1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32 */
33
34 #include <sys/dmu.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dmu_zfetch.h>
48 #include <sys/zfs_ioctl.h>
49 #include <sys/zap.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zio_compress.h>
52 #include <sys/sa.h>
53 #include <sys/zfeature.h>
54 #include <sys/abd.h>
55 #include <sys/trace_zfs.h>
56 #include <sys/zfs_racct.h>
57 #include <sys/zfs_rlock.h>
58 #ifdef _KERNEL
59 #include <sys/vmsystm.h>
60 #include <sys/zfs_znode.h>
61 #endif
62
63 /*
64 * Enable/disable nopwrite feature.
65 */
66 static int zfs_nopwrite_enabled = 1;
67
68 /*
69 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
70 * one TXG. After this threshold is crossed, additional dirty blocks from frees
71 * will wait until the next TXG.
72 * A value of zero will disable this throttle.
73 */
74 static uint_t zfs_per_txg_dirty_frees_percent = 30;
75
76 /*
77 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
78 * By default this is enabled to ensure accurate hole reporting, it can result
79 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
80 * Disabling this option will result in holes never being reported in dirty
81 * files which is always safe.
82 */
83 static int zfs_dmu_offset_next_sync = 1;
84
85 /*
86 * Limit the amount we can prefetch with one call to this amount. This
87 * helps to limit the amount of memory that can be used by prefetching.
88 * Larger objects should be prefetched a bit at a time.
89 */
90 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
91
92 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
93 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
94 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
95 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
96 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
97 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
98 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
99 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
100 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
101 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
102 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
103 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
104 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
105 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
106 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
107 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
108 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
109 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
110 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
111 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
112 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
113 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
114 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
115 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
116 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
117 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
118 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
119 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
121 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
122 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
123 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
125 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
126 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
127 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
128 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
129 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
130 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
131 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
134 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
136 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
137 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
140 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
141 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
142 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
143 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
144 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
145 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
146 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
147 };
148
149 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
150 { byteswap_uint8_array, "uint8" },
151 { byteswap_uint16_array, "uint16" },
152 { byteswap_uint32_array, "uint32" },
153 { byteswap_uint64_array, "uint64" },
154 { zap_byteswap, "zap" },
155 { dnode_buf_byteswap, "dnode" },
156 { dmu_objset_byteswap, "objset" },
157 { zfs_znode_byteswap, "znode" },
158 { zfs_oldacl_byteswap, "oldacl" },
159 { zfs_acl_byteswap, "acl" }
160 };
161
162 static int
163 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
164 const void *tag, dmu_buf_t **dbp)
165 {
166 uint64_t blkid;
167 dmu_buf_impl_t *db;
168
169 rw_enter(&dn->dn_struct_rwlock, RW_READER);
170 blkid = dbuf_whichblock(dn, 0, offset);
171 db = dbuf_hold(dn, blkid, tag);
172 rw_exit(&dn->dn_struct_rwlock);
173
174 if (db == NULL) {
175 *dbp = NULL;
176 return (SET_ERROR(EIO));
177 }
178
179 *dbp = &db->db;
180 return (0);
181 }
182 int
183 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
184 const void *tag, dmu_buf_t **dbp)
185 {
186 dnode_t *dn;
187 uint64_t blkid;
188 dmu_buf_impl_t *db;
189 int err;
190
191 err = dnode_hold(os, object, FTAG, &dn);
192 if (err)
193 return (err);
194 rw_enter(&dn->dn_struct_rwlock, RW_READER);
195 blkid = dbuf_whichblock(dn, 0, offset);
196 db = dbuf_hold(dn, blkid, tag);
197 rw_exit(&dn->dn_struct_rwlock);
198 dnode_rele(dn, FTAG);
199
200 if (db == NULL) {
201 *dbp = NULL;
202 return (SET_ERROR(EIO));
203 }
204
205 *dbp = &db->db;
206 return (err);
207 }
208
209 int
210 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
211 const void *tag, dmu_buf_t **dbp, int flags)
212 {
213 int err;
214 int db_flags = DB_RF_CANFAIL;
215
216 if (flags & DMU_READ_NO_PREFETCH)
217 db_flags |= DB_RF_NOPREFETCH;
218 if (flags & DMU_READ_NO_DECRYPT)
219 db_flags |= DB_RF_NO_DECRYPT;
220
221 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
222 if (err == 0) {
223 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
224 err = dbuf_read(db, NULL, db_flags);
225 if (err != 0) {
226 dbuf_rele(db, tag);
227 *dbp = NULL;
228 }
229 }
230
231 return (err);
232 }
233
234 int
235 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
236 const void *tag, dmu_buf_t **dbp, int flags)
237 {
238 int err;
239 int db_flags = DB_RF_CANFAIL;
240
241 if (flags & DMU_READ_NO_PREFETCH)
242 db_flags |= DB_RF_NOPREFETCH;
243 if (flags & DMU_READ_NO_DECRYPT)
244 db_flags |= DB_RF_NO_DECRYPT;
245
246 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
247 if (err == 0) {
248 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
249 err = dbuf_read(db, NULL, db_flags);
250 if (err != 0) {
251 dbuf_rele(db, tag);
252 *dbp = NULL;
253 }
254 }
255
256 return (err);
257 }
258
259 int
260 dmu_bonus_max(void)
261 {
262 return (DN_OLD_MAX_BONUSLEN);
263 }
264
265 int
266 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
267 {
268 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
269 dnode_t *dn;
270 int error;
271
272 DB_DNODE_ENTER(db);
273 dn = DB_DNODE(db);
274
275 if (dn->dn_bonus != db) {
276 error = SET_ERROR(EINVAL);
277 } else if (newsize < 0 || newsize > db_fake->db_size) {
278 error = SET_ERROR(EINVAL);
279 } else {
280 dnode_setbonuslen(dn, newsize, tx);
281 error = 0;
282 }
283
284 DB_DNODE_EXIT(db);
285 return (error);
286 }
287
288 int
289 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
290 {
291 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
292 dnode_t *dn;
293 int error;
294
295 DB_DNODE_ENTER(db);
296 dn = DB_DNODE(db);
297
298 if (!DMU_OT_IS_VALID(type)) {
299 error = SET_ERROR(EINVAL);
300 } else if (dn->dn_bonus != db) {
301 error = SET_ERROR(EINVAL);
302 } else {
303 dnode_setbonus_type(dn, type, tx);
304 error = 0;
305 }
306
307 DB_DNODE_EXIT(db);
308 return (error);
309 }
310
311 dmu_object_type_t
312 dmu_get_bonustype(dmu_buf_t *db_fake)
313 {
314 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
315 dnode_t *dn;
316 dmu_object_type_t type;
317
318 DB_DNODE_ENTER(db);
319 dn = DB_DNODE(db);
320 type = dn->dn_bonustype;
321 DB_DNODE_EXIT(db);
322
323 return (type);
324 }
325
326 int
327 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
328 {
329 dnode_t *dn;
330 int error;
331
332 error = dnode_hold(os, object, FTAG, &dn);
333 dbuf_rm_spill(dn, tx);
334 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
335 dnode_rm_spill(dn, tx);
336 rw_exit(&dn->dn_struct_rwlock);
337 dnode_rele(dn, FTAG);
338 return (error);
339 }
340
341 /*
342 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
343 * has not yet been allocated a new bonus dbuf a will be allocated.
344 * Returns ENOENT, EIO, or 0.
345 */
346 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
347 uint32_t flags)
348 {
349 dmu_buf_impl_t *db;
350 int error;
351 uint32_t db_flags = DB_RF_MUST_SUCCEED;
352
353 if (flags & DMU_READ_NO_PREFETCH)
354 db_flags |= DB_RF_NOPREFETCH;
355 if (flags & DMU_READ_NO_DECRYPT)
356 db_flags |= DB_RF_NO_DECRYPT;
357
358 rw_enter(&dn->dn_struct_rwlock, RW_READER);
359 if (dn->dn_bonus == NULL) {
360 rw_exit(&dn->dn_struct_rwlock);
361 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
362 if (dn->dn_bonus == NULL)
363 dbuf_create_bonus(dn);
364 }
365 db = dn->dn_bonus;
366
367 /* as long as the bonus buf is held, the dnode will be held */
368 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
369 VERIFY(dnode_add_ref(dn, db));
370 atomic_inc_32(&dn->dn_dbufs_count);
371 }
372
373 /*
374 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
375 * hold and incrementing the dbuf count to ensure that dnode_move() sees
376 * a dnode hold for every dbuf.
377 */
378 rw_exit(&dn->dn_struct_rwlock);
379
380 error = dbuf_read(db, NULL, db_flags);
381 if (error) {
382 dnode_evict_bonus(dn);
383 dbuf_rele(db, tag);
384 *dbp = NULL;
385 return (error);
386 }
387
388 *dbp = &db->db;
389 return (0);
390 }
391
392 int
393 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
394 {
395 dnode_t *dn;
396 int error;
397
398 error = dnode_hold(os, object, FTAG, &dn);
399 if (error)
400 return (error);
401
402 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
403 dnode_rele(dn, FTAG);
404
405 return (error);
406 }
407
408 /*
409 * returns ENOENT, EIO, or 0.
410 *
411 * This interface will allocate a blank spill dbuf when a spill blk
412 * doesn't already exist on the dnode.
413 *
414 * if you only want to find an already existing spill db, then
415 * dmu_spill_hold_existing() should be used.
416 */
417 int
418 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
419 dmu_buf_t **dbp)
420 {
421 dmu_buf_impl_t *db = NULL;
422 int err;
423
424 if ((flags & DB_RF_HAVESTRUCT) == 0)
425 rw_enter(&dn->dn_struct_rwlock, RW_READER);
426
427 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
428
429 if ((flags & DB_RF_HAVESTRUCT) == 0)
430 rw_exit(&dn->dn_struct_rwlock);
431
432 if (db == NULL) {
433 *dbp = NULL;
434 return (SET_ERROR(EIO));
435 }
436 err = dbuf_read(db, NULL, flags);
437 if (err == 0)
438 *dbp = &db->db;
439 else {
440 dbuf_rele(db, tag);
441 *dbp = NULL;
442 }
443 return (err);
444 }
445
446 int
447 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
448 {
449 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
450 dnode_t *dn;
451 int err;
452
453 DB_DNODE_ENTER(db);
454 dn = DB_DNODE(db);
455
456 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
457 err = SET_ERROR(EINVAL);
458 } else {
459 rw_enter(&dn->dn_struct_rwlock, RW_READER);
460
461 if (!dn->dn_have_spill) {
462 err = SET_ERROR(ENOENT);
463 } else {
464 err = dmu_spill_hold_by_dnode(dn,
465 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
466 }
467
468 rw_exit(&dn->dn_struct_rwlock);
469 }
470
471 DB_DNODE_EXIT(db);
472 return (err);
473 }
474
475 int
476 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
477 dmu_buf_t **dbp)
478 {
479 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
480 dnode_t *dn;
481 int err;
482 uint32_t db_flags = DB_RF_CANFAIL;
483
484 if (flags & DMU_READ_NO_DECRYPT)
485 db_flags |= DB_RF_NO_DECRYPT;
486
487 DB_DNODE_ENTER(db);
488 dn = DB_DNODE(db);
489 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
490 DB_DNODE_EXIT(db);
491
492 return (err);
493 }
494
495 /*
496 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
497 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
498 * and can induce severe lock contention when writing to several files
499 * whose dnodes are in the same block.
500 */
501 int
502 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
503 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
504 uint32_t flags)
505 {
506 dmu_buf_t **dbp;
507 zstream_t *zs = NULL;
508 uint64_t blkid, nblks, i;
509 uint32_t dbuf_flags;
510 int err;
511 zio_t *zio = NULL;
512 boolean_t missed = B_FALSE;
513
514 ASSERT(length <= DMU_MAX_ACCESS);
515
516 /*
517 * Note: We directly notify the prefetch code of this read, so that
518 * we can tell it about the multi-block read. dbuf_read() only knows
519 * about the one block it is accessing.
520 */
521 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
522 DB_RF_NOPREFETCH;
523
524 if ((flags & DMU_READ_NO_DECRYPT) != 0)
525 dbuf_flags |= DB_RF_NO_DECRYPT;
526
527 rw_enter(&dn->dn_struct_rwlock, RW_READER);
528 if (dn->dn_datablkshift) {
529 int blkshift = dn->dn_datablkshift;
530 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
531 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
532 } else {
533 if (offset + length > dn->dn_datablksz) {
534 zfs_panic_recover("zfs: accessing past end of object "
535 "%llx/%llx (size=%u access=%llu+%llu)",
536 (longlong_t)dn->dn_objset->
537 os_dsl_dataset->ds_object,
538 (longlong_t)dn->dn_object, dn->dn_datablksz,
539 (longlong_t)offset, (longlong_t)length);
540 rw_exit(&dn->dn_struct_rwlock);
541 return (SET_ERROR(EIO));
542 }
543 nblks = 1;
544 }
545 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
546
547 if (read)
548 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
549 ZIO_FLAG_CANFAIL);
550 blkid = dbuf_whichblock(dn, 0, offset);
551 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
552 length <= zfetch_array_rd_sz) {
553 /*
554 * Prepare the zfetch before initiating the demand reads, so
555 * that if multiple threads block on same indirect block, we
556 * base predictions on the original less racy request order.
557 */
558 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
559 B_TRUE);
560 }
561 for (i = 0; i < nblks; i++) {
562 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
563 if (db == NULL) {
564 if (zs)
565 dmu_zfetch_run(zs, missed, B_TRUE);
566 rw_exit(&dn->dn_struct_rwlock);
567 dmu_buf_rele_array(dbp, nblks, tag);
568 if (read)
569 zio_nowait(zio);
570 return (SET_ERROR(EIO));
571 }
572
573 /*
574 * Initiate async demand data read.
575 * We check the db_state after calling dbuf_read() because
576 * (1) dbuf_read() may change the state to CACHED due to a
577 * hit in the ARC, and (2) on a cache miss, a child will
578 * have been added to "zio" but not yet completed, so the
579 * state will not yet be CACHED.
580 */
581 if (read) {
582 if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
583 offset + length < db->db.db_offset +
584 db->db.db_size) {
585 if (offset <= db->db.db_offset)
586 dbuf_flags |= DB_RF_PARTIAL_FIRST;
587 else
588 dbuf_flags |= DB_RF_PARTIAL_MORE;
589 }
590 (void) dbuf_read(db, zio, dbuf_flags);
591 if (db->db_state != DB_CACHED)
592 missed = B_TRUE;
593 }
594 dbp[i] = &db->db;
595 }
596
597 if (!read)
598 zfs_racct_write(length, nblks);
599
600 if (zs)
601 dmu_zfetch_run(zs, missed, B_TRUE);
602 rw_exit(&dn->dn_struct_rwlock);
603
604 if (read) {
605 /* wait for async read i/o */
606 err = zio_wait(zio);
607 if (err) {
608 dmu_buf_rele_array(dbp, nblks, tag);
609 return (err);
610 }
611
612 /* wait for other io to complete */
613 for (i = 0; i < nblks; i++) {
614 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
615 mutex_enter(&db->db_mtx);
616 while (db->db_state == DB_READ ||
617 db->db_state == DB_FILL)
618 cv_wait(&db->db_changed, &db->db_mtx);
619 if (db->db_state == DB_UNCACHED)
620 err = SET_ERROR(EIO);
621 mutex_exit(&db->db_mtx);
622 if (err) {
623 dmu_buf_rele_array(dbp, nblks, tag);
624 return (err);
625 }
626 }
627 }
628
629 *numbufsp = nblks;
630 *dbpp = dbp;
631 return (0);
632 }
633
634 int
635 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
636 uint64_t length, int read, const void *tag, int *numbufsp,
637 dmu_buf_t ***dbpp)
638 {
639 dnode_t *dn;
640 int err;
641
642 err = dnode_hold(os, object, FTAG, &dn);
643 if (err)
644 return (err);
645
646 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
647 numbufsp, dbpp, DMU_READ_PREFETCH);
648
649 dnode_rele(dn, FTAG);
650
651 return (err);
652 }
653
654 int
655 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
656 uint64_t length, boolean_t read, const void *tag, int *numbufsp,
657 dmu_buf_t ***dbpp)
658 {
659 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
660 dnode_t *dn;
661 int err;
662
663 DB_DNODE_ENTER(db);
664 dn = DB_DNODE(db);
665 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
666 numbufsp, dbpp, DMU_READ_PREFETCH);
667 DB_DNODE_EXIT(db);
668
669 return (err);
670 }
671
672 void
673 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
674 {
675 int i;
676 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
677
678 if (numbufs == 0)
679 return;
680
681 for (i = 0; i < numbufs; i++) {
682 if (dbp[i])
683 dbuf_rele(dbp[i], tag);
684 }
685
686 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
687 }
688
689 /*
690 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
691 * indirect blocks prefetched will be those that point to the blocks containing
692 * the data starting at offset, and continuing to offset + len.
693 *
694 * Note that if the indirect blocks above the blocks being prefetched are not
695 * in cache, they will be asynchronously read in.
696 */
697 void
698 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
699 uint64_t len, zio_priority_t pri)
700 {
701 dnode_t *dn;
702 uint64_t blkid;
703 int nblks, err;
704
705 if (len == 0) { /* they're interested in the bonus buffer */
706 dn = DMU_META_DNODE(os);
707
708 if (object == 0 || object >= DN_MAX_OBJECT)
709 return;
710
711 rw_enter(&dn->dn_struct_rwlock, RW_READER);
712 blkid = dbuf_whichblock(dn, level,
713 object * sizeof (dnode_phys_t));
714 dbuf_prefetch(dn, level, blkid, pri, 0);
715 rw_exit(&dn->dn_struct_rwlock);
716 return;
717 }
718
719 /*
720 * See comment before the definition of dmu_prefetch_max.
721 */
722 len = MIN(len, dmu_prefetch_max);
723
724 /*
725 * XXX - Note, if the dnode for the requested object is not
726 * already cached, we will do a *synchronous* read in the
727 * dnode_hold() call. The same is true for any indirects.
728 */
729 err = dnode_hold(os, object, FTAG, &dn);
730 if (err != 0)
731 return;
732
733 /*
734 * offset + len - 1 is the last byte we want to prefetch for, and offset
735 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
736 * last block we want to prefetch, and dbuf_whichblock(dn, level,
737 * offset) is the first. Then the number we need to prefetch is the
738 * last - first + 1.
739 */
740 rw_enter(&dn->dn_struct_rwlock, RW_READER);
741 if (level > 0 || dn->dn_datablkshift != 0) {
742 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
743 dbuf_whichblock(dn, level, offset) + 1;
744 } else {
745 nblks = (offset < dn->dn_datablksz);
746 }
747
748 if (nblks != 0) {
749 blkid = dbuf_whichblock(dn, level, offset);
750 for (int i = 0; i < nblks; i++)
751 dbuf_prefetch(dn, level, blkid + i, pri, 0);
752 }
753 rw_exit(&dn->dn_struct_rwlock);
754
755 dnode_rele(dn, FTAG);
756 }
757
758 /*
759 * Get the next "chunk" of file data to free. We traverse the file from
760 * the end so that the file gets shorter over time (if we crashes in the
761 * middle, this will leave us in a better state). We find allocated file
762 * data by simply searching the allocated level 1 indirects.
763 *
764 * On input, *start should be the first offset that does not need to be
765 * freed (e.g. "offset + length"). On return, *start will be the first
766 * offset that should be freed and l1blks is set to the number of level 1
767 * indirect blocks found within the chunk.
768 */
769 static int
770 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
771 {
772 uint64_t blks;
773 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
774 /* bytes of data covered by a level-1 indirect block */
775 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
776 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
777
778 ASSERT3U(minimum, <=, *start);
779
780 /*
781 * Check if we can free the entire range assuming that all of the
782 * L1 blocks in this range have data. If we can, we use this
783 * worst case value as an estimate so we can avoid having to look
784 * at the object's actual data.
785 */
786 uint64_t total_l1blks =
787 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
788 iblkrange;
789 if (total_l1blks <= maxblks) {
790 *l1blks = total_l1blks;
791 *start = minimum;
792 return (0);
793 }
794 ASSERT(ISP2(iblkrange));
795
796 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
797 int err;
798
799 /*
800 * dnode_next_offset(BACKWARDS) will find an allocated L1
801 * indirect block at or before the input offset. We must
802 * decrement *start so that it is at the end of the region
803 * to search.
804 */
805 (*start)--;
806
807 err = dnode_next_offset(dn,
808 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
809
810 /* if there are no indirect blocks before start, we are done */
811 if (err == ESRCH) {
812 *start = minimum;
813 break;
814 } else if (err != 0) {
815 *l1blks = blks;
816 return (err);
817 }
818
819 /* set start to the beginning of this L1 indirect */
820 *start = P2ALIGN(*start, iblkrange);
821 }
822 if (*start < minimum)
823 *start = minimum;
824 *l1blks = blks;
825
826 return (0);
827 }
828
829 /*
830 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
831 * otherwise return false.
832 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
833 */
834 static boolean_t
835 dmu_objset_zfs_unmounting(objset_t *os)
836 {
837 #ifdef _KERNEL
838 if (dmu_objset_type(os) == DMU_OST_ZFS)
839 return (zfs_get_vfs_flag_unmounted(os));
840 #else
841 (void) os;
842 #endif
843 return (B_FALSE);
844 }
845
846 static int
847 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
848 uint64_t length)
849 {
850 uint64_t object_size;
851 int err;
852 uint64_t dirty_frees_threshold;
853 dsl_pool_t *dp = dmu_objset_pool(os);
854
855 if (dn == NULL)
856 return (SET_ERROR(EINVAL));
857
858 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
859 if (offset >= object_size)
860 return (0);
861
862 if (zfs_per_txg_dirty_frees_percent <= 100)
863 dirty_frees_threshold =
864 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
865 else
866 dirty_frees_threshold = zfs_dirty_data_max / 20;
867
868 if (length == DMU_OBJECT_END || offset + length > object_size)
869 length = object_size - offset;
870
871 while (length != 0) {
872 uint64_t chunk_end, chunk_begin, chunk_len;
873 uint64_t l1blks;
874 dmu_tx_t *tx;
875
876 if (dmu_objset_zfs_unmounting(dn->dn_objset))
877 return (SET_ERROR(EINTR));
878
879 chunk_end = chunk_begin = offset + length;
880
881 /* move chunk_begin backwards to the beginning of this chunk */
882 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
883 if (err)
884 return (err);
885 ASSERT3U(chunk_begin, >=, offset);
886 ASSERT3U(chunk_begin, <=, chunk_end);
887
888 chunk_len = chunk_end - chunk_begin;
889
890 tx = dmu_tx_create(os);
891 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
892
893 /*
894 * Mark this transaction as typically resulting in a net
895 * reduction in space used.
896 */
897 dmu_tx_mark_netfree(tx);
898 err = dmu_tx_assign(tx, TXG_WAIT);
899 if (err) {
900 dmu_tx_abort(tx);
901 return (err);
902 }
903
904 uint64_t txg = dmu_tx_get_txg(tx);
905
906 mutex_enter(&dp->dp_lock);
907 uint64_t long_free_dirty =
908 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
909 mutex_exit(&dp->dp_lock);
910
911 /*
912 * To avoid filling up a TXG with just frees, wait for
913 * the next TXG to open before freeing more chunks if
914 * we have reached the threshold of frees.
915 */
916 if (dirty_frees_threshold != 0 &&
917 long_free_dirty >= dirty_frees_threshold) {
918 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
919 dmu_tx_commit(tx);
920 txg_wait_open(dp, 0, B_TRUE);
921 continue;
922 }
923
924 /*
925 * In order to prevent unnecessary write throttling, for each
926 * TXG, we track the cumulative size of L1 blocks being dirtied
927 * in dnode_free_range() below. We compare this number to a
928 * tunable threshold, past which we prevent new L1 dirty freeing
929 * blocks from being added into the open TXG. See
930 * dmu_free_long_range_impl() for details. The threshold
931 * prevents write throttle activation due to dirty freeing L1
932 * blocks taking up a large percentage of zfs_dirty_data_max.
933 */
934 mutex_enter(&dp->dp_lock);
935 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
936 l1blks << dn->dn_indblkshift;
937 mutex_exit(&dp->dp_lock);
938 DTRACE_PROBE3(free__long__range,
939 uint64_t, long_free_dirty, uint64_t, chunk_len,
940 uint64_t, txg);
941 dnode_free_range(dn, chunk_begin, chunk_len, tx);
942
943 dmu_tx_commit(tx);
944
945 length -= chunk_len;
946 }
947 return (0);
948 }
949
950 int
951 dmu_free_long_range(objset_t *os, uint64_t object,
952 uint64_t offset, uint64_t length)
953 {
954 dnode_t *dn;
955 int err;
956
957 err = dnode_hold(os, object, FTAG, &dn);
958 if (err != 0)
959 return (err);
960 err = dmu_free_long_range_impl(os, dn, offset, length);
961
962 /*
963 * It is important to zero out the maxblkid when freeing the entire
964 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
965 * will take the fast path, and (b) dnode_reallocate() can verify
966 * that the entire file has been freed.
967 */
968 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
969 dn->dn_maxblkid = 0;
970
971 dnode_rele(dn, FTAG);
972 return (err);
973 }
974
975 int
976 dmu_free_long_object(objset_t *os, uint64_t object)
977 {
978 dmu_tx_t *tx;
979 int err;
980
981 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
982 if (err != 0)
983 return (err);
984
985 tx = dmu_tx_create(os);
986 dmu_tx_hold_bonus(tx, object);
987 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
988 dmu_tx_mark_netfree(tx);
989 err = dmu_tx_assign(tx, TXG_WAIT);
990 if (err == 0) {
991 err = dmu_object_free(os, object, tx);
992 dmu_tx_commit(tx);
993 } else {
994 dmu_tx_abort(tx);
995 }
996
997 return (err);
998 }
999
1000 int
1001 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1002 uint64_t size, dmu_tx_t *tx)
1003 {
1004 dnode_t *dn;
1005 int err = dnode_hold(os, object, FTAG, &dn);
1006 if (err)
1007 return (err);
1008 ASSERT(offset < UINT64_MAX);
1009 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1010 dnode_free_range(dn, offset, size, tx);
1011 dnode_rele(dn, FTAG);
1012 return (0);
1013 }
1014
1015 static int
1016 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1017 void *buf, uint32_t flags)
1018 {
1019 dmu_buf_t **dbp;
1020 int numbufs, err = 0;
1021
1022 /*
1023 * Deal with odd block sizes, where there can't be data past the first
1024 * block. If we ever do the tail block optimization, we will need to
1025 * handle that here as well.
1026 */
1027 if (dn->dn_maxblkid == 0) {
1028 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1029 MIN(size, dn->dn_datablksz - offset);
1030 memset((char *)buf + newsz, 0, size - newsz);
1031 size = newsz;
1032 }
1033
1034 while (size > 0) {
1035 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1036 int i;
1037
1038 /*
1039 * NB: we could do this block-at-a-time, but it's nice
1040 * to be reading in parallel.
1041 */
1042 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1043 TRUE, FTAG, &numbufs, &dbp, flags);
1044 if (err)
1045 break;
1046
1047 for (i = 0; i < numbufs; i++) {
1048 uint64_t tocpy;
1049 int64_t bufoff;
1050 dmu_buf_t *db = dbp[i];
1051
1052 ASSERT(size > 0);
1053
1054 bufoff = offset - db->db_offset;
1055 tocpy = MIN(db->db_size - bufoff, size);
1056
1057 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1058
1059 offset += tocpy;
1060 size -= tocpy;
1061 buf = (char *)buf + tocpy;
1062 }
1063 dmu_buf_rele_array(dbp, numbufs, FTAG);
1064 }
1065 return (err);
1066 }
1067
1068 int
1069 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1070 void *buf, uint32_t flags)
1071 {
1072 dnode_t *dn;
1073 int err;
1074
1075 err = dnode_hold(os, object, FTAG, &dn);
1076 if (err != 0)
1077 return (err);
1078
1079 err = dmu_read_impl(dn, offset, size, buf, flags);
1080 dnode_rele(dn, FTAG);
1081 return (err);
1082 }
1083
1084 int
1085 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1086 uint32_t flags)
1087 {
1088 return (dmu_read_impl(dn, offset, size, buf, flags));
1089 }
1090
1091 static void
1092 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1093 const void *buf, dmu_tx_t *tx)
1094 {
1095 int i;
1096
1097 for (i = 0; i < numbufs; i++) {
1098 uint64_t tocpy;
1099 int64_t bufoff;
1100 dmu_buf_t *db = dbp[i];
1101
1102 ASSERT(size > 0);
1103
1104 bufoff = offset - db->db_offset;
1105 tocpy = MIN(db->db_size - bufoff, size);
1106
1107 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1108
1109 if (tocpy == db->db_size)
1110 dmu_buf_will_fill(db, tx);
1111 else
1112 dmu_buf_will_dirty(db, tx);
1113
1114 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1115
1116 if (tocpy == db->db_size)
1117 dmu_buf_fill_done(db, tx);
1118
1119 offset += tocpy;
1120 size -= tocpy;
1121 buf = (char *)buf + tocpy;
1122 }
1123 }
1124
1125 void
1126 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1127 const void *buf, dmu_tx_t *tx)
1128 {
1129 dmu_buf_t **dbp;
1130 int numbufs;
1131
1132 if (size == 0)
1133 return;
1134
1135 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1136 FALSE, FTAG, &numbufs, &dbp));
1137 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1138 dmu_buf_rele_array(dbp, numbufs, FTAG);
1139 }
1140
1141 /*
1142 * Note: Lustre is an external consumer of this interface.
1143 */
1144 void
1145 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1146 const void *buf, dmu_tx_t *tx)
1147 {
1148 dmu_buf_t **dbp;
1149 int numbufs;
1150
1151 if (size == 0)
1152 return;
1153
1154 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1155 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1156 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1157 dmu_buf_rele_array(dbp, numbufs, FTAG);
1158 }
1159
1160 void
1161 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1162 dmu_tx_t *tx)
1163 {
1164 dmu_buf_t **dbp;
1165 int numbufs, i;
1166
1167 if (size == 0)
1168 return;
1169
1170 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1171 FALSE, FTAG, &numbufs, &dbp));
1172
1173 for (i = 0; i < numbufs; i++) {
1174 dmu_buf_t *db = dbp[i];
1175
1176 dmu_buf_will_not_fill(db, tx);
1177 }
1178 dmu_buf_rele_array(dbp, numbufs, FTAG);
1179 }
1180
1181 void
1182 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1183 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1184 int compressed_size, int byteorder, dmu_tx_t *tx)
1185 {
1186 dmu_buf_t *db;
1187
1188 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1189 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1190 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1191 FTAG, &db));
1192
1193 dmu_buf_write_embedded(db,
1194 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1195 uncompressed_size, compressed_size, byteorder, tx);
1196
1197 dmu_buf_rele(db, FTAG);
1198 }
1199
1200 void
1201 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1202 dmu_tx_t *tx)
1203 {
1204 int numbufs, i;
1205 dmu_buf_t **dbp;
1206
1207 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1208 &numbufs, &dbp));
1209 for (i = 0; i < numbufs; i++)
1210 dmu_buf_redact(dbp[i], tx);
1211 dmu_buf_rele_array(dbp, numbufs, FTAG);
1212 }
1213
1214 #ifdef _KERNEL
1215 int
1216 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1217 {
1218 dmu_buf_t **dbp;
1219 int numbufs, i, err;
1220
1221 /*
1222 * NB: we could do this block-at-a-time, but it's nice
1223 * to be reading in parallel.
1224 */
1225 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1226 TRUE, FTAG, &numbufs, &dbp, 0);
1227 if (err)
1228 return (err);
1229
1230 for (i = 0; i < numbufs; i++) {
1231 uint64_t tocpy;
1232 int64_t bufoff;
1233 dmu_buf_t *db = dbp[i];
1234
1235 ASSERT(size > 0);
1236
1237 bufoff = zfs_uio_offset(uio) - db->db_offset;
1238 tocpy = MIN(db->db_size - bufoff, size);
1239
1240 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1241 UIO_READ, uio);
1242
1243 if (err)
1244 break;
1245
1246 size -= tocpy;
1247 }
1248 dmu_buf_rele_array(dbp, numbufs, FTAG);
1249
1250 return (err);
1251 }
1252
1253 /*
1254 * Read 'size' bytes into the uio buffer.
1255 * From object zdb->db_object.
1256 * Starting at zfs_uio_offset(uio).
1257 *
1258 * If the caller already has a dbuf in the target object
1259 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1260 * because we don't have to find the dnode_t for the object.
1261 */
1262 int
1263 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1264 {
1265 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1266 dnode_t *dn;
1267 int err;
1268
1269 if (size == 0)
1270 return (0);
1271
1272 DB_DNODE_ENTER(db);
1273 dn = DB_DNODE(db);
1274 err = dmu_read_uio_dnode(dn, uio, size);
1275 DB_DNODE_EXIT(db);
1276
1277 return (err);
1278 }
1279
1280 /*
1281 * Read 'size' bytes into the uio buffer.
1282 * From the specified object
1283 * Starting at offset zfs_uio_offset(uio).
1284 */
1285 int
1286 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1287 {
1288 dnode_t *dn;
1289 int err;
1290
1291 if (size == 0)
1292 return (0);
1293
1294 err = dnode_hold(os, object, FTAG, &dn);
1295 if (err)
1296 return (err);
1297
1298 err = dmu_read_uio_dnode(dn, uio, size);
1299
1300 dnode_rele(dn, FTAG);
1301
1302 return (err);
1303 }
1304
1305 int
1306 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1307 {
1308 dmu_buf_t **dbp;
1309 int numbufs;
1310 int err = 0;
1311 int i;
1312
1313 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1314 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1315 if (err)
1316 return (err);
1317
1318 for (i = 0; i < numbufs; i++) {
1319 uint64_t tocpy;
1320 int64_t bufoff;
1321 dmu_buf_t *db = dbp[i];
1322
1323 ASSERT(size > 0);
1324
1325 bufoff = zfs_uio_offset(uio) - db->db_offset;
1326 tocpy = MIN(db->db_size - bufoff, size);
1327
1328 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1329
1330 if (tocpy == db->db_size)
1331 dmu_buf_will_fill(db, tx);
1332 else
1333 dmu_buf_will_dirty(db, tx);
1334
1335 /*
1336 * XXX zfs_uiomove could block forever (eg.nfs-backed
1337 * pages). There needs to be a uiolockdown() function
1338 * to lock the pages in memory, so that zfs_uiomove won't
1339 * block.
1340 */
1341 err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1342 tocpy, UIO_WRITE, uio);
1343
1344 if (tocpy == db->db_size)
1345 dmu_buf_fill_done(db, tx);
1346
1347 if (err)
1348 break;
1349
1350 size -= tocpy;
1351 }
1352
1353 dmu_buf_rele_array(dbp, numbufs, FTAG);
1354 return (err);
1355 }
1356
1357 /*
1358 * Write 'size' bytes from the uio buffer.
1359 * To object zdb->db_object.
1360 * Starting at offset zfs_uio_offset(uio).
1361 *
1362 * If the caller already has a dbuf in the target object
1363 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1364 * because we don't have to find the dnode_t for the object.
1365 */
1366 int
1367 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1368 dmu_tx_t *tx)
1369 {
1370 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1371 dnode_t *dn;
1372 int err;
1373
1374 if (size == 0)
1375 return (0);
1376
1377 DB_DNODE_ENTER(db);
1378 dn = DB_DNODE(db);
1379 err = dmu_write_uio_dnode(dn, uio, size, tx);
1380 DB_DNODE_EXIT(db);
1381
1382 return (err);
1383 }
1384
1385 /*
1386 * Write 'size' bytes from the uio buffer.
1387 * To the specified object.
1388 * Starting at offset zfs_uio_offset(uio).
1389 */
1390 int
1391 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1392 dmu_tx_t *tx)
1393 {
1394 dnode_t *dn;
1395 int err;
1396
1397 if (size == 0)
1398 return (0);
1399
1400 err = dnode_hold(os, object, FTAG, &dn);
1401 if (err)
1402 return (err);
1403
1404 err = dmu_write_uio_dnode(dn, uio, size, tx);
1405
1406 dnode_rele(dn, FTAG);
1407
1408 return (err);
1409 }
1410 #endif /* _KERNEL */
1411
1412 /*
1413 * Allocate a loaned anonymous arc buffer.
1414 */
1415 arc_buf_t *
1416 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1417 {
1418 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1419
1420 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1421 }
1422
1423 /*
1424 * Free a loaned arc buffer.
1425 */
1426 void
1427 dmu_return_arcbuf(arc_buf_t *buf)
1428 {
1429 arc_return_buf(buf, FTAG);
1430 arc_buf_destroy(buf, FTAG);
1431 }
1432
1433 /*
1434 * A "lightweight" write is faster than a regular write (e.g.
1435 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1436 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1437 * data can not be read or overwritten until the transaction's txg has been
1438 * synced. This makes it appropriate for workloads that are known to be
1439 * (temporarily) write-only, like "zfs receive".
1440 *
1441 * A single block is written, starting at the specified offset in bytes. If
1442 * the call is successful, it returns 0 and the provided abd has been
1443 * consumed (the caller should not free it).
1444 */
1445 int
1446 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1447 const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1448 {
1449 dbuf_dirty_record_t *dr =
1450 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1451 if (dr == NULL)
1452 return (SET_ERROR(EIO));
1453 dr->dt.dll.dr_abd = abd;
1454 dr->dt.dll.dr_props = *zp;
1455 dr->dt.dll.dr_flags = flags;
1456 return (0);
1457 }
1458
1459 /*
1460 * When possible directly assign passed loaned arc buffer to a dbuf.
1461 * If this is not possible copy the contents of passed arc buf via
1462 * dmu_write().
1463 */
1464 int
1465 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1466 dmu_tx_t *tx)
1467 {
1468 dmu_buf_impl_t *db;
1469 objset_t *os = dn->dn_objset;
1470 uint64_t object = dn->dn_object;
1471 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1472 uint64_t blkid;
1473
1474 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1475 blkid = dbuf_whichblock(dn, 0, offset);
1476 db = dbuf_hold(dn, blkid, FTAG);
1477 if (db == NULL)
1478 return (SET_ERROR(EIO));
1479 rw_exit(&dn->dn_struct_rwlock);
1480
1481 /*
1482 * We can only assign if the offset is aligned and the arc buf is the
1483 * same size as the dbuf.
1484 */
1485 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1486 zfs_racct_write(blksz, 1);
1487 dbuf_assign_arcbuf(db, buf, tx);
1488 dbuf_rele(db, FTAG);
1489 } else {
1490 /* compressed bufs must always be assignable to their dbuf */
1491 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1492 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1493
1494 dbuf_rele(db, FTAG);
1495 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1496 dmu_return_arcbuf(buf);
1497 }
1498
1499 return (0);
1500 }
1501
1502 int
1503 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1504 dmu_tx_t *tx)
1505 {
1506 int err;
1507 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1508
1509 DB_DNODE_ENTER(dbuf);
1510 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1511 DB_DNODE_EXIT(dbuf);
1512
1513 return (err);
1514 }
1515
1516 typedef struct {
1517 dbuf_dirty_record_t *dsa_dr;
1518 dmu_sync_cb_t *dsa_done;
1519 zgd_t *dsa_zgd;
1520 dmu_tx_t *dsa_tx;
1521 } dmu_sync_arg_t;
1522
1523 static void
1524 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1525 {
1526 (void) buf;
1527 dmu_sync_arg_t *dsa = varg;
1528 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1529 blkptr_t *bp = zio->io_bp;
1530
1531 if (zio->io_error == 0) {
1532 if (BP_IS_HOLE(bp)) {
1533 /*
1534 * A block of zeros may compress to a hole, but the
1535 * block size still needs to be known for replay.
1536 */
1537 BP_SET_LSIZE(bp, db->db_size);
1538 } else if (!BP_IS_EMBEDDED(bp)) {
1539 ASSERT(BP_GET_LEVEL(bp) == 0);
1540 BP_SET_FILL(bp, 1);
1541 }
1542 }
1543 }
1544
1545 static void
1546 dmu_sync_late_arrival_ready(zio_t *zio)
1547 {
1548 dmu_sync_ready(zio, NULL, zio->io_private);
1549 }
1550
1551 static void
1552 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1553 {
1554 (void) buf;
1555 dmu_sync_arg_t *dsa = varg;
1556 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1557 dmu_buf_impl_t *db = dr->dr_dbuf;
1558 zgd_t *zgd = dsa->dsa_zgd;
1559
1560 /*
1561 * Record the vdev(s) backing this blkptr so they can be flushed after
1562 * the writes for the lwb have completed.
1563 */
1564 if (zio->io_error == 0) {
1565 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1566 }
1567
1568 mutex_enter(&db->db_mtx);
1569 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1570 if (zio->io_error == 0) {
1571 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1572 if (dr->dt.dl.dr_nopwrite) {
1573 blkptr_t *bp = zio->io_bp;
1574 blkptr_t *bp_orig = &zio->io_bp_orig;
1575 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1576
1577 ASSERT(BP_EQUAL(bp, bp_orig));
1578 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1579 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1580 VERIFY(zio_checksum_table[chksum].ci_flags &
1581 ZCHECKSUM_FLAG_NOPWRITE);
1582 }
1583 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1584 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1585 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1586
1587 /*
1588 * Old style holes are filled with all zeros, whereas
1589 * new-style holes maintain their lsize, type, level,
1590 * and birth time (see zio_write_compress). While we
1591 * need to reset the BP_SET_LSIZE() call that happened
1592 * in dmu_sync_ready for old style holes, we do *not*
1593 * want to wipe out the information contained in new
1594 * style holes. Thus, only zero out the block pointer if
1595 * it's an old style hole.
1596 */
1597 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1598 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1599 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1600 } else {
1601 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1602 }
1603 cv_broadcast(&db->db_changed);
1604 mutex_exit(&db->db_mtx);
1605
1606 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1607
1608 kmem_free(dsa, sizeof (*dsa));
1609 }
1610
1611 static void
1612 dmu_sync_late_arrival_done(zio_t *zio)
1613 {
1614 blkptr_t *bp = zio->io_bp;
1615 dmu_sync_arg_t *dsa = zio->io_private;
1616 zgd_t *zgd = dsa->dsa_zgd;
1617
1618 if (zio->io_error == 0) {
1619 /*
1620 * Record the vdev(s) backing this blkptr so they can be
1621 * flushed after the writes for the lwb have completed.
1622 */
1623 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1624
1625 if (!BP_IS_HOLE(bp)) {
1626 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1627 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1628 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1629 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1630 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1631 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1632 }
1633 }
1634
1635 dmu_tx_commit(dsa->dsa_tx);
1636
1637 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1638
1639 abd_free(zio->io_abd);
1640 kmem_free(dsa, sizeof (*dsa));
1641 }
1642
1643 static int
1644 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1645 zio_prop_t *zp, zbookmark_phys_t *zb)
1646 {
1647 dmu_sync_arg_t *dsa;
1648 dmu_tx_t *tx;
1649
1650 tx = dmu_tx_create(os);
1651 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1652 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1653 dmu_tx_abort(tx);
1654 /* Make zl_get_data do txg_waited_synced() */
1655 return (SET_ERROR(EIO));
1656 }
1657
1658 /*
1659 * In order to prevent the zgd's lwb from being free'd prior to
1660 * dmu_sync_late_arrival_done() being called, we have to ensure
1661 * the lwb's "max txg" takes this tx's txg into account.
1662 */
1663 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1664
1665 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1666 dsa->dsa_dr = NULL;
1667 dsa->dsa_done = done;
1668 dsa->dsa_zgd = zgd;
1669 dsa->dsa_tx = tx;
1670
1671 /*
1672 * Since we are currently syncing this txg, it's nontrivial to
1673 * determine what BP to nopwrite against, so we disable nopwrite.
1674 *
1675 * When syncing, the db_blkptr is initially the BP of the previous
1676 * txg. We can not nopwrite against it because it will be changed
1677 * (this is similar to the non-late-arrival case where the dbuf is
1678 * dirty in a future txg).
1679 *
1680 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1681 * We can not nopwrite against it because although the BP will not
1682 * (typically) be changed, the data has not yet been persisted to this
1683 * location.
1684 *
1685 * Finally, when dbuf_write_done() is called, it is theoretically
1686 * possible to always nopwrite, because the data that was written in
1687 * this txg is the same data that we are trying to write. However we
1688 * would need to check that this dbuf is not dirty in any future
1689 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1690 * don't nopwrite in this case.
1691 */
1692 zp->zp_nopwrite = B_FALSE;
1693
1694 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1695 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1696 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1697 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1698 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1699
1700 return (0);
1701 }
1702
1703 /*
1704 * Intent log support: sync the block associated with db to disk.
1705 * N.B. and XXX: the caller is responsible for making sure that the
1706 * data isn't changing while dmu_sync() is writing it.
1707 *
1708 * Return values:
1709 *
1710 * EEXIST: this txg has already been synced, so there's nothing to do.
1711 * The caller should not log the write.
1712 *
1713 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1714 * The caller should not log the write.
1715 *
1716 * EALREADY: this block is already in the process of being synced.
1717 * The caller should track its progress (somehow).
1718 *
1719 * EIO: could not do the I/O.
1720 * The caller should do a txg_wait_synced().
1721 *
1722 * 0: the I/O has been initiated.
1723 * The caller should log this blkptr in the done callback.
1724 * It is possible that the I/O will fail, in which case
1725 * the error will be reported to the done callback and
1726 * propagated to pio from zio_done().
1727 */
1728 int
1729 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1730 {
1731 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1732 objset_t *os = db->db_objset;
1733 dsl_dataset_t *ds = os->os_dsl_dataset;
1734 dbuf_dirty_record_t *dr, *dr_next;
1735 dmu_sync_arg_t *dsa;
1736 zbookmark_phys_t zb;
1737 zio_prop_t zp;
1738 dnode_t *dn;
1739
1740 ASSERT(pio != NULL);
1741 ASSERT(txg != 0);
1742
1743 SET_BOOKMARK(&zb, ds->ds_object,
1744 db->db.db_object, db->db_level, db->db_blkid);
1745
1746 DB_DNODE_ENTER(db);
1747 dn = DB_DNODE(db);
1748 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1749 DB_DNODE_EXIT(db);
1750
1751 /*
1752 * If we're frozen (running ziltest), we always need to generate a bp.
1753 */
1754 if (txg > spa_freeze_txg(os->os_spa))
1755 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1756
1757 /*
1758 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1759 * and us. If we determine that this txg is not yet syncing,
1760 * but it begins to sync a moment later, that's OK because the
1761 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1762 */
1763 mutex_enter(&db->db_mtx);
1764
1765 if (txg <= spa_last_synced_txg(os->os_spa)) {
1766 /*
1767 * This txg has already synced. There's nothing to do.
1768 */
1769 mutex_exit(&db->db_mtx);
1770 return (SET_ERROR(EEXIST));
1771 }
1772
1773 if (txg <= spa_syncing_txg(os->os_spa)) {
1774 /*
1775 * This txg is currently syncing, so we can't mess with
1776 * the dirty record anymore; just write a new log block.
1777 */
1778 mutex_exit(&db->db_mtx);
1779 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1780 }
1781
1782 dr = dbuf_find_dirty_eq(db, txg);
1783
1784 if (dr == NULL) {
1785 /*
1786 * There's no dr for this dbuf, so it must have been freed.
1787 * There's no need to log writes to freed blocks, so we're done.
1788 */
1789 mutex_exit(&db->db_mtx);
1790 return (SET_ERROR(ENOENT));
1791 }
1792
1793 dr_next = list_next(&db->db_dirty_records, dr);
1794 ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1795
1796 if (db->db_blkptr != NULL) {
1797 /*
1798 * We need to fill in zgd_bp with the current blkptr so that
1799 * the nopwrite code can check if we're writing the same
1800 * data that's already on disk. We can only nopwrite if we
1801 * are sure that after making the copy, db_blkptr will not
1802 * change until our i/o completes. We ensure this by
1803 * holding the db_mtx, and only allowing nopwrite if the
1804 * block is not already dirty (see below). This is verified
1805 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1806 * not changed.
1807 */
1808 *zgd->zgd_bp = *db->db_blkptr;
1809 }
1810
1811 /*
1812 * Assume the on-disk data is X, the current syncing data (in
1813 * txg - 1) is Y, and the current in-memory data is Z (currently
1814 * in dmu_sync).
1815 *
1816 * We usually want to perform a nopwrite if X and Z are the
1817 * same. However, if Y is different (i.e. the BP is going to
1818 * change before this write takes effect), then a nopwrite will
1819 * be incorrect - we would override with X, which could have
1820 * been freed when Y was written.
1821 *
1822 * (Note that this is not a concern when we are nop-writing from
1823 * syncing context, because X and Y must be identical, because
1824 * all previous txgs have been synced.)
1825 *
1826 * Therefore, we disable nopwrite if the current BP could change
1827 * before this TXG. There are two ways it could change: by
1828 * being dirty (dr_next is non-NULL), or by being freed
1829 * (dnode_block_freed()). This behavior is verified by
1830 * zio_done(), which VERIFYs that the override BP is identical
1831 * to the on-disk BP.
1832 */
1833 DB_DNODE_ENTER(db);
1834 dn = DB_DNODE(db);
1835 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1836 zp.zp_nopwrite = B_FALSE;
1837 DB_DNODE_EXIT(db);
1838
1839 ASSERT(dr->dr_txg == txg);
1840 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1841 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1842 /*
1843 * We have already issued a sync write for this buffer,
1844 * or this buffer has already been synced. It could not
1845 * have been dirtied since, or we would have cleared the state.
1846 */
1847 mutex_exit(&db->db_mtx);
1848 return (SET_ERROR(EALREADY));
1849 }
1850
1851 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1852 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1853 mutex_exit(&db->db_mtx);
1854
1855 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1856 dsa->dsa_dr = dr;
1857 dsa->dsa_done = done;
1858 dsa->dsa_zgd = zgd;
1859 dsa->dsa_tx = NULL;
1860
1861 zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1862 dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
1863 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1864 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1865
1866 return (0);
1867 }
1868
1869 int
1870 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1871 {
1872 dnode_t *dn;
1873 int err;
1874
1875 err = dnode_hold(os, object, FTAG, &dn);
1876 if (err)
1877 return (err);
1878 err = dnode_set_nlevels(dn, nlevels, tx);
1879 dnode_rele(dn, FTAG);
1880 return (err);
1881 }
1882
1883 int
1884 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1885 dmu_tx_t *tx)
1886 {
1887 dnode_t *dn;
1888 int err;
1889
1890 err = dnode_hold(os, object, FTAG, &dn);
1891 if (err)
1892 return (err);
1893 err = dnode_set_blksz(dn, size, ibs, tx);
1894 dnode_rele(dn, FTAG);
1895 return (err);
1896 }
1897
1898 int
1899 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1900 dmu_tx_t *tx)
1901 {
1902 dnode_t *dn;
1903 int err;
1904
1905 err = dnode_hold(os, object, FTAG, &dn);
1906 if (err)
1907 return (err);
1908 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1909 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1910 rw_exit(&dn->dn_struct_rwlock);
1911 dnode_rele(dn, FTAG);
1912 return (0);
1913 }
1914
1915 void
1916 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1917 dmu_tx_t *tx)
1918 {
1919 dnode_t *dn;
1920
1921 /*
1922 * Send streams include each object's checksum function. This
1923 * check ensures that the receiving system can understand the
1924 * checksum function transmitted.
1925 */
1926 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1927
1928 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1929 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1930 dn->dn_checksum = checksum;
1931 dnode_setdirty(dn, tx);
1932 dnode_rele(dn, FTAG);
1933 }
1934
1935 void
1936 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1937 dmu_tx_t *tx)
1938 {
1939 dnode_t *dn;
1940
1941 /*
1942 * Send streams include each object's compression function. This
1943 * check ensures that the receiving system can understand the
1944 * compression function transmitted.
1945 */
1946 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1947
1948 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1949 dn->dn_compress = compress;
1950 dnode_setdirty(dn, tx);
1951 dnode_rele(dn, FTAG);
1952 }
1953
1954 /*
1955 * When the "redundant_metadata" property is set to "most", only indirect
1956 * blocks of this level and higher will have an additional ditto block.
1957 */
1958 static const int zfs_redundant_metadata_most_ditto_level = 2;
1959
1960 void
1961 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1962 {
1963 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1964 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1965 (wp & WP_SPILL));
1966 enum zio_checksum checksum = os->os_checksum;
1967 enum zio_compress compress = os->os_compress;
1968 uint8_t complevel = os->os_complevel;
1969 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1970 boolean_t dedup = B_FALSE;
1971 boolean_t nopwrite = B_FALSE;
1972 boolean_t dedup_verify = os->os_dedup_verify;
1973 boolean_t encrypt = B_FALSE;
1974 int copies = os->os_copies;
1975
1976 /*
1977 * We maintain different write policies for each of the following
1978 * types of data:
1979 * 1. metadata
1980 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1981 * 3. all other level 0 blocks
1982 */
1983 if (ismd) {
1984 /*
1985 * XXX -- we should design a compression algorithm
1986 * that specializes in arrays of bps.
1987 */
1988 compress = zio_compress_select(os->os_spa,
1989 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1990
1991 /*
1992 * Metadata always gets checksummed. If the data
1993 * checksum is multi-bit correctable, and it's not a
1994 * ZBT-style checksum, then it's suitable for metadata
1995 * as well. Otherwise, the metadata checksum defaults
1996 * to fletcher4.
1997 */
1998 if (!(zio_checksum_table[checksum].ci_flags &
1999 ZCHECKSUM_FLAG_METADATA) ||
2000 (zio_checksum_table[checksum].ci_flags &
2001 ZCHECKSUM_FLAG_EMBEDDED))
2002 checksum = ZIO_CHECKSUM_FLETCHER_4;
2003
2004 switch (os->os_redundant_metadata) {
2005 case ZFS_REDUNDANT_METADATA_ALL:
2006 copies++;
2007 break;
2008 case ZFS_REDUNDANT_METADATA_MOST:
2009 if (level >= zfs_redundant_metadata_most_ditto_level ||
2010 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2011 copies++;
2012 break;
2013 case ZFS_REDUNDANT_METADATA_SOME:
2014 if (DMU_OT_IS_CRITICAL(type))
2015 copies++;
2016 break;
2017 case ZFS_REDUNDANT_METADATA_NONE:
2018 break;
2019 }
2020 } else if (wp & WP_NOFILL) {
2021 ASSERT(level == 0);
2022
2023 /*
2024 * If we're writing preallocated blocks, we aren't actually
2025 * writing them so don't set any policy properties. These
2026 * blocks are currently only used by an external subsystem
2027 * outside of zfs (i.e. dump) and not written by the zio
2028 * pipeline.
2029 */
2030 compress = ZIO_COMPRESS_OFF;
2031 checksum = ZIO_CHECKSUM_OFF;
2032 } else {
2033 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2034 compress);
2035 complevel = zio_complevel_select(os->os_spa, compress,
2036 complevel, complevel);
2037
2038 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2039 zio_checksum_select(dn->dn_checksum, checksum) :
2040 dedup_checksum;
2041
2042 /*
2043 * Determine dedup setting. If we are in dmu_sync(),
2044 * we won't actually dedup now because that's all
2045 * done in syncing context; but we do want to use the
2046 * dedup checksum. If the checksum is not strong
2047 * enough to ensure unique signatures, force
2048 * dedup_verify.
2049 */
2050 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2051 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2052 if (!(zio_checksum_table[checksum].ci_flags &
2053 ZCHECKSUM_FLAG_DEDUP))
2054 dedup_verify = B_TRUE;
2055 }
2056
2057 /*
2058 * Enable nopwrite if we have secure enough checksum
2059 * algorithm (see comment in zio_nop_write) and
2060 * compression is enabled. We don't enable nopwrite if
2061 * dedup is enabled as the two features are mutually
2062 * exclusive.
2063 */
2064 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2065 ZCHECKSUM_FLAG_NOPWRITE) &&
2066 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2067 }
2068
2069 /*
2070 * All objects in an encrypted objset are protected from modification
2071 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2072 * in the bp, so we cannot use all copies. Encrypted objects are also
2073 * not subject to nopwrite since writing the same data will still
2074 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2075 * to avoid ambiguity in the dedup code since the DDT does not store
2076 * object types.
2077 */
2078 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2079 encrypt = B_TRUE;
2080
2081 if (DMU_OT_IS_ENCRYPTED(type)) {
2082 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2083 nopwrite = B_FALSE;
2084 } else {
2085 dedup = B_FALSE;
2086 }
2087
2088 if (level <= 0 &&
2089 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2090 compress = ZIO_COMPRESS_EMPTY;
2091 }
2092 }
2093
2094 zp->zp_compress = compress;
2095 zp->zp_complevel = complevel;
2096 zp->zp_checksum = checksum;
2097 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2098 zp->zp_level = level;
2099 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2100 zp->zp_dedup = dedup;
2101 zp->zp_dedup_verify = dedup && dedup_verify;
2102 zp->zp_nopwrite = nopwrite;
2103 zp->zp_encrypt = encrypt;
2104 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2105 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2106 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2107 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2108 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2109 os->os_zpl_special_smallblock : 0;
2110
2111 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2112 }
2113
2114 /*
2115 * This function is only called from zfs_holey_common() for zpl_llseek()
2116 * in order to determine the location of holes. In order to accurately
2117 * report holes all dirty data must be synced to disk. This causes extremely
2118 * poor performance when seeking for holes in a dirty file. As a compromise,
2119 * only provide hole data when the dnode is clean. When a dnode is dirty
2120 * report the dnode as having no holes which is always a safe thing to do.
2121 */
2122 int
2123 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2124 {
2125 dnode_t *dn;
2126 int err;
2127
2128 restart:
2129 err = dnode_hold(os, object, FTAG, &dn);
2130 if (err)
2131 return (err);
2132
2133 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2134
2135 if (dnode_is_dirty(dn)) {
2136 /*
2137 * If the zfs_dmu_offset_next_sync module option is enabled
2138 * then strict hole reporting has been requested. Dirty
2139 * dnodes must be synced to disk to accurately report all
2140 * holes. When disabled dirty dnodes are reported to not
2141 * have any holes which is always safe.
2142 *
2143 * When called by zfs_holey_common() the zp->z_rangelock
2144 * is held to prevent zfs_write() and mmap writeback from
2145 * re-dirtying the dnode after txg_wait_synced().
2146 */
2147 if (zfs_dmu_offset_next_sync) {
2148 rw_exit(&dn->dn_struct_rwlock);
2149 dnode_rele(dn, FTAG);
2150 txg_wait_synced(dmu_objset_pool(os), 0);
2151 goto restart;
2152 }
2153
2154 err = SET_ERROR(EBUSY);
2155 } else {
2156 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2157 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2158 }
2159
2160 rw_exit(&dn->dn_struct_rwlock);
2161 dnode_rele(dn, FTAG);
2162
2163 return (err);
2164 }
2165
2166 void
2167 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2168 {
2169 dnode_phys_t *dnp = dn->dn_phys;
2170
2171 doi->doi_data_block_size = dn->dn_datablksz;
2172 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2173 1ULL << dn->dn_indblkshift : 0;
2174 doi->doi_type = dn->dn_type;
2175 doi->doi_bonus_type = dn->dn_bonustype;
2176 doi->doi_bonus_size = dn->dn_bonuslen;
2177 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2178 doi->doi_indirection = dn->dn_nlevels;
2179 doi->doi_checksum = dn->dn_checksum;
2180 doi->doi_compress = dn->dn_compress;
2181 doi->doi_nblkptr = dn->dn_nblkptr;
2182 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2183 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2184 doi->doi_fill_count = 0;
2185 for (int i = 0; i < dnp->dn_nblkptr; i++)
2186 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2187 }
2188
2189 void
2190 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2191 {
2192 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2193 mutex_enter(&dn->dn_mtx);
2194
2195 __dmu_object_info_from_dnode(dn, doi);
2196
2197 mutex_exit(&dn->dn_mtx);
2198 rw_exit(&dn->dn_struct_rwlock);
2199 }
2200
2201 /*
2202 * Get information on a DMU object.
2203 * If doi is NULL, just indicates whether the object exists.
2204 */
2205 int
2206 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2207 {
2208 dnode_t *dn;
2209 int err = dnode_hold(os, object, FTAG, &dn);
2210
2211 if (err)
2212 return (err);
2213
2214 if (doi != NULL)
2215 dmu_object_info_from_dnode(dn, doi);
2216
2217 dnode_rele(dn, FTAG);
2218 return (0);
2219 }
2220
2221 /*
2222 * As above, but faster; can be used when you have a held dbuf in hand.
2223 */
2224 void
2225 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2226 {
2227 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2228
2229 DB_DNODE_ENTER(db);
2230 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2231 DB_DNODE_EXIT(db);
2232 }
2233
2234 /*
2235 * Faster still when you only care about the size.
2236 */
2237 void
2238 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2239 u_longlong_t *nblk512)
2240 {
2241 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2242 dnode_t *dn;
2243
2244 DB_DNODE_ENTER(db);
2245 dn = DB_DNODE(db);
2246
2247 *blksize = dn->dn_datablksz;
2248 /* add in number of slots used for the dnode itself */
2249 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2250 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2251 DB_DNODE_EXIT(db);
2252 }
2253
2254 void
2255 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2256 {
2257 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2258 dnode_t *dn;
2259
2260 DB_DNODE_ENTER(db);
2261 dn = DB_DNODE(db);
2262 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
2263 DB_DNODE_EXIT(db);
2264 }
2265
2266 void
2267 byteswap_uint64_array(void *vbuf, size_t size)
2268 {
2269 uint64_t *buf = vbuf;
2270 size_t count = size >> 3;
2271 int i;
2272
2273 ASSERT((size & 7) == 0);
2274
2275 for (i = 0; i < count; i++)
2276 buf[i] = BSWAP_64(buf[i]);
2277 }
2278
2279 void
2280 byteswap_uint32_array(void *vbuf, size_t size)
2281 {
2282 uint32_t *buf = vbuf;
2283 size_t count = size >> 2;
2284 int i;
2285
2286 ASSERT((size & 3) == 0);
2287
2288 for (i = 0; i < count; i++)
2289 buf[i] = BSWAP_32(buf[i]);
2290 }
2291
2292 void
2293 byteswap_uint16_array(void *vbuf, size_t size)
2294 {
2295 uint16_t *buf = vbuf;
2296 size_t count = size >> 1;
2297 int i;
2298
2299 ASSERT((size & 1) == 0);
2300
2301 for (i = 0; i < count; i++)
2302 buf[i] = BSWAP_16(buf[i]);
2303 }
2304
2305 void
2306 byteswap_uint8_array(void *vbuf, size_t size)
2307 {
2308 (void) vbuf, (void) size;
2309 }
2310
2311 void
2312 dmu_init(void)
2313 {
2314 abd_init();
2315 zfs_dbgmsg_init();
2316 sa_cache_init();
2317 dmu_objset_init();
2318 dnode_init();
2319 zfetch_init();
2320 dmu_tx_init();
2321 l2arc_init();
2322 arc_init();
2323 dbuf_init();
2324 }
2325
2326 void
2327 dmu_fini(void)
2328 {
2329 arc_fini(); /* arc depends on l2arc, so arc must go first */
2330 l2arc_fini();
2331 dmu_tx_fini();
2332 zfetch_fini();
2333 dbuf_fini();
2334 dnode_fini();
2335 dmu_objset_fini();
2336 sa_cache_fini();
2337 zfs_dbgmsg_fini();
2338 abd_fini();
2339 }
2340
2341 EXPORT_SYMBOL(dmu_bonus_hold);
2342 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2343 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2344 EXPORT_SYMBOL(dmu_buf_rele_array);
2345 EXPORT_SYMBOL(dmu_prefetch);
2346 EXPORT_SYMBOL(dmu_free_range);
2347 EXPORT_SYMBOL(dmu_free_long_range);
2348 EXPORT_SYMBOL(dmu_free_long_object);
2349 EXPORT_SYMBOL(dmu_read);
2350 EXPORT_SYMBOL(dmu_read_by_dnode);
2351 EXPORT_SYMBOL(dmu_write);
2352 EXPORT_SYMBOL(dmu_write_by_dnode);
2353 EXPORT_SYMBOL(dmu_prealloc);
2354 EXPORT_SYMBOL(dmu_object_info);
2355 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2356 EXPORT_SYMBOL(dmu_object_info_from_db);
2357 EXPORT_SYMBOL(dmu_object_size_from_db);
2358 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2359 EXPORT_SYMBOL(dmu_object_set_nlevels);
2360 EXPORT_SYMBOL(dmu_object_set_blocksize);
2361 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2362 EXPORT_SYMBOL(dmu_object_set_checksum);
2363 EXPORT_SYMBOL(dmu_object_set_compress);
2364 EXPORT_SYMBOL(dmu_offset_next);
2365 EXPORT_SYMBOL(dmu_write_policy);
2366 EXPORT_SYMBOL(dmu_sync);
2367 EXPORT_SYMBOL(dmu_request_arcbuf);
2368 EXPORT_SYMBOL(dmu_return_arcbuf);
2369 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2370 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2371 EXPORT_SYMBOL(dmu_buf_hold);
2372 EXPORT_SYMBOL(dmu_ot);
2373
2374 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2375 "Enable NOP writes");
2376
2377 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2378 "Percentage of dirtied blocks from frees in one TXG");
2379
2380 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2381 "Enable forcing txg sync to find holes");
2382
2383 /* CSTYLED */
2384 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2385 "Limit one prefetch call to this size");
Cache object: a7b857aaf0ce90d90a9b9b5bb533f0d0
|