1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
30 * Copyright (c) 2019 Datto Inc.
31 * Copyright (c) 2022 Axcient.
32 */
33
34 #include <sys/arc.h>
35 #include <sys/spa_impl.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_send.h>
39 #include <sys/dmu_recv.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dbuf.h>
42 #include <sys/dnode.h>
43 #include <sys/zfs_context.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/dmu_traverse.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_pool.h>
50 #include <sys/dsl_synctask.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zap.h>
53 #include <sys/zvol.h>
54 #include <sys/zio_checksum.h>
55 #include <sys/zfs_znode.h>
56 #include <zfs_fletcher.h>
57 #include <sys/avl.h>
58 #include <sys/ddt.h>
59 #include <sys/zfs_onexit.h>
60 #include <sys/dsl_destroy.h>
61 #include <sys/blkptr.h>
62 #include <sys/dsl_bookmark.h>
63 #include <sys/zfeature.h>
64 #include <sys/bqueue.h>
65 #include <sys/objlist.h>
66 #ifdef _KERNEL
67 #include <sys/zfs_vfsops.h>
68 #endif
69 #include <sys/zfs_file.h>
70
71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72 static uint_t zfs_recv_queue_ff = 20;
73 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
74 static int zfs_recv_best_effort_corrective = 0;
75
76 static const void *const dmu_recv_tag = "dmu_recv_tag";
77 const char *const recv_clone_name = "%recv";
78
79 typedef enum {
80 ORNS_NO,
81 ORNS_YES,
82 ORNS_MAYBE
83 } or_need_sync_t;
84
85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86 void *buf);
87
88 struct receive_record_arg {
89 dmu_replay_record_t header;
90 void *payload; /* Pointer to a buffer containing the payload */
91 /*
92 * If the record is a WRITE or SPILL, pointer to the abd containing the
93 * payload.
94 */
95 abd_t *abd;
96 int payload_size;
97 uint64_t bytes_read; /* bytes read from stream when record created */
98 boolean_t eos_marker; /* Marks the end of the stream */
99 bqueue_node_t node;
100 };
101
102 struct receive_writer_arg {
103 objset_t *os;
104 boolean_t byteswap;
105 bqueue_t q;
106
107 /*
108 * These three members are used to signal to the main thread when
109 * we're done.
110 */
111 kmutex_t mutex;
112 kcondvar_t cv;
113 boolean_t done;
114
115 int err;
116 const char *tofs;
117 boolean_t heal;
118 boolean_t resumable;
119 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
120 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
121 boolean_t full; /* this is a full send stream */
122 uint64_t last_object;
123 uint64_t last_offset;
124 uint64_t max_object; /* highest object ID referenced in stream */
125 uint64_t bytes_read; /* bytes read when current record created */
126
127 list_t write_batch;
128
129 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
130 boolean_t or_crypt_params_present;
131 uint64_t or_firstobj;
132 uint64_t or_numslots;
133 uint8_t or_salt[ZIO_DATA_SALT_LEN];
134 uint8_t or_iv[ZIO_DATA_IV_LEN];
135 uint8_t or_mac[ZIO_DATA_MAC_LEN];
136 boolean_t or_byteorder;
137 zio_t *heal_pio;
138
139 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140 or_need_sync_t or_need_sync;
141 };
142
143 typedef struct dmu_recv_begin_arg {
144 const char *drba_origin;
145 dmu_recv_cookie_t *drba_cookie;
146 cred_t *drba_cred;
147 proc_t *drba_proc;
148 dsl_crypto_params_t *drba_dcp;
149 } dmu_recv_begin_arg_t;
150
151 static void
152 byteswap_record(dmu_replay_record_t *drr)
153 {
154 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156 drr->drr_type = BSWAP_32(drr->drr_type);
157 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158
159 switch (drr->drr_type) {
160 case DRR_BEGIN:
161 DO64(drr_begin.drr_magic);
162 DO64(drr_begin.drr_versioninfo);
163 DO64(drr_begin.drr_creation_time);
164 DO32(drr_begin.drr_type);
165 DO32(drr_begin.drr_flags);
166 DO64(drr_begin.drr_toguid);
167 DO64(drr_begin.drr_fromguid);
168 break;
169 case DRR_OBJECT:
170 DO64(drr_object.drr_object);
171 DO32(drr_object.drr_type);
172 DO32(drr_object.drr_bonustype);
173 DO32(drr_object.drr_blksz);
174 DO32(drr_object.drr_bonuslen);
175 DO32(drr_object.drr_raw_bonuslen);
176 DO64(drr_object.drr_toguid);
177 DO64(drr_object.drr_maxblkid);
178 break;
179 case DRR_FREEOBJECTS:
180 DO64(drr_freeobjects.drr_firstobj);
181 DO64(drr_freeobjects.drr_numobjs);
182 DO64(drr_freeobjects.drr_toguid);
183 break;
184 case DRR_WRITE:
185 DO64(drr_write.drr_object);
186 DO32(drr_write.drr_type);
187 DO64(drr_write.drr_offset);
188 DO64(drr_write.drr_logical_size);
189 DO64(drr_write.drr_toguid);
190 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191 DO64(drr_write.drr_key.ddk_prop);
192 DO64(drr_write.drr_compressed_size);
193 break;
194 case DRR_WRITE_EMBEDDED:
195 DO64(drr_write_embedded.drr_object);
196 DO64(drr_write_embedded.drr_offset);
197 DO64(drr_write_embedded.drr_length);
198 DO64(drr_write_embedded.drr_toguid);
199 DO32(drr_write_embedded.drr_lsize);
200 DO32(drr_write_embedded.drr_psize);
201 break;
202 case DRR_FREE:
203 DO64(drr_free.drr_object);
204 DO64(drr_free.drr_offset);
205 DO64(drr_free.drr_length);
206 DO64(drr_free.drr_toguid);
207 break;
208 case DRR_SPILL:
209 DO64(drr_spill.drr_object);
210 DO64(drr_spill.drr_length);
211 DO64(drr_spill.drr_toguid);
212 DO64(drr_spill.drr_compressed_size);
213 DO32(drr_spill.drr_type);
214 break;
215 case DRR_OBJECT_RANGE:
216 DO64(drr_object_range.drr_firstobj);
217 DO64(drr_object_range.drr_numslots);
218 DO64(drr_object_range.drr_toguid);
219 break;
220 case DRR_REDACT:
221 DO64(drr_redact.drr_object);
222 DO64(drr_redact.drr_offset);
223 DO64(drr_redact.drr_length);
224 DO64(drr_redact.drr_toguid);
225 break;
226 case DRR_END:
227 DO64(drr_end.drr_toguid);
228 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229 break;
230 default:
231 break;
232 }
233
234 if (drr->drr_type != DRR_BEGIN) {
235 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236 }
237
238 #undef DO64
239 #undef DO32
240 }
241
242 static boolean_t
243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244 {
245 for (int i = 0; i < num_snaps; i++) {
246 if (snaps[i] == guid)
247 return (B_TRUE);
248 }
249 return (B_FALSE);
250 }
251
252 /*
253 * Check that the new stream we're trying to receive is redacted with respect to
254 * a subset of the snapshots that the origin was redacted with respect to. For
255 * the reasons behind this, see the man page on redacted zfs sends and receives.
256 */
257 static boolean_t
258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259 uint64_t *redact_snaps, uint64_t num_redact_snaps)
260 {
261 /*
262 * Short circuit the comparison; if we are redacted with respect to
263 * more snapshots than the origin, we can't be redacted with respect
264 * to a subset.
265 */
266 if (num_redact_snaps > origin_num_snaps) {
267 return (B_FALSE);
268 }
269
270 for (int i = 0; i < num_redact_snaps; i++) {
271 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272 redact_snaps[i])) {
273 return (B_FALSE);
274 }
275 }
276 return (B_TRUE);
277 }
278
279 static boolean_t
280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281 {
282 uint64_t *origin_snaps;
283 uint64_t origin_num_snaps;
284 dmu_recv_cookie_t *drc = drba->drba_cookie;
285 struct drr_begin *drrb = drc->drc_drrb;
286 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287 int err = 0;
288 boolean_t ret = B_TRUE;
289 uint64_t *redact_snaps;
290 uint_t numredactsnaps;
291
292 /*
293 * If this is a full send stream, we're safe no matter what.
294 */
295 if (drrb->drr_fromguid == 0)
296 return (ret);
297
298 VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300
301 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303 0) {
304 /*
305 * If the send stream was sent from the redaction bookmark or
306 * the redacted version of the dataset, then we're safe. Verify
307 * that this is from the a compatible redaction bookmark or
308 * redacted dataset.
309 */
310 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311 redact_snaps, numredactsnaps)) {
312 err = EINVAL;
313 }
314 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315 /*
316 * If the stream is redacted, it must be redacted with respect
317 * to a subset of what the origin is redacted with respect to.
318 * See case number 2 in the zfs man page section on redacted zfs
319 * send.
320 */
321 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323
324 if (err != 0 || !compatible_redact_snaps(origin_snaps,
325 origin_num_snaps, redact_snaps, numredactsnaps)) {
326 err = EINVAL;
327 }
328 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329 drrb->drr_toguid)) {
330 /*
331 * If the stream isn't redacted but the origin is, this must be
332 * one of the snapshots the origin is redacted with respect to.
333 * See case number 1 in the zfs man page section on redacted zfs
334 * send.
335 */
336 err = EINVAL;
337 }
338
339 if (err != 0)
340 ret = B_FALSE;
341 return (ret);
342 }
343
344 /*
345 * If we previously received a stream with --large-block, we don't support
346 * receiving an incremental on top of it without --large-block. This avoids
347 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348 * records.
349 */
350 static int
351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352 {
353 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356 return (0);
357 }
358
359 static int
360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361 uint64_t fromguid, uint64_t featureflags)
362 {
363 uint64_t obj;
364 uint64_t children;
365 int error;
366 dsl_dataset_t *snap;
367 dsl_pool_t *dp = ds->ds_dir->dd_pool;
368 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371
372 /* Temporary clone name must not exist. */
373 error = zap_lookup(dp->dp_meta_objset,
374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
375 8, 1, &obj);
376 if (error != ENOENT)
377 return (error == 0 ? SET_ERROR(EBUSY) : error);
378
379 /* Resume state must not be set. */
380 if (dsl_dataset_has_resume_receive_state(ds))
381 return (SET_ERROR(EBUSY));
382
383 /* New snapshot name must not exist if we're not healing it. */
384 error = zap_lookup(dp->dp_meta_objset,
385 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
386 drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387 if (drba->drba_cookie->drc_heal) {
388 if (error != 0)
389 return (error);
390 } else if (error != ENOENT) {
391 return (error == 0 ? SET_ERROR(EEXIST) : error);
392 }
393
394 /* Must not have children if receiving a ZVOL. */
395 error = zap_count(dp->dp_meta_objset,
396 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397 if (error != 0)
398 return (error);
399 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400 children > 0)
401 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402
403 /*
404 * Check snapshot limit before receiving. We'll recheck again at the
405 * end, but might as well abort before receiving if we're already over
406 * the limit.
407 *
408 * Note that we do not check the file system limit with
409 * dsl_dir_fscount_check because the temporary %clones don't count
410 * against that limit.
411 */
412 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
413 NULL, drba->drba_cred, drba->drba_proc);
414 if (error != 0)
415 return (error);
416
417 if (drba->drba_cookie->drc_heal) {
418 /* Encryption is incompatible with embedded data. */
419 if (encrypted && embed)
420 return (SET_ERROR(EINVAL));
421
422 /* Healing is not supported when in 'force' mode. */
423 if (drba->drba_cookie->drc_force)
424 return (SET_ERROR(EINVAL));
425
426 /* Must have keys loaded if doing encrypted non-raw recv. */
427 if (encrypted && !raw) {
428 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429 NULL, NULL) != 0)
430 return (SET_ERROR(EACCES));
431 }
432
433 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434 if (error != 0)
435 return (error);
436
437 /*
438 * When not doing best effort corrective recv healing can only
439 * be done if the send stream is for the same snapshot as the
440 * one we are trying to heal.
441 */
442 if (zfs_recv_best_effort_corrective == 0 &&
443 drba->drba_cookie->drc_drrb->drr_toguid !=
444 dsl_dataset_phys(snap)->ds_guid) {
445 dsl_dataset_rele(snap, FTAG);
446 return (SET_ERROR(ENOTSUP));
447 }
448 dsl_dataset_rele(snap, FTAG);
449 } else if (fromguid != 0) {
450 /* Sanity check the incremental recv */
451 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452
453 /* Can't perform a raw receive on top of a non-raw receive */
454 if (!encrypted && raw)
455 return (SET_ERROR(EINVAL));
456
457 /* Encryption is incompatible with embedded data */
458 if (encrypted && embed)
459 return (SET_ERROR(EINVAL));
460
461 /* Find snapshot in this dir that matches fromguid. */
462 while (obj != 0) {
463 error = dsl_dataset_hold_obj(dp, obj, FTAG,
464 &snap);
465 if (error != 0)
466 return (SET_ERROR(ENODEV));
467 if (snap->ds_dir != ds->ds_dir) {
468 dsl_dataset_rele(snap, FTAG);
469 return (SET_ERROR(ENODEV));
470 }
471 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472 break;
473 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474 dsl_dataset_rele(snap, FTAG);
475 }
476 if (obj == 0)
477 return (SET_ERROR(ENODEV));
478
479 if (drba->drba_cookie->drc_force) {
480 drba->drba_cookie->drc_fromsnapobj = obj;
481 } else {
482 /*
483 * If we are not forcing, there must be no
484 * changes since fromsnap. Raw sends have an
485 * additional constraint that requires that
486 * no "noop" snapshots exist between fromsnap
487 * and tosnap for the IVset checking code to
488 * work properly.
489 */
490 if (dsl_dataset_modified_since_snap(ds, snap) ||
491 (raw &&
492 dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493 snap->ds_object)) {
494 dsl_dataset_rele(snap, FTAG);
495 return (SET_ERROR(ETXTBSY));
496 }
497 drba->drba_cookie->drc_fromsnapobj =
498 ds->ds_prev->ds_object;
499 }
500
501 if (dsl_dataset_feature_is_active(snap,
502 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503 snap)) {
504 dsl_dataset_rele(snap, FTAG);
505 return (SET_ERROR(EINVAL));
506 }
507
508 error = recv_check_large_blocks(snap, featureflags);
509 if (error != 0) {
510 dsl_dataset_rele(snap, FTAG);
511 return (error);
512 }
513
514 dsl_dataset_rele(snap, FTAG);
515 } else {
516 /* If full and not healing then must be forced. */
517 if (!drba->drba_cookie->drc_force)
518 return (SET_ERROR(EEXIST));
519
520 /*
521 * We don't support using zfs recv -F to blow away
522 * encrypted filesystems. This would require the
523 * dsl dir to point to the old encryption key and
524 * the new one at the same time during the receive.
525 */
526 if ((!encrypted && raw) || encrypted)
527 return (SET_ERROR(EINVAL));
528
529 /*
530 * Perform the same encryption checks we would if
531 * we were creating a new dataset from scratch.
532 */
533 if (!raw) {
534 boolean_t will_encrypt;
535
536 error = dmu_objset_create_crypt_check(
537 ds->ds_dir->dd_parent, drba->drba_dcp,
538 &will_encrypt);
539 if (error != 0)
540 return (error);
541
542 if (will_encrypt && embed)
543 return (SET_ERROR(EINVAL));
544 }
545 }
546
547 return (0);
548 }
549
550 /*
551 * Check that any feature flags used in the data stream we're receiving are
552 * supported by the pool we are receiving into.
553 *
554 * Note that some of the features we explicitly check here have additional
555 * (implicit) features they depend on, but those dependencies are enforced
556 * through the zfeature_register() calls declaring the features that we
557 * explicitly check.
558 */
559 static int
560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561 {
562 /*
563 * Check if there are any unsupported feature flags.
564 */
565 if (!DMU_STREAM_SUPPORTED(featureflags)) {
566 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567 }
568
569 /* Verify pool version supports SA if SA_SPILL feature set */
570 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571 spa_version(spa) < SPA_VERSION_SA)
572 return (SET_ERROR(ENOTSUP));
573
574 /*
575 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576 * and large_dnodes in the stream can only be used if those pool
577 * features are enabled because we don't attempt to decompress /
578 * un-embed / un-mooch / split up the blocks / dnodes during the
579 * receive process.
580 */
581 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583 return (SET_ERROR(ENOTSUP));
584 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586 return (SET_ERROR(ENOTSUP));
587 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589 return (SET_ERROR(ENOTSUP));
590 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592 return (SET_ERROR(ENOTSUP));
593 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595 return (SET_ERROR(ENOTSUP));
596
597 /*
598 * Receiving redacted streams requires that redacted datasets are
599 * enabled.
600 */
601 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
602 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
603 return (SET_ERROR(ENOTSUP));
604
605 return (0);
606 }
607
608 static int
609 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
610 {
611 dmu_recv_begin_arg_t *drba = arg;
612 dsl_pool_t *dp = dmu_tx_pool(tx);
613 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
614 uint64_t fromguid = drrb->drr_fromguid;
615 int flags = drrb->drr_flags;
616 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
617 int error;
618 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
619 dsl_dataset_t *ds;
620 const char *tofs = drba->drba_cookie->drc_tofs;
621
622 /* already checked */
623 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
624 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
625
626 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
627 DMU_COMPOUNDSTREAM ||
628 drrb->drr_type >= DMU_OST_NUMTYPES ||
629 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
630 return (SET_ERROR(EINVAL));
631
632 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
633 if (error != 0)
634 return (error);
635
636 /* Resumable receives require extensible datasets */
637 if (drba->drba_cookie->drc_resumable &&
638 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
639 return (SET_ERROR(ENOTSUP));
640
641 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
642 /* raw receives require the encryption feature */
643 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
644 return (SET_ERROR(ENOTSUP));
645
646 /* embedded data is incompatible with encryption and raw recv */
647 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
648 return (SET_ERROR(EINVAL));
649
650 /* raw receives require spill block allocation flag */
651 if (!(flags & DRR_FLAG_SPILL_BLOCK))
652 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
653 } else {
654 /*
655 * We support unencrypted datasets below encrypted ones now,
656 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
657 * with a dataset we may encrypt.
658 */
659 if (drba->drba_dcp == NULL ||
660 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
661 dsflags |= DS_HOLD_FLAG_DECRYPT;
662 }
663 }
664
665 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
666 if (error == 0) {
667 /* target fs already exists; recv into temp clone */
668
669 /* Can't recv a clone into an existing fs */
670 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
671 dsl_dataset_rele_flags(ds, dsflags, FTAG);
672 return (SET_ERROR(EINVAL));
673 }
674
675 error = recv_begin_check_existing_impl(drba, ds, fromguid,
676 featureflags);
677 dsl_dataset_rele_flags(ds, dsflags, FTAG);
678 } else if (error == ENOENT) {
679 /* target fs does not exist; must be a full backup or clone */
680 char buf[ZFS_MAX_DATASET_NAME_LEN];
681 objset_t *os;
682
683 /* healing recv must be done "into" an existing snapshot */
684 if (drba->drba_cookie->drc_heal == B_TRUE)
685 return (SET_ERROR(ENOTSUP));
686
687 /*
688 * If it's a non-clone incremental, we are missing the
689 * target fs, so fail the recv.
690 */
691 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
692 drba->drba_origin))
693 return (SET_ERROR(ENOENT));
694
695 /*
696 * If we're receiving a full send as a clone, and it doesn't
697 * contain all the necessary free records and freeobject
698 * records, reject it.
699 */
700 if (fromguid == 0 && drba->drba_origin != NULL &&
701 !(flags & DRR_FLAG_FREERECORDS))
702 return (SET_ERROR(EINVAL));
703
704 /* Open the parent of tofs */
705 ASSERT3U(strlen(tofs), <, sizeof (buf));
706 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
707 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
708 if (error != 0)
709 return (error);
710
711 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
712 drba->drba_origin == NULL) {
713 boolean_t will_encrypt;
714
715 /*
716 * Check that we aren't breaking any encryption rules
717 * and that we have all the parameters we need to
718 * create an encrypted dataset if necessary. If we are
719 * making an encrypted dataset the stream can't have
720 * embedded data.
721 */
722 error = dmu_objset_create_crypt_check(ds->ds_dir,
723 drba->drba_dcp, &will_encrypt);
724 if (error != 0) {
725 dsl_dataset_rele(ds, FTAG);
726 return (error);
727 }
728
729 if (will_encrypt &&
730 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
731 dsl_dataset_rele(ds, FTAG);
732 return (SET_ERROR(EINVAL));
733 }
734 }
735
736 /*
737 * Check filesystem and snapshot limits before receiving. We'll
738 * recheck snapshot limits again at the end (we create the
739 * filesystems and increment those counts during begin_sync).
740 */
741 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
742 ZFS_PROP_FILESYSTEM_LIMIT, NULL,
743 drba->drba_cred, drba->drba_proc);
744 if (error != 0) {
745 dsl_dataset_rele(ds, FTAG);
746 return (error);
747 }
748
749 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
750 ZFS_PROP_SNAPSHOT_LIMIT, NULL,
751 drba->drba_cred, drba->drba_proc);
752 if (error != 0) {
753 dsl_dataset_rele(ds, FTAG);
754 return (error);
755 }
756
757 /* can't recv below anything but filesystems (eg. no ZVOLs) */
758 error = dmu_objset_from_ds(ds, &os);
759 if (error != 0) {
760 dsl_dataset_rele(ds, FTAG);
761 return (error);
762 }
763 if (dmu_objset_type(os) != DMU_OST_ZFS) {
764 dsl_dataset_rele(ds, FTAG);
765 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
766 }
767
768 if (drba->drba_origin != NULL) {
769 dsl_dataset_t *origin;
770 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
771 dsflags, FTAG, &origin);
772 if (error != 0) {
773 dsl_dataset_rele(ds, FTAG);
774 return (error);
775 }
776 if (!origin->ds_is_snapshot) {
777 dsl_dataset_rele_flags(origin, dsflags, FTAG);
778 dsl_dataset_rele(ds, FTAG);
779 return (SET_ERROR(EINVAL));
780 }
781 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
782 fromguid != 0) {
783 dsl_dataset_rele_flags(origin, dsflags, FTAG);
784 dsl_dataset_rele(ds, FTAG);
785 return (SET_ERROR(ENODEV));
786 }
787
788 if (origin->ds_dir->dd_crypto_obj != 0 &&
789 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
790 dsl_dataset_rele_flags(origin, dsflags, FTAG);
791 dsl_dataset_rele(ds, FTAG);
792 return (SET_ERROR(EINVAL));
793 }
794
795 /*
796 * If the origin is redacted we need to verify that this
797 * send stream can safely be received on top of the
798 * origin.
799 */
800 if (dsl_dataset_feature_is_active(origin,
801 SPA_FEATURE_REDACTED_DATASETS)) {
802 if (!redact_check(drba, origin)) {
803 dsl_dataset_rele_flags(origin, dsflags,
804 FTAG);
805 dsl_dataset_rele_flags(ds, dsflags,
806 FTAG);
807 return (SET_ERROR(EINVAL));
808 }
809 }
810
811 error = recv_check_large_blocks(ds, featureflags);
812 if (error != 0) {
813 dsl_dataset_rele_flags(origin, dsflags, FTAG);
814 dsl_dataset_rele_flags(ds, dsflags, FTAG);
815 return (error);
816 }
817
818 dsl_dataset_rele_flags(origin, dsflags, FTAG);
819 }
820
821 dsl_dataset_rele(ds, FTAG);
822 error = 0;
823 }
824 return (error);
825 }
826
827 static void
828 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
829 {
830 dmu_recv_begin_arg_t *drba = arg;
831 dsl_pool_t *dp = dmu_tx_pool(tx);
832 objset_t *mos = dp->dp_meta_objset;
833 dmu_recv_cookie_t *drc = drba->drba_cookie;
834 struct drr_begin *drrb = drc->drc_drrb;
835 const char *tofs = drc->drc_tofs;
836 uint64_t featureflags = drc->drc_featureflags;
837 dsl_dataset_t *ds, *newds;
838 objset_t *os;
839 uint64_t dsobj;
840 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
841 int error;
842 uint64_t crflags = 0;
843 dsl_crypto_params_t dummy_dcp = { 0 };
844 dsl_crypto_params_t *dcp = drba->drba_dcp;
845
846 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
847 crflags |= DS_FLAG_CI_DATASET;
848
849 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
850 dsflags |= DS_HOLD_FLAG_DECRYPT;
851
852 /*
853 * Raw, non-incremental recvs always use a dummy dcp with
854 * the raw cmd set. Raw incremental recvs do not use a dcp
855 * since the encryption parameters are already set in stone.
856 */
857 if (dcp == NULL && drrb->drr_fromguid == 0 &&
858 drba->drba_origin == NULL) {
859 ASSERT3P(dcp, ==, NULL);
860 dcp = &dummy_dcp;
861
862 if (featureflags & DMU_BACKUP_FEATURE_RAW)
863 dcp->cp_cmd = DCP_CMD_RAW_RECV;
864 }
865
866 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
867 if (error == 0) {
868 /* Create temporary clone unless we're doing corrective recv */
869 dsl_dataset_t *snap = NULL;
870
871 if (drba->drba_cookie->drc_fromsnapobj != 0) {
872 VERIFY0(dsl_dataset_hold_obj(dp,
873 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
874 ASSERT3P(dcp, ==, NULL);
875 }
876 if (drc->drc_heal) {
877 /* When healing we want to use the provided snapshot */
878 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
879 &dsobj));
880 } else {
881 dsobj = dsl_dataset_create_sync(ds->ds_dir,
882 recv_clone_name, snap, crflags, drba->drba_cred,
883 dcp, tx);
884 }
885 if (drba->drba_cookie->drc_fromsnapobj != 0)
886 dsl_dataset_rele(snap, FTAG);
887 dsl_dataset_rele_flags(ds, dsflags, FTAG);
888 } else {
889 dsl_dir_t *dd;
890 const char *tail;
891 dsl_dataset_t *origin = NULL;
892
893 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
894
895 if (drba->drba_origin != NULL) {
896 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
897 FTAG, &origin));
898 ASSERT3P(dcp, ==, NULL);
899 }
900
901 /* Create new dataset. */
902 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
903 origin, crflags, drba->drba_cred, dcp, tx);
904 if (origin != NULL)
905 dsl_dataset_rele(origin, FTAG);
906 dsl_dir_rele(dd, FTAG);
907 drc->drc_newfs = B_TRUE;
908 }
909 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
910 &newds));
911 if (dsl_dataset_feature_is_active(newds,
912 SPA_FEATURE_REDACTED_DATASETS)) {
913 /*
914 * If the origin dataset is redacted, the child will be redacted
915 * when we create it. We clear the new dataset's
916 * redaction info; if it should be redacted, we'll fill
917 * in its information later.
918 */
919 dsl_dataset_deactivate_feature(newds,
920 SPA_FEATURE_REDACTED_DATASETS, tx);
921 }
922 VERIFY0(dmu_objset_from_ds(newds, &os));
923
924 if (drc->drc_resumable) {
925 dsl_dataset_zapify(newds, tx);
926 if (drrb->drr_fromguid != 0) {
927 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
928 8, 1, &drrb->drr_fromguid, tx));
929 }
930 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
931 8, 1, &drrb->drr_toguid, tx));
932 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
933 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
934 uint64_t one = 1;
935 uint64_t zero = 0;
936 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
937 8, 1, &one, tx));
938 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
939 8, 1, &zero, tx));
940 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
941 8, 1, &zero, tx));
942 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
943 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
944 8, 1, &one, tx));
945 }
946 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
947 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
948 8, 1, &one, tx));
949 }
950 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
951 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
952 8, 1, &one, tx));
953 }
954 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
955 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
956 8, 1, &one, tx));
957 }
958
959 uint64_t *redact_snaps;
960 uint_t numredactsnaps;
961 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
962 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
963 &numredactsnaps) == 0) {
964 VERIFY0(zap_add(mos, dsobj,
965 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
966 sizeof (*redact_snaps), numredactsnaps,
967 redact_snaps, tx));
968 }
969 }
970
971 /*
972 * Usually the os->os_encrypted value is tied to the presence of a
973 * DSL Crypto Key object in the dd. However, that will not be received
974 * until dmu_recv_stream(), so we set the value manually for now.
975 */
976 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
977 os->os_encrypted = B_TRUE;
978 drba->drba_cookie->drc_raw = B_TRUE;
979 }
980
981 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
982 uint64_t *redact_snaps;
983 uint_t numredactsnaps;
984 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
985 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
986 dsl_dataset_activate_redaction(newds, redact_snaps,
987 numredactsnaps, tx);
988 }
989
990 dmu_buf_will_dirty(newds->ds_dbuf, tx);
991 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
992
993 /*
994 * If we actually created a non-clone, we need to create the objset
995 * in our new dataset. If this is a raw send we postpone this until
996 * dmu_recv_stream() so that we can allocate the metadnode with the
997 * properties from the DRR_BEGIN payload.
998 */
999 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1000 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1001 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1002 !drc->drc_heal) {
1003 (void) dmu_objset_create_impl(dp->dp_spa,
1004 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1005 }
1006 rrw_exit(&newds->ds_bp_rwlock, FTAG);
1007
1008 drba->drba_cookie->drc_ds = newds;
1009 drba->drba_cookie->drc_os = os;
1010
1011 spa_history_log_internal_ds(newds, "receive", tx, " ");
1012 }
1013
1014 static int
1015 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1016 {
1017 dmu_recv_begin_arg_t *drba = arg;
1018 dmu_recv_cookie_t *drc = drba->drba_cookie;
1019 dsl_pool_t *dp = dmu_tx_pool(tx);
1020 struct drr_begin *drrb = drc->drc_drrb;
1021 int error;
1022 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1023 dsl_dataset_t *ds;
1024 const char *tofs = drc->drc_tofs;
1025
1026 /* already checked */
1027 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1028 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1029
1030 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1031 DMU_COMPOUNDSTREAM ||
1032 drrb->drr_type >= DMU_OST_NUMTYPES)
1033 return (SET_ERROR(EINVAL));
1034
1035 /*
1036 * This is mostly a sanity check since we should have already done these
1037 * checks during a previous attempt to receive the data.
1038 */
1039 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1040 dp->dp_spa);
1041 if (error != 0)
1042 return (error);
1043
1044 /* 6 extra bytes for /%recv */
1045 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1046
1047 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1048 tofs, recv_clone_name);
1049
1050 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1051 /* raw receives require spill block allocation flag */
1052 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1053 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1054 } else {
1055 dsflags |= DS_HOLD_FLAG_DECRYPT;
1056 }
1057
1058 boolean_t recvexist = B_TRUE;
1059 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1060 /* %recv does not exist; continue in tofs */
1061 recvexist = B_FALSE;
1062 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1063 if (error != 0)
1064 return (error);
1065 }
1066
1067 /*
1068 * Resume of full/newfs recv on existing dataset should be done with
1069 * force flag
1070 */
1071 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1072 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1074 }
1075
1076 /* check that ds is marked inconsistent */
1077 if (!DS_IS_INCONSISTENT(ds)) {
1078 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079 return (SET_ERROR(EINVAL));
1080 }
1081
1082 /* check that there is resuming data, and that the toguid matches */
1083 if (!dsl_dataset_is_zapified(ds)) {
1084 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085 return (SET_ERROR(EINVAL));
1086 }
1087 uint64_t val;
1088 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1089 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1090 if (error != 0 || drrb->drr_toguid != val) {
1091 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092 return (SET_ERROR(EINVAL));
1093 }
1094
1095 /*
1096 * Check if the receive is still running. If so, it will be owned.
1097 * Note that nothing else can own the dataset (e.g. after the receive
1098 * fails) because it will be marked inconsistent.
1099 */
1100 if (dsl_dataset_has_owner(ds)) {
1101 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1102 return (SET_ERROR(EBUSY));
1103 }
1104
1105 /* There should not be any snapshots of this fs yet. */
1106 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1107 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1108 return (SET_ERROR(EINVAL));
1109 }
1110
1111 /*
1112 * Note: resume point will be checked when we process the first WRITE
1113 * record.
1114 */
1115
1116 /* check that the origin matches */
1117 val = 0;
1118 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1119 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1120 if (drrb->drr_fromguid != val) {
1121 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1122 return (SET_ERROR(EINVAL));
1123 }
1124
1125 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1126 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1127
1128 /*
1129 * If we're resuming, and the send is redacted, then the original send
1130 * must have been redacted, and must have been redacted with respect to
1131 * the same snapshots.
1132 */
1133 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1134 uint64_t num_ds_redact_snaps;
1135 uint64_t *ds_redact_snaps;
1136
1137 uint_t num_stream_redact_snaps;
1138 uint64_t *stream_redact_snaps;
1139
1140 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1141 BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1142 &num_stream_redact_snaps) != 0) {
1143 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1144 return (SET_ERROR(EINVAL));
1145 }
1146
1147 if (!dsl_dataset_get_uint64_array_feature(ds,
1148 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1149 &ds_redact_snaps)) {
1150 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1151 return (SET_ERROR(EINVAL));
1152 }
1153
1154 for (int i = 0; i < num_ds_redact_snaps; i++) {
1155 if (!redact_snaps_contains(ds_redact_snaps,
1156 num_ds_redact_snaps, stream_redact_snaps[i])) {
1157 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1158 return (SET_ERROR(EINVAL));
1159 }
1160 }
1161 }
1162
1163 error = recv_check_large_blocks(ds, drc->drc_featureflags);
1164 if (error != 0) {
1165 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1166 return (error);
1167 }
1168
1169 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1170 return (0);
1171 }
1172
1173 static void
1174 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1175 {
1176 dmu_recv_begin_arg_t *drba = arg;
1177 dsl_pool_t *dp = dmu_tx_pool(tx);
1178 const char *tofs = drba->drba_cookie->drc_tofs;
1179 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1180 dsl_dataset_t *ds;
1181 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1182 /* 6 extra bytes for /%recv */
1183 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1184
1185 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1186 recv_clone_name);
1187
1188 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1189 drba->drba_cookie->drc_raw = B_TRUE;
1190 } else {
1191 dsflags |= DS_HOLD_FLAG_DECRYPT;
1192 }
1193
1194 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1195 != 0) {
1196 /* %recv does not exist; continue in tofs */
1197 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1198 &ds));
1199 drba->drba_cookie->drc_newfs = B_TRUE;
1200 }
1201
1202 ASSERT(DS_IS_INCONSISTENT(ds));
1203 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1204 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1205 drba->drba_cookie->drc_raw);
1206 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1207
1208 drba->drba_cookie->drc_ds = ds;
1209 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1210 drba->drba_cookie->drc_should_save = B_TRUE;
1211
1212 spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1213 }
1214
1215 /*
1216 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1217 * succeeds; otherwise we will leak the holds on the datasets.
1218 */
1219 int
1220 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1221 boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops,
1222 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1223 zfs_file_t *fp, offset_t *voffp)
1224 {
1225 dmu_recv_begin_arg_t drba = { 0 };
1226 int err;
1227
1228 memset(drc, 0, sizeof (dmu_recv_cookie_t));
1229 drc->drc_drr_begin = drr_begin;
1230 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1231 drc->drc_tosnap = tosnap;
1232 drc->drc_tofs = tofs;
1233 drc->drc_force = force;
1234 drc->drc_heal = heal;
1235 drc->drc_resumable = resumable;
1236 drc->drc_cred = CRED();
1237 drc->drc_proc = curproc;
1238 drc->drc_clone = (origin != NULL);
1239
1240 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1241 drc->drc_byteswap = B_TRUE;
1242 (void) fletcher_4_incremental_byteswap(drr_begin,
1243 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1244 byteswap_record(drr_begin);
1245 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1246 (void) fletcher_4_incremental_native(drr_begin,
1247 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1248 } else {
1249 return (SET_ERROR(EINVAL));
1250 }
1251
1252 drc->drc_fp = fp;
1253 drc->drc_voff = *voffp;
1254 drc->drc_featureflags =
1255 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1256
1257 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1258 void *payload = NULL;
1259
1260 /*
1261 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1262 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1263 * upper limit. Systems with less than 1GB of RAM will see a lower
1264 * limit from `arc_all_memory() / 4`.
1265 */
1266 if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1267 return (E2BIG);
1268
1269 if (payloadlen != 0)
1270 payload = vmem_alloc(payloadlen, KM_SLEEP);
1271
1272 err = receive_read_payload_and_next_header(drc, payloadlen,
1273 payload);
1274 if (err != 0) {
1275 vmem_free(payload, payloadlen);
1276 return (err);
1277 }
1278 if (payloadlen != 0) {
1279 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1280 KM_SLEEP);
1281 vmem_free(payload, payloadlen);
1282 if (err != 0) {
1283 kmem_free(drc->drc_next_rrd,
1284 sizeof (*drc->drc_next_rrd));
1285 return (err);
1286 }
1287 }
1288
1289 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1290 drc->drc_spill = B_TRUE;
1291
1292 drba.drba_origin = origin;
1293 drba.drba_cookie = drc;
1294 drba.drba_cred = CRED();
1295 drba.drba_proc = curproc;
1296
1297 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1298 err = dsl_sync_task(tofs,
1299 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1300 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1301 } else {
1302 /*
1303 * For non-raw, non-incremental, non-resuming receives the
1304 * user can specify encryption parameters on the command line
1305 * with "zfs recv -o". For these receives we create a dcp and
1306 * pass it to the sync task. Creating the dcp will implicitly
1307 * remove the encryption params from the localprops nvlist,
1308 * which avoids errors when trying to set these normally
1309 * read-only properties. Any other kind of receive that
1310 * attempts to set these properties will fail as a result.
1311 */
1312 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1313 DMU_BACKUP_FEATURE_RAW) == 0 &&
1314 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1315 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1316 localprops, hidden_args, &drba.drba_dcp);
1317 }
1318
1319 if (err == 0) {
1320 err = dsl_sync_task(tofs,
1321 dmu_recv_begin_check, dmu_recv_begin_sync,
1322 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1323 dsl_crypto_params_free(drba.drba_dcp, !!err);
1324 }
1325 }
1326
1327 if (err != 0) {
1328 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1329 nvlist_free(drc->drc_begin_nvl);
1330 }
1331 return (err);
1332 }
1333
1334 /*
1335 * Holds data need for corrective recv callback
1336 */
1337 typedef struct cr_cb_data {
1338 uint64_t size;
1339 zbookmark_phys_t zb;
1340 spa_t *spa;
1341 } cr_cb_data_t;
1342
1343 static void
1344 corrective_read_done(zio_t *zio)
1345 {
1346 cr_cb_data_t *data = zio->io_private;
1347 /* Corruption corrected; update error log if needed */
1348 if (zio->io_error == 0)
1349 spa_remove_error(data->spa, &data->zb);
1350 kmem_free(data, sizeof (cr_cb_data_t));
1351 abd_free(zio->io_abd);
1352 }
1353
1354 /*
1355 * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1356 */
1357 static int
1358 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1359 struct receive_record_arg *rrd, blkptr_t *bp)
1360 {
1361 int err;
1362 zio_t *io;
1363 zbookmark_phys_t zb;
1364 dnode_t *dn;
1365 abd_t *abd = rrd->abd;
1366 zio_cksum_t bp_cksum = bp->blk_cksum;
1367 zio_flag_t flags = ZIO_FLAG_SPECULATIVE |
1368 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
1369
1370 if (rwa->raw)
1371 flags |= ZIO_FLAG_RAW;
1372
1373 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1374 if (err != 0)
1375 return (err);
1376 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1377 dbuf_whichblock(dn, 0, drrw->drr_offset));
1378 dnode_rele(dn, FTAG);
1379
1380 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1381 /* Decompress the stream data */
1382 abd_t *dabd = abd_alloc_linear(
1383 drrw->drr_logical_size, B_FALSE);
1384 err = zio_decompress_data(drrw->drr_compressiontype,
1385 abd, abd_to_buf(dabd), abd_get_size(abd),
1386 abd_get_size(dabd), NULL);
1387
1388 if (err != 0) {
1389 abd_free(dabd);
1390 return (err);
1391 }
1392 /* Swap in the newly decompressed data into the abd */
1393 abd_free(abd);
1394 abd = dabd;
1395 }
1396
1397 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1398 /* Recompress the data */
1399 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1400 B_FALSE);
1401 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1402 abd, abd_to_buf(cabd), abd_get_size(abd),
1403 rwa->os->os_complevel);
1404 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1405 /* Swap in newly compressed data into the abd */
1406 abd_free(abd);
1407 abd = cabd;
1408 flags |= ZIO_FLAG_RAW_COMPRESS;
1409 }
1410
1411 /*
1412 * The stream is not encrypted but the data on-disk is.
1413 * We need to re-encrypt the buf using the same
1414 * encryption type, salt, iv, and mac that was used to encrypt
1415 * the block previosly.
1416 */
1417 if (!rwa->raw && BP_USES_CRYPT(bp)) {
1418 dsl_dataset_t *ds;
1419 dsl_crypto_key_t *dck = NULL;
1420 uint8_t salt[ZIO_DATA_SALT_LEN];
1421 uint8_t iv[ZIO_DATA_IV_LEN];
1422 uint8_t mac[ZIO_DATA_MAC_LEN];
1423 boolean_t no_crypt = B_FALSE;
1424 dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1425 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1426
1427 zio_crypt_decode_params_bp(bp, salt, iv);
1428 zio_crypt_decode_mac_bp(bp, mac);
1429
1430 dsl_pool_config_enter(dp, FTAG);
1431 err = dsl_dataset_hold_flags(dp, rwa->tofs,
1432 DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1433 if (err != 0) {
1434 dsl_pool_config_exit(dp, FTAG);
1435 abd_free(eabd);
1436 return (SET_ERROR(EACCES));
1437 }
1438
1439 /* Look up the key from the spa's keystore */
1440 err = spa_keystore_lookup_key(rwa->os->os_spa,
1441 zb.zb_objset, FTAG, &dck);
1442 if (err != 0) {
1443 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1444 FTAG);
1445 dsl_pool_config_exit(dp, FTAG);
1446 abd_free(eabd);
1447 return (SET_ERROR(EACCES));
1448 }
1449
1450 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1451 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1452 mac, abd_get_size(abd), abd, eabd, &no_crypt);
1453
1454 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1455 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1456 dsl_pool_config_exit(dp, FTAG);
1457
1458 ASSERT0(no_crypt);
1459 if (err != 0) {
1460 abd_free(eabd);
1461 return (err);
1462 }
1463 /* Swap in the newly encrypted data into the abd */
1464 abd_free(abd);
1465 abd = eabd;
1466
1467 /*
1468 * We want to prevent zio_rewrite() from trying to
1469 * encrypt the data again
1470 */
1471 flags |= ZIO_FLAG_RAW_ENCRYPT;
1472 }
1473 rrd->abd = abd;
1474
1475 io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
1476 BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
1477
1478 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1479 abd_get_size(abd) == BP_GET_PSIZE(bp));
1480
1481 /* compute new bp checksum value and make sure it matches the old one */
1482 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1483 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1484 zio_destroy(io);
1485 if (zfs_recv_best_effort_corrective != 0)
1486 return (0);
1487 return (SET_ERROR(ECKSUM));
1488 }
1489
1490 /* Correct the corruption in place */
1491 err = zio_wait(io);
1492 if (err == 0) {
1493 cr_cb_data_t *cb_data =
1494 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1495 cb_data->spa = rwa->os->os_spa;
1496 cb_data->size = drrw->drr_logical_size;
1497 cb_data->zb = zb;
1498 /* Test if healing worked by re-reading the bp */
1499 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1500 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1501 drrw->drr_logical_size, corrective_read_done,
1502 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1503 }
1504 if (err != 0 && zfs_recv_best_effort_corrective != 0)
1505 err = 0;
1506
1507 return (err);
1508 }
1509
1510 static int
1511 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1512 {
1513 int done = 0;
1514
1515 /*
1516 * The code doesn't rely on this (lengths being multiples of 8). See
1517 * comment in dump_bytes.
1518 */
1519 ASSERT(len % 8 == 0 ||
1520 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1521
1522 while (done < len) {
1523 ssize_t resid = len - done;
1524 zfs_file_t *fp = drc->drc_fp;
1525 int err = zfs_file_read(fp, (char *)buf + done,
1526 len - done, &resid);
1527 if (err == 0 && resid == len - done) {
1528 /*
1529 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1530 * that the receive was interrupted and can
1531 * potentially be resumed.
1532 */
1533 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1534 }
1535 drc->drc_voff += len - done - resid;
1536 done = len - resid;
1537 if (err != 0)
1538 return (err);
1539 }
1540
1541 drc->drc_bytes_read += len;
1542
1543 ASSERT3U(done, ==, len);
1544 return (0);
1545 }
1546
1547 static inline uint8_t
1548 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1549 {
1550 if (bonus_type == DMU_OT_SA) {
1551 return (1);
1552 } else {
1553 return (1 +
1554 ((DN_OLD_MAX_BONUSLEN -
1555 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1556 }
1557 }
1558
1559 static void
1560 save_resume_state(struct receive_writer_arg *rwa,
1561 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1562 {
1563 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1564
1565 if (!rwa->resumable)
1566 return;
1567
1568 /*
1569 * We use ds_resume_bytes[] != 0 to indicate that we need to
1570 * update this on disk, so it must not be 0.
1571 */
1572 ASSERT(rwa->bytes_read != 0);
1573
1574 /*
1575 * We only resume from write records, which have a valid
1576 * (non-meta-dnode) object number.
1577 */
1578 ASSERT(object != 0);
1579
1580 /*
1581 * For resuming to work correctly, we must receive records in order,
1582 * sorted by object,offset. This is checked by the callers, but
1583 * assert it here for good measure.
1584 */
1585 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1586 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1587 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1588 ASSERT3U(rwa->bytes_read, >=,
1589 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1590
1591 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1592 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1593 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1594 }
1595
1596 static int
1597 receive_object_is_same_generation(objset_t *os, uint64_t object,
1598 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1599 const void *new_bonus, boolean_t *samegenp)
1600 {
1601 zfs_file_info_t zoi;
1602 int err;
1603
1604 dmu_buf_t *old_bonus_dbuf;
1605 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1606 if (err != 0)
1607 return (err);
1608 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1609 &zoi);
1610 dmu_buf_rele(old_bonus_dbuf, FTAG);
1611 if (err != 0)
1612 return (err);
1613 uint64_t old_gen = zoi.zfi_generation;
1614
1615 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1616 if (err != 0)
1617 return (err);
1618 uint64_t new_gen = zoi.zfi_generation;
1619
1620 *samegenp = (old_gen == new_gen);
1621 return (0);
1622 }
1623
1624 static int
1625 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1626 const struct drr_object *drro, const dmu_object_info_t *doi,
1627 const void *bonus_data,
1628 uint64_t *object_to_hold, uint32_t *new_blksz)
1629 {
1630 uint32_t indblksz = drro->drr_indblkshift ?
1631 1ULL << drro->drr_indblkshift : 0;
1632 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1633 drro->drr_bonuslen);
1634 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1635 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1636 boolean_t do_free_range = B_FALSE;
1637 int err;
1638
1639 *object_to_hold = drro->drr_object;
1640
1641 /* nblkptr should be bounded by the bonus size and type */
1642 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1643 return (SET_ERROR(EINVAL));
1644
1645 /*
1646 * After the previous send stream, the sending system may
1647 * have freed this object, and then happened to re-allocate
1648 * this object number in a later txg. In this case, we are
1649 * receiving a different logical file, and the block size may
1650 * appear to be different. i.e. we may have a different
1651 * block size for this object than what the send stream says.
1652 * In this case we need to remove the object's contents,
1653 * so that its structure can be changed and then its contents
1654 * entirely replaced by subsequent WRITE records.
1655 *
1656 * If this is a -L (--large-block) incremental stream, and
1657 * the previous stream was not -L, the block size may appear
1658 * to increase. i.e. we may have a smaller block size for
1659 * this object than what the send stream says. In this case
1660 * we need to keep the object's contents and block size
1661 * intact, so that we don't lose parts of the object's
1662 * contents that are not changed by this incremental send
1663 * stream.
1664 *
1665 * We can distinguish between the two above cases by using
1666 * the ZPL's generation number (see
1667 * receive_object_is_same_generation()). However, we only
1668 * want to rely on the generation number when absolutely
1669 * necessary, because with raw receives, the generation is
1670 * encrypted. We also want to minimize dependence on the
1671 * ZPL, so that other types of datasets can also be received
1672 * (e.g. ZVOLs, although note that ZVOLS currently do not
1673 * reallocate their objects or change their structure).
1674 * Therefore, we check a number of different cases where we
1675 * know it is safe to discard the object's contents, before
1676 * using the ZPL's generation number to make the above
1677 * distinction.
1678 */
1679 if (drro->drr_blksz != doi->doi_data_block_size) {
1680 if (rwa->raw) {
1681 /*
1682 * RAW streams always have large blocks, so
1683 * we are sure that the data is not needed
1684 * due to changing --large-block to be on.
1685 * Which is fortunate since the bonus buffer
1686 * (which contains the ZPL generation) is
1687 * encrypted, and the key might not be
1688 * loaded.
1689 */
1690 do_free_range = B_TRUE;
1691 } else if (rwa->full) {
1692 /*
1693 * This is a full send stream, so it always
1694 * replaces what we have. Even if the
1695 * generation numbers happen to match, this
1696 * can not actually be the same logical file.
1697 * This is relevant when receiving a full
1698 * send as a clone.
1699 */
1700 do_free_range = B_TRUE;
1701 } else if (drro->drr_type !=
1702 DMU_OT_PLAIN_FILE_CONTENTS ||
1703 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1704 /*
1705 * PLAIN_FILE_CONTENTS are the only type of
1706 * objects that have ever been stored with
1707 * large blocks, so we don't need the special
1708 * logic below. ZAP blocks can shrink (when
1709 * there's only one block), so we don't want
1710 * to hit the error below about block size
1711 * only increasing.
1712 */
1713 do_free_range = B_TRUE;
1714 } else if (doi->doi_max_offset <=
1715 doi->doi_data_block_size) {
1716 /*
1717 * There is only one block. We can free it,
1718 * because its contents will be replaced by a
1719 * WRITE record. This can not be the no-L ->
1720 * -L case, because the no-L case would have
1721 * resulted in multiple blocks. If we
1722 * supported -L -> no-L, it would not be safe
1723 * to free the file's contents. Fortunately,
1724 * that is not allowed (see
1725 * recv_check_large_blocks()).
1726 */
1727 do_free_range = B_TRUE;
1728 } else {
1729 boolean_t is_same_gen;
1730 err = receive_object_is_same_generation(rwa->os,
1731 drro->drr_object, doi->doi_bonus_type,
1732 drro->drr_bonustype, bonus_data, &is_same_gen);
1733 if (err != 0)
1734 return (SET_ERROR(EINVAL));
1735
1736 if (is_same_gen) {
1737 /*
1738 * This is the same logical file, and
1739 * the block size must be increasing.
1740 * It could only decrease if
1741 * --large-block was changed to be
1742 * off, which is checked in
1743 * recv_check_large_blocks().
1744 */
1745 if (drro->drr_blksz <=
1746 doi->doi_data_block_size)
1747 return (SET_ERROR(EINVAL));
1748 /*
1749 * We keep the existing blocksize and
1750 * contents.
1751 */
1752 *new_blksz =
1753 doi->doi_data_block_size;
1754 } else {
1755 do_free_range = B_TRUE;
1756 }
1757 }
1758 }
1759
1760 /* nblkptr can only decrease if the object was reallocated */
1761 if (nblkptr < doi->doi_nblkptr)
1762 do_free_range = B_TRUE;
1763
1764 /* number of slots can only change on reallocation */
1765 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1766 do_free_range = B_TRUE;
1767
1768 /*
1769 * For raw sends we also check a few other fields to
1770 * ensure we are preserving the objset structure exactly
1771 * as it was on the receive side:
1772 * - A changed indirect block size
1773 * - A smaller nlevels
1774 */
1775 if (rwa->raw) {
1776 if (indblksz != doi->doi_metadata_block_size)
1777 do_free_range = B_TRUE;
1778 if (drro->drr_nlevels < doi->doi_indirection)
1779 do_free_range = B_TRUE;
1780 }
1781
1782 if (do_free_range) {
1783 err = dmu_free_long_range(rwa->os, drro->drr_object,
1784 0, DMU_OBJECT_END);
1785 if (err != 0)
1786 return (SET_ERROR(EINVAL));
1787 }
1788
1789 /*
1790 * The dmu does not currently support decreasing nlevels
1791 * or changing the number of dnode slots on an object. For
1792 * non-raw sends, this does not matter and the new object
1793 * can just use the previous one's nlevels. For raw sends,
1794 * however, the structure of the received dnode (including
1795 * nlevels and dnode slots) must match that of the send
1796 * side. Therefore, instead of using dmu_object_reclaim(),
1797 * we must free the object completely and call
1798 * dmu_object_claim_dnsize() instead.
1799 */
1800 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1801 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1802 err = dmu_free_long_object(rwa->os, drro->drr_object);
1803 if (err != 0)
1804 return (SET_ERROR(EINVAL));
1805
1806 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1807 *object_to_hold = DMU_NEW_OBJECT;
1808 }
1809
1810 /*
1811 * For raw receives, free everything beyond the new incoming
1812 * maxblkid. Normally this would be done with a DRR_FREE
1813 * record that would come after this DRR_OBJECT record is
1814 * processed. However, for raw receives we manually set the
1815 * maxblkid from the drr_maxblkid and so we must first free
1816 * everything above that blkid to ensure the DMU is always
1817 * consistent with itself. We will never free the first block
1818 * of the object here because a maxblkid of 0 could indicate
1819 * an object with a single block or one with no blocks. This
1820 * free may be skipped when dmu_free_long_range() was called
1821 * above since it covers the entire object's contents.
1822 */
1823 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1824 err = dmu_free_long_range(rwa->os, drro->drr_object,
1825 (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1826 DMU_OBJECT_END);
1827 if (err != 0)
1828 return (SET_ERROR(EINVAL));
1829 }
1830 return (0);
1831 }
1832
1833 noinline static int
1834 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1835 void *data)
1836 {
1837 dmu_object_info_t doi;
1838 dmu_tx_t *tx;
1839 int err;
1840 uint32_t new_blksz = drro->drr_blksz;
1841 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1842 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1843
1844 if (drro->drr_type == DMU_OT_NONE ||
1845 !DMU_OT_IS_VALID(drro->drr_type) ||
1846 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1847 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1848 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1849 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1850 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1851 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1852 drro->drr_bonuslen >
1853 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1854 dn_slots >
1855 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1856 return (SET_ERROR(EINVAL));
1857 }
1858
1859 if (rwa->raw) {
1860 /*
1861 * We should have received a DRR_OBJECT_RANGE record
1862 * containing this block and stored it in rwa.
1863 */
1864 if (drro->drr_object < rwa->or_firstobj ||
1865 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1866 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1867 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1868 drro->drr_nlevels > DN_MAX_LEVELS ||
1869 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1870 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1871 drro->drr_raw_bonuslen)
1872 return (SET_ERROR(EINVAL));
1873 } else {
1874 /*
1875 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1876 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1877 */
1878 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1879 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1880 return (SET_ERROR(EINVAL));
1881 }
1882
1883 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1884 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1885 return (SET_ERROR(EINVAL));
1886 }
1887 }
1888
1889 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1890
1891 if (err != 0 && err != ENOENT && err != EEXIST)
1892 return (SET_ERROR(EINVAL));
1893
1894 if (drro->drr_object > rwa->max_object)
1895 rwa->max_object = drro->drr_object;
1896
1897 /*
1898 * If we are losing blkptrs or changing the block size this must
1899 * be a new file instance. We must clear out the previous file
1900 * contents before we can change this type of metadata in the dnode.
1901 * Raw receives will also check that the indirect structure of the
1902 * dnode hasn't changed.
1903 */
1904 uint64_t object_to_hold;
1905 if (err == 0) {
1906 err = receive_handle_existing_object(rwa, drro, &doi, data,
1907 &object_to_hold, &new_blksz);
1908 if (err != 0)
1909 return (err);
1910 } else if (err == EEXIST) {
1911 /*
1912 * The object requested is currently an interior slot of a
1913 * multi-slot dnode. This will be resolved when the next txg
1914 * is synced out, since the send stream will have told us
1915 * to free this slot when we freed the associated dnode
1916 * earlier in the stream.
1917 */
1918 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1919
1920 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1921 return (SET_ERROR(EINVAL));
1922
1923 /* object was freed and we are about to allocate a new one */
1924 object_to_hold = DMU_NEW_OBJECT;
1925 } else {
1926 /*
1927 * If the only record in this range so far was DRR_FREEOBJECTS
1928 * with at least one actually freed object, it's possible that
1929 * the block will now be converted to a hole. We need to wait
1930 * for the txg to sync to prevent races.
1931 */
1932 if (rwa->or_need_sync == ORNS_YES)
1933 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1934
1935 /* object is free and we are about to allocate a new one */
1936 object_to_hold = DMU_NEW_OBJECT;
1937 }
1938
1939 /* Only relevant for the first object in the range */
1940 rwa->or_need_sync = ORNS_NO;
1941
1942 /*
1943 * If this is a multi-slot dnode there is a chance that this
1944 * object will expand into a slot that is already used by
1945 * another object from the previous snapshot. We must free
1946 * these objects before we attempt to allocate the new dnode.
1947 */
1948 if (dn_slots > 1) {
1949 boolean_t need_sync = B_FALSE;
1950
1951 for (uint64_t slot = drro->drr_object + 1;
1952 slot < drro->drr_object + dn_slots;
1953 slot++) {
1954 dmu_object_info_t slot_doi;
1955
1956 err = dmu_object_info(rwa->os, slot, &slot_doi);
1957 if (err == ENOENT || err == EEXIST)
1958 continue;
1959 else if (err != 0)
1960 return (err);
1961
1962 err = dmu_free_long_object(rwa->os, slot);
1963 if (err != 0)
1964 return (err);
1965
1966 need_sync = B_TRUE;
1967 }
1968
1969 if (need_sync)
1970 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1971 }
1972
1973 tx = dmu_tx_create(rwa->os);
1974 dmu_tx_hold_bonus(tx, object_to_hold);
1975 dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1976 err = dmu_tx_assign(tx, TXG_WAIT);
1977 if (err != 0) {
1978 dmu_tx_abort(tx);
1979 return (err);
1980 }
1981
1982 if (object_to_hold == DMU_NEW_OBJECT) {
1983 /* Currently free, wants to be allocated */
1984 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1985 drro->drr_type, new_blksz,
1986 drro->drr_bonustype, drro->drr_bonuslen,
1987 dn_slots << DNODE_SHIFT, tx);
1988 } else if (drro->drr_type != doi.doi_type ||
1989 new_blksz != doi.doi_data_block_size ||
1990 drro->drr_bonustype != doi.doi_bonus_type ||
1991 drro->drr_bonuslen != doi.doi_bonus_size) {
1992 /* Currently allocated, but with different properties */
1993 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1994 drro->drr_type, new_blksz,
1995 drro->drr_bonustype, drro->drr_bonuslen,
1996 dn_slots << DNODE_SHIFT, rwa->spill ?
1997 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1998 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1999 /*
2000 * Currently allocated, the existing version of this object
2001 * may reference a spill block that is no longer allocated
2002 * at the source and needs to be freed.
2003 */
2004 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2005 }
2006
2007 if (err != 0) {
2008 dmu_tx_commit(tx);
2009 return (SET_ERROR(EINVAL));
2010 }
2011
2012 if (rwa->or_crypt_params_present) {
2013 /*
2014 * Set the crypt params for the buffer associated with this
2015 * range of dnodes. This causes the blkptr_t to have the
2016 * same crypt params (byteorder, salt, iv, mac) as on the
2017 * sending side.
2018 *
2019 * Since we are committing this tx now, it is possible for
2020 * the dnode block to end up on-disk with the incorrect MAC,
2021 * if subsequent objects in this block are received in a
2022 * different txg. However, since the dataset is marked as
2023 * inconsistent, no code paths will do a non-raw read (or
2024 * decrypt the block / verify the MAC). The receive code and
2025 * scrub code can safely do raw reads and verify the
2026 * checksum. They don't need to verify the MAC.
2027 */
2028 dmu_buf_t *db = NULL;
2029 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2030
2031 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2032 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2033 if (err != 0) {
2034 dmu_tx_commit(tx);
2035 return (SET_ERROR(EINVAL));
2036 }
2037
2038 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2039 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2040
2041 dmu_buf_rele(db, FTAG);
2042
2043 rwa->or_crypt_params_present = B_FALSE;
2044 }
2045
2046 dmu_object_set_checksum(rwa->os, drro->drr_object,
2047 drro->drr_checksumtype, tx);
2048 dmu_object_set_compress(rwa->os, drro->drr_object,
2049 drro->drr_compress, tx);
2050
2051 /* handle more restrictive dnode structuring for raw recvs */
2052 if (rwa->raw) {
2053 /*
2054 * Set the indirect block size, block shift, nlevels.
2055 * This will not fail because we ensured all of the
2056 * blocks were freed earlier if this is a new object.
2057 * For non-new objects block size and indirect block
2058 * shift cannot change and nlevels can only increase.
2059 */
2060 ASSERT3U(new_blksz, ==, drro->drr_blksz);
2061 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2062 drro->drr_blksz, drro->drr_indblkshift, tx));
2063 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2064 drro->drr_nlevels, tx));
2065
2066 /*
2067 * Set the maxblkid. This will always succeed because
2068 * we freed all blocks beyond the new maxblkid above.
2069 */
2070 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2071 drro->drr_maxblkid, tx));
2072 }
2073
2074 if (data != NULL) {
2075 dmu_buf_t *db;
2076 dnode_t *dn;
2077 uint32_t flags = DMU_READ_NO_PREFETCH;
2078
2079 if (rwa->raw)
2080 flags |= DMU_READ_NO_DECRYPT;
2081
2082 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2083 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2084
2085 dmu_buf_will_dirty(db, tx);
2086
2087 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2088 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2089
2090 /*
2091 * Raw bonus buffers have their byteorder determined by the
2092 * DRR_OBJECT_RANGE record.
2093 */
2094 if (rwa->byteswap && !rwa->raw) {
2095 dmu_object_byteswap_t byteswap =
2096 DMU_OT_BYTESWAP(drro->drr_bonustype);
2097 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2098 DRR_OBJECT_PAYLOAD_SIZE(drro));
2099 }
2100 dmu_buf_rele(db, FTAG);
2101 dnode_rele(dn, FTAG);
2102 }
2103 dmu_tx_commit(tx);
2104
2105 return (0);
2106 }
2107
2108 noinline static int
2109 receive_freeobjects(struct receive_writer_arg *rwa,
2110 struct drr_freeobjects *drrfo)
2111 {
2112 uint64_t obj;
2113 int next_err = 0;
2114
2115 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2116 return (SET_ERROR(EINVAL));
2117
2118 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2119 obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2120 obj < DN_MAX_OBJECT && next_err == 0;
2121 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2122 dmu_object_info_t doi;
2123 int err;
2124
2125 err = dmu_object_info(rwa->os, obj, &doi);
2126 if (err == ENOENT)
2127 continue;
2128 else if (err != 0)
2129 return (err);
2130
2131 err = dmu_free_long_object(rwa->os, obj);
2132
2133 if (err != 0)
2134 return (err);
2135
2136 if (rwa->or_need_sync == ORNS_MAYBE)
2137 rwa->or_need_sync = ORNS_YES;
2138 }
2139 if (next_err != ESRCH)
2140 return (next_err);
2141 return (0);
2142 }
2143
2144 /*
2145 * Note: if this fails, the caller will clean up any records left on the
2146 * rwa->write_batch list.
2147 */
2148 static int
2149 flush_write_batch_impl(struct receive_writer_arg *rwa)
2150 {
2151 dnode_t *dn;
2152 int err;
2153
2154 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2155 return (SET_ERROR(EINVAL));
2156
2157 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2158 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2159
2160 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2161 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2162
2163 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2164 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2165
2166 dmu_tx_t *tx = dmu_tx_create(rwa->os);
2167 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2168 last_drrw->drr_offset - first_drrw->drr_offset +
2169 last_drrw->drr_logical_size);
2170 err = dmu_tx_assign(tx, TXG_WAIT);
2171 if (err != 0) {
2172 dmu_tx_abort(tx);
2173 dnode_rele(dn, FTAG);
2174 return (err);
2175 }
2176
2177 struct receive_record_arg *rrd;
2178 while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2179 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2180 abd_t *abd = rrd->abd;
2181
2182 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2183
2184 if (drrw->drr_logical_size != dn->dn_datablksz) {
2185 /*
2186 * The WRITE record is larger than the object's block
2187 * size. We must be receiving an incremental
2188 * large-block stream into a dataset that previously did
2189 * a non-large-block receive. Lightweight writes must
2190 * be exactly one block, so we need to decompress the
2191 * data (if compressed) and do a normal dmu_write().
2192 */
2193 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2194 if (DRR_WRITE_COMPRESSED(drrw)) {
2195 abd_t *decomp_abd =
2196 abd_alloc_linear(drrw->drr_logical_size,
2197 B_FALSE);
2198
2199 err = zio_decompress_data(
2200 drrw->drr_compressiontype,
2201 abd, abd_to_buf(decomp_abd),
2202 abd_get_size(abd),
2203 abd_get_size(decomp_abd), NULL);
2204
2205 if (err == 0) {
2206 dmu_write_by_dnode(dn,
2207 drrw->drr_offset,
2208 drrw->drr_logical_size,
2209 abd_to_buf(decomp_abd), tx);
2210 }
2211 abd_free(decomp_abd);
2212 } else {
2213 dmu_write_by_dnode(dn,
2214 drrw->drr_offset,
2215 drrw->drr_logical_size,
2216 abd_to_buf(abd), tx);
2217 }
2218 if (err == 0)
2219 abd_free(abd);
2220 } else {
2221 zio_prop_t zp;
2222 dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2223
2224 zio_flag_t zio_flags = 0;
2225
2226 if (rwa->raw) {
2227 zp.zp_encrypt = B_TRUE;
2228 zp.zp_compress = drrw->drr_compressiontype;
2229 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2230 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2231 rwa->byteswap;
2232 memcpy(zp.zp_salt, drrw->drr_salt,
2233 ZIO_DATA_SALT_LEN);
2234 memcpy(zp.zp_iv, drrw->drr_iv,
2235 ZIO_DATA_IV_LEN);
2236 memcpy(zp.zp_mac, drrw->drr_mac,
2237 ZIO_DATA_MAC_LEN);
2238 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2239 zp.zp_nopwrite = B_FALSE;
2240 zp.zp_copies = MIN(zp.zp_copies,
2241 SPA_DVAS_PER_BP - 1);
2242 }
2243 zio_flags |= ZIO_FLAG_RAW;
2244 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2245 ASSERT3U(drrw->drr_compressed_size, >, 0);
2246 ASSERT3U(drrw->drr_logical_size, >=,
2247 drrw->drr_compressed_size);
2248 zp.zp_compress = drrw->drr_compressiontype;
2249 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2250 } else if (rwa->byteswap) {
2251 /*
2252 * Note: compressed blocks never need to be
2253 * byteswapped, because WRITE records for
2254 * metadata blocks are never compressed. The
2255 * exception is raw streams, which are written
2256 * in the original byteorder, and the byteorder
2257 * bit is preserved in the BP by setting
2258 * zp_byteorder above.
2259 */
2260 dmu_object_byteswap_t byteswap =
2261 DMU_OT_BYTESWAP(drrw->drr_type);
2262 dmu_ot_byteswap[byteswap].ob_func(
2263 abd_to_buf(abd),
2264 DRR_WRITE_PAYLOAD_SIZE(drrw));
2265 }
2266
2267 /*
2268 * Since this data can't be read until the receive
2269 * completes, we can do a "lightweight" write for
2270 * improved performance.
2271 */
2272 err = dmu_lightweight_write_by_dnode(dn,
2273 drrw->drr_offset, abd, &zp, zio_flags, tx);
2274 }
2275
2276 if (err != 0) {
2277 /*
2278 * This rrd is left on the list, so the caller will
2279 * free it (and the abd).
2280 */
2281 break;
2282 }
2283
2284 /*
2285 * Note: If the receive fails, we want the resume stream to
2286 * start with the same record that we last successfully
2287 * received (as opposed to the next record), so that we can
2288 * verify that we are resuming from the correct location.
2289 */
2290 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2291
2292 list_remove(&rwa->write_batch, rrd);
2293 kmem_free(rrd, sizeof (*rrd));
2294 }
2295
2296 dmu_tx_commit(tx);
2297 dnode_rele(dn, FTAG);
2298 return (err);
2299 }
2300
2301 noinline static int
2302 flush_write_batch(struct receive_writer_arg *rwa)
2303 {
2304 if (list_is_empty(&rwa->write_batch))
2305 return (0);
2306 int err = rwa->err;
2307 if (err == 0)
2308 err = flush_write_batch_impl(rwa);
2309 if (err != 0) {
2310 struct receive_record_arg *rrd;
2311 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2312 abd_free(rrd->abd);
2313 kmem_free(rrd, sizeof (*rrd));
2314 }
2315 }
2316 ASSERT(list_is_empty(&rwa->write_batch));
2317 return (err);
2318 }
2319
2320 noinline static int
2321 receive_process_write_record(struct receive_writer_arg *rwa,
2322 struct receive_record_arg *rrd)
2323 {
2324 int err = 0;
2325
2326 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2327 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2328
2329 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2330 !DMU_OT_IS_VALID(drrw->drr_type))
2331 return (SET_ERROR(EINVAL));
2332
2333 if (rwa->heal) {
2334 blkptr_t *bp;
2335 dmu_buf_t *dbp;
2336 dnode_t *dn;
2337 int flags = DB_RF_CANFAIL;
2338
2339 if (rwa->raw)
2340 flags |= DB_RF_NO_DECRYPT;
2341
2342 if (rwa->byteswap) {
2343 dmu_object_byteswap_t byteswap =
2344 DMU_OT_BYTESWAP(drrw->drr_type);
2345 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2346 DRR_WRITE_PAYLOAD_SIZE(drrw));
2347 }
2348
2349 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2350 drrw->drr_offset, FTAG, &dbp);
2351 if (err != 0)
2352 return (err);
2353
2354 /* Try to read the object to see if it needs healing */
2355 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2356 /*
2357 * We only try to heal when dbuf_read() returns a ECKSUMs.
2358 * Other errors (even EIO) get returned to caller.
2359 * EIO indicates that the device is not present/accessible,
2360 * so writing to it will likely fail.
2361 * If the block is healthy, we don't want to overwrite it
2362 * unnecessarily.
2363 */
2364 if (err != ECKSUM) {
2365 dmu_buf_rele(dbp, FTAG);
2366 return (err);
2367 }
2368 dn = dmu_buf_dnode_enter(dbp);
2369 /* Make sure the on-disk block and recv record sizes match */
2370 if (drrw->drr_logical_size !=
2371 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
2372 err = ENOTSUP;
2373 dmu_buf_dnode_exit(dbp);
2374 dmu_buf_rele(dbp, FTAG);
2375 return (err);
2376 }
2377 /* Get the block pointer for the corrupted block */
2378 bp = dmu_buf_get_blkptr(dbp);
2379 err = do_corrective_recv(rwa, drrw, rrd, bp);
2380 dmu_buf_dnode_exit(dbp);
2381 dmu_buf_rele(dbp, FTAG);
2382 return (err);
2383 }
2384
2385 /*
2386 * For resuming to work, records must be in increasing order
2387 * by (object, offset).
2388 */
2389 if (drrw->drr_object < rwa->last_object ||
2390 (drrw->drr_object == rwa->last_object &&
2391 drrw->drr_offset < rwa->last_offset)) {
2392 return (SET_ERROR(EINVAL));
2393 }
2394
2395 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2396 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2397 uint64_t batch_size =
2398 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2399 if (first_rrd != NULL &&
2400 (drrw->drr_object != first_drrw->drr_object ||
2401 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2402 err = flush_write_batch(rwa);
2403 if (err != 0)
2404 return (err);
2405 }
2406
2407 rwa->last_object = drrw->drr_object;
2408 rwa->last_offset = drrw->drr_offset;
2409
2410 if (rwa->last_object > rwa->max_object)
2411 rwa->max_object = rwa->last_object;
2412
2413 list_insert_tail(&rwa->write_batch, rrd);
2414 /*
2415 * Return EAGAIN to indicate that we will use this rrd again,
2416 * so the caller should not free it
2417 */
2418 return (EAGAIN);
2419 }
2420
2421 static int
2422 receive_write_embedded(struct receive_writer_arg *rwa,
2423 struct drr_write_embedded *drrwe, void *data)
2424 {
2425 dmu_tx_t *tx;
2426 int err;
2427
2428 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2429 return (SET_ERROR(EINVAL));
2430
2431 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2432 return (SET_ERROR(EINVAL));
2433
2434 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2435 return (SET_ERROR(EINVAL));
2436 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2437 return (SET_ERROR(EINVAL));
2438 if (rwa->raw)
2439 return (SET_ERROR(EINVAL));
2440
2441 if (drrwe->drr_object > rwa->max_object)
2442 rwa->max_object = drrwe->drr_object;
2443
2444 tx = dmu_tx_create(rwa->os);
2445
2446 dmu_tx_hold_write(tx, drrwe->drr_object,
2447 drrwe->drr_offset, drrwe->drr_length);
2448 err = dmu_tx_assign(tx, TXG_WAIT);
2449 if (err != 0) {
2450 dmu_tx_abort(tx);
2451 return (err);
2452 }
2453
2454 dmu_write_embedded(rwa->os, drrwe->drr_object,
2455 drrwe->drr_offset, data, drrwe->drr_etype,
2456 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2457 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2458
2459 /* See comment in restore_write. */
2460 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2461 dmu_tx_commit(tx);
2462 return (0);
2463 }
2464
2465 static int
2466 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2467 abd_t *abd)
2468 {
2469 dmu_buf_t *db, *db_spill;
2470 int err;
2471
2472 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2473 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2474 return (SET_ERROR(EINVAL));
2475
2476 /*
2477 * This is an unmodified spill block which was added to the stream
2478 * to resolve an issue with incorrectly removing spill blocks. It
2479 * should be ignored by current versions of the code which support
2480 * the DRR_FLAG_SPILL_BLOCK flag.
2481 */
2482 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2483 abd_free(abd);
2484 return (0);
2485 }
2486
2487 if (rwa->raw) {
2488 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2489 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2490 drrs->drr_compressed_size == 0)
2491 return (SET_ERROR(EINVAL));
2492 }
2493
2494 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2495 return (SET_ERROR(EINVAL));
2496
2497 if (drrs->drr_object > rwa->max_object)
2498 rwa->max_object = drrs->drr_object;
2499
2500 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2501 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2502 &db_spill)) != 0) {
2503 dmu_buf_rele(db, FTAG);
2504 return (err);
2505 }
2506
2507 dmu_tx_t *tx = dmu_tx_create(rwa->os);
2508
2509 dmu_tx_hold_spill(tx, db->db_object);
2510
2511 err = dmu_tx_assign(tx, TXG_WAIT);
2512 if (err != 0) {
2513 dmu_buf_rele(db, FTAG);
2514 dmu_buf_rele(db_spill, FTAG);
2515 dmu_tx_abort(tx);
2516 return (err);
2517 }
2518
2519 /*
2520 * Spill blocks may both grow and shrink. When a change in size
2521 * occurs any existing dbuf must be updated to match the logical
2522 * size of the provided arc_buf_t.
2523 */
2524 if (db_spill->db_size != drrs->drr_length) {
2525 dmu_buf_will_fill(db_spill, tx);
2526 VERIFY0(dbuf_spill_set_blksz(db_spill,
2527 drrs->drr_length, tx));
2528 }
2529
2530 arc_buf_t *abuf;
2531 if (rwa->raw) {
2532 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2533 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2534 rwa->byteswap;
2535
2536 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2537 drrs->drr_object, byteorder, drrs->drr_salt,
2538 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2539 drrs->drr_compressed_size, drrs->drr_length,
2540 drrs->drr_compressiontype, 0);
2541 } else {
2542 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2543 DMU_OT_IS_METADATA(drrs->drr_type),
2544 drrs->drr_length);
2545 if (rwa->byteswap) {
2546 dmu_object_byteswap_t byteswap =
2547 DMU_OT_BYTESWAP(drrs->drr_type);
2548 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2549 DRR_SPILL_PAYLOAD_SIZE(drrs));
2550 }
2551 }
2552
2553 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2554 abd_free(abd);
2555 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2556
2557 dmu_buf_rele(db, FTAG);
2558 dmu_buf_rele(db_spill, FTAG);
2559
2560 dmu_tx_commit(tx);
2561 return (0);
2562 }
2563
2564 noinline static int
2565 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2566 {
2567 int err;
2568
2569 if (drrf->drr_length != -1ULL &&
2570 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2571 return (SET_ERROR(EINVAL));
2572
2573 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2574 return (SET_ERROR(EINVAL));
2575
2576 if (drrf->drr_object > rwa->max_object)
2577 rwa->max_object = drrf->drr_object;
2578
2579 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2580 drrf->drr_offset, drrf->drr_length);
2581
2582 return (err);
2583 }
2584
2585 static int
2586 receive_object_range(struct receive_writer_arg *rwa,
2587 struct drr_object_range *drror)
2588 {
2589 /*
2590 * By default, we assume this block is in our native format
2591 * (ZFS_HOST_BYTEORDER). We then take into account whether
2592 * the send stream is byteswapped (rwa->byteswap). Finally,
2593 * we need to byteswap again if this particular block was
2594 * in non-native format on the send side.
2595 */
2596 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2597 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2598
2599 /*
2600 * Since dnode block sizes are constant, we should not need to worry
2601 * about making sure that the dnode block size is the same on the
2602 * sending and receiving sides for the time being. For non-raw sends,
2603 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2604 * record at all). Raw sends require this record type because the
2605 * encryption parameters are used to protect an entire block of bonus
2606 * buffers. If the size of dnode blocks ever becomes variable,
2607 * handling will need to be added to ensure that dnode block sizes
2608 * match on the sending and receiving side.
2609 */
2610 if (drror->drr_numslots != DNODES_PER_BLOCK ||
2611 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2612 !rwa->raw)
2613 return (SET_ERROR(EINVAL));
2614
2615 if (drror->drr_firstobj > rwa->max_object)
2616 rwa->max_object = drror->drr_firstobj;
2617
2618 /*
2619 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2620 * so that the block of dnodes is not written out when it's empty,
2621 * and converted to a HOLE BP.
2622 */
2623 rwa->or_crypt_params_present = B_TRUE;
2624 rwa->or_firstobj = drror->drr_firstobj;
2625 rwa->or_numslots = drror->drr_numslots;
2626 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2627 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2628 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2629 rwa->or_byteorder = byteorder;
2630
2631 rwa->or_need_sync = ORNS_MAYBE;
2632
2633 return (0);
2634 }
2635
2636 /*
2637 * Until we have the ability to redact large ranges of data efficiently, we
2638 * process these records as frees.
2639 */
2640 noinline static int
2641 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2642 {
2643 struct drr_free drrf = {0};
2644 drrf.drr_length = drrr->drr_length;
2645 drrf.drr_object = drrr->drr_object;
2646 drrf.drr_offset = drrr->drr_offset;
2647 drrf.drr_toguid = drrr->drr_toguid;
2648 return (receive_free(rwa, &drrf));
2649 }
2650
2651 /* used to destroy the drc_ds on error */
2652 static void
2653 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2654 {
2655 dsl_dataset_t *ds = drc->drc_ds;
2656 ds_hold_flags_t dsflags;
2657
2658 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2659 /*
2660 * Wait for the txg sync before cleaning up the receive. For
2661 * resumable receives, this ensures that our resume state has
2662 * been written out to disk. For raw receives, this ensures
2663 * that the user accounting code will not attempt to do anything
2664 * after we stopped receiving the dataset.
2665 */
2666 txg_wait_synced(ds->ds_dir->dd_pool, 0);
2667 ds->ds_objset->os_raw_receive = B_FALSE;
2668
2669 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2670 if (drc->drc_resumable && drc->drc_should_save &&
2671 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2672 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2673 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2674 } else {
2675 char name[ZFS_MAX_DATASET_NAME_LEN];
2676 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2677 dsl_dataset_name(ds, name);
2678 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2679 if (!drc->drc_heal)
2680 (void) dsl_destroy_head(name);
2681 }
2682 }
2683
2684 static void
2685 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2686 {
2687 if (drc->drc_byteswap) {
2688 (void) fletcher_4_incremental_byteswap(buf, len,
2689 &drc->drc_cksum);
2690 } else {
2691 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2692 }
2693 }
2694
2695 /*
2696 * Read the payload into a buffer of size len, and update the current record's
2697 * payload field.
2698 * Allocate drc->drc_next_rrd and read the next record's header into
2699 * drc->drc_next_rrd->header.
2700 * Verify checksum of payload and next record.
2701 */
2702 static int
2703 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2704 {
2705 int err;
2706
2707 if (len != 0) {
2708 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2709 err = receive_read(drc, len, buf);
2710 if (err != 0)
2711 return (err);
2712 receive_cksum(drc, len, buf);
2713
2714 /* note: rrd is NULL when reading the begin record's payload */
2715 if (drc->drc_rrd != NULL) {
2716 drc->drc_rrd->payload = buf;
2717 drc->drc_rrd->payload_size = len;
2718 drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2719 }
2720 } else {
2721 ASSERT3P(buf, ==, NULL);
2722 }
2723
2724 drc->drc_prev_cksum = drc->drc_cksum;
2725
2726 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2727 err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2728 &drc->drc_next_rrd->header);
2729 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2730
2731 if (err != 0) {
2732 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2733 drc->drc_next_rrd = NULL;
2734 return (err);
2735 }
2736 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2737 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2738 drc->drc_next_rrd = NULL;
2739 return (SET_ERROR(EINVAL));
2740 }
2741
2742 /*
2743 * Note: checksum is of everything up to but not including the
2744 * checksum itself.
2745 */
2746 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2747 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2748 receive_cksum(drc,
2749 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2750 &drc->drc_next_rrd->header);
2751
2752 zio_cksum_t cksum_orig =
2753 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2754 zio_cksum_t *cksump =
2755 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2756
2757 if (drc->drc_byteswap)
2758 byteswap_record(&drc->drc_next_rrd->header);
2759
2760 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2761 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2762 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2763 drc->drc_next_rrd = NULL;
2764 return (SET_ERROR(ECKSUM));
2765 }
2766
2767 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2768
2769 return (0);
2770 }
2771
2772 /*
2773 * Issue the prefetch reads for any necessary indirect blocks.
2774 *
2775 * We use the object ignore list to tell us whether or not to issue prefetches
2776 * for a given object. We do this for both correctness (in case the blocksize
2777 * of an object has changed) and performance (if the object doesn't exist, don't
2778 * needlessly try to issue prefetches). We also trim the list as we go through
2779 * the stream to prevent it from growing to an unbounded size.
2780 *
2781 * The object numbers within will always be in sorted order, and any write
2782 * records we see will also be in sorted order, but they're not sorted with
2783 * respect to each other (i.e. we can get several object records before
2784 * receiving each object's write records). As a result, once we've reached a
2785 * given object number, we can safely remove any reference to lower object
2786 * numbers in the ignore list. In practice, we receive up to 32 object records
2787 * before receiving write records, so the list can have up to 32 nodes in it.
2788 */
2789 static void
2790 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2791 uint64_t length)
2792 {
2793 if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2794 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2795 ZIO_PRIORITY_SYNC_READ);
2796 }
2797 }
2798
2799 /*
2800 * Read records off the stream, issuing any necessary prefetches.
2801 */
2802 static int
2803 receive_read_record(dmu_recv_cookie_t *drc)
2804 {
2805 int err;
2806
2807 switch (drc->drc_rrd->header.drr_type) {
2808 case DRR_OBJECT:
2809 {
2810 struct drr_object *drro =
2811 &drc->drc_rrd->header.drr_u.drr_object;
2812 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2813 void *buf = NULL;
2814 dmu_object_info_t doi;
2815
2816 if (size != 0)
2817 buf = kmem_zalloc(size, KM_SLEEP);
2818
2819 err = receive_read_payload_and_next_header(drc, size, buf);
2820 if (err != 0) {
2821 kmem_free(buf, size);
2822 return (err);
2823 }
2824 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2825 /*
2826 * See receive_read_prefetch for an explanation why we're
2827 * storing this object in the ignore_obj_list.
2828 */
2829 if (err == ENOENT || err == EEXIST ||
2830 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2831 objlist_insert(drc->drc_ignore_objlist,
2832 drro->drr_object);
2833 err = 0;
2834 }
2835 return (err);
2836 }
2837 case DRR_FREEOBJECTS:
2838 {
2839 err = receive_read_payload_and_next_header(drc, 0, NULL);
2840 return (err);
2841 }
2842 case DRR_WRITE:
2843 {
2844 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2845 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2846 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2847 err = receive_read_payload_and_next_header(drc, size,
2848 abd_to_buf(abd));
2849 if (err != 0) {
2850 abd_free(abd);
2851 return (err);
2852 }
2853 drc->drc_rrd->abd = abd;
2854 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2855 drrw->drr_logical_size);
2856 return (err);
2857 }
2858 case DRR_WRITE_EMBEDDED:
2859 {
2860 struct drr_write_embedded *drrwe =
2861 &drc->drc_rrd->header.drr_u.drr_write_embedded;
2862 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2863 void *buf = kmem_zalloc(size, KM_SLEEP);
2864
2865 err = receive_read_payload_and_next_header(drc, size, buf);
2866 if (err != 0) {
2867 kmem_free(buf, size);
2868 return (err);
2869 }
2870
2871 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2872 drrwe->drr_length);
2873 return (err);
2874 }
2875 case DRR_FREE:
2876 case DRR_REDACT:
2877 {
2878 /*
2879 * It might be beneficial to prefetch indirect blocks here, but
2880 * we don't really have the data to decide for sure.
2881 */
2882 err = receive_read_payload_and_next_header(drc, 0, NULL);
2883 return (err);
2884 }
2885 case DRR_END:
2886 {
2887 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2888 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2889 drre->drr_checksum))
2890 return (SET_ERROR(ECKSUM));
2891 return (0);
2892 }
2893 case DRR_SPILL:
2894 {
2895 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2896 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2897 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2898 err = receive_read_payload_and_next_header(drc, size,
2899 abd_to_buf(abd));
2900 if (err != 0)
2901 abd_free(abd);
2902 else
2903 drc->drc_rrd->abd = abd;
2904 return (err);
2905 }
2906 case DRR_OBJECT_RANGE:
2907 {
2908 err = receive_read_payload_and_next_header(drc, 0, NULL);
2909 return (err);
2910
2911 }
2912 default:
2913 return (SET_ERROR(EINVAL));
2914 }
2915 }
2916
2917
2918
2919 static void
2920 dprintf_drr(struct receive_record_arg *rrd, int err)
2921 {
2922 #ifdef ZFS_DEBUG
2923 switch (rrd->header.drr_type) {
2924 case DRR_OBJECT:
2925 {
2926 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2927 dprintf("drr_type = OBJECT obj = %llu type = %u "
2928 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2929 "compress = %u dn_slots = %u err = %d\n",
2930 (u_longlong_t)drro->drr_object, drro->drr_type,
2931 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2932 drro->drr_checksumtype, drro->drr_compress,
2933 drro->drr_dn_slots, err);
2934 break;
2935 }
2936 case DRR_FREEOBJECTS:
2937 {
2938 struct drr_freeobjects *drrfo =
2939 &rrd->header.drr_u.drr_freeobjects;
2940 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2941 "numobjs = %llu err = %d\n",
2942 (u_longlong_t)drrfo->drr_firstobj,
2943 (u_longlong_t)drrfo->drr_numobjs, err);
2944 break;
2945 }
2946 case DRR_WRITE:
2947 {
2948 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2949 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2950 "lsize = %llu cksumtype = %u flags = %u "
2951 "compress = %u psize = %llu err = %d\n",
2952 (u_longlong_t)drrw->drr_object, drrw->drr_type,
2953 (u_longlong_t)drrw->drr_offset,
2954 (u_longlong_t)drrw->drr_logical_size,
2955 drrw->drr_checksumtype, drrw->drr_flags,
2956 drrw->drr_compressiontype,
2957 (u_longlong_t)drrw->drr_compressed_size, err);
2958 break;
2959 }
2960 case DRR_WRITE_BYREF:
2961 {
2962 struct drr_write_byref *drrwbr =
2963 &rrd->header.drr_u.drr_write_byref;
2964 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2965 "length = %llu toguid = %llx refguid = %llx "
2966 "refobject = %llu refoffset = %llu cksumtype = %u "
2967 "flags = %u err = %d\n",
2968 (u_longlong_t)drrwbr->drr_object,
2969 (u_longlong_t)drrwbr->drr_offset,
2970 (u_longlong_t)drrwbr->drr_length,
2971 (u_longlong_t)drrwbr->drr_toguid,
2972 (u_longlong_t)drrwbr->drr_refguid,
2973 (u_longlong_t)drrwbr->drr_refobject,
2974 (u_longlong_t)drrwbr->drr_refoffset,
2975 drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2976 break;
2977 }
2978 case DRR_WRITE_EMBEDDED:
2979 {
2980 struct drr_write_embedded *drrwe =
2981 &rrd->header.drr_u.drr_write_embedded;
2982 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2983 "length = %llu compress = %u etype = %u lsize = %u "
2984 "psize = %u err = %d\n",
2985 (u_longlong_t)drrwe->drr_object,
2986 (u_longlong_t)drrwe->drr_offset,
2987 (u_longlong_t)drrwe->drr_length,
2988 drrwe->drr_compression, drrwe->drr_etype,
2989 drrwe->drr_lsize, drrwe->drr_psize, err);
2990 break;
2991 }
2992 case DRR_FREE:
2993 {
2994 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2995 dprintf("drr_type = FREE obj = %llu offset = %llu "
2996 "length = %lld err = %d\n",
2997 (u_longlong_t)drrf->drr_object,
2998 (u_longlong_t)drrf->drr_offset,
2999 (longlong_t)drrf->drr_length,
3000 err);
3001 break;
3002 }
3003 case DRR_SPILL:
3004 {
3005 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3006 dprintf("drr_type = SPILL obj = %llu length = %llu "
3007 "err = %d\n", (u_longlong_t)drrs->drr_object,
3008 (u_longlong_t)drrs->drr_length, err);
3009 break;
3010 }
3011 case DRR_OBJECT_RANGE:
3012 {
3013 struct drr_object_range *drror =
3014 &rrd->header.drr_u.drr_object_range;
3015 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3016 "numslots = %llu flags = %u err = %d\n",
3017 (u_longlong_t)drror->drr_firstobj,
3018 (u_longlong_t)drror->drr_numslots,
3019 drror->drr_flags, err);
3020 break;
3021 }
3022 default:
3023 return;
3024 }
3025 #endif
3026 }
3027
3028 /*
3029 * Commit the records to the pool.
3030 */
3031 static int
3032 receive_process_record(struct receive_writer_arg *rwa,
3033 struct receive_record_arg *rrd)
3034 {
3035 int err;
3036
3037 /* Processing in order, therefore bytes_read should be increasing. */
3038 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3039 rwa->bytes_read = rrd->bytes_read;
3040
3041 /* We can only heal write records; other ones get ignored */
3042 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3043 if (rrd->abd != NULL) {
3044 abd_free(rrd->abd);
3045 rrd->abd = NULL;
3046 } else if (rrd->payload != NULL) {
3047 kmem_free(rrd->payload, rrd->payload_size);
3048 rrd->payload = NULL;
3049 }
3050 return (0);
3051 }
3052
3053 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3054 err = flush_write_batch(rwa);
3055 if (err != 0) {
3056 if (rrd->abd != NULL) {
3057 abd_free(rrd->abd);
3058 rrd->abd = NULL;
3059 rrd->payload = NULL;
3060 } else if (rrd->payload != NULL) {
3061 kmem_free(rrd->payload, rrd->payload_size);
3062 rrd->payload = NULL;
3063 }
3064
3065 return (err);
3066 }
3067 }
3068
3069 switch (rrd->header.drr_type) {
3070 case DRR_OBJECT:
3071 {
3072 struct drr_object *drro = &rrd->header.drr_u.drr_object;
3073 err = receive_object(rwa, drro, rrd->payload);
3074 kmem_free(rrd->payload, rrd->payload_size);
3075 rrd->payload = NULL;
3076 break;
3077 }
3078 case DRR_FREEOBJECTS:
3079 {
3080 struct drr_freeobjects *drrfo =
3081 &rrd->header.drr_u.drr_freeobjects;
3082 err = receive_freeobjects(rwa, drrfo);
3083 break;
3084 }
3085 case DRR_WRITE:
3086 {
3087 err = receive_process_write_record(rwa, rrd);
3088 if (rwa->heal) {
3089 /*
3090 * If healing - always free the abd after processing
3091 */
3092 abd_free(rrd->abd);
3093 rrd->abd = NULL;
3094 } else if (err != EAGAIN) {
3095 /*
3096 * On success, a non-healing
3097 * receive_process_write_record() returns
3098 * EAGAIN to indicate that we do not want to free
3099 * the rrd or arc_buf.
3100 */
3101 ASSERT(err != 0);
3102 abd_free(rrd->abd);
3103 rrd->abd = NULL;
3104 }
3105 break;
3106 }
3107 case DRR_WRITE_EMBEDDED:
3108 {
3109 struct drr_write_embedded *drrwe =
3110 &rrd->header.drr_u.drr_write_embedded;
3111 err = receive_write_embedded(rwa, drrwe, rrd->payload);
3112 kmem_free(rrd->payload, rrd->payload_size);
3113 rrd->payload = NULL;
3114 break;
3115 }
3116 case DRR_FREE:
3117 {
3118 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3119 err = receive_free(rwa, drrf);
3120 break;
3121 }
3122 case DRR_SPILL:
3123 {
3124 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3125 err = receive_spill(rwa, drrs, rrd->abd);
3126 if (err != 0)
3127 abd_free(rrd->abd);
3128 rrd->abd = NULL;
3129 rrd->payload = NULL;
3130 break;
3131 }
3132 case DRR_OBJECT_RANGE:
3133 {
3134 struct drr_object_range *drror =
3135 &rrd->header.drr_u.drr_object_range;
3136 err = receive_object_range(rwa, drror);
3137 break;
3138 }
3139 case DRR_REDACT:
3140 {
3141 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3142 err = receive_redact(rwa, drrr);
3143 break;
3144 }
3145 default:
3146 err = (SET_ERROR(EINVAL));
3147 }
3148
3149 if (err != 0)
3150 dprintf_drr(rrd, err);
3151
3152 return (err);
3153 }
3154
3155 /*
3156 * dmu_recv_stream's worker thread; pull records off the queue, and then call
3157 * receive_process_record When we're done, signal the main thread and exit.
3158 */
3159 static __attribute__((noreturn)) void
3160 receive_writer_thread(void *arg)
3161 {
3162 struct receive_writer_arg *rwa = arg;
3163 struct receive_record_arg *rrd;
3164 fstrans_cookie_t cookie = spl_fstrans_mark();
3165
3166 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3167 rrd = bqueue_dequeue(&rwa->q)) {
3168 /*
3169 * If there's an error, the main thread will stop putting things
3170 * on the queue, but we need to clear everything in it before we
3171 * can exit.
3172 */
3173 int err = 0;
3174 if (rwa->err == 0) {
3175 err = receive_process_record(rwa, rrd);
3176 } else if (rrd->abd != NULL) {
3177 abd_free(rrd->abd);
3178 rrd->abd = NULL;
3179 rrd->payload = NULL;
3180 } else if (rrd->payload != NULL) {
3181 kmem_free(rrd->payload, rrd->payload_size);
3182 rrd->payload = NULL;
3183 }
3184 /*
3185 * EAGAIN indicates that this record has been saved (on
3186 * raw->write_batch), and will be used again, so we don't
3187 * free it.
3188 * When healing data we always need to free the record.
3189 */
3190 if (err != EAGAIN || rwa->heal) {
3191 if (rwa->err == 0)
3192 rwa->err = err;
3193 kmem_free(rrd, sizeof (*rrd));
3194 }
3195 }
3196 kmem_free(rrd, sizeof (*rrd));
3197
3198 if (rwa->heal) {
3199 zio_wait(rwa->heal_pio);
3200 } else {
3201 int err = flush_write_batch(rwa);
3202 if (rwa->err == 0)
3203 rwa->err = err;
3204 }
3205 mutex_enter(&rwa->mutex);
3206 rwa->done = B_TRUE;
3207 cv_signal(&rwa->cv);
3208 mutex_exit(&rwa->mutex);
3209 spl_fstrans_unmark(cookie);
3210 thread_exit();
3211 }
3212
3213 static int
3214 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3215 {
3216 uint64_t val;
3217 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3218 uint64_t dsobj = dmu_objset_id(drc->drc_os);
3219 uint64_t resume_obj, resume_off;
3220
3221 if (nvlist_lookup_uint64(begin_nvl,
3222 "resume_object", &resume_obj) != 0 ||
3223 nvlist_lookup_uint64(begin_nvl,
3224 "resume_offset", &resume_off) != 0) {
3225 return (SET_ERROR(EINVAL));
3226 }
3227 VERIFY0(zap_lookup(mos, dsobj,
3228 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3229 if (resume_obj != val)
3230 return (SET_ERROR(EINVAL));
3231 VERIFY0(zap_lookup(mos, dsobj,
3232 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3233 if (resume_off != val)
3234 return (SET_ERROR(EINVAL));
3235
3236 return (0);
3237 }
3238
3239 /*
3240 * Read in the stream's records, one by one, and apply them to the pool. There
3241 * are two threads involved; the thread that calls this function will spin up a
3242 * worker thread, read the records off the stream one by one, and issue
3243 * prefetches for any necessary indirect blocks. It will then push the records
3244 * onto an internal blocking queue. The worker thread will pull the records off
3245 * the queue, and actually write the data into the DMU. This way, the worker
3246 * thread doesn't have to wait for reads to complete, since everything it needs
3247 * (the indirect blocks) will be prefetched.
3248 *
3249 * NB: callers *must* call dmu_recv_end() if this succeeds.
3250 */
3251 int
3252 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3253 {
3254 int err = 0;
3255 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3256
3257 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3258 uint64_t bytes = 0;
3259 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3260 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3261 sizeof (bytes), 1, &bytes);
3262 drc->drc_bytes_read += bytes;
3263 }
3264
3265 drc->drc_ignore_objlist = objlist_create();
3266
3267 /* these were verified in dmu_recv_begin */
3268 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3269 DMU_SUBSTREAM);
3270 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3271
3272 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3273 ASSERT0(drc->drc_os->os_encrypted &&
3274 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3275
3276 /* handle DSL encryption key payload */
3277 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3278 nvlist_t *keynvl = NULL;
3279
3280 ASSERT(drc->drc_os->os_encrypted);
3281 ASSERT(drc->drc_raw);
3282
3283 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3284 &keynvl);
3285 if (err != 0)
3286 goto out;
3287
3288 if (!drc->drc_heal) {
3289 /*
3290 * If this is a new dataset we set the key immediately.
3291 * Otherwise we don't want to change the key until we
3292 * are sure the rest of the receive succeeded so we
3293 * stash the keynvl away until then.
3294 */
3295 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3296 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3297 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3298 if (err != 0)
3299 goto out;
3300 }
3301
3302 /* see comment in dmu_recv_end_sync() */
3303 drc->drc_ivset_guid = 0;
3304 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3305 &drc->drc_ivset_guid);
3306
3307 if (!drc->drc_newfs)
3308 drc->drc_keynvl = fnvlist_dup(keynvl);
3309 }
3310
3311 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3312 err = resume_check(drc, drc->drc_begin_nvl);
3313 if (err != 0)
3314 goto out;
3315 }
3316
3317 /*
3318 * If we failed before this point we will clean up any new resume
3319 * state that was created. Now that we've gotten past the initial
3320 * checks we are ok to retain that resume state.
3321 */
3322 drc->drc_should_save = B_TRUE;
3323
3324 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3325 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3326 offsetof(struct receive_record_arg, node));
3327 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3328 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3329 rwa->os = drc->drc_os;
3330 rwa->byteswap = drc->drc_byteswap;
3331 rwa->heal = drc->drc_heal;
3332 rwa->tofs = drc->drc_tofs;
3333 rwa->resumable = drc->drc_resumable;
3334 rwa->raw = drc->drc_raw;
3335 rwa->spill = drc->drc_spill;
3336 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3337 rwa->os->os_raw_receive = drc->drc_raw;
3338 if (drc->drc_heal) {
3339 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3340 ZIO_FLAG_GODFATHER);
3341 }
3342 list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3343 offsetof(struct receive_record_arg, node.bqn_node));
3344
3345 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3346 TS_RUN, minclsyspri);
3347 /*
3348 * We're reading rwa->err without locks, which is safe since we are the
3349 * only reader, and the worker thread is the only writer. It's ok if we
3350 * miss a write for an iteration or two of the loop, since the writer
3351 * thread will keep freeing records we send it until we send it an eos
3352 * marker.
3353 *
3354 * We can leave this loop in 3 ways: First, if rwa->err is
3355 * non-zero. In that case, the writer thread will free the rrd we just
3356 * pushed. Second, if we're interrupted; in that case, either it's the
3357 * first loop and drc->drc_rrd was never allocated, or it's later, and
3358 * drc->drc_rrd has been handed off to the writer thread who will free
3359 * it. Finally, if receive_read_record fails or we're at the end of the
3360 * stream, then we free drc->drc_rrd and exit.
3361 */
3362 while (rwa->err == 0) {
3363 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3364 err = SET_ERROR(EINTR);
3365 break;
3366 }
3367
3368 ASSERT3P(drc->drc_rrd, ==, NULL);
3369 drc->drc_rrd = drc->drc_next_rrd;
3370 drc->drc_next_rrd = NULL;
3371 /* Allocates and loads header into drc->drc_next_rrd */
3372 err = receive_read_record(drc);
3373
3374 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3375 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3376 drc->drc_rrd = NULL;
3377 break;
3378 }
3379
3380 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3381 sizeof (struct receive_record_arg) +
3382 drc->drc_rrd->payload_size);
3383 drc->drc_rrd = NULL;
3384 }
3385
3386 ASSERT3P(drc->drc_rrd, ==, NULL);
3387 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3388 drc->drc_rrd->eos_marker = B_TRUE;
3389 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3390
3391 mutex_enter(&rwa->mutex);
3392 while (!rwa->done) {
3393 /*
3394 * We need to use cv_wait_sig() so that any process that may
3395 * be sleeping here can still fork.
3396 */
3397 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3398 }
3399 mutex_exit(&rwa->mutex);
3400
3401 /*
3402 * If we are receiving a full stream as a clone, all object IDs which
3403 * are greater than the maximum ID referenced in the stream are
3404 * by definition unused and must be freed.
3405 */
3406 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3407 uint64_t obj = rwa->max_object + 1;
3408 int free_err = 0;
3409 int next_err = 0;
3410
3411 while (next_err == 0) {
3412 free_err = dmu_free_long_object(rwa->os, obj);
3413 if (free_err != 0 && free_err != ENOENT)
3414 break;
3415
3416 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3417 }
3418
3419 if (err == 0) {
3420 if (free_err != 0 && free_err != ENOENT)
3421 err = free_err;
3422 else if (next_err != ESRCH)
3423 err = next_err;
3424 }
3425 }
3426
3427 cv_destroy(&rwa->cv);
3428 mutex_destroy(&rwa->mutex);
3429 bqueue_destroy(&rwa->q);
3430 list_destroy(&rwa->write_batch);
3431 if (err == 0)
3432 err = rwa->err;
3433
3434 out:
3435 /*
3436 * If we hit an error before we started the receive_writer_thread
3437 * we need to clean up the next_rrd we create by processing the
3438 * DRR_BEGIN record.
3439 */
3440 if (drc->drc_next_rrd != NULL)
3441 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3442
3443 /*
3444 * The objset will be invalidated by dmu_recv_end() when we do
3445 * dsl_dataset_clone_swap_sync_impl().
3446 */
3447 drc->drc_os = NULL;
3448
3449 kmem_free(rwa, sizeof (*rwa));
3450 nvlist_free(drc->drc_begin_nvl);
3451
3452 if (err != 0) {
3453 /*
3454 * Clean up references. If receive is not resumable,
3455 * destroy what we created, so we don't leave it in
3456 * the inconsistent state.
3457 */
3458 dmu_recv_cleanup_ds(drc);
3459 nvlist_free(drc->drc_keynvl);
3460 }
3461
3462 objlist_destroy(drc->drc_ignore_objlist);
3463 drc->drc_ignore_objlist = NULL;
3464 *voffp = drc->drc_voff;
3465 return (err);
3466 }
3467
3468 static int
3469 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3470 {
3471 dmu_recv_cookie_t *drc = arg;
3472 dsl_pool_t *dp = dmu_tx_pool(tx);
3473 int error;
3474
3475 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3476
3477 if (drc->drc_heal) {
3478 error = 0;
3479 } else if (!drc->drc_newfs) {
3480 dsl_dataset_t *origin_head;
3481
3482 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3483 if (error != 0)
3484 return (error);
3485 if (drc->drc_force) {
3486 /*
3487 * We will destroy any snapshots in tofs (i.e. before
3488 * origin_head) that are after the origin (which is
3489 * the snap before drc_ds, because drc_ds can not
3490 * have any snaps of its own).
3491 */
3492 uint64_t obj;
3493
3494 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3495 while (obj !=
3496 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3497 dsl_dataset_t *snap;
3498 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3499 &snap);
3500 if (error != 0)
3501 break;
3502 if (snap->ds_dir != origin_head->ds_dir)
3503 error = SET_ERROR(EINVAL);
3504 if (error == 0) {
3505 error = dsl_destroy_snapshot_check_impl(
3506 snap, B_FALSE);
3507 }
3508 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3509 dsl_dataset_rele(snap, FTAG);
3510 if (error != 0)
3511 break;
3512 }
3513 if (error != 0) {
3514 dsl_dataset_rele(origin_head, FTAG);
3515 return (error);
3516 }
3517 }
3518 if (drc->drc_keynvl != NULL) {
3519 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3520 drc->drc_keynvl, tx);
3521 if (error != 0) {
3522 dsl_dataset_rele(origin_head, FTAG);
3523 return (error);
3524 }
3525 }
3526
3527 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3528 origin_head, drc->drc_force, drc->drc_owner, tx);
3529 if (error != 0) {
3530 dsl_dataset_rele(origin_head, FTAG);
3531 return (error);
3532 }
3533 error = dsl_dataset_snapshot_check_impl(origin_head,
3534 drc->drc_tosnap, tx, B_TRUE, 1,
3535 drc->drc_cred, drc->drc_proc);
3536 dsl_dataset_rele(origin_head, FTAG);
3537 if (error != 0)
3538 return (error);
3539
3540 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3541 } else {
3542 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3543 drc->drc_tosnap, tx, B_TRUE, 1,
3544 drc->drc_cred, drc->drc_proc);
3545 }
3546 return (error);
3547 }
3548
3549 static void
3550 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3551 {
3552 dmu_recv_cookie_t *drc = arg;
3553 dsl_pool_t *dp = dmu_tx_pool(tx);
3554 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3555 uint64_t newsnapobj = 0;
3556
3557 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3558 tx, "snap=%s", drc->drc_tosnap);
3559 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3560
3561 if (drc->drc_heal) {
3562 if (drc->drc_keynvl != NULL) {
3563 nvlist_free(drc->drc_keynvl);
3564 drc->drc_keynvl = NULL;
3565 }
3566 } else if (!drc->drc_newfs) {
3567 dsl_dataset_t *origin_head;
3568
3569 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3570 &origin_head));
3571
3572 if (drc->drc_force) {
3573 /*
3574 * Destroy any snapshots of drc_tofs (origin_head)
3575 * after the origin (the snap before drc_ds).
3576 */
3577 uint64_t obj;
3578
3579 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3580 while (obj !=
3581 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3582 dsl_dataset_t *snap;
3583 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3584 &snap));
3585 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3586 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3587 dsl_destroy_snapshot_sync_impl(snap,
3588 B_FALSE, tx);
3589 dsl_dataset_rele(snap, FTAG);
3590 }
3591 }
3592 if (drc->drc_keynvl != NULL) {
3593 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3594 drc->drc_keynvl, tx);
3595 nvlist_free(drc->drc_keynvl);
3596 drc->drc_keynvl = NULL;
3597 }
3598
3599 VERIFY3P(drc->drc_ds->ds_prev, ==,
3600 origin_head->ds_prev);
3601
3602 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3603 origin_head, tx);
3604 /*
3605 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3606 * so drc_os is no longer valid.
3607 */
3608 drc->drc_os = NULL;
3609
3610 dsl_dataset_snapshot_sync_impl(origin_head,
3611 drc->drc_tosnap, tx);
3612
3613 /* set snapshot's creation time and guid */
3614 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3615 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3616 drc->drc_drrb->drr_creation_time;
3617 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3618 drc->drc_drrb->drr_toguid;
3619 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3620 ~DS_FLAG_INCONSISTENT;
3621
3622 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3623 dsl_dataset_phys(origin_head)->ds_flags &=
3624 ~DS_FLAG_INCONSISTENT;
3625
3626 newsnapobj =
3627 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3628
3629 dsl_dataset_rele(origin_head, FTAG);
3630 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3631
3632 if (drc->drc_owner != NULL)
3633 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3634 } else {
3635 dsl_dataset_t *ds = drc->drc_ds;
3636
3637 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3638
3639 /* set snapshot's creation time and guid */
3640 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3641 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3642 drc->drc_drrb->drr_creation_time;
3643 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3644 drc->drc_drrb->drr_toguid;
3645 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3646 ~DS_FLAG_INCONSISTENT;
3647
3648 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3649 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3650 if (dsl_dataset_has_resume_receive_state(ds)) {
3651 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3652 DS_FIELD_RESUME_FROMGUID, tx);
3653 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3654 DS_FIELD_RESUME_OBJECT, tx);
3655 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3656 DS_FIELD_RESUME_OFFSET, tx);
3657 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3658 DS_FIELD_RESUME_BYTES, tx);
3659 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3660 DS_FIELD_RESUME_TOGUID, tx);
3661 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3662 DS_FIELD_RESUME_TONAME, tx);
3663 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3664 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3665 }
3666 newsnapobj =
3667 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3668 }
3669
3670 /*
3671 * If this is a raw receive, the crypt_keydata nvlist will include
3672 * a to_ivset_guid for us to set on the new snapshot. This value
3673 * will override the value generated by the snapshot code. However,
3674 * this value may not be present, because older implementations of
3675 * the raw send code did not include this value, and we are still
3676 * allowed to receive them if the zfs_disable_ivset_guid_check
3677 * tunable is set, in which case we will leave the newly-generated
3678 * value.
3679 */
3680 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3681 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3682 DMU_OT_DSL_DATASET, tx);
3683 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3684 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3685 &drc->drc_ivset_guid, tx));
3686 }
3687
3688 /*
3689 * Release the hold from dmu_recv_begin. This must be done before
3690 * we return to open context, so that when we free the dataset's dnode
3691 * we can evict its bonus buffer. Since the dataset may be destroyed
3692 * at this point (and therefore won't have a valid pointer to the spa)
3693 * we release the key mapping manually here while we do have a valid
3694 * pointer, if it exists.
3695 */
3696 if (!drc->drc_raw && encrypted) {
3697 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3698 drc->drc_ds->ds_object, drc->drc_ds);
3699 }
3700 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3701 drc->drc_ds = NULL;
3702 }
3703
3704 static int dmu_recv_end_modified_blocks = 3;
3705
3706 static int
3707 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3708 {
3709 #ifdef _KERNEL
3710 /*
3711 * We will be destroying the ds; make sure its origin is unmounted if
3712 * necessary.
3713 */
3714 char name[ZFS_MAX_DATASET_NAME_LEN];
3715 dsl_dataset_name(drc->drc_ds, name);
3716 zfs_destroy_unmount_origin(name);
3717 #endif
3718
3719 return (dsl_sync_task(drc->drc_tofs,
3720 dmu_recv_end_check, dmu_recv_end_sync, drc,
3721 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3722 }
3723
3724 static int
3725 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3726 {
3727 return (dsl_sync_task(drc->drc_tofs,
3728 dmu_recv_end_check, dmu_recv_end_sync, drc,
3729 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3730 }
3731
3732 int
3733 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3734 {
3735 int error;
3736
3737 drc->drc_owner = owner;
3738
3739 if (drc->drc_newfs)
3740 error = dmu_recv_new_end(drc);
3741 else
3742 error = dmu_recv_existing_end(drc);
3743
3744 if (error != 0) {
3745 dmu_recv_cleanup_ds(drc);
3746 nvlist_free(drc->drc_keynvl);
3747 } else if (!drc->drc_heal) {
3748 if (drc->drc_newfs) {
3749 zvol_create_minor(drc->drc_tofs);
3750 }
3751 char *snapname = kmem_asprintf("%s@%s",
3752 drc->drc_tofs, drc->drc_tosnap);
3753 zvol_create_minor(snapname);
3754 kmem_strfree(snapname);
3755 }
3756 return (error);
3757 }
3758
3759 /*
3760 * Return TRUE if this objset is currently being received into.
3761 */
3762 boolean_t
3763 dmu_objset_is_receiving(objset_t *os)
3764 {
3765 return (os->os_dsl_dataset != NULL &&
3766 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3767 }
3768
3769 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3770 "Maximum receive queue length");
3771
3772 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3773 "Receive queue fill fraction");
3774
3775 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3776 "Maximum amount of writes to batch into one transaction");
3777
3778 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3779 "Ignore errors during corrective receive");
3780 /* END CSTYLED */
Cache object: 9c2a7f76ab21906f881eb84d0ee4dfe0
|