The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/dmu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
   24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
   25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
   26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
   27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
   28  * Copyright (c) 2019 Datto Inc.
   29  * Copyright (c) 2019, Klara Inc.
   30  * Copyright (c) 2019, Allan Jude
   31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
   32  */
   33 
   34 #include <sys/dmu.h>
   35 #include <sys/dmu_impl.h>
   36 #include <sys/dmu_tx.h>
   37 #include <sys/dbuf.h>
   38 #include <sys/dnode.h>
   39 #include <sys/zfs_context.h>
   40 #include <sys/dmu_objset.h>
   41 #include <sys/dmu_traverse.h>
   42 #include <sys/dsl_dataset.h>
   43 #include <sys/dsl_dir.h>
   44 #include <sys/dsl_pool.h>
   45 #include <sys/dsl_synctask.h>
   46 #include <sys/dsl_prop.h>
   47 #include <sys/dmu_zfetch.h>
   48 #include <sys/zfs_ioctl.h>
   49 #include <sys/zap.h>
   50 #include <sys/zio_checksum.h>
   51 #include <sys/zio_compress.h>
   52 #include <sys/sa.h>
   53 #include <sys/zfeature.h>
   54 #include <sys/abd.h>
   55 #include <sys/trace_zfs.h>
   56 #include <sys/zfs_racct.h>
   57 #include <sys/zfs_rlock.h>
   58 #ifdef _KERNEL
   59 #include <sys/vmsystm.h>
   60 #include <sys/zfs_znode.h>
   61 #endif
   62 
   63 /*
   64  * Enable/disable nopwrite feature.
   65  */
   66 static int zfs_nopwrite_enabled = 1;
   67 
   68 /*
   69  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
   70  * one TXG. After this threshold is crossed, additional dirty blocks from frees
   71  * will wait until the next TXG.
   72  * A value of zero will disable this throttle.
   73  */
   74 static uint_t zfs_per_txg_dirty_frees_percent = 30;
   75 
   76 /*
   77  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
   78  * By default this is enabled to ensure accurate hole reporting, it can result
   79  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
   80  * Disabling this option will result in holes never being reported in dirty
   81  * files which is always safe.
   82  */
   83 static int zfs_dmu_offset_next_sync = 1;
   84 
   85 /*
   86  * Limit the amount we can prefetch with one call to this amount.  This
   87  * helps to limit the amount of memory that can be used by prefetching.
   88  * Larger objects should be prefetched a bit at a time.
   89  */
   90 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
   91 
   92 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
   93         {DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"           },
   94         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"      },
   95         {DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"          },
   96         {DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"         },
   97         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"    },
   98         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"                 },
   99         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"          },
  100         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"  },
  101         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"         },
  102         {DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"        },
  103         {DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"             },
  104         {DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"            },
  105         {DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"         },
  106         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
  107         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"  },
  108         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"             },
  109         {DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"           },
  110         {DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"             },
  111         {DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"            },
  112         {DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"        },
  113         {DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"         },
  114         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"       },
  115         {DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"      },
  116         {DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"           },
  117         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"             },
  118         {DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"         },
  119         {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"        },
  120         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"             },
  121         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"  },
  122         {DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"           },
  123         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"   },
  124         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"       },
  125         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"       },
  126         {DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"               },
  127         {DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"            },
  128         {DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"            },
  129         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"       },
  130         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
  131         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"       },
  132         {DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
  133         {DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
  134         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
  135         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"     },
  136         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"        },
  137         {DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "System attributes"     },
  138         {DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "SA master node"        },
  139         {DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "SA attr registration"  },
  140         {DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "SA attr layouts"       },
  141         {DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"     },
  142         {DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"    },
  143         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"      },
  144         {DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"  },
  145         {DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"        },
  146         {DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"          }
  147 };
  148 
  149 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
  150         {       byteswap_uint8_array,   "uint8"         },
  151         {       byteswap_uint16_array,  "uint16"        },
  152         {       byteswap_uint32_array,  "uint32"        },
  153         {       byteswap_uint64_array,  "uint64"        },
  154         {       zap_byteswap,           "zap"           },
  155         {       dnode_buf_byteswap,     "dnode"         },
  156         {       dmu_objset_byteswap,    "objset"        },
  157         {       zfs_znode_byteswap,     "znode"         },
  158         {       zfs_oldacl_byteswap,    "oldacl"        },
  159         {       zfs_acl_byteswap,       "acl"           }
  160 };
  161 
  162 static int
  163 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
  164     const void *tag, dmu_buf_t **dbp)
  165 {
  166         uint64_t blkid;
  167         dmu_buf_impl_t *db;
  168 
  169         rw_enter(&dn->dn_struct_rwlock, RW_READER);
  170         blkid = dbuf_whichblock(dn, 0, offset);
  171         db = dbuf_hold(dn, blkid, tag);
  172         rw_exit(&dn->dn_struct_rwlock);
  173 
  174         if (db == NULL) {
  175                 *dbp = NULL;
  176                 return (SET_ERROR(EIO));
  177         }
  178 
  179         *dbp = &db->db;
  180         return (0);
  181 }
  182 int
  183 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
  184     const void *tag, dmu_buf_t **dbp)
  185 {
  186         dnode_t *dn;
  187         uint64_t blkid;
  188         dmu_buf_impl_t *db;
  189         int err;
  190 
  191         err = dnode_hold(os, object, FTAG, &dn);
  192         if (err)
  193                 return (err);
  194         rw_enter(&dn->dn_struct_rwlock, RW_READER);
  195         blkid = dbuf_whichblock(dn, 0, offset);
  196         db = dbuf_hold(dn, blkid, tag);
  197         rw_exit(&dn->dn_struct_rwlock);
  198         dnode_rele(dn, FTAG);
  199 
  200         if (db == NULL) {
  201                 *dbp = NULL;
  202                 return (SET_ERROR(EIO));
  203         }
  204 
  205         *dbp = &db->db;
  206         return (err);
  207 }
  208 
  209 int
  210 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
  211     const void *tag, dmu_buf_t **dbp, int flags)
  212 {
  213         int err;
  214         int db_flags = DB_RF_CANFAIL;
  215 
  216         if (flags & DMU_READ_NO_PREFETCH)
  217                 db_flags |= DB_RF_NOPREFETCH;
  218         if (flags & DMU_READ_NO_DECRYPT)
  219                 db_flags |= DB_RF_NO_DECRYPT;
  220 
  221         err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
  222         if (err == 0) {
  223                 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
  224                 err = dbuf_read(db, NULL, db_flags);
  225                 if (err != 0) {
  226                         dbuf_rele(db, tag);
  227                         *dbp = NULL;
  228                 }
  229         }
  230 
  231         return (err);
  232 }
  233 
  234 int
  235 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
  236     const void *tag, dmu_buf_t **dbp, int flags)
  237 {
  238         int err;
  239         int db_flags = DB_RF_CANFAIL;
  240 
  241         if (flags & DMU_READ_NO_PREFETCH)
  242                 db_flags |= DB_RF_NOPREFETCH;
  243         if (flags & DMU_READ_NO_DECRYPT)
  244                 db_flags |= DB_RF_NO_DECRYPT;
  245 
  246         err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
  247         if (err == 0) {
  248                 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
  249                 err = dbuf_read(db, NULL, db_flags);
  250                 if (err != 0) {
  251                         dbuf_rele(db, tag);
  252                         *dbp = NULL;
  253                 }
  254         }
  255 
  256         return (err);
  257 }
  258 
  259 int
  260 dmu_bonus_max(void)
  261 {
  262         return (DN_OLD_MAX_BONUSLEN);
  263 }
  264 
  265 int
  266 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
  267 {
  268         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
  269         dnode_t *dn;
  270         int error;
  271 
  272         DB_DNODE_ENTER(db);
  273         dn = DB_DNODE(db);
  274 
  275         if (dn->dn_bonus != db) {
  276                 error = SET_ERROR(EINVAL);
  277         } else if (newsize < 0 || newsize > db_fake->db_size) {
  278                 error = SET_ERROR(EINVAL);
  279         } else {
  280                 dnode_setbonuslen(dn, newsize, tx);
  281                 error = 0;
  282         }
  283 
  284         DB_DNODE_EXIT(db);
  285         return (error);
  286 }
  287 
  288 int
  289 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
  290 {
  291         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
  292         dnode_t *dn;
  293         int error;
  294 
  295         DB_DNODE_ENTER(db);
  296         dn = DB_DNODE(db);
  297 
  298         if (!DMU_OT_IS_VALID(type)) {
  299                 error = SET_ERROR(EINVAL);
  300         } else if (dn->dn_bonus != db) {
  301                 error = SET_ERROR(EINVAL);
  302         } else {
  303                 dnode_setbonus_type(dn, type, tx);
  304                 error = 0;
  305         }
  306 
  307         DB_DNODE_EXIT(db);
  308         return (error);
  309 }
  310 
  311 dmu_object_type_t
  312 dmu_get_bonustype(dmu_buf_t *db_fake)
  313 {
  314         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
  315         dnode_t *dn;
  316         dmu_object_type_t type;
  317 
  318         DB_DNODE_ENTER(db);
  319         dn = DB_DNODE(db);
  320         type = dn->dn_bonustype;
  321         DB_DNODE_EXIT(db);
  322 
  323         return (type);
  324 }
  325 
  326 int
  327 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
  328 {
  329         dnode_t *dn;
  330         int error;
  331 
  332         error = dnode_hold(os, object, FTAG, &dn);
  333         dbuf_rm_spill(dn, tx);
  334         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
  335         dnode_rm_spill(dn, tx);
  336         rw_exit(&dn->dn_struct_rwlock);
  337         dnode_rele(dn, FTAG);
  338         return (error);
  339 }
  340 
  341 /*
  342  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
  343  * has not yet been allocated a new bonus dbuf a will be allocated.
  344  * Returns ENOENT, EIO, or 0.
  345  */
  346 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
  347     uint32_t flags)
  348 {
  349         dmu_buf_impl_t *db;
  350         int error;
  351         uint32_t db_flags = DB_RF_MUST_SUCCEED;
  352 
  353         if (flags & DMU_READ_NO_PREFETCH)
  354                 db_flags |= DB_RF_NOPREFETCH;
  355         if (flags & DMU_READ_NO_DECRYPT)
  356                 db_flags |= DB_RF_NO_DECRYPT;
  357 
  358         rw_enter(&dn->dn_struct_rwlock, RW_READER);
  359         if (dn->dn_bonus == NULL) {
  360                 rw_exit(&dn->dn_struct_rwlock);
  361                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
  362                 if (dn->dn_bonus == NULL)
  363                         dbuf_create_bonus(dn);
  364         }
  365         db = dn->dn_bonus;
  366 
  367         /* as long as the bonus buf is held, the dnode will be held */
  368         if (zfs_refcount_add(&db->db_holds, tag) == 1) {
  369                 VERIFY(dnode_add_ref(dn, db));
  370                 atomic_inc_32(&dn->dn_dbufs_count);
  371         }
  372 
  373         /*
  374          * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
  375          * hold and incrementing the dbuf count to ensure that dnode_move() sees
  376          * a dnode hold for every dbuf.
  377          */
  378         rw_exit(&dn->dn_struct_rwlock);
  379 
  380         error = dbuf_read(db, NULL, db_flags);
  381         if (error) {
  382                 dnode_evict_bonus(dn);
  383                 dbuf_rele(db, tag);
  384                 *dbp = NULL;
  385                 return (error);
  386         }
  387 
  388         *dbp = &db->db;
  389         return (0);
  390 }
  391 
  392 int
  393 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
  394 {
  395         dnode_t *dn;
  396         int error;
  397 
  398         error = dnode_hold(os, object, FTAG, &dn);
  399         if (error)
  400                 return (error);
  401 
  402         error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
  403         dnode_rele(dn, FTAG);
  404 
  405         return (error);
  406 }
  407 
  408 /*
  409  * returns ENOENT, EIO, or 0.
  410  *
  411  * This interface will allocate a blank spill dbuf when a spill blk
  412  * doesn't already exist on the dnode.
  413  *
  414  * if you only want to find an already existing spill db, then
  415  * dmu_spill_hold_existing() should be used.
  416  */
  417 int
  418 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
  419     dmu_buf_t **dbp)
  420 {
  421         dmu_buf_impl_t *db = NULL;
  422         int err;
  423 
  424         if ((flags & DB_RF_HAVESTRUCT) == 0)
  425                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
  426 
  427         db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
  428 
  429         if ((flags & DB_RF_HAVESTRUCT) == 0)
  430                 rw_exit(&dn->dn_struct_rwlock);
  431 
  432         if (db == NULL) {
  433                 *dbp = NULL;
  434                 return (SET_ERROR(EIO));
  435         }
  436         err = dbuf_read(db, NULL, flags);
  437         if (err == 0)
  438                 *dbp = &db->db;
  439         else {
  440                 dbuf_rele(db, tag);
  441                 *dbp = NULL;
  442         }
  443         return (err);
  444 }
  445 
  446 int
  447 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
  448 {
  449         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
  450         dnode_t *dn;
  451         int err;
  452 
  453         DB_DNODE_ENTER(db);
  454         dn = DB_DNODE(db);
  455 
  456         if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
  457                 err = SET_ERROR(EINVAL);
  458         } else {
  459                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
  460 
  461                 if (!dn->dn_have_spill) {
  462                         err = SET_ERROR(ENOENT);
  463                 } else {
  464                         err = dmu_spill_hold_by_dnode(dn,
  465                             DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
  466                 }
  467 
  468                 rw_exit(&dn->dn_struct_rwlock);
  469         }
  470 
  471         DB_DNODE_EXIT(db);
  472         return (err);
  473 }
  474 
  475 int
  476 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
  477     dmu_buf_t **dbp)
  478 {
  479         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
  480         dnode_t *dn;
  481         int err;
  482         uint32_t db_flags = DB_RF_CANFAIL;
  483 
  484         if (flags & DMU_READ_NO_DECRYPT)
  485                 db_flags |= DB_RF_NO_DECRYPT;
  486 
  487         DB_DNODE_ENTER(db);
  488         dn = DB_DNODE(db);
  489         err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
  490         DB_DNODE_EXIT(db);
  491 
  492         return (err);
  493 }
  494 
  495 /*
  496  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
  497  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
  498  * and can induce severe lock contention when writing to several files
  499  * whose dnodes are in the same block.
  500  */
  501 int
  502 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
  503     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
  504     uint32_t flags)
  505 {
  506         dmu_buf_t **dbp;
  507         zstream_t *zs = NULL;
  508         uint64_t blkid, nblks, i;
  509         uint32_t dbuf_flags;
  510         int err;
  511         zio_t *zio = NULL;
  512         boolean_t missed = B_FALSE;
  513 
  514         ASSERT(length <= DMU_MAX_ACCESS);
  515 
  516         /*
  517          * Note: We directly notify the prefetch code of this read, so that
  518          * we can tell it about the multi-block read.  dbuf_read() only knows
  519          * about the one block it is accessing.
  520          */
  521         dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
  522             DB_RF_NOPREFETCH;
  523 
  524         if ((flags & DMU_READ_NO_DECRYPT) != 0)
  525                 dbuf_flags |= DB_RF_NO_DECRYPT;
  526 
  527         rw_enter(&dn->dn_struct_rwlock, RW_READER);
  528         if (dn->dn_datablkshift) {
  529                 int blkshift = dn->dn_datablkshift;
  530                 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
  531                     P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
  532         } else {
  533                 if (offset + length > dn->dn_datablksz) {
  534                         zfs_panic_recover("zfs: accessing past end of object "
  535                             "%llx/%llx (size=%u access=%llu+%llu)",
  536                             (longlong_t)dn->dn_objset->
  537                             os_dsl_dataset->ds_object,
  538                             (longlong_t)dn->dn_object, dn->dn_datablksz,
  539                             (longlong_t)offset, (longlong_t)length);
  540                         rw_exit(&dn->dn_struct_rwlock);
  541                         return (SET_ERROR(EIO));
  542                 }
  543                 nblks = 1;
  544         }
  545         dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
  546 
  547         if (read)
  548                 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
  549                     ZIO_FLAG_CANFAIL);
  550         blkid = dbuf_whichblock(dn, 0, offset);
  551         if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
  552             length <= zfetch_array_rd_sz) {
  553                 /*
  554                  * Prepare the zfetch before initiating the demand reads, so
  555                  * that if multiple threads block on same indirect block, we
  556                  * base predictions on the original less racy request order.
  557                  */
  558                 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
  559                     B_TRUE);
  560         }
  561         for (i = 0; i < nblks; i++) {
  562                 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
  563                 if (db == NULL) {
  564                         if (zs)
  565                                 dmu_zfetch_run(zs, missed, B_TRUE);
  566                         rw_exit(&dn->dn_struct_rwlock);
  567                         dmu_buf_rele_array(dbp, nblks, tag);
  568                         if (read)
  569                                 zio_nowait(zio);
  570                         return (SET_ERROR(EIO));
  571                 }
  572 
  573                 /*
  574                  * Initiate async demand data read.
  575                  * We check the db_state after calling dbuf_read() because
  576                  * (1) dbuf_read() may change the state to CACHED due to a
  577                  * hit in the ARC, and (2) on a cache miss, a child will
  578                  * have been added to "zio" but not yet completed, so the
  579                  * state will not yet be CACHED.
  580                  */
  581                 if (read) {
  582                         if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
  583                             offset + length < db->db.db_offset +
  584                             db->db.db_size) {
  585                                 if (offset <= db->db.db_offset)
  586                                         dbuf_flags |= DB_RF_PARTIAL_FIRST;
  587                                 else
  588                                         dbuf_flags |= DB_RF_PARTIAL_MORE;
  589                         }
  590                         (void) dbuf_read(db, zio, dbuf_flags);
  591                         if (db->db_state != DB_CACHED)
  592                                 missed = B_TRUE;
  593                 }
  594                 dbp[i] = &db->db;
  595         }
  596 
  597         if (!read)
  598                 zfs_racct_write(length, nblks);
  599 
  600         if (zs)
  601                 dmu_zfetch_run(zs, missed, B_TRUE);
  602         rw_exit(&dn->dn_struct_rwlock);
  603 
  604         if (read) {
  605                 /* wait for async read i/o */
  606                 err = zio_wait(zio);
  607                 if (err) {
  608                         dmu_buf_rele_array(dbp, nblks, tag);
  609                         return (err);
  610                 }
  611 
  612                 /* wait for other io to complete */
  613                 for (i = 0; i < nblks; i++) {
  614                         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
  615                         mutex_enter(&db->db_mtx);
  616                         while (db->db_state == DB_READ ||
  617                             db->db_state == DB_FILL)
  618                                 cv_wait(&db->db_changed, &db->db_mtx);
  619                         if (db->db_state == DB_UNCACHED)
  620                                 err = SET_ERROR(EIO);
  621                         mutex_exit(&db->db_mtx);
  622                         if (err) {
  623                                 dmu_buf_rele_array(dbp, nblks, tag);
  624                                 return (err);
  625                         }
  626                 }
  627         }
  628 
  629         *numbufsp = nblks;
  630         *dbpp = dbp;
  631         return (0);
  632 }
  633 
  634 int
  635 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
  636     uint64_t length, int read, const void *tag, int *numbufsp,
  637     dmu_buf_t ***dbpp)
  638 {
  639         dnode_t *dn;
  640         int err;
  641 
  642         err = dnode_hold(os, object, FTAG, &dn);
  643         if (err)
  644                 return (err);
  645 
  646         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
  647             numbufsp, dbpp, DMU_READ_PREFETCH);
  648 
  649         dnode_rele(dn, FTAG);
  650 
  651         return (err);
  652 }
  653 
  654 int
  655 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
  656     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
  657     dmu_buf_t ***dbpp)
  658 {
  659         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
  660         dnode_t *dn;
  661         int err;
  662 
  663         DB_DNODE_ENTER(db);
  664         dn = DB_DNODE(db);
  665         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
  666             numbufsp, dbpp, DMU_READ_PREFETCH);
  667         DB_DNODE_EXIT(db);
  668 
  669         return (err);
  670 }
  671 
  672 void
  673 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
  674 {
  675         int i;
  676         dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
  677 
  678         if (numbufs == 0)
  679                 return;
  680 
  681         for (i = 0; i < numbufs; i++) {
  682                 if (dbp[i])
  683                         dbuf_rele(dbp[i], tag);
  684         }
  685 
  686         kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
  687 }
  688 
  689 /*
  690  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
  691  * indirect blocks prefetched will be those that point to the blocks containing
  692  * the data starting at offset, and continuing to offset + len.
  693  *
  694  * Note that if the indirect blocks above the blocks being prefetched are not
  695  * in cache, they will be asynchronously read in.
  696  */
  697 void
  698 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
  699     uint64_t len, zio_priority_t pri)
  700 {
  701         dnode_t *dn;
  702         uint64_t blkid;
  703         int nblks, err;
  704 
  705         if (len == 0) {  /* they're interested in the bonus buffer */
  706                 dn = DMU_META_DNODE(os);
  707 
  708                 if (object == 0 || object >= DN_MAX_OBJECT)
  709                         return;
  710 
  711                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
  712                 blkid = dbuf_whichblock(dn, level,
  713                     object * sizeof (dnode_phys_t));
  714                 dbuf_prefetch(dn, level, blkid, pri, 0);
  715                 rw_exit(&dn->dn_struct_rwlock);
  716                 return;
  717         }
  718 
  719         /*
  720          * See comment before the definition of dmu_prefetch_max.
  721          */
  722         len = MIN(len, dmu_prefetch_max);
  723 
  724         /*
  725          * XXX - Note, if the dnode for the requested object is not
  726          * already cached, we will do a *synchronous* read in the
  727          * dnode_hold() call.  The same is true for any indirects.
  728          */
  729         err = dnode_hold(os, object, FTAG, &dn);
  730         if (err != 0)
  731                 return;
  732 
  733         /*
  734          * offset + len - 1 is the last byte we want to prefetch for, and offset
  735          * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
  736          * last block we want to prefetch, and dbuf_whichblock(dn, level,
  737          * offset)  is the first.  Then the number we need to prefetch is the
  738          * last - first + 1.
  739          */
  740         rw_enter(&dn->dn_struct_rwlock, RW_READER);
  741         if (level > 0 || dn->dn_datablkshift != 0) {
  742                 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
  743                     dbuf_whichblock(dn, level, offset) + 1;
  744         } else {
  745                 nblks = (offset < dn->dn_datablksz);
  746         }
  747 
  748         if (nblks != 0) {
  749                 blkid = dbuf_whichblock(dn, level, offset);
  750                 for (int i = 0; i < nblks; i++)
  751                         dbuf_prefetch(dn, level, blkid + i, pri, 0);
  752         }
  753         rw_exit(&dn->dn_struct_rwlock);
  754 
  755         dnode_rele(dn, FTAG);
  756 }
  757 
  758 /*
  759  * Get the next "chunk" of file data to free.  We traverse the file from
  760  * the end so that the file gets shorter over time (if we crashes in the
  761  * middle, this will leave us in a better state).  We find allocated file
  762  * data by simply searching the allocated level 1 indirects.
  763  *
  764  * On input, *start should be the first offset that does not need to be
  765  * freed (e.g. "offset + length").  On return, *start will be the first
  766  * offset that should be freed and l1blks is set to the number of level 1
  767  * indirect blocks found within the chunk.
  768  */
  769 static int
  770 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
  771 {
  772         uint64_t blks;
  773         uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
  774         /* bytes of data covered by a level-1 indirect block */
  775         uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
  776             EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
  777 
  778         ASSERT3U(minimum, <=, *start);
  779 
  780         /*
  781          * Check if we can free the entire range assuming that all of the
  782          * L1 blocks in this range have data. If we can, we use this
  783          * worst case value as an estimate so we can avoid having to look
  784          * at the object's actual data.
  785          */
  786         uint64_t total_l1blks =
  787             (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
  788             iblkrange;
  789         if (total_l1blks <= maxblks) {
  790                 *l1blks = total_l1blks;
  791                 *start = minimum;
  792                 return (0);
  793         }
  794         ASSERT(ISP2(iblkrange));
  795 
  796         for (blks = 0; *start > minimum && blks < maxblks; blks++) {
  797                 int err;
  798 
  799                 /*
  800                  * dnode_next_offset(BACKWARDS) will find an allocated L1
  801                  * indirect block at or before the input offset.  We must
  802                  * decrement *start so that it is at the end of the region
  803                  * to search.
  804                  */
  805                 (*start)--;
  806 
  807                 err = dnode_next_offset(dn,
  808                     DNODE_FIND_BACKWARDS, start, 2, 1, 0);
  809 
  810                 /* if there are no indirect blocks before start, we are done */
  811                 if (err == ESRCH) {
  812                         *start = minimum;
  813                         break;
  814                 } else if (err != 0) {
  815                         *l1blks = blks;
  816                         return (err);
  817                 }
  818 
  819                 /* set start to the beginning of this L1 indirect */
  820                 *start = P2ALIGN(*start, iblkrange);
  821         }
  822         if (*start < minimum)
  823                 *start = minimum;
  824         *l1blks = blks;
  825 
  826         return (0);
  827 }
  828 
  829 /*
  830  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
  831  * otherwise return false.
  832  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
  833  */
  834 static boolean_t
  835 dmu_objset_zfs_unmounting(objset_t *os)
  836 {
  837 #ifdef _KERNEL
  838         if (dmu_objset_type(os) == DMU_OST_ZFS)
  839                 return (zfs_get_vfs_flag_unmounted(os));
  840 #else
  841         (void) os;
  842 #endif
  843         return (B_FALSE);
  844 }
  845 
  846 static int
  847 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
  848     uint64_t length)
  849 {
  850         uint64_t object_size;
  851         int err;
  852         uint64_t dirty_frees_threshold;
  853         dsl_pool_t *dp = dmu_objset_pool(os);
  854 
  855         if (dn == NULL)
  856                 return (SET_ERROR(EINVAL));
  857 
  858         object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
  859         if (offset >= object_size)
  860                 return (0);
  861 
  862         if (zfs_per_txg_dirty_frees_percent <= 100)
  863                 dirty_frees_threshold =
  864                     zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
  865         else
  866                 dirty_frees_threshold = zfs_dirty_data_max / 20;
  867 
  868         if (length == DMU_OBJECT_END || offset + length > object_size)
  869                 length = object_size - offset;
  870 
  871         while (length != 0) {
  872                 uint64_t chunk_end, chunk_begin, chunk_len;
  873                 uint64_t l1blks;
  874                 dmu_tx_t *tx;
  875 
  876                 if (dmu_objset_zfs_unmounting(dn->dn_objset))
  877                         return (SET_ERROR(EINTR));
  878 
  879                 chunk_end = chunk_begin = offset + length;
  880 
  881                 /* move chunk_begin backwards to the beginning of this chunk */
  882                 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
  883                 if (err)
  884                         return (err);
  885                 ASSERT3U(chunk_begin, >=, offset);
  886                 ASSERT3U(chunk_begin, <=, chunk_end);
  887 
  888                 chunk_len = chunk_end - chunk_begin;
  889 
  890                 tx = dmu_tx_create(os);
  891                 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
  892 
  893                 /*
  894                  * Mark this transaction as typically resulting in a net
  895                  * reduction in space used.
  896                  */
  897                 dmu_tx_mark_netfree(tx);
  898                 err = dmu_tx_assign(tx, TXG_WAIT);
  899                 if (err) {
  900                         dmu_tx_abort(tx);
  901                         return (err);
  902                 }
  903 
  904                 uint64_t txg = dmu_tx_get_txg(tx);
  905 
  906                 mutex_enter(&dp->dp_lock);
  907                 uint64_t long_free_dirty =
  908                     dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
  909                 mutex_exit(&dp->dp_lock);
  910 
  911                 /*
  912                  * To avoid filling up a TXG with just frees, wait for
  913                  * the next TXG to open before freeing more chunks if
  914                  * we have reached the threshold of frees.
  915                  */
  916                 if (dirty_frees_threshold != 0 &&
  917                     long_free_dirty >= dirty_frees_threshold) {
  918                         DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
  919                         dmu_tx_commit(tx);
  920                         txg_wait_open(dp, 0, B_TRUE);
  921                         continue;
  922                 }
  923 
  924                 /*
  925                  * In order to prevent unnecessary write throttling, for each
  926                  * TXG, we track the cumulative size of L1 blocks being dirtied
  927                  * in dnode_free_range() below. We compare this number to a
  928                  * tunable threshold, past which we prevent new L1 dirty freeing
  929                  * blocks from being added into the open TXG. See
  930                  * dmu_free_long_range_impl() for details. The threshold
  931                  * prevents write throttle activation due to dirty freeing L1
  932                  * blocks taking up a large percentage of zfs_dirty_data_max.
  933                  */
  934                 mutex_enter(&dp->dp_lock);
  935                 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
  936                     l1blks << dn->dn_indblkshift;
  937                 mutex_exit(&dp->dp_lock);
  938                 DTRACE_PROBE3(free__long__range,
  939                     uint64_t, long_free_dirty, uint64_t, chunk_len,
  940                     uint64_t, txg);
  941                 dnode_free_range(dn, chunk_begin, chunk_len, tx);
  942 
  943                 dmu_tx_commit(tx);
  944 
  945                 length -= chunk_len;
  946         }
  947         return (0);
  948 }
  949 
  950 int
  951 dmu_free_long_range(objset_t *os, uint64_t object,
  952     uint64_t offset, uint64_t length)
  953 {
  954         dnode_t *dn;
  955         int err;
  956 
  957         err = dnode_hold(os, object, FTAG, &dn);
  958         if (err != 0)
  959                 return (err);
  960         err = dmu_free_long_range_impl(os, dn, offset, length);
  961 
  962         /*
  963          * It is important to zero out the maxblkid when freeing the entire
  964          * file, so that (a) subsequent calls to dmu_free_long_range_impl()
  965          * will take the fast path, and (b) dnode_reallocate() can verify
  966          * that the entire file has been freed.
  967          */
  968         if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
  969                 dn->dn_maxblkid = 0;
  970 
  971         dnode_rele(dn, FTAG);
  972         return (err);
  973 }
  974 
  975 int
  976 dmu_free_long_object(objset_t *os, uint64_t object)
  977 {
  978         dmu_tx_t *tx;
  979         int err;
  980 
  981         err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
  982         if (err != 0)
  983                 return (err);
  984 
  985         tx = dmu_tx_create(os);
  986         dmu_tx_hold_bonus(tx, object);
  987         dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
  988         dmu_tx_mark_netfree(tx);
  989         err = dmu_tx_assign(tx, TXG_WAIT);
  990         if (err == 0) {
  991                 err = dmu_object_free(os, object, tx);
  992                 dmu_tx_commit(tx);
  993         } else {
  994                 dmu_tx_abort(tx);
  995         }
  996 
  997         return (err);
  998 }
  999 
 1000 int
 1001 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
 1002     uint64_t size, dmu_tx_t *tx)
 1003 {
 1004         dnode_t *dn;
 1005         int err = dnode_hold(os, object, FTAG, &dn);
 1006         if (err)
 1007                 return (err);
 1008         ASSERT(offset < UINT64_MAX);
 1009         ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
 1010         dnode_free_range(dn, offset, size, tx);
 1011         dnode_rele(dn, FTAG);
 1012         return (0);
 1013 }
 1014 
 1015 static int
 1016 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
 1017     void *buf, uint32_t flags)
 1018 {
 1019         dmu_buf_t **dbp;
 1020         int numbufs, err = 0;
 1021 
 1022         /*
 1023          * Deal with odd block sizes, where there can't be data past the first
 1024          * block.  If we ever do the tail block optimization, we will need to
 1025          * handle that here as well.
 1026          */
 1027         if (dn->dn_maxblkid == 0) {
 1028                 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
 1029                     MIN(size, dn->dn_datablksz - offset);
 1030                 memset((char *)buf + newsz, 0, size - newsz);
 1031                 size = newsz;
 1032         }
 1033 
 1034         while (size > 0) {
 1035                 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
 1036                 int i;
 1037 
 1038                 /*
 1039                  * NB: we could do this block-at-a-time, but it's nice
 1040                  * to be reading in parallel.
 1041                  */
 1042                 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
 1043                     TRUE, FTAG, &numbufs, &dbp, flags);
 1044                 if (err)
 1045                         break;
 1046 
 1047                 for (i = 0; i < numbufs; i++) {
 1048                         uint64_t tocpy;
 1049                         int64_t bufoff;
 1050                         dmu_buf_t *db = dbp[i];
 1051 
 1052                         ASSERT(size > 0);
 1053 
 1054                         bufoff = offset - db->db_offset;
 1055                         tocpy = MIN(db->db_size - bufoff, size);
 1056 
 1057                         (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
 1058 
 1059                         offset += tocpy;
 1060                         size -= tocpy;
 1061                         buf = (char *)buf + tocpy;
 1062                 }
 1063                 dmu_buf_rele_array(dbp, numbufs, FTAG);
 1064         }
 1065         return (err);
 1066 }
 1067 
 1068 int
 1069 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 1070     void *buf, uint32_t flags)
 1071 {
 1072         dnode_t *dn;
 1073         int err;
 1074 
 1075         err = dnode_hold(os, object, FTAG, &dn);
 1076         if (err != 0)
 1077                 return (err);
 1078 
 1079         err = dmu_read_impl(dn, offset, size, buf, flags);
 1080         dnode_rele(dn, FTAG);
 1081         return (err);
 1082 }
 1083 
 1084 int
 1085 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
 1086     uint32_t flags)
 1087 {
 1088         return (dmu_read_impl(dn, offset, size, buf, flags));
 1089 }
 1090 
 1091 static void
 1092 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
 1093     const void *buf, dmu_tx_t *tx)
 1094 {
 1095         int i;
 1096 
 1097         for (i = 0; i < numbufs; i++) {
 1098                 uint64_t tocpy;
 1099                 int64_t bufoff;
 1100                 dmu_buf_t *db = dbp[i];
 1101 
 1102                 ASSERT(size > 0);
 1103 
 1104                 bufoff = offset - db->db_offset;
 1105                 tocpy = MIN(db->db_size - bufoff, size);
 1106 
 1107                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
 1108 
 1109                 if (tocpy == db->db_size)
 1110                         dmu_buf_will_fill(db, tx);
 1111                 else
 1112                         dmu_buf_will_dirty(db, tx);
 1113 
 1114                 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
 1115 
 1116                 if (tocpy == db->db_size)
 1117                         dmu_buf_fill_done(db, tx);
 1118 
 1119                 offset += tocpy;
 1120                 size -= tocpy;
 1121                 buf = (char *)buf + tocpy;
 1122         }
 1123 }
 1124 
 1125 void
 1126 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 1127     const void *buf, dmu_tx_t *tx)
 1128 {
 1129         dmu_buf_t **dbp;
 1130         int numbufs;
 1131 
 1132         if (size == 0)
 1133                 return;
 1134 
 1135         VERIFY0(dmu_buf_hold_array(os, object, offset, size,
 1136             FALSE, FTAG, &numbufs, &dbp));
 1137         dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
 1138         dmu_buf_rele_array(dbp, numbufs, FTAG);
 1139 }
 1140 
 1141 /*
 1142  * Note: Lustre is an external consumer of this interface.
 1143  */
 1144 void
 1145 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
 1146     const void *buf, dmu_tx_t *tx)
 1147 {
 1148         dmu_buf_t **dbp;
 1149         int numbufs;
 1150 
 1151         if (size == 0)
 1152                 return;
 1153 
 1154         VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
 1155             FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
 1156         dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
 1157         dmu_buf_rele_array(dbp, numbufs, FTAG);
 1158 }
 1159 
 1160 void
 1161 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 1162     dmu_tx_t *tx)
 1163 {
 1164         dmu_buf_t **dbp;
 1165         int numbufs, i;
 1166 
 1167         if (size == 0)
 1168                 return;
 1169 
 1170         VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
 1171             FALSE, FTAG, &numbufs, &dbp));
 1172 
 1173         for (i = 0; i < numbufs; i++) {
 1174                 dmu_buf_t *db = dbp[i];
 1175 
 1176                 dmu_buf_will_not_fill(db, tx);
 1177         }
 1178         dmu_buf_rele_array(dbp, numbufs, FTAG);
 1179 }
 1180 
 1181 void
 1182 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
 1183     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
 1184     int compressed_size, int byteorder, dmu_tx_t *tx)
 1185 {
 1186         dmu_buf_t *db;
 1187 
 1188         ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
 1189         ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
 1190         VERIFY0(dmu_buf_hold_noread(os, object, offset,
 1191             FTAG, &db));
 1192 
 1193         dmu_buf_write_embedded(db,
 1194             data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
 1195             uncompressed_size, compressed_size, byteorder, tx);
 1196 
 1197         dmu_buf_rele(db, FTAG);
 1198 }
 1199 
 1200 void
 1201 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 1202     dmu_tx_t *tx)
 1203 {
 1204         int numbufs, i;
 1205         dmu_buf_t **dbp;
 1206 
 1207         VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
 1208             &numbufs, &dbp));
 1209         for (i = 0; i < numbufs; i++)
 1210                 dmu_buf_redact(dbp[i], tx);
 1211         dmu_buf_rele_array(dbp, numbufs, FTAG);
 1212 }
 1213 
 1214 #ifdef _KERNEL
 1215 int
 1216 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
 1217 {
 1218         dmu_buf_t **dbp;
 1219         int numbufs, i, err;
 1220 
 1221         /*
 1222          * NB: we could do this block-at-a-time, but it's nice
 1223          * to be reading in parallel.
 1224          */
 1225         err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
 1226             TRUE, FTAG, &numbufs, &dbp, 0);
 1227         if (err)
 1228                 return (err);
 1229 
 1230         for (i = 0; i < numbufs; i++) {
 1231                 uint64_t tocpy;
 1232                 int64_t bufoff;
 1233                 dmu_buf_t *db = dbp[i];
 1234 
 1235                 ASSERT(size > 0);
 1236 
 1237                 bufoff = zfs_uio_offset(uio) - db->db_offset;
 1238                 tocpy = MIN(db->db_size - bufoff, size);
 1239 
 1240                 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
 1241                     UIO_READ, uio);
 1242 
 1243                 if (err)
 1244                         break;
 1245 
 1246                 size -= tocpy;
 1247         }
 1248         dmu_buf_rele_array(dbp, numbufs, FTAG);
 1249 
 1250         return (err);
 1251 }
 1252 
 1253 /*
 1254  * Read 'size' bytes into the uio buffer.
 1255  * From object zdb->db_object.
 1256  * Starting at zfs_uio_offset(uio).
 1257  *
 1258  * If the caller already has a dbuf in the target object
 1259  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
 1260  * because we don't have to find the dnode_t for the object.
 1261  */
 1262 int
 1263 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
 1264 {
 1265         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
 1266         dnode_t *dn;
 1267         int err;
 1268 
 1269         if (size == 0)
 1270                 return (0);
 1271 
 1272         DB_DNODE_ENTER(db);
 1273         dn = DB_DNODE(db);
 1274         err = dmu_read_uio_dnode(dn, uio, size);
 1275         DB_DNODE_EXIT(db);
 1276 
 1277         return (err);
 1278 }
 1279 
 1280 /*
 1281  * Read 'size' bytes into the uio buffer.
 1282  * From the specified object
 1283  * Starting at offset zfs_uio_offset(uio).
 1284  */
 1285 int
 1286 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
 1287 {
 1288         dnode_t *dn;
 1289         int err;
 1290 
 1291         if (size == 0)
 1292                 return (0);
 1293 
 1294         err = dnode_hold(os, object, FTAG, &dn);
 1295         if (err)
 1296                 return (err);
 1297 
 1298         err = dmu_read_uio_dnode(dn, uio, size);
 1299 
 1300         dnode_rele(dn, FTAG);
 1301 
 1302         return (err);
 1303 }
 1304 
 1305 int
 1306 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
 1307 {
 1308         dmu_buf_t **dbp;
 1309         int numbufs;
 1310         int err = 0;
 1311         int i;
 1312 
 1313         err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
 1314             FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
 1315         if (err)
 1316                 return (err);
 1317 
 1318         for (i = 0; i < numbufs; i++) {
 1319                 uint64_t tocpy;
 1320                 int64_t bufoff;
 1321                 dmu_buf_t *db = dbp[i];
 1322 
 1323                 ASSERT(size > 0);
 1324 
 1325                 bufoff = zfs_uio_offset(uio) - db->db_offset;
 1326                 tocpy = MIN(db->db_size - bufoff, size);
 1327 
 1328                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
 1329 
 1330                 if (tocpy == db->db_size)
 1331                         dmu_buf_will_fill(db, tx);
 1332                 else
 1333                         dmu_buf_will_dirty(db, tx);
 1334 
 1335                 /*
 1336                  * XXX zfs_uiomove could block forever (eg.nfs-backed
 1337                  * pages).  There needs to be a uiolockdown() function
 1338                  * to lock the pages in memory, so that zfs_uiomove won't
 1339                  * block.
 1340                  */
 1341                 err = zfs_uio_fault_move((char *)db->db_data + bufoff,
 1342                     tocpy, UIO_WRITE, uio);
 1343 
 1344                 if (tocpy == db->db_size)
 1345                         dmu_buf_fill_done(db, tx);
 1346 
 1347                 if (err)
 1348                         break;
 1349 
 1350                 size -= tocpy;
 1351         }
 1352 
 1353         dmu_buf_rele_array(dbp, numbufs, FTAG);
 1354         return (err);
 1355 }
 1356 
 1357 /*
 1358  * Write 'size' bytes from the uio buffer.
 1359  * To object zdb->db_object.
 1360  * Starting at offset zfs_uio_offset(uio).
 1361  *
 1362  * If the caller already has a dbuf in the target object
 1363  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
 1364  * because we don't have to find the dnode_t for the object.
 1365  */
 1366 int
 1367 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
 1368     dmu_tx_t *tx)
 1369 {
 1370         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
 1371         dnode_t *dn;
 1372         int err;
 1373 
 1374         if (size == 0)
 1375                 return (0);
 1376 
 1377         DB_DNODE_ENTER(db);
 1378         dn = DB_DNODE(db);
 1379         err = dmu_write_uio_dnode(dn, uio, size, tx);
 1380         DB_DNODE_EXIT(db);
 1381 
 1382         return (err);
 1383 }
 1384 
 1385 /*
 1386  * Write 'size' bytes from the uio buffer.
 1387  * To the specified object.
 1388  * Starting at offset zfs_uio_offset(uio).
 1389  */
 1390 int
 1391 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
 1392     dmu_tx_t *tx)
 1393 {
 1394         dnode_t *dn;
 1395         int err;
 1396 
 1397         if (size == 0)
 1398                 return (0);
 1399 
 1400         err = dnode_hold(os, object, FTAG, &dn);
 1401         if (err)
 1402                 return (err);
 1403 
 1404         err = dmu_write_uio_dnode(dn, uio, size, tx);
 1405 
 1406         dnode_rele(dn, FTAG);
 1407 
 1408         return (err);
 1409 }
 1410 #endif /* _KERNEL */
 1411 
 1412 /*
 1413  * Allocate a loaned anonymous arc buffer.
 1414  */
 1415 arc_buf_t *
 1416 dmu_request_arcbuf(dmu_buf_t *handle, int size)
 1417 {
 1418         dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
 1419 
 1420         return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
 1421 }
 1422 
 1423 /*
 1424  * Free a loaned arc buffer.
 1425  */
 1426 void
 1427 dmu_return_arcbuf(arc_buf_t *buf)
 1428 {
 1429         arc_return_buf(buf, FTAG);
 1430         arc_buf_destroy(buf, FTAG);
 1431 }
 1432 
 1433 /*
 1434  * A "lightweight" write is faster than a regular write (e.g.
 1435  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
 1436  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
 1437  * data can not be read or overwritten until the transaction's txg has been
 1438  * synced.  This makes it appropriate for workloads that are known to be
 1439  * (temporarily) write-only, like "zfs receive".
 1440  *
 1441  * A single block is written, starting at the specified offset in bytes.  If
 1442  * the call is successful, it returns 0 and the provided abd has been
 1443  * consumed (the caller should not free it).
 1444  */
 1445 int
 1446 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
 1447     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
 1448 {
 1449         dbuf_dirty_record_t *dr =
 1450             dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
 1451         if (dr == NULL)
 1452                 return (SET_ERROR(EIO));
 1453         dr->dt.dll.dr_abd = abd;
 1454         dr->dt.dll.dr_props = *zp;
 1455         dr->dt.dll.dr_flags = flags;
 1456         return (0);
 1457 }
 1458 
 1459 /*
 1460  * When possible directly assign passed loaned arc buffer to a dbuf.
 1461  * If this is not possible copy the contents of passed arc buf via
 1462  * dmu_write().
 1463  */
 1464 int
 1465 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
 1466     dmu_tx_t *tx)
 1467 {
 1468         dmu_buf_impl_t *db;
 1469         objset_t *os = dn->dn_objset;
 1470         uint64_t object = dn->dn_object;
 1471         uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
 1472         uint64_t blkid;
 1473 
 1474         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 1475         blkid = dbuf_whichblock(dn, 0, offset);
 1476         db = dbuf_hold(dn, blkid, FTAG);
 1477         if (db == NULL)
 1478                 return (SET_ERROR(EIO));
 1479         rw_exit(&dn->dn_struct_rwlock);
 1480 
 1481         /*
 1482          * We can only assign if the offset is aligned and the arc buf is the
 1483          * same size as the dbuf.
 1484          */
 1485         if (offset == db->db.db_offset && blksz == db->db.db_size) {
 1486                 zfs_racct_write(blksz, 1);
 1487                 dbuf_assign_arcbuf(db, buf, tx);
 1488                 dbuf_rele(db, FTAG);
 1489         } else {
 1490                 /* compressed bufs must always be assignable to their dbuf */
 1491                 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
 1492                 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
 1493 
 1494                 dbuf_rele(db, FTAG);
 1495                 dmu_write(os, object, offset, blksz, buf->b_data, tx);
 1496                 dmu_return_arcbuf(buf);
 1497         }
 1498 
 1499         return (0);
 1500 }
 1501 
 1502 int
 1503 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
 1504     dmu_tx_t *tx)
 1505 {
 1506         int err;
 1507         dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
 1508 
 1509         DB_DNODE_ENTER(dbuf);
 1510         err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
 1511         DB_DNODE_EXIT(dbuf);
 1512 
 1513         return (err);
 1514 }
 1515 
 1516 typedef struct {
 1517         dbuf_dirty_record_t     *dsa_dr;
 1518         dmu_sync_cb_t           *dsa_done;
 1519         zgd_t                   *dsa_zgd;
 1520         dmu_tx_t                *dsa_tx;
 1521 } dmu_sync_arg_t;
 1522 
 1523 static void
 1524 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
 1525 {
 1526         (void) buf;
 1527         dmu_sync_arg_t *dsa = varg;
 1528         dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
 1529         blkptr_t *bp = zio->io_bp;
 1530 
 1531         if (zio->io_error == 0) {
 1532                 if (BP_IS_HOLE(bp)) {
 1533                         /*
 1534                          * A block of zeros may compress to a hole, but the
 1535                          * block size still needs to be known for replay.
 1536                          */
 1537                         BP_SET_LSIZE(bp, db->db_size);
 1538                 } else if (!BP_IS_EMBEDDED(bp)) {
 1539                         ASSERT(BP_GET_LEVEL(bp) == 0);
 1540                         BP_SET_FILL(bp, 1);
 1541                 }
 1542         }
 1543 }
 1544 
 1545 static void
 1546 dmu_sync_late_arrival_ready(zio_t *zio)
 1547 {
 1548         dmu_sync_ready(zio, NULL, zio->io_private);
 1549 }
 1550 
 1551 static void
 1552 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
 1553 {
 1554         (void) buf;
 1555         dmu_sync_arg_t *dsa = varg;
 1556         dbuf_dirty_record_t *dr = dsa->dsa_dr;
 1557         dmu_buf_impl_t *db = dr->dr_dbuf;
 1558         zgd_t *zgd = dsa->dsa_zgd;
 1559 
 1560         /*
 1561          * Record the vdev(s) backing this blkptr so they can be flushed after
 1562          * the writes for the lwb have completed.
 1563          */
 1564         if (zio->io_error == 0) {
 1565                 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
 1566         }
 1567 
 1568         mutex_enter(&db->db_mtx);
 1569         ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
 1570         if (zio->io_error == 0) {
 1571                 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
 1572                 if (dr->dt.dl.dr_nopwrite) {
 1573                         blkptr_t *bp = zio->io_bp;
 1574                         blkptr_t *bp_orig = &zio->io_bp_orig;
 1575                         uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
 1576 
 1577                         ASSERT(BP_EQUAL(bp, bp_orig));
 1578                         VERIFY(BP_EQUAL(bp, db->db_blkptr));
 1579                         ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
 1580                         VERIFY(zio_checksum_table[chksum].ci_flags &
 1581                             ZCHECKSUM_FLAG_NOPWRITE);
 1582                 }
 1583                 dr->dt.dl.dr_overridden_by = *zio->io_bp;
 1584                 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
 1585                 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
 1586 
 1587                 /*
 1588                  * Old style holes are filled with all zeros, whereas
 1589                  * new-style holes maintain their lsize, type, level,
 1590                  * and birth time (see zio_write_compress). While we
 1591                  * need to reset the BP_SET_LSIZE() call that happened
 1592                  * in dmu_sync_ready for old style holes, we do *not*
 1593                  * want to wipe out the information contained in new
 1594                  * style holes. Thus, only zero out the block pointer if
 1595                  * it's an old style hole.
 1596                  */
 1597                 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
 1598                     dr->dt.dl.dr_overridden_by.blk_birth == 0)
 1599                         BP_ZERO(&dr->dt.dl.dr_overridden_by);
 1600         } else {
 1601                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
 1602         }
 1603         cv_broadcast(&db->db_changed);
 1604         mutex_exit(&db->db_mtx);
 1605 
 1606         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
 1607 
 1608         kmem_free(dsa, sizeof (*dsa));
 1609 }
 1610 
 1611 static void
 1612 dmu_sync_late_arrival_done(zio_t *zio)
 1613 {
 1614         blkptr_t *bp = zio->io_bp;
 1615         dmu_sync_arg_t *dsa = zio->io_private;
 1616         zgd_t *zgd = dsa->dsa_zgd;
 1617 
 1618         if (zio->io_error == 0) {
 1619                 /*
 1620                  * Record the vdev(s) backing this blkptr so they can be
 1621                  * flushed after the writes for the lwb have completed.
 1622                  */
 1623                 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
 1624 
 1625                 if (!BP_IS_HOLE(bp)) {
 1626                         blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
 1627                         ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
 1628                         ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
 1629                         ASSERT(zio->io_bp->blk_birth == zio->io_txg);
 1630                         ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
 1631                         zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
 1632                 }
 1633         }
 1634 
 1635         dmu_tx_commit(dsa->dsa_tx);
 1636 
 1637         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
 1638 
 1639         abd_free(zio->io_abd);
 1640         kmem_free(dsa, sizeof (*dsa));
 1641 }
 1642 
 1643 static int
 1644 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
 1645     zio_prop_t *zp, zbookmark_phys_t *zb)
 1646 {
 1647         dmu_sync_arg_t *dsa;
 1648         dmu_tx_t *tx;
 1649 
 1650         tx = dmu_tx_create(os);
 1651         dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
 1652         if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
 1653                 dmu_tx_abort(tx);
 1654                 /* Make zl_get_data do txg_waited_synced() */
 1655                 return (SET_ERROR(EIO));
 1656         }
 1657 
 1658         /*
 1659          * In order to prevent the zgd's lwb from being free'd prior to
 1660          * dmu_sync_late_arrival_done() being called, we have to ensure
 1661          * the lwb's "max txg" takes this tx's txg into account.
 1662          */
 1663         zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
 1664 
 1665         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
 1666         dsa->dsa_dr = NULL;
 1667         dsa->dsa_done = done;
 1668         dsa->dsa_zgd = zgd;
 1669         dsa->dsa_tx = tx;
 1670 
 1671         /*
 1672          * Since we are currently syncing this txg, it's nontrivial to
 1673          * determine what BP to nopwrite against, so we disable nopwrite.
 1674          *
 1675          * When syncing, the db_blkptr is initially the BP of the previous
 1676          * txg.  We can not nopwrite against it because it will be changed
 1677          * (this is similar to the non-late-arrival case where the dbuf is
 1678          * dirty in a future txg).
 1679          *
 1680          * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
 1681          * We can not nopwrite against it because although the BP will not
 1682          * (typically) be changed, the data has not yet been persisted to this
 1683          * location.
 1684          *
 1685          * Finally, when dbuf_write_done() is called, it is theoretically
 1686          * possible to always nopwrite, because the data that was written in
 1687          * this txg is the same data that we are trying to write.  However we
 1688          * would need to check that this dbuf is not dirty in any future
 1689          * txg's (as we do in the normal dmu_sync() path). For simplicity, we
 1690          * don't nopwrite in this case.
 1691          */
 1692         zp->zp_nopwrite = B_FALSE;
 1693 
 1694         zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
 1695             abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
 1696             zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
 1697             dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
 1698             dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
 1699 
 1700         return (0);
 1701 }
 1702 
 1703 /*
 1704  * Intent log support: sync the block associated with db to disk.
 1705  * N.B. and XXX: the caller is responsible for making sure that the
 1706  * data isn't changing while dmu_sync() is writing it.
 1707  *
 1708  * Return values:
 1709  *
 1710  *      EEXIST: this txg has already been synced, so there's nothing to do.
 1711  *              The caller should not log the write.
 1712  *
 1713  *      ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
 1714  *              The caller should not log the write.
 1715  *
 1716  *      EALREADY: this block is already in the process of being synced.
 1717  *              The caller should track its progress (somehow).
 1718  *
 1719  *      EIO: could not do the I/O.
 1720  *              The caller should do a txg_wait_synced().
 1721  *
 1722  *      0: the I/O has been initiated.
 1723  *              The caller should log this blkptr in the done callback.
 1724  *              It is possible that the I/O will fail, in which case
 1725  *              the error will be reported to the done callback and
 1726  *              propagated to pio from zio_done().
 1727  */
 1728 int
 1729 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
 1730 {
 1731         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
 1732         objset_t *os = db->db_objset;
 1733         dsl_dataset_t *ds = os->os_dsl_dataset;
 1734         dbuf_dirty_record_t *dr, *dr_next;
 1735         dmu_sync_arg_t *dsa;
 1736         zbookmark_phys_t zb;
 1737         zio_prop_t zp;
 1738         dnode_t *dn;
 1739 
 1740         ASSERT(pio != NULL);
 1741         ASSERT(txg != 0);
 1742 
 1743         SET_BOOKMARK(&zb, ds->ds_object,
 1744             db->db.db_object, db->db_level, db->db_blkid);
 1745 
 1746         DB_DNODE_ENTER(db);
 1747         dn = DB_DNODE(db);
 1748         dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
 1749         DB_DNODE_EXIT(db);
 1750 
 1751         /*
 1752          * If we're frozen (running ziltest), we always need to generate a bp.
 1753          */
 1754         if (txg > spa_freeze_txg(os->os_spa))
 1755                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
 1756 
 1757         /*
 1758          * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
 1759          * and us.  If we determine that this txg is not yet syncing,
 1760          * but it begins to sync a moment later, that's OK because the
 1761          * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
 1762          */
 1763         mutex_enter(&db->db_mtx);
 1764 
 1765         if (txg <= spa_last_synced_txg(os->os_spa)) {
 1766                 /*
 1767                  * This txg has already synced.  There's nothing to do.
 1768                  */
 1769                 mutex_exit(&db->db_mtx);
 1770                 return (SET_ERROR(EEXIST));
 1771         }
 1772 
 1773         if (txg <= spa_syncing_txg(os->os_spa)) {
 1774                 /*
 1775                  * This txg is currently syncing, so we can't mess with
 1776                  * the dirty record anymore; just write a new log block.
 1777                  */
 1778                 mutex_exit(&db->db_mtx);
 1779                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
 1780         }
 1781 
 1782         dr = dbuf_find_dirty_eq(db, txg);
 1783 
 1784         if (dr == NULL) {
 1785                 /*
 1786                  * There's no dr for this dbuf, so it must have been freed.
 1787                  * There's no need to log writes to freed blocks, so we're done.
 1788                  */
 1789                 mutex_exit(&db->db_mtx);
 1790                 return (SET_ERROR(ENOENT));
 1791         }
 1792 
 1793         dr_next = list_next(&db->db_dirty_records, dr);
 1794         ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
 1795 
 1796         if (db->db_blkptr != NULL) {
 1797                 /*
 1798                  * We need to fill in zgd_bp with the current blkptr so that
 1799                  * the nopwrite code can check if we're writing the same
 1800                  * data that's already on disk.  We can only nopwrite if we
 1801                  * are sure that after making the copy, db_blkptr will not
 1802                  * change until our i/o completes.  We ensure this by
 1803                  * holding the db_mtx, and only allowing nopwrite if the
 1804                  * block is not already dirty (see below).  This is verified
 1805                  * by dmu_sync_done(), which VERIFYs that the db_blkptr has
 1806                  * not changed.
 1807                  */
 1808                 *zgd->zgd_bp = *db->db_blkptr;
 1809         }
 1810 
 1811         /*
 1812          * Assume the on-disk data is X, the current syncing data (in
 1813          * txg - 1) is Y, and the current in-memory data is Z (currently
 1814          * in dmu_sync).
 1815          *
 1816          * We usually want to perform a nopwrite if X and Z are the
 1817          * same.  However, if Y is different (i.e. the BP is going to
 1818          * change before this write takes effect), then a nopwrite will
 1819          * be incorrect - we would override with X, which could have
 1820          * been freed when Y was written.
 1821          *
 1822          * (Note that this is not a concern when we are nop-writing from
 1823          * syncing context, because X and Y must be identical, because
 1824          * all previous txgs have been synced.)
 1825          *
 1826          * Therefore, we disable nopwrite if the current BP could change
 1827          * before this TXG.  There are two ways it could change: by
 1828          * being dirty (dr_next is non-NULL), or by being freed
 1829          * (dnode_block_freed()).  This behavior is verified by
 1830          * zio_done(), which VERIFYs that the override BP is identical
 1831          * to the on-disk BP.
 1832          */
 1833         DB_DNODE_ENTER(db);
 1834         dn = DB_DNODE(db);
 1835         if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
 1836                 zp.zp_nopwrite = B_FALSE;
 1837         DB_DNODE_EXIT(db);
 1838 
 1839         ASSERT(dr->dr_txg == txg);
 1840         if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
 1841             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
 1842                 /*
 1843                  * We have already issued a sync write for this buffer,
 1844                  * or this buffer has already been synced.  It could not
 1845                  * have been dirtied since, or we would have cleared the state.
 1846                  */
 1847                 mutex_exit(&db->db_mtx);
 1848                 return (SET_ERROR(EALREADY));
 1849         }
 1850 
 1851         ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
 1852         dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
 1853         mutex_exit(&db->db_mtx);
 1854 
 1855         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
 1856         dsa->dsa_dr = dr;
 1857         dsa->dsa_done = done;
 1858         dsa->dsa_zgd = zgd;
 1859         dsa->dsa_tx = NULL;
 1860 
 1861         zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
 1862             dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
 1863             &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
 1864             ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
 1865 
 1866         return (0);
 1867 }
 1868 
 1869 int
 1870 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
 1871 {
 1872         dnode_t *dn;
 1873         int err;
 1874 
 1875         err = dnode_hold(os, object, FTAG, &dn);
 1876         if (err)
 1877                 return (err);
 1878         err = dnode_set_nlevels(dn, nlevels, tx);
 1879         dnode_rele(dn, FTAG);
 1880         return (err);
 1881 }
 1882 
 1883 int
 1884 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
 1885     dmu_tx_t *tx)
 1886 {
 1887         dnode_t *dn;
 1888         int err;
 1889 
 1890         err = dnode_hold(os, object, FTAG, &dn);
 1891         if (err)
 1892                 return (err);
 1893         err = dnode_set_blksz(dn, size, ibs, tx);
 1894         dnode_rele(dn, FTAG);
 1895         return (err);
 1896 }
 1897 
 1898 int
 1899 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
 1900     dmu_tx_t *tx)
 1901 {
 1902         dnode_t *dn;
 1903         int err;
 1904 
 1905         err = dnode_hold(os, object, FTAG, &dn);
 1906         if (err)
 1907                 return (err);
 1908         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 1909         dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
 1910         rw_exit(&dn->dn_struct_rwlock);
 1911         dnode_rele(dn, FTAG);
 1912         return (0);
 1913 }
 1914 
 1915 void
 1916 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
 1917     dmu_tx_t *tx)
 1918 {
 1919         dnode_t *dn;
 1920 
 1921         /*
 1922          * Send streams include each object's checksum function.  This
 1923          * check ensures that the receiving system can understand the
 1924          * checksum function transmitted.
 1925          */
 1926         ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
 1927 
 1928         VERIFY0(dnode_hold(os, object, FTAG, &dn));
 1929         ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
 1930         dn->dn_checksum = checksum;
 1931         dnode_setdirty(dn, tx);
 1932         dnode_rele(dn, FTAG);
 1933 }
 1934 
 1935 void
 1936 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
 1937     dmu_tx_t *tx)
 1938 {
 1939         dnode_t *dn;
 1940 
 1941         /*
 1942          * Send streams include each object's compression function.  This
 1943          * check ensures that the receiving system can understand the
 1944          * compression function transmitted.
 1945          */
 1946         ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
 1947 
 1948         VERIFY0(dnode_hold(os, object, FTAG, &dn));
 1949         dn->dn_compress = compress;
 1950         dnode_setdirty(dn, tx);
 1951         dnode_rele(dn, FTAG);
 1952 }
 1953 
 1954 /*
 1955  * When the "redundant_metadata" property is set to "most", only indirect
 1956  * blocks of this level and higher will have an additional ditto block.
 1957  */
 1958 static const int zfs_redundant_metadata_most_ditto_level = 2;
 1959 
 1960 void
 1961 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
 1962 {
 1963         dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
 1964         boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
 1965             (wp & WP_SPILL));
 1966         enum zio_checksum checksum = os->os_checksum;
 1967         enum zio_compress compress = os->os_compress;
 1968         uint8_t complevel = os->os_complevel;
 1969         enum zio_checksum dedup_checksum = os->os_dedup_checksum;
 1970         boolean_t dedup = B_FALSE;
 1971         boolean_t nopwrite = B_FALSE;
 1972         boolean_t dedup_verify = os->os_dedup_verify;
 1973         boolean_t encrypt = B_FALSE;
 1974         int copies = os->os_copies;
 1975 
 1976         /*
 1977          * We maintain different write policies for each of the following
 1978          * types of data:
 1979          *       1. metadata
 1980          *       2. preallocated blocks (i.e. level-0 blocks of a dump device)
 1981          *       3. all other level 0 blocks
 1982          */
 1983         if (ismd) {
 1984                 /*
 1985                  * XXX -- we should design a compression algorithm
 1986                  * that specializes in arrays of bps.
 1987                  */
 1988                 compress = zio_compress_select(os->os_spa,
 1989                     ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
 1990 
 1991                 /*
 1992                  * Metadata always gets checksummed.  If the data
 1993                  * checksum is multi-bit correctable, and it's not a
 1994                  * ZBT-style checksum, then it's suitable for metadata
 1995                  * as well.  Otherwise, the metadata checksum defaults
 1996                  * to fletcher4.
 1997                  */
 1998                 if (!(zio_checksum_table[checksum].ci_flags &
 1999                     ZCHECKSUM_FLAG_METADATA) ||
 2000                     (zio_checksum_table[checksum].ci_flags &
 2001                     ZCHECKSUM_FLAG_EMBEDDED))
 2002                         checksum = ZIO_CHECKSUM_FLETCHER_4;
 2003 
 2004                 switch (os->os_redundant_metadata) {
 2005                 case ZFS_REDUNDANT_METADATA_ALL:
 2006                         copies++;
 2007                         break;
 2008                 case ZFS_REDUNDANT_METADATA_MOST:
 2009                         if (level >= zfs_redundant_metadata_most_ditto_level ||
 2010                             DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
 2011                                 copies++;
 2012                         break;
 2013                 case ZFS_REDUNDANT_METADATA_SOME:
 2014                         if (DMU_OT_IS_CRITICAL(type))
 2015                                 copies++;
 2016                         break;
 2017                 case ZFS_REDUNDANT_METADATA_NONE:
 2018                         break;
 2019                 }
 2020         } else if (wp & WP_NOFILL) {
 2021                 ASSERT(level == 0);
 2022 
 2023                 /*
 2024                  * If we're writing preallocated blocks, we aren't actually
 2025                  * writing them so don't set any policy properties.  These
 2026                  * blocks are currently only used by an external subsystem
 2027                  * outside of zfs (i.e. dump) and not written by the zio
 2028                  * pipeline.
 2029                  */
 2030                 compress = ZIO_COMPRESS_OFF;
 2031                 checksum = ZIO_CHECKSUM_OFF;
 2032         } else {
 2033                 compress = zio_compress_select(os->os_spa, dn->dn_compress,
 2034                     compress);
 2035                 complevel = zio_complevel_select(os->os_spa, compress,
 2036                     complevel, complevel);
 2037 
 2038                 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
 2039                     zio_checksum_select(dn->dn_checksum, checksum) :
 2040                     dedup_checksum;
 2041 
 2042                 /*
 2043                  * Determine dedup setting.  If we are in dmu_sync(),
 2044                  * we won't actually dedup now because that's all
 2045                  * done in syncing context; but we do want to use the
 2046                  * dedup checksum.  If the checksum is not strong
 2047                  * enough to ensure unique signatures, force
 2048                  * dedup_verify.
 2049                  */
 2050                 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
 2051                         dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
 2052                         if (!(zio_checksum_table[checksum].ci_flags &
 2053                             ZCHECKSUM_FLAG_DEDUP))
 2054                                 dedup_verify = B_TRUE;
 2055                 }
 2056 
 2057                 /*
 2058                  * Enable nopwrite if we have secure enough checksum
 2059                  * algorithm (see comment in zio_nop_write) and
 2060                  * compression is enabled.  We don't enable nopwrite if
 2061                  * dedup is enabled as the two features are mutually
 2062                  * exclusive.
 2063                  */
 2064                 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
 2065                     ZCHECKSUM_FLAG_NOPWRITE) &&
 2066                     compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
 2067         }
 2068 
 2069         /*
 2070          * All objects in an encrypted objset are protected from modification
 2071          * via a MAC. Encrypted objects store their IV and salt in the last DVA
 2072          * in the bp, so we cannot use all copies. Encrypted objects are also
 2073          * not subject to nopwrite since writing the same data will still
 2074          * result in a new ciphertext. Only encrypted blocks can be dedup'd
 2075          * to avoid ambiguity in the dedup code since the DDT does not store
 2076          * object types.
 2077          */
 2078         if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
 2079                 encrypt = B_TRUE;
 2080 
 2081                 if (DMU_OT_IS_ENCRYPTED(type)) {
 2082                         copies = MIN(copies, SPA_DVAS_PER_BP - 1);
 2083                         nopwrite = B_FALSE;
 2084                 } else {
 2085                         dedup = B_FALSE;
 2086                 }
 2087 
 2088                 if (level <= 0 &&
 2089                     (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
 2090                         compress = ZIO_COMPRESS_EMPTY;
 2091                 }
 2092         }
 2093 
 2094         zp->zp_compress = compress;
 2095         zp->zp_complevel = complevel;
 2096         zp->zp_checksum = checksum;
 2097         zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
 2098         zp->zp_level = level;
 2099         zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
 2100         zp->zp_dedup = dedup;
 2101         zp->zp_dedup_verify = dedup && dedup_verify;
 2102         zp->zp_nopwrite = nopwrite;
 2103         zp->zp_encrypt = encrypt;
 2104         zp->zp_byteorder = ZFS_HOST_BYTEORDER;
 2105         memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
 2106         memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
 2107         memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
 2108         zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
 2109             os->os_zpl_special_smallblock : 0;
 2110 
 2111         ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
 2112 }
 2113 
 2114 /*
 2115  * This function is only called from zfs_holey_common() for zpl_llseek()
 2116  * in order to determine the location of holes.  In order to accurately
 2117  * report holes all dirty data must be synced to disk.  This causes extremely
 2118  * poor performance when seeking for holes in a dirty file.  As a compromise,
 2119  * only provide hole data when the dnode is clean.  When a dnode is dirty
 2120  * report the dnode as having no holes which is always a safe thing to do.
 2121  */
 2122 int
 2123 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
 2124 {
 2125         dnode_t *dn;
 2126         int err;
 2127 
 2128 restart:
 2129         err = dnode_hold(os, object, FTAG, &dn);
 2130         if (err)
 2131                 return (err);
 2132 
 2133         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 2134 
 2135         if (dnode_is_dirty(dn)) {
 2136                 /*
 2137                  * If the zfs_dmu_offset_next_sync module option is enabled
 2138                  * then strict hole reporting has been requested.  Dirty
 2139                  * dnodes must be synced to disk to accurately report all
 2140                  * holes.  When disabled dirty dnodes are reported to not
 2141                  * have any holes which is always safe.
 2142                  *
 2143                  * When called by zfs_holey_common() the zp->z_rangelock
 2144                  * is held to prevent zfs_write() and mmap writeback from
 2145                  * re-dirtying the dnode after txg_wait_synced().
 2146                  */
 2147                 if (zfs_dmu_offset_next_sync) {
 2148                         rw_exit(&dn->dn_struct_rwlock);
 2149                         dnode_rele(dn, FTAG);
 2150                         txg_wait_synced(dmu_objset_pool(os), 0);
 2151                         goto restart;
 2152                 }
 2153 
 2154                 err = SET_ERROR(EBUSY);
 2155         } else {
 2156                 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
 2157                     (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
 2158         }
 2159 
 2160         rw_exit(&dn->dn_struct_rwlock);
 2161         dnode_rele(dn, FTAG);
 2162 
 2163         return (err);
 2164 }
 2165 
 2166 void
 2167 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
 2168 {
 2169         dnode_phys_t *dnp = dn->dn_phys;
 2170 
 2171         doi->doi_data_block_size = dn->dn_datablksz;
 2172         doi->doi_metadata_block_size = dn->dn_indblkshift ?
 2173             1ULL << dn->dn_indblkshift : 0;
 2174         doi->doi_type = dn->dn_type;
 2175         doi->doi_bonus_type = dn->dn_bonustype;
 2176         doi->doi_bonus_size = dn->dn_bonuslen;
 2177         doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
 2178         doi->doi_indirection = dn->dn_nlevels;
 2179         doi->doi_checksum = dn->dn_checksum;
 2180         doi->doi_compress = dn->dn_compress;
 2181         doi->doi_nblkptr = dn->dn_nblkptr;
 2182         doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
 2183         doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
 2184         doi->doi_fill_count = 0;
 2185         for (int i = 0; i < dnp->dn_nblkptr; i++)
 2186                 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
 2187 }
 2188 
 2189 void
 2190 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
 2191 {
 2192         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 2193         mutex_enter(&dn->dn_mtx);
 2194 
 2195         __dmu_object_info_from_dnode(dn, doi);
 2196 
 2197         mutex_exit(&dn->dn_mtx);
 2198         rw_exit(&dn->dn_struct_rwlock);
 2199 }
 2200 
 2201 /*
 2202  * Get information on a DMU object.
 2203  * If doi is NULL, just indicates whether the object exists.
 2204  */
 2205 int
 2206 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
 2207 {
 2208         dnode_t *dn;
 2209         int err = dnode_hold(os, object, FTAG, &dn);
 2210 
 2211         if (err)
 2212                 return (err);
 2213 
 2214         if (doi != NULL)
 2215                 dmu_object_info_from_dnode(dn, doi);
 2216 
 2217         dnode_rele(dn, FTAG);
 2218         return (0);
 2219 }
 2220 
 2221 /*
 2222  * As above, but faster; can be used when you have a held dbuf in hand.
 2223  */
 2224 void
 2225 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
 2226 {
 2227         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2228 
 2229         DB_DNODE_ENTER(db);
 2230         dmu_object_info_from_dnode(DB_DNODE(db), doi);
 2231         DB_DNODE_EXIT(db);
 2232 }
 2233 
 2234 /*
 2235  * Faster still when you only care about the size.
 2236  */
 2237 void
 2238 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
 2239     u_longlong_t *nblk512)
 2240 {
 2241         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2242         dnode_t *dn;
 2243 
 2244         DB_DNODE_ENTER(db);
 2245         dn = DB_DNODE(db);
 2246 
 2247         *blksize = dn->dn_datablksz;
 2248         /* add in number of slots used for the dnode itself */
 2249         *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
 2250             SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
 2251         DB_DNODE_EXIT(db);
 2252 }
 2253 
 2254 void
 2255 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
 2256 {
 2257         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 2258         dnode_t *dn;
 2259 
 2260         DB_DNODE_ENTER(db);
 2261         dn = DB_DNODE(db);
 2262         *dnsize = dn->dn_num_slots << DNODE_SHIFT;
 2263         DB_DNODE_EXIT(db);
 2264 }
 2265 
 2266 void
 2267 byteswap_uint64_array(void *vbuf, size_t size)
 2268 {
 2269         uint64_t *buf = vbuf;
 2270         size_t count = size >> 3;
 2271         int i;
 2272 
 2273         ASSERT((size & 7) == 0);
 2274 
 2275         for (i = 0; i < count; i++)
 2276                 buf[i] = BSWAP_64(buf[i]);
 2277 }
 2278 
 2279 void
 2280 byteswap_uint32_array(void *vbuf, size_t size)
 2281 {
 2282         uint32_t *buf = vbuf;
 2283         size_t count = size >> 2;
 2284         int i;
 2285 
 2286         ASSERT((size & 3) == 0);
 2287 
 2288         for (i = 0; i < count; i++)
 2289                 buf[i] = BSWAP_32(buf[i]);
 2290 }
 2291 
 2292 void
 2293 byteswap_uint16_array(void *vbuf, size_t size)
 2294 {
 2295         uint16_t *buf = vbuf;
 2296         size_t count = size >> 1;
 2297         int i;
 2298 
 2299         ASSERT((size & 1) == 0);
 2300 
 2301         for (i = 0; i < count; i++)
 2302                 buf[i] = BSWAP_16(buf[i]);
 2303 }
 2304 
 2305 void
 2306 byteswap_uint8_array(void *vbuf, size_t size)
 2307 {
 2308         (void) vbuf, (void) size;
 2309 }
 2310 
 2311 void
 2312 dmu_init(void)
 2313 {
 2314         abd_init();
 2315         zfs_dbgmsg_init();
 2316         sa_cache_init();
 2317         dmu_objset_init();
 2318         dnode_init();
 2319         zfetch_init();
 2320         dmu_tx_init();
 2321         l2arc_init();
 2322         arc_init();
 2323         dbuf_init();
 2324 }
 2325 
 2326 void
 2327 dmu_fini(void)
 2328 {
 2329         arc_fini(); /* arc depends on l2arc, so arc must go first */
 2330         l2arc_fini();
 2331         dmu_tx_fini();
 2332         zfetch_fini();
 2333         dbuf_fini();
 2334         dnode_fini();
 2335         dmu_objset_fini();
 2336         sa_cache_fini();
 2337         zfs_dbgmsg_fini();
 2338         abd_fini();
 2339 }
 2340 
 2341 EXPORT_SYMBOL(dmu_bonus_hold);
 2342 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
 2343 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
 2344 EXPORT_SYMBOL(dmu_buf_rele_array);
 2345 EXPORT_SYMBOL(dmu_prefetch);
 2346 EXPORT_SYMBOL(dmu_free_range);
 2347 EXPORT_SYMBOL(dmu_free_long_range);
 2348 EXPORT_SYMBOL(dmu_free_long_object);
 2349 EXPORT_SYMBOL(dmu_read);
 2350 EXPORT_SYMBOL(dmu_read_by_dnode);
 2351 EXPORT_SYMBOL(dmu_write);
 2352 EXPORT_SYMBOL(dmu_write_by_dnode);
 2353 EXPORT_SYMBOL(dmu_prealloc);
 2354 EXPORT_SYMBOL(dmu_object_info);
 2355 EXPORT_SYMBOL(dmu_object_info_from_dnode);
 2356 EXPORT_SYMBOL(dmu_object_info_from_db);
 2357 EXPORT_SYMBOL(dmu_object_size_from_db);
 2358 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
 2359 EXPORT_SYMBOL(dmu_object_set_nlevels);
 2360 EXPORT_SYMBOL(dmu_object_set_blocksize);
 2361 EXPORT_SYMBOL(dmu_object_set_maxblkid);
 2362 EXPORT_SYMBOL(dmu_object_set_checksum);
 2363 EXPORT_SYMBOL(dmu_object_set_compress);
 2364 EXPORT_SYMBOL(dmu_offset_next);
 2365 EXPORT_SYMBOL(dmu_write_policy);
 2366 EXPORT_SYMBOL(dmu_sync);
 2367 EXPORT_SYMBOL(dmu_request_arcbuf);
 2368 EXPORT_SYMBOL(dmu_return_arcbuf);
 2369 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
 2370 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
 2371 EXPORT_SYMBOL(dmu_buf_hold);
 2372 EXPORT_SYMBOL(dmu_ot);
 2373 
 2374 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
 2375         "Enable NOP writes");
 2376 
 2377 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
 2378         "Percentage of dirtied blocks from frees in one TXG");
 2379 
 2380 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
 2381         "Enable forcing txg sync to find holes");
 2382 
 2383 /* CSTYLED */
 2384 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
 2385         "Limit one prefetch call to this size");

Cache object: a7b857aaf0ce90d90a9b9b5bb533f0d0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.