1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/arc.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dbuf.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/spa.h>
42 #include <sys/zio.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/sa.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
51 #include <sys/abd.h>
52 #include <sys/vdev.h>
53 #include <cityhash.h>
54 #include <sys/spa_impl.h>
55 #include <sys/wmsum.h>
56 #include <sys/vdev_impl.h>
57
58 static kstat_t *dbuf_ksp;
59
60 typedef struct dbuf_stats {
61 /*
62 * Various statistics about the size of the dbuf cache.
63 */
64 kstat_named_t cache_count;
65 kstat_named_t cache_size_bytes;
66 kstat_named_t cache_size_bytes_max;
67 /*
68 * Statistics regarding the bounds on the dbuf cache size.
69 */
70 kstat_named_t cache_target_bytes;
71 kstat_named_t cache_lowater_bytes;
72 kstat_named_t cache_hiwater_bytes;
73 /*
74 * Total number of dbuf cache evictions that have occurred.
75 */
76 kstat_named_t cache_total_evicts;
77 /*
78 * The distribution of dbuf levels in the dbuf cache and
79 * the total size of all dbufs at each level.
80 */
81 kstat_named_t cache_levels[DN_MAX_LEVELS];
82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
83 /*
84 * Statistics about the dbuf hash table.
85 */
86 kstat_named_t hash_hits;
87 kstat_named_t hash_misses;
88 kstat_named_t hash_collisions;
89 kstat_named_t hash_elements;
90 kstat_named_t hash_elements_max;
91 /*
92 * Number of sublists containing more than one dbuf in the dbuf
93 * hash table. Keep track of the longest hash chain.
94 */
95 kstat_named_t hash_chains;
96 kstat_named_t hash_chain_max;
97 /*
98 * Number of times a dbuf_create() discovers that a dbuf was
99 * already created and in the dbuf hash table.
100 */
101 kstat_named_t hash_insert_race;
102 /*
103 * Number of entries in the hash table dbuf and mutex arrays.
104 */
105 kstat_named_t hash_table_count;
106 kstat_named_t hash_mutex_count;
107 /*
108 * Statistics about the size of the metadata dbuf cache.
109 */
110 kstat_named_t metadata_cache_count;
111 kstat_named_t metadata_cache_size_bytes;
112 kstat_named_t metadata_cache_size_bytes_max;
113 /*
114 * For diagnostic purposes, this is incremented whenever we can't add
115 * something to the metadata cache because it's full, and instead put
116 * the data in the regular dbuf cache.
117 */
118 kstat_named_t metadata_cache_overflow;
119 } dbuf_stats_t;
120
121 dbuf_stats_t dbuf_stats = {
122 { "cache_count", KSTAT_DATA_UINT64 },
123 { "cache_size_bytes", KSTAT_DATA_UINT64 },
124 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
125 { "cache_target_bytes", KSTAT_DATA_UINT64 },
126 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
127 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
128 { "cache_total_evicts", KSTAT_DATA_UINT64 },
129 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
130 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
131 { "hash_hits", KSTAT_DATA_UINT64 },
132 { "hash_misses", KSTAT_DATA_UINT64 },
133 { "hash_collisions", KSTAT_DATA_UINT64 },
134 { "hash_elements", KSTAT_DATA_UINT64 },
135 { "hash_elements_max", KSTAT_DATA_UINT64 },
136 { "hash_chains", KSTAT_DATA_UINT64 },
137 { "hash_chain_max", KSTAT_DATA_UINT64 },
138 { "hash_insert_race", KSTAT_DATA_UINT64 },
139 { "hash_table_count", KSTAT_DATA_UINT64 },
140 { "hash_mutex_count", KSTAT_DATA_UINT64 },
141 { "metadata_cache_count", KSTAT_DATA_UINT64 },
142 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
143 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
144 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
145 };
146
147 struct {
148 wmsum_t cache_count;
149 wmsum_t cache_total_evicts;
150 wmsum_t cache_levels[DN_MAX_LEVELS];
151 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
152 wmsum_t hash_hits;
153 wmsum_t hash_misses;
154 wmsum_t hash_collisions;
155 wmsum_t hash_chains;
156 wmsum_t hash_insert_race;
157 wmsum_t metadata_cache_count;
158 wmsum_t metadata_cache_overflow;
159 } dbuf_sums;
160
161 #define DBUF_STAT_INCR(stat, val) \
162 wmsum_add(&dbuf_sums.stat, val);
163 #define DBUF_STAT_DECR(stat, val) \
164 DBUF_STAT_INCR(stat, -(val));
165 #define DBUF_STAT_BUMP(stat) \
166 DBUF_STAT_INCR(stat, 1);
167 #define DBUF_STAT_BUMPDOWN(stat) \
168 DBUF_STAT_INCR(stat, -1);
169 #define DBUF_STAT_MAX(stat, v) { \
170 uint64_t _m; \
171 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
172 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
173 continue; \
174 }
175
176 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
177 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
178 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
179 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
180
181 /*
182 * Global data structures and functions for the dbuf cache.
183 */
184 static kmem_cache_t *dbuf_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
186
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
191
192 /*
193 * There are two dbuf caches; each dbuf can only be in one of them at a time.
194 *
195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197 * that represent the metadata that describes filesystems/snapshots/
198 * bookmarks/properties/etc. We only evict from this cache when we export a
199 * pool, to short-circuit as much I/O as possible for all administrative
200 * commands that need the metadata. There is no eviction policy for this
201 * cache, because we try to only include types in it which would occupy a
202 * very small amount of space per object but create a large impact on the
203 * performance of these commands. Instead, after it reaches a maximum size
204 * (which should only happen on very small memory systems with a very large
205 * number of filesystem objects), we stop taking new dbufs into the
206 * metadata cache, instead putting them in the normal dbuf cache.
207 *
208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209 * are not currently held but have been recently released. These dbufs
210 * are not eligible for arc eviction until they are aged out of the cache.
211 * Dbufs that are aged out of the cache will be immediately destroyed and
212 * become eligible for arc eviction.
213 *
214 * Dbufs are added to these caches once the last hold is released. If a dbuf is
215 * later accessed and still exists in the dbuf cache, then it will be removed
216 * from the cache and later re-added to the head of the cache.
217 *
218 * If a given dbuf meets the requirements for the metadata cache, it will go
219 * there, otherwise it will be considered for the generic LRU dbuf cache. The
220 * caches and the refcounts tracking their sizes are stored in an array indexed
221 * by those caches' matching enum values (from dbuf_cached_state_t).
222 */
223 typedef struct dbuf_cache {
224 multilist_t cache;
225 zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
228
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
232
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
236
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
239
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
242
243 /*
244 * The LRU dbuf cache uses a three-stage eviction policy:
245 * - A low water marker designates when the dbuf eviction thread
246 * should stop evicting from the dbuf cache.
247 * - When we reach the maximum size (aka mid water mark), we
248 * signal the eviction thread to run.
249 * - The high water mark indicates when the eviction thread
250 * is unable to keep up with the incoming load and eviction must
251 * happen in the context of the calling thread.
252 *
253 * The dbuf cache:
254 * (max size)
255 * low water mid water hi water
256 * +----------------------------------------+----------+----------+
257 * | | | |
258 * | | | |
259 * | | | |
260 * | | | |
261 * +----------------------------------------+----------+----------+
262 * stop signal evict
263 * evicting eviction directly
264 * thread
265 *
266 * The high and low water marks indicate the operating range for the eviction
267 * thread. The low water mark is, by default, 90% of the total size of the
268 * cache and the high water mark is at 110% (both of these percentages can be
269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270 * respectively). The eviction thread will try to ensure that the cache remains
271 * within this range by waking up every second and checking if the cache is
272 * above the low water mark. The thread can also be woken up by callers adding
273 * elements into the cache if the cache is larger than the mid water (i.e max
274 * cache size). Once the eviction thread is woken up and eviction is required,
275 * it will continue evicting buffers until it's able to reduce the cache size
276 * to the low water mark. If the cache size continues to grow and hits the high
277 * water mark, then callers adding elements to the cache will begin to evict
278 * directly from the cache until the cache is no longer above the high water
279 * mark.
280 */
281
282 /*
283 * The percentage above and below the maximum cache size.
284 */
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
287
288 static int
289 dbuf_cons(void *vdb, void *unused, int kmflag)
290 {
291 (void) unused, (void) kmflag;
292 dmu_buf_impl_t *db = vdb;
293 memset(db, 0, sizeof (dmu_buf_impl_t));
294
295 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
296 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 multilist_link_init(&db->db_cache_link);
299 zfs_refcount_create(&db->db_holds);
300
301 return (0);
302 }
303
304 static void
305 dbuf_dest(void *vdb, void *unused)
306 {
307 (void) unused;
308 dmu_buf_impl_t *db = vdb;
309 mutex_destroy(&db->db_mtx);
310 rw_destroy(&db->db_rwlock);
311 cv_destroy(&db->db_changed);
312 ASSERT(!multilist_link_active(&db->db_cache_link));
313 zfs_refcount_destroy(&db->db_holds);
314 }
315
316 /*
317 * dbuf hash table routines
318 */
319 static dbuf_hash_table_t dbuf_hash_table;
320
321 /*
322 * We use Cityhash for this. It's fast, and has good hash properties without
323 * requiring any large static buffers.
324 */
325 static uint64_t
326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
327 {
328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
329 }
330
331 #define DTRACE_SET_STATE(db, why) \
332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
333 const char *, why)
334
335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
336 ((dbuf)->db.db_object == (obj) && \
337 (dbuf)->db_objset == (os) && \
338 (dbuf)->db_level == (level) && \
339 (dbuf)->db_blkid == (blkid))
340
341 dmu_buf_impl_t *
342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
343 uint64_t *hash_out)
344 {
345 dbuf_hash_table_t *h = &dbuf_hash_table;
346 uint64_t hv;
347 uint64_t idx;
348 dmu_buf_impl_t *db;
349
350 hv = dbuf_hash(os, obj, level, blkid);
351 idx = hv & h->hash_table_mask;
352
353 mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
355 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
356 mutex_enter(&db->db_mtx);
357 if (db->db_state != DB_EVICTING) {
358 mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 return (db);
360 }
361 mutex_exit(&db->db_mtx);
362 }
363 }
364 mutex_exit(DBUF_HASH_MUTEX(h, idx));
365 if (hash_out != NULL)
366 *hash_out = hv;
367 return (NULL);
368 }
369
370 static dmu_buf_impl_t *
371 dbuf_find_bonus(objset_t *os, uint64_t object)
372 {
373 dnode_t *dn;
374 dmu_buf_impl_t *db = NULL;
375
376 if (dnode_hold(os, object, FTAG, &dn) == 0) {
377 rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 if (dn->dn_bonus != NULL) {
379 db = dn->dn_bonus;
380 mutex_enter(&db->db_mtx);
381 }
382 rw_exit(&dn->dn_struct_rwlock);
383 dnode_rele(dn, FTAG);
384 }
385 return (db);
386 }
387
388 /*
389 * Insert an entry into the hash table. If there is already an element
390 * equal to elem in the hash table, then the already existing element
391 * will be returned and the new element will not be inserted.
392 * Otherwise returns NULL.
393 */
394 static dmu_buf_impl_t *
395 dbuf_hash_insert(dmu_buf_impl_t *db)
396 {
397 dbuf_hash_table_t *h = &dbuf_hash_table;
398 objset_t *os = db->db_objset;
399 uint64_t obj = db->db.db_object;
400 int level = db->db_level;
401 uint64_t blkid, idx;
402 dmu_buf_impl_t *dbf;
403 uint32_t i;
404
405 blkid = db->db_blkid;
406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
407 idx = db->db_hash & h->hash_table_mask;
408
409 mutex_enter(DBUF_HASH_MUTEX(h, idx));
410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
411 dbf = dbf->db_hash_next, i++) {
412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
413 mutex_enter(&dbf->db_mtx);
414 if (dbf->db_state != DB_EVICTING) {
415 mutex_exit(DBUF_HASH_MUTEX(h, idx));
416 return (dbf);
417 }
418 mutex_exit(&dbf->db_mtx);
419 }
420 }
421
422 if (i > 0) {
423 DBUF_STAT_BUMP(hash_collisions);
424 if (i == 1)
425 DBUF_STAT_BUMP(hash_chains);
426
427 DBUF_STAT_MAX(hash_chain_max, i);
428 }
429
430 mutex_enter(&db->db_mtx);
431 db->db_hash_next = h->hash_table[idx];
432 h->hash_table[idx] = db;
433 mutex_exit(DBUF_HASH_MUTEX(h, idx));
434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
435 DBUF_STAT_MAX(hash_elements_max, he);
436
437 return (NULL);
438 }
439
440 /*
441 * This returns whether this dbuf should be stored in the metadata cache, which
442 * is based on whether it's from one of the dnode types that store data related
443 * to traversing dataset hierarchies.
444 */
445 static boolean_t
446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 DB_DNODE_ENTER(db);
449 dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 DB_DNODE_EXIT(db);
451
452 /* Check if this dbuf is one of the types we care about */
453 if (DMU_OT_IS_METADATA_CACHED(type)) {
454 /* If we hit this, then we set something up wrong in dmu_ot */
455 ASSERT(DMU_OT_IS_METADATA(type));
456
457 /*
458 * Sanity check for small-memory systems: don't allocate too
459 * much memory for this purpose.
460 */
461 if (zfs_refcount_count(
462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 dbuf_metadata_cache_target_bytes()) {
464 DBUF_STAT_BUMP(metadata_cache_overflow);
465 return (B_FALSE);
466 }
467
468 return (B_TRUE);
469 }
470
471 return (B_FALSE);
472 }
473
474 /*
475 * Remove an entry from the hash table. It must be in the EVICTING state.
476 */
477 static void
478 dbuf_hash_remove(dmu_buf_impl_t *db)
479 {
480 dbuf_hash_table_t *h = &dbuf_hash_table;
481 uint64_t idx;
482 dmu_buf_impl_t *dbf, **dbp;
483
484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 db->db_blkid), ==, db->db_hash);
486 idx = db->db_hash & h->hash_table_mask;
487
488 /*
489 * We mustn't hold db_mtx to maintain lock ordering:
490 * DBUF_HASH_MUTEX > db_mtx.
491 */
492 ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 ASSERT(db->db_state == DB_EVICTING);
494 ASSERT(!MUTEX_HELD(&db->db_mtx));
495
496 mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 dbp = &h->hash_table[idx];
498 while ((dbf = *dbp) != db) {
499 dbp = &dbf->db_hash_next;
500 ASSERT(dbf != NULL);
501 }
502 *dbp = db->db_hash_next;
503 db->db_hash_next = NULL;
504 if (h->hash_table[idx] &&
505 h->hash_table[idx]->db_hash_next == NULL)
506 DBUF_STAT_BUMPDOWN(hash_chains);
507 mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
509 }
510
511 typedef enum {
512 DBVU_EVICTING,
513 DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
515
516 static void
517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518 {
519 #ifdef ZFS_DEBUG
520 int64_t holds;
521
522 if (db->db_user == NULL)
523 return;
524
525 /* Only data blocks support the attachment of user data. */
526 ASSERT(db->db_level == 0);
527
528 /* Clients must resolve a dbuf before attaching user data. */
529 ASSERT(db->db.db_data != NULL);
530 ASSERT3U(db->db_state, ==, DB_CACHED);
531
532 holds = zfs_refcount_count(&db->db_holds);
533 if (verify_type == DBVU_EVICTING) {
534 /*
535 * Immediate eviction occurs when holds == dirtycnt.
536 * For normal eviction buffers, holds is zero on
537 * eviction, except when dbuf_fix_old_data() calls
538 * dbuf_clear_data(). However, the hold count can grow
539 * during eviction even though db_mtx is held (see
540 * dmu_bonus_hold() for an example), so we can only
541 * test the generic invariant that holds >= dirtycnt.
542 */
543 ASSERT3U(holds, >=, db->db_dirtycnt);
544 } else {
545 if (db->db_user_immediate_evict == TRUE)
546 ASSERT3U(holds, >=, db->db_dirtycnt);
547 else
548 ASSERT3U(holds, >, 0);
549 }
550 #endif
551 }
552
553 static void
554 dbuf_evict_user(dmu_buf_impl_t *db)
555 {
556 dmu_buf_user_t *dbu = db->db_user;
557
558 ASSERT(MUTEX_HELD(&db->db_mtx));
559
560 if (dbu == NULL)
561 return;
562
563 dbuf_verify_user(db, DBVU_EVICTING);
564 db->db_user = NULL;
565
566 #ifdef ZFS_DEBUG
567 if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 *dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
570
571 /*
572 * There are two eviction callbacks - one that we call synchronously
573 * and one that we invoke via a taskq. The async one is useful for
574 * avoiding lock order reversals and limiting stack depth.
575 *
576 * Note that if we have a sync callback but no async callback,
577 * it's likely that the sync callback will free the structure
578 * containing the dbu. In that case we need to take care to not
579 * dereference dbu after calling the sync evict func.
580 */
581 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
582
583 if (dbu->dbu_evict_func_sync != NULL)
584 dbu->dbu_evict_func_sync(dbu);
585
586 if (has_async) {
587 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
588 dbu, 0, &dbu->dbu_tqent);
589 }
590 }
591
592 boolean_t
593 dbuf_is_metadata(dmu_buf_impl_t *db)
594 {
595 /*
596 * Consider indirect blocks and spill blocks to be meta data.
597 */
598 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
599 return (B_TRUE);
600 } else {
601 boolean_t is_metadata;
602
603 DB_DNODE_ENTER(db);
604 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
605 DB_DNODE_EXIT(db);
606
607 return (is_metadata);
608 }
609 }
610
611 /*
612 * We want to exclude buffers that are on a special allocation class from
613 * L2ARC.
614 */
615 boolean_t
616 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
617 {
618 vdev_t *vd = NULL;
619 zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
620 blkptr_t *bp = db->db_blkptr;
621
622 if (bp != NULL && !BP_IS_HOLE(bp)) {
623 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
624 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
625
626 if (vdev < rvd->vdev_children)
627 vd = rvd->vdev_child[vdev];
628
629 if (cache == ZFS_CACHE_ALL ||
630 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
631 if (vd == NULL)
632 return (B_TRUE);
633
634 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
635 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
636 l2arc_exclude_special == 0)
637 return (B_TRUE);
638 }
639 }
640
641 return (B_FALSE);
642 }
643
644 static inline boolean_t
645 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
646 {
647 vdev_t *vd = NULL;
648 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
649
650 if (bp != NULL && !BP_IS_HOLE(bp)) {
651 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
652 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
653
654 if (vdev < rvd->vdev_children)
655 vd = rvd->vdev_child[vdev];
656
657 if (cache == ZFS_CACHE_ALL || ((level > 0 ||
658 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
659 cache == ZFS_CACHE_METADATA)) {
660 if (vd == NULL)
661 return (B_TRUE);
662
663 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
664 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
665 l2arc_exclude_special == 0)
666 return (B_TRUE);
667 }
668 }
669
670 return (B_FALSE);
671 }
672
673
674 /*
675 * This function *must* return indices evenly distributed between all
676 * sublists of the multilist. This is needed due to how the dbuf eviction
677 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
678 * distributed between all sublists and uses this assumption when
679 * deciding which sublist to evict from and how much to evict from it.
680 */
681 static unsigned int
682 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
683 {
684 dmu_buf_impl_t *db = obj;
685
686 /*
687 * The assumption here, is the hash value for a given
688 * dmu_buf_impl_t will remain constant throughout it's lifetime
689 * (i.e. it's objset, object, level and blkid fields don't change).
690 * Thus, we don't need to store the dbuf's sublist index
691 * on insertion, as this index can be recalculated on removal.
692 *
693 * Also, the low order bits of the hash value are thought to be
694 * distributed evenly. Otherwise, in the case that the multilist
695 * has a power of two number of sublists, each sublists' usage
696 * would not be evenly distributed. In this context full 64bit
697 * division would be a waste of time, so limit it to 32 bits.
698 */
699 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
700 db->db_level, db->db_blkid) %
701 multilist_get_num_sublists(ml));
702 }
703
704 /*
705 * The target size of the dbuf cache can grow with the ARC target,
706 * unless limited by the tunable dbuf_cache_max_bytes.
707 */
708 static inline unsigned long
709 dbuf_cache_target_bytes(void)
710 {
711 return (MIN(dbuf_cache_max_bytes,
712 arc_target_bytes() >> dbuf_cache_shift));
713 }
714
715 /*
716 * The target size of the dbuf metadata cache can grow with the ARC target,
717 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
718 */
719 static inline unsigned long
720 dbuf_metadata_cache_target_bytes(void)
721 {
722 return (MIN(dbuf_metadata_cache_max_bytes,
723 arc_target_bytes() >> dbuf_metadata_cache_shift));
724 }
725
726 static inline uint64_t
727 dbuf_cache_hiwater_bytes(void)
728 {
729 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
730 return (dbuf_cache_target +
731 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
732 }
733
734 static inline uint64_t
735 dbuf_cache_lowater_bytes(void)
736 {
737 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
738 return (dbuf_cache_target -
739 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
740 }
741
742 static inline boolean_t
743 dbuf_cache_above_lowater(void)
744 {
745 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
746 dbuf_cache_lowater_bytes());
747 }
748
749 /*
750 * Evict the oldest eligible dbuf from the dbuf cache.
751 */
752 static void
753 dbuf_evict_one(void)
754 {
755 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
756 multilist_sublist_t *mls = multilist_sublist_lock(
757 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
758
759 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
760
761 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
762 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
763 db = multilist_sublist_prev(mls, db);
764 }
765
766 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
767 multilist_sublist_t *, mls);
768
769 if (db != NULL) {
770 multilist_sublist_remove(mls, db);
771 multilist_sublist_unlock(mls);
772 (void) zfs_refcount_remove_many(
773 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
774 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
775 DBUF_STAT_BUMPDOWN(cache_count);
776 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
777 db->db.db_size);
778 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
779 db->db_caching_status = DB_NO_CACHE;
780 dbuf_destroy(db);
781 DBUF_STAT_BUMP(cache_total_evicts);
782 } else {
783 multilist_sublist_unlock(mls);
784 }
785 }
786
787 /*
788 * The dbuf evict thread is responsible for aging out dbufs from the
789 * cache. Once the cache has reached it's maximum size, dbufs are removed
790 * and destroyed. The eviction thread will continue running until the size
791 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
792 * out of the cache it is destroyed and becomes eligible for arc eviction.
793 */
794 static __attribute__((noreturn)) void
795 dbuf_evict_thread(void *unused)
796 {
797 (void) unused;
798 callb_cpr_t cpr;
799
800 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
801
802 mutex_enter(&dbuf_evict_lock);
803 while (!dbuf_evict_thread_exit) {
804 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
805 CALLB_CPR_SAFE_BEGIN(&cpr);
806 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
807 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
808 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
809 }
810 mutex_exit(&dbuf_evict_lock);
811
812 /*
813 * Keep evicting as long as we're above the low water mark
814 * for the cache. We do this without holding the locks to
815 * minimize lock contention.
816 */
817 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
818 dbuf_evict_one();
819 }
820
821 mutex_enter(&dbuf_evict_lock);
822 }
823
824 dbuf_evict_thread_exit = B_FALSE;
825 cv_broadcast(&dbuf_evict_cv);
826 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
827 thread_exit();
828 }
829
830 /*
831 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
832 * If the dbuf cache is at its high water mark, then evict a dbuf from the
833 * dbuf cache using the caller's context.
834 */
835 static void
836 dbuf_evict_notify(uint64_t size)
837 {
838 /*
839 * We check if we should evict without holding the dbuf_evict_lock,
840 * because it's OK to occasionally make the wrong decision here,
841 * and grabbing the lock results in massive lock contention.
842 */
843 if (size > dbuf_cache_target_bytes()) {
844 if (size > dbuf_cache_hiwater_bytes())
845 dbuf_evict_one();
846 cv_signal(&dbuf_evict_cv);
847 }
848 }
849
850 static int
851 dbuf_kstat_update(kstat_t *ksp, int rw)
852 {
853 dbuf_stats_t *ds = ksp->ks_data;
854 dbuf_hash_table_t *h = &dbuf_hash_table;
855
856 if (rw == KSTAT_WRITE)
857 return (SET_ERROR(EACCES));
858
859 ds->cache_count.value.ui64 =
860 wmsum_value(&dbuf_sums.cache_count);
861 ds->cache_size_bytes.value.ui64 =
862 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
863 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
864 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
865 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
866 ds->cache_total_evicts.value.ui64 =
867 wmsum_value(&dbuf_sums.cache_total_evicts);
868 for (int i = 0; i < DN_MAX_LEVELS; i++) {
869 ds->cache_levels[i].value.ui64 =
870 wmsum_value(&dbuf_sums.cache_levels[i]);
871 ds->cache_levels_bytes[i].value.ui64 =
872 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
873 }
874 ds->hash_hits.value.ui64 =
875 wmsum_value(&dbuf_sums.hash_hits);
876 ds->hash_misses.value.ui64 =
877 wmsum_value(&dbuf_sums.hash_misses);
878 ds->hash_collisions.value.ui64 =
879 wmsum_value(&dbuf_sums.hash_collisions);
880 ds->hash_chains.value.ui64 =
881 wmsum_value(&dbuf_sums.hash_chains);
882 ds->hash_insert_race.value.ui64 =
883 wmsum_value(&dbuf_sums.hash_insert_race);
884 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
885 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
886 ds->metadata_cache_count.value.ui64 =
887 wmsum_value(&dbuf_sums.metadata_cache_count);
888 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
889 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
890 ds->metadata_cache_overflow.value.ui64 =
891 wmsum_value(&dbuf_sums.metadata_cache_overflow);
892 return (0);
893 }
894
895 void
896 dbuf_init(void)
897 {
898 uint64_t hmsize, hsize = 1ULL << 16;
899 dbuf_hash_table_t *h = &dbuf_hash_table;
900
901 /*
902 * The hash table is big enough to fill one eighth of physical memory
903 * with an average block size of zfs_arc_average_blocksize (default 8K).
904 * By default, the table will take up
905 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
906 */
907 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
908 hsize <<= 1;
909
910 h->hash_table = NULL;
911 while (h->hash_table == NULL) {
912 h->hash_table_mask = hsize - 1;
913
914 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
915 if (h->hash_table == NULL)
916 hsize >>= 1;
917
918 ASSERT3U(hsize, >=, 1ULL << 10);
919 }
920
921 /*
922 * The hash table buckets are protected by an array of mutexes where
923 * each mutex is reponsible for protecting 128 buckets. A minimum
924 * array size of 8192 is targeted to avoid contention.
925 */
926 if (dbuf_mutex_cache_shift == 0)
927 hmsize = MAX(hsize >> 7, 1ULL << 13);
928 else
929 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
930
931 h->hash_mutexes = NULL;
932 while (h->hash_mutexes == NULL) {
933 h->hash_mutex_mask = hmsize - 1;
934
935 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
936 KM_SLEEP);
937 if (h->hash_mutexes == NULL)
938 hmsize >>= 1;
939 }
940
941 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
942 sizeof (dmu_buf_impl_t),
943 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
944
945 for (int i = 0; i < hmsize; i++)
946 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
947
948 dbuf_stats_init(h);
949
950 /*
951 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
952 * configuration is not required.
953 */
954 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
955
956 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
957 multilist_create(&dbuf_caches[dcs].cache,
958 sizeof (dmu_buf_impl_t),
959 offsetof(dmu_buf_impl_t, db_cache_link),
960 dbuf_cache_multilist_index_func);
961 zfs_refcount_create(&dbuf_caches[dcs].size);
962 }
963
964 dbuf_evict_thread_exit = B_FALSE;
965 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
966 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
967 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
968 NULL, 0, &p0, TS_RUN, minclsyspri);
969
970 wmsum_init(&dbuf_sums.cache_count, 0);
971 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
972 for (int i = 0; i < DN_MAX_LEVELS; i++) {
973 wmsum_init(&dbuf_sums.cache_levels[i], 0);
974 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
975 }
976 wmsum_init(&dbuf_sums.hash_hits, 0);
977 wmsum_init(&dbuf_sums.hash_misses, 0);
978 wmsum_init(&dbuf_sums.hash_collisions, 0);
979 wmsum_init(&dbuf_sums.hash_chains, 0);
980 wmsum_init(&dbuf_sums.hash_insert_race, 0);
981 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
982 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
983
984 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
985 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
986 KSTAT_FLAG_VIRTUAL);
987 if (dbuf_ksp != NULL) {
988 for (int i = 0; i < DN_MAX_LEVELS; i++) {
989 snprintf(dbuf_stats.cache_levels[i].name,
990 KSTAT_STRLEN, "cache_level_%d", i);
991 dbuf_stats.cache_levels[i].data_type =
992 KSTAT_DATA_UINT64;
993 snprintf(dbuf_stats.cache_levels_bytes[i].name,
994 KSTAT_STRLEN, "cache_level_%d_bytes", i);
995 dbuf_stats.cache_levels_bytes[i].data_type =
996 KSTAT_DATA_UINT64;
997 }
998 dbuf_ksp->ks_data = &dbuf_stats;
999 dbuf_ksp->ks_update = dbuf_kstat_update;
1000 kstat_install(dbuf_ksp);
1001 }
1002 }
1003
1004 void
1005 dbuf_fini(void)
1006 {
1007 dbuf_hash_table_t *h = &dbuf_hash_table;
1008
1009 dbuf_stats_destroy();
1010
1011 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1012 mutex_destroy(&h->hash_mutexes[i]);
1013
1014 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1015 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1016 sizeof (kmutex_t));
1017
1018 kmem_cache_destroy(dbuf_kmem_cache);
1019 taskq_destroy(dbu_evict_taskq);
1020
1021 mutex_enter(&dbuf_evict_lock);
1022 dbuf_evict_thread_exit = B_TRUE;
1023 while (dbuf_evict_thread_exit) {
1024 cv_signal(&dbuf_evict_cv);
1025 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1026 }
1027 mutex_exit(&dbuf_evict_lock);
1028
1029 mutex_destroy(&dbuf_evict_lock);
1030 cv_destroy(&dbuf_evict_cv);
1031
1032 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1033 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1034 multilist_destroy(&dbuf_caches[dcs].cache);
1035 }
1036
1037 if (dbuf_ksp != NULL) {
1038 kstat_delete(dbuf_ksp);
1039 dbuf_ksp = NULL;
1040 }
1041
1042 wmsum_fini(&dbuf_sums.cache_count);
1043 wmsum_fini(&dbuf_sums.cache_total_evicts);
1044 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1045 wmsum_fini(&dbuf_sums.cache_levels[i]);
1046 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1047 }
1048 wmsum_fini(&dbuf_sums.hash_hits);
1049 wmsum_fini(&dbuf_sums.hash_misses);
1050 wmsum_fini(&dbuf_sums.hash_collisions);
1051 wmsum_fini(&dbuf_sums.hash_chains);
1052 wmsum_fini(&dbuf_sums.hash_insert_race);
1053 wmsum_fini(&dbuf_sums.metadata_cache_count);
1054 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1055 }
1056
1057 /*
1058 * Other stuff.
1059 */
1060
1061 #ifdef ZFS_DEBUG
1062 static void
1063 dbuf_verify(dmu_buf_impl_t *db)
1064 {
1065 dnode_t *dn;
1066 dbuf_dirty_record_t *dr;
1067 uint32_t txg_prev;
1068
1069 ASSERT(MUTEX_HELD(&db->db_mtx));
1070
1071 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1072 return;
1073
1074 ASSERT(db->db_objset != NULL);
1075 DB_DNODE_ENTER(db);
1076 dn = DB_DNODE(db);
1077 if (dn == NULL) {
1078 ASSERT(db->db_parent == NULL);
1079 ASSERT(db->db_blkptr == NULL);
1080 } else {
1081 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1082 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1083 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1084 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1085 db->db_blkid == DMU_SPILL_BLKID ||
1086 !avl_is_empty(&dn->dn_dbufs));
1087 }
1088 if (db->db_blkid == DMU_BONUS_BLKID) {
1089 ASSERT(dn != NULL);
1090 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1091 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1092 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1093 ASSERT(dn != NULL);
1094 ASSERT0(db->db.db_offset);
1095 } else {
1096 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1097 }
1098
1099 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1100 ASSERT(dr->dr_dbuf == db);
1101 txg_prev = dr->dr_txg;
1102 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1103 dr = list_next(&db->db_dirty_records, dr)) {
1104 ASSERT(dr->dr_dbuf == db);
1105 ASSERT(txg_prev > dr->dr_txg);
1106 txg_prev = dr->dr_txg;
1107 }
1108 }
1109
1110 /*
1111 * We can't assert that db_size matches dn_datablksz because it
1112 * can be momentarily different when another thread is doing
1113 * dnode_set_blksz().
1114 */
1115 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1116 dr = db->db_data_pending;
1117 /*
1118 * It should only be modified in syncing context, so
1119 * make sure we only have one copy of the data.
1120 */
1121 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1122 }
1123
1124 /* verify db->db_blkptr */
1125 if (db->db_blkptr) {
1126 if (db->db_parent == dn->dn_dbuf) {
1127 /* db is pointed to by the dnode */
1128 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1129 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1130 ASSERT(db->db_parent == NULL);
1131 else
1132 ASSERT(db->db_parent != NULL);
1133 if (db->db_blkid != DMU_SPILL_BLKID)
1134 ASSERT3P(db->db_blkptr, ==,
1135 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1136 } else {
1137 /* db is pointed to by an indirect block */
1138 int epb __maybe_unused = db->db_parent->db.db_size >>
1139 SPA_BLKPTRSHIFT;
1140 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1141 ASSERT3U(db->db_parent->db.db_object, ==,
1142 db->db.db_object);
1143 /*
1144 * dnode_grow_indblksz() can make this fail if we don't
1145 * have the parent's rwlock. XXX indblksz no longer
1146 * grows. safe to do this now?
1147 */
1148 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1149 ASSERT3P(db->db_blkptr, ==,
1150 ((blkptr_t *)db->db_parent->db.db_data +
1151 db->db_blkid % epb));
1152 }
1153 }
1154 }
1155 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1156 (db->db_buf == NULL || db->db_buf->b_data) &&
1157 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1158 db->db_state != DB_FILL && !dn->dn_free_txg) {
1159 /*
1160 * If the blkptr isn't set but they have nonzero data,
1161 * it had better be dirty, otherwise we'll lose that
1162 * data when we evict this buffer.
1163 *
1164 * There is an exception to this rule for indirect blocks; in
1165 * this case, if the indirect block is a hole, we fill in a few
1166 * fields on each of the child blocks (importantly, birth time)
1167 * to prevent hole birth times from being lost when you
1168 * partially fill in a hole.
1169 */
1170 if (db->db_dirtycnt == 0) {
1171 if (db->db_level == 0) {
1172 uint64_t *buf = db->db.db_data;
1173 int i;
1174
1175 for (i = 0; i < db->db.db_size >> 3; i++) {
1176 ASSERT(buf[i] == 0);
1177 }
1178 } else {
1179 blkptr_t *bps = db->db.db_data;
1180 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1181 db->db.db_size);
1182 /*
1183 * We want to verify that all the blkptrs in the
1184 * indirect block are holes, but we may have
1185 * automatically set up a few fields for them.
1186 * We iterate through each blkptr and verify
1187 * they only have those fields set.
1188 */
1189 for (int i = 0;
1190 i < db->db.db_size / sizeof (blkptr_t);
1191 i++) {
1192 blkptr_t *bp = &bps[i];
1193 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1194 &bp->blk_cksum));
1195 ASSERT(
1196 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1197 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1198 DVA_IS_EMPTY(&bp->blk_dva[2]));
1199 ASSERT0(bp->blk_fill);
1200 ASSERT0(bp->blk_pad[0]);
1201 ASSERT0(bp->blk_pad[1]);
1202 ASSERT(!BP_IS_EMBEDDED(bp));
1203 ASSERT(BP_IS_HOLE(bp));
1204 ASSERT0(bp->blk_phys_birth);
1205 }
1206 }
1207 }
1208 }
1209 DB_DNODE_EXIT(db);
1210 }
1211 #endif
1212
1213 static void
1214 dbuf_clear_data(dmu_buf_impl_t *db)
1215 {
1216 ASSERT(MUTEX_HELD(&db->db_mtx));
1217 dbuf_evict_user(db);
1218 ASSERT3P(db->db_buf, ==, NULL);
1219 db->db.db_data = NULL;
1220 if (db->db_state != DB_NOFILL) {
1221 db->db_state = DB_UNCACHED;
1222 DTRACE_SET_STATE(db, "clear data");
1223 }
1224 }
1225
1226 static void
1227 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1228 {
1229 ASSERT(MUTEX_HELD(&db->db_mtx));
1230 ASSERT(buf != NULL);
1231
1232 db->db_buf = buf;
1233 ASSERT(buf->b_data != NULL);
1234 db->db.db_data = buf->b_data;
1235 }
1236
1237 static arc_buf_t *
1238 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1239 {
1240 spa_t *spa = db->db_objset->os_spa;
1241
1242 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1243 }
1244
1245 /*
1246 * Loan out an arc_buf for read. Return the loaned arc_buf.
1247 */
1248 arc_buf_t *
1249 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1250 {
1251 arc_buf_t *abuf;
1252
1253 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1254 mutex_enter(&db->db_mtx);
1255 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1256 int blksz = db->db.db_size;
1257 spa_t *spa = db->db_objset->os_spa;
1258
1259 mutex_exit(&db->db_mtx);
1260 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1261 memcpy(abuf->b_data, db->db.db_data, blksz);
1262 } else {
1263 abuf = db->db_buf;
1264 arc_loan_inuse_buf(abuf, db);
1265 db->db_buf = NULL;
1266 dbuf_clear_data(db);
1267 mutex_exit(&db->db_mtx);
1268 }
1269 return (abuf);
1270 }
1271
1272 /*
1273 * Calculate which level n block references the data at the level 0 offset
1274 * provided.
1275 */
1276 uint64_t
1277 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1278 {
1279 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1280 /*
1281 * The level n blkid is equal to the level 0 blkid divided by
1282 * the number of level 0s in a level n block.
1283 *
1284 * The level 0 blkid is offset >> datablkshift =
1285 * offset / 2^datablkshift.
1286 *
1287 * The number of level 0s in a level n is the number of block
1288 * pointers in an indirect block, raised to the power of level.
1289 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1290 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1291 *
1292 * Thus, the level n blkid is: offset /
1293 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1294 * = offset / 2^(datablkshift + level *
1295 * (indblkshift - SPA_BLKPTRSHIFT))
1296 * = offset >> (datablkshift + level *
1297 * (indblkshift - SPA_BLKPTRSHIFT))
1298 */
1299
1300 const unsigned exp = dn->dn_datablkshift +
1301 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1302
1303 if (exp >= 8 * sizeof (offset)) {
1304 /* This only happens on the highest indirection level */
1305 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1306 return (0);
1307 }
1308
1309 ASSERT3U(exp, <, 8 * sizeof (offset));
1310
1311 return (offset >> exp);
1312 } else {
1313 ASSERT3U(offset, <, dn->dn_datablksz);
1314 return (0);
1315 }
1316 }
1317
1318 /*
1319 * This function is used to lock the parent of the provided dbuf. This should be
1320 * used when modifying or reading db_blkptr.
1321 */
1322 db_lock_type_t
1323 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1324 {
1325 enum db_lock_type ret = DLT_NONE;
1326 if (db->db_parent != NULL) {
1327 rw_enter(&db->db_parent->db_rwlock, rw);
1328 ret = DLT_PARENT;
1329 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1330 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1331 tag);
1332 ret = DLT_OBJSET;
1333 }
1334 /*
1335 * We only return a DLT_NONE lock when it's the top-most indirect block
1336 * of the meta-dnode of the MOS.
1337 */
1338 return (ret);
1339 }
1340
1341 /*
1342 * We need to pass the lock type in because it's possible that the block will
1343 * move from being the topmost indirect block in a dnode (and thus, have no
1344 * parent) to not the top-most via an indirection increase. This would cause a
1345 * panic if we didn't pass the lock type in.
1346 */
1347 void
1348 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1349 {
1350 if (type == DLT_PARENT)
1351 rw_exit(&db->db_parent->db_rwlock);
1352 else if (type == DLT_OBJSET)
1353 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1354 }
1355
1356 static void
1357 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1358 arc_buf_t *buf, void *vdb)
1359 {
1360 (void) zb, (void) bp;
1361 dmu_buf_impl_t *db = vdb;
1362
1363 mutex_enter(&db->db_mtx);
1364 ASSERT3U(db->db_state, ==, DB_READ);
1365 /*
1366 * All reads are synchronous, so we must have a hold on the dbuf
1367 */
1368 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1369 ASSERT(db->db_buf == NULL);
1370 ASSERT(db->db.db_data == NULL);
1371 if (buf == NULL) {
1372 /* i/o error */
1373 ASSERT(zio == NULL || zio->io_error != 0);
1374 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1375 ASSERT3P(db->db_buf, ==, NULL);
1376 db->db_state = DB_UNCACHED;
1377 DTRACE_SET_STATE(db, "i/o error");
1378 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1379 /* freed in flight */
1380 ASSERT(zio == NULL || zio->io_error == 0);
1381 arc_release(buf, db);
1382 memset(buf->b_data, 0, db->db.db_size);
1383 arc_buf_freeze(buf);
1384 db->db_freed_in_flight = FALSE;
1385 dbuf_set_data(db, buf);
1386 db->db_state = DB_CACHED;
1387 DTRACE_SET_STATE(db, "freed in flight");
1388 } else {
1389 /* success */
1390 ASSERT(zio == NULL || zio->io_error == 0);
1391 dbuf_set_data(db, buf);
1392 db->db_state = DB_CACHED;
1393 DTRACE_SET_STATE(db, "successful read");
1394 }
1395 cv_broadcast(&db->db_changed);
1396 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1397 }
1398
1399 /*
1400 * Shortcut for performing reads on bonus dbufs. Returns
1401 * an error if we fail to verify the dnode associated with
1402 * a decrypted block. Otherwise success.
1403 */
1404 static int
1405 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1406 {
1407 int bonuslen, max_bonuslen, err;
1408
1409 err = dbuf_read_verify_dnode_crypt(db, flags);
1410 if (err)
1411 return (err);
1412
1413 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1414 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1415 ASSERT(MUTEX_HELD(&db->db_mtx));
1416 ASSERT(DB_DNODE_HELD(db));
1417 ASSERT3U(bonuslen, <=, db->db.db_size);
1418 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1419 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1420 if (bonuslen < max_bonuslen)
1421 memset(db->db.db_data, 0, max_bonuslen);
1422 if (bonuslen)
1423 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1424 db->db_state = DB_CACHED;
1425 DTRACE_SET_STATE(db, "bonus buffer filled");
1426 return (0);
1427 }
1428
1429 static void
1430 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1431 {
1432 blkptr_t *bps = db->db.db_data;
1433 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1434 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1435
1436 for (int i = 0; i < n_bps; i++) {
1437 blkptr_t *bp = &bps[i];
1438
1439 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1440 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1441 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1442 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1443 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1444 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1445 }
1446 }
1447
1448 /*
1449 * Handle reads on dbufs that are holes, if necessary. This function
1450 * requires that the dbuf's mutex is held. Returns success (0) if action
1451 * was taken, ENOENT if no action was taken.
1452 */
1453 static int
1454 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
1455 {
1456 ASSERT(MUTEX_HELD(&db->db_mtx));
1457
1458 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1459 /*
1460 * For level 0 blocks only, if the above check fails:
1461 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1462 * processes the delete record and clears the bp while we are waiting
1463 * for the dn_mtx (resulting in a "no" from block_freed).
1464 */
1465 if (!is_hole && db->db_level == 0) {
1466 is_hole = dnode_block_freed(dn, db->db_blkid) ||
1467 BP_IS_HOLE(db->db_blkptr);
1468 }
1469
1470 if (is_hole) {
1471 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1472 memset(db->db.db_data, 0, db->db.db_size);
1473
1474 if (db->db_blkptr != NULL && db->db_level > 0 &&
1475 BP_IS_HOLE(db->db_blkptr) &&
1476 db->db_blkptr->blk_birth != 0) {
1477 dbuf_handle_indirect_hole(db, dn);
1478 }
1479 db->db_state = DB_CACHED;
1480 DTRACE_SET_STATE(db, "hole read satisfied");
1481 return (0);
1482 }
1483 return (ENOENT);
1484 }
1485
1486 /*
1487 * This function ensures that, when doing a decrypting read of a block,
1488 * we make sure we have decrypted the dnode associated with it. We must do
1489 * this so that we ensure we are fully authenticating the checksum-of-MACs
1490 * tree from the root of the objset down to this block. Indirect blocks are
1491 * always verified against their secure checksum-of-MACs assuming that the
1492 * dnode containing them is correct. Now that we are doing a decrypting read,
1493 * we can be sure that the key is loaded and verify that assumption. This is
1494 * especially important considering that we always read encrypted dnode
1495 * blocks as raw data (without verifying their MACs) to start, and
1496 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1497 */
1498 static int
1499 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1500 {
1501 int err = 0;
1502 objset_t *os = db->db_objset;
1503 arc_buf_t *dnode_abuf;
1504 dnode_t *dn;
1505 zbookmark_phys_t zb;
1506
1507 ASSERT(MUTEX_HELD(&db->db_mtx));
1508
1509 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1510 !os->os_encrypted || os->os_raw_receive)
1511 return (0);
1512
1513 DB_DNODE_ENTER(db);
1514 dn = DB_DNODE(db);
1515 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1516
1517 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1518 DB_DNODE_EXIT(db);
1519 return (0);
1520 }
1521
1522 SET_BOOKMARK(&zb, dmu_objset_id(os),
1523 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1524 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1525
1526 /*
1527 * An error code of EACCES tells us that the key is still not
1528 * available. This is ok if we are only reading authenticated
1529 * (and therefore non-encrypted) blocks.
1530 */
1531 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1532 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1533 (db->db_blkid == DMU_BONUS_BLKID &&
1534 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1535 err = 0;
1536
1537 DB_DNODE_EXIT(db);
1538
1539 return (err);
1540 }
1541
1542 /*
1543 * Drops db_mtx and the parent lock specified by dblt and tag before
1544 * returning.
1545 */
1546 static int
1547 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1548 db_lock_type_t dblt, const void *tag)
1549 {
1550 dnode_t *dn;
1551 zbookmark_phys_t zb;
1552 uint32_t aflags = ARC_FLAG_NOWAIT;
1553 int err, zio_flags;
1554
1555 DB_DNODE_ENTER(db);
1556 dn = DB_DNODE(db);
1557 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1558 ASSERT(MUTEX_HELD(&db->db_mtx));
1559 ASSERT(db->db_state == DB_UNCACHED);
1560 ASSERT(db->db_buf == NULL);
1561 ASSERT(db->db_parent == NULL ||
1562 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1563
1564 if (db->db_blkid == DMU_BONUS_BLKID) {
1565 err = dbuf_read_bonus(db, dn, flags);
1566 goto early_unlock;
1567 }
1568
1569 err = dbuf_read_hole(db, dn);
1570 if (err == 0)
1571 goto early_unlock;
1572
1573 /*
1574 * Any attempt to read a redacted block should result in an error. This
1575 * will never happen under normal conditions, but can be useful for
1576 * debugging purposes.
1577 */
1578 if (BP_IS_REDACTED(db->db_blkptr)) {
1579 ASSERT(dsl_dataset_feature_is_active(
1580 db->db_objset->os_dsl_dataset,
1581 SPA_FEATURE_REDACTED_DATASETS));
1582 err = SET_ERROR(EIO);
1583 goto early_unlock;
1584 }
1585
1586 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1587 db->db.db_object, db->db_level, db->db_blkid);
1588
1589 /*
1590 * All bps of an encrypted os should have the encryption bit set.
1591 * If this is not true it indicates tampering and we report an error.
1592 */
1593 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1594 spa_log_error(db->db_objset->os_spa, &zb);
1595 zfs_panic_recover("unencrypted block in encrypted "
1596 "object set %llu", dmu_objset_id(db->db_objset));
1597 err = SET_ERROR(EIO);
1598 goto early_unlock;
1599 }
1600
1601 err = dbuf_read_verify_dnode_crypt(db, flags);
1602 if (err != 0)
1603 goto early_unlock;
1604
1605 DB_DNODE_EXIT(db);
1606
1607 db->db_state = DB_READ;
1608 DTRACE_SET_STATE(db, "read issued");
1609 mutex_exit(&db->db_mtx);
1610
1611 if (!DBUF_IS_CACHEABLE(db))
1612 aflags |= ARC_FLAG_UNCACHED;
1613 else if (dbuf_is_l2cacheable(db))
1614 aflags |= ARC_FLAG_L2CACHE;
1615
1616 dbuf_add_ref(db, NULL);
1617
1618 zio_flags = (flags & DB_RF_CANFAIL) ?
1619 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1620
1621 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1622 zio_flags |= ZIO_FLAG_RAW;
1623 /*
1624 * The zio layer will copy the provided blkptr later, but we need to
1625 * do this now so that we can release the parent's rwlock. We have to
1626 * do that now so that if dbuf_read_done is called synchronously (on
1627 * an l1 cache hit) we don't acquire the db_mtx while holding the
1628 * parent's rwlock, which would be a lock ordering violation.
1629 */
1630 blkptr_t bp = *db->db_blkptr;
1631 dmu_buf_unlock_parent(db, dblt, tag);
1632 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1633 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1634 &aflags, &zb);
1635 return (err);
1636 early_unlock:
1637 DB_DNODE_EXIT(db);
1638 mutex_exit(&db->db_mtx);
1639 dmu_buf_unlock_parent(db, dblt, tag);
1640 return (err);
1641 }
1642
1643 /*
1644 * This is our just-in-time copy function. It makes a copy of buffers that
1645 * have been modified in a previous transaction group before we access them in
1646 * the current active group.
1647 *
1648 * This function is used in three places: when we are dirtying a buffer for the
1649 * first time in a txg, when we are freeing a range in a dnode that includes
1650 * this buffer, and when we are accessing a buffer which was received compressed
1651 * and later referenced in a WRITE_BYREF record.
1652 *
1653 * Note that when we are called from dbuf_free_range() we do not put a hold on
1654 * the buffer, we just traverse the active dbuf list for the dnode.
1655 */
1656 static void
1657 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1658 {
1659 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1660
1661 ASSERT(MUTEX_HELD(&db->db_mtx));
1662 ASSERT(db->db.db_data != NULL);
1663 ASSERT(db->db_level == 0);
1664 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1665
1666 if (dr == NULL ||
1667 (dr->dt.dl.dr_data !=
1668 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1669 return;
1670
1671 /*
1672 * If the last dirty record for this dbuf has not yet synced
1673 * and its referencing the dbuf data, either:
1674 * reset the reference to point to a new copy,
1675 * or (if there a no active holders)
1676 * just null out the current db_data pointer.
1677 */
1678 ASSERT3U(dr->dr_txg, >=, txg - 2);
1679 if (db->db_blkid == DMU_BONUS_BLKID) {
1680 dnode_t *dn = DB_DNODE(db);
1681 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1682 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1683 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1684 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1685 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1686 dnode_t *dn = DB_DNODE(db);
1687 int size = arc_buf_size(db->db_buf);
1688 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1689 spa_t *spa = db->db_objset->os_spa;
1690 enum zio_compress compress_type =
1691 arc_get_compression(db->db_buf);
1692 uint8_t complevel = arc_get_complevel(db->db_buf);
1693
1694 if (arc_is_encrypted(db->db_buf)) {
1695 boolean_t byteorder;
1696 uint8_t salt[ZIO_DATA_SALT_LEN];
1697 uint8_t iv[ZIO_DATA_IV_LEN];
1698 uint8_t mac[ZIO_DATA_MAC_LEN];
1699
1700 arc_get_raw_params(db->db_buf, &byteorder, salt,
1701 iv, mac);
1702 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1703 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1704 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1705 compress_type, complevel);
1706 } else if (compress_type != ZIO_COMPRESS_OFF) {
1707 ASSERT3U(type, ==, ARC_BUFC_DATA);
1708 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1709 size, arc_buf_lsize(db->db_buf), compress_type,
1710 complevel);
1711 } else {
1712 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1713 }
1714 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1715 } else {
1716 db->db_buf = NULL;
1717 dbuf_clear_data(db);
1718 }
1719 }
1720
1721 int
1722 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1723 {
1724 int err = 0;
1725 boolean_t prefetch;
1726 dnode_t *dn;
1727
1728 /*
1729 * We don't have to hold the mutex to check db_state because it
1730 * can't be freed while we have a hold on the buffer.
1731 */
1732 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1733
1734 if (db->db_state == DB_NOFILL)
1735 return (SET_ERROR(EIO));
1736
1737 DB_DNODE_ENTER(db);
1738 dn = DB_DNODE(db);
1739
1740 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1741 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;
1742
1743 mutex_enter(&db->db_mtx);
1744 if (flags & DB_RF_PARTIAL_FIRST)
1745 db->db_partial_read = B_TRUE;
1746 else if (!(flags & DB_RF_PARTIAL_MORE))
1747 db->db_partial_read = B_FALSE;
1748 if (db->db_state == DB_CACHED) {
1749 /*
1750 * Ensure that this block's dnode has been decrypted if
1751 * the caller has requested decrypted data.
1752 */
1753 err = dbuf_read_verify_dnode_crypt(db, flags);
1754
1755 /*
1756 * If the arc buf is compressed or encrypted and the caller
1757 * requested uncompressed data, we need to untransform it
1758 * before returning. We also call arc_untransform() on any
1759 * unauthenticated blocks, which will verify their MAC if
1760 * the key is now available.
1761 */
1762 if (err == 0 && db->db_buf != NULL &&
1763 (flags & DB_RF_NO_DECRYPT) == 0 &&
1764 (arc_is_encrypted(db->db_buf) ||
1765 arc_is_unauthenticated(db->db_buf) ||
1766 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1767 spa_t *spa = dn->dn_objset->os_spa;
1768 zbookmark_phys_t zb;
1769
1770 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1771 db->db.db_object, db->db_level, db->db_blkid);
1772 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1773 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1774 dbuf_set_data(db, db->db_buf);
1775 }
1776 mutex_exit(&db->db_mtx);
1777 if (err == 0 && prefetch) {
1778 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1779 B_FALSE, flags & DB_RF_HAVESTRUCT);
1780 }
1781 DB_DNODE_EXIT(db);
1782 DBUF_STAT_BUMP(hash_hits);
1783 } else if (db->db_state == DB_UNCACHED) {
1784 boolean_t need_wait = B_FALSE;
1785
1786 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1787
1788 if (zio == NULL &&
1789 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1790 spa_t *spa = dn->dn_objset->os_spa;
1791 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1792 need_wait = B_TRUE;
1793 }
1794 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1795 /*
1796 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1797 * for us
1798 */
1799 if (!err && prefetch) {
1800 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1801 db->db_state != DB_CACHED,
1802 flags & DB_RF_HAVESTRUCT);
1803 }
1804
1805 DB_DNODE_EXIT(db);
1806 DBUF_STAT_BUMP(hash_misses);
1807
1808 /*
1809 * If we created a zio_root we must execute it to avoid
1810 * leaking it, even if it isn't attached to any work due
1811 * to an error in dbuf_read_impl().
1812 */
1813 if (need_wait) {
1814 if (err == 0)
1815 err = zio_wait(zio);
1816 else
1817 VERIFY0(zio_wait(zio));
1818 }
1819 } else {
1820 /*
1821 * Another reader came in while the dbuf was in flight
1822 * between UNCACHED and CACHED. Either a writer will finish
1823 * writing the buffer (sending the dbuf to CACHED) or the
1824 * first reader's request will reach the read_done callback
1825 * and send the dbuf to CACHED. Otherwise, a failure
1826 * occurred and the dbuf went to UNCACHED.
1827 */
1828 mutex_exit(&db->db_mtx);
1829 if (prefetch) {
1830 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1831 B_TRUE, flags & DB_RF_HAVESTRUCT);
1832 }
1833 DB_DNODE_EXIT(db);
1834 DBUF_STAT_BUMP(hash_misses);
1835
1836 /* Skip the wait per the caller's request. */
1837 if ((flags & DB_RF_NEVERWAIT) == 0) {
1838 mutex_enter(&db->db_mtx);
1839 while (db->db_state == DB_READ ||
1840 db->db_state == DB_FILL) {
1841 ASSERT(db->db_state == DB_READ ||
1842 (flags & DB_RF_HAVESTRUCT) == 0);
1843 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1844 db, zio_t *, zio);
1845 cv_wait(&db->db_changed, &db->db_mtx);
1846 }
1847 if (db->db_state == DB_UNCACHED)
1848 err = SET_ERROR(EIO);
1849 mutex_exit(&db->db_mtx);
1850 }
1851 }
1852
1853 return (err);
1854 }
1855
1856 static void
1857 dbuf_noread(dmu_buf_impl_t *db)
1858 {
1859 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1860 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1861 mutex_enter(&db->db_mtx);
1862 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1863 cv_wait(&db->db_changed, &db->db_mtx);
1864 if (db->db_state == DB_UNCACHED) {
1865 ASSERT(db->db_buf == NULL);
1866 ASSERT(db->db.db_data == NULL);
1867 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1868 db->db_state = DB_FILL;
1869 DTRACE_SET_STATE(db, "assigning filled buffer");
1870 } else if (db->db_state == DB_NOFILL) {
1871 dbuf_clear_data(db);
1872 } else {
1873 ASSERT3U(db->db_state, ==, DB_CACHED);
1874 }
1875 mutex_exit(&db->db_mtx);
1876 }
1877
1878 void
1879 dbuf_unoverride(dbuf_dirty_record_t *dr)
1880 {
1881 dmu_buf_impl_t *db = dr->dr_dbuf;
1882 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1883 uint64_t txg = dr->dr_txg;
1884
1885 ASSERT(MUTEX_HELD(&db->db_mtx));
1886 /*
1887 * This assert is valid because dmu_sync() expects to be called by
1888 * a zilog's get_data while holding a range lock. This call only
1889 * comes from dbuf_dirty() callers who must also hold a range lock.
1890 */
1891 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1892 ASSERT(db->db_level == 0);
1893
1894 if (db->db_blkid == DMU_BONUS_BLKID ||
1895 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1896 return;
1897
1898 ASSERT(db->db_data_pending != dr);
1899
1900 /* free this block */
1901 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1902 zio_free(db->db_objset->os_spa, txg, bp);
1903
1904 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1905 dr->dt.dl.dr_nopwrite = B_FALSE;
1906 dr->dt.dl.dr_has_raw_params = B_FALSE;
1907
1908 /*
1909 * Release the already-written buffer, so we leave it in
1910 * a consistent dirty state. Note that all callers are
1911 * modifying the buffer, so they will immediately do
1912 * another (redundant) arc_release(). Therefore, leave
1913 * the buf thawed to save the effort of freezing &
1914 * immediately re-thawing it.
1915 */
1916 arc_release(dr->dt.dl.dr_data, db);
1917 }
1918
1919 /*
1920 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1921 * data blocks in the free range, so that any future readers will find
1922 * empty blocks.
1923 */
1924 void
1925 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1926 dmu_tx_t *tx)
1927 {
1928 dmu_buf_impl_t *db_search;
1929 dmu_buf_impl_t *db, *db_next;
1930 uint64_t txg = tx->tx_txg;
1931 avl_index_t where;
1932 dbuf_dirty_record_t *dr;
1933
1934 if (end_blkid > dn->dn_maxblkid &&
1935 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1936 end_blkid = dn->dn_maxblkid;
1937 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1938 (u_longlong_t)end_blkid);
1939
1940 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1941 db_search->db_level = 0;
1942 db_search->db_blkid = start_blkid;
1943 db_search->db_state = DB_SEARCH;
1944
1945 mutex_enter(&dn->dn_dbufs_mtx);
1946 db = avl_find(&dn->dn_dbufs, db_search, &where);
1947 ASSERT3P(db, ==, NULL);
1948
1949 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1950
1951 for (; db != NULL; db = db_next) {
1952 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1953 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1954
1955 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1956 break;
1957 }
1958 ASSERT3U(db->db_blkid, >=, start_blkid);
1959
1960 /* found a level 0 buffer in the range */
1961 mutex_enter(&db->db_mtx);
1962 if (dbuf_undirty(db, tx)) {
1963 /* mutex has been dropped and dbuf destroyed */
1964 continue;
1965 }
1966
1967 if (db->db_state == DB_UNCACHED ||
1968 db->db_state == DB_NOFILL ||
1969 db->db_state == DB_EVICTING) {
1970 ASSERT(db->db.db_data == NULL);
1971 mutex_exit(&db->db_mtx);
1972 continue;
1973 }
1974 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1975 /* will be handled in dbuf_read_done or dbuf_rele */
1976 db->db_freed_in_flight = TRUE;
1977 mutex_exit(&db->db_mtx);
1978 continue;
1979 }
1980 if (zfs_refcount_count(&db->db_holds) == 0) {
1981 ASSERT(db->db_buf);
1982 dbuf_destroy(db);
1983 continue;
1984 }
1985 /* The dbuf is referenced */
1986
1987 dr = list_head(&db->db_dirty_records);
1988 if (dr != NULL) {
1989 if (dr->dr_txg == txg) {
1990 /*
1991 * This buffer is "in-use", re-adjust the file
1992 * size to reflect that this buffer may
1993 * contain new data when we sync.
1994 */
1995 if (db->db_blkid != DMU_SPILL_BLKID &&
1996 db->db_blkid > dn->dn_maxblkid)
1997 dn->dn_maxblkid = db->db_blkid;
1998 dbuf_unoverride(dr);
1999 } else {
2000 /*
2001 * This dbuf is not dirty in the open context.
2002 * Either uncache it (if its not referenced in
2003 * the open context) or reset its contents to
2004 * empty.
2005 */
2006 dbuf_fix_old_data(db, txg);
2007 }
2008 }
2009 /* clear the contents if its cached */
2010 if (db->db_state == DB_CACHED) {
2011 ASSERT(db->db.db_data != NULL);
2012 arc_release(db->db_buf, db);
2013 rw_enter(&db->db_rwlock, RW_WRITER);
2014 memset(db->db.db_data, 0, db->db.db_size);
2015 rw_exit(&db->db_rwlock);
2016 arc_buf_freeze(db->db_buf);
2017 }
2018
2019 mutex_exit(&db->db_mtx);
2020 }
2021
2022 mutex_exit(&dn->dn_dbufs_mtx);
2023 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2024 }
2025
2026 void
2027 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2028 {
2029 arc_buf_t *buf, *old_buf;
2030 dbuf_dirty_record_t *dr;
2031 int osize = db->db.db_size;
2032 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2033 dnode_t *dn;
2034
2035 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2036
2037 DB_DNODE_ENTER(db);
2038 dn = DB_DNODE(db);
2039
2040 /*
2041 * XXX we should be doing a dbuf_read, checking the return
2042 * value and returning that up to our callers
2043 */
2044 dmu_buf_will_dirty(&db->db, tx);
2045
2046 /* create the data buffer for the new block */
2047 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2048
2049 /* copy old block data to the new block */
2050 old_buf = db->db_buf;
2051 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2052 /* zero the remainder */
2053 if (size > osize)
2054 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2055
2056 mutex_enter(&db->db_mtx);
2057 dbuf_set_data(db, buf);
2058 arc_buf_destroy(old_buf, db);
2059 db->db.db_size = size;
2060
2061 dr = list_head(&db->db_dirty_records);
2062 /* dirty record added by dmu_buf_will_dirty() */
2063 VERIFY(dr != NULL);
2064 if (db->db_level == 0)
2065 dr->dt.dl.dr_data = buf;
2066 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2067 ASSERT3U(dr->dr_accounted, ==, osize);
2068 dr->dr_accounted = size;
2069 mutex_exit(&db->db_mtx);
2070
2071 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2072 DB_DNODE_EXIT(db);
2073 }
2074
2075 void
2076 dbuf_release_bp(dmu_buf_impl_t *db)
2077 {
2078 objset_t *os __maybe_unused = db->db_objset;
2079
2080 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2081 ASSERT(arc_released(os->os_phys_buf) ||
2082 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2083 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2084
2085 (void) arc_release(db->db_buf, db);
2086 }
2087
2088 /*
2089 * We already have a dirty record for this TXG, and we are being
2090 * dirtied again.
2091 */
2092 static void
2093 dbuf_redirty(dbuf_dirty_record_t *dr)
2094 {
2095 dmu_buf_impl_t *db = dr->dr_dbuf;
2096
2097 ASSERT(MUTEX_HELD(&db->db_mtx));
2098
2099 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2100 /*
2101 * If this buffer has already been written out,
2102 * we now need to reset its state.
2103 */
2104 dbuf_unoverride(dr);
2105 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2106 db->db_state != DB_NOFILL) {
2107 /* Already released on initial dirty, so just thaw. */
2108 ASSERT(arc_released(db->db_buf));
2109 arc_buf_thaw(db->db_buf);
2110 }
2111 }
2112 }
2113
2114 dbuf_dirty_record_t *
2115 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2116 {
2117 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2118 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2119 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2120 ASSERT(dn->dn_maxblkid >= blkid);
2121
2122 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2123 list_link_init(&dr->dr_dirty_node);
2124 list_link_init(&dr->dr_dbuf_node);
2125 dr->dr_dnode = dn;
2126 dr->dr_txg = tx->tx_txg;
2127 dr->dt.dll.dr_blkid = blkid;
2128 dr->dr_accounted = dn->dn_datablksz;
2129
2130 /*
2131 * There should not be any dbuf for the block that we're dirtying.
2132 * Otherwise the buffer contents could be inconsistent between the
2133 * dbuf and the lightweight dirty record.
2134 */
2135 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2136 NULL));
2137
2138 mutex_enter(&dn->dn_mtx);
2139 int txgoff = tx->tx_txg & TXG_MASK;
2140 if (dn->dn_free_ranges[txgoff] != NULL) {
2141 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2142 }
2143
2144 if (dn->dn_nlevels == 1) {
2145 ASSERT3U(blkid, <, dn->dn_nblkptr);
2146 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2147 mutex_exit(&dn->dn_mtx);
2148 rw_exit(&dn->dn_struct_rwlock);
2149 dnode_setdirty(dn, tx);
2150 } else {
2151 mutex_exit(&dn->dn_mtx);
2152
2153 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2154 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2155 1, blkid >> epbs, FTAG);
2156 rw_exit(&dn->dn_struct_rwlock);
2157 if (parent_db == NULL) {
2158 kmem_free(dr, sizeof (*dr));
2159 return (NULL);
2160 }
2161 int err = dbuf_read(parent_db, NULL,
2162 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2163 if (err != 0) {
2164 dbuf_rele(parent_db, FTAG);
2165 kmem_free(dr, sizeof (*dr));
2166 return (NULL);
2167 }
2168
2169 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2170 dbuf_rele(parent_db, FTAG);
2171 mutex_enter(&parent_dr->dt.di.dr_mtx);
2172 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2173 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2174 mutex_exit(&parent_dr->dt.di.dr_mtx);
2175 dr->dr_parent = parent_dr;
2176 }
2177
2178 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2179
2180 return (dr);
2181 }
2182
2183 dbuf_dirty_record_t *
2184 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2185 {
2186 dnode_t *dn;
2187 objset_t *os;
2188 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2189 int txgoff = tx->tx_txg & TXG_MASK;
2190 boolean_t drop_struct_rwlock = B_FALSE;
2191
2192 ASSERT(tx->tx_txg != 0);
2193 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2194 DMU_TX_DIRTY_BUF(tx, db);
2195
2196 DB_DNODE_ENTER(db);
2197 dn = DB_DNODE(db);
2198 /*
2199 * Shouldn't dirty a regular buffer in syncing context. Private
2200 * objects may be dirtied in syncing context, but only if they
2201 * were already pre-dirtied in open context.
2202 */
2203 #ifdef ZFS_DEBUG
2204 if (dn->dn_objset->os_dsl_dataset != NULL) {
2205 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2206 RW_READER, FTAG);
2207 }
2208 ASSERT(!dmu_tx_is_syncing(tx) ||
2209 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2210 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2211 dn->dn_objset->os_dsl_dataset == NULL);
2212 if (dn->dn_objset->os_dsl_dataset != NULL)
2213 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2214 #endif
2215 /*
2216 * We make this assert for private objects as well, but after we
2217 * check if we're already dirty. They are allowed to re-dirty
2218 * in syncing context.
2219 */
2220 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2221 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2222 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2223
2224 mutex_enter(&db->db_mtx);
2225 /*
2226 * XXX make this true for indirects too? The problem is that
2227 * transactions created with dmu_tx_create_assigned() from
2228 * syncing context don't bother holding ahead.
2229 */
2230 ASSERT(db->db_level != 0 ||
2231 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2232 db->db_state == DB_NOFILL);
2233
2234 mutex_enter(&dn->dn_mtx);
2235 dnode_set_dirtyctx(dn, tx, db);
2236 if (tx->tx_txg > dn->dn_dirty_txg)
2237 dn->dn_dirty_txg = tx->tx_txg;
2238 mutex_exit(&dn->dn_mtx);
2239
2240 if (db->db_blkid == DMU_SPILL_BLKID)
2241 dn->dn_have_spill = B_TRUE;
2242
2243 /*
2244 * If this buffer is already dirty, we're done.
2245 */
2246 dr_head = list_head(&db->db_dirty_records);
2247 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2248 db->db.db_object == DMU_META_DNODE_OBJECT);
2249 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2250 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2251 DB_DNODE_EXIT(db);
2252
2253 dbuf_redirty(dr_next);
2254 mutex_exit(&db->db_mtx);
2255 return (dr_next);
2256 }
2257
2258 /*
2259 * Only valid if not already dirty.
2260 */
2261 ASSERT(dn->dn_object == 0 ||
2262 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2263 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2264
2265 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2266
2267 /*
2268 * We should only be dirtying in syncing context if it's the
2269 * mos or we're initializing the os or it's a special object.
2270 * However, we are allowed to dirty in syncing context provided
2271 * we already dirtied it in open context. Hence we must make
2272 * this assertion only if we're not already dirty.
2273 */
2274 os = dn->dn_objset;
2275 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2276 #ifdef ZFS_DEBUG
2277 if (dn->dn_objset->os_dsl_dataset != NULL)
2278 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2279 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2280 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2281 if (dn->dn_objset->os_dsl_dataset != NULL)
2282 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2283 #endif
2284 ASSERT(db->db.db_size != 0);
2285
2286 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2287
2288 if (db->db_blkid != DMU_BONUS_BLKID) {
2289 dmu_objset_willuse_space(os, db->db.db_size, tx);
2290 }
2291
2292 /*
2293 * If this buffer is dirty in an old transaction group we need
2294 * to make a copy of it so that the changes we make in this
2295 * transaction group won't leak out when we sync the older txg.
2296 */
2297 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2298 list_link_init(&dr->dr_dirty_node);
2299 list_link_init(&dr->dr_dbuf_node);
2300 dr->dr_dnode = dn;
2301 if (db->db_level == 0) {
2302 void *data_old = db->db_buf;
2303
2304 if (db->db_state != DB_NOFILL) {
2305 if (db->db_blkid == DMU_BONUS_BLKID) {
2306 dbuf_fix_old_data(db, tx->tx_txg);
2307 data_old = db->db.db_data;
2308 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2309 /*
2310 * Release the data buffer from the cache so
2311 * that we can modify it without impacting
2312 * possible other users of this cached data
2313 * block. Note that indirect blocks and
2314 * private objects are not released until the
2315 * syncing state (since they are only modified
2316 * then).
2317 */
2318 arc_release(db->db_buf, db);
2319 dbuf_fix_old_data(db, tx->tx_txg);
2320 data_old = db->db_buf;
2321 }
2322 ASSERT(data_old != NULL);
2323 }
2324 dr->dt.dl.dr_data = data_old;
2325 } else {
2326 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2327 list_create(&dr->dt.di.dr_children,
2328 sizeof (dbuf_dirty_record_t),
2329 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2330 }
2331 if (db->db_blkid != DMU_BONUS_BLKID)
2332 dr->dr_accounted = db->db.db_size;
2333 dr->dr_dbuf = db;
2334 dr->dr_txg = tx->tx_txg;
2335 list_insert_before(&db->db_dirty_records, dr_next, dr);
2336
2337 /*
2338 * We could have been freed_in_flight between the dbuf_noread
2339 * and dbuf_dirty. We win, as though the dbuf_noread() had
2340 * happened after the free.
2341 */
2342 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2343 db->db_blkid != DMU_SPILL_BLKID) {
2344 mutex_enter(&dn->dn_mtx);
2345 if (dn->dn_free_ranges[txgoff] != NULL) {
2346 range_tree_clear(dn->dn_free_ranges[txgoff],
2347 db->db_blkid, 1);
2348 }
2349 mutex_exit(&dn->dn_mtx);
2350 db->db_freed_in_flight = FALSE;
2351 }
2352
2353 /*
2354 * This buffer is now part of this txg
2355 */
2356 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2357 db->db_dirtycnt += 1;
2358 ASSERT3U(db->db_dirtycnt, <=, 3);
2359
2360 mutex_exit(&db->db_mtx);
2361
2362 if (db->db_blkid == DMU_BONUS_BLKID ||
2363 db->db_blkid == DMU_SPILL_BLKID) {
2364 mutex_enter(&dn->dn_mtx);
2365 ASSERT(!list_link_active(&dr->dr_dirty_node));
2366 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2367 mutex_exit(&dn->dn_mtx);
2368 dnode_setdirty(dn, tx);
2369 DB_DNODE_EXIT(db);
2370 return (dr);
2371 }
2372
2373 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2374 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2375 drop_struct_rwlock = B_TRUE;
2376 }
2377
2378 /*
2379 * If we are overwriting a dedup BP, then unless it is snapshotted,
2380 * when we get to syncing context we will need to decrement its
2381 * refcount in the DDT. Prefetch the relevant DDT block so that
2382 * syncing context won't have to wait for the i/o.
2383 */
2384 if (db->db_blkptr != NULL) {
2385 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2386 ddt_prefetch(os->os_spa, db->db_blkptr);
2387 dmu_buf_unlock_parent(db, dblt, FTAG);
2388 }
2389
2390 /*
2391 * We need to hold the dn_struct_rwlock to make this assertion,
2392 * because it protects dn_phys / dn_next_nlevels from changing.
2393 */
2394 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2395 dn->dn_phys->dn_nlevels > db->db_level ||
2396 dn->dn_next_nlevels[txgoff] > db->db_level ||
2397 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2398 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2399
2400
2401 if (db->db_level == 0) {
2402 ASSERT(!db->db_objset->os_raw_receive ||
2403 dn->dn_maxblkid >= db->db_blkid);
2404 dnode_new_blkid(dn, db->db_blkid, tx,
2405 drop_struct_rwlock, B_FALSE);
2406 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2407 }
2408
2409 if (db->db_level+1 < dn->dn_nlevels) {
2410 dmu_buf_impl_t *parent = db->db_parent;
2411 dbuf_dirty_record_t *di;
2412 int parent_held = FALSE;
2413
2414 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2415 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2416 parent = dbuf_hold_level(dn, db->db_level + 1,
2417 db->db_blkid >> epbs, FTAG);
2418 ASSERT(parent != NULL);
2419 parent_held = TRUE;
2420 }
2421 if (drop_struct_rwlock)
2422 rw_exit(&dn->dn_struct_rwlock);
2423 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2424 di = dbuf_dirty(parent, tx);
2425 if (parent_held)
2426 dbuf_rele(parent, FTAG);
2427
2428 mutex_enter(&db->db_mtx);
2429 /*
2430 * Since we've dropped the mutex, it's possible that
2431 * dbuf_undirty() might have changed this out from under us.
2432 */
2433 if (list_head(&db->db_dirty_records) == dr ||
2434 dn->dn_object == DMU_META_DNODE_OBJECT) {
2435 mutex_enter(&di->dt.di.dr_mtx);
2436 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2437 ASSERT(!list_link_active(&dr->dr_dirty_node));
2438 list_insert_tail(&di->dt.di.dr_children, dr);
2439 mutex_exit(&di->dt.di.dr_mtx);
2440 dr->dr_parent = di;
2441 }
2442 mutex_exit(&db->db_mtx);
2443 } else {
2444 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2445 ASSERT(db->db_blkid < dn->dn_nblkptr);
2446 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2447 mutex_enter(&dn->dn_mtx);
2448 ASSERT(!list_link_active(&dr->dr_dirty_node));
2449 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2450 mutex_exit(&dn->dn_mtx);
2451 if (drop_struct_rwlock)
2452 rw_exit(&dn->dn_struct_rwlock);
2453 }
2454
2455 dnode_setdirty(dn, tx);
2456 DB_DNODE_EXIT(db);
2457 return (dr);
2458 }
2459
2460 static void
2461 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2462 {
2463 dmu_buf_impl_t *db = dr->dr_dbuf;
2464
2465 if (dr->dt.dl.dr_data != db->db.db_data) {
2466 struct dnode *dn = dr->dr_dnode;
2467 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2468
2469 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2470 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2471 }
2472 db->db_data_pending = NULL;
2473 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2474 list_remove(&db->db_dirty_records, dr);
2475 if (dr->dr_dbuf->db_level != 0) {
2476 mutex_destroy(&dr->dt.di.dr_mtx);
2477 list_destroy(&dr->dt.di.dr_children);
2478 }
2479 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2480 ASSERT3U(db->db_dirtycnt, >, 0);
2481 db->db_dirtycnt -= 1;
2482 }
2483
2484 /*
2485 * Undirty a buffer in the transaction group referenced by the given
2486 * transaction. Return whether this evicted the dbuf.
2487 */
2488 static boolean_t
2489 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2490 {
2491 uint64_t txg = tx->tx_txg;
2492
2493 ASSERT(txg != 0);
2494
2495 /*
2496 * Due to our use of dn_nlevels below, this can only be called
2497 * in open context, unless we are operating on the MOS.
2498 * From syncing context, dn_nlevels may be different from the
2499 * dn_nlevels used when dbuf was dirtied.
2500 */
2501 ASSERT(db->db_objset ==
2502 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2503 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2504 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2505 ASSERT0(db->db_level);
2506 ASSERT(MUTEX_HELD(&db->db_mtx));
2507
2508 /*
2509 * If this buffer is not dirty, we're done.
2510 */
2511 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2512 if (dr == NULL)
2513 return (B_FALSE);
2514 ASSERT(dr->dr_dbuf == db);
2515
2516 dnode_t *dn = dr->dr_dnode;
2517
2518 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2519
2520 ASSERT(db->db.db_size != 0);
2521
2522 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2523 dr->dr_accounted, txg);
2524
2525 list_remove(&db->db_dirty_records, dr);
2526
2527 /*
2528 * Note that there are three places in dbuf_dirty()
2529 * where this dirty record may be put on a list.
2530 * Make sure to do a list_remove corresponding to
2531 * every one of those list_insert calls.
2532 */
2533 if (dr->dr_parent) {
2534 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2535 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2536 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2537 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2538 db->db_level + 1 == dn->dn_nlevels) {
2539 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2540 mutex_enter(&dn->dn_mtx);
2541 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2542 mutex_exit(&dn->dn_mtx);
2543 }
2544
2545 if (db->db_state != DB_NOFILL) {
2546 dbuf_unoverride(dr);
2547
2548 ASSERT(db->db_buf != NULL);
2549 ASSERT(dr->dt.dl.dr_data != NULL);
2550 if (dr->dt.dl.dr_data != db->db_buf)
2551 arc_buf_destroy(dr->dt.dl.dr_data, db);
2552 }
2553
2554 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2555
2556 ASSERT(db->db_dirtycnt > 0);
2557 db->db_dirtycnt -= 1;
2558
2559 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2560 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2561 dbuf_destroy(db);
2562 return (B_TRUE);
2563 }
2564
2565 return (B_FALSE);
2566 }
2567
2568 static void
2569 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2570 {
2571 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2572
2573 ASSERT(tx->tx_txg != 0);
2574 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2575
2576 /*
2577 * Quick check for dirtiness. For already dirty blocks, this
2578 * reduces runtime of this function by >90%, and overall performance
2579 * by 50% for some workloads (e.g. file deletion with indirect blocks
2580 * cached).
2581 */
2582 mutex_enter(&db->db_mtx);
2583
2584 if (db->db_state == DB_CACHED) {
2585 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2586 /*
2587 * It's possible that it is already dirty but not cached,
2588 * because there are some calls to dbuf_dirty() that don't
2589 * go through dmu_buf_will_dirty().
2590 */
2591 if (dr != NULL) {
2592 /* This dbuf is already dirty and cached. */
2593 dbuf_redirty(dr);
2594 mutex_exit(&db->db_mtx);
2595 return;
2596 }
2597 }
2598 mutex_exit(&db->db_mtx);
2599
2600 DB_DNODE_ENTER(db);
2601 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2602 flags |= DB_RF_HAVESTRUCT;
2603 DB_DNODE_EXIT(db);
2604 (void) dbuf_read(db, NULL, flags);
2605 (void) dbuf_dirty(db, tx);
2606 }
2607
2608 void
2609 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2610 {
2611 dmu_buf_will_dirty_impl(db_fake,
2612 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2613 }
2614
2615 boolean_t
2616 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2617 {
2618 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2619 dbuf_dirty_record_t *dr;
2620
2621 mutex_enter(&db->db_mtx);
2622 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2623 mutex_exit(&db->db_mtx);
2624 return (dr != NULL);
2625 }
2626
2627 void
2628 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2629 {
2630 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2631
2632 db->db_state = DB_NOFILL;
2633 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2634 dmu_buf_will_fill(db_fake, tx);
2635 }
2636
2637 void
2638 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2639 {
2640 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2641
2642 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2643 ASSERT(tx->tx_txg != 0);
2644 ASSERT(db->db_level == 0);
2645 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2646
2647 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2648 dmu_tx_private_ok(tx));
2649
2650 dbuf_noread(db);
2651 (void) dbuf_dirty(db, tx);
2652 }
2653
2654 /*
2655 * This function is effectively the same as dmu_buf_will_dirty(), but
2656 * indicates the caller expects raw encrypted data in the db, and provides
2657 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2658 * blkptr_t when this dbuf is written. This is only used for blocks of
2659 * dnodes, during raw receive.
2660 */
2661 void
2662 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2663 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2664 {
2665 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2666 dbuf_dirty_record_t *dr;
2667
2668 /*
2669 * dr_has_raw_params is only processed for blocks of dnodes
2670 * (see dbuf_sync_dnode_leaf_crypt()).
2671 */
2672 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2673 ASSERT3U(db->db_level, ==, 0);
2674 ASSERT(db->db_objset->os_raw_receive);
2675
2676 dmu_buf_will_dirty_impl(db_fake,
2677 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2678
2679 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2680
2681 ASSERT3P(dr, !=, NULL);
2682
2683 dr->dt.dl.dr_has_raw_params = B_TRUE;
2684 dr->dt.dl.dr_byteorder = byteorder;
2685 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2686 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2687 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2688 }
2689
2690 static void
2691 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2692 {
2693 struct dirty_leaf *dl;
2694 dbuf_dirty_record_t *dr;
2695
2696 dr = list_head(&db->db_dirty_records);
2697 ASSERT3P(dr, !=, NULL);
2698 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2699 dl = &dr->dt.dl;
2700 dl->dr_overridden_by = *bp;
2701 dl->dr_override_state = DR_OVERRIDDEN;
2702 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2703 }
2704
2705 void
2706 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2707 {
2708 (void) tx;
2709 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2710 dbuf_states_t old_state;
2711 mutex_enter(&db->db_mtx);
2712 DBUF_VERIFY(db);
2713
2714 old_state = db->db_state;
2715 db->db_state = DB_CACHED;
2716 if (old_state == DB_FILL) {
2717 if (db->db_level == 0 && db->db_freed_in_flight) {
2718 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2719 /* we were freed while filling */
2720 /* XXX dbuf_undirty? */
2721 memset(db->db.db_data, 0, db->db.db_size);
2722 db->db_freed_in_flight = FALSE;
2723 DTRACE_SET_STATE(db,
2724 "fill done handling freed in flight");
2725 } else {
2726 DTRACE_SET_STATE(db, "fill done");
2727 }
2728 cv_broadcast(&db->db_changed);
2729 }
2730 mutex_exit(&db->db_mtx);
2731 }
2732
2733 void
2734 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2735 bp_embedded_type_t etype, enum zio_compress comp,
2736 int uncompressed_size, int compressed_size, int byteorder,
2737 dmu_tx_t *tx)
2738 {
2739 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2740 struct dirty_leaf *dl;
2741 dmu_object_type_t type;
2742 dbuf_dirty_record_t *dr;
2743
2744 if (etype == BP_EMBEDDED_TYPE_DATA) {
2745 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2746 SPA_FEATURE_EMBEDDED_DATA));
2747 }
2748
2749 DB_DNODE_ENTER(db);
2750 type = DB_DNODE(db)->dn_type;
2751 DB_DNODE_EXIT(db);
2752
2753 ASSERT0(db->db_level);
2754 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2755
2756 dmu_buf_will_not_fill(dbuf, tx);
2757
2758 dr = list_head(&db->db_dirty_records);
2759 ASSERT3P(dr, !=, NULL);
2760 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2761 dl = &dr->dt.dl;
2762 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2763 data, comp, uncompressed_size, compressed_size);
2764 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2765 BP_SET_TYPE(&dl->dr_overridden_by, type);
2766 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2767 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2768
2769 dl->dr_override_state = DR_OVERRIDDEN;
2770 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2771 }
2772
2773 void
2774 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2775 {
2776 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2777 dmu_object_type_t type;
2778 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2779 SPA_FEATURE_REDACTED_DATASETS));
2780
2781 DB_DNODE_ENTER(db);
2782 type = DB_DNODE(db)->dn_type;
2783 DB_DNODE_EXIT(db);
2784
2785 ASSERT0(db->db_level);
2786 dmu_buf_will_not_fill(dbuf, tx);
2787
2788 blkptr_t bp = { { { {0} } } };
2789 BP_SET_TYPE(&bp, type);
2790 BP_SET_LEVEL(&bp, 0);
2791 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2792 BP_SET_REDACTED(&bp);
2793 BPE_SET_LSIZE(&bp, dbuf->db_size);
2794
2795 dbuf_override_impl(db, &bp, tx);
2796 }
2797
2798 /*
2799 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2800 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2801 */
2802 void
2803 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2804 {
2805 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2806 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2807 ASSERT(db->db_level == 0);
2808 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2809 ASSERT(buf != NULL);
2810 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2811 ASSERT(tx->tx_txg != 0);
2812
2813 arc_return_buf(buf, db);
2814 ASSERT(arc_released(buf));
2815
2816 mutex_enter(&db->db_mtx);
2817
2818 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2819 cv_wait(&db->db_changed, &db->db_mtx);
2820
2821 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2822
2823 if (db->db_state == DB_CACHED &&
2824 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2825 /*
2826 * In practice, we will never have a case where we have an
2827 * encrypted arc buffer while additional holds exist on the
2828 * dbuf. We don't handle this here so we simply assert that
2829 * fact instead.
2830 */
2831 ASSERT(!arc_is_encrypted(buf));
2832 mutex_exit(&db->db_mtx);
2833 (void) dbuf_dirty(db, tx);
2834 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2835 arc_buf_destroy(buf, db);
2836 return;
2837 }
2838
2839 if (db->db_state == DB_CACHED) {
2840 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2841
2842 ASSERT(db->db_buf != NULL);
2843 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2844 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2845
2846 if (!arc_released(db->db_buf)) {
2847 ASSERT(dr->dt.dl.dr_override_state ==
2848 DR_OVERRIDDEN);
2849 arc_release(db->db_buf, db);
2850 }
2851 dr->dt.dl.dr_data = buf;
2852 arc_buf_destroy(db->db_buf, db);
2853 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2854 arc_release(db->db_buf, db);
2855 arc_buf_destroy(db->db_buf, db);
2856 }
2857 db->db_buf = NULL;
2858 }
2859 ASSERT(db->db_buf == NULL);
2860 dbuf_set_data(db, buf);
2861 db->db_state = DB_FILL;
2862 DTRACE_SET_STATE(db, "filling assigned arcbuf");
2863 mutex_exit(&db->db_mtx);
2864 (void) dbuf_dirty(db, tx);
2865 dmu_buf_fill_done(&db->db, tx);
2866 }
2867
2868 void
2869 dbuf_destroy(dmu_buf_impl_t *db)
2870 {
2871 dnode_t *dn;
2872 dmu_buf_impl_t *parent = db->db_parent;
2873 dmu_buf_impl_t *dndb;
2874
2875 ASSERT(MUTEX_HELD(&db->db_mtx));
2876 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2877
2878 if (db->db_buf != NULL) {
2879 arc_buf_destroy(db->db_buf, db);
2880 db->db_buf = NULL;
2881 }
2882
2883 if (db->db_blkid == DMU_BONUS_BLKID) {
2884 int slots = DB_DNODE(db)->dn_num_slots;
2885 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2886 if (db->db.db_data != NULL) {
2887 kmem_free(db->db.db_data, bonuslen);
2888 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2889 db->db_state = DB_UNCACHED;
2890 DTRACE_SET_STATE(db, "buffer cleared");
2891 }
2892 }
2893
2894 dbuf_clear_data(db);
2895
2896 if (multilist_link_active(&db->db_cache_link)) {
2897 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2898 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2899
2900 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
2901 (void) zfs_refcount_remove_many(
2902 &dbuf_caches[db->db_caching_status].size,
2903 db->db.db_size, db);
2904
2905 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2906 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2907 } else {
2908 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2909 DBUF_STAT_BUMPDOWN(cache_count);
2910 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2911 db->db.db_size);
2912 }
2913 db->db_caching_status = DB_NO_CACHE;
2914 }
2915
2916 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2917 ASSERT(db->db_data_pending == NULL);
2918 ASSERT(list_is_empty(&db->db_dirty_records));
2919
2920 db->db_state = DB_EVICTING;
2921 DTRACE_SET_STATE(db, "buffer eviction started");
2922 db->db_blkptr = NULL;
2923
2924 /*
2925 * Now that db_state is DB_EVICTING, nobody else can find this via
2926 * the hash table. We can now drop db_mtx, which allows us to
2927 * acquire the dn_dbufs_mtx.
2928 */
2929 mutex_exit(&db->db_mtx);
2930
2931 DB_DNODE_ENTER(db);
2932 dn = DB_DNODE(db);
2933 dndb = dn->dn_dbuf;
2934 if (db->db_blkid != DMU_BONUS_BLKID) {
2935 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2936 if (needlock)
2937 mutex_enter_nested(&dn->dn_dbufs_mtx,
2938 NESTED_SINGLE);
2939 avl_remove(&dn->dn_dbufs, db);
2940 membar_producer();
2941 DB_DNODE_EXIT(db);
2942 if (needlock)
2943 mutex_exit(&dn->dn_dbufs_mtx);
2944 /*
2945 * Decrementing the dbuf count means that the hold corresponding
2946 * to the removed dbuf is no longer discounted in dnode_move(),
2947 * so the dnode cannot be moved until after we release the hold.
2948 * The membar_producer() ensures visibility of the decremented
2949 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2950 * release any lock.
2951 */
2952 mutex_enter(&dn->dn_mtx);
2953 dnode_rele_and_unlock(dn, db, B_TRUE);
2954 db->db_dnode_handle = NULL;
2955
2956 dbuf_hash_remove(db);
2957 } else {
2958 DB_DNODE_EXIT(db);
2959 }
2960
2961 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2962
2963 db->db_parent = NULL;
2964
2965 ASSERT(db->db_buf == NULL);
2966 ASSERT(db->db.db_data == NULL);
2967 ASSERT(db->db_hash_next == NULL);
2968 ASSERT(db->db_blkptr == NULL);
2969 ASSERT(db->db_data_pending == NULL);
2970 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2971 ASSERT(!multilist_link_active(&db->db_cache_link));
2972
2973 /*
2974 * If this dbuf is referenced from an indirect dbuf,
2975 * decrement the ref count on the indirect dbuf.
2976 */
2977 if (parent && parent != dndb) {
2978 mutex_enter(&parent->db_mtx);
2979 dbuf_rele_and_unlock(parent, db, B_TRUE);
2980 }
2981
2982 kmem_cache_free(dbuf_kmem_cache, db);
2983 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2984 }
2985
2986 /*
2987 * Note: While bpp will always be updated if the function returns success,
2988 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2989 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2990 * object.
2991 */
2992 __attribute__((always_inline))
2993 static inline int
2994 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2995 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2996 {
2997 *parentp = NULL;
2998 *bpp = NULL;
2999
3000 ASSERT(blkid != DMU_BONUS_BLKID);
3001
3002 if (blkid == DMU_SPILL_BLKID) {
3003 mutex_enter(&dn->dn_mtx);
3004 if (dn->dn_have_spill &&
3005 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3006 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3007 else
3008 *bpp = NULL;
3009 dbuf_add_ref(dn->dn_dbuf, NULL);
3010 *parentp = dn->dn_dbuf;
3011 mutex_exit(&dn->dn_mtx);
3012 return (0);
3013 }
3014
3015 int nlevels =
3016 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3017 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3018
3019 ASSERT3U(level * epbs, <, 64);
3020 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3021 /*
3022 * This assertion shouldn't trip as long as the max indirect block size
3023 * is less than 1M. The reason for this is that up to that point,
3024 * the number of levels required to address an entire object with blocks
3025 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3026 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3027 * (i.e. we can address the entire object), objects will all use at most
3028 * N-1 levels and the assertion won't overflow. However, once epbs is
3029 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3030 * enough to address an entire object, so objects will have 5 levels,
3031 * but then this assertion will overflow.
3032 *
3033 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3034 * need to redo this logic to handle overflows.
3035 */
3036 ASSERT(level >= nlevels ||
3037 ((nlevels - level - 1) * epbs) +
3038 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3039 if (level >= nlevels ||
3040 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3041 ((nlevels - level - 1) * epbs)) ||
3042 (fail_sparse &&
3043 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3044 /* the buffer has no parent yet */
3045 return (SET_ERROR(ENOENT));
3046 } else if (level < nlevels-1) {
3047 /* this block is referenced from an indirect block */
3048 int err;
3049
3050 err = dbuf_hold_impl(dn, level + 1,
3051 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3052
3053 if (err)
3054 return (err);
3055 err = dbuf_read(*parentp, NULL,
3056 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3057 if (err) {
3058 dbuf_rele(*parentp, NULL);
3059 *parentp = NULL;
3060 return (err);
3061 }
3062 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3063 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3064 (blkid & ((1ULL << epbs) - 1));
3065 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3066 ASSERT(BP_IS_HOLE(*bpp));
3067 rw_exit(&(*parentp)->db_rwlock);
3068 return (0);
3069 } else {
3070 /* the block is referenced from the dnode */
3071 ASSERT3U(level, ==, nlevels-1);
3072 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3073 blkid < dn->dn_phys->dn_nblkptr);
3074 if (dn->dn_dbuf) {
3075 dbuf_add_ref(dn->dn_dbuf, NULL);
3076 *parentp = dn->dn_dbuf;
3077 }
3078 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3079 return (0);
3080 }
3081 }
3082
3083 static dmu_buf_impl_t *
3084 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3085 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3086 {
3087 objset_t *os = dn->dn_objset;
3088 dmu_buf_impl_t *db, *odb;
3089
3090 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3091 ASSERT(dn->dn_type != DMU_OT_NONE);
3092
3093 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3094
3095 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3096 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3097
3098 db->db_objset = os;
3099 db->db.db_object = dn->dn_object;
3100 db->db_level = level;
3101 db->db_blkid = blkid;
3102 db->db_dirtycnt = 0;
3103 db->db_dnode_handle = dn->dn_handle;
3104 db->db_parent = parent;
3105 db->db_blkptr = blkptr;
3106 db->db_hash = hash;
3107
3108 db->db_user = NULL;
3109 db->db_user_immediate_evict = FALSE;
3110 db->db_freed_in_flight = FALSE;
3111 db->db_pending_evict = FALSE;
3112
3113 if (blkid == DMU_BONUS_BLKID) {
3114 ASSERT3P(parent, ==, dn->dn_dbuf);
3115 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3116 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3117 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3118 db->db.db_offset = DMU_BONUS_BLKID;
3119 db->db_state = DB_UNCACHED;
3120 DTRACE_SET_STATE(db, "bonus buffer created");
3121 db->db_caching_status = DB_NO_CACHE;
3122 /* the bonus dbuf is not placed in the hash table */
3123 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3124 return (db);
3125 } else if (blkid == DMU_SPILL_BLKID) {
3126 db->db.db_size = (blkptr != NULL) ?
3127 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3128 db->db.db_offset = 0;
3129 } else {
3130 int blocksize =
3131 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3132 db->db.db_size = blocksize;
3133 db->db.db_offset = db->db_blkid * blocksize;
3134 }
3135
3136 /*
3137 * Hold the dn_dbufs_mtx while we get the new dbuf
3138 * in the hash table *and* added to the dbufs list.
3139 * This prevents a possible deadlock with someone
3140 * trying to look up this dbuf before it's added to the
3141 * dn_dbufs list.
3142 */
3143 mutex_enter(&dn->dn_dbufs_mtx);
3144 db->db_state = DB_EVICTING; /* not worth logging this state change */
3145 if ((odb = dbuf_hash_insert(db)) != NULL) {
3146 /* someone else inserted it first */
3147 mutex_exit(&dn->dn_dbufs_mtx);
3148 kmem_cache_free(dbuf_kmem_cache, db);
3149 DBUF_STAT_BUMP(hash_insert_race);
3150 return (odb);
3151 }
3152 avl_add(&dn->dn_dbufs, db);
3153
3154 db->db_state = DB_UNCACHED;
3155 DTRACE_SET_STATE(db, "regular buffer created");
3156 db->db_caching_status = DB_NO_CACHE;
3157 mutex_exit(&dn->dn_dbufs_mtx);
3158 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3159
3160 if (parent && parent != dn->dn_dbuf)
3161 dbuf_add_ref(parent, db);
3162
3163 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3164 zfs_refcount_count(&dn->dn_holds) > 0);
3165 (void) zfs_refcount_add(&dn->dn_holds, db);
3166
3167 dprintf_dbuf(db, "db=%p\n", db);
3168
3169 return (db);
3170 }
3171
3172 /*
3173 * This function returns a block pointer and information about the object,
3174 * given a dnode and a block. This is a publicly accessible version of
3175 * dbuf_findbp that only returns some information, rather than the
3176 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3177 * should be locked as (at least) a reader.
3178 */
3179 int
3180 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3181 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3182 {
3183 dmu_buf_impl_t *dbp = NULL;
3184 blkptr_t *bp2;
3185 int err = 0;
3186 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3187
3188 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3189 if (err == 0) {
3190 *bp = *bp2;
3191 if (dbp != NULL)
3192 dbuf_rele(dbp, NULL);
3193 if (datablkszsec != NULL)
3194 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3195 if (indblkshift != NULL)
3196 *indblkshift = dn->dn_phys->dn_indblkshift;
3197 }
3198
3199 return (err);
3200 }
3201
3202 typedef struct dbuf_prefetch_arg {
3203 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3204 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3205 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3206 int dpa_curlevel; /* The current level that we're reading */
3207 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3208 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3209 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3210 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3211 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3212 void *dpa_arg; /* prefetch completion arg */
3213 } dbuf_prefetch_arg_t;
3214
3215 static void
3216 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3217 {
3218 if (dpa->dpa_cb != NULL) {
3219 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3220 dpa->dpa_zb.zb_blkid, io_done);
3221 }
3222 kmem_free(dpa, sizeof (*dpa));
3223 }
3224
3225 static void
3226 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3227 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3228 {
3229 (void) zio, (void) zb, (void) iobp;
3230 dbuf_prefetch_arg_t *dpa = private;
3231
3232 if (abuf != NULL)
3233 arc_buf_destroy(abuf, private);
3234
3235 dbuf_prefetch_fini(dpa, B_TRUE);
3236 }
3237
3238 /*
3239 * Actually issue the prefetch read for the block given.
3240 */
3241 static void
3242 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3243 {
3244 ASSERT(!BP_IS_REDACTED(bp) ||
3245 dsl_dataset_feature_is_active(
3246 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3247 SPA_FEATURE_REDACTED_DATASETS));
3248
3249 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3250 return (dbuf_prefetch_fini(dpa, B_FALSE));
3251
3252 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3253 arc_flags_t aflags =
3254 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3255 ARC_FLAG_NO_BUF;
3256
3257 /* dnodes are always read as raw and then converted later */
3258 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3259 dpa->dpa_curlevel == 0)
3260 zio_flags |= ZIO_FLAG_RAW;
3261
3262 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3263 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3264 ASSERT(dpa->dpa_zio != NULL);
3265 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3266 dbuf_issue_final_prefetch_done, dpa,
3267 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3268 }
3269
3270 /*
3271 * Called when an indirect block above our prefetch target is read in. This
3272 * will either read in the next indirect block down the tree or issue the actual
3273 * prefetch if the next block down is our target.
3274 */
3275 static void
3276 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3277 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3278 {
3279 (void) zb, (void) iobp;
3280 dbuf_prefetch_arg_t *dpa = private;
3281
3282 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3283 ASSERT3S(dpa->dpa_curlevel, >, 0);
3284
3285 if (abuf == NULL) {
3286 ASSERT(zio == NULL || zio->io_error != 0);
3287 dbuf_prefetch_fini(dpa, B_TRUE);
3288 return;
3289 }
3290 ASSERT(zio == NULL || zio->io_error == 0);
3291
3292 /*
3293 * The dpa_dnode is only valid if we are called with a NULL
3294 * zio. This indicates that the arc_read() returned without
3295 * first calling zio_read() to issue a physical read. Once
3296 * a physical read is made the dpa_dnode must be invalidated
3297 * as the locks guarding it may have been dropped. If the
3298 * dpa_dnode is still valid, then we want to add it to the dbuf
3299 * cache. To do so, we must hold the dbuf associated with the block
3300 * we just prefetched, read its contents so that we associate it
3301 * with an arc_buf_t, and then release it.
3302 */
3303 if (zio != NULL) {
3304 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3305 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3306 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3307 } else {
3308 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3309 }
3310 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3311
3312 dpa->dpa_dnode = NULL;
3313 } else if (dpa->dpa_dnode != NULL) {
3314 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3315 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3316 dpa->dpa_zb.zb_level));
3317 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3318 dpa->dpa_curlevel, curblkid, FTAG);
3319 if (db == NULL) {
3320 arc_buf_destroy(abuf, private);
3321 dbuf_prefetch_fini(dpa, B_TRUE);
3322 return;
3323 }
3324 (void) dbuf_read(db, NULL,
3325 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3326 dbuf_rele(db, FTAG);
3327 }
3328
3329 dpa->dpa_curlevel--;
3330 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3331 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3332 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3333 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3334
3335 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3336 dsl_dataset_feature_is_active(
3337 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3338 SPA_FEATURE_REDACTED_DATASETS)));
3339 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3340 arc_buf_destroy(abuf, private);
3341 dbuf_prefetch_fini(dpa, B_TRUE);
3342 return;
3343 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3344 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3345 dbuf_issue_final_prefetch(dpa, bp);
3346 } else {
3347 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3348 zbookmark_phys_t zb;
3349
3350 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3351 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3352 iter_aflags |= ARC_FLAG_L2CACHE;
3353
3354 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3355
3356 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3357 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3358
3359 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3360 bp, dbuf_prefetch_indirect_done, dpa,
3361 ZIO_PRIORITY_SYNC_READ,
3362 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3363 &iter_aflags, &zb);
3364 }
3365
3366 arc_buf_destroy(abuf, private);
3367 }
3368
3369 /*
3370 * Issue prefetch reads for the given block on the given level. If the indirect
3371 * blocks above that block are not in memory, we will read them in
3372 * asynchronously. As a result, this call never blocks waiting for a read to
3373 * complete. Note that the prefetch might fail if the dataset is encrypted and
3374 * the encryption key is unmapped before the IO completes.
3375 */
3376 int
3377 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3378 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3379 void *arg)
3380 {
3381 blkptr_t bp;
3382 int epbs, nlevels, curlevel;
3383 uint64_t curblkid;
3384
3385 ASSERT(blkid != DMU_BONUS_BLKID);
3386 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3387
3388 if (blkid > dn->dn_maxblkid)
3389 goto no_issue;
3390
3391 if (level == 0 && dnode_block_freed(dn, blkid))
3392 goto no_issue;
3393
3394 /*
3395 * This dnode hasn't been written to disk yet, so there's nothing to
3396 * prefetch.
3397 */
3398 nlevels = dn->dn_phys->dn_nlevels;
3399 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3400 goto no_issue;
3401
3402 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3403 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3404 goto no_issue;
3405
3406 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3407 level, blkid, NULL);
3408 if (db != NULL) {
3409 mutex_exit(&db->db_mtx);
3410 /*
3411 * This dbuf already exists. It is either CACHED, or
3412 * (we assume) about to be read or filled.
3413 */
3414 goto no_issue;
3415 }
3416
3417 /*
3418 * Find the closest ancestor (indirect block) of the target block
3419 * that is present in the cache. In this indirect block, we will
3420 * find the bp that is at curlevel, curblkid.
3421 */
3422 curlevel = level;
3423 curblkid = blkid;
3424 while (curlevel < nlevels - 1) {
3425 int parent_level = curlevel + 1;
3426 uint64_t parent_blkid = curblkid >> epbs;
3427 dmu_buf_impl_t *db;
3428
3429 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3430 FALSE, TRUE, FTAG, &db) == 0) {
3431 blkptr_t *bpp = db->db_buf->b_data;
3432 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3433 dbuf_rele(db, FTAG);
3434 break;
3435 }
3436
3437 curlevel = parent_level;
3438 curblkid = parent_blkid;
3439 }
3440
3441 if (curlevel == nlevels - 1) {
3442 /* No cached indirect blocks found. */
3443 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3444 bp = dn->dn_phys->dn_blkptr[curblkid];
3445 }
3446 ASSERT(!BP_IS_REDACTED(&bp) ||
3447 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3448 SPA_FEATURE_REDACTED_DATASETS));
3449 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3450 goto no_issue;
3451
3452 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3453
3454 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3455 ZIO_FLAG_CANFAIL);
3456
3457 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3458 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3459 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3460 dn->dn_object, level, blkid);
3461 dpa->dpa_curlevel = curlevel;
3462 dpa->dpa_prio = prio;
3463 dpa->dpa_aflags = aflags;
3464 dpa->dpa_spa = dn->dn_objset->os_spa;
3465 dpa->dpa_dnode = dn;
3466 dpa->dpa_epbs = epbs;
3467 dpa->dpa_zio = pio;
3468 dpa->dpa_cb = cb;
3469 dpa->dpa_arg = arg;
3470
3471 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3472 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3473 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3474 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3475
3476 /*
3477 * If we have the indirect just above us, no need to do the asynchronous
3478 * prefetch chain; we'll just run the last step ourselves. If we're at
3479 * a higher level, though, we want to issue the prefetches for all the
3480 * indirect blocks asynchronously, so we can go on with whatever we were
3481 * doing.
3482 */
3483 if (curlevel == level) {
3484 ASSERT3U(curblkid, ==, blkid);
3485 dbuf_issue_final_prefetch(dpa, &bp);
3486 } else {
3487 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3488 zbookmark_phys_t zb;
3489
3490 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3491 if (dnode_level_is_l2cacheable(&bp, dn, level))
3492 iter_aflags |= ARC_FLAG_L2CACHE;
3493
3494 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3495 dn->dn_object, curlevel, curblkid);
3496 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3497 &bp, dbuf_prefetch_indirect_done, dpa,
3498 ZIO_PRIORITY_SYNC_READ,
3499 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3500 &iter_aflags, &zb);
3501 }
3502 /*
3503 * We use pio here instead of dpa_zio since it's possible that
3504 * dpa may have already been freed.
3505 */
3506 zio_nowait(pio);
3507 return (1);
3508 no_issue:
3509 if (cb != NULL)
3510 cb(arg, level, blkid, B_FALSE);
3511 return (0);
3512 }
3513
3514 int
3515 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3516 arc_flags_t aflags)
3517 {
3518
3519 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3520 }
3521
3522 /*
3523 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3524 * the case of encrypted, compressed and uncompressed buffers by
3525 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3526 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3527 *
3528 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3529 */
3530 noinline static void
3531 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3532 {
3533 dbuf_dirty_record_t *dr = db->db_data_pending;
3534 arc_buf_t *data = dr->dt.dl.dr_data;
3535 enum zio_compress compress_type = arc_get_compression(data);
3536 uint8_t complevel = arc_get_complevel(data);
3537
3538 if (arc_is_encrypted(data)) {
3539 boolean_t byteorder;
3540 uint8_t salt[ZIO_DATA_SALT_LEN];
3541 uint8_t iv[ZIO_DATA_IV_LEN];
3542 uint8_t mac[ZIO_DATA_MAC_LEN];
3543
3544 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3545 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3546 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3547 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3548 compress_type, complevel));
3549 } else if (compress_type != ZIO_COMPRESS_OFF) {
3550 dbuf_set_data(db, arc_alloc_compressed_buf(
3551 dn->dn_objset->os_spa, db, arc_buf_size(data),
3552 arc_buf_lsize(data), compress_type, complevel));
3553 } else {
3554 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3555 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3556 }
3557
3558 rw_enter(&db->db_rwlock, RW_WRITER);
3559 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3560 rw_exit(&db->db_rwlock);
3561 }
3562
3563 /*
3564 * Returns with db_holds incremented, and db_mtx not held.
3565 * Note: dn_struct_rwlock must be held.
3566 */
3567 int
3568 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3569 boolean_t fail_sparse, boolean_t fail_uncached,
3570 const void *tag, dmu_buf_impl_t **dbp)
3571 {
3572 dmu_buf_impl_t *db, *parent = NULL;
3573 uint64_t hv;
3574
3575 /* If the pool has been created, verify the tx_sync_lock is not held */
3576 spa_t *spa = dn->dn_objset->os_spa;
3577 dsl_pool_t *dp = spa->spa_dsl_pool;
3578 if (dp != NULL) {
3579 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3580 }
3581
3582 ASSERT(blkid != DMU_BONUS_BLKID);
3583 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3584 ASSERT3U(dn->dn_nlevels, >, level);
3585
3586 *dbp = NULL;
3587
3588 /* dbuf_find() returns with db_mtx held */
3589 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3590
3591 if (db == NULL) {
3592 blkptr_t *bp = NULL;
3593 int err;
3594
3595 if (fail_uncached)
3596 return (SET_ERROR(ENOENT));
3597
3598 ASSERT3P(parent, ==, NULL);
3599 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3600 if (fail_sparse) {
3601 if (err == 0 && bp && BP_IS_HOLE(bp))
3602 err = SET_ERROR(ENOENT);
3603 if (err) {
3604 if (parent)
3605 dbuf_rele(parent, NULL);
3606 return (err);
3607 }
3608 }
3609 if (err && err != ENOENT)
3610 return (err);
3611 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3612 }
3613
3614 if (fail_uncached && db->db_state != DB_CACHED) {
3615 mutex_exit(&db->db_mtx);
3616 return (SET_ERROR(ENOENT));
3617 }
3618
3619 if (db->db_buf != NULL) {
3620 arc_buf_access(db->db_buf);
3621 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3622 }
3623
3624 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3625
3626 /*
3627 * If this buffer is currently syncing out, and we are
3628 * still referencing it from db_data, we need to make a copy
3629 * of it in case we decide we want to dirty it again in this txg.
3630 */
3631 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3632 dn->dn_object != DMU_META_DNODE_OBJECT &&
3633 db->db_state == DB_CACHED && db->db_data_pending) {
3634 dbuf_dirty_record_t *dr = db->db_data_pending;
3635 if (dr->dt.dl.dr_data == db->db_buf)
3636 dbuf_hold_copy(dn, db);
3637 }
3638
3639 if (multilist_link_active(&db->db_cache_link)) {
3640 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3641 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3642 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3643
3644 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3645 (void) zfs_refcount_remove_many(
3646 &dbuf_caches[db->db_caching_status].size,
3647 db->db.db_size, db);
3648
3649 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3650 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3651 } else {
3652 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3653 DBUF_STAT_BUMPDOWN(cache_count);
3654 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3655 db->db.db_size);
3656 }
3657 db->db_caching_status = DB_NO_CACHE;
3658 }
3659 (void) zfs_refcount_add(&db->db_holds, tag);
3660 DBUF_VERIFY(db);
3661 mutex_exit(&db->db_mtx);
3662
3663 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3664 if (parent)
3665 dbuf_rele(parent, NULL);
3666
3667 ASSERT3P(DB_DNODE(db), ==, dn);
3668 ASSERT3U(db->db_blkid, ==, blkid);
3669 ASSERT3U(db->db_level, ==, level);
3670 *dbp = db;
3671
3672 return (0);
3673 }
3674
3675 dmu_buf_impl_t *
3676 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3677 {
3678 return (dbuf_hold_level(dn, 0, blkid, tag));
3679 }
3680
3681 dmu_buf_impl_t *
3682 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3683 {
3684 dmu_buf_impl_t *db;
3685 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3686 return (err ? NULL : db);
3687 }
3688
3689 void
3690 dbuf_create_bonus(dnode_t *dn)
3691 {
3692 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3693
3694 ASSERT(dn->dn_bonus == NULL);
3695 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3696 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3697 }
3698
3699 int
3700 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3701 {
3702 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3703
3704 if (db->db_blkid != DMU_SPILL_BLKID)
3705 return (SET_ERROR(ENOTSUP));
3706 if (blksz == 0)
3707 blksz = SPA_MINBLOCKSIZE;
3708 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3709 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3710
3711 dbuf_new_size(db, blksz, tx);
3712
3713 return (0);
3714 }
3715
3716 void
3717 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3718 {
3719 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3720 }
3721
3722 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3723 void
3724 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3725 {
3726 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3727 VERIFY3S(holds, >, 1);
3728 }
3729
3730 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3731 boolean_t
3732 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3733 const void *tag)
3734 {
3735 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3736 dmu_buf_impl_t *found_db;
3737 boolean_t result = B_FALSE;
3738
3739 if (blkid == DMU_BONUS_BLKID)
3740 found_db = dbuf_find_bonus(os, obj);
3741 else
3742 found_db = dbuf_find(os, obj, 0, blkid, NULL);
3743
3744 if (found_db != NULL) {
3745 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3746 (void) zfs_refcount_add(&db->db_holds, tag);
3747 result = B_TRUE;
3748 }
3749 mutex_exit(&found_db->db_mtx);
3750 }
3751 return (result);
3752 }
3753
3754 /*
3755 * If you call dbuf_rele() you had better not be referencing the dnode handle
3756 * unless you have some other direct or indirect hold on the dnode. (An indirect
3757 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3758 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3759 * dnode's parent dbuf evicting its dnode handles.
3760 */
3761 void
3762 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3763 {
3764 mutex_enter(&db->db_mtx);
3765 dbuf_rele_and_unlock(db, tag, B_FALSE);
3766 }
3767
3768 void
3769 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3770 {
3771 dbuf_rele((dmu_buf_impl_t *)db, tag);
3772 }
3773
3774 /*
3775 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3776 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3777 * argument should be set if we are already in the dbuf-evicting code
3778 * path, in which case we don't want to recursively evict. This allows us to
3779 * avoid deeply nested stacks that would have a call flow similar to this:
3780 *
3781 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3782 * ^ |
3783 * | |
3784 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3785 *
3786 */
3787 void
3788 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3789 {
3790 int64_t holds;
3791 uint64_t size;
3792
3793 ASSERT(MUTEX_HELD(&db->db_mtx));
3794 DBUF_VERIFY(db);
3795
3796 /*
3797 * Remove the reference to the dbuf before removing its hold on the
3798 * dnode so we can guarantee in dnode_move() that a referenced bonus
3799 * buffer has a corresponding dnode hold.
3800 */
3801 holds = zfs_refcount_remove(&db->db_holds, tag);
3802 ASSERT(holds >= 0);
3803
3804 /*
3805 * We can't freeze indirects if there is a possibility that they
3806 * may be modified in the current syncing context.
3807 */
3808 if (db->db_buf != NULL &&
3809 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3810 arc_buf_freeze(db->db_buf);
3811 }
3812
3813 if (holds == db->db_dirtycnt &&
3814 db->db_level == 0 && db->db_user_immediate_evict)
3815 dbuf_evict_user(db);
3816
3817 if (holds == 0) {
3818 if (db->db_blkid == DMU_BONUS_BLKID) {
3819 dnode_t *dn;
3820 boolean_t evict_dbuf = db->db_pending_evict;
3821
3822 /*
3823 * If the dnode moves here, we cannot cross this
3824 * barrier until the move completes.
3825 */
3826 DB_DNODE_ENTER(db);
3827
3828 dn = DB_DNODE(db);
3829 atomic_dec_32(&dn->dn_dbufs_count);
3830
3831 /*
3832 * Decrementing the dbuf count means that the bonus
3833 * buffer's dnode hold is no longer discounted in
3834 * dnode_move(). The dnode cannot move until after
3835 * the dnode_rele() below.
3836 */
3837 DB_DNODE_EXIT(db);
3838
3839 /*
3840 * Do not reference db after its lock is dropped.
3841 * Another thread may evict it.
3842 */
3843 mutex_exit(&db->db_mtx);
3844
3845 if (evict_dbuf)
3846 dnode_evict_bonus(dn);
3847
3848 dnode_rele(dn, db);
3849 } else if (db->db_buf == NULL) {
3850 /*
3851 * This is a special case: we never associated this
3852 * dbuf with any data allocated from the ARC.
3853 */
3854 ASSERT(db->db_state == DB_UNCACHED ||
3855 db->db_state == DB_NOFILL);
3856 dbuf_destroy(db);
3857 } else if (arc_released(db->db_buf)) {
3858 /*
3859 * This dbuf has anonymous data associated with it.
3860 */
3861 dbuf_destroy(db);
3862 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
3863 db->db_pending_evict) {
3864 dbuf_destroy(db);
3865 } else if (!multilist_link_active(&db->db_cache_link)) {
3866 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3867
3868 dbuf_cached_state_t dcs =
3869 dbuf_include_in_metadata_cache(db) ?
3870 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3871 db->db_caching_status = dcs;
3872
3873 multilist_insert(&dbuf_caches[dcs].cache, db);
3874 uint64_t db_size = db->db.db_size;
3875 size = zfs_refcount_add_many(
3876 &dbuf_caches[dcs].size, db_size, db);
3877 uint8_t db_level = db->db_level;
3878 mutex_exit(&db->db_mtx);
3879
3880 if (dcs == DB_DBUF_METADATA_CACHE) {
3881 DBUF_STAT_BUMP(metadata_cache_count);
3882 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
3883 size);
3884 } else {
3885 DBUF_STAT_BUMP(cache_count);
3886 DBUF_STAT_MAX(cache_size_bytes_max, size);
3887 DBUF_STAT_BUMP(cache_levels[db_level]);
3888 DBUF_STAT_INCR(cache_levels_bytes[db_level],
3889 db_size);
3890 }
3891
3892 if (dcs == DB_DBUF_CACHE && !evicting)
3893 dbuf_evict_notify(size);
3894 }
3895 } else {
3896 mutex_exit(&db->db_mtx);
3897 }
3898
3899 }
3900
3901 #pragma weak dmu_buf_refcount = dbuf_refcount
3902 uint64_t
3903 dbuf_refcount(dmu_buf_impl_t *db)
3904 {
3905 return (zfs_refcount_count(&db->db_holds));
3906 }
3907
3908 uint64_t
3909 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3910 {
3911 uint64_t holds;
3912 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3913
3914 mutex_enter(&db->db_mtx);
3915 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3916 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3917 mutex_exit(&db->db_mtx);
3918
3919 return (holds);
3920 }
3921
3922 void *
3923 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3924 dmu_buf_user_t *new_user)
3925 {
3926 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3927
3928 mutex_enter(&db->db_mtx);
3929 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3930 if (db->db_user == old_user)
3931 db->db_user = new_user;
3932 else
3933 old_user = db->db_user;
3934 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3935 mutex_exit(&db->db_mtx);
3936
3937 return (old_user);
3938 }
3939
3940 void *
3941 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3942 {
3943 return (dmu_buf_replace_user(db_fake, NULL, user));
3944 }
3945
3946 void *
3947 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3948 {
3949 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3950
3951 db->db_user_immediate_evict = TRUE;
3952 return (dmu_buf_set_user(db_fake, user));
3953 }
3954
3955 void *
3956 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3957 {
3958 return (dmu_buf_replace_user(db_fake, user, NULL));
3959 }
3960
3961 void *
3962 dmu_buf_get_user(dmu_buf_t *db_fake)
3963 {
3964 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3965
3966 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3967 return (db->db_user);
3968 }
3969
3970 void
3971 dmu_buf_user_evict_wait(void)
3972 {
3973 taskq_wait(dbu_evict_taskq);
3974 }
3975
3976 blkptr_t *
3977 dmu_buf_get_blkptr(dmu_buf_t *db)
3978 {
3979 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3980 return (dbi->db_blkptr);
3981 }
3982
3983 objset_t *
3984 dmu_buf_get_objset(dmu_buf_t *db)
3985 {
3986 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3987 return (dbi->db_objset);
3988 }
3989
3990 dnode_t *
3991 dmu_buf_dnode_enter(dmu_buf_t *db)
3992 {
3993 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3994 DB_DNODE_ENTER(dbi);
3995 return (DB_DNODE(dbi));
3996 }
3997
3998 void
3999 dmu_buf_dnode_exit(dmu_buf_t *db)
4000 {
4001 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4002 DB_DNODE_EXIT(dbi);
4003 }
4004
4005 static void
4006 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4007 {
4008 /* ASSERT(dmu_tx_is_syncing(tx) */
4009 ASSERT(MUTEX_HELD(&db->db_mtx));
4010
4011 if (db->db_blkptr != NULL)
4012 return;
4013
4014 if (db->db_blkid == DMU_SPILL_BLKID) {
4015 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4016 BP_ZERO(db->db_blkptr);
4017 return;
4018 }
4019 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4020 /*
4021 * This buffer was allocated at a time when there was
4022 * no available blkptrs from the dnode, or it was
4023 * inappropriate to hook it in (i.e., nlevels mismatch).
4024 */
4025 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4026 ASSERT(db->db_parent == NULL);
4027 db->db_parent = dn->dn_dbuf;
4028 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4029 DBUF_VERIFY(db);
4030 } else {
4031 dmu_buf_impl_t *parent = db->db_parent;
4032 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4033
4034 ASSERT(dn->dn_phys->dn_nlevels > 1);
4035 if (parent == NULL) {
4036 mutex_exit(&db->db_mtx);
4037 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4038 parent = dbuf_hold_level(dn, db->db_level + 1,
4039 db->db_blkid >> epbs, db);
4040 rw_exit(&dn->dn_struct_rwlock);
4041 mutex_enter(&db->db_mtx);
4042 db->db_parent = parent;
4043 }
4044 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4045 (db->db_blkid & ((1ULL << epbs) - 1));
4046 DBUF_VERIFY(db);
4047 }
4048 }
4049
4050 static void
4051 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4052 {
4053 dmu_buf_impl_t *db = dr->dr_dbuf;
4054 void *data = dr->dt.dl.dr_data;
4055
4056 ASSERT0(db->db_level);
4057 ASSERT(MUTEX_HELD(&db->db_mtx));
4058 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4059 ASSERT(data != NULL);
4060
4061 dnode_t *dn = dr->dr_dnode;
4062 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4063 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4064 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4065
4066 dbuf_sync_leaf_verify_bonus_dnode(dr);
4067
4068 dbuf_undirty_bonus(dr);
4069 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4070 }
4071
4072 /*
4073 * When syncing out a blocks of dnodes, adjust the block to deal with
4074 * encryption. Normally, we make sure the block is decrypted before writing
4075 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4076 * from a raw receive. In this case, set the ARC buf's crypt params so
4077 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4078 */
4079 static void
4080 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4081 {
4082 int err;
4083 dmu_buf_impl_t *db = dr->dr_dbuf;
4084
4085 ASSERT(MUTEX_HELD(&db->db_mtx));
4086 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4087 ASSERT3U(db->db_level, ==, 0);
4088
4089 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4090 zbookmark_phys_t zb;
4091
4092 /*
4093 * Unfortunately, there is currently no mechanism for
4094 * syncing context to handle decryption errors. An error
4095 * here is only possible if an attacker maliciously
4096 * changed a dnode block and updated the associated
4097 * checksums going up the block tree.
4098 */
4099 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4100 db->db.db_object, db->db_level, db->db_blkid);
4101 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4102 &zb, B_TRUE);
4103 if (err)
4104 panic("Invalid dnode block MAC");
4105 } else if (dr->dt.dl.dr_has_raw_params) {
4106 (void) arc_release(dr->dt.dl.dr_data, db);
4107 arc_convert_to_raw(dr->dt.dl.dr_data,
4108 dmu_objset_id(db->db_objset),
4109 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4110 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4111 }
4112 }
4113
4114 /*
4115 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4116 * is critical the we not allow the compiler to inline this function in to
4117 * dbuf_sync_list() thereby drastically bloating the stack usage.
4118 */
4119 noinline static void
4120 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4121 {
4122 dmu_buf_impl_t *db = dr->dr_dbuf;
4123 dnode_t *dn = dr->dr_dnode;
4124
4125 ASSERT(dmu_tx_is_syncing(tx));
4126
4127 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4128
4129 mutex_enter(&db->db_mtx);
4130
4131 ASSERT(db->db_level > 0);
4132 DBUF_VERIFY(db);
4133
4134 /* Read the block if it hasn't been read yet. */
4135 if (db->db_buf == NULL) {
4136 mutex_exit(&db->db_mtx);
4137 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4138 mutex_enter(&db->db_mtx);
4139 }
4140 ASSERT3U(db->db_state, ==, DB_CACHED);
4141 ASSERT(db->db_buf != NULL);
4142
4143 /* Indirect block size must match what the dnode thinks it is. */
4144 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4145 dbuf_check_blkptr(dn, db);
4146
4147 /* Provide the pending dirty record to child dbufs */
4148 db->db_data_pending = dr;
4149
4150 mutex_exit(&db->db_mtx);
4151
4152 dbuf_write(dr, db->db_buf, tx);
4153
4154 zio_t *zio = dr->dr_zio;
4155 mutex_enter(&dr->dt.di.dr_mtx);
4156 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4157 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4158 mutex_exit(&dr->dt.di.dr_mtx);
4159 zio_nowait(zio);
4160 }
4161
4162 /*
4163 * Verify that the size of the data in our bonus buffer does not exceed
4164 * its recorded size.
4165 *
4166 * The purpose of this verification is to catch any cases in development
4167 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4168 * due to incorrect feature management, older pools expect to read more
4169 * data even though they didn't actually write it to begin with.
4170 *
4171 * For a example, this would catch an error in the feature logic where we
4172 * open an older pool and we expect to write the space map histogram of
4173 * a space map with size SPACE_MAP_SIZE_V0.
4174 */
4175 static void
4176 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4177 {
4178 #ifdef ZFS_DEBUG
4179 dnode_t *dn = dr->dr_dnode;
4180
4181 /*
4182 * Encrypted bonus buffers can have data past their bonuslen.
4183 * Skip the verification of these blocks.
4184 */
4185 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4186 return;
4187
4188 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4189 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4190 ASSERT3U(bonuslen, <=, maxbonuslen);
4191
4192 arc_buf_t *datap = dr->dt.dl.dr_data;
4193 char *datap_end = ((char *)datap) + bonuslen;
4194 char *datap_max = ((char *)datap) + maxbonuslen;
4195
4196 /* ensure that everything is zero after our data */
4197 for (; datap_end < datap_max; datap_end++)
4198 ASSERT(*datap_end == 0);
4199 #endif
4200 }
4201
4202 static blkptr_t *
4203 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4204 {
4205 /* This must be a lightweight dirty record. */
4206 ASSERT3P(dr->dr_dbuf, ==, NULL);
4207 dnode_t *dn = dr->dr_dnode;
4208
4209 if (dn->dn_phys->dn_nlevels == 1) {
4210 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4211 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4212 } else {
4213 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4214 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4215 VERIFY3U(parent_db->db_level, ==, 1);
4216 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4217 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4218 blkptr_t *bp = parent_db->db.db_data;
4219 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4220 }
4221 }
4222
4223 static void
4224 dbuf_lightweight_ready(zio_t *zio)
4225 {
4226 dbuf_dirty_record_t *dr = zio->io_private;
4227 blkptr_t *bp = zio->io_bp;
4228
4229 if (zio->io_error != 0)
4230 return;
4231
4232 dnode_t *dn = dr->dr_dnode;
4233
4234 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4235 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4236 int64_t delta = bp_get_dsize_sync(spa, bp) -
4237 bp_get_dsize_sync(spa, bp_orig);
4238 dnode_diduse_space(dn, delta);
4239
4240 uint64_t blkid = dr->dt.dll.dr_blkid;
4241 mutex_enter(&dn->dn_mtx);
4242 if (blkid > dn->dn_phys->dn_maxblkid) {
4243 ASSERT0(dn->dn_objset->os_raw_receive);
4244 dn->dn_phys->dn_maxblkid = blkid;
4245 }
4246 mutex_exit(&dn->dn_mtx);
4247
4248 if (!BP_IS_EMBEDDED(bp)) {
4249 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4250 BP_SET_FILL(bp, fill);
4251 }
4252
4253 dmu_buf_impl_t *parent_db;
4254 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4255 if (dr->dr_parent == NULL) {
4256 parent_db = dn->dn_dbuf;
4257 } else {
4258 parent_db = dr->dr_parent->dr_dbuf;
4259 }
4260 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4261 *bp_orig = *bp;
4262 rw_exit(&parent_db->db_rwlock);
4263 }
4264
4265 static void
4266 dbuf_lightweight_physdone(zio_t *zio)
4267 {
4268 dbuf_dirty_record_t *dr = zio->io_private;
4269 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4270 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4271
4272 /*
4273 * The callback will be called io_phys_children times. Retire one
4274 * portion of our dirty space each time we are called. Any rounding
4275 * error will be cleaned up by dbuf_lightweight_done().
4276 */
4277 int delta = dr->dr_accounted / zio->io_phys_children;
4278 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4279 }
4280
4281 static void
4282 dbuf_lightweight_done(zio_t *zio)
4283 {
4284 dbuf_dirty_record_t *dr = zio->io_private;
4285
4286 VERIFY0(zio->io_error);
4287
4288 objset_t *os = dr->dr_dnode->dn_objset;
4289 dmu_tx_t *tx = os->os_synctx;
4290
4291 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4292 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4293 } else {
4294 dsl_dataset_t *ds = os->os_dsl_dataset;
4295 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4296 dsl_dataset_block_born(ds, zio->io_bp, tx);
4297 }
4298
4299 /*
4300 * See comment in dbuf_write_done().
4301 */
4302 if (zio->io_phys_children == 0) {
4303 dsl_pool_undirty_space(dmu_objset_pool(os),
4304 dr->dr_accounted, zio->io_txg);
4305 } else {
4306 dsl_pool_undirty_space(dmu_objset_pool(os),
4307 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4308 }
4309
4310 abd_free(dr->dt.dll.dr_abd);
4311 kmem_free(dr, sizeof (*dr));
4312 }
4313
4314 noinline static void
4315 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4316 {
4317 dnode_t *dn = dr->dr_dnode;
4318 zio_t *pio;
4319 if (dn->dn_phys->dn_nlevels == 1) {
4320 pio = dn->dn_zio;
4321 } else {
4322 pio = dr->dr_parent->dr_zio;
4323 }
4324
4325 zbookmark_phys_t zb = {
4326 .zb_objset = dmu_objset_id(dn->dn_objset),
4327 .zb_object = dn->dn_object,
4328 .zb_level = 0,
4329 .zb_blkid = dr->dt.dll.dr_blkid,
4330 };
4331
4332 /*
4333 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4334 * will have the old BP in dbuf_lightweight_done().
4335 */
4336 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4337
4338 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4339 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4340 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4341 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4342 dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4343 ZIO_PRIORITY_ASYNC_WRITE,
4344 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4345
4346 zio_nowait(dr->dr_zio);
4347 }
4348
4349 /*
4350 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4351 * critical the we not allow the compiler to inline this function in to
4352 * dbuf_sync_list() thereby drastically bloating the stack usage.
4353 */
4354 noinline static void
4355 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4356 {
4357 arc_buf_t **datap = &dr->dt.dl.dr_data;
4358 dmu_buf_impl_t *db = dr->dr_dbuf;
4359 dnode_t *dn = dr->dr_dnode;
4360 objset_t *os;
4361 uint64_t txg = tx->tx_txg;
4362
4363 ASSERT(dmu_tx_is_syncing(tx));
4364
4365 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4366
4367 mutex_enter(&db->db_mtx);
4368 /*
4369 * To be synced, we must be dirtied. But we
4370 * might have been freed after the dirty.
4371 */
4372 if (db->db_state == DB_UNCACHED) {
4373 /* This buffer has been freed since it was dirtied */
4374 ASSERT(db->db.db_data == NULL);
4375 } else if (db->db_state == DB_FILL) {
4376 /* This buffer was freed and is now being re-filled */
4377 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4378 } else {
4379 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4380 }
4381 DBUF_VERIFY(db);
4382
4383 if (db->db_blkid == DMU_SPILL_BLKID) {
4384 mutex_enter(&dn->dn_mtx);
4385 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4386 /*
4387 * In the previous transaction group, the bonus buffer
4388 * was entirely used to store the attributes for the
4389 * dnode which overrode the dn_spill field. However,
4390 * when adding more attributes to the file a spill
4391 * block was required to hold the extra attributes.
4392 *
4393 * Make sure to clear the garbage left in the dn_spill
4394 * field from the previous attributes in the bonus
4395 * buffer. Otherwise, after writing out the spill
4396 * block to the new allocated dva, it will free
4397 * the old block pointed to by the invalid dn_spill.
4398 */
4399 db->db_blkptr = NULL;
4400 }
4401 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4402 mutex_exit(&dn->dn_mtx);
4403 }
4404
4405 /*
4406 * If this is a bonus buffer, simply copy the bonus data into the
4407 * dnode. It will be written out when the dnode is synced (and it
4408 * will be synced, since it must have been dirty for dbuf_sync to
4409 * be called).
4410 */
4411 if (db->db_blkid == DMU_BONUS_BLKID) {
4412 ASSERT(dr->dr_dbuf == db);
4413 dbuf_sync_bonus(dr, tx);
4414 return;
4415 }
4416
4417 os = dn->dn_objset;
4418
4419 /*
4420 * This function may have dropped the db_mtx lock allowing a dmu_sync
4421 * operation to sneak in. As a result, we need to ensure that we
4422 * don't check the dr_override_state until we have returned from
4423 * dbuf_check_blkptr.
4424 */
4425 dbuf_check_blkptr(dn, db);
4426
4427 /*
4428 * If this buffer is in the middle of an immediate write,
4429 * wait for the synchronous IO to complete.
4430 */
4431 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4432 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4433 cv_wait(&db->db_changed, &db->db_mtx);
4434 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4435 }
4436
4437 /*
4438 * If this is a dnode block, ensure it is appropriately encrypted
4439 * or decrypted, depending on what we are writing to it this txg.
4440 */
4441 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4442 dbuf_prepare_encrypted_dnode_leaf(dr);
4443
4444 if (db->db_state != DB_NOFILL &&
4445 dn->dn_object != DMU_META_DNODE_OBJECT &&
4446 zfs_refcount_count(&db->db_holds) > 1 &&
4447 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4448 *datap == db->db_buf) {
4449 /*
4450 * If this buffer is currently "in use" (i.e., there
4451 * are active holds and db_data still references it),
4452 * then make a copy before we start the write so that
4453 * any modifications from the open txg will not leak
4454 * into this write.
4455 *
4456 * NOTE: this copy does not need to be made for
4457 * objects only modified in the syncing context (e.g.
4458 * DNONE_DNODE blocks).
4459 */
4460 int psize = arc_buf_size(*datap);
4461 int lsize = arc_buf_lsize(*datap);
4462 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4463 enum zio_compress compress_type = arc_get_compression(*datap);
4464 uint8_t complevel = arc_get_complevel(*datap);
4465
4466 if (arc_is_encrypted(*datap)) {
4467 boolean_t byteorder;
4468 uint8_t salt[ZIO_DATA_SALT_LEN];
4469 uint8_t iv[ZIO_DATA_IV_LEN];
4470 uint8_t mac[ZIO_DATA_MAC_LEN];
4471
4472 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4473 *datap = arc_alloc_raw_buf(os->os_spa, db,
4474 dmu_objset_id(os), byteorder, salt, iv, mac,
4475 dn->dn_type, psize, lsize, compress_type,
4476 complevel);
4477 } else if (compress_type != ZIO_COMPRESS_OFF) {
4478 ASSERT3U(type, ==, ARC_BUFC_DATA);
4479 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4480 psize, lsize, compress_type, complevel);
4481 } else {
4482 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4483 }
4484 memcpy((*datap)->b_data, db->db.db_data, psize);
4485 }
4486 db->db_data_pending = dr;
4487
4488 mutex_exit(&db->db_mtx);
4489
4490 dbuf_write(dr, *datap, tx);
4491
4492 ASSERT(!list_link_active(&dr->dr_dirty_node));
4493 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4494 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4495 } else {
4496 zio_nowait(dr->dr_zio);
4497 }
4498 }
4499
4500 void
4501 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4502 {
4503 dbuf_dirty_record_t *dr;
4504
4505 while ((dr = list_head(list))) {
4506 if (dr->dr_zio != NULL) {
4507 /*
4508 * If we find an already initialized zio then we
4509 * are processing the meta-dnode, and we have finished.
4510 * The dbufs for all dnodes are put back on the list
4511 * during processing, so that we can zio_wait()
4512 * these IOs after initiating all child IOs.
4513 */
4514 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4515 DMU_META_DNODE_OBJECT);
4516 break;
4517 }
4518 list_remove(list, dr);
4519 if (dr->dr_dbuf == NULL) {
4520 dbuf_sync_lightweight(dr, tx);
4521 } else {
4522 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4523 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4524 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4525 }
4526 if (dr->dr_dbuf->db_level > 0)
4527 dbuf_sync_indirect(dr, tx);
4528 else
4529 dbuf_sync_leaf(dr, tx);
4530 }
4531 }
4532 }
4533
4534 static void
4535 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4536 {
4537 (void) buf;
4538 dmu_buf_impl_t *db = vdb;
4539 dnode_t *dn;
4540 blkptr_t *bp = zio->io_bp;
4541 blkptr_t *bp_orig = &zio->io_bp_orig;
4542 spa_t *spa = zio->io_spa;
4543 int64_t delta;
4544 uint64_t fill = 0;
4545 int i;
4546
4547 ASSERT3P(db->db_blkptr, !=, NULL);
4548 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4549
4550 DB_DNODE_ENTER(db);
4551 dn = DB_DNODE(db);
4552 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4553 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4554 zio->io_prev_space_delta = delta;
4555
4556 if (bp->blk_birth != 0) {
4557 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4558 BP_GET_TYPE(bp) == dn->dn_type) ||
4559 (db->db_blkid == DMU_SPILL_BLKID &&
4560 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4561 BP_IS_EMBEDDED(bp));
4562 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4563 }
4564
4565 mutex_enter(&db->db_mtx);
4566
4567 #ifdef ZFS_DEBUG
4568 if (db->db_blkid == DMU_SPILL_BLKID) {
4569 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4570 ASSERT(!(BP_IS_HOLE(bp)) &&
4571 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4572 }
4573 #endif
4574
4575 if (db->db_level == 0) {
4576 mutex_enter(&dn->dn_mtx);
4577 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4578 db->db_blkid != DMU_SPILL_BLKID) {
4579 ASSERT0(db->db_objset->os_raw_receive);
4580 dn->dn_phys->dn_maxblkid = db->db_blkid;
4581 }
4582 mutex_exit(&dn->dn_mtx);
4583
4584 if (dn->dn_type == DMU_OT_DNODE) {
4585 i = 0;
4586 while (i < db->db.db_size) {
4587 dnode_phys_t *dnp =
4588 (void *)(((char *)db->db.db_data) + i);
4589
4590 i += DNODE_MIN_SIZE;
4591 if (dnp->dn_type != DMU_OT_NONE) {
4592 fill++;
4593 i += dnp->dn_extra_slots *
4594 DNODE_MIN_SIZE;
4595 }
4596 }
4597 } else {
4598 if (BP_IS_HOLE(bp)) {
4599 fill = 0;
4600 } else {
4601 fill = 1;
4602 }
4603 }
4604 } else {
4605 blkptr_t *ibp = db->db.db_data;
4606 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4607 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4608 if (BP_IS_HOLE(ibp))
4609 continue;
4610 fill += BP_GET_FILL(ibp);
4611 }
4612 }
4613 DB_DNODE_EXIT(db);
4614
4615 if (!BP_IS_EMBEDDED(bp))
4616 BP_SET_FILL(bp, fill);
4617
4618 mutex_exit(&db->db_mtx);
4619
4620 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4621 *db->db_blkptr = *bp;
4622 dmu_buf_unlock_parent(db, dblt, FTAG);
4623 }
4624
4625 /*
4626 * This function gets called just prior to running through the compression
4627 * stage of the zio pipeline. If we're an indirect block comprised of only
4628 * holes, then we want this indirect to be compressed away to a hole. In
4629 * order to do that we must zero out any information about the holes that
4630 * this indirect points to prior to before we try to compress it.
4631 */
4632 static void
4633 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4634 {
4635 (void) zio, (void) buf;
4636 dmu_buf_impl_t *db = vdb;
4637 dnode_t *dn;
4638 blkptr_t *bp;
4639 unsigned int epbs, i;
4640
4641 ASSERT3U(db->db_level, >, 0);
4642 DB_DNODE_ENTER(db);
4643 dn = DB_DNODE(db);
4644 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4645 ASSERT3U(epbs, <, 31);
4646
4647 /* Determine if all our children are holes */
4648 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4649 if (!BP_IS_HOLE(bp))
4650 break;
4651 }
4652
4653 /*
4654 * If all the children are holes, then zero them all out so that
4655 * we may get compressed away.
4656 */
4657 if (i == 1ULL << epbs) {
4658 /*
4659 * We only found holes. Grab the rwlock to prevent
4660 * anybody from reading the blocks we're about to
4661 * zero out.
4662 */
4663 rw_enter(&db->db_rwlock, RW_WRITER);
4664 memset(db->db.db_data, 0, db->db.db_size);
4665 rw_exit(&db->db_rwlock);
4666 }
4667 DB_DNODE_EXIT(db);
4668 }
4669
4670 /*
4671 * The SPA will call this callback several times for each zio - once
4672 * for every physical child i/o (zio->io_phys_children times). This
4673 * allows the DMU to monitor the progress of each logical i/o. For example,
4674 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4675 * block. There may be a long delay before all copies/fragments are completed,
4676 * so this callback allows us to retire dirty space gradually, as the physical
4677 * i/os complete.
4678 */
4679 static void
4680 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4681 {
4682 (void) buf;
4683 dmu_buf_impl_t *db = arg;
4684 objset_t *os = db->db_objset;
4685 dsl_pool_t *dp = dmu_objset_pool(os);
4686 dbuf_dirty_record_t *dr;
4687 int delta = 0;
4688
4689 dr = db->db_data_pending;
4690 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4691
4692 /*
4693 * The callback will be called io_phys_children times. Retire one
4694 * portion of our dirty space each time we are called. Any rounding
4695 * error will be cleaned up by dbuf_write_done().
4696 */
4697 delta = dr->dr_accounted / zio->io_phys_children;
4698 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4699 }
4700
4701 static void
4702 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4703 {
4704 (void) buf;
4705 dmu_buf_impl_t *db = vdb;
4706 blkptr_t *bp_orig = &zio->io_bp_orig;
4707 blkptr_t *bp = db->db_blkptr;
4708 objset_t *os = db->db_objset;
4709 dmu_tx_t *tx = os->os_synctx;
4710
4711 ASSERT0(zio->io_error);
4712 ASSERT(db->db_blkptr == bp);
4713
4714 /*
4715 * For nopwrites and rewrites we ensure that the bp matches our
4716 * original and bypass all the accounting.
4717 */
4718 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4719 ASSERT(BP_EQUAL(bp, bp_orig));
4720 } else {
4721 dsl_dataset_t *ds = os->os_dsl_dataset;
4722 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4723 dsl_dataset_block_born(ds, bp, tx);
4724 }
4725
4726 mutex_enter(&db->db_mtx);
4727
4728 DBUF_VERIFY(db);
4729
4730 dbuf_dirty_record_t *dr = db->db_data_pending;
4731 dnode_t *dn = dr->dr_dnode;
4732 ASSERT(!list_link_active(&dr->dr_dirty_node));
4733 ASSERT(dr->dr_dbuf == db);
4734 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4735 list_remove(&db->db_dirty_records, dr);
4736
4737 #ifdef ZFS_DEBUG
4738 if (db->db_blkid == DMU_SPILL_BLKID) {
4739 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4740 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4741 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4742 }
4743 #endif
4744
4745 if (db->db_level == 0) {
4746 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4747 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4748 if (db->db_state != DB_NOFILL) {
4749 if (dr->dt.dl.dr_data != db->db_buf)
4750 arc_buf_destroy(dr->dt.dl.dr_data, db);
4751 }
4752 } else {
4753 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4754 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4755 if (!BP_IS_HOLE(db->db_blkptr)) {
4756 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4757 SPA_BLKPTRSHIFT;
4758 ASSERT3U(db->db_blkid, <=,
4759 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4760 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4761 db->db.db_size);
4762 }
4763 mutex_destroy(&dr->dt.di.dr_mtx);
4764 list_destroy(&dr->dt.di.dr_children);
4765 }
4766
4767 cv_broadcast(&db->db_changed);
4768 ASSERT(db->db_dirtycnt > 0);
4769 db->db_dirtycnt -= 1;
4770 db->db_data_pending = NULL;
4771 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4772
4773 /*
4774 * If we didn't do a physical write in this ZIO and we
4775 * still ended up here, it means that the space of the
4776 * dbuf that we just released (and undirtied) above hasn't
4777 * been marked as undirtied in the pool's accounting.
4778 *
4779 * Thus, we undirty that space in the pool's view of the
4780 * world here. For physical writes this type of update
4781 * happens in dbuf_write_physdone().
4782 *
4783 * If we did a physical write, cleanup any rounding errors
4784 * that came up due to writing multiple copies of a block
4785 * on disk [see dbuf_write_physdone()].
4786 */
4787 if (zio->io_phys_children == 0) {
4788 dsl_pool_undirty_space(dmu_objset_pool(os),
4789 dr->dr_accounted, zio->io_txg);
4790 } else {
4791 dsl_pool_undirty_space(dmu_objset_pool(os),
4792 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4793 }
4794
4795 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4796 }
4797
4798 static void
4799 dbuf_write_nofill_ready(zio_t *zio)
4800 {
4801 dbuf_write_ready(zio, NULL, zio->io_private);
4802 }
4803
4804 static void
4805 dbuf_write_nofill_done(zio_t *zio)
4806 {
4807 dbuf_write_done(zio, NULL, zio->io_private);
4808 }
4809
4810 static void
4811 dbuf_write_override_ready(zio_t *zio)
4812 {
4813 dbuf_dirty_record_t *dr = zio->io_private;
4814 dmu_buf_impl_t *db = dr->dr_dbuf;
4815
4816 dbuf_write_ready(zio, NULL, db);
4817 }
4818
4819 static void
4820 dbuf_write_override_done(zio_t *zio)
4821 {
4822 dbuf_dirty_record_t *dr = zio->io_private;
4823 dmu_buf_impl_t *db = dr->dr_dbuf;
4824 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4825
4826 mutex_enter(&db->db_mtx);
4827 if (!BP_EQUAL(zio->io_bp, obp)) {
4828 if (!BP_IS_HOLE(obp))
4829 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4830 arc_release(dr->dt.dl.dr_data, db);
4831 }
4832 mutex_exit(&db->db_mtx);
4833
4834 dbuf_write_done(zio, NULL, db);
4835
4836 if (zio->io_abd != NULL)
4837 abd_free(zio->io_abd);
4838 }
4839
4840 typedef struct dbuf_remap_impl_callback_arg {
4841 objset_t *drica_os;
4842 uint64_t drica_blk_birth;
4843 dmu_tx_t *drica_tx;
4844 } dbuf_remap_impl_callback_arg_t;
4845
4846 static void
4847 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4848 void *arg)
4849 {
4850 dbuf_remap_impl_callback_arg_t *drica = arg;
4851 objset_t *os = drica->drica_os;
4852 spa_t *spa = dmu_objset_spa(os);
4853 dmu_tx_t *tx = drica->drica_tx;
4854
4855 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4856
4857 if (os == spa_meta_objset(spa)) {
4858 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4859 } else {
4860 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4861 size, drica->drica_blk_birth, tx);
4862 }
4863 }
4864
4865 static void
4866 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4867 {
4868 blkptr_t bp_copy = *bp;
4869 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4870 dbuf_remap_impl_callback_arg_t drica;
4871
4872 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4873
4874 drica.drica_os = dn->dn_objset;
4875 drica.drica_blk_birth = bp->blk_birth;
4876 drica.drica_tx = tx;
4877 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4878 &drica)) {
4879 /*
4880 * If the blkptr being remapped is tracked by a livelist,
4881 * then we need to make sure the livelist reflects the update.
4882 * First, cancel out the old blkptr by appending a 'FREE'
4883 * entry. Next, add an 'ALLOC' to track the new version. This
4884 * way we avoid trying to free an inaccurate blkptr at delete.
4885 * Note that embedded blkptrs are not tracked in livelists.
4886 */
4887 if (dn->dn_objset != spa_meta_objset(spa)) {
4888 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4889 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4890 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4891 ASSERT(!BP_IS_EMBEDDED(bp));
4892 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4893 ASSERT(spa_feature_is_enabled(spa,
4894 SPA_FEATURE_LIVELIST));
4895 bplist_append(&ds->ds_dir->dd_pending_frees,
4896 bp);
4897 bplist_append(&ds->ds_dir->dd_pending_allocs,
4898 &bp_copy);
4899 }
4900 }
4901
4902 /*
4903 * The db_rwlock prevents dbuf_read_impl() from
4904 * dereferencing the BP while we are changing it. To
4905 * avoid lock contention, only grab it when we are actually
4906 * changing the BP.
4907 */
4908 if (rw != NULL)
4909 rw_enter(rw, RW_WRITER);
4910 *bp = bp_copy;
4911 if (rw != NULL)
4912 rw_exit(rw);
4913 }
4914 }
4915
4916 /*
4917 * Remap any existing BP's to concrete vdevs, if possible.
4918 */
4919 static void
4920 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4921 {
4922 spa_t *spa = dmu_objset_spa(db->db_objset);
4923 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4924
4925 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4926 return;
4927
4928 if (db->db_level > 0) {
4929 blkptr_t *bp = db->db.db_data;
4930 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4931 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4932 }
4933 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4934 dnode_phys_t *dnp = db->db.db_data;
4935 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4936 DMU_OT_DNODE);
4937 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4938 i += dnp[i].dn_extra_slots + 1) {
4939 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4940 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4941 &dn->dn_dbuf->db_rwlock);
4942 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4943 tx);
4944 }
4945 }
4946 }
4947 }
4948
4949
4950 /* Issue I/O to commit a dirty buffer to disk. */
4951 static void
4952 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4953 {
4954 dmu_buf_impl_t *db = dr->dr_dbuf;
4955 dnode_t *dn = dr->dr_dnode;
4956 objset_t *os;
4957 dmu_buf_impl_t *parent = db->db_parent;
4958 uint64_t txg = tx->tx_txg;
4959 zbookmark_phys_t zb;
4960 zio_prop_t zp;
4961 zio_t *pio; /* parent I/O */
4962 int wp_flag = 0;
4963
4964 ASSERT(dmu_tx_is_syncing(tx));
4965
4966 os = dn->dn_objset;
4967
4968 if (db->db_state != DB_NOFILL) {
4969 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4970 /*
4971 * Private object buffers are released here rather
4972 * than in dbuf_dirty() since they are only modified
4973 * in the syncing context and we don't want the
4974 * overhead of making multiple copies of the data.
4975 */
4976 if (BP_IS_HOLE(db->db_blkptr)) {
4977 arc_buf_thaw(data);
4978 } else {
4979 dbuf_release_bp(db);
4980 }
4981 dbuf_remap(dn, db, tx);
4982 }
4983 }
4984
4985 if (parent != dn->dn_dbuf) {
4986 /* Our parent is an indirect block. */
4987 /* We have a dirty parent that has been scheduled for write. */
4988 ASSERT(parent && parent->db_data_pending);
4989 /* Our parent's buffer is one level closer to the dnode. */
4990 ASSERT(db->db_level == parent->db_level-1);
4991 /*
4992 * We're about to modify our parent's db_data by modifying
4993 * our block pointer, so the parent must be released.
4994 */
4995 ASSERT(arc_released(parent->db_buf));
4996 pio = parent->db_data_pending->dr_zio;
4997 } else {
4998 /* Our parent is the dnode itself. */
4999 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5000 db->db_blkid != DMU_SPILL_BLKID) ||
5001 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5002 if (db->db_blkid != DMU_SPILL_BLKID)
5003 ASSERT3P(db->db_blkptr, ==,
5004 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5005 pio = dn->dn_zio;
5006 }
5007
5008 ASSERT(db->db_level == 0 || data == db->db_buf);
5009 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
5010 ASSERT(pio);
5011
5012 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5013 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5014 db->db.db_object, db->db_level, db->db_blkid);
5015
5016 if (db->db_blkid == DMU_SPILL_BLKID)
5017 wp_flag = WP_SPILL;
5018 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5019
5020 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5021
5022 /*
5023 * We copy the blkptr now (rather than when we instantiate the dirty
5024 * record), because its value can change between open context and
5025 * syncing context. We do not need to hold dn_struct_rwlock to read
5026 * db_blkptr because we are in syncing context.
5027 */
5028 dr->dr_bp_copy = *db->db_blkptr;
5029
5030 if (db->db_level == 0 &&
5031 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5032 /*
5033 * The BP for this block has been provided by open context
5034 * (by dmu_sync() or dmu_buf_write_embedded()).
5035 */
5036 abd_t *contents = (data != NULL) ?
5037 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5038
5039 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5040 contents, db->db.db_size, db->db.db_size, &zp,
5041 dbuf_write_override_ready, NULL, NULL,
5042 dbuf_write_override_done,
5043 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5044 mutex_enter(&db->db_mtx);
5045 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5046 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5047 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
5048 mutex_exit(&db->db_mtx);
5049 } else if (db->db_state == DB_NOFILL) {
5050 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5051 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5052 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5053 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5054 dbuf_write_nofill_ready, NULL, NULL,
5055 dbuf_write_nofill_done, db,
5056 ZIO_PRIORITY_ASYNC_WRITE,
5057 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5058 } else {
5059 ASSERT(arc_released(data));
5060
5061 /*
5062 * For indirect blocks, we want to setup the children
5063 * ready callback so that we can properly handle an indirect
5064 * block that only contains holes.
5065 */
5066 arc_write_done_func_t *children_ready_cb = NULL;
5067 if (db->db_level != 0)
5068 children_ready_cb = dbuf_write_children_ready;
5069
5070 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5071 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5072 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5073 children_ready_cb, dbuf_write_physdone,
5074 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5075 ZIO_FLAG_MUSTSUCCEED, &zb);
5076 }
5077 }
5078
5079 EXPORT_SYMBOL(dbuf_find);
5080 EXPORT_SYMBOL(dbuf_is_metadata);
5081 EXPORT_SYMBOL(dbuf_destroy);
5082 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5083 EXPORT_SYMBOL(dbuf_whichblock);
5084 EXPORT_SYMBOL(dbuf_read);
5085 EXPORT_SYMBOL(dbuf_unoverride);
5086 EXPORT_SYMBOL(dbuf_free_range);
5087 EXPORT_SYMBOL(dbuf_new_size);
5088 EXPORT_SYMBOL(dbuf_release_bp);
5089 EXPORT_SYMBOL(dbuf_dirty);
5090 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5091 EXPORT_SYMBOL(dmu_buf_will_dirty);
5092 EXPORT_SYMBOL(dmu_buf_is_dirty);
5093 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5094 EXPORT_SYMBOL(dmu_buf_will_fill);
5095 EXPORT_SYMBOL(dmu_buf_fill_done);
5096 EXPORT_SYMBOL(dmu_buf_rele);
5097 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5098 EXPORT_SYMBOL(dbuf_prefetch);
5099 EXPORT_SYMBOL(dbuf_hold_impl);
5100 EXPORT_SYMBOL(dbuf_hold);
5101 EXPORT_SYMBOL(dbuf_hold_level);
5102 EXPORT_SYMBOL(dbuf_create_bonus);
5103 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5104 EXPORT_SYMBOL(dbuf_rm_spill);
5105 EXPORT_SYMBOL(dbuf_add_ref);
5106 EXPORT_SYMBOL(dbuf_rele);
5107 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5108 EXPORT_SYMBOL(dbuf_refcount);
5109 EXPORT_SYMBOL(dbuf_sync_list);
5110 EXPORT_SYMBOL(dmu_buf_set_user);
5111 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5112 EXPORT_SYMBOL(dmu_buf_get_user);
5113 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5114
5115 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5116 "Maximum size in bytes of the dbuf cache.");
5117
5118 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5119 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5120
5121 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5122 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5123
5124 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5125 "Maximum size in bytes of dbuf metadata cache.");
5126
5127 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5128 "Set size of dbuf cache to log2 fraction of arc size.");
5129
5130 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5131 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5132
5133 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5134 "Set size of dbuf cache mutex array as log2 shift.");
Cache object: 3b694ba25ec08816b9fa2a6297f04a7d
|