1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 * Copyright (c) 2018 by Delphix. All rights reserved.
19 */
20
21 #include <sys/dsl_crypt.h>
22 #include <sys/dsl_pool.h>
23 #include <sys/zap.h>
24 #include <sys/zil.h>
25 #include <sys/dsl_dir.h>
26 #include <sys/dsl_prop.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu_objset.h>
29 #include <sys/zvol.h>
30
31 /*
32 * This file's primary purpose is for managing master encryption keys in
33 * memory and on disk. For more info on how these keys are used, see the
34 * block comment in zio_crypt.c.
35 *
36 * All master keys are stored encrypted on disk in the form of the DSL
37 * Crypto Key ZAP object. The binary key data in this object is always
38 * randomly generated and is encrypted with the user's wrapping key. This
39 * layer of indirection allows the user to change their key without
40 * needing to re-encrypt the entire dataset. The ZAP also holds on to the
41 * (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
42 * safely decrypt the master key. For more info on the user's key see the
43 * block comment in libzfs_crypto.c
44 *
45 * In-memory encryption keys are managed through the spa_keystore. The
46 * keystore consists of 3 AVL trees, which are as follows:
47 *
48 * The Wrapping Key Tree:
49 * The wrapping key (wkey) tree stores the user's keys that are fed into the
50 * kernel through 'zfs load-key' and related commands. Datasets inherit their
51 * parent's wkey by default, so these structures are refcounted. The wrapping
52 * keys remain in memory until they are explicitly unloaded (with
53 * "zfs unload-key"). Unloading is only possible when no datasets are using
54 * them (refcount=0).
55 *
56 * The DSL Crypto Key Tree:
57 * The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
58 * master keys. They are used by the functions in zio_crypt.c to perform
59 * encryption, decryption, and authentication. Snapshots and clones of a given
60 * dataset will share a DSL Crypto Key, so they are also refcounted. Once the
61 * refcount on a key hits zero, it is immediately zeroed out and freed.
62 *
63 * The Crypto Key Mapping Tree:
64 * The zio layer needs to lookup master keys by their dataset object id. Since
65 * the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
66 * dsl_key_mapping_t's which essentially just map the dataset object id to its
67 * appropriate DSL Crypto Key. The management for creating and destroying these
68 * mappings hooks into the code for owning and disowning datasets. Usually,
69 * there will only be one active dataset owner, but there are times
70 * (particularly during dataset creation and destruction) when this may not be
71 * true or the dataset may not be initialized enough to own. As a result, this
72 * object is also refcounted.
73 */
74
75 /*
76 * This tunable allows datasets to be raw received even if the stream does
77 * not include IVset guids or if the guids don't match. This is used as part
78 * of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
79 */
80 int zfs_disable_ivset_guid_check = 0;
81
82 static void
83 dsl_wrapping_key_hold(dsl_wrapping_key_t *wkey, const void *tag)
84 {
85 (void) zfs_refcount_add(&wkey->wk_refcnt, tag);
86 }
87
88 static void
89 dsl_wrapping_key_rele(dsl_wrapping_key_t *wkey, const void *tag)
90 {
91 (void) zfs_refcount_remove(&wkey->wk_refcnt, tag);
92 }
93
94 static void
95 dsl_wrapping_key_free(dsl_wrapping_key_t *wkey)
96 {
97 ASSERT0(zfs_refcount_count(&wkey->wk_refcnt));
98
99 if (wkey->wk_key.ck_data) {
100 memset(wkey->wk_key.ck_data, 0,
101 CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
102 kmem_free(wkey->wk_key.ck_data,
103 CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
104 }
105
106 zfs_refcount_destroy(&wkey->wk_refcnt);
107 kmem_free(wkey, sizeof (dsl_wrapping_key_t));
108 }
109
110 static void
111 dsl_wrapping_key_create(uint8_t *wkeydata, zfs_keyformat_t keyformat,
112 uint64_t salt, uint64_t iters, dsl_wrapping_key_t **wkey_out)
113 {
114 dsl_wrapping_key_t *wkey;
115
116 /* allocate the wrapping key */
117 wkey = kmem_alloc(sizeof (dsl_wrapping_key_t), KM_SLEEP);
118
119 /* allocate and initialize the underlying crypto key */
120 wkey->wk_key.ck_data = kmem_alloc(WRAPPING_KEY_LEN, KM_SLEEP);
121
122 wkey->wk_key.ck_length = CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN);
123 memcpy(wkey->wk_key.ck_data, wkeydata, WRAPPING_KEY_LEN);
124
125 /* initialize the rest of the struct */
126 zfs_refcount_create(&wkey->wk_refcnt);
127 wkey->wk_keyformat = keyformat;
128 wkey->wk_salt = salt;
129 wkey->wk_iters = iters;
130
131 *wkey_out = wkey;
132 }
133
134 int
135 dsl_crypto_params_create_nvlist(dcp_cmd_t cmd, nvlist_t *props,
136 nvlist_t *crypto_args, dsl_crypto_params_t **dcp_out)
137 {
138 int ret;
139 uint64_t crypt = ZIO_CRYPT_INHERIT;
140 uint64_t keyformat = ZFS_KEYFORMAT_NONE;
141 uint64_t salt = 0, iters = 0;
142 dsl_crypto_params_t *dcp = NULL;
143 dsl_wrapping_key_t *wkey = NULL;
144 uint8_t *wkeydata = NULL;
145 uint_t wkeydata_len = 0;
146 char *keylocation = NULL;
147
148 dcp = kmem_zalloc(sizeof (dsl_crypto_params_t), KM_SLEEP);
149 dcp->cp_cmd = cmd;
150
151 /* get relevant arguments from the nvlists */
152 if (props != NULL) {
153 (void) nvlist_lookup_uint64(props,
154 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &crypt);
155 (void) nvlist_lookup_uint64(props,
156 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
157 (void) nvlist_lookup_string(props,
158 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
159 (void) nvlist_lookup_uint64(props,
160 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), &salt);
161 (void) nvlist_lookup_uint64(props,
162 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
163
164 dcp->cp_crypt = crypt;
165 }
166
167 if (crypto_args != NULL) {
168 (void) nvlist_lookup_uint8_array(crypto_args, "wkeydata",
169 &wkeydata, &wkeydata_len);
170 }
171
172 /* check for valid command */
173 if (dcp->cp_cmd >= DCP_CMD_MAX) {
174 ret = SET_ERROR(EINVAL);
175 goto error;
176 } else {
177 dcp->cp_cmd = cmd;
178 }
179
180 /* check for valid crypt */
181 if (dcp->cp_crypt >= ZIO_CRYPT_FUNCTIONS) {
182 ret = SET_ERROR(EINVAL);
183 goto error;
184 } else {
185 dcp->cp_crypt = crypt;
186 }
187
188 /* check for valid keyformat */
189 if (keyformat >= ZFS_KEYFORMAT_FORMATS) {
190 ret = SET_ERROR(EINVAL);
191 goto error;
192 }
193
194 /* check for a valid keylocation (of any kind) and copy it in */
195 if (keylocation != NULL) {
196 if (!zfs_prop_valid_keylocation(keylocation, B_FALSE)) {
197 ret = SET_ERROR(EINVAL);
198 goto error;
199 }
200
201 dcp->cp_keylocation = spa_strdup(keylocation);
202 }
203
204 /* check wrapping key length, if given */
205 if (wkeydata != NULL && wkeydata_len != WRAPPING_KEY_LEN) {
206 ret = SET_ERROR(EINVAL);
207 goto error;
208 }
209
210 /* if the user asked for the default crypt, determine that now */
211 if (dcp->cp_crypt == ZIO_CRYPT_ON)
212 dcp->cp_crypt = ZIO_CRYPT_ON_VALUE;
213
214 /* create the wrapping key from the raw data */
215 if (wkeydata != NULL) {
216 /* create the wrapping key with the verified parameters */
217 dsl_wrapping_key_create(wkeydata, keyformat, salt,
218 iters, &wkey);
219 dcp->cp_wkey = wkey;
220 }
221
222 /*
223 * Remove the encryption properties from the nvlist since they are not
224 * maintained through the DSL.
225 */
226 (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION));
227 (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
228 (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
229 (void) nvlist_remove_all(props,
230 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
231
232 *dcp_out = dcp;
233
234 return (0);
235
236 error:
237 kmem_free(dcp, sizeof (dsl_crypto_params_t));
238 *dcp_out = NULL;
239 return (ret);
240 }
241
242 void
243 dsl_crypto_params_free(dsl_crypto_params_t *dcp, boolean_t unload)
244 {
245 if (dcp == NULL)
246 return;
247
248 if (dcp->cp_keylocation != NULL)
249 spa_strfree(dcp->cp_keylocation);
250 if (unload && dcp->cp_wkey != NULL)
251 dsl_wrapping_key_free(dcp->cp_wkey);
252
253 kmem_free(dcp, sizeof (dsl_crypto_params_t));
254 }
255
256 static int
257 spa_crypto_key_compare(const void *a, const void *b)
258 {
259 const dsl_crypto_key_t *dcka = a;
260 const dsl_crypto_key_t *dckb = b;
261
262 if (dcka->dck_obj < dckb->dck_obj)
263 return (-1);
264 if (dcka->dck_obj > dckb->dck_obj)
265 return (1);
266 return (0);
267 }
268
269 static int
270 spa_key_mapping_compare(const void *a, const void *b)
271 {
272 const dsl_key_mapping_t *kma = a;
273 const dsl_key_mapping_t *kmb = b;
274
275 if (kma->km_dsobj < kmb->km_dsobj)
276 return (-1);
277 if (kma->km_dsobj > kmb->km_dsobj)
278 return (1);
279 return (0);
280 }
281
282 static int
283 spa_wkey_compare(const void *a, const void *b)
284 {
285 const dsl_wrapping_key_t *wka = a;
286 const dsl_wrapping_key_t *wkb = b;
287
288 if (wka->wk_ddobj < wkb->wk_ddobj)
289 return (-1);
290 if (wka->wk_ddobj > wkb->wk_ddobj)
291 return (1);
292 return (0);
293 }
294
295 void
296 spa_keystore_init(spa_keystore_t *sk)
297 {
298 rw_init(&sk->sk_dk_lock, NULL, RW_DEFAULT, NULL);
299 rw_init(&sk->sk_km_lock, NULL, RW_DEFAULT, NULL);
300 rw_init(&sk->sk_wkeys_lock, NULL, RW_DEFAULT, NULL);
301 avl_create(&sk->sk_dsl_keys, spa_crypto_key_compare,
302 sizeof (dsl_crypto_key_t),
303 offsetof(dsl_crypto_key_t, dck_avl_link));
304 avl_create(&sk->sk_key_mappings, spa_key_mapping_compare,
305 sizeof (dsl_key_mapping_t),
306 offsetof(dsl_key_mapping_t, km_avl_link));
307 avl_create(&sk->sk_wkeys, spa_wkey_compare, sizeof (dsl_wrapping_key_t),
308 offsetof(dsl_wrapping_key_t, wk_avl_link));
309 }
310
311 void
312 spa_keystore_fini(spa_keystore_t *sk)
313 {
314 dsl_wrapping_key_t *wkey;
315 void *cookie = NULL;
316
317 ASSERT(avl_is_empty(&sk->sk_dsl_keys));
318 ASSERT(avl_is_empty(&sk->sk_key_mappings));
319
320 while ((wkey = avl_destroy_nodes(&sk->sk_wkeys, &cookie)) != NULL)
321 dsl_wrapping_key_free(wkey);
322
323 avl_destroy(&sk->sk_wkeys);
324 avl_destroy(&sk->sk_key_mappings);
325 avl_destroy(&sk->sk_dsl_keys);
326 rw_destroy(&sk->sk_wkeys_lock);
327 rw_destroy(&sk->sk_km_lock);
328 rw_destroy(&sk->sk_dk_lock);
329 }
330
331 static int
332 dsl_dir_get_encryption_root_ddobj(dsl_dir_t *dd, uint64_t *rddobj)
333 {
334 if (dd->dd_crypto_obj == 0)
335 return (SET_ERROR(ENOENT));
336
337 return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
338 DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1, rddobj));
339 }
340
341 static int
342 dsl_dir_get_encryption_version(dsl_dir_t *dd, uint64_t *version)
343 {
344 *version = 0;
345
346 if (dd->dd_crypto_obj == 0)
347 return (SET_ERROR(ENOENT));
348
349 /* version 0 is implied by ENOENT */
350 (void) zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
351 DSL_CRYPTO_KEY_VERSION, 8, 1, version);
352
353 return (0);
354 }
355
356 boolean_t
357 dsl_dir_incompatible_encryption_version(dsl_dir_t *dd)
358 {
359 int ret;
360 uint64_t version = 0;
361
362 ret = dsl_dir_get_encryption_version(dd, &version);
363 if (ret != 0)
364 return (B_FALSE);
365
366 return (version != ZIO_CRYPT_KEY_CURRENT_VERSION);
367 }
368
369 static int
370 spa_keystore_wkey_hold_ddobj_impl(spa_t *spa, uint64_t ddobj,
371 const void *tag, dsl_wrapping_key_t **wkey_out)
372 {
373 int ret;
374 dsl_wrapping_key_t search_wkey;
375 dsl_wrapping_key_t *found_wkey;
376
377 ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_wkeys_lock));
378
379 /* init the search wrapping key */
380 search_wkey.wk_ddobj = ddobj;
381
382 /* lookup the wrapping key */
383 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &search_wkey, NULL);
384 if (!found_wkey) {
385 ret = SET_ERROR(ENOENT);
386 goto error;
387 }
388
389 /* increment the refcount */
390 dsl_wrapping_key_hold(found_wkey, tag);
391
392 *wkey_out = found_wkey;
393 return (0);
394
395 error:
396 *wkey_out = NULL;
397 return (ret);
398 }
399
400 static int
401 spa_keystore_wkey_hold_dd(spa_t *spa, dsl_dir_t *dd, const void *tag,
402 dsl_wrapping_key_t **wkey_out)
403 {
404 int ret;
405 dsl_wrapping_key_t *wkey;
406 uint64_t rddobj;
407 boolean_t locked = B_FALSE;
408
409 if (!RW_WRITE_HELD(&spa->spa_keystore.sk_wkeys_lock)) {
410 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_READER);
411 locked = B_TRUE;
412 }
413
414 /* get the ddobj that the keylocation property was inherited from */
415 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
416 if (ret != 0)
417 goto error;
418
419 /* lookup the wkey in the avl tree */
420 ret = spa_keystore_wkey_hold_ddobj_impl(spa, rddobj, tag, &wkey);
421 if (ret != 0)
422 goto error;
423
424 /* unlock the wkey tree if we locked it */
425 if (locked)
426 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
427
428 *wkey_out = wkey;
429 return (0);
430
431 error:
432 if (locked)
433 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
434
435 *wkey_out = NULL;
436 return (ret);
437 }
438
439 int
440 dsl_crypto_can_set_keylocation(const char *dsname, const char *keylocation)
441 {
442 int ret = 0;
443 dsl_dir_t *dd = NULL;
444 dsl_pool_t *dp = NULL;
445 uint64_t rddobj;
446
447 /* hold the dsl dir */
448 ret = dsl_pool_hold(dsname, FTAG, &dp);
449 if (ret != 0)
450 goto out;
451
452 ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
453 if (ret != 0) {
454 dd = NULL;
455 goto out;
456 }
457
458 /* if dd is not encrypted, the value may only be "none" */
459 if (dd->dd_crypto_obj == 0) {
460 if (strcmp(keylocation, "none") != 0) {
461 ret = SET_ERROR(EACCES);
462 goto out;
463 }
464
465 ret = 0;
466 goto out;
467 }
468
469 /* check for a valid keylocation for encrypted datasets */
470 if (!zfs_prop_valid_keylocation(keylocation, B_TRUE)) {
471 ret = SET_ERROR(EINVAL);
472 goto out;
473 }
474
475 /* check that this is an encryption root */
476 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
477 if (ret != 0)
478 goto out;
479
480 if (rddobj != dd->dd_object) {
481 ret = SET_ERROR(EACCES);
482 goto out;
483 }
484
485 dsl_dir_rele(dd, FTAG);
486 dsl_pool_rele(dp, FTAG);
487
488 return (0);
489
490 out:
491 if (dd != NULL)
492 dsl_dir_rele(dd, FTAG);
493 if (dp != NULL)
494 dsl_pool_rele(dp, FTAG);
495
496 return (ret);
497 }
498
499 static void
500 dsl_crypto_key_free(dsl_crypto_key_t *dck)
501 {
502 ASSERT(zfs_refcount_count(&dck->dck_holds) == 0);
503
504 /* destroy the zio_crypt_key_t */
505 zio_crypt_key_destroy(&dck->dck_key);
506
507 /* free the refcount, wrapping key, and lock */
508 zfs_refcount_destroy(&dck->dck_holds);
509 if (dck->dck_wkey)
510 dsl_wrapping_key_rele(dck->dck_wkey, dck);
511
512 /* free the key */
513 kmem_free(dck, sizeof (dsl_crypto_key_t));
514 }
515
516 static void
517 dsl_crypto_key_rele(dsl_crypto_key_t *dck, const void *tag)
518 {
519 if (zfs_refcount_remove(&dck->dck_holds, tag) == 0)
520 dsl_crypto_key_free(dck);
521 }
522
523 static int
524 dsl_crypto_key_open(objset_t *mos, dsl_wrapping_key_t *wkey,
525 uint64_t dckobj, const void *tag, dsl_crypto_key_t **dck_out)
526 {
527 int ret;
528 uint64_t crypt = 0, guid = 0, version = 0;
529 uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
530 uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
531 uint8_t iv[WRAPPING_IV_LEN];
532 uint8_t mac[WRAPPING_MAC_LEN];
533 dsl_crypto_key_t *dck;
534
535 /* allocate and initialize the key */
536 dck = kmem_zalloc(sizeof (dsl_crypto_key_t), KM_SLEEP);
537
538 /* fetch all of the values we need from the ZAP */
539 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
540 &crypt);
541 if (ret != 0)
542 goto error;
543
544 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid);
545 if (ret != 0)
546 goto error;
547
548 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
549 MASTER_KEY_MAX_LEN, raw_keydata);
550 if (ret != 0)
551 goto error;
552
553 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
554 SHA512_HMAC_KEYLEN, raw_hmac_keydata);
555 if (ret != 0)
556 goto error;
557
558 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
559 iv);
560 if (ret != 0)
561 goto error;
562
563 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
564 mac);
565 if (ret != 0)
566 goto error;
567
568 /* the initial on-disk format for encryption did not have a version */
569 (void) zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
570
571 /*
572 * Unwrap the keys. If there is an error return EACCES to indicate
573 * an authentication failure.
574 */
575 ret = zio_crypt_key_unwrap(&wkey->wk_key, crypt, version, guid,
576 raw_keydata, raw_hmac_keydata, iv, mac, &dck->dck_key);
577 if (ret != 0) {
578 ret = SET_ERROR(EACCES);
579 goto error;
580 }
581
582 /* finish initializing the dsl_crypto_key_t */
583 zfs_refcount_create(&dck->dck_holds);
584 dsl_wrapping_key_hold(wkey, dck);
585 dck->dck_wkey = wkey;
586 dck->dck_obj = dckobj;
587 zfs_refcount_add(&dck->dck_holds, tag);
588
589 *dck_out = dck;
590 return (0);
591
592 error:
593 if (dck != NULL) {
594 memset(dck, 0, sizeof (dsl_crypto_key_t));
595 kmem_free(dck, sizeof (dsl_crypto_key_t));
596 }
597
598 *dck_out = NULL;
599 return (ret);
600 }
601
602 static int
603 spa_keystore_dsl_key_hold_impl(spa_t *spa, uint64_t dckobj, const void *tag,
604 dsl_crypto_key_t **dck_out)
605 {
606 int ret;
607 dsl_crypto_key_t search_dck;
608 dsl_crypto_key_t *found_dck;
609
610 ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_dk_lock));
611
612 /* init the search key */
613 search_dck.dck_obj = dckobj;
614
615 /* find the matching key in the keystore */
616 found_dck = avl_find(&spa->spa_keystore.sk_dsl_keys, &search_dck, NULL);
617 if (!found_dck) {
618 ret = SET_ERROR(ENOENT);
619 goto error;
620 }
621
622 /* increment the refcount */
623 zfs_refcount_add(&found_dck->dck_holds, tag);
624
625 *dck_out = found_dck;
626 return (0);
627
628 error:
629 *dck_out = NULL;
630 return (ret);
631 }
632
633 static int
634 spa_keystore_dsl_key_hold_dd(spa_t *spa, dsl_dir_t *dd, const void *tag,
635 dsl_crypto_key_t **dck_out)
636 {
637 int ret;
638 avl_index_t where;
639 dsl_crypto_key_t *dck_io = NULL, *dck_ks = NULL;
640 dsl_wrapping_key_t *wkey = NULL;
641 uint64_t dckobj = dd->dd_crypto_obj;
642
643 /* Lookup the key in the tree of currently loaded keys */
644 rw_enter(&spa->spa_keystore.sk_dk_lock, RW_READER);
645 ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
646 rw_exit(&spa->spa_keystore.sk_dk_lock);
647 if (ret == 0) {
648 *dck_out = dck_ks;
649 return (0);
650 }
651
652 /* Lookup the wrapping key from the keystore */
653 ret = spa_keystore_wkey_hold_dd(spa, dd, FTAG, &wkey);
654 if (ret != 0) {
655 *dck_out = NULL;
656 return (SET_ERROR(EACCES));
657 }
658
659 /* Read the key from disk */
660 ret = dsl_crypto_key_open(spa->spa_meta_objset, wkey, dckobj,
661 tag, &dck_io);
662 if (ret != 0) {
663 dsl_wrapping_key_rele(wkey, FTAG);
664 *dck_out = NULL;
665 return (ret);
666 }
667
668 /*
669 * Add the key to the keystore. It may already exist if it was
670 * added while performing the read from disk. In this case discard
671 * it and return the key from the keystore.
672 */
673 rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
674 ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
675 if (ret != 0) {
676 avl_find(&spa->spa_keystore.sk_dsl_keys, dck_io, &where);
677 avl_insert(&spa->spa_keystore.sk_dsl_keys, dck_io, where);
678 *dck_out = dck_io;
679 } else {
680 dsl_crypto_key_free(dck_io);
681 *dck_out = dck_ks;
682 }
683
684 /* Release the wrapping key (the dsl key now has a reference to it) */
685 dsl_wrapping_key_rele(wkey, FTAG);
686 rw_exit(&spa->spa_keystore.sk_dk_lock);
687
688 return (0);
689 }
690
691 void
692 spa_keystore_dsl_key_rele(spa_t *spa, dsl_crypto_key_t *dck, const void *tag)
693 {
694 rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
695
696 if (zfs_refcount_remove(&dck->dck_holds, tag) == 0) {
697 avl_remove(&spa->spa_keystore.sk_dsl_keys, dck);
698 dsl_crypto_key_free(dck);
699 }
700
701 rw_exit(&spa->spa_keystore.sk_dk_lock);
702 }
703
704 int
705 spa_keystore_load_wkey_impl(spa_t *spa, dsl_wrapping_key_t *wkey)
706 {
707 int ret;
708 avl_index_t where;
709 dsl_wrapping_key_t *found_wkey;
710
711 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
712
713 /* insert the wrapping key into the keystore */
714 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
715 if (found_wkey != NULL) {
716 ret = SET_ERROR(EEXIST);
717 goto error_unlock;
718 }
719 avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
720
721 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
722
723 return (0);
724
725 error_unlock:
726 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
727 return (ret);
728 }
729
730 int
731 spa_keystore_load_wkey(const char *dsname, dsl_crypto_params_t *dcp,
732 boolean_t noop)
733 {
734 int ret;
735 dsl_dir_t *dd = NULL;
736 dsl_crypto_key_t *dck = NULL;
737 dsl_wrapping_key_t *wkey = dcp->cp_wkey;
738 dsl_pool_t *dp = NULL;
739 uint64_t rddobj, keyformat, salt, iters;
740
741 /*
742 * We don't validate the wrapping key's keyformat, salt, or iters
743 * since they will never be needed after the DCK has been wrapped.
744 */
745 if (dcp->cp_wkey == NULL ||
746 dcp->cp_cmd != DCP_CMD_NONE ||
747 dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
748 dcp->cp_keylocation != NULL)
749 return (SET_ERROR(EINVAL));
750
751 ret = dsl_pool_hold(dsname, FTAG, &dp);
752 if (ret != 0)
753 goto error;
754
755 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
756 ret = SET_ERROR(ENOTSUP);
757 goto error;
758 }
759
760 /* hold the dsl dir */
761 ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
762 if (ret != 0) {
763 dd = NULL;
764 goto error;
765 }
766
767 /* confirm that dd is the encryption root */
768 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
769 if (ret != 0 || rddobj != dd->dd_object) {
770 ret = SET_ERROR(EINVAL);
771 goto error;
772 }
773
774 /* initialize the wkey's ddobj */
775 wkey->wk_ddobj = dd->dd_object;
776
777 /* verify that the wkey is correct by opening its dsl key */
778 ret = dsl_crypto_key_open(dp->dp_meta_objset, wkey,
779 dd->dd_crypto_obj, FTAG, &dck);
780 if (ret != 0)
781 goto error;
782
783 /* initialize the wkey encryption parameters from the DSL Crypto Key */
784 ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
785 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &keyformat);
786 if (ret != 0)
787 goto error;
788
789 ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
790 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
791 if (ret != 0)
792 goto error;
793
794 ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
795 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
796 if (ret != 0)
797 goto error;
798
799 ASSERT3U(keyformat, <, ZFS_KEYFORMAT_FORMATS);
800 ASSERT3U(keyformat, !=, ZFS_KEYFORMAT_NONE);
801 IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, iters != 0);
802 IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, salt != 0);
803 IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, iters == 0);
804 IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, salt == 0);
805
806 wkey->wk_keyformat = keyformat;
807 wkey->wk_salt = salt;
808 wkey->wk_iters = iters;
809
810 /*
811 * At this point we have verified the wkey and confirmed that it can
812 * be used to decrypt a DSL Crypto Key. We can simply cleanup and
813 * return if this is all the user wanted to do.
814 */
815 if (noop)
816 goto error;
817
818 /* insert the wrapping key into the keystore */
819 ret = spa_keystore_load_wkey_impl(dp->dp_spa, wkey);
820 if (ret != 0)
821 goto error;
822
823 dsl_crypto_key_rele(dck, FTAG);
824 dsl_dir_rele(dd, FTAG);
825 dsl_pool_rele(dp, FTAG);
826
827 /* create any zvols under this ds */
828 zvol_create_minors_recursive(dsname);
829
830 return (0);
831
832 error:
833 if (dck != NULL)
834 dsl_crypto_key_rele(dck, FTAG);
835 if (dd != NULL)
836 dsl_dir_rele(dd, FTAG);
837 if (dp != NULL)
838 dsl_pool_rele(dp, FTAG);
839
840 return (ret);
841 }
842
843 int
844 spa_keystore_unload_wkey_impl(spa_t *spa, uint64_t ddobj)
845 {
846 int ret;
847 dsl_wrapping_key_t search_wkey;
848 dsl_wrapping_key_t *found_wkey;
849
850 /* init the search wrapping key */
851 search_wkey.wk_ddobj = ddobj;
852
853 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
854
855 /* remove the wrapping key from the keystore */
856 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys,
857 &search_wkey, NULL);
858 if (!found_wkey) {
859 ret = SET_ERROR(EACCES);
860 goto error_unlock;
861 } else if (zfs_refcount_count(&found_wkey->wk_refcnt) != 0) {
862 ret = SET_ERROR(EBUSY);
863 goto error_unlock;
864 }
865 avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
866
867 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
868
869 /* free the wrapping key */
870 dsl_wrapping_key_free(found_wkey);
871
872 return (0);
873
874 error_unlock:
875 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
876 return (ret);
877 }
878
879 int
880 spa_keystore_unload_wkey(const char *dsname)
881 {
882 int ret = 0;
883 dsl_dir_t *dd = NULL;
884 dsl_pool_t *dp = NULL;
885 spa_t *spa = NULL;
886
887 ret = spa_open(dsname, &spa, FTAG);
888 if (ret != 0)
889 return (ret);
890
891 /*
892 * Wait for any outstanding txg IO to complete, releasing any
893 * remaining references on the wkey.
894 */
895 if (spa_mode(spa) != SPA_MODE_READ)
896 txg_wait_synced(spa->spa_dsl_pool, 0);
897
898 spa_close(spa, FTAG);
899
900 /* hold the dsl dir */
901 ret = dsl_pool_hold(dsname, FTAG, &dp);
902 if (ret != 0)
903 goto error;
904
905 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
906 ret = (SET_ERROR(ENOTSUP));
907 goto error;
908 }
909
910 ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
911 if (ret != 0) {
912 dd = NULL;
913 goto error;
914 }
915
916 /* unload the wkey */
917 ret = spa_keystore_unload_wkey_impl(dp->dp_spa, dd->dd_object);
918 if (ret != 0)
919 goto error;
920
921 dsl_dir_rele(dd, FTAG);
922 dsl_pool_rele(dp, FTAG);
923
924 /* remove any zvols under this ds */
925 zvol_remove_minors(dp->dp_spa, dsname, B_TRUE);
926
927 return (0);
928
929 error:
930 if (dd != NULL)
931 dsl_dir_rele(dd, FTAG);
932 if (dp != NULL)
933 dsl_pool_rele(dp, FTAG);
934
935 return (ret);
936 }
937
938 void
939 key_mapping_add_ref(dsl_key_mapping_t *km, const void *tag)
940 {
941 ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
942 zfs_refcount_add(&km->km_refcnt, tag);
943 }
944
945 /*
946 * The locking here is a little tricky to ensure we don't cause unnecessary
947 * performance problems. We want to release a key mapping whenever someone
948 * decrements the refcount to 0, but freeing the mapping requires removing
949 * it from the spa_keystore, which requires holding sk_km_lock as a writer.
950 * Most of the time we don't want to hold this lock as a writer, since the
951 * same lock is held as a reader for each IO that needs to encrypt / decrypt
952 * data for any dataset and in practice we will only actually free the
953 * mapping after unmounting a dataset.
954 */
955 void
956 key_mapping_rele(spa_t *spa, dsl_key_mapping_t *km, const void *tag)
957 {
958 ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
959
960 if (zfs_refcount_remove(&km->km_refcnt, tag) != 0)
961 return;
962
963 /*
964 * We think we are going to need to free the mapping. Add a
965 * reference to prevent most other releasers from thinking
966 * this might be their responsibility. This is inherently
967 * racy, so we will confirm that we are legitimately the
968 * last holder once we have the sk_km_lock as a writer.
969 */
970 zfs_refcount_add(&km->km_refcnt, FTAG);
971
972 rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
973 if (zfs_refcount_remove(&km->km_refcnt, FTAG) != 0) {
974 rw_exit(&spa->spa_keystore.sk_km_lock);
975 return;
976 }
977
978 avl_remove(&spa->spa_keystore.sk_key_mappings, km);
979 rw_exit(&spa->spa_keystore.sk_km_lock);
980
981 spa_keystore_dsl_key_rele(spa, km->km_key, km);
982 zfs_refcount_destroy(&km->km_refcnt);
983 kmem_free(km, sizeof (dsl_key_mapping_t));
984 }
985
986 int
987 spa_keystore_create_mapping(spa_t *spa, dsl_dataset_t *ds, const void *tag,
988 dsl_key_mapping_t **km_out)
989 {
990 int ret;
991 avl_index_t where;
992 dsl_key_mapping_t *km, *found_km;
993 boolean_t should_free = B_FALSE;
994
995 /* Allocate and initialize the mapping */
996 km = kmem_zalloc(sizeof (dsl_key_mapping_t), KM_SLEEP);
997 zfs_refcount_create(&km->km_refcnt);
998
999 ret = spa_keystore_dsl_key_hold_dd(spa, ds->ds_dir, km, &km->km_key);
1000 if (ret != 0) {
1001 zfs_refcount_destroy(&km->km_refcnt);
1002 kmem_free(km, sizeof (dsl_key_mapping_t));
1003
1004 if (km_out != NULL)
1005 *km_out = NULL;
1006 return (ret);
1007 }
1008
1009 km->km_dsobj = ds->ds_object;
1010
1011 rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
1012
1013 /*
1014 * If a mapping already exists, simply increment its refcount and
1015 * cleanup the one we made. We want to allocate / free outside of
1016 * the lock because this lock is also used by the zio layer to lookup
1017 * key mappings. Otherwise, use the one we created. Normally, there will
1018 * only be one active reference at a time (the objset owner), but there
1019 * are times when there could be multiple async users.
1020 */
1021 found_km = avl_find(&spa->spa_keystore.sk_key_mappings, km, &where);
1022 if (found_km != NULL) {
1023 should_free = B_TRUE;
1024 zfs_refcount_add(&found_km->km_refcnt, tag);
1025 if (km_out != NULL)
1026 *km_out = found_km;
1027 } else {
1028 zfs_refcount_add(&km->km_refcnt, tag);
1029 avl_insert(&spa->spa_keystore.sk_key_mappings, km, where);
1030 if (km_out != NULL)
1031 *km_out = km;
1032 }
1033
1034 rw_exit(&spa->spa_keystore.sk_km_lock);
1035
1036 if (should_free) {
1037 spa_keystore_dsl_key_rele(spa, km->km_key, km);
1038 zfs_refcount_destroy(&km->km_refcnt);
1039 kmem_free(km, sizeof (dsl_key_mapping_t));
1040 }
1041
1042 return (0);
1043 }
1044
1045 int
1046 spa_keystore_remove_mapping(spa_t *spa, uint64_t dsobj, const void *tag)
1047 {
1048 int ret;
1049 dsl_key_mapping_t search_km;
1050 dsl_key_mapping_t *found_km;
1051
1052 /* init the search key mapping */
1053 search_km.km_dsobj = dsobj;
1054
1055 rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
1056
1057 /* find the matching mapping */
1058 found_km = avl_find(&spa->spa_keystore.sk_key_mappings,
1059 &search_km, NULL);
1060 if (found_km == NULL) {
1061 ret = SET_ERROR(ENOENT);
1062 goto error_unlock;
1063 }
1064
1065 rw_exit(&spa->spa_keystore.sk_km_lock);
1066
1067 key_mapping_rele(spa, found_km, tag);
1068
1069 return (0);
1070
1071 error_unlock:
1072 rw_exit(&spa->spa_keystore.sk_km_lock);
1073 return (ret);
1074 }
1075
1076 /*
1077 * This function is primarily used by the zio and arc layer to lookup
1078 * DSL Crypto Keys for encryption. Callers must release the key with
1079 * spa_keystore_dsl_key_rele(). The function may also be called with
1080 * dck_out == NULL and tag == NULL to simply check that a key exists
1081 * without getting a reference to it.
1082 */
1083 int
1084 spa_keystore_lookup_key(spa_t *spa, uint64_t dsobj, const void *tag,
1085 dsl_crypto_key_t **dck_out)
1086 {
1087 int ret;
1088 dsl_key_mapping_t search_km;
1089 dsl_key_mapping_t *found_km;
1090
1091 ASSERT((tag != NULL && dck_out != NULL) ||
1092 (tag == NULL && dck_out == NULL));
1093
1094 /* init the search key mapping */
1095 search_km.km_dsobj = dsobj;
1096
1097 rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
1098
1099 /* remove the mapping from the tree */
1100 found_km = avl_find(&spa->spa_keystore.sk_key_mappings, &search_km,
1101 NULL);
1102 if (found_km == NULL) {
1103 ret = SET_ERROR(ENOENT);
1104 goto error_unlock;
1105 }
1106
1107 if (found_km && tag)
1108 zfs_refcount_add(&found_km->km_key->dck_holds, tag);
1109
1110 rw_exit(&spa->spa_keystore.sk_km_lock);
1111
1112 if (dck_out != NULL)
1113 *dck_out = found_km->km_key;
1114 return (0);
1115
1116 error_unlock:
1117 rw_exit(&spa->spa_keystore.sk_km_lock);
1118
1119 if (dck_out != NULL)
1120 *dck_out = NULL;
1121 return (ret);
1122 }
1123
1124 static int
1125 dmu_objset_check_wkey_loaded(dsl_dir_t *dd)
1126 {
1127 int ret;
1128 dsl_wrapping_key_t *wkey = NULL;
1129
1130 ret = spa_keystore_wkey_hold_dd(dd->dd_pool->dp_spa, dd, FTAG,
1131 &wkey);
1132 if (ret != 0)
1133 return (SET_ERROR(EACCES));
1134
1135 dsl_wrapping_key_rele(wkey, FTAG);
1136
1137 return (0);
1138 }
1139
1140 zfs_keystatus_t
1141 dsl_dataset_get_keystatus(dsl_dir_t *dd)
1142 {
1143 /* check if this dd has a has a dsl key */
1144 if (dd->dd_crypto_obj == 0)
1145 return (ZFS_KEYSTATUS_NONE);
1146
1147 return (dmu_objset_check_wkey_loaded(dd) == 0 ?
1148 ZFS_KEYSTATUS_AVAILABLE : ZFS_KEYSTATUS_UNAVAILABLE);
1149 }
1150
1151 static int
1152 dsl_dir_get_crypt(dsl_dir_t *dd, uint64_t *crypt)
1153 {
1154 if (dd->dd_crypto_obj == 0) {
1155 *crypt = ZIO_CRYPT_OFF;
1156 return (0);
1157 }
1158
1159 return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
1160 DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, crypt));
1161 }
1162
1163 static void
1164 dsl_crypto_key_sync_impl(objset_t *mos, uint64_t dckobj, uint64_t crypt,
1165 uint64_t root_ddobj, uint64_t guid, uint8_t *iv, uint8_t *mac,
1166 uint8_t *keydata, uint8_t *hmac_keydata, uint64_t keyformat,
1167 uint64_t salt, uint64_t iters, dmu_tx_t *tx)
1168 {
1169 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
1170 &crypt, tx));
1171 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
1172 &root_ddobj, tx));
1173 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1,
1174 &guid, tx));
1175 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
1176 iv, tx));
1177 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
1178 mac, tx));
1179 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
1180 MASTER_KEY_MAX_LEN, keydata, tx));
1181 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
1182 SHA512_HMAC_KEYLEN, hmac_keydata, tx));
1183 VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
1184 8, 1, &keyformat, tx));
1185 VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
1186 8, 1, &salt, tx));
1187 VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
1188 8, 1, &iters, tx));
1189 }
1190
1191 static void
1192 dsl_crypto_key_sync(dsl_crypto_key_t *dck, dmu_tx_t *tx)
1193 {
1194 zio_crypt_key_t *key = &dck->dck_key;
1195 dsl_wrapping_key_t *wkey = dck->dck_wkey;
1196 uint8_t keydata[MASTER_KEY_MAX_LEN];
1197 uint8_t hmac_keydata[SHA512_HMAC_KEYLEN];
1198 uint8_t iv[WRAPPING_IV_LEN];
1199 uint8_t mac[WRAPPING_MAC_LEN];
1200
1201 ASSERT(dmu_tx_is_syncing(tx));
1202 ASSERT3U(key->zk_crypt, <, ZIO_CRYPT_FUNCTIONS);
1203
1204 /* encrypt and store the keys along with the IV and MAC */
1205 VERIFY0(zio_crypt_key_wrap(&dck->dck_wkey->wk_key, key, iv, mac,
1206 keydata, hmac_keydata));
1207
1208 /* update the ZAP with the obtained values */
1209 dsl_crypto_key_sync_impl(tx->tx_pool->dp_meta_objset, dck->dck_obj,
1210 key->zk_crypt, wkey->wk_ddobj, key->zk_guid, iv, mac, keydata,
1211 hmac_keydata, wkey->wk_keyformat, wkey->wk_salt, wkey->wk_iters,
1212 tx);
1213 }
1214
1215 typedef struct spa_keystore_change_key_args {
1216 const char *skcka_dsname;
1217 dsl_crypto_params_t *skcka_cp;
1218 } spa_keystore_change_key_args_t;
1219
1220 static int
1221 spa_keystore_change_key_check(void *arg, dmu_tx_t *tx)
1222 {
1223 int ret;
1224 dsl_dir_t *dd = NULL;
1225 dsl_pool_t *dp = dmu_tx_pool(tx);
1226 spa_keystore_change_key_args_t *skcka = arg;
1227 dsl_crypto_params_t *dcp = skcka->skcka_cp;
1228 uint64_t rddobj;
1229
1230 /* check for the encryption feature */
1231 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
1232 ret = SET_ERROR(ENOTSUP);
1233 goto error;
1234 }
1235
1236 /* check for valid key change command */
1237 if (dcp->cp_cmd != DCP_CMD_NEW_KEY &&
1238 dcp->cp_cmd != DCP_CMD_INHERIT &&
1239 dcp->cp_cmd != DCP_CMD_FORCE_NEW_KEY &&
1240 dcp->cp_cmd != DCP_CMD_FORCE_INHERIT) {
1241 ret = SET_ERROR(EINVAL);
1242 goto error;
1243 }
1244
1245 /* hold the dd */
1246 ret = dsl_dir_hold(dp, skcka->skcka_dsname, FTAG, &dd, NULL);
1247 if (ret != 0) {
1248 dd = NULL;
1249 goto error;
1250 }
1251
1252 /* verify that the dataset is encrypted */
1253 if (dd->dd_crypto_obj == 0) {
1254 ret = SET_ERROR(EINVAL);
1255 goto error;
1256 }
1257
1258 /* clones must always use their origin's key */
1259 if (dsl_dir_is_clone(dd)) {
1260 ret = SET_ERROR(EINVAL);
1261 goto error;
1262 }
1263
1264 /* lookup the ddobj we are inheriting the keylocation from */
1265 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
1266 if (ret != 0)
1267 goto error;
1268
1269 /* Handle inheritance */
1270 if (dcp->cp_cmd == DCP_CMD_INHERIT ||
1271 dcp->cp_cmd == DCP_CMD_FORCE_INHERIT) {
1272 /* no other encryption params should be given */
1273 if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
1274 dcp->cp_keylocation != NULL ||
1275 dcp->cp_wkey != NULL) {
1276 ret = SET_ERROR(EINVAL);
1277 goto error;
1278 }
1279
1280 /* check that this is an encryption root */
1281 if (dd->dd_object != rddobj) {
1282 ret = SET_ERROR(EINVAL);
1283 goto error;
1284 }
1285
1286 /* check that the parent is encrypted */
1287 if (dd->dd_parent->dd_crypto_obj == 0) {
1288 ret = SET_ERROR(EINVAL);
1289 goto error;
1290 }
1291
1292 /* if we are rewrapping check that both keys are loaded */
1293 if (dcp->cp_cmd == DCP_CMD_INHERIT) {
1294 ret = dmu_objset_check_wkey_loaded(dd);
1295 if (ret != 0)
1296 goto error;
1297
1298 ret = dmu_objset_check_wkey_loaded(dd->dd_parent);
1299 if (ret != 0)
1300 goto error;
1301 }
1302
1303 dsl_dir_rele(dd, FTAG);
1304 return (0);
1305 }
1306
1307 /* handle forcing an encryption root without rewrapping */
1308 if (dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
1309 /* no other encryption params should be given */
1310 if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
1311 dcp->cp_keylocation != NULL ||
1312 dcp->cp_wkey != NULL) {
1313 ret = SET_ERROR(EINVAL);
1314 goto error;
1315 }
1316
1317 /* check that this is not an encryption root */
1318 if (dd->dd_object == rddobj) {
1319 ret = SET_ERROR(EINVAL);
1320 goto error;
1321 }
1322
1323 dsl_dir_rele(dd, FTAG);
1324 return (0);
1325 }
1326
1327 /* crypt cannot be changed after creation */
1328 if (dcp->cp_crypt != ZIO_CRYPT_INHERIT) {
1329 ret = SET_ERROR(EINVAL);
1330 goto error;
1331 }
1332
1333 /* we are not inheritting our parent's wkey so we need one ourselves */
1334 if (dcp->cp_wkey == NULL) {
1335 ret = SET_ERROR(EINVAL);
1336 goto error;
1337 }
1338
1339 /* check for a valid keyformat for the new wrapping key */
1340 if (dcp->cp_wkey->wk_keyformat >= ZFS_KEYFORMAT_FORMATS ||
1341 dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_NONE) {
1342 ret = SET_ERROR(EINVAL);
1343 goto error;
1344 }
1345
1346 /*
1347 * If this dataset is not currently an encryption root we need a new
1348 * keylocation for this dataset's new wrapping key. Otherwise we can
1349 * just keep the one we already had.
1350 */
1351 if (dd->dd_object != rddobj && dcp->cp_keylocation == NULL) {
1352 ret = SET_ERROR(EINVAL);
1353 goto error;
1354 }
1355
1356 /* check that the keylocation is valid if it is not NULL */
1357 if (dcp->cp_keylocation != NULL &&
1358 !zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE)) {
1359 ret = SET_ERROR(EINVAL);
1360 goto error;
1361 }
1362
1363 /* passphrases require pbkdf2 salt and iters */
1364 if (dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
1365 if (dcp->cp_wkey->wk_salt == 0 ||
1366 dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS) {
1367 ret = SET_ERROR(EINVAL);
1368 goto error;
1369 }
1370 } else {
1371 if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0) {
1372 ret = SET_ERROR(EINVAL);
1373 goto error;
1374 }
1375 }
1376
1377 /* make sure the dd's wkey is loaded */
1378 ret = dmu_objset_check_wkey_loaded(dd);
1379 if (ret != 0)
1380 goto error;
1381
1382 dsl_dir_rele(dd, FTAG);
1383
1384 return (0);
1385
1386 error:
1387 if (dd != NULL)
1388 dsl_dir_rele(dd, FTAG);
1389
1390 return (ret);
1391 }
1392
1393 /*
1394 * This function deals with the intricacies of updating wrapping
1395 * key references and encryption roots recursively in the event
1396 * of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
1397 * parameter should always be set to B_FALSE when called
1398 * externally.
1399 */
1400 static void
1401 spa_keystore_change_key_sync_impl(uint64_t rddobj, uint64_t ddobj,
1402 uint64_t new_rddobj, dsl_wrapping_key_t *wkey, boolean_t skip,
1403 dmu_tx_t *tx)
1404 {
1405 int ret;
1406 zap_cursor_t *zc;
1407 zap_attribute_t *za;
1408 dsl_pool_t *dp = dmu_tx_pool(tx);
1409 dsl_dir_t *dd = NULL;
1410 dsl_crypto_key_t *dck = NULL;
1411 uint64_t curr_rddobj;
1412
1413 ASSERT(RW_WRITE_HELD(&dp->dp_spa->spa_keystore.sk_wkeys_lock));
1414
1415 /* hold the dd */
1416 VERIFY0(dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd));
1417
1418 /* ignore special dsl dirs */
1419 if (dd->dd_myname[0] == '$' || dd->dd_myname[0] == '%') {
1420 dsl_dir_rele(dd, FTAG);
1421 return;
1422 }
1423
1424 ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
1425 VERIFY(ret == 0 || ret == ENOENT);
1426
1427 /*
1428 * Stop recursing if this dsl dir didn't inherit from the root
1429 * or if this dd is a clone.
1430 */
1431 if (ret == ENOENT ||
1432 (!skip && (curr_rddobj != rddobj || dsl_dir_is_clone(dd)))) {
1433 dsl_dir_rele(dd, FTAG);
1434 return;
1435 }
1436
1437 /*
1438 * If we don't have a wrapping key just update the dck to reflect the
1439 * new encryption root. Otherwise rewrap the entire dck and re-sync it
1440 * to disk. If skip is set, we don't do any of this work.
1441 */
1442 if (!skip) {
1443 if (wkey == NULL) {
1444 VERIFY0(zap_update(dp->dp_meta_objset,
1445 dd->dd_crypto_obj,
1446 DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
1447 &new_rddobj, tx));
1448 } else {
1449 VERIFY0(spa_keystore_dsl_key_hold_dd(dp->dp_spa, dd,
1450 FTAG, &dck));
1451 dsl_wrapping_key_hold(wkey, dck);
1452 dsl_wrapping_key_rele(dck->dck_wkey, dck);
1453 dck->dck_wkey = wkey;
1454 dsl_crypto_key_sync(dck, tx);
1455 spa_keystore_dsl_key_rele(dp->dp_spa, dck, FTAG);
1456 }
1457 }
1458
1459 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1460 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1461
1462 /* Recurse into all child dsl dirs. */
1463 for (zap_cursor_init(zc, dp->dp_meta_objset,
1464 dsl_dir_phys(dd)->dd_child_dir_zapobj);
1465 zap_cursor_retrieve(zc, za) == 0;
1466 zap_cursor_advance(zc)) {
1467 spa_keystore_change_key_sync_impl(rddobj,
1468 za->za_first_integer, new_rddobj, wkey, B_FALSE, tx);
1469 }
1470 zap_cursor_fini(zc);
1471
1472 /*
1473 * Recurse into all dsl dirs of clones. We utilize the skip parameter
1474 * here so that we don't attempt to process the clones directly. This
1475 * is because the clone and its origin share the same dck, which has
1476 * already been updated.
1477 */
1478 for (zap_cursor_init(zc, dp->dp_meta_objset,
1479 dsl_dir_phys(dd)->dd_clones);
1480 zap_cursor_retrieve(zc, za) == 0;
1481 zap_cursor_advance(zc)) {
1482 dsl_dataset_t *clone;
1483
1484 VERIFY0(dsl_dataset_hold_obj(dp, za->za_first_integer,
1485 FTAG, &clone));
1486 spa_keystore_change_key_sync_impl(rddobj,
1487 clone->ds_dir->dd_object, new_rddobj, wkey, B_TRUE, tx);
1488 dsl_dataset_rele(clone, FTAG);
1489 }
1490 zap_cursor_fini(zc);
1491
1492 kmem_free(za, sizeof (zap_attribute_t));
1493 kmem_free(zc, sizeof (zap_cursor_t));
1494
1495 dsl_dir_rele(dd, FTAG);
1496 }
1497
1498 static void
1499 spa_keystore_change_key_sync(void *arg, dmu_tx_t *tx)
1500 {
1501 dsl_dataset_t *ds;
1502 avl_index_t where;
1503 dsl_pool_t *dp = dmu_tx_pool(tx);
1504 spa_t *spa = dp->dp_spa;
1505 spa_keystore_change_key_args_t *skcka = arg;
1506 dsl_crypto_params_t *dcp = skcka->skcka_cp;
1507 dsl_wrapping_key_t *wkey = NULL, *found_wkey;
1508 dsl_wrapping_key_t wkey_search;
1509 const char *keylocation = dcp->cp_keylocation;
1510 uint64_t rddobj, new_rddobj;
1511
1512 /* create and initialize the wrapping key */
1513 VERIFY0(dsl_dataset_hold(dp, skcka->skcka_dsname, FTAG, &ds));
1514 ASSERT(!ds->ds_is_snapshot);
1515
1516 if (dcp->cp_cmd == DCP_CMD_NEW_KEY ||
1517 dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
1518 /*
1519 * We are changing to a new wkey. Set additional properties
1520 * which can be sent along with this ioctl. Note that this
1521 * command can set keylocation even if it can't normally be
1522 * set via 'zfs set' due to a non-local keylocation.
1523 */
1524 if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
1525 wkey = dcp->cp_wkey;
1526 wkey->wk_ddobj = ds->ds_dir->dd_object;
1527 } else {
1528 keylocation = "prompt";
1529 }
1530
1531 if (keylocation != NULL) {
1532 dsl_prop_set_sync_impl(ds,
1533 zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1534 ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
1535 keylocation, tx);
1536 }
1537
1538 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj));
1539 new_rddobj = ds->ds_dir->dd_object;
1540 } else {
1541 /*
1542 * We are inheritting the parent's wkey. Unset any local
1543 * keylocation and grab a reference to the wkey.
1544 */
1545 if (dcp->cp_cmd == DCP_CMD_INHERIT) {
1546 VERIFY0(spa_keystore_wkey_hold_dd(spa,
1547 ds->ds_dir->dd_parent, FTAG, &wkey));
1548 }
1549
1550 dsl_prop_set_sync_impl(ds,
1551 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_NONE,
1552 0, 0, NULL, tx);
1553
1554 rddobj = ds->ds_dir->dd_object;
1555 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir->dd_parent,
1556 &new_rddobj));
1557 }
1558
1559 if (wkey == NULL) {
1560 ASSERT(dcp->cp_cmd == DCP_CMD_FORCE_INHERIT ||
1561 dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY);
1562 }
1563
1564 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
1565
1566 /* recurse through all children and rewrap their keys */
1567 spa_keystore_change_key_sync_impl(rddobj, ds->ds_dir->dd_object,
1568 new_rddobj, wkey, B_FALSE, tx);
1569
1570 /*
1571 * All references to the old wkey should be released now (if it
1572 * existed). Replace the wrapping key.
1573 */
1574 wkey_search.wk_ddobj = ds->ds_dir->dd_object;
1575 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &wkey_search, NULL);
1576 if (found_wkey != NULL) {
1577 ASSERT0(zfs_refcount_count(&found_wkey->wk_refcnt));
1578 avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
1579 dsl_wrapping_key_free(found_wkey);
1580 }
1581
1582 if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
1583 avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
1584 avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
1585 } else if (wkey != NULL) {
1586 dsl_wrapping_key_rele(wkey, FTAG);
1587 }
1588
1589 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
1590
1591 dsl_dataset_rele(ds, FTAG);
1592 }
1593
1594 int
1595 spa_keystore_change_key(const char *dsname, dsl_crypto_params_t *dcp)
1596 {
1597 spa_keystore_change_key_args_t skcka;
1598
1599 /* initialize the args struct */
1600 skcka.skcka_dsname = dsname;
1601 skcka.skcka_cp = dcp;
1602
1603 /*
1604 * Perform the actual work in syncing context. The blocks modified
1605 * here could be calculated but it would require holding the pool
1606 * lock and traversing all of the datasets that will have their keys
1607 * changed.
1608 */
1609 return (dsl_sync_task(dsname, spa_keystore_change_key_check,
1610 spa_keystore_change_key_sync, &skcka, 15,
1611 ZFS_SPACE_CHECK_RESERVED));
1612 }
1613
1614 int
1615 dsl_dir_rename_crypt_check(dsl_dir_t *dd, dsl_dir_t *newparent)
1616 {
1617 int ret;
1618 uint64_t curr_rddobj, parent_rddobj;
1619
1620 if (dd->dd_crypto_obj == 0)
1621 return (0);
1622
1623 ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
1624 if (ret != 0)
1625 goto error;
1626
1627 /*
1628 * if this is not an encryption root, we must make sure we are not
1629 * moving dd to a new encryption root
1630 */
1631 if (dd->dd_object != curr_rddobj) {
1632 ret = dsl_dir_get_encryption_root_ddobj(newparent,
1633 &parent_rddobj);
1634 if (ret != 0)
1635 goto error;
1636
1637 if (parent_rddobj != curr_rddobj) {
1638 ret = SET_ERROR(EACCES);
1639 goto error;
1640 }
1641 }
1642
1643 return (0);
1644
1645 error:
1646 return (ret);
1647 }
1648
1649 /*
1650 * Check to make sure that a promote from targetdd to origindd will not require
1651 * any key rewraps.
1652 */
1653 int
1654 dsl_dataset_promote_crypt_check(dsl_dir_t *target, dsl_dir_t *origin)
1655 {
1656 int ret;
1657 uint64_t rddobj, op_rddobj, tp_rddobj;
1658
1659 /* If the dataset is not encrypted we don't need to check anything */
1660 if (origin->dd_crypto_obj == 0)
1661 return (0);
1662
1663 /*
1664 * If we are not changing the first origin snapshot in a chain
1665 * the encryption root won't change either.
1666 */
1667 if (dsl_dir_is_clone(origin))
1668 return (0);
1669
1670 /*
1671 * If the origin is the encryption root we will update
1672 * the DSL Crypto Key to point to the target instead.
1673 */
1674 ret = dsl_dir_get_encryption_root_ddobj(origin, &rddobj);
1675 if (ret != 0)
1676 return (ret);
1677
1678 if (rddobj == origin->dd_object)
1679 return (0);
1680
1681 /*
1682 * The origin is inheriting its encryption root from its parent.
1683 * Check that the parent of the target has the same encryption root.
1684 */
1685 ret = dsl_dir_get_encryption_root_ddobj(origin->dd_parent, &op_rddobj);
1686 if (ret == ENOENT)
1687 return (SET_ERROR(EACCES));
1688 else if (ret != 0)
1689 return (ret);
1690
1691 ret = dsl_dir_get_encryption_root_ddobj(target->dd_parent, &tp_rddobj);
1692 if (ret == ENOENT)
1693 return (SET_ERROR(EACCES));
1694 else if (ret != 0)
1695 return (ret);
1696
1697 if (op_rddobj != tp_rddobj)
1698 return (SET_ERROR(EACCES));
1699
1700 return (0);
1701 }
1702
1703 void
1704 dsl_dataset_promote_crypt_sync(dsl_dir_t *target, dsl_dir_t *origin,
1705 dmu_tx_t *tx)
1706 {
1707 uint64_t rddobj;
1708 dsl_pool_t *dp = target->dd_pool;
1709 dsl_dataset_t *targetds;
1710 dsl_dataset_t *originds;
1711 char *keylocation;
1712
1713 if (origin->dd_crypto_obj == 0)
1714 return;
1715 if (dsl_dir_is_clone(origin))
1716 return;
1717
1718 VERIFY0(dsl_dir_get_encryption_root_ddobj(origin, &rddobj));
1719
1720 if (rddobj != origin->dd_object)
1721 return;
1722
1723 /*
1724 * If the target is being promoted to the encryption root update the
1725 * DSL Crypto Key and keylocation to reflect that. We also need to
1726 * update the DSL Crypto Keys of all children inheritting their
1727 * encryption root to point to the new target. Otherwise, the check
1728 * function ensured that the encryption root will not change.
1729 */
1730 keylocation = kmem_alloc(ZAP_MAXVALUELEN, KM_SLEEP);
1731
1732 VERIFY0(dsl_dataset_hold_obj(dp,
1733 dsl_dir_phys(target)->dd_head_dataset_obj, FTAG, &targetds));
1734 VERIFY0(dsl_dataset_hold_obj(dp,
1735 dsl_dir_phys(origin)->dd_head_dataset_obj, FTAG, &originds));
1736
1737 VERIFY0(dsl_prop_get_dd(origin, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1738 1, ZAP_MAXVALUELEN, keylocation, NULL, B_FALSE));
1739 dsl_prop_set_sync_impl(targetds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1740 ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1, keylocation, tx);
1741 dsl_prop_set_sync_impl(originds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1742 ZPROP_SRC_NONE, 0, 0, NULL, tx);
1743
1744 rw_enter(&dp->dp_spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
1745 spa_keystore_change_key_sync_impl(rddobj, origin->dd_object,
1746 target->dd_object, NULL, B_FALSE, tx);
1747 rw_exit(&dp->dp_spa->spa_keystore.sk_wkeys_lock);
1748
1749 dsl_dataset_rele(targetds, FTAG);
1750 dsl_dataset_rele(originds, FTAG);
1751 kmem_free(keylocation, ZAP_MAXVALUELEN);
1752 }
1753
1754 int
1755 dmu_objset_create_crypt_check(dsl_dir_t *parentdd, dsl_crypto_params_t *dcp,
1756 boolean_t *will_encrypt)
1757 {
1758 int ret;
1759 uint64_t pcrypt, crypt;
1760 dsl_crypto_params_t dummy_dcp = { 0 };
1761
1762 if (will_encrypt != NULL)
1763 *will_encrypt = B_FALSE;
1764
1765 if (dcp == NULL)
1766 dcp = &dummy_dcp;
1767
1768 if (dcp->cp_cmd != DCP_CMD_NONE)
1769 return (SET_ERROR(EINVAL));
1770
1771 if (parentdd != NULL) {
1772 ret = dsl_dir_get_crypt(parentdd, &pcrypt);
1773 if (ret != 0)
1774 return (ret);
1775 } else {
1776 pcrypt = ZIO_CRYPT_OFF;
1777 }
1778
1779 crypt = (dcp->cp_crypt == ZIO_CRYPT_INHERIT) ? pcrypt : dcp->cp_crypt;
1780
1781 ASSERT3U(pcrypt, !=, ZIO_CRYPT_INHERIT);
1782 ASSERT3U(crypt, !=, ZIO_CRYPT_INHERIT);
1783
1784 /* check for valid dcp with no encryption (inherited or local) */
1785 if (crypt == ZIO_CRYPT_OFF) {
1786 /* Must not specify encryption params */
1787 if (dcp->cp_wkey != NULL ||
1788 (dcp->cp_keylocation != NULL &&
1789 strcmp(dcp->cp_keylocation, "none") != 0))
1790 return (SET_ERROR(EINVAL));
1791
1792 return (0);
1793 }
1794
1795 if (will_encrypt != NULL)
1796 *will_encrypt = B_TRUE;
1797
1798 /*
1799 * We will now definitely be encrypting. Check the feature flag. When
1800 * creating the pool the caller will check this for us since we won't
1801 * technically have the feature activated yet.
1802 */
1803 if (parentdd != NULL &&
1804 !spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
1805 SPA_FEATURE_ENCRYPTION)) {
1806 return (SET_ERROR(EOPNOTSUPP));
1807 }
1808
1809 /* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
1810 if (parentdd != NULL &&
1811 !spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
1812 SPA_FEATURE_BOOKMARK_V2)) {
1813 return (SET_ERROR(EOPNOTSUPP));
1814 }
1815
1816 /* handle inheritance */
1817 if (dcp->cp_wkey == NULL) {
1818 ASSERT3P(parentdd, !=, NULL);
1819
1820 /* key must be fully unspecified */
1821 if (dcp->cp_keylocation != NULL)
1822 return (SET_ERROR(EINVAL));
1823
1824 /* parent must have a key to inherit */
1825 if (pcrypt == ZIO_CRYPT_OFF)
1826 return (SET_ERROR(EINVAL));
1827
1828 /* check for parent key */
1829 ret = dmu_objset_check_wkey_loaded(parentdd);
1830 if (ret != 0)
1831 return (ret);
1832
1833 return (0);
1834 }
1835
1836 /* At this point we should have a fully specified key. Check location */
1837 if (dcp->cp_keylocation == NULL ||
1838 !zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE))
1839 return (SET_ERROR(EINVAL));
1840
1841 /* Must have fully specified keyformat */
1842 switch (dcp->cp_wkey->wk_keyformat) {
1843 case ZFS_KEYFORMAT_HEX:
1844 case ZFS_KEYFORMAT_RAW:
1845 /* requires no pbkdf2 iters and salt */
1846 if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0)
1847 return (SET_ERROR(EINVAL));
1848 break;
1849 case ZFS_KEYFORMAT_PASSPHRASE:
1850 /* requires pbkdf2 iters and salt */
1851 if (dcp->cp_wkey->wk_salt == 0 ||
1852 dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS)
1853 return (SET_ERROR(EINVAL));
1854 break;
1855 case ZFS_KEYFORMAT_NONE:
1856 default:
1857 /* keyformat must be specified and valid */
1858 return (SET_ERROR(EINVAL));
1859 }
1860
1861 return (0);
1862 }
1863
1864 void
1865 dsl_dataset_create_crypt_sync(uint64_t dsobj, dsl_dir_t *dd,
1866 dsl_dataset_t *origin, dsl_crypto_params_t *dcp, dmu_tx_t *tx)
1867 {
1868 dsl_pool_t *dp = dd->dd_pool;
1869 uint64_t crypt;
1870 dsl_wrapping_key_t *wkey;
1871
1872 /* clones always use their origin's wrapping key */
1873 if (dsl_dir_is_clone(dd)) {
1874 ASSERT3P(dcp, ==, NULL);
1875
1876 /*
1877 * If this is an encrypted clone we just need to clone the
1878 * dck into dd. Zapify the dd so we can do that.
1879 */
1880 if (origin->ds_dir->dd_crypto_obj != 0) {
1881 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1882 dsl_dir_zapify(dd, tx);
1883
1884 dd->dd_crypto_obj =
1885 dsl_crypto_key_clone_sync(origin->ds_dir, tx);
1886 VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
1887 DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1,
1888 &dd->dd_crypto_obj, tx));
1889 }
1890
1891 return;
1892 }
1893
1894 /*
1895 * A NULL dcp at this point indicates this is the origin dataset
1896 * which does not have an objset to encrypt. Raw receives will handle
1897 * encryption separately later. In both cases we can simply return.
1898 */
1899 if (dcp == NULL || dcp->cp_cmd == DCP_CMD_RAW_RECV)
1900 return;
1901
1902 crypt = dcp->cp_crypt;
1903 wkey = dcp->cp_wkey;
1904
1905 /* figure out the effective crypt */
1906 if (crypt == ZIO_CRYPT_INHERIT && dd->dd_parent != NULL)
1907 VERIFY0(dsl_dir_get_crypt(dd->dd_parent, &crypt));
1908
1909 /* if we aren't doing encryption just return */
1910 if (crypt == ZIO_CRYPT_OFF || crypt == ZIO_CRYPT_INHERIT)
1911 return;
1912
1913 /* zapify the dd so that we can add the crypto key obj to it */
1914 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1915 dsl_dir_zapify(dd, tx);
1916
1917 /* use the new key if given or inherit from the parent */
1918 if (wkey == NULL) {
1919 VERIFY0(spa_keystore_wkey_hold_dd(dp->dp_spa,
1920 dd->dd_parent, FTAG, &wkey));
1921 } else {
1922 wkey->wk_ddobj = dd->dd_object;
1923 }
1924
1925 ASSERT3P(wkey, !=, NULL);
1926
1927 /* Create or clone the DSL crypto key and activate the feature */
1928 dd->dd_crypto_obj = dsl_crypto_key_create_sync(crypt, wkey, tx);
1929 VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
1930 DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1, &dd->dd_crypto_obj,
1931 tx));
1932 dsl_dataset_activate_feature(dsobj, SPA_FEATURE_ENCRYPTION,
1933 (void *)B_TRUE, tx);
1934
1935 /*
1936 * If we inherited the wrapping key we release our reference now.
1937 * Otherwise, this is a new key and we need to load it into the
1938 * keystore.
1939 */
1940 if (dcp->cp_wkey == NULL) {
1941 dsl_wrapping_key_rele(wkey, FTAG);
1942 } else {
1943 VERIFY0(spa_keystore_load_wkey_impl(dp->dp_spa, wkey));
1944 }
1945 }
1946
1947 typedef struct dsl_crypto_recv_key_arg {
1948 uint64_t dcrka_dsobj;
1949 uint64_t dcrka_fromobj;
1950 dmu_objset_type_t dcrka_ostype;
1951 nvlist_t *dcrka_nvl;
1952 boolean_t dcrka_do_key;
1953 } dsl_crypto_recv_key_arg_t;
1954
1955 static int
1956 dsl_crypto_recv_raw_objset_check(dsl_dataset_t *ds, dsl_dataset_t *fromds,
1957 dmu_objset_type_t ostype, nvlist_t *nvl, dmu_tx_t *tx)
1958 {
1959 int ret;
1960 objset_t *os;
1961 dnode_t *mdn;
1962 uint8_t *buf = NULL;
1963 uint_t len;
1964 uint64_t intval, nlevels, blksz, ibs;
1965 uint64_t nblkptr, maxblkid;
1966
1967 if (ostype != DMU_OST_ZFS && ostype != DMU_OST_ZVOL)
1968 return (SET_ERROR(EINVAL));
1969
1970 /* raw receives also need info about the structure of the metadnode */
1971 ret = nvlist_lookup_uint64(nvl, "mdn_compress", &intval);
1972 if (ret != 0 || intval >= ZIO_COMPRESS_LEGACY_FUNCTIONS)
1973 return (SET_ERROR(EINVAL));
1974
1975 ret = nvlist_lookup_uint64(nvl, "mdn_checksum", &intval);
1976 if (ret != 0 || intval >= ZIO_CHECKSUM_LEGACY_FUNCTIONS)
1977 return (SET_ERROR(EINVAL));
1978
1979 ret = nvlist_lookup_uint64(nvl, "mdn_nlevels", &nlevels);
1980 if (ret != 0 || nlevels > DN_MAX_LEVELS)
1981 return (SET_ERROR(EINVAL));
1982
1983 ret = nvlist_lookup_uint64(nvl, "mdn_blksz", &blksz);
1984 if (ret != 0 || blksz < SPA_MINBLOCKSIZE)
1985 return (SET_ERROR(EINVAL));
1986 else if (blksz > spa_maxblocksize(tx->tx_pool->dp_spa))
1987 return (SET_ERROR(ENOTSUP));
1988
1989 ret = nvlist_lookup_uint64(nvl, "mdn_indblkshift", &ibs);
1990 if (ret != 0 || ibs < DN_MIN_INDBLKSHIFT || ibs > DN_MAX_INDBLKSHIFT)
1991 return (SET_ERROR(ENOTSUP));
1992
1993 ret = nvlist_lookup_uint64(nvl, "mdn_nblkptr", &nblkptr);
1994 if (ret != 0 || nblkptr != DN_MAX_NBLKPTR)
1995 return (SET_ERROR(ENOTSUP));
1996
1997 ret = nvlist_lookup_uint64(nvl, "mdn_maxblkid", &maxblkid);
1998 if (ret != 0)
1999 return (SET_ERROR(EINVAL));
2000
2001 ret = nvlist_lookup_uint8_array(nvl, "portable_mac", &buf, &len);
2002 if (ret != 0 || len != ZIO_OBJSET_MAC_LEN)
2003 return (SET_ERROR(EINVAL));
2004
2005 ret = dmu_objset_from_ds(ds, &os);
2006 if (ret != 0)
2007 return (ret);
2008
2009 mdn = DMU_META_DNODE(os);
2010
2011 /*
2012 * If we already created the objset, make sure its unchangeable
2013 * properties match the ones received in the nvlist.
2014 */
2015 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2016 if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) &&
2017 (mdn->dn_nlevels != nlevels || mdn->dn_datablksz != blksz ||
2018 mdn->dn_indblkshift != ibs || mdn->dn_nblkptr != nblkptr)) {
2019 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2020 return (SET_ERROR(EINVAL));
2021 }
2022 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2023
2024 /*
2025 * Check that the ivset guid of the fromds matches the one from the
2026 * send stream. Older versions of the encryption code did not have
2027 * an ivset guid on the from dataset and did not send one in the
2028 * stream. For these streams we provide the
2029 * zfs_disable_ivset_guid_check tunable to allow these datasets to
2030 * be received with a generated ivset guid.
2031 */
2032 if (fromds != NULL && !zfs_disable_ivset_guid_check) {
2033 uint64_t from_ivset_guid = 0;
2034 intval = 0;
2035
2036 (void) nvlist_lookup_uint64(nvl, "from_ivset_guid", &intval);
2037 (void) zap_lookup(tx->tx_pool->dp_meta_objset,
2038 fromds->ds_object, DS_FIELD_IVSET_GUID,
2039 sizeof (from_ivset_guid), 1, &from_ivset_guid);
2040
2041 if (intval == 0 || from_ivset_guid == 0)
2042 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING));
2043
2044 if (intval != from_ivset_guid)
2045 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH));
2046 }
2047
2048 return (0);
2049 }
2050
2051 static void
2052 dsl_crypto_recv_raw_objset_sync(dsl_dataset_t *ds, dmu_objset_type_t ostype,
2053 nvlist_t *nvl, dmu_tx_t *tx)
2054 {
2055 dsl_pool_t *dp = tx->tx_pool;
2056 objset_t *os;
2057 dnode_t *mdn;
2058 zio_t *zio;
2059 uint8_t *portable_mac;
2060 uint_t len;
2061 uint64_t compress, checksum, nlevels, blksz, ibs, maxblkid;
2062 boolean_t newds = B_FALSE;
2063
2064 VERIFY0(dmu_objset_from_ds(ds, &os));
2065 mdn = DMU_META_DNODE(os);
2066
2067 /*
2068 * Fetch the values we need from the nvlist. "to_ivset_guid" must
2069 * be set on the snapshot, which doesn't exist yet. The receive
2070 * code will take care of this for us later.
2071 */
2072 compress = fnvlist_lookup_uint64(nvl, "mdn_compress");
2073 checksum = fnvlist_lookup_uint64(nvl, "mdn_checksum");
2074 nlevels = fnvlist_lookup_uint64(nvl, "mdn_nlevels");
2075 blksz = fnvlist_lookup_uint64(nvl, "mdn_blksz");
2076 ibs = fnvlist_lookup_uint64(nvl, "mdn_indblkshift");
2077 maxblkid = fnvlist_lookup_uint64(nvl, "mdn_maxblkid");
2078 VERIFY0(nvlist_lookup_uint8_array(nvl, "portable_mac", &portable_mac,
2079 &len));
2080
2081 /* if we haven't created an objset for the ds yet, do that now */
2082 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2083 if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2084 (void) dmu_objset_create_impl_dnstats(dp->dp_spa, ds,
2085 dsl_dataset_get_blkptr(ds), ostype, nlevels, blksz,
2086 ibs, tx);
2087 newds = B_TRUE;
2088 }
2089 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2090
2091 /*
2092 * Set the portable MAC. The local MAC will always be zero since the
2093 * incoming data will all be portable and user accounting will be
2094 * deferred until the next mount. Afterwards, flag the os to be
2095 * written out raw next time.
2096 */
2097 arc_release(os->os_phys_buf, &os->os_phys_buf);
2098 memcpy(os->os_phys->os_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
2099 memset(os->os_phys->os_local_mac, 0, ZIO_OBJSET_MAC_LEN);
2100 os->os_flags &= ~OBJSET_FLAG_USERACCOUNTING_COMPLETE;
2101 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
2102
2103 /* set metadnode compression and checksum */
2104 mdn->dn_compress = compress;
2105 mdn->dn_checksum = checksum;
2106
2107 rw_enter(&mdn->dn_struct_rwlock, RW_WRITER);
2108 dnode_new_blkid(mdn, maxblkid, tx, B_FALSE, B_TRUE);
2109 rw_exit(&mdn->dn_struct_rwlock);
2110
2111 /*
2112 * We can't normally dirty the dataset in syncing context unless
2113 * we are creating a new dataset. In this case, we perform a
2114 * pseudo txg sync here instead.
2115 */
2116 if (newds) {
2117 dsl_dataset_dirty(ds, tx);
2118 } else {
2119 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
2120 dsl_dataset_sync(ds, zio, tx);
2121 VERIFY0(zio_wait(zio));
2122
2123 /* dsl_dataset_sync_done will drop this reference. */
2124 dmu_buf_add_ref(ds->ds_dbuf, ds);
2125 dsl_dataset_sync_done(ds, tx);
2126 }
2127 }
2128
2129 int
2130 dsl_crypto_recv_raw_key_check(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
2131 {
2132 int ret;
2133 objset_t *mos = tx->tx_pool->dp_meta_objset;
2134 uint8_t *buf = NULL;
2135 uint_t len;
2136 uint64_t intval, key_guid, version;
2137 boolean_t is_passphrase = B_FALSE;
2138
2139 ASSERT(dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT);
2140
2141 /*
2142 * Read and check all the encryption values from the nvlist. We need
2143 * all of the fields of a DSL Crypto Key, as well as a fully specified
2144 * wrapping key.
2145 */
2146 ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, &intval);
2147 if (ret != 0 || intval >= ZIO_CRYPT_FUNCTIONS ||
2148 intval <= ZIO_CRYPT_OFF)
2149 return (SET_ERROR(EINVAL));
2150
2151 ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID, &intval);
2152 if (ret != 0)
2153 return (SET_ERROR(EINVAL));
2154
2155 /*
2156 * If this is an incremental receive make sure the given key guid
2157 * matches the one we already have.
2158 */
2159 if (ds->ds_dir->dd_crypto_obj != 0) {
2160 ret = zap_lookup(mos, ds->ds_dir->dd_crypto_obj,
2161 DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
2162 if (ret != 0)
2163 return (ret);
2164 if (intval != key_guid)
2165 return (SET_ERROR(EACCES));
2166 }
2167
2168 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2169 &buf, &len);
2170 if (ret != 0 || len != MASTER_KEY_MAX_LEN)
2171 return (SET_ERROR(EINVAL));
2172
2173 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2174 &buf, &len);
2175 if (ret != 0 || len != SHA512_HMAC_KEYLEN)
2176 return (SET_ERROR(EINVAL));
2177
2178 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &buf, &len);
2179 if (ret != 0 || len != WRAPPING_IV_LEN)
2180 return (SET_ERROR(EINVAL));
2181
2182 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &buf, &len);
2183 if (ret != 0 || len != WRAPPING_MAC_LEN)
2184 return (SET_ERROR(EINVAL));
2185
2186 /*
2187 * We don't support receiving old on-disk formats. The version 0
2188 * implementation protected several fields in an objset that were
2189 * not always portable during a raw receive. As a result, we call
2190 * the old version an on-disk errata #3.
2191 */
2192 ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_VERSION, &version);
2193 if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION)
2194 return (SET_ERROR(ENOTSUP));
2195
2196 ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
2197 &intval);
2198 if (ret != 0 || intval >= ZFS_KEYFORMAT_FORMATS ||
2199 intval == ZFS_KEYFORMAT_NONE)
2200 return (SET_ERROR(EINVAL));
2201
2202 is_passphrase = (intval == ZFS_KEYFORMAT_PASSPHRASE);
2203
2204 /*
2205 * for raw receives we allow any number of pbkdf2iters since there
2206 * won't be a chance for the user to change it.
2207 */
2208 ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
2209 &intval);
2210 if (ret != 0 || (is_passphrase == (intval == 0)))
2211 return (SET_ERROR(EINVAL));
2212
2213 ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
2214 &intval);
2215 if (ret != 0 || (is_passphrase == (intval == 0)))
2216 return (SET_ERROR(EINVAL));
2217
2218 return (0);
2219 }
2220
2221 void
2222 dsl_crypto_recv_raw_key_sync(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
2223 {
2224 dsl_pool_t *dp = tx->tx_pool;
2225 objset_t *mos = dp->dp_meta_objset;
2226 dsl_dir_t *dd = ds->ds_dir;
2227 uint_t len;
2228 uint64_t rddobj, one = 1;
2229 uint8_t *keydata, *hmac_keydata, *iv, *mac;
2230 uint64_t crypt, key_guid, keyformat, iters, salt;
2231 uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
2232 const char *keylocation = "prompt";
2233
2234 /* lookup the values we need to create the DSL Crypto Key */
2235 crypt = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE);
2236 key_guid = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID);
2237 keyformat = fnvlist_lookup_uint64(nvl,
2238 zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
2239 iters = fnvlist_lookup_uint64(nvl,
2240 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
2241 salt = fnvlist_lookup_uint64(nvl,
2242 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
2243 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2244 &keydata, &len));
2245 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2246 &hmac_keydata, &len));
2247 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &iv, &len));
2248 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &mac, &len));
2249
2250 /* if this is a new dataset setup the DSL Crypto Key. */
2251 if (dd->dd_crypto_obj == 0) {
2252 /* zapify the dsl dir so we can add the key object to it */
2253 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2254 dsl_dir_zapify(dd, tx);
2255
2256 /* create the DSL Crypto Key on disk and activate the feature */
2257 dd->dd_crypto_obj = zap_create(mos,
2258 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
2259 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
2260 dd->dd_crypto_obj, DSL_CRYPTO_KEY_REFCOUNT,
2261 sizeof (uint64_t), 1, &one, tx));
2262 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
2263 dd->dd_crypto_obj, DSL_CRYPTO_KEY_VERSION,
2264 sizeof (uint64_t), 1, &version, tx));
2265
2266 dsl_dataset_activate_feature(ds->ds_object,
2267 SPA_FEATURE_ENCRYPTION, (void *)B_TRUE, tx);
2268 ds->ds_feature[SPA_FEATURE_ENCRYPTION] = (void *)B_TRUE;
2269
2270 /* save the dd_crypto_obj on disk */
2271 VERIFY0(zap_add(mos, dd->dd_object, DD_FIELD_CRYPTO_KEY_OBJ,
2272 sizeof (uint64_t), 1, &dd->dd_crypto_obj, tx));
2273
2274 /*
2275 * Set the keylocation to prompt by default. If keylocation
2276 * has been provided via the properties, this will be overridden
2277 * later.
2278 */
2279 dsl_prop_set_sync_impl(ds,
2280 zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
2281 ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
2282 keylocation, tx);
2283
2284 rddobj = dd->dd_object;
2285 } else {
2286 VERIFY0(dsl_dir_get_encryption_root_ddobj(dd, &rddobj));
2287 }
2288
2289 /* sync the key data to the ZAP object on disk */
2290 dsl_crypto_key_sync_impl(mos, dd->dd_crypto_obj, crypt,
2291 rddobj, key_guid, iv, mac, keydata, hmac_keydata, keyformat, salt,
2292 iters, tx);
2293 }
2294
2295 static int
2296 dsl_crypto_recv_key_check(void *arg, dmu_tx_t *tx)
2297 {
2298 int ret;
2299 dsl_crypto_recv_key_arg_t *dcrka = arg;
2300 dsl_dataset_t *ds = NULL, *fromds = NULL;
2301
2302 ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
2303 FTAG, &ds);
2304 if (ret != 0)
2305 goto out;
2306
2307 if (dcrka->dcrka_fromobj != 0) {
2308 ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_fromobj,
2309 FTAG, &fromds);
2310 if (ret != 0)
2311 goto out;
2312 }
2313
2314 ret = dsl_crypto_recv_raw_objset_check(ds, fromds,
2315 dcrka->dcrka_ostype, dcrka->dcrka_nvl, tx);
2316 if (ret != 0)
2317 goto out;
2318
2319 /*
2320 * We run this check even if we won't be doing this part of
2321 * the receive now so that we don't make the user wait until
2322 * the receive finishes to fail.
2323 */
2324 ret = dsl_crypto_recv_raw_key_check(ds, dcrka->dcrka_nvl, tx);
2325 if (ret != 0)
2326 goto out;
2327
2328 out:
2329 if (ds != NULL)
2330 dsl_dataset_rele(ds, FTAG);
2331 if (fromds != NULL)
2332 dsl_dataset_rele(fromds, FTAG);
2333 return (ret);
2334 }
2335
2336 static void
2337 dsl_crypto_recv_key_sync(void *arg, dmu_tx_t *tx)
2338 {
2339 dsl_crypto_recv_key_arg_t *dcrka = arg;
2340 dsl_dataset_t *ds;
2341
2342 VERIFY0(dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
2343 FTAG, &ds));
2344 dsl_crypto_recv_raw_objset_sync(ds, dcrka->dcrka_ostype,
2345 dcrka->dcrka_nvl, tx);
2346 if (dcrka->dcrka_do_key)
2347 dsl_crypto_recv_raw_key_sync(ds, dcrka->dcrka_nvl, tx);
2348 dsl_dataset_rele(ds, FTAG);
2349 }
2350
2351 /*
2352 * This function is used to sync an nvlist representing a DSL Crypto Key and
2353 * the associated encryption parameters. The key will be written exactly as is
2354 * without wrapping it.
2355 */
2356 int
2357 dsl_crypto_recv_raw(const char *poolname, uint64_t dsobj, uint64_t fromobj,
2358 dmu_objset_type_t ostype, nvlist_t *nvl, boolean_t do_key)
2359 {
2360 dsl_crypto_recv_key_arg_t dcrka;
2361
2362 dcrka.dcrka_dsobj = dsobj;
2363 dcrka.dcrka_fromobj = fromobj;
2364 dcrka.dcrka_ostype = ostype;
2365 dcrka.dcrka_nvl = nvl;
2366 dcrka.dcrka_do_key = do_key;
2367
2368 return (dsl_sync_task(poolname, dsl_crypto_recv_key_check,
2369 dsl_crypto_recv_key_sync, &dcrka, 1, ZFS_SPACE_CHECK_NORMAL));
2370 }
2371
2372 int
2373 dsl_crypto_populate_key_nvlist(objset_t *os, uint64_t from_ivset_guid,
2374 nvlist_t **nvl_out)
2375 {
2376 int ret;
2377 dsl_dataset_t *ds = os->os_dsl_dataset;
2378 dnode_t *mdn;
2379 uint64_t rddobj;
2380 nvlist_t *nvl = NULL;
2381 uint64_t dckobj = ds->ds_dir->dd_crypto_obj;
2382 dsl_dir_t *rdd = NULL;
2383 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2384 objset_t *mos = dp->dp_meta_objset;
2385 uint64_t crypt = 0, key_guid = 0, format = 0;
2386 uint64_t iters = 0, salt = 0, version = 0;
2387 uint64_t to_ivset_guid = 0;
2388 uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
2389 uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
2390 uint8_t iv[WRAPPING_IV_LEN];
2391 uint8_t mac[WRAPPING_MAC_LEN];
2392
2393 ASSERT(dckobj != 0);
2394
2395 mdn = DMU_META_DNODE(os);
2396
2397 nvl = fnvlist_alloc();
2398
2399 /* lookup values from the DSL Crypto Key */
2400 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
2401 &crypt);
2402 if (ret != 0)
2403 goto error;
2404
2405 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
2406 if (ret != 0)
2407 goto error;
2408
2409 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
2410 MASTER_KEY_MAX_LEN, raw_keydata);
2411 if (ret != 0)
2412 goto error;
2413
2414 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
2415 SHA512_HMAC_KEYLEN, raw_hmac_keydata);
2416 if (ret != 0)
2417 goto error;
2418
2419 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
2420 iv);
2421 if (ret != 0)
2422 goto error;
2423
2424 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
2425 mac);
2426 if (ret != 0)
2427 goto error;
2428
2429 /* see zfs_disable_ivset_guid_check tunable for errata info */
2430 ret = zap_lookup(mos, ds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2431 &to_ivset_guid);
2432 if (ret != 0)
2433 ASSERT3U(dp->dp_spa->spa_errata, !=, 0);
2434
2435 /*
2436 * We don't support raw sends of legacy on-disk formats. See the
2437 * comment in dsl_crypto_recv_key_check() for details.
2438 */
2439 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
2440 if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION) {
2441 dp->dp_spa->spa_errata = ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
2442 ret = SET_ERROR(ENOTSUP);
2443 goto error;
2444 }
2445
2446 /*
2447 * Lookup wrapping key properties. An early version of the code did
2448 * not correctly add these values to the wrapping key or the DSL
2449 * Crypto Key on disk for non encryption roots, so to be safe we
2450 * always take the slightly circuitous route of looking it up from
2451 * the encryption root's key.
2452 */
2453 ret = dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj);
2454 if (ret != 0)
2455 goto error;
2456
2457 dsl_pool_config_enter(dp, FTAG);
2458
2459 ret = dsl_dir_hold_obj(dp, rddobj, NULL, FTAG, &rdd);
2460 if (ret != 0)
2461 goto error_unlock;
2462
2463 ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2464 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &format);
2465 if (ret != 0)
2466 goto error_unlock;
2467
2468 if (format == ZFS_KEYFORMAT_PASSPHRASE) {
2469 ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2470 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
2471 if (ret != 0)
2472 goto error_unlock;
2473
2474 ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2475 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
2476 if (ret != 0)
2477 goto error_unlock;
2478 }
2479
2480 dsl_dir_rele(rdd, FTAG);
2481 dsl_pool_config_exit(dp, FTAG);
2482
2483 fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, crypt);
2484 fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_GUID, key_guid);
2485 fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_VERSION, version);
2486 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2487 raw_keydata, MASTER_KEY_MAX_LEN));
2488 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2489 raw_hmac_keydata, SHA512_HMAC_KEYLEN));
2490 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_IV, iv,
2491 WRAPPING_IV_LEN));
2492 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, mac,
2493 WRAPPING_MAC_LEN));
2494 VERIFY0(nvlist_add_uint8_array(nvl, "portable_mac",
2495 os->os_phys->os_portable_mac, ZIO_OBJSET_MAC_LEN));
2496 fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), format);
2497 fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), iters);
2498 fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), salt);
2499 fnvlist_add_uint64(nvl, "mdn_checksum", mdn->dn_checksum);
2500 fnvlist_add_uint64(nvl, "mdn_compress", mdn->dn_compress);
2501 fnvlist_add_uint64(nvl, "mdn_nlevels", mdn->dn_nlevels);
2502 fnvlist_add_uint64(nvl, "mdn_blksz", mdn->dn_datablksz);
2503 fnvlist_add_uint64(nvl, "mdn_indblkshift", mdn->dn_indblkshift);
2504 fnvlist_add_uint64(nvl, "mdn_nblkptr", mdn->dn_nblkptr);
2505 fnvlist_add_uint64(nvl, "mdn_maxblkid", mdn->dn_maxblkid);
2506 fnvlist_add_uint64(nvl, "to_ivset_guid", to_ivset_guid);
2507 fnvlist_add_uint64(nvl, "from_ivset_guid", from_ivset_guid);
2508
2509 *nvl_out = nvl;
2510 return (0);
2511
2512 error_unlock:
2513 dsl_pool_config_exit(dp, FTAG);
2514 error:
2515 if (rdd != NULL)
2516 dsl_dir_rele(rdd, FTAG);
2517 nvlist_free(nvl);
2518
2519 *nvl_out = NULL;
2520 return (ret);
2521 }
2522
2523 uint64_t
2524 dsl_crypto_key_create_sync(uint64_t crypt, dsl_wrapping_key_t *wkey,
2525 dmu_tx_t *tx)
2526 {
2527 dsl_crypto_key_t dck;
2528 uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
2529 uint64_t one = 1ULL;
2530
2531 ASSERT(dmu_tx_is_syncing(tx));
2532 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
2533 ASSERT3U(crypt, >, ZIO_CRYPT_OFF);
2534
2535 /* create the DSL Crypto Key ZAP object */
2536 dck.dck_obj = zap_create(tx->tx_pool->dp_meta_objset,
2537 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
2538
2539 /* fill in the key (on the stack) and sync it to disk */
2540 dck.dck_wkey = wkey;
2541 VERIFY0(zio_crypt_key_init(crypt, &dck.dck_key));
2542
2543 dsl_crypto_key_sync(&dck, tx);
2544 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
2545 DSL_CRYPTO_KEY_REFCOUNT, sizeof (uint64_t), 1, &one, tx));
2546 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
2547 DSL_CRYPTO_KEY_VERSION, sizeof (uint64_t), 1, &version, tx));
2548
2549 zio_crypt_key_destroy(&dck.dck_key);
2550 memset(&dck.dck_key, 0, sizeof (zio_crypt_key_t));
2551
2552 return (dck.dck_obj);
2553 }
2554
2555 uint64_t
2556 dsl_crypto_key_clone_sync(dsl_dir_t *origindd, dmu_tx_t *tx)
2557 {
2558 objset_t *mos = tx->tx_pool->dp_meta_objset;
2559
2560 ASSERT(dmu_tx_is_syncing(tx));
2561
2562 VERIFY0(zap_increment(mos, origindd->dd_crypto_obj,
2563 DSL_CRYPTO_KEY_REFCOUNT, 1, tx));
2564
2565 return (origindd->dd_crypto_obj);
2566 }
2567
2568 void
2569 dsl_crypto_key_destroy_sync(uint64_t dckobj, dmu_tx_t *tx)
2570 {
2571 objset_t *mos = tx->tx_pool->dp_meta_objset;
2572 uint64_t refcnt;
2573
2574 /* Decrement the refcount, destroy if this is the last reference */
2575 VERIFY0(zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
2576 sizeof (uint64_t), 1, &refcnt));
2577
2578 if (refcnt != 1) {
2579 VERIFY0(zap_increment(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
2580 -1, tx));
2581 } else {
2582 VERIFY0(zap_destroy(mos, dckobj, tx));
2583 }
2584 }
2585
2586 void
2587 dsl_dataset_crypt_stats(dsl_dataset_t *ds, nvlist_t *nv)
2588 {
2589 uint64_t intval;
2590 dsl_dir_t *dd = ds->ds_dir;
2591 dsl_dir_t *enc_root;
2592 char buf[ZFS_MAX_DATASET_NAME_LEN];
2593
2594 if (dd->dd_crypto_obj == 0)
2595 return;
2596
2597 intval = dsl_dataset_get_keystatus(dd);
2598 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYSTATUS, intval);
2599
2600 if (dsl_dir_get_crypt(dd, &intval) == 0)
2601 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_ENCRYPTION, intval);
2602 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2603 DSL_CRYPTO_KEY_GUID, 8, 1, &intval) == 0) {
2604 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEY_GUID, intval);
2605 }
2606 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2607 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &intval) == 0) {
2608 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYFORMAT, intval);
2609 }
2610 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2611 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &intval) == 0) {
2612 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_SALT, intval);
2613 }
2614 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2615 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &intval) == 0) {
2616 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_ITERS, intval);
2617 }
2618 if (zap_lookup(dd->dd_pool->dp_meta_objset, ds->ds_object,
2619 DS_FIELD_IVSET_GUID, 8, 1, &intval) == 0) {
2620 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_IVSET_GUID, intval);
2621 }
2622
2623 if (dsl_dir_get_encryption_root_ddobj(dd, &intval) == 0) {
2624 if (dsl_dir_hold_obj(dd->dd_pool, intval, NULL, FTAG,
2625 &enc_root) == 0) {
2626 dsl_dir_name(enc_root, buf);
2627 dsl_dir_rele(enc_root, FTAG);
2628 dsl_prop_nvlist_add_string(nv,
2629 ZFS_PROP_ENCRYPTION_ROOT, buf);
2630 }
2631 }
2632 }
2633
2634 int
2635 spa_crypt_get_salt(spa_t *spa, uint64_t dsobj, uint8_t *salt)
2636 {
2637 int ret;
2638 dsl_crypto_key_t *dck = NULL;
2639
2640 /* look up the key from the spa's keystore */
2641 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2642 if (ret != 0)
2643 goto error;
2644
2645 ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
2646 if (ret != 0)
2647 goto error;
2648
2649 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2650 return (0);
2651
2652 error:
2653 if (dck != NULL)
2654 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2655 return (ret);
2656 }
2657
2658 /*
2659 * Objset blocks are a special case for MAC generation. These blocks have 2
2660 * 256-bit MACs which are embedded within the block itself, rather than a
2661 * single 128 bit MAC. As a result, this function handles encoding and decoding
2662 * the MACs on its own, unlike other functions in this file.
2663 */
2664 int
2665 spa_do_crypt_objset_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj,
2666 abd_t *abd, uint_t datalen, boolean_t byteswap)
2667 {
2668 int ret;
2669 dsl_crypto_key_t *dck = NULL;
2670 void *buf = abd_borrow_buf_copy(abd, datalen);
2671 objset_phys_t *osp = buf;
2672 uint8_t portable_mac[ZIO_OBJSET_MAC_LEN];
2673 uint8_t local_mac[ZIO_OBJSET_MAC_LEN];
2674 const uint8_t zeroed_mac[ZIO_OBJSET_MAC_LEN] = {0};
2675
2676 /* look up the key from the spa's keystore */
2677 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2678 if (ret != 0)
2679 goto error;
2680
2681 /* calculate both HMACs */
2682 ret = zio_crypt_do_objset_hmacs(&dck->dck_key, buf, datalen,
2683 byteswap, portable_mac, local_mac);
2684 if (ret != 0)
2685 goto error;
2686
2687 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2688
2689 /* if we are generating encode the HMACs in the objset_phys_t */
2690 if (generate) {
2691 memcpy(osp->os_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
2692 memcpy(osp->os_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
2693 abd_return_buf_copy(abd, buf, datalen);
2694 return (0);
2695 }
2696
2697 if (memcmp(portable_mac, osp->os_portable_mac,
2698 ZIO_OBJSET_MAC_LEN) != 0 ||
2699 memcmp(local_mac, osp->os_local_mac, ZIO_OBJSET_MAC_LEN) != 0) {
2700 /*
2701 * If the MAC is zeroed out, we failed to decrypt it.
2702 * This should only arise, at least on Linux,
2703 * if we hit edge case handling for useraccounting, since we
2704 * shouldn't get here without bailing out on error earlier
2705 * otherwise.
2706 *
2707 * So if we're in that case, we can just fall through and
2708 * special-casing noticing that it's zero will handle it
2709 * elsewhere, since we can just regenerate it.
2710 */
2711 if (memcmp(local_mac, zeroed_mac, ZIO_OBJSET_MAC_LEN) != 0) {
2712 abd_return_buf(abd, buf, datalen);
2713 return (SET_ERROR(ECKSUM));
2714 }
2715 }
2716
2717 abd_return_buf(abd, buf, datalen);
2718
2719 return (0);
2720
2721 error:
2722 if (dck != NULL)
2723 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2724 abd_return_buf(abd, buf, datalen);
2725 return (ret);
2726 }
2727
2728 int
2729 spa_do_crypt_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj, abd_t *abd,
2730 uint_t datalen, uint8_t *mac)
2731 {
2732 int ret;
2733 dsl_crypto_key_t *dck = NULL;
2734 uint8_t *buf = abd_borrow_buf_copy(abd, datalen);
2735 uint8_t digestbuf[ZIO_DATA_MAC_LEN];
2736
2737 /* look up the key from the spa's keystore */
2738 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2739 if (ret != 0)
2740 goto error;
2741
2742 /* perform the hmac */
2743 ret = zio_crypt_do_hmac(&dck->dck_key, buf, datalen,
2744 digestbuf, ZIO_DATA_MAC_LEN);
2745 if (ret != 0)
2746 goto error;
2747
2748 abd_return_buf(abd, buf, datalen);
2749 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2750
2751 /*
2752 * Truncate and fill in mac buffer if we were asked to generate a MAC.
2753 * Otherwise verify that the MAC matched what we expected.
2754 */
2755 if (generate) {
2756 memcpy(mac, digestbuf, ZIO_DATA_MAC_LEN);
2757 return (0);
2758 }
2759
2760 if (memcmp(digestbuf, mac, ZIO_DATA_MAC_LEN) != 0)
2761 return (SET_ERROR(ECKSUM));
2762
2763 return (0);
2764
2765 error:
2766 if (dck != NULL)
2767 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2768 abd_return_buf(abd, buf, datalen);
2769 return (ret);
2770 }
2771
2772 /*
2773 * This function serves as a multiplexer for encryption and decryption of
2774 * all blocks (except the L2ARC). For encryption, it will populate the IV,
2775 * salt, MAC, and cabd (the ciphertext). On decryption it will simply use
2776 * these fields to populate pabd (the plaintext).
2777 */
2778 int
2779 spa_do_crypt_abd(boolean_t encrypt, spa_t *spa, const zbookmark_phys_t *zb,
2780 dmu_object_type_t ot, boolean_t dedup, boolean_t bswap, uint8_t *salt,
2781 uint8_t *iv, uint8_t *mac, uint_t datalen, abd_t *pabd, abd_t *cabd,
2782 boolean_t *no_crypt)
2783 {
2784 int ret;
2785 dsl_crypto_key_t *dck = NULL;
2786 uint8_t *plainbuf = NULL, *cipherbuf = NULL;
2787
2788 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
2789
2790 /* look up the key from the spa's keystore */
2791 ret = spa_keystore_lookup_key(spa, zb->zb_objset, FTAG, &dck);
2792 if (ret != 0) {
2793 ret = SET_ERROR(EACCES);
2794 return (ret);
2795 }
2796
2797 if (encrypt) {
2798 plainbuf = abd_borrow_buf_copy(pabd, datalen);
2799 cipherbuf = abd_borrow_buf(cabd, datalen);
2800 } else {
2801 plainbuf = abd_borrow_buf(pabd, datalen);
2802 cipherbuf = abd_borrow_buf_copy(cabd, datalen);
2803 }
2804
2805 /*
2806 * Both encryption and decryption functions need a salt for key
2807 * generation and an IV. When encrypting a non-dedup block, we
2808 * generate the salt and IV randomly to be stored by the caller. Dedup
2809 * blocks perform a (more expensive) HMAC of the plaintext to obtain
2810 * the salt and the IV. ZIL blocks have their salt and IV generated
2811 * at allocation time in zio_alloc_zil(). On decryption, we simply use
2812 * the provided values.
2813 */
2814 if (encrypt && ot != DMU_OT_INTENT_LOG && !dedup) {
2815 ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
2816 if (ret != 0)
2817 goto error;
2818
2819 ret = zio_crypt_generate_iv(iv);
2820 if (ret != 0)
2821 goto error;
2822 } else if (encrypt && dedup) {
2823 ret = zio_crypt_generate_iv_salt_dedup(&dck->dck_key,
2824 plainbuf, datalen, iv, salt);
2825 if (ret != 0)
2826 goto error;
2827 }
2828
2829 /* call lower level function to perform encryption / decryption */
2830 ret = zio_do_crypt_data(encrypt, &dck->dck_key, ot, bswap, salt, iv,
2831 mac, datalen, plainbuf, cipherbuf, no_crypt);
2832
2833 /*
2834 * Handle injected decryption faults. Unfortunately, we cannot inject
2835 * faults for dnode blocks because we might trigger the panic in
2836 * dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
2837 * context is not prepared to handle malicious decryption failures.
2838 */
2839 if (zio_injection_enabled && !encrypt && ot != DMU_OT_DNODE && ret == 0)
2840 ret = zio_handle_decrypt_injection(spa, zb, ot, ECKSUM);
2841 if (ret != 0)
2842 goto error;
2843
2844 if (encrypt) {
2845 abd_return_buf(pabd, plainbuf, datalen);
2846 abd_return_buf_copy(cabd, cipherbuf, datalen);
2847 } else {
2848 abd_return_buf_copy(pabd, plainbuf, datalen);
2849 abd_return_buf(cabd, cipherbuf, datalen);
2850 }
2851
2852 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2853
2854 return (0);
2855
2856 error:
2857 if (encrypt) {
2858 /* zero out any state we might have changed while encrypting */
2859 memset(salt, 0, ZIO_DATA_SALT_LEN);
2860 memset(iv, 0, ZIO_DATA_IV_LEN);
2861 memset(mac, 0, ZIO_DATA_MAC_LEN);
2862 abd_return_buf(pabd, plainbuf, datalen);
2863 abd_return_buf_copy(cabd, cipherbuf, datalen);
2864 } else {
2865 abd_return_buf_copy(pabd, plainbuf, datalen);
2866 abd_return_buf(cabd, cipherbuf, datalen);
2867 }
2868
2869 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2870
2871 return (ret);
2872 }
2873
2874 ZFS_MODULE_PARAM(zfs, zfs_, disable_ivset_guid_check, INT, ZMOD_RW,
2875 "Set to allow raw receives without IVset guids");
Cache object: 8c324347ecc8149d418b204780f1099d
|