1078                 ASSERT(db->db_parent == NULL);
 1079                 ASSERT(db->db_blkptr == NULL);
 1080         } else {
 1081                 ASSERT3U(db->db.db_object, ==, dn->dn_object);
 1082                 ASSERT3P(db->db_objset, ==, dn->dn_objset);
 1083                 ASSERT3U(db->db_level, <, dn->dn_nlevels);
 1084                 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
 1085                     db->db_blkid == DMU_SPILL_BLKID ||
 1086                     !avl_is_empty(&dn->dn_dbufs));
 1087         }
 1088         if (db->db_blkid == DMU_BONUS_BLKID) {
 1089                 ASSERT(dn != NULL);
 1090                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
 1091                 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
 1092         } else if (db->db_blkid == DMU_SPILL_BLKID) {
 1093                 ASSERT(dn != NULL);
 1094                 ASSERT0(db->db.db_offset);
 1095         } else {
 1096                 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
 1097         }
 1098 
 1099         if ((dr = list_head(&db->db_dirty_records)) != NULL) {
 1100                 ASSERT(dr->dr_dbuf == db);
 1101                 txg_prev = dr->dr_txg;
 1102                 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
 1103                     dr = list_next(&db->db_dirty_records, dr)) {
 1104                         ASSERT(dr->dr_dbuf == db);
 1105                         ASSERT(txg_prev > dr->dr_txg);
 1106                         txg_prev = dr->dr_txg;
 1107                 }
 1108         }
 1109 
 1110         /*
 1111          * We can't assert that db_size matches dn_datablksz because it
 1112          * can be momentarily different when another thread is doing
 1113          * dnode_set_blksz().
 1114          */
 1115         if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
 1116                 dr = db->db_data_pending;
 1117                 /*
 1118                  * It should only be modified in syncing context, so
 1119                  * make sure we only have one copy of the data.
 1120                  */
 1121                 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
 1122         }
 1123 
 1124         /* verify db->db_blkptr */
 1125         if (db->db_blkptr) {
 1126                 if (db->db_parent == dn->dn_dbuf) {
 1127                         /* db is pointed to by the dnode */
 1128                         /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
 1129                         if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
 1130                                 ASSERT(db->db_parent == NULL);
 1131                         else
 1132                                 ASSERT(db->db_parent != NULL);
 1133                         if (db->db_blkid != DMU_SPILL_BLKID)
 1134                                 ASSERT3P(db->db_blkptr, ==,
 1135                                     &dn->dn_phys->dn_blkptr[db->db_blkid]);
 1136                 } else {
 1137                         /* db is pointed to by an indirect block */
 1138                         int epb __maybe_unused = db->db_parent->db.db_size >>
 1139                             SPA_BLKPTRSHIFT;
 1140                         ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
 1141                         ASSERT3U(db->db_parent->db.db_object, ==,
 1142                             db->db.db_object);
 1143                         /*
 1144                          * dnode_grow_indblksz() can make this fail if we don't
 1145                          * have the parent's rwlock.  XXX indblksz no longer
 1146                          * grows.  safe to do this now?
 1147                          */
 1148                         if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
 1149                                 ASSERT3P(db->db_blkptr, ==,
 1150                                     ((blkptr_t *)db->db_parent->db.db_data +
 1151                                     db->db_blkid % epb));
 1152                         }
 1153                 }
 1154         }
 1155         if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
 1156             (db->db_buf == NULL || db->db_buf->b_data) &&
 1157             db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
 1158             db->db_state != DB_FILL && !dn->dn_free_txg) {
 1159                 /*
 1160                  * If the blkptr isn't set but they have nonzero data,
 1161                  * it had better be dirty, otherwise we'll lose that
 1162                  * data when we evict this buffer.
 1163                  *
 1164                  * There is an exception to this rule for indirect blocks; in
 1165                  * this case, if the indirect block is a hole, we fill in a few
 1166                  * fields on each of the child blocks (importantly, birth time)
 1167                  * to prevent hole birth times from being lost when you
 1168                  * partially fill in a hole.
 1169                  */
 1170                 if (db->db_dirtycnt == 0) {
 1171                         if (db->db_level == 0) {
 1172                                 uint64_t *buf = db->db.db_data;
 1173                                 int i;
 1174 
 1175                                 for (i = 0; i < db->db.db_size >> 3; i++) {
 1176                                         ASSERT(buf[i] == 0);
 1177                                 }
 1178                         } else {
 1179                                 blkptr_t *bps = db->db.db_data;
 1180                                 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
 1181                                     db->db.db_size);
 1182                                 /*
 1183                                  * We want to verify that all the blkptrs in the
 1184                                  * indirect block are holes, but we may have
 1185                                  * automatically set up a few fields for them.
 1186                                  * We iterate through each blkptr and verify
 1187                                  * they only have those fields set.
 1188                                  */
 1189                                 for (int i = 0;
 1190                                     i < db->db.db_size / sizeof (blkptr_t);
 1191                                     i++) {
 1192                                         blkptr_t *bp = &bps[i];
 1193                                         ASSERT(ZIO_CHECKSUM_IS_ZERO(
 1194                                             &bp->blk_cksum));
 1195                                         ASSERT(
 1196                                             DVA_IS_EMPTY(&bp->blk_dva[0]) &&
 1197                                             DVA_IS_EMPTY(&bp->blk_dva[1]) &&
 1198                                             DVA_IS_EMPTY(&bp->blk_dva[2]));
 1199                                         ASSERT0(bp->blk_fill);
 1200                                         ASSERT0(bp->blk_pad[0]);
 1201                                         ASSERT0(bp->blk_pad[1]);
 1202                                         ASSERT(!BP_IS_EMBEDDED(bp));
 1203                                         ASSERT(BP_IS_HOLE(bp));
 1204                                         ASSERT0(bp->blk_phys_birth);
 1205                                 }
 1206                         }
 1207                 }
 1208         }
 1209         DB_DNODE_EXIT(db);
 1210 }
 1211 #endif
 1212 
 1213 static void
 1214 dbuf_clear_data(dmu_buf_impl_t *db)
 1215 {
 1216         ASSERT(MUTEX_HELD(&db->db_mtx));
 1217         dbuf_evict_user(db);
 1218         ASSERT3P(db->db_buf, ==, NULL);
 1219         db->db.db_data = NULL;
 1220         if (db->db_state != DB_NOFILL) {
 1221                 db->db_state = DB_UNCACHED;
 1222                 DTRACE_SET_STATE(db, "clear data");
 1223         }
 1224 }
 1225 
 1226 static void
 1227 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
 1228 {
 1229         ASSERT(MUTEX_HELD(&db->db_mtx));
 1230         ASSERT(buf != NULL);
 1231 
 1232         db->db_buf = buf;
 1233         ASSERT(buf->b_data != NULL);
 1234         db->db.db_data = buf->b_data;
 1235 }
 1236 
 1237 static arc_buf_t *
 1238 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
 1239 {
 1240         spa_t *spa = db->db_objset->os_spa;
 1241 
 1242         return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
 1243 }
 1244 
 1245 /*
 1246  * Loan out an arc_buf for read.  Return the loaned arc_buf.
 1247  */
 1248 arc_buf_t *
 1249 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
 1250 {
 1251         arc_buf_t *abuf;
 1252 
 1253         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 1254         mutex_enter(&db->db_mtx);
 1255         if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
 1256                 int blksz = db->db.db_size;
 1257                 spa_t *spa = db->db_objset->os_spa;
 1258 
 1259                 mutex_exit(&db->db_mtx);
 1260                 abuf = arc_loan_buf(spa, B_FALSE, blksz);
 1261                 memcpy(abuf->b_data, db->db.db_data, blksz);
 1262         } else {
 1263                 abuf = db->db_buf;
 1264                 arc_loan_inuse_buf(abuf, db);
 1265                 db->db_buf = NULL;
 1266                 dbuf_clear_data(db);
 1267                 mutex_exit(&db->db_mtx);
 1268         }
 1269         return (abuf);
 1270 }
 1271 
 1272 /*
 1273  * Calculate which level n block references the data at the level 0 offset
 1274  * provided.
 1275  */
 1276 uint64_t
 1277 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
 1278 {
 1279         if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
 1280                 /*
 1281                  * The level n blkid is equal to the level 0 blkid divided by
 1282                  * the number of level 0s in a level n block.
 1283                  *
 1284                  * The level 0 blkid is offset >> datablkshift =
 1285                  * offset / 2^datablkshift.
 1286                  *
 1287                  * The number of level 0s in a level n is the number of block
 1288                  * pointers in an indirect block, raised to the power of level.
 1289                  * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
 1290                  * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
 1291                  *
 1292                  * Thus, the level n blkid is: offset /
 1293                  * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
 1294                  * = offset / 2^(datablkshift + level *
 1295                  *   (indblkshift - SPA_BLKPTRSHIFT))
 1296                  * = offset >> (datablkshift + level *
 1297                  *   (indblkshift - SPA_BLKPTRSHIFT))
 1298                  */
 1299 
 1300                 const unsigned exp = dn->dn_datablkshift +
 1301                     level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
 1302 
 1303                 if (exp >= 8 * sizeof (offset)) {
 1304                         /* This only happens on the highest indirection level */
 1305                         ASSERT3U(level, ==, dn->dn_nlevels - 1);
 1306                         return (0);
 1307                 }
 1308 
 1309                 ASSERT3U(exp, <, 8 * sizeof (offset));
 1310 
 1311                 return (offset >> exp);
 1312         } else {
 1313                 ASSERT3U(offset, <, dn->dn_datablksz);
 1314                 return (0);
 1315         }
 1316 }
 1317 
 1318 /*
 1319  * This function is used to lock the parent of the provided dbuf. This should be
 1320  * used when modifying or reading db_blkptr.
 1321  */
 1322 db_lock_type_t
 1323 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
 1324 {
 1325         enum db_lock_type ret = DLT_NONE;
 1326         if (db->db_parent != NULL) {
 1327                 rw_enter(&db->db_parent->db_rwlock, rw);
 1328                 ret = DLT_PARENT;
 1329         } else if (dmu_objset_ds(db->db_objset) != NULL) {
 1330                 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
 1331                     tag);
 1332                 ret = DLT_OBJSET;
 1333         }
 1334         /*
 1335          * We only return a DLT_NONE lock when it's the top-most indirect block
 1336          * of the meta-dnode of the MOS.
 1337          */
 1338         return (ret);
 1339 }
 1340 
 1341 /*
 1342  * We need to pass the lock type in because it's possible that the block will
 1343  * move from being the topmost indirect block in a dnode (and thus, have no
 1344  * parent) to not the top-most via an indirection increase. This would cause a
 1345  * panic if we didn't pass the lock type in.
 1346  */
 1347 void
 1348 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
 1349 {
 1350         if (type == DLT_PARENT)
 1351                 rw_exit(&db->db_parent->db_rwlock);
 1352         else if (type == DLT_OBJSET)
 1353                 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
 1354 }
 1355 
 1356 static void
 1357 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
 1358     arc_buf_t *buf, void *vdb)
 1359 {
 1360         (void) zb, (void) bp;
 1361         dmu_buf_impl_t *db = vdb;
 1362 
 1363         mutex_enter(&db->db_mtx);
 1364         ASSERT3U(db->db_state, ==, DB_READ);
 1365         /*
 1366          * All reads are synchronous, so we must have a hold on the dbuf
 1367          */
 1368         ASSERT(zfs_refcount_count(&db->db_holds) > 0);
 1369         ASSERT(db->db_buf == NULL);
 1370         ASSERT(db->db.db_data == NULL);
 1371         if (buf == NULL) {
 1372                 /* i/o error */
 1373                 ASSERT(zio == NULL || zio->io_error != 0);
 1374                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 1375                 ASSERT3P(db->db_buf, ==, NULL);
 1376                 db->db_state = DB_UNCACHED;
 1377                 DTRACE_SET_STATE(db, "i/o error");
 1378         } else if (db->db_level == 0 && db->db_freed_in_flight) {
 1379                 /* freed in flight */
 1380                 ASSERT(zio == NULL || zio->io_error == 0);
 1381                 arc_release(buf, db);
 1382                 memset(buf->b_data, 0, db->db.db_size);
 1383                 arc_buf_freeze(buf);
 1384                 db->db_freed_in_flight = FALSE;
 1385                 dbuf_set_data(db, buf);
 1386                 db->db_state = DB_CACHED;
 1387                 DTRACE_SET_STATE(db, "freed in flight");
 1388         } else {
 1389                 /* success */
 1390                 ASSERT(zio == NULL || zio->io_error == 0);
 1391                 dbuf_set_data(db, buf);
 1392                 db->db_state = DB_CACHED;
 1393                 DTRACE_SET_STATE(db, "successful read");
 1394         }
 1395         cv_broadcast(&db->db_changed);
 1396         dbuf_rele_and_unlock(db, NULL, B_FALSE);
 1397 }
 1398 
 1399 /*
 1400  * Shortcut for performing reads on bonus dbufs.  Returns
 1401  * an error if we fail to verify the dnode associated with
 1402  * a decrypted block. Otherwise success.
 1403  */
 1404 static int
 1405 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
 1406 {
 1407         int bonuslen, max_bonuslen, err;
 1408 
 1409         err = dbuf_read_verify_dnode_crypt(db, flags);
 1410         if (err)
 1411                 return (err);
 1412 
 1413         bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
 1414         max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
 1415         ASSERT(MUTEX_HELD(&db->db_mtx));
 1416         ASSERT(DB_DNODE_HELD(db));
 1417         ASSERT3U(bonuslen, <=, db->db.db_size);
 1418         db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
 1419         arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
 1420         if (bonuslen < max_bonuslen)
 1421                 memset(db->db.db_data, 0, max_bonuslen);
 1422         if (bonuslen)
 1423                 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
 1424         db->db_state = DB_CACHED;
 1425         DTRACE_SET_STATE(db, "bonus buffer filled");
 1426         return (0);
 1427 }
 1428 
 1429 static void
 1430 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
 1431 {
 1432         blkptr_t *bps = db->db.db_data;
 1433         uint32_t indbs = 1ULL << dn->dn_indblkshift;
 1434         int n_bps = indbs >> SPA_BLKPTRSHIFT;
 1435 
 1436         for (int i = 0; i < n_bps; i++) {
 1437                 blkptr_t *bp = &bps[i];
 1438 
 1439                 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
 1440                 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
 1441                     dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
 1442                 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
 1443                 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
 1444                 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
 1445         }
 1446 }
 1447 
 1448 /*
 1449  * Handle reads on dbufs that are holes, if necessary.  This function
 1450  * requires that the dbuf's mutex is held. Returns success (0) if action
 1451  * was taken, ENOENT if no action was taken.
 1452  */
 1453 static int
 1454 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
 1455 {
 1456         ASSERT(MUTEX_HELD(&db->db_mtx));
 1457 
 1458         int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
 1459         /*
 1460          * For level 0 blocks only, if the above check fails:
 1461          * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
 1462          * processes the delete record and clears the bp while we are waiting
 1463          * for the dn_mtx (resulting in a "no" from block_freed).
 1464          */
 1465         if (!is_hole && db->db_level == 0) {
 1466                 is_hole = dnode_block_freed(dn, db->db_blkid) ||
 1467                     BP_IS_HOLE(db->db_blkptr);
 1468         }
 1469 
 1470         if (is_hole) {
 1471                 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
 1472                 memset(db->db.db_data, 0, db->db.db_size);
 1473 
 1474                 if (db->db_blkptr != NULL && db->db_level > 0 &&
 1475                     BP_IS_HOLE(db->db_blkptr) &&
 1476                     db->db_blkptr->blk_birth != 0) {
 1477                         dbuf_handle_indirect_hole(db, dn);
 1478                 }
 1479                 db->db_state = DB_CACHED;
 1480                 DTRACE_SET_STATE(db, "hole read satisfied");
 1481                 return (0);
 1482         }
 1483         return (ENOENT);
 1484 }
 1485 
 1486 /*
 1487  * This function ensures that, when doing a decrypting read of a block,
 1488  * we make sure we have decrypted the dnode associated with it. We must do
 1489  * this so that we ensure we are fully authenticating the checksum-of-MACs
 1490  * tree from the root of the objset down to this block. Indirect blocks are
 1491  * always verified against their secure checksum-of-MACs assuming that the
 1492  * dnode containing them is correct. Now that we are doing a decrypting read,
 1493  * we can be sure that the key is loaded and verify that assumption. This is
 1494  * especially important considering that we always read encrypted dnode
 1495  * blocks as raw data (without verifying their MACs) to start, and
 1496  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
 1497  */
 1498 static int
 1499 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
 1500 {
 1501         int err = 0;
 1502         objset_t *os = db->db_objset;
 1503         arc_buf_t *dnode_abuf;
 1504         dnode_t *dn;
 1505         zbookmark_phys_t zb;
 1506 
 1507         ASSERT(MUTEX_HELD(&db->db_mtx));
 1508 
 1509         if ((flags & DB_RF_NO_DECRYPT) != 0 ||
 1510             !os->os_encrypted || os->os_raw_receive)
 1511                 return (0);
 1512 
 1513         DB_DNODE_ENTER(db);
 1514         dn = DB_DNODE(db);
 1515         dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
 1516 
 1517         if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
 1518                 DB_DNODE_EXIT(db);
 1519                 return (0);
 1520         }
 1521 
 1522         SET_BOOKMARK(&zb, dmu_objset_id(os),
 1523             DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
 1524         err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
 1525 
 1526         /*
 1527          * An error code of EACCES tells us that the key is still not
 1528          * available. This is ok if we are only reading authenticated
 1529          * (and therefore non-encrypted) blocks.
 1530          */
 1531         if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
 1532             !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
 1533             (db->db_blkid == DMU_BONUS_BLKID &&
 1534             !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
 1535                 err = 0;
 1536 
 1537         DB_DNODE_EXIT(db);
 1538 
 1539         return (err);
 1540 }
 1541 
 1542 /*
 1543  * Drops db_mtx and the parent lock specified by dblt and tag before
 1544  * returning.
 1545  */
 1546 static int
 1547 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
 1548     db_lock_type_t dblt, const void *tag)
 1549 {
 1550         dnode_t *dn;
 1551         zbookmark_phys_t zb;
 1552         uint32_t aflags = ARC_FLAG_NOWAIT;
 1553         int err, zio_flags;
 1554 
 1555         DB_DNODE_ENTER(db);
 1556         dn = DB_DNODE(db);
 1557         ASSERT(!zfs_refcount_is_zero(&db->db_holds));
 1558         ASSERT(MUTEX_HELD(&db->db_mtx));
 1559         ASSERT(db->db_state == DB_UNCACHED);
 1560         ASSERT(db->db_buf == NULL);
 1561         ASSERT(db->db_parent == NULL ||
 1562             RW_LOCK_HELD(&db->db_parent->db_rwlock));
 1563 
 1564         if (db->db_blkid == DMU_BONUS_BLKID) {
 1565                 err = dbuf_read_bonus(db, dn, flags);
 1566                 goto early_unlock;
 1567         }
 1568 
 1569         err = dbuf_read_hole(db, dn);
 1570         if (err == 0)
 1571                 goto early_unlock;
 1572 
 1573         /*
 1574          * Any attempt to read a redacted block should result in an error. This
 1575          * will never happen under normal conditions, but can be useful for
 1576          * debugging purposes.
 1577          */
 1578         if (BP_IS_REDACTED(db->db_blkptr)) {
 1579                 ASSERT(dsl_dataset_feature_is_active(
 1580                     db->db_objset->os_dsl_dataset,
 1581                     SPA_FEATURE_REDACTED_DATASETS));
 1582                 err = SET_ERROR(EIO);
 1583                 goto early_unlock;
 1584         }
 1585 
 1586         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
 1587             db->db.db_object, db->db_level, db->db_blkid);
 1588 
 1589         /*
 1590          * All bps of an encrypted os should have the encryption bit set.
 1591          * If this is not true it indicates tampering and we report an error.
 1592          */
 1593         if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
 1594                 spa_log_error(db->db_objset->os_spa, &zb);
 1595                 zfs_panic_recover("unencrypted block in encrypted "
 1596                     "object set %llu", dmu_objset_id(db->db_objset));
 1597                 err = SET_ERROR(EIO);
 1598                 goto early_unlock;
 1599         }
 1600 
 1601         err = dbuf_read_verify_dnode_crypt(db, flags);
 1602         if (err != 0)
 1603                 goto early_unlock;
 1604 
 1605         DB_DNODE_EXIT(db);
 1606 
 1607         db->db_state = DB_READ;
 1608         DTRACE_SET_STATE(db, "read issued");
 1609         mutex_exit(&db->db_mtx);
 1610 
 1611         if (!DBUF_IS_CACHEABLE(db))
 1612                 aflags |= ARC_FLAG_UNCACHED;
 1613         else if (dbuf_is_l2cacheable(db))
 1614                 aflags |= ARC_FLAG_L2CACHE;
 1615 
 1616         dbuf_add_ref(db, NULL);
 1617 
 1618         zio_flags = (flags & DB_RF_CANFAIL) ?
 1619             ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
 1620 
 1621         if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
 1622                 zio_flags |= ZIO_FLAG_RAW;
 1623         /*
 1624          * The zio layer will copy the provided blkptr later, but we need to
 1625          * do this now so that we can release the parent's rwlock. We have to
 1626          * do that now so that if dbuf_read_done is called synchronously (on
 1627          * an l1 cache hit) we don't acquire the db_mtx while holding the
 1628          * parent's rwlock, which would be a lock ordering violation.
 1629          */
 1630         blkptr_t bp = *db->db_blkptr;
 1631         dmu_buf_unlock_parent(db, dblt, tag);
 1632         (void) arc_read(zio, db->db_objset->os_spa, &bp,
 1633             dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
 1634             &aflags, &zb);
 1635         return (err);
 1636 early_unlock:
 1637         DB_DNODE_EXIT(db);
 1638         mutex_exit(&db->db_mtx);
 1639         dmu_buf_unlock_parent(db, dblt, tag);
 1640         return (err);
 1641 }
 1642 
 1643 /*
 1644  * This is our just-in-time copy function.  It makes a copy of buffers that
 1645  * have been modified in a previous transaction group before we access them in
 1646  * the current active group.
 1647  *
 1648  * This function is used in three places: when we are dirtying a buffer for the
 1649  * first time in a txg, when we are freeing a range in a dnode that includes
 1650  * this buffer, and when we are accessing a buffer which was received compressed
 1651  * and later referenced in a WRITE_BYREF record.
 1652  *
 1653  * Note that when we are called from dbuf_free_range() we do not put a hold on
 1654  * the buffer, we just traverse the active dbuf list for the dnode.
 1655  */
 1656 static void
 1657 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
 1658 {
 1659         dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
 1660 
 1661         ASSERT(MUTEX_HELD(&db->db_mtx));
 1662         ASSERT(db->db.db_data != NULL);
 1663         ASSERT(db->db_level == 0);
 1664         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
 1665 
 1666         if (dr == NULL ||
 1667             (dr->dt.dl.dr_data !=
 1668             ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
 1669                 return;
 1670 
 1671         /*
 1672          * If the last dirty record for this dbuf has not yet synced
 1673          * and its referencing the dbuf data, either:
 1674          *      reset the reference to point to a new copy,
 1675          * or (if there a no active holders)
 1676          *      just null out the current db_data pointer.
 1677          */
 1678         ASSERT3U(dr->dr_txg, >=, txg - 2);
 1679         if (db->db_blkid == DMU_BONUS_BLKID) {
 1680                 dnode_t *dn = DB_DNODE(db);
 1681                 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
 1682                 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
 1683                 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
 1684                 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
 1685         } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
 1686                 dnode_t *dn = DB_DNODE(db);
 1687                 int size = arc_buf_size(db->db_buf);
 1688                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
 1689                 spa_t *spa = db->db_objset->os_spa;
 1690                 enum zio_compress compress_type =
 1691                     arc_get_compression(db->db_buf);
 1692                 uint8_t complevel = arc_get_complevel(db->db_buf);
 1693 
 1694                 if (arc_is_encrypted(db->db_buf)) {
 1695                         boolean_t byteorder;
 1696                         uint8_t salt[ZIO_DATA_SALT_LEN];
 1697                         uint8_t iv[ZIO_DATA_IV_LEN];
 1698                         uint8_t mac[ZIO_DATA_MAC_LEN];
 1699 
 1700                         arc_get_raw_params(db->db_buf, &byteorder, salt,
 1701                             iv, mac);
 1702                         dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
 1703                             dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
 1704                             mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
 1705                             compress_type, complevel);
 1706                 } else if (compress_type != ZIO_COMPRESS_OFF) {
 1707                         ASSERT3U(type, ==, ARC_BUFC_DATA);
 1708                         dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
 1709                             size, arc_buf_lsize(db->db_buf), compress_type,
 1710                             complevel);
 1711                 } else {
 1712                         dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
 1713                 }
 1714                 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
 1715         } else {
 1716                 db->db_buf = NULL;
 1717                 dbuf_clear_data(db);
 1718         }
 1719 }
 1720 
 1721 int
 1722 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
 1723 {
 1724         int err = 0;
 1725         boolean_t prefetch;
 1726         dnode_t *dn;
 1727 
 1728         /*
 1729          * We don't have to hold the mutex to check db_state because it
 1730          * can't be freed while we have a hold on the buffer.
 1731          */
 1732         ASSERT(!zfs_refcount_is_zero(&db->db_holds));
 1733 
 1734         if (db->db_state == DB_NOFILL)
 1735                 return (SET_ERROR(EIO));
 1736 
 1737         DB_DNODE_ENTER(db);
 1738         dn = DB_DNODE(db);
 1739 
 1740         prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
 1741             (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;
 1742 
 1743         mutex_enter(&db->db_mtx);
 1744         if (flags & DB_RF_PARTIAL_FIRST)
 1745                 db->db_partial_read = B_TRUE;
 1746         else if (!(flags & DB_RF_PARTIAL_MORE))
 1747                 db->db_partial_read = B_FALSE;
 1748         if (db->db_state == DB_CACHED) {
 1749                 /*
 1750                  * Ensure that this block's dnode has been decrypted if
 1751                  * the caller has requested decrypted data.
 1752                  */
 1753                 err = dbuf_read_verify_dnode_crypt(db, flags);
 1754 
 1755                 /*
 1756                  * If the arc buf is compressed or encrypted and the caller
 1757                  * requested uncompressed data, we need to untransform it
 1758                  * before returning. We also call arc_untransform() on any
 1759                  * unauthenticated blocks, which will verify their MAC if
 1760                  * the key is now available.
 1761                  */
 1762                 if (err == 0 && db->db_buf != NULL &&
 1763                     (flags & DB_RF_NO_DECRYPT) == 0 &&
 1764                     (arc_is_encrypted(db->db_buf) ||
 1765                     arc_is_unauthenticated(db->db_buf) ||
 1766                     arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
 1767                         spa_t *spa = dn->dn_objset->os_spa;
 1768                         zbookmark_phys_t zb;
 1769 
 1770                         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
 1771                             db->db.db_object, db->db_level, db->db_blkid);
 1772                         dbuf_fix_old_data(db, spa_syncing_txg(spa));
 1773                         err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
 1774                         dbuf_set_data(db, db->db_buf);
 1775                 }
 1776                 mutex_exit(&db->db_mtx);
 1777                 if (err == 0 && prefetch) {
 1778                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
 1779                             B_FALSE, flags & DB_RF_HAVESTRUCT);
 1780                 }
 1781                 DB_DNODE_EXIT(db);
 1782                 DBUF_STAT_BUMP(hash_hits);
 1783         } else if (db->db_state == DB_UNCACHED) {
 1784                 boolean_t need_wait = B_FALSE;
 1785 
 1786                 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
 1787 
 1788                 if (zio == NULL &&
 1789                     db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
 1790                         spa_t *spa = dn->dn_objset->os_spa;
 1791                         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
 1792                         need_wait = B_TRUE;
 1793                 }
 1794                 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
 1795                 /*
 1796                  * dbuf_read_impl has dropped db_mtx and our parent's rwlock
 1797                  * for us
 1798                  */
 1799                 if (!err && prefetch) {
 1800                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
 1801                             db->db_state != DB_CACHED,
 1802                             flags & DB_RF_HAVESTRUCT);
 1803                 }
 1804 
 1805                 DB_DNODE_EXIT(db);
 1806                 DBUF_STAT_BUMP(hash_misses);
 1807 
 1808                 /*
 1809                  * If we created a zio_root we must execute it to avoid
 1810                  * leaking it, even if it isn't attached to any work due
 1811                  * to an error in dbuf_read_impl().
 1812                  */
 1813                 if (need_wait) {
 1814                         if (err == 0)
 1815                                 err = zio_wait(zio);
 1816                         else
 1817                                 VERIFY0(zio_wait(zio));
 1818                 }
 1819         } else {
 1820                 /*
 1821                  * Another reader came in while the dbuf was in flight
 1822                  * between UNCACHED and CACHED.  Either a writer will finish
 1823                  * writing the buffer (sending the dbuf to CACHED) or the
 1824                  * first reader's request will reach the read_done callback
 1825                  * and send the dbuf to CACHED.  Otherwise, a failure
 1826                  * occurred and the dbuf went to UNCACHED.
 1827                  */
 1828                 mutex_exit(&db->db_mtx);
 1829                 if (prefetch) {
 1830                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
 1831                             B_TRUE, flags & DB_RF_HAVESTRUCT);
 1832                 }
 1833                 DB_DNODE_EXIT(db);
 1834                 DBUF_STAT_BUMP(hash_misses);
 1835 
 1836                 /* Skip the wait per the caller's request. */
 1837                 if ((flags & DB_RF_NEVERWAIT) == 0) {
 1838                         mutex_enter(&db->db_mtx);
 1839                         while (db->db_state == DB_READ ||
 1840                             db->db_state == DB_FILL) {
 1841                                 ASSERT(db->db_state == DB_READ ||
 1842                                     (flags & DB_RF_HAVESTRUCT) == 0);
 1843                                 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
 1844                                     db, zio_t *, zio);
 1845                                 cv_wait(&db->db_changed, &db->db_mtx);
 1846                         }
 1847                         if (db->db_state == DB_UNCACHED)
 1848                                 err = SET_ERROR(EIO);
 1849                         mutex_exit(&db->db_mtx);
 1850                 }
 1851         }
 1852 
 1853         return (err);
 1854 }
 1855 
 1856 static void
 1857 dbuf_noread(dmu_buf_impl_t *db)
 1858 {
 1859         ASSERT(!zfs_refcount_is_zero(&db->db_holds));
 1860         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 1861         mutex_enter(&db->db_mtx);
 1862         while (db->db_state == DB_READ || db->db_state == DB_FILL)
 1863                 cv_wait(&db->db_changed, &db->db_mtx);
 1864         if (db->db_state == DB_UNCACHED) {
 1865                 ASSERT(db->db_buf == NULL);
 1866                 ASSERT(db->db.db_data == NULL);
 1867                 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
 1868                 db->db_state = DB_FILL;
 1869                 DTRACE_SET_STATE(db, "assigning filled buffer");
 1870         } else if (db->db_state == DB_NOFILL) {
 1871                 dbuf_clear_data(db);
 1872         } else {
 1873                 ASSERT3U(db->db_state, ==, DB_CACHED);
 1874         }
 1875         mutex_exit(&db->db_mtx);
 1876 }
 1877 
 1878 void
 1879 dbuf_unoverride(dbuf_dirty_record_t *dr)
 1880 {
 1881         dmu_buf_impl_t *db = dr->dr_dbuf;
 1882         blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
 1883         uint64_t txg = dr->dr_txg;
 1884 
 1885         ASSERT(MUTEX_HELD(&db->db_mtx));
 1886         /*
 1887          * This assert is valid because dmu_sync() expects to be called by
 1888          * a zilog's get_data while holding a range lock.  This call only
 1889          * comes from dbuf_dirty() callers who must also hold a range lock.
 1890          */
 1891         ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
 1892         ASSERT(db->db_level == 0);
 1893 
 1894         if (db->db_blkid == DMU_BONUS_BLKID ||
 1895             dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
 1896                 return;
 1897 
 1898         ASSERT(db->db_data_pending != dr);
 1899 
 1900         /* free this block */
 1901         if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
 1902                 zio_free(db->db_objset->os_spa, txg, bp);
 1903 
 1904         dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
 1905         dr->dt.dl.dr_nopwrite = B_FALSE;
 1906         dr->dt.dl.dr_has_raw_params = B_FALSE;
 1907 
 1908         /*
 1909          * Release the already-written buffer, so we leave it in
 1910          * a consistent dirty state.  Note that all callers are
 1911          * modifying the buffer, so they will immediately do
 1912          * another (redundant) arc_release().  Therefore, leave
 1913          * the buf thawed to save the effort of freezing &
 1914          * immediately re-thawing it.
 1915          */
 1916         arc_release(dr->dt.dl.dr_data, db);
 1917 }
 1918 
 1919 /*
 1920  * Evict (if its unreferenced) or clear (if its referenced) any level-0
 1921  * data blocks in the free range, so that any future readers will find
 1922  * empty blocks.
 1923  */
 1924 void
 1925 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
 1926     dmu_tx_t *tx)
 1927 {
 1928         dmu_buf_impl_t *db_search;
 1929         dmu_buf_impl_t *db, *db_next;
 1930         uint64_t txg = tx->tx_txg;
 1931         avl_index_t where;
 1932         dbuf_dirty_record_t *dr;
 1933 
 1934         if (end_blkid > dn->dn_maxblkid &&
 1935             !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
 1936                 end_blkid = dn->dn_maxblkid;
 1937         dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
 1938             (u_longlong_t)end_blkid);
 1939 
 1940         db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
 1941         db_search->db_level = 0;
 1942         db_search->db_blkid = start_blkid;
 1943         db_search->db_state = DB_SEARCH;
 1944 
 1945         mutex_enter(&dn->dn_dbufs_mtx);
 1946         db = avl_find(&dn->dn_dbufs, db_search, &where);
 1947         ASSERT3P(db, ==, NULL);
 1948 
 1949         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
 1950 
 1951         for (; db != NULL; db = db_next) {
 1952                 db_next = AVL_NEXT(&dn->dn_dbufs, db);
 1953                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 1954 
 1955                 if (db->db_level != 0 || db->db_blkid > end_blkid) {
 1956                         break;
 1957                 }
 1958                 ASSERT3U(db->db_blkid, >=, start_blkid);
 1959 
 1960                 /* found a level 0 buffer in the range */
 1961                 mutex_enter(&db->db_mtx);
 1962                 if (dbuf_undirty(db, tx)) {
 1963                         /* mutex has been dropped and dbuf destroyed */
 1964                         continue;
 1965                 }
 1966 
 1967                 if (db->db_state == DB_UNCACHED ||
 1968                     db->db_state == DB_NOFILL ||
 1969                     db->db_state == DB_EVICTING) {
 1970                         ASSERT(db->db.db_data == NULL);
 1971                         mutex_exit(&db->db_mtx);
 1972                         continue;
 1973                 }
 1974                 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
 1975                         /* will be handled in dbuf_read_done or dbuf_rele */
 1976                         db->db_freed_in_flight = TRUE;
 1977                         mutex_exit(&db->db_mtx);
 1978                         continue;
 1979                 }
 1980                 if (zfs_refcount_count(&db->db_holds) == 0) {
 1981                         ASSERT(db->db_buf);
 1982                         dbuf_destroy(db);
 1983                         continue;
 1984                 }
 1985                 /* The dbuf is referenced */
 1986 
 1987                 dr = list_head(&db->db_dirty_records);
 1988                 if (dr != NULL) {
 1989                         if (dr->dr_txg == txg) {
 1990                                 /*
 1991                                  * This buffer is "in-use", re-adjust the file
 1992                                  * size to reflect that this buffer may
 1993                                  * contain new data when we sync.
 1994                                  */
 1995                                 if (db->db_blkid != DMU_SPILL_BLKID &&
 1996                                     db->db_blkid > dn->dn_maxblkid)
 1997                                         dn->dn_maxblkid = db->db_blkid;
 1998                                 dbuf_unoverride(dr);
 1999                         } else {
 2000                                 /*
 2001                                  * This dbuf is not dirty in the open context.
 2002                                  * Either uncache it (if its not referenced in
 2003                                  * the open context) or reset its contents to
 2004                                  * empty.
 2005                                  */
 2006                                 dbuf_fix_old_data(db, txg);
 2007                         }
 2008                 }
 2009                 /* clear the contents if its cached */
 2010                 if (db->db_state == DB_CACHED) {
 2011                         ASSERT(db->db.db_data != NULL);
 2012                         arc_release(db->db_buf, db);
 2013                         rw_enter(&db->db_rwlock, RW_WRITER);
 2014                         memset(db->db.db_data, 0, db->db.db_size);
 2015                         rw_exit(&db->db_rwlock);
 2016                         arc_buf_freeze(db->db_buf);
 2017                 }
 2018 
 2019                 mutex_exit(&db->db_mtx);
 2020         }
 2021 
 2022         mutex_exit(&dn->dn_dbufs_mtx);
 2023         kmem_free(db_search, sizeof (dmu_buf_impl_t));
 2024 }
 2025 
 2026 void
 2027 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
 2028 {
 2029         arc_buf_t *buf, *old_buf;
 2030         dbuf_dirty_record_t *dr;
 2031         int osize = db->db.db_size;
 2032         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
 2033         dnode_t *dn;
 2034 
 2035         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 2036 
 2037         DB_DNODE_ENTER(db);
 2038         dn = DB_DNODE(db);
 2039 
 2040         /*
 2041          * XXX we should be doing a dbuf_read, checking the return
 2042          * value and returning that up to our callers
 2043          */
 2044         dmu_buf_will_dirty(&db->db, tx);
 2045 
 2046         /* create the data buffer for the new block */
 2047         buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
 2048 
 2049         /* copy old block data to the new block */
 2050         old_buf = db->db_buf;
 2051         memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
 2052         /* zero the remainder */
 2053         if (size > osize)
 2054                 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
 2055 
 2056         mutex_enter(&db->db_mtx);
 2057         dbuf_set_data(db, buf);
 2058         arc_buf_destroy(old_buf, db);
 2059         db->db.db_size = size;
 2060 
 2061         dr = list_head(&db->db_dirty_records);
 2062         /* dirty record added by dmu_buf_will_dirty() */
 2063         VERIFY(dr != NULL);
 2064         if (db->db_level == 0)
 2065                 dr->dt.dl.dr_data = buf;
 2066         ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
 2067         ASSERT3U(dr->dr_accounted, ==, osize);
 2068         dr->dr_accounted = size;
 2069         mutex_exit(&db->db_mtx);
 2070 
 2071         dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
 2072         DB_DNODE_EXIT(db);
 2073 }
 2074 
 2075 void
 2076 dbuf_release_bp(dmu_buf_impl_t *db)
 2077 {
 2078         objset_t *os __maybe_unused = db->db_objset;
 2079 
 2080         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 2081         ASSERT(arc_released(os->os_phys_buf) ||
 2082             list_link_active(&os->os_dsl_dataset->ds_synced_link));
 2083         ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
 2084 
 2085         (void) arc_release(db->db_buf, db);
 2086 }
 2087 
 2088 /*
 2089  * We already have a dirty record for this TXG, and we are being
 2090  * dirtied again.
 2091  */
 2092 static void
 2093 dbuf_redirty(dbuf_dirty_record_t *dr)
 2094 {
 2095         dmu_buf_impl_t *db = dr->dr_dbuf;
 2096 
 2097         ASSERT(MUTEX_HELD(&db->db_mtx));
 2098 
 2099         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
 2100                 /*
 2101                  * If this buffer has already been written out,
 2102                  * we now need to reset its state.
 2103                  */
 2104                 dbuf_unoverride(dr);
 2105                 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
 2106                     db->db_state != DB_NOFILL) {
 2107                         /* Already released on initial dirty, so just thaw. */
 2108                         ASSERT(arc_released(db->db_buf));
 2109                         arc_buf_thaw(db->db_buf);
 2110                 }
 2111         }
 2112 }
 2113 
 2114 dbuf_dirty_record_t *
 2115 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
 2116 {
 2117         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 2118         IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
 2119         dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
 2120         ASSERT(dn->dn_maxblkid >= blkid);
 2121 
 2122         dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
 2123         list_link_init(&dr->dr_dirty_node);
 2124         list_link_init(&dr->dr_dbuf_node);
 2125         dr->dr_dnode = dn;
 2126         dr->dr_txg = tx->tx_txg;
 2127         dr->dt.dll.dr_blkid = blkid;
 2128         dr->dr_accounted = dn->dn_datablksz;
 2129 
 2130         /*
 2131          * There should not be any dbuf for the block that we're dirtying.
 2132          * Otherwise the buffer contents could be inconsistent between the
 2133          * dbuf and the lightweight dirty record.
 2134          */
 2135         ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
 2136             NULL));
 2137 
 2138         mutex_enter(&dn->dn_mtx);
 2139         int txgoff = tx->tx_txg & TXG_MASK;
 2140         if (dn->dn_free_ranges[txgoff] != NULL) {
 2141                 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
 2142         }
 2143 
 2144         if (dn->dn_nlevels == 1) {
 2145                 ASSERT3U(blkid, <, dn->dn_nblkptr);
 2146                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
 2147                 mutex_exit(&dn->dn_mtx);
 2148                 rw_exit(&dn->dn_struct_rwlock);
 2149                 dnode_setdirty(dn, tx);
 2150         } else {
 2151                 mutex_exit(&dn->dn_mtx);
 2152 
 2153                 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 2154                 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
 2155                     1, blkid >> epbs, FTAG);
 2156                 rw_exit(&dn->dn_struct_rwlock);
 2157                 if (parent_db == NULL) {
 2158                         kmem_free(dr, sizeof (*dr));
 2159                         return (NULL);
 2160                 }
 2161                 int err = dbuf_read(parent_db, NULL,
 2162                     (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
 2163                 if (err != 0) {
 2164                         dbuf_rele(parent_db, FTAG);
 2165                         kmem_free(dr, sizeof (*dr));
 2166                         return (NULL);
 2167                 }
 2168 
 2169                 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
 2170                 dbuf_rele(parent_db, FTAG);
 2171                 mutex_enter(&parent_dr->dt.di.dr_mtx);
 2172                 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
 2173                 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
 2174                 mutex_exit(&parent_dr->dt.di.dr_mtx);
 2175                 dr->dr_parent = parent_dr;
 2176         }
 2177 
 2178         dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
 2179 
 2180         return (dr);
 2181 }
 2182 
 2183 dbuf_dirty_record_t *
 2184 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
 2185 {
 2186         dnode_t *dn;
 2187         objset_t *os;
 2188         dbuf_dirty_record_t *dr, *dr_next, *dr_head;
 2189         int txgoff = tx->tx_txg & TXG_MASK;
 2190         boolean_t drop_struct_rwlock = B_FALSE;
 2191 
 2192         ASSERT(tx->tx_txg != 0);
 2193         ASSERT(!zfs_refcount_is_zero(&db->db_holds));
 2194         DMU_TX_DIRTY_BUF(tx, db);
 2195 
 2196         DB_DNODE_ENTER(db);
 2197         dn = DB_DNODE(db);
 2198         /*
 2199          * Shouldn't dirty a regular buffer in syncing context.  Private
 2200          * objects may be dirtied in syncing context, but only if they
 2201          * were already pre-dirtied in open context.
 2202          */
 2203 #ifdef ZFS_DEBUG
 2204         if (dn->dn_objset->os_dsl_dataset != NULL) {
 2205                 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
 2206                     RW_READER, FTAG);
 2207         }
 2208         ASSERT(!dmu_tx_is_syncing(tx) ||
 2209             BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
 2210             DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
 2211             dn->dn_objset->os_dsl_dataset == NULL);
 2212         if (dn->dn_objset->os_dsl_dataset != NULL)
 2213                 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
 2214 #endif
 2215         /*
 2216          * We make this assert for private objects as well, but after we
 2217          * check if we're already dirty.  They are allowed to re-dirty
 2218          * in syncing context.
 2219          */
 2220         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
 2221             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
 2222             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
 2223 
 2224         mutex_enter(&db->db_mtx);
 2225         /*
 2226          * XXX make this true for indirects too?  The problem is that
 2227          * transactions created with dmu_tx_create_assigned() from
 2228          * syncing context don't bother holding ahead.
 2229          */
 2230         ASSERT(db->db_level != 0 ||
 2231             db->db_state == DB_CACHED || db->db_state == DB_FILL ||
 2232             db->db_state == DB_NOFILL);
 2233 
 2234         mutex_enter(&dn->dn_mtx);
 2235         dnode_set_dirtyctx(dn, tx, db);
 2236         if (tx->tx_txg > dn->dn_dirty_txg)
 2237                 dn->dn_dirty_txg = tx->tx_txg;
 2238         mutex_exit(&dn->dn_mtx);
 2239 
 2240         if (db->db_blkid == DMU_SPILL_BLKID)
 2241                 dn->dn_have_spill = B_TRUE;
 2242 
 2243         /*
 2244          * If this buffer is already dirty, we're done.
 2245          */
 2246         dr_head = list_head(&db->db_dirty_records);
 2247         ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
 2248             db->db.db_object == DMU_META_DNODE_OBJECT);
 2249         dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
 2250         if (dr_next && dr_next->dr_txg == tx->tx_txg) {
 2251                 DB_DNODE_EXIT(db);
 2252 
 2253                 dbuf_redirty(dr_next);
 2254                 mutex_exit(&db->db_mtx);
 2255                 return (dr_next);
 2256         }
 2257 
 2258         /*
 2259          * Only valid if not already dirty.
 2260          */
 2261         ASSERT(dn->dn_object == 0 ||
 2262             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
 2263             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
 2264 
 2265         ASSERT3U(dn->dn_nlevels, >, db->db_level);
 2266 
 2267         /*
 2268          * We should only be dirtying in syncing context if it's the
 2269          * mos or we're initializing the os or it's a special object.
 2270          * However, we are allowed to dirty in syncing context provided
 2271          * we already dirtied it in open context.  Hence we must make
 2272          * this assertion only if we're not already dirty.
 2273          */
 2274         os = dn->dn_objset;
 2275         VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
 2276 #ifdef ZFS_DEBUG
 2277         if (dn->dn_objset->os_dsl_dataset != NULL)
 2278                 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
 2279         ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
 2280             os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
 2281         if (dn->dn_objset->os_dsl_dataset != NULL)
 2282                 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
 2283 #endif
 2284         ASSERT(db->db.db_size != 0);
 2285 
 2286         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
 2287 
 2288         if (db->db_blkid != DMU_BONUS_BLKID) {
 2289                 dmu_objset_willuse_space(os, db->db.db_size, tx);
 2290         }
 2291 
 2292         /*
 2293          * If this buffer is dirty in an old transaction group we need
 2294          * to make a copy of it so that the changes we make in this
 2295          * transaction group won't leak out when we sync the older txg.
 2296          */
 2297         dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
 2298         list_link_init(&dr->dr_dirty_node);
 2299         list_link_init(&dr->dr_dbuf_node);
 2300         dr->dr_dnode = dn;
 2301         if (db->db_level == 0) {
 2302                 void *data_old = db->db_buf;
 2303 
 2304                 if (db->db_state != DB_NOFILL) {
 2305                         if (db->db_blkid == DMU_BONUS_BLKID) {
 2306                                 dbuf_fix_old_data(db, tx->tx_txg);
 2307                                 data_old = db->db.db_data;
 2308                         } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
 2309                                 /*
 2310                                  * Release the data buffer from the cache so
 2311                                  * that we can modify it without impacting
 2312                                  * possible other users of this cached data
 2313                                  * block.  Note that indirect blocks and
 2314                                  * private objects are not released until the
 2315                                  * syncing state (since they are only modified
 2316                                  * then).
 2317                                  */
 2318                                 arc_release(db->db_buf, db);
 2319                                 dbuf_fix_old_data(db, tx->tx_txg);
 2320                                 data_old = db->db_buf;
 2321                         }
 2322                         ASSERT(data_old != NULL);
 2323                 }
 2324                 dr->dt.dl.dr_data = data_old;
 2325         } else {
 2326                 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
 2327                 list_create(&dr->dt.di.dr_children,
 2328                     sizeof (dbuf_dirty_record_t),
 2329                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
 2330         }
 2331         if (db->db_blkid != DMU_BONUS_BLKID)
 2332                 dr->dr_accounted = db->db.db_size;
 2333         dr->dr_dbuf = db;
 2334         dr->dr_txg = tx->tx_txg;
 2335         list_insert_before(&db->db_dirty_records, dr_next, dr);
 2336 
 2337         /*
 2338          * We could have been freed_in_flight between the dbuf_noread
 2339          * and dbuf_dirty.  We win, as though the dbuf_noread() had
 2340          * happened after the free.
 2341          */
 2342         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
 2343             db->db_blkid != DMU_SPILL_BLKID) {
 2344                 mutex_enter(&dn->dn_mtx);
 2345                 if (dn->dn_free_ranges[txgoff] != NULL) {
 2346                         range_tree_clear(dn->dn_free_ranges[txgoff],
 2347                             db->db_blkid, 1);
 2348                 }
 2349                 mutex_exit(&dn->dn_mtx);
 2350                 db->db_freed_in_flight = FALSE;
 2351         }
 2352 
 2353         /*
 2354          * This buffer is now part of this txg
 2355          */
 2356         dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
 2357         db->db_dirtycnt += 1;
 2358         ASSERT3U(db->db_dirtycnt, <=, 3);
 2359 
 2360         mutex_exit(&db->db_mtx);
 2361 
 2362         if (db->db_blkid == DMU_BONUS_BLKID ||
 2363             db->db_blkid == DMU_SPILL_BLKID) {
 2364                 mutex_enter(&dn->dn_mtx);
 2365                 ASSERT(!list_link_active(&dr->dr_dirty_node));
 2366                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
 2367                 mutex_exit(&dn->dn_mtx);
 2368                 dnode_setdirty(dn, tx);
 2369                 DB_DNODE_EXIT(db);
 2370                 return (dr);
 2371         }
 2372 
 2373         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
 2374                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 2375                 drop_struct_rwlock = B_TRUE;
 2376         }
 2377 
 2378         /*
 2379          * If we are overwriting a dedup BP, then unless it is snapshotted,
 2380          * when we get to syncing context we will need to decrement its
 2381          * refcount in the DDT.  Prefetch the relevant DDT block so that
 2382          * syncing context won't have to wait for the i/o.
 2383          */
 2384         if (db->db_blkptr != NULL) {
 2385                 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
 2386                 ddt_prefetch(os->os_spa, db->db_blkptr);
 2387                 dmu_buf_unlock_parent(db, dblt, FTAG);
 2388         }
 2389 
 2390         /*
 2391          * We need to hold the dn_struct_rwlock to make this assertion,
 2392          * because it protects dn_phys / dn_next_nlevels from changing.
 2393          */
 2394         ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
 2395             dn->dn_phys->dn_nlevels > db->db_level ||
 2396             dn->dn_next_nlevels[txgoff] > db->db_level ||
 2397             dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
 2398             dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
 2399 
 2400 
 2401         if (db->db_level == 0) {
 2402                 ASSERT(!db->db_objset->os_raw_receive ||
 2403                     dn->dn_maxblkid >= db->db_blkid);
 2404                 dnode_new_blkid(dn, db->db_blkid, tx,
 2405                     drop_struct_rwlock, B_FALSE);
 2406                 ASSERT(dn->dn_maxblkid >= db->db_blkid);
 2407         }
 2408 
 2409         if (db->db_level+1 < dn->dn_nlevels) {
 2410                 dmu_buf_impl_t *parent = db->db_parent;
 2411                 dbuf_dirty_record_t *di;
 2412                 int parent_held = FALSE;
 2413 
 2414                 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
 2415                         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 2416                         parent = dbuf_hold_level(dn, db->db_level + 1,
 2417                             db->db_blkid >> epbs, FTAG);
 2418                         ASSERT(parent != NULL);
 2419                         parent_held = TRUE;
 2420                 }
 2421                 if (drop_struct_rwlock)
 2422                         rw_exit(&dn->dn_struct_rwlock);
 2423                 ASSERT3U(db->db_level + 1, ==, parent->db_level);
 2424                 di = dbuf_dirty(parent, tx);
 2425                 if (parent_held)
 2426                         dbuf_rele(parent, FTAG);
 2427 
 2428                 mutex_enter(&db->db_mtx);
 2429                 /*
 2430                  * Since we've dropped the mutex, it's possible that
 2431                  * dbuf_undirty() might have changed this out from under us.
 2432                  */
 2433                 if (list_head(&db->db_dirty_records) == dr ||
 2434                     dn->dn_object == DMU_META_DNODE_OBJECT) {
 2435                         mutex_enter(&di->dt.di.dr_mtx);
 2436                         ASSERT3U(di->dr_txg, ==, tx->tx_txg);
 2437                         ASSERT(!list_link_active(&dr->dr_dirty_node));
 2438                         list_insert_tail(&di->dt.di.dr_children, dr);
 2439                         mutex_exit(&di->dt.di.dr_mtx);
 2440                         dr->dr_parent = di;
 2441                 }
 2442                 mutex_exit(&db->db_mtx);
 2443         } else {
 2444                 ASSERT(db->db_level + 1 == dn->dn_nlevels);
 2445                 ASSERT(db->db_blkid < dn->dn_nblkptr);
 2446                 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
 2447                 mutex_enter(&dn->dn_mtx);
 2448                 ASSERT(!list_link_active(&dr->dr_dirty_node));
 2449                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
 2450                 mutex_exit(&dn->dn_mtx);
 2451                 if (drop_struct_rwlock)
 2452                         rw_exit(&dn->dn_struct_rwlock);
 2453         }
 2454 
 2455         dnode_setdirty(dn, tx);
 2456         DB_DNODE_EXIT(db);
 2457         return (dr);
 2458 }
 2459 
 2460 static void
 2461 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
 2462 {
 2463         dmu_buf_impl_t *db = dr->dr_dbuf;
 2464 
 2465         if (dr->dt.dl.dr_data != db->db.db_data) {
 2466                 struct dnode *dn = dr->dr_dnode;
 2467                 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
 2468 
 2469                 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
 2470                 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
 2471         }
 2472         db->db_data_pending = NULL;
 2473         ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
 2474         list_remove(&db->db_dirty_records, dr);
 2475         if (dr->dr_dbuf->db_level != 0) {
 2476                 mutex_destroy(&dr->dt.di.dr_mtx);
 2477                 list_destroy(&dr->dt.di.dr_children);
 2478         }
 2479         kmem_free(dr, sizeof (dbuf_dirty_record_t));
 2480         ASSERT3U(db->db_dirtycnt, >, 0);
 2481         db->db_dirtycnt -= 1;
 2482 }
 2483 
 2484 /*
 2485  * Undirty a buffer in the transaction group referenced by the given
 2486  * transaction.  Return whether this evicted the dbuf.
 2487  */
 2488 static boolean_t
 2489 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
 2490 {
 2491         uint64_t txg = tx->tx_txg;
 2492 
 2493         ASSERT(txg != 0);
 2494 
 2495         /*
 2496          * Due to our use of dn_nlevels below, this can only be called
 2497          * in open context, unless we are operating on the MOS.
 2498          * From syncing context, dn_nlevels may be different from the
 2499          * dn_nlevels used when dbuf was dirtied.
 2500          */
 2501         ASSERT(db->db_objset ==
 2502             dmu_objset_pool(db->db_objset)->dp_meta_objset ||
 2503             txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
 2504         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 2505         ASSERT0(db->db_level);
 2506         ASSERT(MUTEX_HELD(&db->db_mtx));
 2507 
 2508         /*
 2509          * If this buffer is not dirty, we're done.
 2510          */
 2511         dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
 2512         if (dr == NULL)
 2513                 return (B_FALSE);
 2514         ASSERT(dr->dr_dbuf == db);
 2515 
 2516         dnode_t *dn = dr->dr_dnode;
 2517 
 2518         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
 2519 
 2520         ASSERT(db->db.db_size != 0);
 2521 
 2522         dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
 2523             dr->dr_accounted, txg);
 2524 
 2525         list_remove(&db->db_dirty_records, dr);
 2526 
 2527         /*
 2528          * Note that there are three places in dbuf_dirty()
 2529          * where this dirty record may be put on a list.
 2530          * Make sure to do a list_remove corresponding to
 2531          * every one of those list_insert calls.
 2532          */
 2533         if (dr->dr_parent) {
 2534                 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
 2535                 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
 2536                 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
 2537         } else if (db->db_blkid == DMU_SPILL_BLKID ||
 2538             db->db_level + 1 == dn->dn_nlevels) {
 2539                 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
 2540                 mutex_enter(&dn->dn_mtx);
 2541                 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
 2542                 mutex_exit(&dn->dn_mtx);
 2543         }
 2544 
 2545         if (db->db_state != DB_NOFILL) {
 2546                 dbuf_unoverride(dr);
 2547 
 2548                 ASSERT(db->db_buf != NULL);
 2549                 ASSERT(dr->dt.dl.dr_data != NULL);
 2550                 if (dr->dt.dl.dr_data != db->db_buf)
 2551                         arc_buf_destroy(dr->dt.dl.dr_data, db);
 2552         }
 2553 
 2554         kmem_free(dr, sizeof (dbuf_dirty_record_t));
 2555 
 2556         ASSERT(db->db_dirtycnt > 0);
 2557         db->db_dirtycnt -= 1;
 2558 
 2559         if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
 2560                 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
 2561                 dbuf_destroy(db);
 2562                 return (B_TRUE);
 2563         }
 2564 
 2565         return (B_FALSE);
 2566 }
 2567 
 2568 static void
 2569 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
 2570 {
 2571         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2572 
 2573         ASSERT(tx->tx_txg != 0);
 2574         ASSERT(!zfs_refcount_is_zero(&db->db_holds));
 2575 
 2576         /*
 2577          * Quick check for dirtiness.  For already dirty blocks, this
 2578          * reduces runtime of this function by >90%, and overall performance
 2579          * by 50% for some workloads (e.g. file deletion with indirect blocks
 2580          * cached).
 2581          */
 2582         mutex_enter(&db->db_mtx);
 2583 
 2584         if (db->db_state == DB_CACHED) {
 2585                 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
 2586                 /*
 2587                  * It's possible that it is already dirty but not cached,
 2588                  * because there are some calls to dbuf_dirty() that don't
 2589                  * go through dmu_buf_will_dirty().
 2590                  */
 2591                 if (dr != NULL) {
 2592                         /* This dbuf is already dirty and cached. */
 2593                         dbuf_redirty(dr);
 2594                         mutex_exit(&db->db_mtx);
 2595                         return;
 2596                 }
 2597         }
 2598         mutex_exit(&db->db_mtx);
 2599 
 2600         DB_DNODE_ENTER(db);
 2601         if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
 2602                 flags |= DB_RF_HAVESTRUCT;
 2603         DB_DNODE_EXIT(db);
 2604         (void) dbuf_read(db, NULL, flags);
 2605         (void) dbuf_dirty(db, tx);
 2606 }
 2607 
 2608 void
 2609 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
 2610 {
 2611         dmu_buf_will_dirty_impl(db_fake,
 2612             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
 2613 }
 2614 
 2615 boolean_t
 2616 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
 2617 {
 2618         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2619         dbuf_dirty_record_t *dr;
 2620 
 2621         mutex_enter(&db->db_mtx);
 2622         dr = dbuf_find_dirty_eq(db, tx->tx_txg);
 2623         mutex_exit(&db->db_mtx);
 2624         return (dr != NULL);
 2625 }
 2626 
 2627 void
 2628 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
 2629 {
 2630         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2631 
 2632         db->db_state = DB_NOFILL;
 2633         DTRACE_SET_STATE(db, "allocating NOFILL buffer");
 2634         dmu_buf_will_fill(db_fake, tx);
 2635 }
 2636 
 2637 void
 2638 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
 2639 {
 2640         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2641 
 2642         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 2643         ASSERT(tx->tx_txg != 0);
 2644         ASSERT(db->db_level == 0);
 2645         ASSERT(!zfs_refcount_is_zero(&db->db_holds));
 2646 
 2647         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
 2648             dmu_tx_private_ok(tx));
 2649 
 2650         dbuf_noread(db);
 2651         (void) dbuf_dirty(db, tx);
 2652 }
 2653 
 2654 /*
 2655  * This function is effectively the same as dmu_buf_will_dirty(), but
 2656  * indicates the caller expects raw encrypted data in the db, and provides
 2657  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
 2658  * blkptr_t when this dbuf is written.  This is only used for blocks of
 2659  * dnodes, during raw receive.
 2660  */
 2661 void
 2662 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
 2663     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
 2664 {
 2665         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2666         dbuf_dirty_record_t *dr;
 2667 
 2668         /*
 2669          * dr_has_raw_params is only processed for blocks of dnodes
 2670          * (see dbuf_sync_dnode_leaf_crypt()).
 2671          */
 2672         ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
 2673         ASSERT3U(db->db_level, ==, 0);
 2674         ASSERT(db->db_objset->os_raw_receive);
 2675 
 2676         dmu_buf_will_dirty_impl(db_fake,
 2677             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
 2678 
 2679         dr = dbuf_find_dirty_eq(db, tx->tx_txg);
 2680 
 2681         ASSERT3P(dr, !=, NULL);
 2682 
 2683         dr->dt.dl.dr_has_raw_params = B_TRUE;
 2684         dr->dt.dl.dr_byteorder = byteorder;
 2685         memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
 2686         memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
 2687         memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
 2688 }
 2689 
 2690 static void
 2691 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
 2692 {
 2693         struct dirty_leaf *dl;
 2694         dbuf_dirty_record_t *dr;
 2695 
 2696         dr = list_head(&db->db_dirty_records);
 2697         ASSERT3P(dr, !=, NULL);
 2698         ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
 2699         dl = &dr->dt.dl;
 2700         dl->dr_overridden_by = *bp;
 2701         dl->dr_override_state = DR_OVERRIDDEN;
 2702         dl->dr_overridden_by.blk_birth = dr->dr_txg;
 2703 }
 2704 
 2705 void
 2706 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
 2707 {
 2708         (void) tx;
 2709         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
 2710         dbuf_states_t old_state;
 2711         mutex_enter(&db->db_mtx);
 2712         DBUF_VERIFY(db);
 2713 
 2714         old_state = db->db_state;
 2715         db->db_state = DB_CACHED;
 2716         if (old_state == DB_FILL) {
 2717                 if (db->db_level == 0 && db->db_freed_in_flight) {
 2718                         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 2719                         /* we were freed while filling */
 2720                         /* XXX dbuf_undirty? */
 2721                         memset(db->db.db_data, 0, db->db.db_size);
 2722                         db->db_freed_in_flight = FALSE;
 2723                         DTRACE_SET_STATE(db,
 2724                             "fill done handling freed in flight");
 2725                 } else {
 2726                         DTRACE_SET_STATE(db, "fill done");
 2727                 }
 2728                 cv_broadcast(&db->db_changed);
 2729         }
 2730         mutex_exit(&db->db_mtx);
 2731 }
 2732 
 2733 void
 2734 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
 2735     bp_embedded_type_t etype, enum zio_compress comp,
 2736     int uncompressed_size, int compressed_size, int byteorder,
 2737     dmu_tx_t *tx)
 2738 {
 2739         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
 2740         struct dirty_leaf *dl;
 2741         dmu_object_type_t type;
 2742         dbuf_dirty_record_t *dr;
 2743 
 2744         if (etype == BP_EMBEDDED_TYPE_DATA) {
 2745                 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
 2746                     SPA_FEATURE_EMBEDDED_DATA));
 2747         }
 2748 
 2749         DB_DNODE_ENTER(db);
 2750         type = DB_DNODE(db)->dn_type;
 2751         DB_DNODE_EXIT(db);
 2752 
 2753         ASSERT0(db->db_level);
 2754         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 2755 
 2756         dmu_buf_will_not_fill(dbuf, tx);
 2757 
 2758         dr = list_head(&db->db_dirty_records);
 2759         ASSERT3P(dr, !=, NULL);
 2760         ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
 2761         dl = &dr->dt.dl;
 2762         encode_embedded_bp_compressed(&dl->dr_overridden_by,
 2763             data, comp, uncompressed_size, compressed_size);
 2764         BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
 2765         BP_SET_TYPE(&dl->dr_overridden_by, type);
 2766         BP_SET_LEVEL(&dl->dr_overridden_by, 0);
 2767         BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
 2768 
 2769         dl->dr_override_state = DR_OVERRIDDEN;
 2770         dl->dr_overridden_by.blk_birth = dr->dr_txg;
 2771 }
 2772 
 2773 void
 2774 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
 2775 {
 2776         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
 2777         dmu_object_type_t type;
 2778         ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
 2779             SPA_FEATURE_REDACTED_DATASETS));
 2780 
 2781         DB_DNODE_ENTER(db);
 2782         type = DB_DNODE(db)->dn_type;
 2783         DB_DNODE_EXIT(db);
 2784 
 2785         ASSERT0(db->db_level);
 2786         dmu_buf_will_not_fill(dbuf, tx);
 2787 
 2788         blkptr_t bp = { { { {0} } } };
 2789         BP_SET_TYPE(&bp, type);
 2790         BP_SET_LEVEL(&bp, 0);
 2791         BP_SET_BIRTH(&bp, tx->tx_txg, 0);
 2792         BP_SET_REDACTED(&bp);
 2793         BPE_SET_LSIZE(&bp, dbuf->db_size);
 2794 
 2795         dbuf_override_impl(db, &bp, tx);
 2796 }
 2797 
 2798 /*
 2799  * Directly assign a provided arc buf to a given dbuf if it's not referenced
 2800  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
 2801  */
 2802 void
 2803 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
 2804 {
 2805         ASSERT(!zfs_refcount_is_zero(&db->db_holds));
 2806         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 2807         ASSERT(db->db_level == 0);
 2808         ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
 2809         ASSERT(buf != NULL);
 2810         ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
 2811         ASSERT(tx->tx_txg != 0);
 2812 
 2813         arc_return_buf(buf, db);
 2814         ASSERT(arc_released(buf));
 2815 
 2816         mutex_enter(&db->db_mtx);
 2817 
 2818         while (db->db_state == DB_READ || db->db_state == DB_FILL)
 2819                 cv_wait(&db->db_changed, &db->db_mtx);
 2820 
 2821         ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
 2822 
 2823         if (db->db_state == DB_CACHED &&
 2824             zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
 2825                 /*
 2826                  * In practice, we will never have a case where we have an
 2827                  * encrypted arc buffer while additional holds exist on the
 2828                  * dbuf. We don't handle this here so we simply assert that
 2829                  * fact instead.
 2830                  */
 2831                 ASSERT(!arc_is_encrypted(buf));
 2832                 mutex_exit(&db->db_mtx);
 2833                 (void) dbuf_dirty(db, tx);
 2834                 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
 2835                 arc_buf_destroy(buf, db);
 2836                 return;
 2837         }
 2838 
 2839         if (db->db_state == DB_CACHED) {
 2840                 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
 2841 
 2842                 ASSERT(db->db_buf != NULL);
 2843                 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
 2844                         ASSERT(dr->dt.dl.dr_data == db->db_buf);
 2845 
 2846                         if (!arc_released(db->db_buf)) {
 2847                                 ASSERT(dr->dt.dl.dr_override_state ==
 2848                                     DR_OVERRIDDEN);
 2849                                 arc_release(db->db_buf, db);
 2850                         }
 2851                         dr->dt.dl.dr_data = buf;
 2852                         arc_buf_destroy(db->db_buf, db);
 2853                 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
 2854                         arc_release(db->db_buf, db);
 2855                         arc_buf_destroy(db->db_buf, db);
 2856                 }
 2857                 db->db_buf = NULL;
 2858         }
 2859         ASSERT(db->db_buf == NULL);
 2860         dbuf_set_data(db, buf);
 2861         db->db_state = DB_FILL;
 2862         DTRACE_SET_STATE(db, "filling assigned arcbuf");
 2863         mutex_exit(&db->db_mtx);
 2864         (void) dbuf_dirty(db, tx);
 2865         dmu_buf_fill_done(&db->db, tx);
 2866 }
 2867 
 2868 void
 2869 dbuf_destroy(dmu_buf_impl_t *db)
 2870 {
 2871         dnode_t *dn;
 2872         dmu_buf_impl_t *parent = db->db_parent;
 2873         dmu_buf_impl_t *dndb;
 2874 
 2875         ASSERT(MUTEX_HELD(&db->db_mtx));
 2876         ASSERT(zfs_refcount_is_zero(&db->db_holds));
 2877 
 2878         if (db->db_buf != NULL) {
 2879                 arc_buf_destroy(db->db_buf, db);
 2880                 db->db_buf = NULL;
 2881         }
 2882 
 2883         if (db->db_blkid == DMU_BONUS_BLKID) {
 2884                 int slots = DB_DNODE(db)->dn_num_slots;
 2885                 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
 2886                 if (db->db.db_data != NULL) {
 2887                         kmem_free(db->db.db_data, bonuslen);
 2888                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
 2889                         db->db_state = DB_UNCACHED;
 2890                         DTRACE_SET_STATE(db, "buffer cleared");
 2891                 }
 2892         }
 2893 
 2894         dbuf_clear_data(db);
 2895 
 2896         if (multilist_link_active(&db->db_cache_link)) {
 2897                 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
 2898                     db->db_caching_status == DB_DBUF_METADATA_CACHE);
 2899 
 2900                 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
 2901                 (void) zfs_refcount_remove_many(
 2902                     &dbuf_caches[db->db_caching_status].size,
 2903                     db->db.db_size, db);
 2904 
 2905                 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
 2906                         DBUF_STAT_BUMPDOWN(metadata_cache_count);
 2907                 } else {
 2908                         DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
 2909                         DBUF_STAT_BUMPDOWN(cache_count);
 2910                         DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
 2911                             db->db.db_size);
 2912                 }
 2913                 db->db_caching_status = DB_NO_CACHE;
 2914         }
 2915 
 2916         ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
 2917         ASSERT(db->db_data_pending == NULL);
 2918         ASSERT(list_is_empty(&db->db_dirty_records));
 2919 
 2920         db->db_state = DB_EVICTING;
 2921         DTRACE_SET_STATE(db, "buffer eviction started");
 2922         db->db_blkptr = NULL;
 2923 
 2924         /*
 2925          * Now that db_state is DB_EVICTING, nobody else can find this via
 2926          * the hash table.  We can now drop db_mtx, which allows us to
 2927          * acquire the dn_dbufs_mtx.
 2928          */
 2929         mutex_exit(&db->db_mtx);
 2930 
 2931         DB_DNODE_ENTER(db);
 2932         dn = DB_DNODE(db);
 2933         dndb = dn->dn_dbuf;
 2934         if (db->db_blkid != DMU_BONUS_BLKID) {
 2935                 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
 2936                 if (needlock)
 2937                         mutex_enter_nested(&dn->dn_dbufs_mtx,
 2938                             NESTED_SINGLE);
 2939                 avl_remove(&dn->dn_dbufs, db);
 2940                 membar_producer();
 2941                 DB_DNODE_EXIT(db);
 2942                 if (needlock)
 2943                         mutex_exit(&dn->dn_dbufs_mtx);
 2944                 /*
 2945                  * Decrementing the dbuf count means that the hold corresponding
 2946                  * to the removed dbuf is no longer discounted in dnode_move(),
 2947                  * so the dnode cannot be moved until after we release the hold.
 2948                  * The membar_producer() ensures visibility of the decremented
 2949                  * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
 2950                  * release any lock.
 2951                  */
 2952                 mutex_enter(&dn->dn_mtx);
 2953                 dnode_rele_and_unlock(dn, db, B_TRUE);
 2954                 db->db_dnode_handle = NULL;
 2955 
 2956                 dbuf_hash_remove(db);
 2957         } else {
 2958                 DB_DNODE_EXIT(db);
 2959         }
 2960 
 2961         ASSERT(zfs_refcount_is_zero(&db->db_holds));
 2962 
 2963         db->db_parent = NULL;
 2964 
 2965         ASSERT(db->db_buf == NULL);
 2966         ASSERT(db->db.db_data == NULL);
 2967         ASSERT(db->db_hash_next == NULL);
 2968         ASSERT(db->db_blkptr == NULL);
 2969         ASSERT(db->db_data_pending == NULL);
 2970         ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
 2971         ASSERT(!multilist_link_active(&db->db_cache_link));
 2972 
 2973         /*
 2974          * If this dbuf is referenced from an indirect dbuf,
 2975          * decrement the ref count on the indirect dbuf.
 2976          */
 2977         if (parent && parent != dndb) {
 2978                 mutex_enter(&parent->db_mtx);
 2979                 dbuf_rele_and_unlock(parent, db, B_TRUE);
 2980         }
 2981 
 2982         kmem_cache_free(dbuf_kmem_cache, db);
 2983         arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
 2984 }
 2985 
 2986 /*
 2987  * Note: While bpp will always be updated if the function returns success,
 2988  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
 2989  * this happens when the dnode is the meta-dnode, or {user|group|project}used
 2990  * object.
 2991  */
 2992 __attribute__((always_inline))
 2993 static inline int
 2994 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
 2995     dmu_buf_impl_t **parentp, blkptr_t **bpp)
 2996 {
 2997         *parentp = NULL;
 2998         *bpp = NULL;
 2999 
 3000         ASSERT(blkid != DMU_BONUS_BLKID);
 3001 
 3002         if (blkid == DMU_SPILL_BLKID) {
 3003                 mutex_enter(&dn->dn_mtx);
 3004                 if (dn->dn_have_spill &&
 3005                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
 3006                         *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
 3007                 else
 3008                         *bpp = NULL;
 3009                 dbuf_add_ref(dn->dn_dbuf, NULL);
 3010                 *parentp = dn->dn_dbuf;
 3011                 mutex_exit(&dn->dn_mtx);
 3012                 return (0);
 3013         }
 3014 
 3015         int nlevels =
 3016             (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
 3017         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 3018 
 3019         ASSERT3U(level * epbs, <, 64);
 3020         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
 3021         /*
 3022          * This assertion shouldn't trip as long as the max indirect block size
 3023          * is less than 1M.  The reason for this is that up to that point,
 3024          * the number of levels required to address an entire object with blocks
 3025          * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
 3026          * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
 3027          * (i.e. we can address the entire object), objects will all use at most
 3028          * N-1 levels and the assertion won't overflow.  However, once epbs is
 3029          * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
 3030          * enough to address an entire object, so objects will have 5 levels,
 3031          * but then this assertion will overflow.
 3032          *
 3033          * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
 3034          * need to redo this logic to handle overflows.
 3035          */
 3036         ASSERT(level >= nlevels ||
 3037             ((nlevels - level - 1) * epbs) +
 3038             highbit64(dn->dn_phys->dn_nblkptr) <= 64);
 3039         if (level >= nlevels ||
 3040             blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
 3041             ((nlevels - level - 1) * epbs)) ||
 3042             (fail_sparse &&
 3043             blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
 3044                 /* the buffer has no parent yet */
 3045                 return (SET_ERROR(ENOENT));
 3046         } else if (level < nlevels-1) {
 3047                 /* this block is referenced from an indirect block */
 3048                 int err;
 3049 
 3050                 err = dbuf_hold_impl(dn, level + 1,
 3051                     blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
 3052 
 3053                 if (err)
 3054                         return (err);
 3055                 err = dbuf_read(*parentp, NULL,
 3056                     (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
 3057                 if (err) {
 3058                         dbuf_rele(*parentp, NULL);
 3059                         *parentp = NULL;
 3060                         return (err);
 3061                 }
 3062                 rw_enter(&(*parentp)->db_rwlock, RW_READER);
 3063                 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
 3064                     (blkid & ((1ULL << epbs) - 1));
 3065                 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
 3066                         ASSERT(BP_IS_HOLE(*bpp));
 3067                 rw_exit(&(*parentp)->db_rwlock);
 3068                 return (0);
 3069         } else {
 3070                 /* the block is referenced from the dnode */
 3071                 ASSERT3U(level, ==, nlevels-1);
 3072                 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
 3073                     blkid < dn->dn_phys->dn_nblkptr);
 3074                 if (dn->dn_dbuf) {
 3075                         dbuf_add_ref(dn->dn_dbuf, NULL);
 3076                         *parentp = dn->dn_dbuf;
 3077                 }
 3078                 *bpp = &dn->dn_phys->dn_blkptr[blkid];
 3079                 return (0);
 3080         }
 3081 }
 3082 
 3083 static dmu_buf_impl_t *
 3084 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
 3085     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
 3086 {
 3087         objset_t *os = dn->dn_objset;
 3088         dmu_buf_impl_t *db, *odb;
 3089 
 3090         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
 3091         ASSERT(dn->dn_type != DMU_OT_NONE);
 3092 
 3093         db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
 3094 
 3095         list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
 3096             offsetof(dbuf_dirty_record_t, dr_dbuf_node));
 3097 
 3098         db->db_objset = os;
 3099         db->db.db_object = dn->dn_object;
 3100         db->db_level = level;
 3101         db->db_blkid = blkid;
 3102         db->db_dirtycnt = 0;
 3103         db->db_dnode_handle = dn->dn_handle;
 3104         db->db_parent = parent;
 3105         db->db_blkptr = blkptr;
 3106         db->db_hash = hash;
 3107 
 3108         db->db_user = NULL;
 3109         db->db_user_immediate_evict = FALSE;
 3110         db->db_freed_in_flight = FALSE;
 3111         db->db_pending_evict = FALSE;
 3112 
 3113         if (blkid == DMU_BONUS_BLKID) {
 3114                 ASSERT3P(parent, ==, dn->dn_dbuf);
 3115                 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
 3116                     (dn->dn_nblkptr-1) * sizeof (blkptr_t);
 3117                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
 3118                 db->db.db_offset = DMU_BONUS_BLKID;
 3119                 db->db_state = DB_UNCACHED;
 3120                 DTRACE_SET_STATE(db, "bonus buffer created");
 3121                 db->db_caching_status = DB_NO_CACHE;
 3122                 /* the bonus dbuf is not placed in the hash table */
 3123                 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
 3124                 return (db);
 3125         } else if (blkid == DMU_SPILL_BLKID) {
 3126                 db->db.db_size = (blkptr != NULL) ?
 3127                     BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
 3128                 db->db.db_offset = 0;
 3129         } else {
 3130                 int blocksize =
 3131                     db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
 3132                 db->db.db_size = blocksize;
 3133                 db->db.db_offset = db->db_blkid * blocksize;
 3134         }
 3135 
 3136         /*
 3137          * Hold the dn_dbufs_mtx while we get the new dbuf
 3138          * in the hash table *and* added to the dbufs list.
 3139          * This prevents a possible deadlock with someone
 3140          * trying to look up this dbuf before it's added to the
 3141          * dn_dbufs list.
 3142          */
 3143         mutex_enter(&dn->dn_dbufs_mtx);
 3144         db->db_state = DB_EVICTING; /* not worth logging this state change */
 3145         if ((odb = dbuf_hash_insert(db)) != NULL) {
 3146                 /* someone else inserted it first */
 3147                 mutex_exit(&dn->dn_dbufs_mtx);
 3148                 kmem_cache_free(dbuf_kmem_cache, db);
 3149                 DBUF_STAT_BUMP(hash_insert_race);
 3150                 return (odb);
 3151         }
 3152         avl_add(&dn->dn_dbufs, db);
 3153 
 3154         db->db_state = DB_UNCACHED;
 3155         DTRACE_SET_STATE(db, "regular buffer created");
 3156         db->db_caching_status = DB_NO_CACHE;
 3157         mutex_exit(&dn->dn_dbufs_mtx);
 3158         arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
 3159 
 3160         if (parent && parent != dn->dn_dbuf)
 3161                 dbuf_add_ref(parent, db);
 3162 
 3163         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
 3164             zfs_refcount_count(&dn->dn_holds) > 0);
 3165         (void) zfs_refcount_add(&dn->dn_holds, db);
 3166 
 3167         dprintf_dbuf(db, "db=%p\n", db);
 3168 
 3169         return (db);
 3170 }
 3171 
 3172 /*
 3173  * This function returns a block pointer and information about the object,
 3174  * given a dnode and a block.  This is a publicly accessible version of
 3175  * dbuf_findbp that only returns some information, rather than the
 3176  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
 3177  * should be locked as (at least) a reader.
 3178  */
 3179 int
 3180 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
 3181     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
 3182 {
 3183         dmu_buf_impl_t *dbp = NULL;
 3184         blkptr_t *bp2;
 3185         int err = 0;
 3186         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
 3187 
 3188         err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
 3189         if (err == 0) {
 3190                 *bp = *bp2;
 3191                 if (dbp != NULL)
 3192                         dbuf_rele(dbp, NULL);
 3193                 if (datablkszsec != NULL)
 3194                         *datablkszsec = dn->dn_phys->dn_datablkszsec;
 3195                 if (indblkshift != NULL)
 3196                         *indblkshift = dn->dn_phys->dn_indblkshift;
 3197         }
 3198 
 3199         return (err);
 3200 }
 3201 
 3202 typedef struct dbuf_prefetch_arg {
 3203         spa_t *dpa_spa; /* The spa to issue the prefetch in. */
 3204         zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
 3205         int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
 3206         int dpa_curlevel; /* The current level that we're reading */
 3207         dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
 3208         zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
 3209         zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
 3210         arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
 3211         dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
 3212         void *dpa_arg; /* prefetch completion arg */
 3213 } dbuf_prefetch_arg_t;
 3214 
 3215 static void
 3216 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
 3217 {
 3218         if (dpa->dpa_cb != NULL) {
 3219                 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
 3220                     dpa->dpa_zb.zb_blkid, io_done);
 3221         }
 3222         kmem_free(dpa, sizeof (*dpa));
 3223 }
 3224 
 3225 static void
 3226 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
 3227     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
 3228 {
 3229         (void) zio, (void) zb, (void) iobp;
 3230         dbuf_prefetch_arg_t *dpa = private;
 3231 
 3232         if (abuf != NULL)
 3233                 arc_buf_destroy(abuf, private);
 3234 
 3235         dbuf_prefetch_fini(dpa, B_TRUE);
 3236 }
 3237 
 3238 /*
 3239  * Actually issue the prefetch read for the block given.
 3240  */
 3241 static void
 3242 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
 3243 {
 3244         ASSERT(!BP_IS_REDACTED(bp) ||
 3245             dsl_dataset_feature_is_active(
 3246             dpa->dpa_dnode->dn_objset->os_dsl_dataset,
 3247             SPA_FEATURE_REDACTED_DATASETS));
 3248 
 3249         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
 3250                 return (dbuf_prefetch_fini(dpa, B_FALSE));
 3251 
 3252         int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
 3253         arc_flags_t aflags =
 3254             dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
 3255             ARC_FLAG_NO_BUF;
 3256 
 3257         /* dnodes are always read as raw and then converted later */
 3258         if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
 3259             dpa->dpa_curlevel == 0)
 3260                 zio_flags |= ZIO_FLAG_RAW;
 3261 
 3262         ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
 3263         ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
 3264         ASSERT(dpa->dpa_zio != NULL);
 3265         (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
 3266             dbuf_issue_final_prefetch_done, dpa,
 3267             dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
 3268 }
 3269 
 3270 /*
 3271  * Called when an indirect block above our prefetch target is read in.  This
 3272  * will either read in the next indirect block down the tree or issue the actual
 3273  * prefetch if the next block down is our target.
 3274  */
 3275 static void
 3276 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
 3277     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
 3278 {
 3279         (void) zb, (void) iobp;
 3280         dbuf_prefetch_arg_t *dpa = private;
 3281 
 3282         ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
 3283         ASSERT3S(dpa->dpa_curlevel, >, 0);
 3284 
 3285         if (abuf == NULL) {
 3286                 ASSERT(zio == NULL || zio->io_error != 0);
 3287                 dbuf_prefetch_fini(dpa, B_TRUE);
 3288                 return;
 3289         }
 3290         ASSERT(zio == NULL || zio->io_error == 0);
 3291 
 3292         /*
 3293          * The dpa_dnode is only valid if we are called with a NULL
 3294          * zio. This indicates that the arc_read() returned without
 3295          * first calling zio_read() to issue a physical read. Once
 3296          * a physical read is made the dpa_dnode must be invalidated
 3297          * as the locks guarding it may have been dropped. If the
 3298          * dpa_dnode is still valid, then we want to add it to the dbuf
 3299          * cache. To do so, we must hold the dbuf associated with the block
 3300          * we just prefetched, read its contents so that we associate it
 3301          * with an arc_buf_t, and then release it.
 3302          */
 3303         if (zio != NULL) {
 3304                 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
 3305                 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
 3306                         ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
 3307                 } else {
 3308                         ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
 3309                 }
 3310                 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
 3311 
 3312                 dpa->dpa_dnode = NULL;
 3313         } else if (dpa->dpa_dnode != NULL) {
 3314                 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
 3315                     (dpa->dpa_epbs * (dpa->dpa_curlevel -
 3316                     dpa->dpa_zb.zb_level));
 3317                 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
 3318                     dpa->dpa_curlevel, curblkid, FTAG);
 3319                 if (db == NULL) {
 3320                         arc_buf_destroy(abuf, private);
 3321                         dbuf_prefetch_fini(dpa, B_TRUE);
 3322                         return;
 3323                 }
 3324                 (void) dbuf_read(db, NULL,
 3325                     DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
 3326                 dbuf_rele(db, FTAG);
 3327         }
 3328 
 3329         dpa->dpa_curlevel--;
 3330         uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
 3331             (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
 3332         blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
 3333             P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
 3334 
 3335         ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
 3336             dsl_dataset_feature_is_active(
 3337             dpa->dpa_dnode->dn_objset->os_dsl_dataset,
 3338             SPA_FEATURE_REDACTED_DATASETS)));
 3339         if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
 3340                 arc_buf_destroy(abuf, private);
 3341                 dbuf_prefetch_fini(dpa, B_TRUE);
 3342                 return;
 3343         } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
 3344                 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
 3345                 dbuf_issue_final_prefetch(dpa, bp);
 3346         } else {
 3347                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
 3348                 zbookmark_phys_t zb;
 3349 
 3350                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
 3351                 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
 3352                         iter_aflags |= ARC_FLAG_L2CACHE;
 3353 
 3354                 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
 3355 
 3356                 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
 3357                     dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
 3358 
 3359                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
 3360                     bp, dbuf_prefetch_indirect_done, dpa,
 3361                     ZIO_PRIORITY_SYNC_READ,
 3362                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
 3363                     &iter_aflags, &zb);
 3364         }
 3365 
 3366         arc_buf_destroy(abuf, private);
 3367 }
 3368 
 3369 /*
 3370  * Issue prefetch reads for the given block on the given level.  If the indirect
 3371  * blocks above that block are not in memory, we will read them in
 3372  * asynchronously.  As a result, this call never blocks waiting for a read to
 3373  * complete. Note that the prefetch might fail if the dataset is encrypted and
 3374  * the encryption key is unmapped before the IO completes.
 3375  */
 3376 int
 3377 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
 3378     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
 3379     void *arg)
 3380 {
 3381         blkptr_t bp;
 3382         int epbs, nlevels, curlevel;
 3383         uint64_t curblkid;
 3384 
 3385         ASSERT(blkid != DMU_BONUS_BLKID);
 3386         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
 3387 
 3388         if (blkid > dn->dn_maxblkid)
 3389                 goto no_issue;
 3390 
 3391         if (level == 0 && dnode_block_freed(dn, blkid))
 3392                 goto no_issue;
 3393 
 3394         /*
 3395          * This dnode hasn't been written to disk yet, so there's nothing to
 3396          * prefetch.
 3397          */
 3398         nlevels = dn->dn_phys->dn_nlevels;
 3399         if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
 3400                 goto no_issue;
 3401 
 3402         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
 3403         if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
 3404                 goto no_issue;
 3405 
 3406         dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
 3407             level, blkid, NULL);
 3408         if (db != NULL) {
 3409                 mutex_exit(&db->db_mtx);
 3410                 /*
 3411                  * This dbuf already exists.  It is either CACHED, or
 3412                  * (we assume) about to be read or filled.
 3413                  */
 3414                 goto no_issue;
 3415         }
 3416 
 3417         /*
 3418          * Find the closest ancestor (indirect block) of the target block
 3419          * that is present in the cache.  In this indirect block, we will
 3420          * find the bp that is at curlevel, curblkid.
 3421          */
 3422         curlevel = level;
 3423         curblkid = blkid;
 3424         while (curlevel < nlevels - 1) {
 3425                 int parent_level = curlevel + 1;
 3426                 uint64_t parent_blkid = curblkid >> epbs;
 3427                 dmu_buf_impl_t *db;
 3428 
 3429                 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
 3430                     FALSE, TRUE, FTAG, &db) == 0) {
 3431                         blkptr_t *bpp = db->db_buf->b_data;
 3432                         bp = bpp[P2PHASE(curblkid, 1 << epbs)];
 3433                         dbuf_rele(db, FTAG);
 3434                         break;
 3435                 }
 3436 
 3437                 curlevel = parent_level;
 3438                 curblkid = parent_blkid;
 3439         }
 3440 
 3441         if (curlevel == nlevels - 1) {
 3442                 /* No cached indirect blocks found. */
 3443                 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
 3444                 bp = dn->dn_phys->dn_blkptr[curblkid];
 3445         }
 3446         ASSERT(!BP_IS_REDACTED(&bp) ||
 3447             dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
 3448             SPA_FEATURE_REDACTED_DATASETS));
 3449         if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
 3450                 goto no_issue;
 3451 
 3452         ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
 3453 
 3454         zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
 3455             ZIO_FLAG_CANFAIL);
 3456 
 3457         dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
 3458         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
 3459         SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
 3460             dn->dn_object, level, blkid);
 3461         dpa->dpa_curlevel = curlevel;
 3462         dpa->dpa_prio = prio;
 3463         dpa->dpa_aflags = aflags;
 3464         dpa->dpa_spa = dn->dn_objset->os_spa;
 3465         dpa->dpa_dnode = dn;
 3466         dpa->dpa_epbs = epbs;
 3467         dpa->dpa_zio = pio;
 3468         dpa->dpa_cb = cb;
 3469         dpa->dpa_arg = arg;
 3470 
 3471         if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
 3472                 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
 3473         else if (dnode_level_is_l2cacheable(&bp, dn, level))
 3474                 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
 3475 
 3476         /*
 3477          * If we have the indirect just above us, no need to do the asynchronous
 3478          * prefetch chain; we'll just run the last step ourselves.  If we're at
 3479          * a higher level, though, we want to issue the prefetches for all the
 3480          * indirect blocks asynchronously, so we can go on with whatever we were
 3481          * doing.
 3482          */
 3483         if (curlevel == level) {
 3484                 ASSERT3U(curblkid, ==, blkid);
 3485                 dbuf_issue_final_prefetch(dpa, &bp);
 3486         } else {
 3487                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
 3488                 zbookmark_phys_t zb;
 3489 
 3490                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
 3491                 if (dnode_level_is_l2cacheable(&bp, dn, level))
 3492                         iter_aflags |= ARC_FLAG_L2CACHE;
 3493 
 3494                 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
 3495                     dn->dn_object, curlevel, curblkid);
 3496                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
 3497                     &bp, dbuf_prefetch_indirect_done, dpa,
 3498                     ZIO_PRIORITY_SYNC_READ,
 3499                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
 3500                     &iter_aflags, &zb);
 3501         }
 3502         /*
 3503          * We use pio here instead of dpa_zio since it's possible that
 3504          * dpa may have already been freed.
 3505          */
 3506         zio_nowait(pio);
 3507         return (1);
 3508 no_issue:
 3509         if (cb != NULL)
 3510                 cb(arg, level, blkid, B_FALSE);
 3511         return (0);
 3512 }
 3513 
 3514 int
 3515 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
 3516     arc_flags_t aflags)
 3517 {
 3518 
 3519         return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
 3520 }
 3521 
 3522 /*
 3523  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
 3524  * the case of encrypted, compressed and uncompressed buffers by
 3525  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
 3526  * arc_alloc_compressed_buf() or arc_alloc_buf().*
 3527  *
 3528  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
 3529  */
 3530 noinline static void
 3531 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
 3532 {
 3533         dbuf_dirty_record_t *dr = db->db_data_pending;
 3534         arc_buf_t *data = dr->dt.dl.dr_data;
 3535         enum zio_compress compress_type = arc_get_compression(data);
 3536         uint8_t complevel = arc_get_complevel(data);
 3537 
 3538         if (arc_is_encrypted(data)) {
 3539                 boolean_t byteorder;
 3540                 uint8_t salt[ZIO_DATA_SALT_LEN];
 3541                 uint8_t iv[ZIO_DATA_IV_LEN];
 3542                 uint8_t mac[ZIO_DATA_MAC_LEN];
 3543 
 3544                 arc_get_raw_params(data, &byteorder, salt, iv, mac);
 3545                 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
 3546                     dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
 3547                     dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
 3548                     compress_type, complevel));
 3549         } else if (compress_type != ZIO_COMPRESS_OFF) {
 3550                 dbuf_set_data(db, arc_alloc_compressed_buf(
 3551                     dn->dn_objset->os_spa, db, arc_buf_size(data),
 3552                     arc_buf_lsize(data), compress_type, complevel));
 3553         } else {
 3554                 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
 3555                     DBUF_GET_BUFC_TYPE(db), db->db.db_size));
 3556         }
 3557 
 3558         rw_enter(&db->db_rwlock, RW_WRITER);
 3559         memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
 3560         rw_exit(&db->db_rwlock);
 3561 }
 3562 
 3563 /*
 3564  * Returns with db_holds incremented, and db_mtx not held.
 3565  * Note: dn_struct_rwlock must be held.
 3566  */
 3567 int
 3568 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
 3569     boolean_t fail_sparse, boolean_t fail_uncached,
 3570     const void *tag, dmu_buf_impl_t **dbp)
 3571 {
 3572         dmu_buf_impl_t *db, *parent = NULL;
 3573         uint64_t hv;
 3574 
 3575         /* If the pool has been created, verify the tx_sync_lock is not held */
 3576         spa_t *spa = dn->dn_objset->os_spa;
 3577         dsl_pool_t *dp = spa->spa_dsl_pool;
 3578         if (dp != NULL) {
 3579                 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
 3580         }
 3581 
 3582         ASSERT(blkid != DMU_BONUS_BLKID);
 3583         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
 3584         ASSERT3U(dn->dn_nlevels, >, level);
 3585 
 3586         *dbp = NULL;
 3587 
 3588         /* dbuf_find() returns with db_mtx held */
 3589         db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
 3590 
 3591         if (db == NULL) {
 3592                 blkptr_t *bp = NULL;
 3593                 int err;
 3594 
 3595                 if (fail_uncached)
 3596                         return (SET_ERROR(ENOENT));
 3597 
 3598                 ASSERT3P(parent, ==, NULL);
 3599                 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
 3600                 if (fail_sparse) {
 3601                         if (err == 0 && bp && BP_IS_HOLE(bp))
 3602                                 err = SET_ERROR(ENOENT);
 3603                         if (err) {
 3604                                 if (parent)
 3605                                         dbuf_rele(parent, NULL);
 3606                                 return (err);
 3607                         }
 3608                 }
 3609                 if (err && err != ENOENT)
 3610                         return (err);
 3611                 db = dbuf_create(dn, level, blkid, parent, bp, hv);
 3612         }
 3613 
 3614         if (fail_uncached && db->db_state != DB_CACHED) {
 3615                 mutex_exit(&db->db_mtx);
 3616                 return (SET_ERROR(ENOENT));
 3617         }
 3618 
 3619         if (db->db_buf != NULL) {
 3620                 arc_buf_access(db->db_buf);
 3621                 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
 3622         }
 3623 
 3624         ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
 3625 
 3626         /*
 3627          * If this buffer is currently syncing out, and we are
 3628          * still referencing it from db_data, we need to make a copy
 3629          * of it in case we decide we want to dirty it again in this txg.
 3630          */
 3631         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
 3632             dn->dn_object != DMU_META_DNODE_OBJECT &&
 3633             db->db_state == DB_CACHED && db->db_data_pending) {
 3634                 dbuf_dirty_record_t *dr = db->db_data_pending;
 3635                 if (dr->dt.dl.dr_data == db->db_buf)
 3636                         dbuf_hold_copy(dn, db);
 3637         }
 3638 
 3639         if (multilist_link_active(&db->db_cache_link)) {
 3640                 ASSERT(zfs_refcount_is_zero(&db->db_holds));
 3641                 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
 3642                     db->db_caching_status == DB_DBUF_METADATA_CACHE);
 3643 
 3644                 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
 3645                 (void) zfs_refcount_remove_many(
 3646                     &dbuf_caches[db->db_caching_status].size,
 3647                     db->db.db_size, db);
 3648 
 3649                 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
 3650                         DBUF_STAT_BUMPDOWN(metadata_cache_count);
 3651                 } else {
 3652                         DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
 3653                         DBUF_STAT_BUMPDOWN(cache_count);
 3654                         DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
 3655                             db->db.db_size);
 3656                 }
 3657                 db->db_caching_status = DB_NO_CACHE;
 3658         }
 3659         (void) zfs_refcount_add(&db->db_holds, tag);
 3660         DBUF_VERIFY(db);
 3661         mutex_exit(&db->db_mtx);
 3662 
 3663         /* NOTE: we can't rele the parent until after we drop the db_mtx */
 3664         if (parent)
 3665                 dbuf_rele(parent, NULL);
 3666 
 3667         ASSERT3P(DB_DNODE(db), ==, dn);
 3668         ASSERT3U(db->db_blkid, ==, blkid);
 3669         ASSERT3U(db->db_level, ==, level);
 3670         *dbp = db;
 3671 
 3672         return (0);
 3673 }
 3674 
 3675 dmu_buf_impl_t *
 3676 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
 3677 {
 3678         return (dbuf_hold_level(dn, 0, blkid, tag));
 3679 }
 3680 
 3681 dmu_buf_impl_t *
 3682 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
 3683 {
 3684         dmu_buf_impl_t *db;
 3685         int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
 3686         return (err ? NULL : db);
 3687 }
 3688 
 3689 void
 3690 dbuf_create_bonus(dnode_t *dn)
 3691 {
 3692         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
 3693 
 3694         ASSERT(dn->dn_bonus == NULL);
 3695         dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
 3696             dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
 3697 }
 3698 
 3699 int
 3700 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
 3701 {
 3702         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 3703 
 3704         if (db->db_blkid != DMU_SPILL_BLKID)
 3705                 return (SET_ERROR(ENOTSUP));
 3706         if (blksz == 0)
 3707                 blksz = SPA_MINBLOCKSIZE;
 3708         ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
 3709         blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
 3710 
 3711         dbuf_new_size(db, blksz, tx);
 3712 
 3713         return (0);
 3714 }
 3715 
 3716 void
 3717 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
 3718 {
 3719         dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
 3720 }
 3721 
 3722 #pragma weak dmu_buf_add_ref = dbuf_add_ref
 3723 void
 3724 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
 3725 {
 3726         int64_t holds = zfs_refcount_add(&db->db_holds, tag);
 3727         VERIFY3S(holds, >, 1);
 3728 }
 3729 
 3730 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
 3731 boolean_t
 3732 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
 3733     const void *tag)
 3734 {
 3735         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 3736         dmu_buf_impl_t *found_db;
 3737         boolean_t result = B_FALSE;
 3738 
 3739         if (blkid == DMU_BONUS_BLKID)
 3740                 found_db = dbuf_find_bonus(os, obj);
 3741         else
 3742                 found_db = dbuf_find(os, obj, 0, blkid, NULL);
 3743 
 3744         if (found_db != NULL) {
 3745                 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
 3746                         (void) zfs_refcount_add(&db->db_holds, tag);
 3747                         result = B_TRUE;
 3748                 }
 3749                 mutex_exit(&found_db->db_mtx);
 3750         }
 3751         return (result);
 3752 }
 3753 
 3754 /*
 3755  * If you call dbuf_rele() you had better not be referencing the dnode handle
 3756  * unless you have some other direct or indirect hold on the dnode. (An indirect
 3757  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
 3758  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
 3759  * dnode's parent dbuf evicting its dnode handles.
 3760  */
 3761 void
 3762 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
 3763 {
 3764         mutex_enter(&db->db_mtx);
 3765         dbuf_rele_and_unlock(db, tag, B_FALSE);
 3766 }
 3767 
 3768 void
 3769 dmu_buf_rele(dmu_buf_t *db, const void *tag)
 3770 {
 3771         dbuf_rele((dmu_buf_impl_t *)db, tag);
 3772 }
 3773 
 3774 /*
 3775  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
 3776  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
 3777  * argument should be set if we are already in the dbuf-evicting code
 3778  * path, in which case we don't want to recursively evict.  This allows us to
 3779  * avoid deeply nested stacks that would have a call flow similar to this:
 3780  *
 3781  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
 3782  *      ^                                               |
 3783  *      |                                               |
 3784  *      +-----dbuf_destroy()<--dbuf_evict_one()<--------+
 3785  *
 3786  */
 3787 void
 3788 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
 3789 {
 3790         int64_t holds;
 3791         uint64_t size;
 3792 
 3793         ASSERT(MUTEX_HELD(&db->db_mtx));
 3794         DBUF_VERIFY(db);
 3795 
 3796         /*
 3797          * Remove the reference to the dbuf before removing its hold on the
 3798          * dnode so we can guarantee in dnode_move() that a referenced bonus
 3799          * buffer has a corresponding dnode hold.
 3800          */
 3801         holds = zfs_refcount_remove(&db->db_holds, tag);
 3802         ASSERT(holds >= 0);
 3803 
 3804         /*
 3805          * We can't freeze indirects if there is a possibility that they
 3806          * may be modified in the current syncing context.
 3807          */
 3808         if (db->db_buf != NULL &&
 3809             holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
 3810                 arc_buf_freeze(db->db_buf);
 3811         }
 3812 
 3813         if (holds == db->db_dirtycnt &&
 3814             db->db_level == 0 && db->db_user_immediate_evict)
 3815                 dbuf_evict_user(db);
 3816 
 3817         if (holds == 0) {
 3818                 if (db->db_blkid == DMU_BONUS_BLKID) {
 3819                         dnode_t *dn;
 3820                         boolean_t evict_dbuf = db->db_pending_evict;
 3821 
 3822                         /*
 3823                          * If the dnode moves here, we cannot cross this
 3824                          * barrier until the move completes.
 3825                          */
 3826                         DB_DNODE_ENTER(db);
 3827 
 3828                         dn = DB_DNODE(db);
 3829                         atomic_dec_32(&dn->dn_dbufs_count);
 3830 
 3831                         /*
 3832                          * Decrementing the dbuf count means that the bonus
 3833                          * buffer's dnode hold is no longer discounted in
 3834                          * dnode_move(). The dnode cannot move until after
 3835                          * the dnode_rele() below.
 3836                          */
 3837                         DB_DNODE_EXIT(db);
 3838 
 3839                         /*
 3840                          * Do not reference db after its lock is dropped.
 3841                          * Another thread may evict it.
 3842                          */
 3843                         mutex_exit(&db->db_mtx);
 3844 
 3845                         if (evict_dbuf)
 3846                                 dnode_evict_bonus(dn);
 3847 
 3848                         dnode_rele(dn, db);
 3849                 } else if (db->db_buf == NULL) {
 3850                         /*
 3851                          * This is a special case: we never associated this
 3852                          * dbuf with any data allocated from the ARC.
 3853                          */
 3854                         ASSERT(db->db_state == DB_UNCACHED ||
 3855                             db->db_state == DB_NOFILL);
 3856                         dbuf_destroy(db);
 3857                 } else if (arc_released(db->db_buf)) {
 3858                         /*
 3859                          * This dbuf has anonymous data associated with it.
 3860                          */
 3861                         dbuf_destroy(db);
 3862                 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
 3863                     db->db_pending_evict) {
 3864                         dbuf_destroy(db);
 3865                 } else if (!multilist_link_active(&db->db_cache_link)) {
 3866                         ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
 3867 
 3868                         dbuf_cached_state_t dcs =
 3869                             dbuf_include_in_metadata_cache(db) ?
 3870                             DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
 3871                         db->db_caching_status = dcs;
 3872 
 3873                         multilist_insert(&dbuf_caches[dcs].cache, db);
 3874                         uint64_t db_size = db->db.db_size;
 3875                         size = zfs_refcount_add_many(
 3876                             &dbuf_caches[dcs].size, db_size, db);
 3877                         uint8_t db_level = db->db_level;
 3878                         mutex_exit(&db->db_mtx);
 3879 
 3880                         if (dcs == DB_DBUF_METADATA_CACHE) {
 3881                                 DBUF_STAT_BUMP(metadata_cache_count);
 3882                                 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
 3883                                     size);
 3884                         } else {
 3885                                 DBUF_STAT_BUMP(cache_count);
 3886                                 DBUF_STAT_MAX(cache_size_bytes_max, size);
 3887                                 DBUF_STAT_BUMP(cache_levels[db_level]);
 3888                                 DBUF_STAT_INCR(cache_levels_bytes[db_level],
 3889                                     db_size);
 3890                         }
 3891 
 3892                         if (dcs == DB_DBUF_CACHE && !evicting)
 3893                                 dbuf_evict_notify(size);
 3894                 }
 3895         } else {
 3896                 mutex_exit(&db->db_mtx);
 3897         }
 3898 
 3899 }
 3900 
 3901 #pragma weak dmu_buf_refcount = dbuf_refcount
 3902 uint64_t
 3903 dbuf_refcount(dmu_buf_impl_t *db)
 3904 {
 3905         return (zfs_refcount_count(&db->db_holds));
 3906 }
 3907 
 3908 uint64_t
 3909 dmu_buf_user_refcount(dmu_buf_t *db_fake)
 3910 {
 3911         uint64_t holds;
 3912         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 3913 
 3914         mutex_enter(&db->db_mtx);
 3915         ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
 3916         holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
 3917         mutex_exit(&db->db_mtx);
 3918 
 3919         return (holds);
 3920 }
 3921 
 3922 void *
 3923 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
 3924     dmu_buf_user_t *new_user)
 3925 {
 3926         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 3927 
 3928         mutex_enter(&db->db_mtx);
 3929         dbuf_verify_user(db, DBVU_NOT_EVICTING);
 3930         if (db->db_user == old_user)
 3931                 db->db_user = new_user;
 3932         else
 3933                 old_user = db->db_user;
 3934         dbuf_verify_user(db, DBVU_NOT_EVICTING);
 3935         mutex_exit(&db->db_mtx);
 3936 
 3937         return (old_user);
 3938 }
 3939 
 3940 void *
 3941 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
 3942 {
 3943         return (dmu_buf_replace_user(db_fake, NULL, user));
 3944 }
 3945 
 3946 void *
 3947 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
 3948 {
 3949         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 3950 
 3951         db->db_user_immediate_evict = TRUE;
 3952         return (dmu_buf_set_user(db_fake, user));
 3953 }
 3954 
 3955 void *
 3956 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
 3957 {
 3958         return (dmu_buf_replace_user(db_fake, user, NULL));
 3959 }
 3960 
 3961 void *
 3962 dmu_buf_get_user(dmu_buf_t *db_fake)
 3963 {
 3964         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 3965 
 3966         dbuf_verify_user(db, DBVU_NOT_EVICTING);
 3967         return (db->db_user);
 3968 }
 3969 
 3970 void
 3971 dmu_buf_user_evict_wait(void)
 3972 {
 3973         taskq_wait(dbu_evict_taskq);
 3974 }
 3975 
 3976 blkptr_t *
 3977 dmu_buf_get_blkptr(dmu_buf_t *db)
 3978 {
 3979         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
 3980         return (dbi->db_blkptr);
 3981 }
 3982 
 3983 objset_t *
 3984 dmu_buf_get_objset(dmu_buf_t *db)
 3985 {
 3986         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
 3987         return (dbi->db_objset);
 3988 }
 3989 
 3990 dnode_t *
 3991 dmu_buf_dnode_enter(dmu_buf_t *db)
 3992 {
 3993         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
 3994         DB_DNODE_ENTER(dbi);
 3995         return (DB_DNODE(dbi));
 3996 }
 3997 
 3998 void
 3999 dmu_buf_dnode_exit(dmu_buf_t *db)
 4000 {
 4001         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
 4002         DB_DNODE_EXIT(dbi);
 4003 }
 4004 
 4005 static void
 4006 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
 4007 {
 4008         /* ASSERT(dmu_tx_is_syncing(tx) */
 4009         ASSERT(MUTEX_HELD(&db->db_mtx));
 4010 
 4011         if (db->db_blkptr != NULL)
 4012                 return;
 4013 
 4014         if (db->db_blkid == DMU_SPILL_BLKID) {
 4015                 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
 4016                 BP_ZERO(db->db_blkptr);
 4017                 return;
 4018         }
 4019         if (db->db_level == dn->dn_phys->dn_nlevels-1) {
 4020                 /*
 4021                  * This buffer was allocated at a time when there was
 4022                  * no available blkptrs from the dnode, or it was
 4023                  * inappropriate to hook it in (i.e., nlevels mismatch).
 4024                  */
 4025                 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
 4026                 ASSERT(db->db_parent == NULL);
 4027                 db->db_parent = dn->dn_dbuf;
 4028                 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
 4029                 DBUF_VERIFY(db);
 4030         } else {
 4031                 dmu_buf_impl_t *parent = db->db_parent;
 4032                 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
 4033 
 4034                 ASSERT(dn->dn_phys->dn_nlevels > 1);
 4035                 if (parent == NULL) {
 4036                         mutex_exit(&db->db_mtx);
 4037                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 4038                         parent = dbuf_hold_level(dn, db->db_level + 1,
 4039                             db->db_blkid >> epbs, db);
 4040                         rw_exit(&dn->dn_struct_rwlock);
 4041                         mutex_enter(&db->db_mtx);
 4042                         db->db_parent = parent;
 4043                 }
 4044                 db->db_blkptr = (blkptr_t *)parent->db.db_data +
 4045                     (db->db_blkid & ((1ULL << epbs) - 1));
 4046                 DBUF_VERIFY(db);
 4047         }
 4048 }
 4049 
 4050 static void
 4051 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
 4052 {
 4053         dmu_buf_impl_t *db = dr->dr_dbuf;
 4054         void *data = dr->dt.dl.dr_data;
 4055 
 4056         ASSERT0(db->db_level);
 4057         ASSERT(MUTEX_HELD(&db->db_mtx));
 4058         ASSERT(db->db_blkid == DMU_BONUS_BLKID);
 4059         ASSERT(data != NULL);
 4060 
 4061         dnode_t *dn = dr->dr_dnode;
 4062         ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
 4063             DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
 4064         memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
 4065 
 4066         dbuf_sync_leaf_verify_bonus_dnode(dr);
 4067 
 4068         dbuf_undirty_bonus(dr);
 4069         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
 4070 }
 4071 
 4072 /*
 4073  * When syncing out a blocks of dnodes, adjust the block to deal with
 4074  * encryption.  Normally, we make sure the block is decrypted before writing
 4075  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
 4076  * from a raw receive.  In this case, set the ARC buf's crypt params so
 4077  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
 4078  */
 4079 static void
 4080 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
 4081 {
 4082         int err;
 4083         dmu_buf_impl_t *db = dr->dr_dbuf;
 4084 
 4085         ASSERT(MUTEX_HELD(&db->db_mtx));
 4086         ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
 4087         ASSERT3U(db->db_level, ==, 0);
 4088 
 4089         if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
 4090                 zbookmark_phys_t zb;
 4091 
 4092                 /*
 4093                  * Unfortunately, there is currently no mechanism for
 4094                  * syncing context to handle decryption errors. An error
 4095                  * here is only possible if an attacker maliciously
 4096                  * changed a dnode block and updated the associated
 4097                  * checksums going up the block tree.
 4098                  */
 4099                 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
 4100                     db->db.db_object, db->db_level, db->db_blkid);
 4101                 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
 4102                     &zb, B_TRUE);
 4103                 if (err)
 4104                         panic("Invalid dnode block MAC");
 4105         } else if (dr->dt.dl.dr_has_raw_params) {
 4106                 (void) arc_release(dr->dt.dl.dr_data, db);
 4107                 arc_convert_to_raw(dr->dt.dl.dr_data,
 4108                     dmu_objset_id(db->db_objset),
 4109                     dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
 4110                     dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
 4111         }
 4112 }
 4113 
 4114 /*
 4115  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
 4116  * is critical the we not allow the compiler to inline this function in to
 4117  * dbuf_sync_list() thereby drastically bloating the stack usage.
 4118  */
 4119 noinline static void
 4120 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
 4121 {
 4122         dmu_buf_impl_t *db = dr->dr_dbuf;
 4123         dnode_t *dn = dr->dr_dnode;
 4124 
 4125         ASSERT(dmu_tx_is_syncing(tx));
 4126 
 4127         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
 4128 
 4129         mutex_enter(&db->db_mtx);
 4130 
 4131         ASSERT(db->db_level > 0);
 4132         DBUF_VERIFY(db);
 4133 
 4134         /* Read the block if it hasn't been read yet. */
 4135         if (db->db_buf == NULL) {
 4136                 mutex_exit(&db->db_mtx);
 4137                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
 4138                 mutex_enter(&db->db_mtx);
 4139         }
 4140         ASSERT3U(db->db_state, ==, DB_CACHED);
 4141         ASSERT(db->db_buf != NULL);
 4142 
 4143         /* Indirect block size must match what the dnode thinks it is. */
 4144         ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
 4145         dbuf_check_blkptr(dn, db);
 4146 
 4147         /* Provide the pending dirty record to child dbufs */
 4148         db->db_data_pending = dr;
 4149 
 4150         mutex_exit(&db->db_mtx);
 4151 
 4152         dbuf_write(dr, db->db_buf, tx);
 4153 
 4154         zio_t *zio = dr->dr_zio;
 4155         mutex_enter(&dr->dt.di.dr_mtx);
 4156         dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
 4157         ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
 4158         mutex_exit(&dr->dt.di.dr_mtx);
 4159         zio_nowait(zio);
 4160 }
 4161 
 4162 /*
 4163  * Verify that the size of the data in our bonus buffer does not exceed
 4164  * its recorded size.
 4165  *
 4166  * The purpose of this verification is to catch any cases in development
 4167  * where the size of a phys structure (i.e space_map_phys_t) grows and,
 4168  * due to incorrect feature management, older pools expect to read more
 4169  * data even though they didn't actually write it to begin with.
 4170  *
 4171  * For a example, this would catch an error in the feature logic where we
 4172  * open an older pool and we expect to write the space map histogram of
 4173  * a space map with size SPACE_MAP_SIZE_V0.
 4174  */
 4175 static void
 4176 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
 4177 {
 4178 #ifdef ZFS_DEBUG
 4179         dnode_t *dn = dr->dr_dnode;
 4180 
 4181         /*
 4182          * Encrypted bonus buffers can have data past their bonuslen.
 4183          * Skip the verification of these blocks.
 4184          */
 4185         if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
 4186                 return;
 4187 
 4188         uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
 4189         uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
 4190         ASSERT3U(bonuslen, <=, maxbonuslen);
 4191 
 4192         arc_buf_t *datap = dr->dt.dl.dr_data;
 4193         char *datap_end = ((char *)datap) + bonuslen;
 4194         char *datap_max = ((char *)datap) + maxbonuslen;
 4195 
 4196         /* ensure that everything is zero after our data */
 4197         for (; datap_end < datap_max; datap_end++)
 4198                 ASSERT(*datap_end == 0);
 4199 #endif
 4200 }
 4201 
 4202 static blkptr_t *
 4203 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
 4204 {
 4205         /* This must be a lightweight dirty record. */
 4206         ASSERT3P(dr->dr_dbuf, ==, NULL);
 4207         dnode_t *dn = dr->dr_dnode;
 4208 
 4209         if (dn->dn_phys->dn_nlevels == 1) {
 4210                 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
 4211                 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
 4212         } else {
 4213                 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
 4214                 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 4215                 VERIFY3U(parent_db->db_level, ==, 1);
 4216                 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
 4217                 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
 4218                 blkptr_t *bp = parent_db->db.db_data;
 4219                 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
 4220         }
 4221 }
 4222 
 4223 static void
 4224 dbuf_lightweight_ready(zio_t *zio)
 4225 {
 4226         dbuf_dirty_record_t *dr = zio->io_private;
 4227         blkptr_t *bp = zio->io_bp;
 4228 
 4229         if (zio->io_error != 0)
 4230                 return;
 4231 
 4232         dnode_t *dn = dr->dr_dnode;
 4233 
 4234         blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
 4235         spa_t *spa = dmu_objset_spa(dn->dn_objset);
 4236         int64_t delta = bp_get_dsize_sync(spa, bp) -
 4237             bp_get_dsize_sync(spa, bp_orig);
 4238         dnode_diduse_space(dn, delta);
 4239 
 4240         uint64_t blkid = dr->dt.dll.dr_blkid;
 4241         mutex_enter(&dn->dn_mtx);
 4242         if (blkid > dn->dn_phys->dn_maxblkid) {
 4243                 ASSERT0(dn->dn_objset->os_raw_receive);
 4244                 dn->dn_phys->dn_maxblkid = blkid;
 4245         }
 4246         mutex_exit(&dn->dn_mtx);
 4247 
 4248         if (!BP_IS_EMBEDDED(bp)) {
 4249                 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
 4250                 BP_SET_FILL(bp, fill);
 4251         }
 4252 
 4253         dmu_buf_impl_t *parent_db;
 4254         EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
 4255         if (dr->dr_parent == NULL) {
 4256                 parent_db = dn->dn_dbuf;
 4257         } else {
 4258                 parent_db = dr->dr_parent->dr_dbuf;
 4259         }
 4260         rw_enter(&parent_db->db_rwlock, RW_WRITER);
 4261         *bp_orig = *bp;
 4262         rw_exit(&parent_db->db_rwlock);
 4263 }
 4264 
 4265 static void
 4266 dbuf_lightweight_physdone(zio_t *zio)
 4267 {
 4268         dbuf_dirty_record_t *dr = zio->io_private;
 4269         dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
 4270         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
 4271 
 4272         /*
 4273          * The callback will be called io_phys_children times.  Retire one
 4274          * portion of our dirty space each time we are called.  Any rounding
 4275          * error will be cleaned up by dbuf_lightweight_done().
 4276          */
 4277         int delta = dr->dr_accounted / zio->io_phys_children;
 4278         dsl_pool_undirty_space(dp, delta, zio->io_txg);
 4279 }
 4280 
 4281 static void
 4282 dbuf_lightweight_done(zio_t *zio)
 4283 {
 4284         dbuf_dirty_record_t *dr = zio->io_private;
 4285 
 4286         VERIFY0(zio->io_error);
 4287 
 4288         objset_t *os = dr->dr_dnode->dn_objset;
 4289         dmu_tx_t *tx = os->os_synctx;
 4290 
 4291         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
 4292                 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
 4293         } else {
 4294                 dsl_dataset_t *ds = os->os_dsl_dataset;
 4295                 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
 4296                 dsl_dataset_block_born(ds, zio->io_bp, tx);
 4297         }
 4298 
 4299         /*
 4300          * See comment in dbuf_write_done().
 4301          */
 4302         if (zio->io_phys_children == 0) {
 4303                 dsl_pool_undirty_space(dmu_objset_pool(os),
 4304                     dr->dr_accounted, zio->io_txg);
 4305         } else {
 4306                 dsl_pool_undirty_space(dmu_objset_pool(os),
 4307                     dr->dr_accounted % zio->io_phys_children, zio->io_txg);
 4308         }
 4309 
 4310         abd_free(dr->dt.dll.dr_abd);
 4311         kmem_free(dr, sizeof (*dr));
 4312 }
 4313 
 4314 noinline static void
 4315 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
 4316 {
 4317         dnode_t *dn = dr->dr_dnode;
 4318         zio_t *pio;
 4319         if (dn->dn_phys->dn_nlevels == 1) {
 4320                 pio = dn->dn_zio;
 4321         } else {
 4322                 pio = dr->dr_parent->dr_zio;
 4323         }
 4324 
 4325         zbookmark_phys_t zb = {
 4326                 .zb_objset = dmu_objset_id(dn->dn_objset),
 4327                 .zb_object = dn->dn_object,
 4328                 .zb_level = 0,
 4329                 .zb_blkid = dr->dt.dll.dr_blkid,
 4330         };
 4331 
 4332         /*
 4333          * See comment in dbuf_write().  This is so that zio->io_bp_orig
 4334          * will have the old BP in dbuf_lightweight_done().
 4335          */
 4336         dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
 4337 
 4338         dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
 4339             dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
 4340             dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
 4341             &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
 4342             dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
 4343             ZIO_PRIORITY_ASYNC_WRITE,
 4344             ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
 4345 
 4346         zio_nowait(dr->dr_zio);
 4347 }
 4348 
 4349 /*
 4350  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
 4351  * critical the we not allow the compiler to inline this function in to
 4352  * dbuf_sync_list() thereby drastically bloating the stack usage.
 4353  */
 4354 noinline static void
 4355 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
 4356 {
 4357         arc_buf_t **datap = &dr->dt.dl.dr_data;
 4358         dmu_buf_impl_t *db = dr->dr_dbuf;
 4359         dnode_t *dn = dr->dr_dnode;
 4360         objset_t *os;
 4361         uint64_t txg = tx->tx_txg;
 4362 
 4363         ASSERT(dmu_tx_is_syncing(tx));
 4364 
 4365         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
 4366 
 4367         mutex_enter(&db->db_mtx);
 4368         /*
 4369          * To be synced, we must be dirtied.  But we
 4370          * might have been freed after the dirty.
 4371          */
 4372         if (db->db_state == DB_UNCACHED) {
 4373                 /* This buffer has been freed since it was dirtied */
 4374                 ASSERT(db->db.db_data == NULL);
 4375         } else if (db->db_state == DB_FILL) {
 4376                 /* This buffer was freed and is now being re-filled */
 4377                 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
 4378         } else {
 4379                 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
 4380         }
 4381         DBUF_VERIFY(db);
 4382 
 4383         if (db->db_blkid == DMU_SPILL_BLKID) {
 4384                 mutex_enter(&dn->dn_mtx);
 4385                 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
 4386                         /*
 4387                          * In the previous transaction group, the bonus buffer
 4388                          * was entirely used to store the attributes for the
 4389                          * dnode which overrode the dn_spill field.  However,
 4390                          * when adding more attributes to the file a spill
 4391                          * block was required to hold the extra attributes.
 4392                          *
 4393                          * Make sure to clear the garbage left in the dn_spill
 4394                          * field from the previous attributes in the bonus
 4395                          * buffer.  Otherwise, after writing out the spill
 4396                          * block to the new allocated dva, it will free
 4397                          * the old block pointed to by the invalid dn_spill.
 4398                          */
 4399                         db->db_blkptr = NULL;
 4400                 }
 4401                 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
 4402                 mutex_exit(&dn->dn_mtx);
 4403         }
 4404 
 4405         /*
 4406          * If this is a bonus buffer, simply copy the bonus data into the
 4407          * dnode.  It will be written out when the dnode is synced (and it
 4408          * will be synced, since it must have been dirty for dbuf_sync to
 4409          * be called).
 4410          */
 4411         if (db->db_blkid == DMU_BONUS_BLKID) {
 4412                 ASSERT(dr->dr_dbuf == db);
 4413                 dbuf_sync_bonus(dr, tx);
 4414                 return;
 4415         }
 4416 
 4417         os = dn->dn_objset;
 4418 
 4419         /*
 4420          * This function may have dropped the db_mtx lock allowing a dmu_sync
 4421          * operation to sneak in. As a result, we need to ensure that we
 4422          * don't check the dr_override_state until we have returned from
 4423          * dbuf_check_blkptr.
 4424          */
 4425         dbuf_check_blkptr(dn, db);
 4426 
 4427         /*
 4428          * If this buffer is in the middle of an immediate write,
 4429          * wait for the synchronous IO to complete.
 4430          */
 4431         while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
 4432                 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
 4433                 cv_wait(&db->db_changed, &db->db_mtx);
 4434                 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
 4435         }
 4436 
 4437         /*
 4438          * If this is a dnode block, ensure it is appropriately encrypted
 4439          * or decrypted, depending on what we are writing to it this txg.
 4440          */
 4441         if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
 4442                 dbuf_prepare_encrypted_dnode_leaf(dr);
 4443 
 4444         if (db->db_state != DB_NOFILL &&
 4445             dn->dn_object != DMU_META_DNODE_OBJECT &&
 4446             zfs_refcount_count(&db->db_holds) > 1 &&
 4447             dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
 4448             *datap == db->db_buf) {
 4449                 /*
 4450                  * If this buffer is currently "in use" (i.e., there
 4451                  * are active holds and db_data still references it),
 4452                  * then make a copy before we start the write so that
 4453                  * any modifications from the open txg will not leak
 4454                  * into this write.
 4455                  *
 4456                  * NOTE: this copy does not need to be made for
 4457                  * objects only modified in the syncing context (e.g.
 4458                  * DNONE_DNODE blocks).
 4459                  */
 4460                 int psize = arc_buf_size(*datap);
 4461                 int lsize = arc_buf_lsize(*datap);
 4462                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
 4463                 enum zio_compress compress_type = arc_get_compression(*datap);
 4464                 uint8_t complevel = arc_get_complevel(*datap);
 4465 
 4466                 if (arc_is_encrypted(*datap)) {
 4467                         boolean_t byteorder;
 4468                         uint8_t salt[ZIO_DATA_SALT_LEN];
 4469                         uint8_t iv[ZIO_DATA_IV_LEN];
 4470                         uint8_t mac[ZIO_DATA_MAC_LEN];
 4471 
 4472                         arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
 4473                         *datap = arc_alloc_raw_buf(os->os_spa, db,
 4474                             dmu_objset_id(os), byteorder, salt, iv, mac,
 4475                             dn->dn_type, psize, lsize, compress_type,
 4476                             complevel);
 4477                 } else if (compress_type != ZIO_COMPRESS_OFF) {
 4478                         ASSERT3U(type, ==, ARC_BUFC_DATA);
 4479                         *datap = arc_alloc_compressed_buf(os->os_spa, db,
 4480                             psize, lsize, compress_type, complevel);
 4481                 } else {
 4482                         *datap = arc_alloc_buf(os->os_spa, db, type, psize);
 4483                 }
 4484                 memcpy((*datap)->b_data, db->db.db_data, psize);
 4485         }
 4486         db->db_data_pending = dr;
 4487 
 4488         mutex_exit(&db->db_mtx);
 4489 
 4490         dbuf_write(dr, *datap, tx);
 4491 
 4492         ASSERT(!list_link_active(&dr->dr_dirty_node));
 4493         if (dn->dn_object == DMU_META_DNODE_OBJECT) {
 4494                 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
 4495         } else {
 4496                 zio_nowait(dr->dr_zio);
 4497         }
 4498 }
 4499 
 4500 void
 4501 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
 4502 {
 4503         dbuf_dirty_record_t *dr;
 4504 
 4505         while ((dr = list_head(list))) {
 4506                 if (dr->dr_zio != NULL) {
 4507                         /*
 4508                          * If we find an already initialized zio then we
 4509                          * are processing the meta-dnode, and we have finished.
 4510                          * The dbufs for all dnodes are put back on the list
 4511                          * during processing, so that we can zio_wait()
 4512                          * these IOs after initiating all child IOs.
 4513                          */
 4514                         ASSERT3U(dr->dr_dbuf->db.db_object, ==,
 4515                             DMU_META_DNODE_OBJECT);
 4516                         break;
 4517                 }
 4518                 list_remove(list, dr);
 4519                 if (dr->dr_dbuf == NULL) {
 4520                         dbuf_sync_lightweight(dr, tx);
 4521                 } else {
 4522                         if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
 4523                             dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
 4524                                 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
 4525                         }
 4526                         if (dr->dr_dbuf->db_level > 0)
 4527                                 dbuf_sync_indirect(dr, tx);
 4528                         else
 4529                                 dbuf_sync_leaf(dr, tx);
 4530                 }
 4531         }
 4532 }
 4533 
 4534 static void
 4535 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
 4536 {
 4537         (void) buf;
 4538         dmu_buf_impl_t *db = vdb;
 4539         dnode_t *dn;
 4540         blkptr_t *bp = zio->io_bp;
 4541         blkptr_t *bp_orig = &zio->io_bp_orig;
 4542         spa_t *spa = zio->io_spa;
 4543         int64_t delta;
 4544         uint64_t fill = 0;
 4545         int i;
 4546 
 4547         ASSERT3P(db->db_blkptr, !=, NULL);
 4548         ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
 4549 
 4550         DB_DNODE_ENTER(db);
 4551         dn = DB_DNODE(db);
 4552         delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
 4553         dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
 4554         zio->io_prev_space_delta = delta;
 4555 
 4556         if (bp->blk_birth != 0) {
 4557                 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
 4558                     BP_GET_TYPE(bp) == dn->dn_type) ||
 4559                     (db->db_blkid == DMU_SPILL_BLKID &&
 4560                     BP_GET_TYPE(bp) == dn->dn_bonustype) ||
 4561                     BP_IS_EMBEDDED(bp));
 4562                 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
 4563         }
 4564 
 4565         mutex_enter(&db->db_mtx);
 4566 
 4567 #ifdef ZFS_DEBUG
 4568         if (db->db_blkid == DMU_SPILL_BLKID) {
 4569                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
 4570                 ASSERT(!(BP_IS_HOLE(bp)) &&
 4571                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
 4572         }
 4573 #endif
 4574 
 4575         if (db->db_level == 0) {
 4576                 mutex_enter(&dn->dn_mtx);
 4577                 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
 4578                     db->db_blkid != DMU_SPILL_BLKID) {
 4579                         ASSERT0(db->db_objset->os_raw_receive);
 4580                         dn->dn_phys->dn_maxblkid = db->db_blkid;
 4581                 }
 4582                 mutex_exit(&dn->dn_mtx);
 4583 
 4584                 if (dn->dn_type == DMU_OT_DNODE) {
 4585                         i = 0;
 4586                         while (i < db->db.db_size) {
 4587                                 dnode_phys_t *dnp =
 4588                                     (void *)(((char *)db->db.db_data) + i);
 4589 
 4590                                 i += DNODE_MIN_SIZE;
 4591                                 if (dnp->dn_type != DMU_OT_NONE) {
 4592                                         fill++;
 4593                                         i += dnp->dn_extra_slots *
 4594                                             DNODE_MIN_SIZE;
 4595                                 }
 4596                         }
 4597                 } else {
 4598                         if (BP_IS_HOLE(bp)) {
 4599                                 fill = 0;
 4600                         } else {
 4601                                 fill = 1;
 4602                         }
 4603                 }
 4604         } else {
 4605                 blkptr_t *ibp = db->db.db_data;
 4606                 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
 4607                 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
 4608                         if (BP_IS_HOLE(ibp))
 4609                                 continue;
 4610                         fill += BP_GET_FILL(ibp);
 4611                 }
 4612         }
 4613         DB_DNODE_EXIT(db);
 4614 
 4615         if (!BP_IS_EMBEDDED(bp))
 4616                 BP_SET_FILL(bp, fill);
 4617 
 4618         mutex_exit(&db->db_mtx);
 4619 
 4620         db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
 4621         *db->db_blkptr = *bp;
 4622         dmu_buf_unlock_parent(db, dblt, FTAG);
 4623 }
 4624 
 4625 /*
 4626  * This function gets called just prior to running through the compression
 4627  * stage of the zio pipeline. If we're an indirect block comprised of only
 4628  * holes, then we want this indirect to be compressed away to a hole. In
 4629  * order to do that we must zero out any information about the holes that
 4630  * this indirect points to prior to before we try to compress it.
 4631  */
 4632 static void
 4633 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
 4634 {
 4635         (void) zio, (void) buf;
 4636         dmu_buf_impl_t *db = vdb;
 4637         dnode_t *dn;
 4638         blkptr_t *bp;
 4639         unsigned int epbs, i;
 4640 
 4641         ASSERT3U(db->db_level, >, 0);
 4642         DB_DNODE_ENTER(db);
 4643         dn = DB_DNODE(db);
 4644         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
 4645         ASSERT3U(epbs, <, 31);
 4646 
 4647         /* Determine if all our children are holes */
 4648         for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
 4649                 if (!BP_IS_HOLE(bp))
 4650                         break;
 4651         }
 4652 
 4653         /*
 4654          * If all the children are holes, then zero them all out so that
 4655          * we may get compressed away.
 4656          */
 4657         if (i == 1ULL << epbs) {
 4658                 /*
 4659                  * We only found holes. Grab the rwlock to prevent
 4660                  * anybody from reading the blocks we're about to
 4661                  * zero out.
 4662                  */
 4663                 rw_enter(&db->db_rwlock, RW_WRITER);
 4664                 memset(db->db.db_data, 0, db->db.db_size);
 4665                 rw_exit(&db->db_rwlock);
 4666         }
 4667         DB_DNODE_EXIT(db);
 4668 }
 4669 
 4670 /*
 4671  * The SPA will call this callback several times for each zio - once
 4672  * for every physical child i/o (zio->io_phys_children times).  This
 4673  * allows the DMU to monitor the progress of each logical i/o.  For example,
 4674  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
 4675  * block.  There may be a long delay before all copies/fragments are completed,
 4676  * so this callback allows us to retire dirty space gradually, as the physical
 4677  * i/os complete.
 4678  */
 4679 static void
 4680 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
 4681 {
 4682         (void) buf;
 4683         dmu_buf_impl_t *db = arg;
 4684         objset_t *os = db->db_objset;
 4685         dsl_pool_t *dp = dmu_objset_pool(os);
 4686         dbuf_dirty_record_t *dr;
 4687         int delta = 0;
 4688 
 4689         dr = db->db_data_pending;
 4690         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
 4691 
 4692         /*
 4693          * The callback will be called io_phys_children times.  Retire one
 4694          * portion of our dirty space each time we are called.  Any rounding
 4695          * error will be cleaned up by dbuf_write_done().
 4696          */
 4697         delta = dr->dr_accounted / zio->io_phys_children;
 4698         dsl_pool_undirty_space(dp, delta, zio->io_txg);
 4699 }
 4700 
 4701 static void
 4702 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
 4703 {
 4704         (void) buf;
 4705         dmu_buf_impl_t *db = vdb;
 4706         blkptr_t *bp_orig = &zio->io_bp_orig;
 4707         blkptr_t *bp = db->db_blkptr;
 4708         objset_t *os = db->db_objset;
 4709         dmu_tx_t *tx = os->os_synctx;
 4710 
 4711         ASSERT0(zio->io_error);
 4712         ASSERT(db->db_blkptr == bp);
 4713 
 4714         /*
 4715          * For nopwrites and rewrites we ensure that the bp matches our
 4716          * original and bypass all the accounting.
 4717          */
 4718         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
 4719                 ASSERT(BP_EQUAL(bp, bp_orig));
 4720         } else {
 4721                 dsl_dataset_t *ds = os->os_dsl_dataset;
 4722                 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
 4723                 dsl_dataset_block_born(ds, bp, tx);
 4724         }
 4725 
 4726         mutex_enter(&db->db_mtx);
 4727 
 4728         DBUF_VERIFY(db);
 4729 
 4730         dbuf_dirty_record_t *dr = db->db_data_pending;
 4731         dnode_t *dn = dr->dr_dnode;
 4732         ASSERT(!list_link_active(&dr->dr_dirty_node));
 4733         ASSERT(dr->dr_dbuf == db);
 4734         ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
 4735         list_remove(&db->db_dirty_records, dr);
 4736 
 4737 #ifdef ZFS_DEBUG
 4738         if (db->db_blkid == DMU_SPILL_BLKID) {
 4739                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
 4740                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
 4741                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
 4742         }
 4743 #endif
 4744 
 4745         if (db->db_level == 0) {
 4746                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 4747                 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
 4748                 if (db->db_state != DB_NOFILL) {
 4749                         if (dr->dt.dl.dr_data != db->db_buf)
 4750                                 arc_buf_destroy(dr->dt.dl.dr_data, db);
 4751                 }
 4752         } else {
 4753                 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
 4754                 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
 4755                 if (!BP_IS_HOLE(db->db_blkptr)) {
 4756                         int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
 4757                             SPA_BLKPTRSHIFT;
 4758                         ASSERT3U(db->db_blkid, <=,
 4759                             dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
 4760                         ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
 4761                             db->db.db_size);
 4762                 }
 4763                 mutex_destroy(&dr->dt.di.dr_mtx);
 4764                 list_destroy(&dr->dt.di.dr_children);
 4765         }
 4766 
 4767         cv_broadcast(&db->db_changed);
 4768         ASSERT(db->db_dirtycnt > 0);
 4769         db->db_dirtycnt -= 1;
 4770         db->db_data_pending = NULL;
 4771         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
 4772 
 4773         /*
 4774          * If we didn't do a physical write in this ZIO and we
 4775          * still ended up here, it means that the space of the
 4776          * dbuf that we just released (and undirtied) above hasn't
 4777          * been marked as undirtied in the pool's accounting.
 4778          *
 4779          * Thus, we undirty that space in the pool's view of the
 4780          * world here. For physical writes this type of update
 4781          * happens in dbuf_write_physdone().
 4782          *
 4783          * If we did a physical write, cleanup any rounding errors
 4784          * that came up due to writing multiple copies of a block
 4785          * on disk [see dbuf_write_physdone()].
 4786          */
 4787         if (zio->io_phys_children == 0) {
 4788                 dsl_pool_undirty_space(dmu_objset_pool(os),
 4789                     dr->dr_accounted, zio->io_txg);
 4790         } else {
 4791                 dsl_pool_undirty_space(dmu_objset_pool(os),
 4792                     dr->dr_accounted % zio->io_phys_children, zio->io_txg);
 4793         }
 4794 
 4795         kmem_free(dr, sizeof (dbuf_dirty_record_t));
 4796 }
 4797 
 4798 static void
 4799 dbuf_write_nofill_ready(zio_t *zio)
 4800 {
 4801         dbuf_write_ready(zio, NULL, zio->io_private);
 4802 }
 4803 
 4804 static void
 4805 dbuf_write_nofill_done(zio_t *zio)
 4806 {
 4807         dbuf_write_done(zio, NULL, zio->io_private);
 4808 }
 4809 
 4810 static void
 4811 dbuf_write_override_ready(zio_t *zio)
 4812 {
 4813         dbuf_dirty_record_t *dr = zio->io_private;
 4814         dmu_buf_impl_t *db = dr->dr_dbuf;
 4815 
 4816         dbuf_write_ready(zio, NULL, db);
 4817 }
 4818 
 4819 static void
 4820 dbuf_write_override_done(zio_t *zio)
 4821 {
 4822         dbuf_dirty_record_t *dr = zio->io_private;
 4823         dmu_buf_impl_t *db = dr->dr_dbuf;
 4824         blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
 4825 
 4826         mutex_enter(&db->db_mtx);
 4827         if (!BP_EQUAL(zio->io_bp, obp)) {
 4828                 if (!BP_IS_HOLE(obp))
 4829                         dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
 4830                 arc_release(dr->dt.dl.dr_data, db);
 4831         }
 4832         mutex_exit(&db->db_mtx);
 4833 
 4834         dbuf_write_done(zio, NULL, db);
 4835 
 4836         if (zio->io_abd != NULL)
 4837                 abd_free(zio->io_abd);
 4838 }
 4839 
 4840 typedef struct dbuf_remap_impl_callback_arg {
 4841         objset_t        *drica_os;
 4842         uint64_t        drica_blk_birth;
 4843         dmu_tx_t        *drica_tx;
 4844 } dbuf_remap_impl_callback_arg_t;
 4845 
 4846 static void
 4847 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
 4848     void *arg)
 4849 {
 4850         dbuf_remap_impl_callback_arg_t *drica = arg;
 4851         objset_t *os = drica->drica_os;
 4852         spa_t *spa = dmu_objset_spa(os);
 4853         dmu_tx_t *tx = drica->drica_tx;
 4854 
 4855         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
 4856 
 4857         if (os == spa_meta_objset(spa)) {
 4858                 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
 4859         } else {
 4860                 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
 4861                     size, drica->drica_blk_birth, tx);
 4862         }
 4863 }
 4864 
 4865 static void
 4866 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
 4867 {
 4868         blkptr_t bp_copy = *bp;
 4869         spa_t *spa = dmu_objset_spa(dn->dn_objset);
 4870         dbuf_remap_impl_callback_arg_t drica;
 4871 
 4872         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
 4873 
 4874         drica.drica_os = dn->dn_objset;
 4875         drica.drica_blk_birth = bp->blk_birth;
 4876         drica.drica_tx = tx;
 4877         if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
 4878             &drica)) {
 4879                 /*
 4880                  * If the blkptr being remapped is tracked by a livelist,
 4881                  * then we need to make sure the livelist reflects the update.
 4882                  * First, cancel out the old blkptr by appending a 'FREE'
 4883                  * entry. Next, add an 'ALLOC' to track the new version. This
 4884                  * way we avoid trying to free an inaccurate blkptr at delete.
 4885                  * Note that embedded blkptrs are not tracked in livelists.
 4886                  */
 4887                 if (dn->dn_objset != spa_meta_objset(spa)) {
 4888                         dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
 4889                         if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
 4890                             bp->blk_birth > ds->ds_dir->dd_origin_txg) {
 4891                                 ASSERT(!BP_IS_EMBEDDED(bp));
 4892                                 ASSERT(dsl_dir_is_clone(ds->ds_dir));
 4893                                 ASSERT(spa_feature_is_enabled(spa,
 4894                                     SPA_FEATURE_LIVELIST));
 4895                                 bplist_append(&ds->ds_dir->dd_pending_frees,
 4896                                     bp);
 4897                                 bplist_append(&ds->ds_dir->dd_pending_allocs,
 4898                                     &bp_copy);
 4899                         }
 4900                 }
 4901 
 4902                 /*
 4903                  * The db_rwlock prevents dbuf_read_impl() from
 4904                  * dereferencing the BP while we are changing it.  To
 4905                  * avoid lock contention, only grab it when we are actually
 4906                  * changing the BP.
 4907                  */
 4908                 if (rw != NULL)
 4909                         rw_enter(rw, RW_WRITER);
 4910                 *bp = bp_copy;
 4911                 if (rw != NULL)
 4912                         rw_exit(rw);
 4913         }
 4914 }
 4915 
 4916 /*
 4917  * Remap any existing BP's to concrete vdevs, if possible.
 4918  */
 4919 static void
 4920 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
 4921 {
 4922         spa_t *spa = dmu_objset_spa(db->db_objset);
 4923         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
 4924 
 4925         if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
 4926                 return;
 4927 
 4928         if (db->db_level > 0) {
 4929                 blkptr_t *bp = db->db.db_data;
 4930                 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
 4931                         dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
 4932                 }
 4933         } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
 4934                 dnode_phys_t *dnp = db->db.db_data;
 4935                 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
 4936                     DMU_OT_DNODE);
 4937                 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
 4938                     i += dnp[i].dn_extra_slots + 1) {
 4939                         for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
 4940                                 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
 4941                                     &dn->dn_dbuf->db_rwlock);
 4942                                 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
 4943                                     tx);
 4944                         }
 4945                 }
 4946         }
 4947 }
 4948 
 4949 
 4950 /* Issue I/O to commit a dirty buffer to disk. */
 4951 static void
 4952 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
 4953 {
 4954         dmu_buf_impl_t *db = dr->dr_dbuf;
 4955         dnode_t *dn = dr->dr_dnode;
 4956         objset_t *os;
 4957         dmu_buf_impl_t *parent = db->db_parent;
 4958         uint64_t txg = tx->tx_txg;
 4959         zbookmark_phys_t zb;
 4960         zio_prop_t zp;
 4961         zio_t *pio; /* parent I/O */
 4962         int wp_flag = 0;
 4963 
 4964         ASSERT(dmu_tx_is_syncing(tx));
 4965 
 4966         os = dn->dn_objset;
 4967 
 4968         if (db->db_state != DB_NOFILL) {
 4969                 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
 4970                         /*
 4971                          * Private object buffers are released here rather
 4972                          * than in dbuf_dirty() since they are only modified
 4973                          * in the syncing context and we don't want the
 4974                          * overhead of making multiple copies of the data.
 4975                          */
 4976                         if (BP_IS_HOLE(db->db_blkptr)) {
 4977                                 arc_buf_thaw(data);
 4978                         } else {
 4979                                 dbuf_release_bp(db);
 4980                         }
 4981                         dbuf_remap(dn, db, tx);
 4982                 }
 4983         }
 4984 
 4985         if (parent != dn->dn_dbuf) {
 4986                 /* Our parent is an indirect block. */
 4987                 /* We have a dirty parent that has been scheduled for write. */
 4988                 ASSERT(parent && parent->db_data_pending);
 4989                 /* Our parent's buffer is one level closer to the dnode. */
 4990                 ASSERT(db->db_level == parent->db_level-1);
 4991                 /*
 4992                  * We're about to modify our parent's db_data by modifying
 4993                  * our block pointer, so the parent must be released.
 4994                  */
 4995                 ASSERT(arc_released(parent->db_buf));
 4996                 pio = parent->db_data_pending->dr_zio;
 4997         } else {
 4998                 /* Our parent is the dnode itself. */
 4999                 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
 5000                     db->db_blkid != DMU_SPILL_BLKID) ||
 5001                     (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
 5002                 if (db->db_blkid != DMU_SPILL_BLKID)
 5003                         ASSERT3P(db->db_blkptr, ==,
 5004                             &dn->dn_phys->dn_blkptr[db->db_blkid]);
 5005                 pio = dn->dn_zio;
 5006         }
 5007 
 5008         ASSERT(db->db_level == 0 || data == db->db_buf);
 5009         ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
 5010         ASSERT(pio);
 5011 
 5012         SET_BOOKMARK(&zb, os->os_dsl_dataset ?
 5013             os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
 5014             db->db.db_object, db->db_level, db->db_blkid);
 5015 
 5016         if (db->db_blkid == DMU_SPILL_BLKID)
 5017                 wp_flag = WP_SPILL;
 5018         wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
 5019 
 5020         dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
 5021 
 5022         /*
 5023          * We copy the blkptr now (rather than when we instantiate the dirty
 5024          * record), because its value can change between open context and
 5025          * syncing context. We do not need to hold dn_struct_rwlock to read
 5026          * db_blkptr because we are in syncing context.
 5027          */
 5028         dr->dr_bp_copy = *db->db_blkptr;
 5029 
 5030         if (db->db_level == 0 &&
 5031             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
 5032                 /*
 5033                  * The BP for this block has been provided by open context
 5034                  * (by dmu_sync() or dmu_buf_write_embedded()).
 5035                  */
 5036                 abd_t *contents = (data != NULL) ?
 5037                     abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
 5038 
 5039                 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
 5040                     contents, db->db.db_size, db->db.db_size, &zp,
 5041                     dbuf_write_override_ready, NULL, NULL,
 5042                     dbuf_write_override_done,
 5043                     dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
 5044                 mutex_enter(&db->db_mtx);
 5045                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
 5046                 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
 5047                     dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
 5048                 mutex_exit(&db->db_mtx);
 5049         } else if (db->db_state == DB_NOFILL) {
 5050                 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
 5051                     zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
 5052                 dr->dr_zio = zio_write(pio, os->os_spa, txg,
 5053                     &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
 5054                     dbuf_write_nofill_ready, NULL, NULL,
 5055                     dbuf_write_nofill_done, db,
 5056                     ZIO_PRIORITY_ASYNC_WRITE,
 5057                     ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
 5058         } else {
 5059                 ASSERT(arc_released(data));
 5060 
 5061                 /*
 5062                  * For indirect blocks, we want to setup the children
 5063                  * ready callback so that we can properly handle an indirect
 5064                  * block that only contains holes.
 5065                  */
 5066                 arc_write_done_func_t *children_ready_cb = NULL;
 5067                 if (db->db_level != 0)
 5068                         children_ready_cb = dbuf_write_children_ready;
 5069 
 5070                 dr->dr_zio = arc_write(pio, os->os_spa, txg,
 5071                     &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
 5072                     dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
 5073                     children_ready_cb, dbuf_write_physdone,
 5074                     dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
 5075                     ZIO_FLAG_MUSTSUCCEED, &zb);
 5076         }
 5077 }
 5078 
 5079 EXPORT_SYMBOL(dbuf_find);
 5080 EXPORT_SYMBOL(dbuf_is_metadata);
 5081 EXPORT_SYMBOL(dbuf_destroy);
 5082 EXPORT_SYMBOL(dbuf_loan_arcbuf);
 5083 EXPORT_SYMBOL(dbuf_whichblock);
 5084 EXPORT_SYMBOL(dbuf_read);
 5085 EXPORT_SYMBOL(dbuf_unoverride);
 5086 EXPORT_SYMBOL(dbuf_free_range);
 5087 EXPORT_SYMBOL(dbuf_new_size);
 5088 EXPORT_SYMBOL(dbuf_release_bp);
 5089 EXPORT_SYMBOL(dbuf_dirty);
 5090 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
 5091 EXPORT_SYMBOL(dmu_buf_will_dirty);
 5092 EXPORT_SYMBOL(dmu_buf_is_dirty);
 5093 EXPORT_SYMBOL(dmu_buf_will_not_fill);
 5094 EXPORT_SYMBOL(dmu_buf_will_fill);
 5095 EXPORT_SYMBOL(dmu_buf_fill_done);
 5096 EXPORT_SYMBOL(dmu_buf_rele);
 5097 EXPORT_SYMBOL(dbuf_assign_arcbuf);
 5098 EXPORT_SYMBOL(dbuf_prefetch);
 5099 EXPORT_SYMBOL(dbuf_hold_impl);
 5100 EXPORT_SYMBOL(dbuf_hold);
 5101 EXPORT_SYMBOL(dbuf_hold_level);
 5102 EXPORT_SYMBOL(dbuf_create_bonus);
 5103 EXPORT_SYMBOL(dbuf_spill_set_blksz);
 5104 EXPORT_SYMBOL(dbuf_rm_spill);
 5105 EXPORT_SYMBOL(dbuf_add_ref);
 5106 EXPORT_SYMBOL(dbuf_rele);
 5107 EXPORT_SYMBOL(dbuf_rele_and_unlock);
 5108 EXPORT_SYMBOL(dbuf_refcount);
 5109 EXPORT_SYMBOL(dbuf_sync_list);
 5110 EXPORT_SYMBOL(dmu_buf_set_user);
 5111 EXPORT_SYMBOL(dmu_buf_set_user_ie);
 5112 EXPORT_SYMBOL(dmu_buf_get_user);
 5113 EXPORT_SYMBOL(dmu_buf_get_blkptr);
 5114 
 5115 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
 5116         "Maximum size in bytes of the dbuf cache.");
 5117 
 5118 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
 5119         "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
 5120 
 5121 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
 5122         "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
 5123 
 5124 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
 5125         "Maximum size in bytes of dbuf metadata cache.");
 5126 
 5127 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
 5128         "Set size of dbuf cache to log2 fraction of arc size.");
 5129 
 5130 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
 5131         "Set size of dbuf metadata cache to log2 fraction of arc size.");
 5132 
 5133 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
 5134         "Set size of dbuf cache mutex array as log2 shift.");

Cache object: 3b694ba25ec08816b9fa2a6297f04a7d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.