The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/dnode_sync.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
   25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
   26  * Copyright 2020 Oxide Computer Company
   27  */
   28 
   29 #include <sys/zfs_context.h>
   30 #include <sys/dbuf.h>
   31 #include <sys/dnode.h>
   32 #include <sys/dmu.h>
   33 #include <sys/dmu_tx.h>
   34 #include <sys/dmu_objset.h>
   35 #include <sys/dmu_recv.h>
   36 #include <sys/dsl_dataset.h>
   37 #include <sys/spa.h>
   38 #include <sys/range_tree.h>
   39 #include <sys/zfeature.h>
   40 
   41 static void
   42 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
   43 {
   44         dmu_buf_impl_t *db;
   45         int txgoff = tx->tx_txg & TXG_MASK;
   46         int nblkptr = dn->dn_phys->dn_nblkptr;
   47         int old_toplvl = dn->dn_phys->dn_nlevels - 1;
   48         int new_level = dn->dn_next_nlevels[txgoff];
   49         int i;
   50 
   51         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
   52 
   53         /* this dnode can't be paged out because it's dirty */
   54         ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
   55         ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
   56 
   57         db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
   58         ASSERT(db != NULL);
   59 
   60         dn->dn_phys->dn_nlevels = new_level;
   61         dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
   62             (u_longlong_t)dn->dn_object, dn->dn_phys->dn_nlevels);
   63 
   64         /*
   65          * Lock ordering requires that we hold the children's db_mutexes (by
   66          * calling dbuf_find()) before holding the parent's db_rwlock.  The lock
   67          * order is imposed by dbuf_read's steps of "grab the lock to protect
   68          * db_parent, get db_parent, hold db_parent's db_rwlock".
   69          */
   70         dmu_buf_impl_t *children[DN_MAX_NBLKPTR];
   71         ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR);
   72         for (i = 0; i < nblkptr; i++) {
   73                 children[i] = dbuf_find(dn->dn_objset, dn->dn_object,
   74                     old_toplvl, i, NULL);
   75         }
   76 
   77         /* transfer dnode's block pointers to new indirect block */
   78         (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
   79         if (dn->dn_dbuf != NULL)
   80                 rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER);
   81         rw_enter(&db->db_rwlock, RW_WRITER);
   82         ASSERT(db->db.db_data);
   83         ASSERT(arc_released(db->db_buf));
   84         ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
   85         memcpy(db->db.db_data, dn->dn_phys->dn_blkptr,
   86             sizeof (blkptr_t) * nblkptr);
   87         arc_buf_freeze(db->db_buf);
   88 
   89         /* set dbuf's parent pointers to new indirect buf */
   90         for (i = 0; i < nblkptr; i++) {
   91                 dmu_buf_impl_t *child = children[i];
   92 
   93                 if (child == NULL)
   94                         continue;
   95 #ifdef  ZFS_DEBUG
   96                 DB_DNODE_ENTER(child);
   97                 ASSERT3P(DB_DNODE(child), ==, dn);
   98                 DB_DNODE_EXIT(child);
   99 #endif  /* DEBUG */
  100                 if (child->db_parent && child->db_parent != dn->dn_dbuf) {
  101                         ASSERT(child->db_parent->db_level == db->db_level);
  102                         ASSERT(child->db_blkptr !=
  103                             &dn->dn_phys->dn_blkptr[child->db_blkid]);
  104                         mutex_exit(&child->db_mtx);
  105                         continue;
  106                 }
  107                 ASSERT(child->db_parent == NULL ||
  108                     child->db_parent == dn->dn_dbuf);
  109 
  110                 child->db_parent = db;
  111                 dbuf_add_ref(db, child);
  112                 if (db->db.db_data)
  113                         child->db_blkptr = (blkptr_t *)db->db.db_data + i;
  114                 else
  115                         child->db_blkptr = NULL;
  116                 dprintf_dbuf_bp(child, child->db_blkptr,
  117                     "changed db_blkptr to new indirect %s", "");
  118 
  119                 mutex_exit(&child->db_mtx);
  120         }
  121 
  122         memset(dn->dn_phys->dn_blkptr, 0, sizeof (blkptr_t) * nblkptr);
  123 
  124         rw_exit(&db->db_rwlock);
  125         if (dn->dn_dbuf != NULL)
  126                 rw_exit(&dn->dn_dbuf->db_rwlock);
  127 
  128         dbuf_rele(db, FTAG);
  129 
  130         rw_exit(&dn->dn_struct_rwlock);
  131 }
  132 
  133 static void
  134 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
  135 {
  136         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
  137         uint64_t bytesfreed = 0;
  138 
  139         dprintf("ds=%p obj=%llx num=%d\n", ds, (u_longlong_t)dn->dn_object,
  140             num);
  141 
  142         for (int i = 0; i < num; i++, bp++) {
  143                 if (BP_IS_HOLE(bp))
  144                         continue;
  145 
  146                 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
  147                 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
  148 
  149                 /*
  150                  * Save some useful information on the holes being
  151                  * punched, including logical size, type, and indirection
  152                  * level. Retaining birth time enables detection of when
  153                  * holes are punched for reducing the number of free
  154                  * records transmitted during a zfs send.
  155                  */
  156 
  157                 uint64_t lsize = BP_GET_LSIZE(bp);
  158                 dmu_object_type_t type = BP_GET_TYPE(bp);
  159                 uint64_t lvl = BP_GET_LEVEL(bp);
  160 
  161                 memset(bp, 0, sizeof (blkptr_t));
  162 
  163                 if (spa_feature_is_active(dn->dn_objset->os_spa,
  164                     SPA_FEATURE_HOLE_BIRTH)) {
  165                         BP_SET_LSIZE(bp, lsize);
  166                         BP_SET_TYPE(bp, type);
  167                         BP_SET_LEVEL(bp, lvl);
  168                         BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
  169                 }
  170         }
  171         dnode_diduse_space(dn, -bytesfreed);
  172 }
  173 
  174 #ifdef ZFS_DEBUG
  175 static void
  176 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
  177 {
  178         uint64_t off, num, i, j;
  179         unsigned int epbs;
  180         int err;
  181         uint64_t txg = tx->tx_txg;
  182         dnode_t *dn;
  183 
  184         DB_DNODE_ENTER(db);
  185         dn = DB_DNODE(db);
  186         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
  187         off = start - (db->db_blkid << epbs);
  188         num = end - start + 1;
  189 
  190         ASSERT3U(dn->dn_phys->dn_indblkshift, >=, SPA_BLKPTRSHIFT);
  191         ASSERT3U(end + 1, >=, start);
  192         ASSERT3U(start, >=, (db->db_blkid << epbs));
  193         ASSERT3U(db->db_level, >, 0);
  194         ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
  195         ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
  196         ASSERT(db->db_blkptr != NULL);
  197 
  198         for (i = off; i < off+num; i++) {
  199                 uint64_t *buf;
  200                 dmu_buf_impl_t *child;
  201                 dbuf_dirty_record_t *dr;
  202 
  203                 ASSERT(db->db_level == 1);
  204 
  205                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
  206                 err = dbuf_hold_impl(dn, db->db_level - 1,
  207                     (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
  208                 rw_exit(&dn->dn_struct_rwlock);
  209                 if (err == ENOENT)
  210                         continue;
  211                 ASSERT(err == 0);
  212                 ASSERT(child->db_level == 0);
  213                 dr = dbuf_find_dirty_eq(child, txg);
  214 
  215                 /* data_old better be zeroed */
  216                 if (dr) {
  217                         buf = dr->dt.dl.dr_data->b_data;
  218                         for (j = 0; j < child->db.db_size >> 3; j++) {
  219                                 if (buf[j] != 0) {
  220                                         panic("freed data not zero: "
  221                                             "child=%p i=%llu off=%llu "
  222                                             "num=%llu\n",
  223                                             (void *)child, (u_longlong_t)i,
  224                                             (u_longlong_t)off,
  225                                             (u_longlong_t)num);
  226                                 }
  227                         }
  228                 }
  229 
  230                 /*
  231                  * db_data better be zeroed unless it's dirty in a
  232                  * future txg.
  233                  */
  234                 mutex_enter(&child->db_mtx);
  235                 buf = child->db.db_data;
  236                 if (buf != NULL && child->db_state != DB_FILL &&
  237                     list_is_empty(&child->db_dirty_records)) {
  238                         for (j = 0; j < child->db.db_size >> 3; j++) {
  239                                 if (buf[j] != 0) {
  240                                         panic("freed data not zero: "
  241                                             "child=%p i=%llu off=%llu "
  242                                             "num=%llu\n",
  243                                             (void *)child, (u_longlong_t)i,
  244                                             (u_longlong_t)off,
  245                                             (u_longlong_t)num);
  246                                 }
  247                         }
  248                 }
  249                 mutex_exit(&child->db_mtx);
  250 
  251                 dbuf_rele(child, FTAG);
  252         }
  253         DB_DNODE_EXIT(db);
  254 }
  255 #endif
  256 
  257 /*
  258  * We don't usually free the indirect blocks here.  If in one txg we have a
  259  * free_range and a write to the same indirect block, it's important that we
  260  * preserve the hole's birth times. Therefore, we don't free any any indirect
  261  * blocks in free_children().  If an indirect block happens to turn into all
  262  * holes, it will be freed by dbuf_write_children_ready, which happens at a
  263  * point in the syncing process where we know for certain the contents of the
  264  * indirect block.
  265  *
  266  * However, if we're freeing a dnode, its space accounting must go to zero
  267  * before we actually try to free the dnode, or we will trip an assertion. In
  268  * addition, we know the case described above cannot occur, because the dnode is
  269  * being freed.  Therefore, we free the indirect blocks immediately in that
  270  * case.
  271  */
  272 static void
  273 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
  274     boolean_t free_indirects, dmu_tx_t *tx)
  275 {
  276         dnode_t *dn;
  277         blkptr_t *bp;
  278         dmu_buf_impl_t *subdb;
  279         uint64_t start, end, dbstart, dbend;
  280         unsigned int epbs, shift, i;
  281 
  282         /*
  283          * There is a small possibility that this block will not be cached:
  284          *   1 - if level > 1 and there are no children with level <= 1
  285          *   2 - if this block was evicted since we read it from
  286          *       dmu_tx_hold_free().
  287          */
  288         if (db->db_state != DB_CACHED)
  289                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
  290 
  291         /*
  292          * If we modify this indirect block, and we are not freeing the
  293          * dnode (!free_indirects), then this indirect block needs to get
  294          * written to disk by dbuf_write().  If it is dirty, we know it will
  295          * be written (otherwise, we would have incorrect on-disk state
  296          * because the space would be freed but still referenced by the BP
  297          * in this indirect block).  Therefore we VERIFY that it is
  298          * dirty.
  299          *
  300          * Our VERIFY covers some cases that do not actually have to be
  301          * dirty, but the open-context code happens to dirty.  E.g. if the
  302          * blocks we are freeing are all holes, because in that case, we
  303          * are only freeing part of this indirect block, so it is an
  304          * ancestor of the first or last block to be freed.  The first and
  305          * last L1 indirect blocks are always dirtied by dnode_free_range().
  306          */
  307         db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
  308         VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
  309         dmu_buf_unlock_parent(db, dblt, FTAG);
  310 
  311         dbuf_release_bp(db);
  312         bp = db->db.db_data;
  313 
  314         DB_DNODE_ENTER(db);
  315         dn = DB_DNODE(db);
  316         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
  317         ASSERT3U(epbs, <, 31);
  318         shift = (db->db_level - 1) * epbs;
  319         dbstart = db->db_blkid << epbs;
  320         start = blkid >> shift;
  321         if (dbstart < start) {
  322                 bp += start - dbstart;
  323         } else {
  324                 start = dbstart;
  325         }
  326         dbend = ((db->db_blkid + 1) << epbs) - 1;
  327         end = (blkid + nblks - 1) >> shift;
  328         if (dbend <= end)
  329                 end = dbend;
  330 
  331         ASSERT3U(start, <=, end);
  332 
  333         if (db->db_level == 1) {
  334                 FREE_VERIFY(db, start, end, tx);
  335                 rw_enter(&db->db_rwlock, RW_WRITER);
  336                 free_blocks(dn, bp, end - start + 1, tx);
  337                 rw_exit(&db->db_rwlock);
  338         } else {
  339                 for (uint64_t id = start; id <= end; id++, bp++) {
  340                         if (BP_IS_HOLE(bp))
  341                                 continue;
  342                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
  343                         VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
  344                             id, TRUE, FALSE, FTAG, &subdb));
  345                         rw_exit(&dn->dn_struct_rwlock);
  346                         ASSERT3P(bp, ==, subdb->db_blkptr);
  347 
  348                         free_children(subdb, blkid, nblks, free_indirects, tx);
  349                         dbuf_rele(subdb, FTAG);
  350                 }
  351         }
  352 
  353         if (free_indirects) {
  354                 rw_enter(&db->db_rwlock, RW_WRITER);
  355                 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
  356                         ASSERT(BP_IS_HOLE(bp));
  357                 memset(db->db.db_data, 0, db->db.db_size);
  358                 free_blocks(dn, db->db_blkptr, 1, tx);
  359                 rw_exit(&db->db_rwlock);
  360         }
  361 
  362         DB_DNODE_EXIT(db);
  363         arc_buf_freeze(db->db_buf);
  364 }
  365 
  366 /*
  367  * Traverse the indicated range of the provided file
  368  * and "free" all the blocks contained there.
  369  */
  370 static void
  371 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
  372     boolean_t free_indirects, dmu_tx_t *tx)
  373 {
  374         blkptr_t *bp = dn->dn_phys->dn_blkptr;
  375         int dnlevel = dn->dn_phys->dn_nlevels;
  376         boolean_t trunc = B_FALSE;
  377 
  378         if (blkid > dn->dn_phys->dn_maxblkid)
  379                 return;
  380 
  381         ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
  382         if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
  383                 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
  384                 trunc = B_TRUE;
  385         }
  386 
  387         /* There are no indirect blocks in the object */
  388         if (dnlevel == 1) {
  389                 if (blkid >= dn->dn_phys->dn_nblkptr) {
  390                         /* this range was never made persistent */
  391                         return;
  392                 }
  393                 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
  394                 free_blocks(dn, bp + blkid, nblks, tx);
  395         } else {
  396                 int shift = (dnlevel - 1) *
  397                     (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
  398                 int start = blkid >> shift;
  399                 int end = (blkid + nblks - 1) >> shift;
  400                 dmu_buf_impl_t *db;
  401 
  402                 ASSERT(start < dn->dn_phys->dn_nblkptr);
  403                 bp += start;
  404                 for (int i = start; i <= end; i++, bp++) {
  405                         if (BP_IS_HOLE(bp))
  406                                 continue;
  407                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
  408                         VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
  409                             TRUE, FALSE, FTAG, &db));
  410                         rw_exit(&dn->dn_struct_rwlock);
  411                         free_children(db, blkid, nblks, free_indirects, tx);
  412                         dbuf_rele(db, FTAG);
  413                 }
  414         }
  415 
  416         /*
  417          * Do not truncate the maxblkid if we are performing a raw
  418          * receive. The raw receive sets the maxblkid manually and
  419          * must not be overridden. Usually, the last DRR_FREE record
  420          * will be at the maxblkid, because the source system sets
  421          * the maxblkid when truncating. However, if the last block
  422          * was freed by overwriting with zeros and being compressed
  423          * away to a hole, the source system will generate a DRR_FREE
  424          * record while leaving the maxblkid after the end of that
  425          * record. In this case we need to leave the maxblkid as
  426          * indicated in the DRR_OBJECT record, so that it matches the
  427          * source system, ensuring that the cryptographic hashes will
  428          * match.
  429          */
  430         if (trunc && !dn->dn_objset->os_raw_receive) {
  431                 uint64_t off __maybe_unused;
  432                 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
  433 
  434                 off = (dn->dn_phys->dn_maxblkid + 1) *
  435                     (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
  436                 ASSERT(off < dn->dn_phys->dn_maxblkid ||
  437                     dn->dn_phys->dn_maxblkid == 0 ||
  438                     dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
  439         }
  440 }
  441 
  442 typedef struct dnode_sync_free_range_arg {
  443         dnode_t *dsfra_dnode;
  444         dmu_tx_t *dsfra_tx;
  445         boolean_t dsfra_free_indirects;
  446 } dnode_sync_free_range_arg_t;
  447 
  448 static void
  449 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
  450 {
  451         dnode_sync_free_range_arg_t *dsfra = arg;
  452         dnode_t *dn = dsfra->dsfra_dnode;
  453 
  454         mutex_exit(&dn->dn_mtx);
  455         dnode_sync_free_range_impl(dn, blkid, nblks,
  456             dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
  457         mutex_enter(&dn->dn_mtx);
  458 }
  459 
  460 /*
  461  * Try to kick all the dnode's dbufs out of the cache...
  462  */
  463 void
  464 dnode_evict_dbufs(dnode_t *dn)
  465 {
  466         dmu_buf_impl_t *db_marker;
  467         dmu_buf_impl_t *db, *db_next;
  468 
  469         db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
  470 
  471         mutex_enter(&dn->dn_dbufs_mtx);
  472         for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
  473 
  474 #ifdef  ZFS_DEBUG
  475                 DB_DNODE_ENTER(db);
  476                 ASSERT3P(DB_DNODE(db), ==, dn);
  477                 DB_DNODE_EXIT(db);
  478 #endif  /* DEBUG */
  479 
  480                 mutex_enter(&db->db_mtx);
  481                 if (db->db_state != DB_EVICTING &&
  482                     zfs_refcount_is_zero(&db->db_holds)) {
  483                         db_marker->db_level = db->db_level;
  484                         db_marker->db_blkid = db->db_blkid;
  485                         db_marker->db_state = DB_SEARCH;
  486                         avl_insert_here(&dn->dn_dbufs, db_marker, db,
  487                             AVL_BEFORE);
  488 
  489                         /*
  490                          * We need to use the "marker" dbuf rather than
  491                          * simply getting the next dbuf, because
  492                          * dbuf_destroy() may actually remove multiple dbufs.
  493                          * It can call itself recursively on the parent dbuf,
  494                          * which may also be removed from dn_dbufs.  The code
  495                          * flow would look like:
  496                          *
  497                          * dbuf_destroy():
  498                          *   dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
  499                          *      if (!cacheable || pending_evict)
  500                          *        dbuf_destroy()
  501                          */
  502                         dbuf_destroy(db);
  503 
  504                         db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
  505                         avl_remove(&dn->dn_dbufs, db_marker);
  506                 } else {
  507                         db->db_pending_evict = TRUE;
  508                         mutex_exit(&db->db_mtx);
  509                         db_next = AVL_NEXT(&dn->dn_dbufs, db);
  510                 }
  511         }
  512         mutex_exit(&dn->dn_dbufs_mtx);
  513 
  514         kmem_free(db_marker, sizeof (dmu_buf_impl_t));
  515 
  516         dnode_evict_bonus(dn);
  517 }
  518 
  519 void
  520 dnode_evict_bonus(dnode_t *dn)
  521 {
  522         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
  523         if (dn->dn_bonus != NULL) {
  524                 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
  525                         mutex_enter(&dn->dn_bonus->db_mtx);
  526                         dbuf_destroy(dn->dn_bonus);
  527                         dn->dn_bonus = NULL;
  528                 } else {
  529                         dn->dn_bonus->db_pending_evict = TRUE;
  530                 }
  531         }
  532         rw_exit(&dn->dn_struct_rwlock);
  533 }
  534 
  535 static void
  536 dnode_undirty_dbufs(list_t *list)
  537 {
  538         dbuf_dirty_record_t *dr;
  539 
  540         while ((dr = list_head(list))) {
  541                 dmu_buf_impl_t *db = dr->dr_dbuf;
  542                 uint64_t txg = dr->dr_txg;
  543 
  544                 if (db->db_level != 0)
  545                         dnode_undirty_dbufs(&dr->dt.di.dr_children);
  546 
  547                 mutex_enter(&db->db_mtx);
  548                 /* XXX - use dbuf_undirty()? */
  549                 list_remove(list, dr);
  550                 ASSERT(list_head(&db->db_dirty_records) == dr);
  551                 list_remove_head(&db->db_dirty_records);
  552                 ASSERT(list_is_empty(&db->db_dirty_records));
  553                 db->db_dirtycnt -= 1;
  554                 if (db->db_level == 0) {
  555                         ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
  556                             dr->dt.dl.dr_data == db->db_buf);
  557                         dbuf_unoverride(dr);
  558                 } else {
  559                         mutex_destroy(&dr->dt.di.dr_mtx);
  560                         list_destroy(&dr->dt.di.dr_children);
  561                 }
  562                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
  563                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
  564         }
  565 }
  566 
  567 static void
  568 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
  569 {
  570         int txgoff = tx->tx_txg & TXG_MASK;
  571 
  572         ASSERT(dmu_tx_is_syncing(tx));
  573 
  574         /*
  575          * Our contents should have been freed in dnode_sync() by the
  576          * free range record inserted by the caller of dnode_free().
  577          */
  578         ASSERT0(DN_USED_BYTES(dn->dn_phys));
  579         ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
  580 
  581         dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
  582         dnode_evict_dbufs(dn);
  583 
  584         /*
  585          * XXX - It would be nice to assert this, but we may still
  586          * have residual holds from async evictions from the arc...
  587          *
  588          * zfs_obj_to_path() also depends on this being
  589          * commented out.
  590          *
  591          * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
  592          */
  593 
  594         /* Undirty next bits */
  595         dn->dn_next_nlevels[txgoff] = 0;
  596         dn->dn_next_indblkshift[txgoff] = 0;
  597         dn->dn_next_blksz[txgoff] = 0;
  598         dn->dn_next_maxblkid[txgoff] = 0;
  599 
  600         /* ASSERT(blkptrs are zero); */
  601         ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
  602         ASSERT(dn->dn_type != DMU_OT_NONE);
  603 
  604         ASSERT(dn->dn_free_txg > 0);
  605         if (dn->dn_allocated_txg != dn->dn_free_txg)
  606                 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
  607         memset(dn->dn_phys, 0, sizeof (dnode_phys_t) * dn->dn_num_slots);
  608         dnode_free_interior_slots(dn);
  609 
  610         mutex_enter(&dn->dn_mtx);
  611         dn->dn_type = DMU_OT_NONE;
  612         dn->dn_maxblkid = 0;
  613         dn->dn_allocated_txg = 0;
  614         dn->dn_free_txg = 0;
  615         dn->dn_have_spill = B_FALSE;
  616         dn->dn_num_slots = 1;
  617         mutex_exit(&dn->dn_mtx);
  618 
  619         ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
  620 
  621         dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
  622         /*
  623          * Now that we've released our hold, the dnode may
  624          * be evicted, so we mustn't access it.
  625          */
  626 }
  627 
  628 /*
  629  * Write out the dnode's dirty buffers.
  630  */
  631 void
  632 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
  633 {
  634         objset_t *os = dn->dn_objset;
  635         dnode_phys_t *dnp = dn->dn_phys;
  636         int txgoff = tx->tx_txg & TXG_MASK;
  637         list_t *list = &dn->dn_dirty_records[txgoff];
  638         static const dnode_phys_t zerodn __maybe_unused = { 0 };
  639         boolean_t kill_spill = B_FALSE;
  640 
  641         ASSERT(dmu_tx_is_syncing(tx));
  642         ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
  643         ASSERT(dnp->dn_type != DMU_OT_NONE ||
  644             memcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
  645         DNODE_VERIFY(dn);
  646 
  647         ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
  648 
  649         /*
  650          * Do user accounting if it is enabled and this is not
  651          * an encrypted receive.
  652          */
  653         if (dmu_objset_userused_enabled(os) &&
  654             !DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
  655             (!os->os_encrypted || !dmu_objset_is_receiving(os))) {
  656                 mutex_enter(&dn->dn_mtx);
  657                 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
  658                 dn->dn_oldflags = dn->dn_phys->dn_flags;
  659                 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
  660                 if (dmu_objset_userobjused_enabled(dn->dn_objset))
  661                         dn->dn_phys->dn_flags |=
  662                             DNODE_FLAG_USEROBJUSED_ACCOUNTED;
  663                 mutex_exit(&dn->dn_mtx);
  664                 dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
  665         } else if (!(os->os_encrypted && dmu_objset_is_receiving(os))) {
  666                 /*
  667                  * Once we account for it, we should always account for it,
  668                  * except for the case of a raw receive. We will not be able
  669                  * to account for it until the receiving dataset has been
  670                  * mounted.
  671                  */
  672                 ASSERT(!(dn->dn_phys->dn_flags &
  673                     DNODE_FLAG_USERUSED_ACCOUNTED));
  674                 ASSERT(!(dn->dn_phys->dn_flags &
  675                     DNODE_FLAG_USEROBJUSED_ACCOUNTED));
  676         }
  677 
  678         mutex_enter(&dn->dn_mtx);
  679         if (dn->dn_allocated_txg == tx->tx_txg) {
  680                 /* The dnode is newly allocated or reallocated */
  681                 if (dnp->dn_type == DMU_OT_NONE) {
  682                         /* this is a first alloc, not a realloc */
  683                         dnp->dn_nlevels = 1;
  684                         dnp->dn_nblkptr = dn->dn_nblkptr;
  685                 }
  686 
  687                 dnp->dn_type = dn->dn_type;
  688                 dnp->dn_bonustype = dn->dn_bonustype;
  689                 dnp->dn_bonuslen = dn->dn_bonuslen;
  690         }
  691 
  692         dnp->dn_extra_slots = dn->dn_num_slots - 1;
  693 
  694         ASSERT(dnp->dn_nlevels > 1 ||
  695             BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
  696             BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
  697             BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
  698             dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
  699         ASSERT(dnp->dn_nlevels < 2 ||
  700             BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
  701             BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
  702 
  703         if (dn->dn_next_type[txgoff] != 0) {
  704                 dnp->dn_type = dn->dn_type;
  705                 dn->dn_next_type[txgoff] = 0;
  706         }
  707 
  708         if (dn->dn_next_blksz[txgoff] != 0) {
  709                 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
  710                     SPA_MINBLOCKSIZE) == 0);
  711                 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
  712                     dn->dn_maxblkid == 0 || list_head(list) != NULL ||
  713                     dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
  714                     dnp->dn_datablkszsec ||
  715                     !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
  716                 dnp->dn_datablkszsec =
  717                     dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
  718                 dn->dn_next_blksz[txgoff] = 0;
  719         }
  720 
  721         if (dn->dn_next_bonuslen[txgoff] != 0) {
  722                 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
  723                         dnp->dn_bonuslen = 0;
  724                 else
  725                         dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
  726                 ASSERT(dnp->dn_bonuslen <=
  727                     DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
  728                 dn->dn_next_bonuslen[txgoff] = 0;
  729         }
  730 
  731         if (dn->dn_next_bonustype[txgoff] != 0) {
  732                 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
  733                 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
  734                 dn->dn_next_bonustype[txgoff] = 0;
  735         }
  736 
  737         boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
  738             dn->dn_free_txg <= tx->tx_txg;
  739 
  740         /*
  741          * Remove the spill block if we have been explicitly asked to
  742          * remove it, or if the object is being removed.
  743          */
  744         if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
  745                 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
  746                         kill_spill = B_TRUE;
  747                 dn->dn_rm_spillblk[txgoff] = 0;
  748         }
  749 
  750         if (dn->dn_next_indblkshift[txgoff] != 0) {
  751                 ASSERT(dnp->dn_nlevels == 1);
  752                 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
  753                 dn->dn_next_indblkshift[txgoff] = 0;
  754         }
  755 
  756         /*
  757          * Just take the live (open-context) values for checksum and compress.
  758          * Strictly speaking it's a future leak, but nothing bad happens if we
  759          * start using the new checksum or compress algorithm a little early.
  760          */
  761         dnp->dn_checksum = dn->dn_checksum;
  762         dnp->dn_compress = dn->dn_compress;
  763 
  764         mutex_exit(&dn->dn_mtx);
  765 
  766         if (kill_spill) {
  767                 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
  768                 mutex_enter(&dn->dn_mtx);
  769                 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
  770                 mutex_exit(&dn->dn_mtx);
  771         }
  772 
  773         /* process all the "freed" ranges in the file */
  774         if (dn->dn_free_ranges[txgoff] != NULL) {
  775                 dnode_sync_free_range_arg_t dsfra;
  776                 dsfra.dsfra_dnode = dn;
  777                 dsfra.dsfra_tx = tx;
  778                 dsfra.dsfra_free_indirects = freeing_dnode;
  779                 mutex_enter(&dn->dn_mtx);
  780                 if (freeing_dnode) {
  781                         ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
  782                             0, dn->dn_maxblkid + 1));
  783                 }
  784                 /*
  785                  * Because dnode_sync_free_range() must drop dn_mtx during its
  786                  * processing, using it as a callback to range_tree_vacate() is
  787                  * not safe.  No other operations (besides destroy) are allowed
  788                  * once range_tree_vacate() has begun, and dropping dn_mtx
  789                  * would leave a window open for another thread to observe that
  790                  * invalid (and unsafe) state.
  791                  */
  792                 range_tree_walk(dn->dn_free_ranges[txgoff],
  793                     dnode_sync_free_range, &dsfra);
  794                 range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL);
  795                 range_tree_destroy(dn->dn_free_ranges[txgoff]);
  796                 dn->dn_free_ranges[txgoff] = NULL;
  797                 mutex_exit(&dn->dn_mtx);
  798         }
  799 
  800         if (freeing_dnode) {
  801                 dn->dn_objset->os_freed_dnodes++;
  802                 dnode_sync_free(dn, tx);
  803                 return;
  804         }
  805 
  806         if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
  807                 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
  808                 mutex_enter(&ds->ds_lock);
  809                 ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] =
  810                     (void *)B_TRUE;
  811                 mutex_exit(&ds->ds_lock);
  812         }
  813 
  814         if (dn->dn_next_nlevels[txgoff]) {
  815                 dnode_increase_indirection(dn, tx);
  816                 dn->dn_next_nlevels[txgoff] = 0;
  817         }
  818 
  819         /*
  820          * This must be done after dnode_sync_free_range()
  821          * and dnode_increase_indirection(). See dnode_new_blkid()
  822          * for an explanation of the high bit being set.
  823          */
  824         if (dn->dn_next_maxblkid[txgoff]) {
  825                 mutex_enter(&dn->dn_mtx);
  826                 dnp->dn_maxblkid =
  827                     dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
  828                 dn->dn_next_maxblkid[txgoff] = 0;
  829                 mutex_exit(&dn->dn_mtx);
  830         }
  831 
  832         if (dn->dn_next_nblkptr[txgoff]) {
  833                 /* this should only happen on a realloc */
  834                 ASSERT(dn->dn_allocated_txg == tx->tx_txg);
  835                 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
  836                         /* zero the new blkptrs we are gaining */
  837                         memset(dnp->dn_blkptr + dnp->dn_nblkptr, 0,
  838                             sizeof (blkptr_t) *
  839                             (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
  840 #ifdef ZFS_DEBUG
  841                 } else {
  842                         int i;
  843                         ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
  844                         /* the blkptrs we are losing better be unallocated */
  845                         for (i = 0; i < dnp->dn_nblkptr; i++) {
  846                                 if (i >= dn->dn_next_nblkptr[txgoff])
  847                                         ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
  848                         }
  849 #endif
  850                 }
  851                 mutex_enter(&dn->dn_mtx);
  852                 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
  853                 dn->dn_next_nblkptr[txgoff] = 0;
  854                 mutex_exit(&dn->dn_mtx);
  855         }
  856 
  857         dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
  858 
  859         if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
  860                 ASSERT3P(list_head(list), ==, NULL);
  861                 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
  862         }
  863 
  864         ASSERT3U(dnp->dn_bonuslen, <=, DN_MAX_BONUS_LEN(dnp));
  865 
  866         /*
  867          * Although we have dropped our reference to the dnode, it
  868          * can't be evicted until its written, and we haven't yet
  869          * initiated the IO for the dnode's dbuf.  Additionally, the caller
  870          * has already added a reference to the dnode because it's on the
  871          * os_synced_dnodes list.
  872          */
  873 }

Cache object: 5664703c301bb0552ff800c6f850f1d3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.