The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/dmu_redact.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
   23  */
   24 
   25 #include <sys/zfs_context.h>
   26 #include <sys/txg.h>
   27 #include <sys/dmu_objset.h>
   28 #include <sys/dmu_traverse.h>
   29 #include <sys/dmu_redact.h>
   30 #include <sys/bqueue.h>
   31 #include <sys/objlist.h>
   32 #include <sys/dmu_tx.h>
   33 #ifdef _KERNEL
   34 #include <sys/zfs_vfsops.h>
   35 #include <sys/zap.h>
   36 #include <sys/zfs_znode.h>
   37 #endif
   38 
   39 /*
   40  * This controls the number of entries in the buffer the redaction_list_update
   41  * synctask uses to buffer writes to the redaction list.
   42  */
   43 static const int redact_sync_bufsize = 1024;
   44 
   45 /*
   46  * Controls how often to update the redaction list when creating a redaction
   47  * list.
   48  */
   49 static const uint64_t redaction_list_update_interval_ns =
   50     1000 * 1000 * 1000ULL; /* 1s */
   51 
   52 /*
   53  * This tunable controls the length of the queues that zfs redact worker threads
   54  * use to communicate.  If the dmu_redact_snap thread is blocking on these
   55  * queues, this variable may need to be increased.  If there is a significant
   56  * slowdown at the start of a redact operation as these threads consume all the
   57  * available IO resources, or the queues are consuming too much memory, this
   58  * variable may need to be decreased.
   59  */
   60 static const int zfs_redact_queue_length = 1024 * 1024;
   61 
   62 /*
   63  * These tunables control the fill fraction of the queues by zfs redact. The
   64  * fill fraction controls the frequency with which threads have to be
   65  * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
   66  * should be tuned down.  If the queues empty before the signalled thread can
   67  * catch up, then these should be tuned up.
   68  */
   69 static const uint64_t zfs_redact_queue_ff = 20;
   70 
   71 struct redact_record {
   72         bqueue_node_t           ln;
   73         boolean_t               eos_marker; /* Marks the end of the stream */
   74         uint64_t                start_object;
   75         uint64_t                start_blkid;
   76         uint64_t                end_object;
   77         uint64_t                end_blkid;
   78         uint8_t                 indblkshift;
   79         uint32_t                datablksz;
   80 };
   81 
   82 struct redact_thread_arg {
   83         bqueue_t        q;
   84         objset_t        *os;            /* Objset to traverse */
   85         dsl_dataset_t   *ds;            /* Dataset to traverse */
   86         struct redact_record *current_record;
   87         int             error_code;
   88         boolean_t       cancel;
   89         zbookmark_phys_t resume;
   90         objlist_t       *deleted_objs;
   91         uint64_t        *num_blocks_visited;
   92         uint64_t        ignore_object;  /* ignore further callbacks on this */
   93         uint64_t        txg; /* txg to traverse since */
   94 };
   95 
   96 /*
   97  * The redaction node is a wrapper around the redaction record that is used
   98  * by the redaction merging thread to sort the records and determine overlaps.
   99  *
  100  * It contains two nodes; one sorts the records by their start_zb, and the other
  101  * sorts the records by their end_zb.
  102  */
  103 struct redact_node {
  104         avl_node_t                      avl_node_start;
  105         avl_node_t                      avl_node_end;
  106         struct redact_record            *record;
  107         struct redact_thread_arg        *rt_arg;
  108         uint32_t                        thread_num;
  109 };
  110 
  111 struct merge_data {
  112         list_t                          md_redact_block_pending;
  113         redact_block_phys_t             md_coalesce_block;
  114         uint64_t                        md_last_time;
  115         redact_block_phys_t             md_furthest[TXG_SIZE];
  116         /* Lists of struct redact_block_list_node. */
  117         list_t                          md_blocks[TXG_SIZE];
  118         boolean_t                       md_synctask_txg[TXG_SIZE];
  119         uint64_t                        md_latest_synctask_txg;
  120         redaction_list_t                *md_redaction_list;
  121 };
  122 
  123 /*
  124  * A wrapper around struct redact_block so it can be stored in a list_t.
  125  */
  126 struct redact_block_list_node {
  127         redact_block_phys_t     block;
  128         list_node_t             node;
  129 };
  130 
  131 /*
  132  * We've found a new redaction candidate.  In order to improve performance, we
  133  * coalesce these blocks when they're adjacent to each other.  This function
  134  * handles that.  If the new candidate block range is immediately after the
  135  * range we're building, coalesce it into the range we're building.  Otherwise,
  136  * put the record we're building on the queue, and update the build pointer to
  137  * point to the new record.
  138  */
  139 static void
  140 record_merge_enqueue(bqueue_t *q, struct redact_record **build,
  141     struct redact_record *new)
  142 {
  143         if (new->eos_marker) {
  144                 if (*build != NULL)
  145                         bqueue_enqueue(q, *build, sizeof (**build));
  146                 bqueue_enqueue_flush(q, new, sizeof (*new));
  147                 return;
  148         }
  149         if (*build == NULL) {
  150                 *build = new;
  151                 return;
  152         }
  153         struct redact_record *curbuild = *build;
  154         if ((curbuild->end_object == new->start_object &&
  155             curbuild->end_blkid + 1 == new->start_blkid &&
  156             curbuild->end_blkid != UINT64_MAX) ||
  157             (curbuild->end_object + 1 == new->start_object &&
  158             curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
  159                 curbuild->end_object = new->end_object;
  160                 curbuild->end_blkid = new->end_blkid;
  161                 kmem_free(new, sizeof (*new));
  162         } else {
  163                 bqueue_enqueue(q, curbuild, sizeof (*curbuild));
  164                 *build = new;
  165         }
  166 }
  167 #ifdef _KERNEL
  168 struct objnode {
  169         avl_node_t node;
  170         uint64_t obj;
  171 };
  172 
  173 static int
  174 objnode_compare(const void *o1, const void *o2)
  175 {
  176         const struct objnode *obj1 = o1;
  177         const struct objnode *obj2 = o2;
  178         if (obj1->obj < obj2->obj)
  179                 return (-1);
  180         if (obj1->obj > obj2->obj)
  181                 return (1);
  182         return (0);
  183 }
  184 
  185 
  186 static objlist_t *
  187 zfs_get_deleteq(objset_t *os)
  188 {
  189         objlist_t *deleteq_objlist = objlist_create();
  190         uint64_t deleteq_obj;
  191         zap_cursor_t zc;
  192         zap_attribute_t za;
  193         dmu_object_info_t doi;
  194 
  195         ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
  196         VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
  197         ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
  198 
  199         VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
  200             ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
  201 
  202         /*
  203          * In order to insert objects into the objlist, they must be in sorted
  204          * order. We don't know what order we'll get them out of the ZAP in, so
  205          * we insert them into and remove them from an avl_tree_t to sort them.
  206          */
  207         avl_tree_t at;
  208         avl_create(&at, objnode_compare, sizeof (struct objnode),
  209             offsetof(struct objnode, node));
  210 
  211         for (zap_cursor_init(&zc, os, deleteq_obj);
  212             zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) {
  213                 struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
  214                 obj->obj = za.za_first_integer;
  215                 avl_add(&at, obj);
  216         }
  217         zap_cursor_fini(&zc);
  218 
  219         struct objnode *next, *found = avl_first(&at);
  220         while (found != NULL) {
  221                 next = AVL_NEXT(&at, found);
  222                 objlist_insert(deleteq_objlist, found->obj);
  223                 found = next;
  224         }
  225 
  226         void *cookie = NULL;
  227         while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
  228                 kmem_free(found, sizeof (*found));
  229         avl_destroy(&at);
  230         return (deleteq_objlist);
  231 }
  232 #endif
  233 
  234 /*
  235  * This is the callback function to traverse_dataset for the redaction threads
  236  * for dmu_redact_snap.  This thread is responsible for creating redaction
  237  * records for all the data that is modified by the snapshots we're redacting
  238  * with respect to.  Redaction records represent ranges of data that have been
  239  * modified by one of the redaction snapshots, and are stored in the
  240  * redact_record struct. We need to create redaction records for three
  241  * cases:
  242  *
  243  * First, if there's a normal write, we need to create a redaction record for
  244  * that block.
  245  *
  246  * Second, if there's a hole, we need to create a redaction record that covers
  247  * the whole range of the hole.  If the hole is in the meta-dnode, it must cover
  248  * every block in all of the objects in the hole.
  249  *
  250  * Third, if there is a deleted object, we need to create a redaction record for
  251  * all of the blocks in that object.
  252  */
  253 static int
  254 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
  255     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
  256 {
  257         (void) spa, (void) zilog;
  258         struct redact_thread_arg *rta = arg;
  259         struct redact_record *record;
  260 
  261         ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
  262             zb->zb_object >= rta->resume.zb_object);
  263 
  264         if (rta->cancel)
  265                 return (SET_ERROR(EINTR));
  266 
  267         if (rta->ignore_object == zb->zb_object)
  268                 return (0);
  269 
  270         /*
  271          * If we're visiting a dnode, we need to handle the case where the
  272          * object has been deleted.
  273          */
  274         if (zb->zb_level == ZB_DNODE_LEVEL) {
  275                 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
  276 
  277                 if (zb->zb_object == 0)
  278                         return (0);
  279 
  280                 /*
  281                  * If the object has been deleted, redact all of the blocks in
  282                  * it.
  283                  */
  284                 if (dnp->dn_type == DMU_OT_NONE ||
  285                     objlist_exists(rta->deleted_objs, zb->zb_object)) {
  286                         rta->ignore_object = zb->zb_object;
  287                         record = kmem_zalloc(sizeof (struct redact_record),
  288                             KM_SLEEP);
  289 
  290                         record->eos_marker = B_FALSE;
  291                         record->start_object = record->end_object =
  292                             zb->zb_object;
  293                         record->start_blkid = 0;
  294                         record->end_blkid = UINT64_MAX;
  295                         record_merge_enqueue(&rta->q,
  296                             &rta->current_record, record);
  297                 }
  298                 return (0);
  299         } else if (zb->zb_level < 0) {
  300                 return (0);
  301         } else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
  302                 /*
  303                  * If this is an indirect block, but not a hole, it doesn't
  304                  * provide any useful information for redaction, so ignore it.
  305                  */
  306                 return (0);
  307         }
  308 
  309         /*
  310          * At this point, there are two options left for the type of block we're
  311          * looking at.  Either this is a hole (which could be in the dnode or
  312          * the meta-dnode), or it's a level 0 block of some sort.  If it's a
  313          * hole, we create a redaction record that covers the whole range.  If
  314          * the hole is in a dnode, we need to redact all the blocks in that
  315          * hole.  If the hole is in the meta-dnode, we instead need to redact
  316          * all blocks in every object covered by that hole.  If it's a level 0
  317          * block, we only need to redact that single block.
  318          */
  319         record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
  320         record->eos_marker = B_FALSE;
  321 
  322         record->start_object = record->end_object = zb->zb_object;
  323         if (BP_IS_HOLE(bp)) {
  324                 record->start_blkid = zb->zb_blkid *
  325                     bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
  326 
  327                 record->end_blkid = ((zb->zb_blkid + 1) *
  328                     bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
  329 
  330                 if (zb->zb_object == DMU_META_DNODE_OBJECT) {
  331                         record->start_object = record->start_blkid *
  332                             ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
  333                             sizeof (dnode_phys_t));
  334                         record->start_blkid = 0;
  335                         record->end_object = ((record->end_blkid +
  336                             1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
  337                             sizeof (dnode_phys_t))) - 1;
  338                         record->end_blkid = UINT64_MAX;
  339                 }
  340         } else if (zb->zb_level != 0 ||
  341             zb->zb_object == DMU_META_DNODE_OBJECT) {
  342                 kmem_free(record, sizeof (*record));
  343                 return (0);
  344         } else {
  345                 record->start_blkid = record->end_blkid = zb->zb_blkid;
  346         }
  347         record->indblkshift = dnp->dn_indblkshift;
  348         record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
  349         record_merge_enqueue(&rta->q, &rta->current_record, record);
  350 
  351         return (0);
  352 }
  353 
  354 static __attribute__((noreturn)) void
  355 redact_traverse_thread(void *arg)
  356 {
  357         struct redact_thread_arg *rt_arg = arg;
  358         int err;
  359         struct redact_record *data;
  360 #ifdef _KERNEL
  361         if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
  362                 rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
  363         else
  364                 rt_arg->deleted_objs = objlist_create();
  365 #else
  366         rt_arg->deleted_objs = objlist_create();
  367 #endif
  368 
  369         err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
  370             &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
  371             redact_cb, rt_arg);
  372 
  373         if (err != EINTR)
  374                 rt_arg->error_code = err;
  375         objlist_destroy(rt_arg->deleted_objs);
  376         data = kmem_zalloc(sizeof (*data), KM_SLEEP);
  377         data->eos_marker = B_TRUE;
  378         record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
  379         thread_exit();
  380 }
  381 
  382 static inline void
  383 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
  384     uint64_t blkid)
  385 {
  386         zb->zb_object = object;
  387         zb->zb_level = 0;
  388         zb->zb_blkid = blkid;
  389 }
  390 
  391 /*
  392  * This is a utility function that can do the comparison for the start or ends
  393  * of the ranges in a redact_record.
  394  */
  395 static int
  396 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
  397     uint64_t obj2, uint64_t off2, uint32_t dbss2)
  398 {
  399         zbookmark_phys_t z1, z2;
  400         create_zbookmark_from_obj_off(&z1, obj1, off1);
  401         create_zbookmark_from_obj_off(&z2, obj2, off2);
  402 
  403         return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
  404             dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
  405 }
  406 
  407 /*
  408  * Compare two redaction records by their range's start location.  Also makes
  409  * eos records always compare last.  We use the thread number in the redact_node
  410  * to ensure that records do not compare equal (which is not allowed in our avl
  411  * trees).
  412  */
  413 static int
  414 redact_node_compare_start(const void *arg1, const void *arg2)
  415 {
  416         const struct redact_node *rn1 = arg1;
  417         const struct redact_node *rn2 = arg2;
  418         const struct redact_record *rr1 = rn1->record;
  419         const struct redact_record *rr2 = rn2->record;
  420         if (rr1->eos_marker)
  421                 return (1);
  422         if (rr2->eos_marker)
  423                 return (-1);
  424 
  425         int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
  426             rr1->datablksz, rr2->start_object, rr2->start_blkid,
  427             rr2->datablksz);
  428         if (cmp == 0)
  429                 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
  430         return (cmp);
  431 }
  432 
  433 /*
  434  * Compare two redaction records by their range's end location.  Also makes
  435  * eos records always compare last.  We use the thread number in the redact_node
  436  * to ensure that records do not compare equal (which is not allowed in our avl
  437  * trees).
  438  */
  439 static int
  440 redact_node_compare_end(const void *arg1, const void *arg2)
  441 {
  442         const struct redact_node *rn1 = arg1;
  443         const struct redact_node *rn2 = arg2;
  444         const struct redact_record *srr1 = rn1->record;
  445         const struct redact_record *srr2 = rn2->record;
  446         if (srr1->eos_marker)
  447                 return (1);
  448         if (srr2->eos_marker)
  449                 return (-1);
  450 
  451         int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
  452             srr1->datablksz, srr2->end_object, srr2->end_blkid,
  453             srr2->datablksz);
  454         if (cmp == 0)
  455                 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
  456         return (cmp);
  457 }
  458 
  459 /*
  460  * Utility function that compares two redaction records to determine if any part
  461  * of the "from" record is before any part of the "to" record. Also causes End
  462  * of Stream redaction records to compare after all others, so that the
  463  * redaction merging logic can stay simple.
  464  */
  465 static boolean_t
  466 redact_record_before(const struct redact_record *from,
  467     const struct redact_record *to)
  468 {
  469         if (from->eos_marker == B_TRUE)
  470                 return (B_FALSE);
  471         else if (to->eos_marker == B_TRUE)
  472                 return (B_TRUE);
  473         return (redact_range_compare(from->start_object, from->start_blkid,
  474             from->datablksz, to->end_object, to->end_blkid,
  475             to->datablksz) <= 0);
  476 }
  477 
  478 /*
  479  * Pop a new redaction record off the queue, check that the records are in the
  480  * right order, and free the old data.
  481  */
  482 static struct redact_record *
  483 get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
  484 {
  485         struct redact_record *next = bqueue_dequeue(bq);
  486         ASSERT(redact_record_before(prev, next));
  487         kmem_free(prev, sizeof (*prev));
  488         return (next);
  489 }
  490 
  491 /*
  492  * Remove the given redaction node from both trees, pull a new redaction record
  493  * off the queue, free the old redaction record, update the redaction node, and
  494  * reinsert the node into the trees.
  495  */
  496 static int
  497 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
  498     struct redact_node *redact_node)
  499 {
  500         avl_remove(start_tree, redact_node);
  501         avl_remove(end_tree, redact_node);
  502         redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
  503             redact_node->record);
  504         avl_add(end_tree, redact_node);
  505         avl_add(start_tree, redact_node);
  506         return (redact_node->rt_arg->error_code);
  507 }
  508 
  509 /*
  510  * Synctask for updating redaction lists.  We first take this txg's list of
  511  * redacted blocks and append those to the redaction list.  We then update the
  512  * redaction list's bonus buffer.  We store the furthest blocks we visited and
  513  * the list of snapshots that we're redacting with respect to.  We need these so
  514  * that redacted sends and receives can be correctly resumed.
  515  */
  516 static void
  517 redaction_list_update_sync(void *arg, dmu_tx_t *tx)
  518 {
  519         struct merge_data *md = arg;
  520         uint64_t txg = dmu_tx_get_txg(tx);
  521         list_t *list = &md->md_blocks[txg & TXG_MASK];
  522         redact_block_phys_t *furthest_visited =
  523             &md->md_furthest[txg & TXG_MASK];
  524         objset_t *mos = tx->tx_pool->dp_meta_objset;
  525         redaction_list_t *rl = md->md_redaction_list;
  526         int bufsize = redact_sync_bufsize;
  527         redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
  528             KM_SLEEP);
  529         int index = 0;
  530 
  531         dmu_buf_will_dirty(rl->rl_dbuf, tx);
  532 
  533         for (struct redact_block_list_node *rbln = list_remove_head(list);
  534             rbln != NULL; rbln = list_remove_head(list)) {
  535                 ASSERT3U(rbln->block.rbp_object, <=,
  536                     furthest_visited->rbp_object);
  537                 ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
  538                     rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
  539                 buf[index] = rbln->block;
  540                 index++;
  541                 if (index == bufsize) {
  542                         dmu_write(mos, rl->rl_object,
  543                             rl->rl_phys->rlp_num_entries * sizeof (*buf),
  544                             bufsize * sizeof (*buf), buf, tx);
  545                         rl->rl_phys->rlp_num_entries += bufsize;
  546                         index = 0;
  547                 }
  548                 kmem_free(rbln, sizeof (*rbln));
  549         }
  550         if (index > 0) {
  551                 dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
  552                     sizeof (*buf), index * sizeof (*buf), buf, tx);
  553                 rl->rl_phys->rlp_num_entries += index;
  554         }
  555         kmem_free(buf, bufsize * sizeof (*buf));
  556 
  557         md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
  558         rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
  559         rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
  560 }
  561 
  562 static void
  563 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
  564     uint64_t blkid)
  565 {
  566         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
  567         dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
  568         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
  569         uint64_t txg = dmu_tx_get_txg(tx);
  570         if (!md->md_synctask_txg[txg & TXG_MASK]) {
  571                 dsl_sync_task_nowait(dmu_tx_pool(tx),
  572                     redaction_list_update_sync, md, tx);
  573                 md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
  574                 md->md_latest_synctask_txg = txg;
  575         }
  576         md->md_furthest[txg & TXG_MASK].rbp_object = object;
  577         md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
  578         list_move_tail(&md->md_blocks[txg & TXG_MASK],
  579             &md->md_redact_block_pending);
  580         dmu_tx_commit(tx);
  581         md->md_last_time = gethrtime();
  582 }
  583 
  584 /*
  585  * We want to store the list of blocks that we're redacting in the bookmark's
  586  * redaction list.  However, this list is stored in the MOS, which means it can
  587  * only be written to in syncing context.  To get around this, we create a
  588  * synctask that will write to the mos for us.  We tell it what to write by
  589  * a linked list for each current transaction group; every time we decide to
  590  * redact a block, we append it to the transaction group that is currently in
  591  * open context.  We also update some progress information that the synctask
  592  * will store to enable resumable redacted sends.
  593  */
  594 static void
  595 update_redaction_list(struct merge_data *md, objset_t *os,
  596     uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
  597 {
  598         boolean_t enqueue = B_FALSE;
  599         redact_block_phys_t cur = {0};
  600         uint64_t count = endblkid - blkid + 1;
  601         while (count > REDACT_BLOCK_MAX_COUNT) {
  602                 update_redaction_list(md, os, object, blkid,
  603                     blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
  604                 blkid += REDACT_BLOCK_MAX_COUNT;
  605                 count -= REDACT_BLOCK_MAX_COUNT;
  606         }
  607         redact_block_phys_t *coalesce = &md->md_coalesce_block;
  608         boolean_t new;
  609         if (coalesce->rbp_size_count == 0) {
  610                 new = B_TRUE;
  611                 enqueue = B_FALSE;
  612         } else  {
  613                 uint64_t old_count = redact_block_get_count(coalesce);
  614                 if (coalesce->rbp_object == object &&
  615                     coalesce->rbp_blkid + old_count == blkid &&
  616                     old_count + count <= REDACT_BLOCK_MAX_COUNT) {
  617                         ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
  618                         redact_block_set_count(coalesce, old_count + count);
  619                         new = B_FALSE;
  620                         enqueue = B_FALSE;
  621                 } else {
  622                         new = B_TRUE;
  623                         enqueue = B_TRUE;
  624                 }
  625         }
  626 
  627         if (new) {
  628                 cur = *coalesce;
  629                 coalesce->rbp_blkid = blkid;
  630                 coalesce->rbp_object = object;
  631 
  632                 redact_block_set_count(coalesce, count);
  633                 redact_block_set_size(coalesce, blksz);
  634         }
  635 
  636         if (enqueue && redact_block_get_size(&cur) != 0) {
  637                 struct redact_block_list_node *rbln =
  638                     kmem_alloc(sizeof (struct redact_block_list_node),
  639                     KM_SLEEP);
  640                 rbln->block = cur;
  641                 list_insert_tail(&md->md_redact_block_pending, rbln);
  642         }
  643 
  644         if (gethrtime() > md->md_last_time +
  645             redaction_list_update_interval_ns) {
  646                 commit_rl_updates(os, md, object, blkid);
  647         }
  648 }
  649 
  650 /*
  651  * This thread merges all the redaction records provided by the worker threads,
  652  * and determines which blocks are redacted by all the snapshots.  The algorithm
  653  * for doing so is similar to performing a merge in mergesort with n sub-lists
  654  * instead of 2, with some added complexity due to the fact that the entries are
  655  * ranges, not just single blocks.  This algorithm relies on the fact that the
  656  * queues are sorted, which is ensured by the fact that traverse_dataset
  657  * traverses the dataset in a consistent order.  We pull one entry off the front
  658  * of the queues of each secure dataset traversal thread.  Then we repeat the
  659  * following: each record represents a range of blocks modified by one of the
  660  * redaction snapshots, and each block in that range may need to be redacted in
  661  * the send stream.  Find the record with the latest start of its range, and the
  662  * record with the earliest end of its range. If the last start is before the
  663  * first end, then we know that the blocks in the range [last_start, first_end]
  664  * are covered by all of the ranges at the front of the queues, which means
  665  * every thread redacts that whole range.  For example, let's say the ranges on
  666  * each queue look like this:
  667  *
  668  * Block Id   1  2  3  4  5  6  7  8  9 10 11
  669  * Thread 1 |    [====================]
  670  * Thread 2 |       [========]
  671  * Thread 3 |             [=================]
  672  *
  673  * Thread 3 has the last start (5), and the thread 2 has the last end (6).  All
  674  * three threads modified the range [5,6], so that data should not be sent over
  675  * the wire.  After we've determined whether or not to redact anything, we take
  676  * the record with the first end.  We discard that record, and pull a new one
  677  * off the front of the queue it came from.  In the above example, we would
  678  * discard Thread 2's record, and pull a new one.  Let's say the next record we
  679  * pulled from Thread 2 covered range [10,11].  The new layout would look like
  680  * this:
  681  *
  682  * Block Id   1  2  3  4  5  6  7  8  9 10 11
  683  * Thread 1 |    [====================]
  684  * Thread 2 |                            [==]
  685  * Thread 3 |             [=================]
  686  *
  687  * When we compare the last start (10, from Thread 2) and the first end (9, from
  688  * Thread 1), we see that the last start is greater than the first end.
  689  * Therefore, we do not redact anything from these records.  We'll iterate by
  690  * replacing the record from Thread 1.
  691  *
  692  * We iterate by replacing the record with the lowest end because we know
  693  * that the record with the lowest end has helped us as much as it can.  All the
  694  * ranges before it that we will ever redact have been redacted.  In addition,
  695  * by replacing the one with the lowest end, we guarantee we catch all ranges
  696  * that need to be redacted.  For example, if in the case above we had replaced
  697  * the record from Thread 1 instead, we might have ended up with the following:
  698  *
  699  * Block Id   1  2  3  4  5  6  7  8  9 10 11 12
  700  * Thread 1 |                               [==]
  701  * Thread 2 |       [========]
  702  * Thread 3 |             [=================]
  703  *
  704  * If the next record from Thread 2 had been [8,10], for example, we should have
  705  * redacted part of that range, but because we updated Thread 1's record, we
  706  * missed it.
  707  *
  708  * We implement this algorithm by using two trees.  The first sorts the
  709  * redaction records by their start_zb, and the second sorts them by their
  710  * end_zb.  We use these to find the record with the last start and the record
  711  * with the first end.  We create a record with that start and end, and send it
  712  * on.  The overall runtime of this implementation is O(n log m), where n is the
  713  * total number of redaction records from all the different redaction snapshots,
  714  * and m is the number of redaction snapshots.
  715  *
  716  * If we redact with respect to zero snapshots, we create a redaction
  717  * record with the start object and blkid to 0, and the end object and blkid to
  718  * UINT64_MAX.  This will result in us redacting every block.
  719  */
  720 static int
  721 perform_thread_merge(bqueue_t *q, uint32_t num_threads,
  722     struct redact_thread_arg *thread_args, boolean_t *cancel)
  723 {
  724         struct redact_node *redact_nodes = NULL;
  725         avl_tree_t start_tree, end_tree;
  726         struct redact_record *record;
  727         struct redact_record *current_record = NULL;
  728         int err = 0;
  729         struct merge_data md = { {0} };
  730         list_create(&md.md_redact_block_pending,
  731             sizeof (struct redact_block_list_node),
  732             offsetof(struct redact_block_list_node, node));
  733 
  734         /*
  735          * If we're redacting with respect to zero snapshots, then no data is
  736          * permitted to be sent.  We enqueue a record that redacts all blocks,
  737          * and an eos marker.
  738          */
  739         if (num_threads == 0) {
  740                 record = kmem_zalloc(sizeof (struct redact_record),
  741                     KM_SLEEP);
  742                 // We can't redact object 0, so don't try.
  743                 record->start_object = 1;
  744                 record->start_blkid = 0;
  745                 record->end_object = record->end_blkid = UINT64_MAX;
  746                 bqueue_enqueue(q, record, sizeof (*record));
  747                 return (0);
  748         }
  749         if (num_threads > 0) {
  750                 redact_nodes = kmem_zalloc(num_threads *
  751                     sizeof (*redact_nodes), KM_SLEEP);
  752         }
  753 
  754         avl_create(&start_tree, redact_node_compare_start,
  755             sizeof (struct redact_node),
  756             offsetof(struct redact_node, avl_node_start));
  757         avl_create(&end_tree, redact_node_compare_end,
  758             sizeof (struct redact_node),
  759             offsetof(struct redact_node, avl_node_end));
  760 
  761         for (int i = 0; i < num_threads; i++) {
  762                 struct redact_node *node = &redact_nodes[i];
  763                 struct redact_thread_arg *targ = &thread_args[i];
  764                 node->record = bqueue_dequeue(&targ->q);
  765                 node->rt_arg = targ;
  766                 node->thread_num = i;
  767                 avl_add(&start_tree, node);
  768                 avl_add(&end_tree, node);
  769         }
  770 
  771         /*
  772          * Once the first record in the end tree has returned EOS, every record
  773          * must be an EOS record, so we should stop.
  774          */
  775         while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
  776             record->eos_marker) {
  777                 if (*cancel) {
  778                         err = EINTR;
  779                         break;
  780                 }
  781                 struct redact_node *last_start = avl_last(&start_tree);
  782                 struct redact_node *first_end = avl_first(&end_tree);
  783 
  784                 /*
  785                  * If the last start record is before the first end record,
  786                  * then we have blocks that are redacted by all threads.
  787                  * Therefore, we should redact them.  Copy the record, and send
  788                  * it to the main thread.
  789                  */
  790                 if (redact_record_before(last_start->record,
  791                     first_end->record)) {
  792                         record = kmem_zalloc(sizeof (struct redact_record),
  793                             KM_SLEEP);
  794                         *record = *first_end->record;
  795                         record->start_object = last_start->record->start_object;
  796                         record->start_blkid = last_start->record->start_blkid;
  797                         record_merge_enqueue(q, &current_record,
  798                             record);
  799                 }
  800                 err = update_avl_trees(&start_tree, &end_tree, first_end);
  801         }
  802 
  803         /*
  804          * We're done; if we were cancelled, we need to cancel our workers and
  805          * clear out their queues.  Either way, we need to remove every thread's
  806          * redact_node struct from the avl trees.
  807          */
  808         for (int i = 0; i < num_threads; i++) {
  809                 if (err != 0) {
  810                         thread_args[i].cancel = B_TRUE;
  811                         while (!redact_nodes[i].record->eos_marker) {
  812                                 (void) update_avl_trees(&start_tree, &end_tree,
  813                                     &redact_nodes[i]);
  814                         }
  815                 }
  816                 avl_remove(&start_tree, &redact_nodes[i]);
  817                 avl_remove(&end_tree, &redact_nodes[i]);
  818                 kmem_free(redact_nodes[i].record,
  819                     sizeof (struct redact_record));
  820                 bqueue_destroy(&thread_args[i].q);
  821         }
  822 
  823         avl_destroy(&start_tree);
  824         avl_destroy(&end_tree);
  825         kmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
  826         if (current_record != NULL)
  827                 bqueue_enqueue(q, current_record, sizeof (*current_record));
  828         return (err);
  829 }
  830 
  831 struct redact_merge_thread_arg {
  832         bqueue_t q;
  833         spa_t *spa;
  834         int numsnaps;
  835         struct redact_thread_arg *thr_args;
  836         boolean_t cancel;
  837         int error_code;
  838 };
  839 
  840 static __attribute__((noreturn)) void
  841 redact_merge_thread(void *arg)
  842 {
  843         struct redact_merge_thread_arg *rmta = arg;
  844         rmta->error_code = perform_thread_merge(&rmta->q,
  845             rmta->numsnaps, rmta->thr_args, &rmta->cancel);
  846         struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
  847         rec->eos_marker = B_TRUE;
  848         bqueue_enqueue_flush(&rmta->q, rec, 1);
  849         thread_exit();
  850 }
  851 
  852 /*
  853  * Find the next object in or after the redaction range passed in, and hold
  854  * its dnode with the provided tag.  Also update *object to contain the new
  855  * object number.
  856  */
  857 static int
  858 hold_next_object(objset_t *os, struct redact_record *rec, const void *tag,
  859     uint64_t *object, dnode_t **dn)
  860 {
  861         int err = 0;
  862         if (*dn != NULL)
  863                 dnode_rele(*dn, tag);
  864         *dn = NULL;
  865         if (*object < rec->start_object) {
  866                 *object = rec->start_object - 1;
  867         }
  868         err = dmu_object_next(os, object, B_FALSE, 0);
  869         if (err != 0)
  870                 return (err);
  871 
  872         err = dnode_hold(os, *object, tag, dn);
  873         while (err == 0 && (*object < rec->start_object ||
  874             DMU_OT_IS_METADATA((*dn)->dn_type))) {
  875                 dnode_rele(*dn, tag);
  876                 *dn = NULL;
  877                 err = dmu_object_next(os, object, B_FALSE, 0);
  878                 if (err != 0)
  879                         break;
  880                 err = dnode_hold(os, *object, tag, dn);
  881         }
  882         return (err);
  883 }
  884 
  885 static int
  886 perform_redaction(objset_t *os, redaction_list_t *rl,
  887     struct redact_merge_thread_arg *rmta)
  888 {
  889         int err = 0;
  890         bqueue_t *q = &rmta->q;
  891         struct redact_record *rec = NULL;
  892         struct merge_data md = { {0} };
  893 
  894         list_create(&md.md_redact_block_pending,
  895             sizeof (struct redact_block_list_node),
  896             offsetof(struct redact_block_list_node, node));
  897         md.md_redaction_list = rl;
  898 
  899         for (int i = 0; i < TXG_SIZE; i++) {
  900                 list_create(&md.md_blocks[i],
  901                     sizeof (struct redact_block_list_node),
  902                     offsetof(struct redact_block_list_node, node));
  903         }
  904         dnode_t *dn = NULL;
  905         uint64_t prev_obj = 0;
  906         for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
  907             rec = get_next_redact_record(q, rec)) {
  908                 ASSERT3U(rec->start_object, !=, 0);
  909                 uint64_t object;
  910                 if (prev_obj != rec->start_object) {
  911                         object = rec->start_object - 1;
  912                         err = hold_next_object(os, rec, FTAG, &object, &dn);
  913                 } else {
  914                         object = prev_obj;
  915                 }
  916                 while (err == 0 && object <= rec->end_object) {
  917                         if (issig(JUSTLOOKING) && issig(FORREAL)) {
  918                                 err = EINTR;
  919                                 break;
  920                         }
  921                         /*
  922                          * Part of the current object is contained somewhere in
  923                          * the range covered by rec.
  924                          */
  925                         uint64_t startblkid;
  926                         uint64_t endblkid;
  927                         uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
  928 
  929                         if (rec->start_object < object)
  930                                 startblkid = 0;
  931                         else if (rec->start_blkid > maxblkid)
  932                                 break;
  933                         else
  934                                 startblkid = rec->start_blkid;
  935 
  936                         if (rec->end_object > object || rec->end_blkid >
  937                             maxblkid) {
  938                                 endblkid = maxblkid;
  939                         } else {
  940                                 endblkid = rec->end_blkid;
  941                         }
  942                         update_redaction_list(&md, os, object, startblkid,
  943                             endblkid, dn->dn_datablksz);
  944 
  945                         if (object == rec->end_object)
  946                                 break;
  947                         err = hold_next_object(os, rec, FTAG, &object, &dn);
  948                 }
  949                 if (err == ESRCH)
  950                         err = 0;
  951                 if (dn != NULL)
  952                         prev_obj = object;
  953         }
  954         if (err == 0 && dn != NULL)
  955                 dnode_rele(dn, FTAG);
  956 
  957         if (err == ESRCH)
  958                 err = 0;
  959         rmta->cancel = B_TRUE;
  960         while (!rec->eos_marker)
  961                 rec = get_next_redact_record(q, rec);
  962         kmem_free(rec, sizeof (*rec));
  963 
  964         /*
  965          * There may be a block that's being coalesced, sync that out before we
  966          * return.
  967          */
  968         if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
  969                 struct redact_block_list_node *rbln =
  970                     kmem_alloc(sizeof (struct redact_block_list_node),
  971                     KM_SLEEP);
  972                 rbln->block = md.md_coalesce_block;
  973                 list_insert_tail(&md.md_redact_block_pending, rbln);
  974         }
  975         commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
  976 
  977         /*
  978          * Wait for all the redaction info to sync out before we return, so that
  979          * anyone who attempts to resume this redaction will have all the data
  980          * they need.
  981          */
  982         dsl_pool_t *dp = spa_get_dsl(os->os_spa);
  983         if (md.md_latest_synctask_txg != 0)
  984                 txg_wait_synced(dp, md.md_latest_synctask_txg);
  985         for (int i = 0; i < TXG_SIZE; i++)
  986                 list_destroy(&md.md_blocks[i]);
  987         return (err);
  988 }
  989 
  990 static boolean_t
  991 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
  992 {
  993         for (int i = 0; i < num_snaps; i++) {
  994                 if (snaps[i] == guid)
  995                         return (B_TRUE);
  996         }
  997         return (B_FALSE);
  998 }
  999 
 1000 int
 1001 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
 1002     const char *redactbook)
 1003 {
 1004         int err = 0;
 1005         dsl_pool_t *dp = NULL;
 1006         dsl_dataset_t *ds = NULL;
 1007         int numsnaps = 0;
 1008         objset_t *os;
 1009         struct redact_thread_arg *args = NULL;
 1010         redaction_list_t *new_rl = NULL;
 1011         char *newredactbook;
 1012 
 1013         if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
 1014                 return (err);
 1015 
 1016         newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
 1017             KM_SLEEP);
 1018 
 1019         if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
 1020             FTAG, &ds)) != 0) {
 1021                 goto out;
 1022         }
 1023         dsl_dataset_long_hold(ds, FTAG);
 1024         if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
 1025                 err = EINVAL;
 1026                 goto out;
 1027         }
 1028         if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
 1029                 err = EALREADY;
 1030                 goto out;
 1031         }
 1032 
 1033         numsnaps = fnvlist_num_pairs(redactnvl);
 1034         if (numsnaps > 0)
 1035                 args = kmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
 1036 
 1037         nvpair_t *pair = NULL;
 1038         for (int i = 0; i < numsnaps; i++) {
 1039                 pair = nvlist_next_nvpair(redactnvl, pair);
 1040                 const char *name = nvpair_name(pair);
 1041                 struct redact_thread_arg *rta = &args[i];
 1042                 err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
 1043                     FTAG, &rta->ds);
 1044                 if (err != 0)
 1045                         break;
 1046                 /*
 1047                  * We want to do the long hold before we can get any other
 1048                  * errors, because the cleanup code will release the long
 1049                  * hold if rta->ds is filled in.
 1050                  */
 1051                 dsl_dataset_long_hold(rta->ds, FTAG);
 1052 
 1053                 err = dmu_objset_from_ds(rta->ds, &rta->os);
 1054                 if (err != 0)
 1055                         break;
 1056                 if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
 1057                         err = EINVAL;
 1058                         break;
 1059                 }
 1060                 if (dsl_dataset_feature_is_active(rta->ds,
 1061                     SPA_FEATURE_REDACTED_DATASETS)) {
 1062                         err = EALREADY;
 1063                         break;
 1064 
 1065                 }
 1066         }
 1067         if (err != 0)
 1068                 goto out;
 1069         VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL);
 1070 
 1071         boolean_t resuming = B_FALSE;
 1072         zfs_bookmark_phys_t bookmark;
 1073 
 1074         (void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
 1075         char *c = strchr(newredactbook, '@');
 1076         ASSERT3P(c, !=, NULL);
 1077         int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
 1078             "#%s", redactbook);
 1079         if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
 1080                 dsl_pool_rele(dp, FTAG);
 1081                 kmem_free(newredactbook,
 1082                     sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
 1083                 if (args != NULL)
 1084                         kmem_free(args, numsnaps * sizeof (*args));
 1085                 return (SET_ERROR(ENAMETOOLONG));
 1086         }
 1087         err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
 1088         if (err == 0) {
 1089                 resuming = B_TRUE;
 1090                 if (bookmark.zbm_redaction_obj == 0) {
 1091                         err = EEXIST;
 1092                         goto out;
 1093                 }
 1094                 err = dsl_redaction_list_hold_obj(dp,
 1095                     bookmark.zbm_redaction_obj, FTAG, &new_rl);
 1096                 if (err != 0) {
 1097                         err = EIO;
 1098                         goto out;
 1099                 }
 1100                 dsl_redaction_list_long_hold(dp, new_rl, FTAG);
 1101                 if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
 1102                         err = ESRCH;
 1103                         goto out;
 1104                 }
 1105                 for (int i = 0; i < numsnaps; i++) {
 1106                         struct redact_thread_arg *rta = &args[i];
 1107                         if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
 1108                             new_rl->rl_phys->rlp_num_snaps,
 1109                             dsl_dataset_phys(rta->ds)->ds_guid)) {
 1110                                 err = ESRCH;
 1111                                 goto out;
 1112                         }
 1113                 }
 1114                 if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
 1115                     new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
 1116                         err = EEXIST;
 1117                         goto out;
 1118                 }
 1119                 dsl_pool_rele(dp, FTAG);
 1120                 dp = NULL;
 1121         } else {
 1122                 uint64_t *guids = NULL;
 1123                 if (numsnaps > 0) {
 1124                         guids = kmem_zalloc(numsnaps * sizeof (uint64_t),
 1125                             KM_SLEEP);
 1126                 }
 1127                 for (int i = 0; i < numsnaps; i++) {
 1128                         struct redact_thread_arg *rta = &args[i];
 1129                         guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
 1130                 }
 1131 
 1132                 dsl_pool_rele(dp, FTAG);
 1133                 dp = NULL;
 1134                 err = dsl_bookmark_create_redacted(newredactbook, snapname,
 1135                     numsnaps, guids, FTAG, &new_rl);
 1136                 kmem_free(guids, numsnaps * sizeof (uint64_t));
 1137                 if (err != 0) {
 1138                         goto out;
 1139                 }
 1140         }
 1141 
 1142         for (int i = 0; i < numsnaps; i++) {
 1143                 struct redact_thread_arg *rta = &args[i];
 1144                 (void) bqueue_init(&rta->q, zfs_redact_queue_ff,
 1145                     zfs_redact_queue_length,
 1146                     offsetof(struct redact_record, ln));
 1147                 if (resuming) {
 1148                         rta->resume.zb_blkid =
 1149                             new_rl->rl_phys->rlp_last_blkid;
 1150                         rta->resume.zb_object =
 1151                             new_rl->rl_phys->rlp_last_object;
 1152                 }
 1153                 rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
 1154                 (void) thread_create(NULL, 0, redact_traverse_thread, rta,
 1155                     0, curproc, TS_RUN, minclsyspri);
 1156         }
 1157 
 1158         struct redact_merge_thread_arg *rmta;
 1159         rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
 1160 
 1161         (void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
 1162             zfs_redact_queue_length, offsetof(struct redact_record, ln));
 1163         rmta->numsnaps = numsnaps;
 1164         rmta->spa = os->os_spa;
 1165         rmta->thr_args = args;
 1166         (void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
 1167             TS_RUN, minclsyspri);
 1168         err = perform_redaction(os, new_rl, rmta);
 1169         bqueue_destroy(&rmta->q);
 1170         kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
 1171 
 1172 out:
 1173         kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
 1174 
 1175         if (new_rl != NULL) {
 1176                 dsl_redaction_list_long_rele(new_rl, FTAG);
 1177                 dsl_redaction_list_rele(new_rl, FTAG);
 1178         }
 1179         for (int i = 0; i < numsnaps; i++) {
 1180                 struct redact_thread_arg *rta = &args[i];
 1181                 /*
 1182                  * rta->ds may be NULL if we got an error while filling
 1183                  * it in.
 1184                  */
 1185                 if (rta->ds != NULL) {
 1186                         dsl_dataset_long_rele(rta->ds, FTAG);
 1187                         dsl_dataset_rele_flags(rta->ds,
 1188                             DS_HOLD_FLAG_DECRYPT, FTAG);
 1189                 }
 1190         }
 1191 
 1192         if (args != NULL)
 1193                 kmem_free(args, numsnaps * sizeof (*args));
 1194         if (dp != NULL)
 1195                 dsl_pool_rele(dp, FTAG);
 1196         if (ds != NULL) {
 1197                 dsl_dataset_long_rele(ds, FTAG);
 1198                 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
 1199         }
 1200         return (SET_ERROR(err));
 1201 
 1202 }

Cache object: 48233eb173dfa599f5c2626978258634


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.