The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/dsl_pool.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
   24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
   25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
   26  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
   27  */
   28 
   29 #include <sys/dsl_pool.h>
   30 #include <sys/dsl_dataset.h>
   31 #include <sys/dsl_prop.h>
   32 #include <sys/dsl_dir.h>
   33 #include <sys/dsl_synctask.h>
   34 #include <sys/dsl_scan.h>
   35 #include <sys/dnode.h>
   36 #include <sys/dmu_tx.h>
   37 #include <sys/dmu_objset.h>
   38 #include <sys/arc.h>
   39 #include <sys/zap.h>
   40 #include <sys/zio.h>
   41 #include <sys/zfs_context.h>
   42 #include <sys/fs/zfs.h>
   43 #include <sys/zfs_znode.h>
   44 #include <sys/spa_impl.h>
   45 #include <sys/vdev_impl.h>
   46 #include <sys/metaslab_impl.h>
   47 #include <sys/bptree.h>
   48 #include <sys/zfeature.h>
   49 #include <sys/zil_impl.h>
   50 #include <sys/dsl_userhold.h>
   51 #include <sys/trace_zfs.h>
   52 #include <sys/mmp.h>
   53 
   54 /*
   55  * ZFS Write Throttle
   56  * ------------------
   57  *
   58  * ZFS must limit the rate of incoming writes to the rate at which it is able
   59  * to sync data modifications to the backend storage. Throttling by too much
   60  * creates an artificial limit; throttling by too little can only be sustained
   61  * for short periods and would lead to highly lumpy performance. On a per-pool
   62  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
   63  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
   64  * of dirty data decreases. When the amount of dirty data exceeds a
   65  * predetermined threshold further modifications are blocked until the amount
   66  * of dirty data decreases (as data is synced out).
   67  *
   68  * The limit on dirty data is tunable, and should be adjusted according to
   69  * both the IO capacity and available memory of the system. The larger the
   70  * window, the more ZFS is able to aggregate and amortize metadata (and data)
   71  * changes. However, memory is a limited resource, and allowing for more dirty
   72  * data comes at the cost of keeping other useful data in memory (for example
   73  * ZFS data cached by the ARC).
   74  *
   75  * Implementation
   76  *
   77  * As buffers are modified dsl_pool_willuse_space() increments both the per-
   78  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
   79  * dirty space used; dsl_pool_dirty_space() decrements those values as data
   80  * is synced out from dsl_pool_sync(). While only the poolwide value is
   81  * relevant, the per-txg value is useful for debugging. The tunable
   82  * zfs_dirty_data_max determines the dirty space limit. Once that value is
   83  * exceeded, new writes are halted until space frees up.
   84  *
   85  * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
   86  * ensure that there is a txg syncing (see the comment in txg.c for a full
   87  * description of transaction group stages).
   88  *
   89  * The IO scheduler uses both the dirty space limit and current amount of
   90  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
   91  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
   92  *
   93  * The delay is also calculated based on the amount of dirty data.  See the
   94  * comment above dmu_tx_delay() for details.
   95  */
   96 
   97 /*
   98  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
   99  * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
  100  * parameter.
  101  */
  102 uint64_t zfs_dirty_data_max = 0;
  103 uint64_t zfs_dirty_data_max_max = 0;
  104 uint_t zfs_dirty_data_max_percent = 10;
  105 uint_t zfs_dirty_data_max_max_percent = 25;
  106 
  107 /*
  108  * The upper limit of TX_WRITE log data.  Write operations are throttled
  109  * when approaching the limit until log data is cleared out after txg sync.
  110  * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
  111  */
  112 uint64_t zfs_wrlog_data_max = 0;
  113 
  114 /*
  115  * If there's at least this much dirty data (as a percentage of
  116  * zfs_dirty_data_max), push out a txg.  This should be less than
  117  * zfs_vdev_async_write_active_min_dirty_percent.
  118  */
  119 static uint_t zfs_dirty_data_sync_percent = 20;
  120 
  121 /*
  122  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
  123  * and delay each transaction.
  124  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
  125  */
  126 uint_t zfs_delay_min_dirty_percent = 60;
  127 
  128 /*
  129  * This controls how quickly the delay approaches infinity.
  130  * Larger values cause it to delay more for a given amount of dirty data.
  131  * Therefore larger values will cause there to be less dirty data for a
  132  * given throughput.
  133  *
  134  * For the smoothest delay, this value should be about 1 billion divided
  135  * by the maximum number of operations per second.  This will smoothly
  136  * handle between 10x and 1/10th this number.
  137  *
  138  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
  139  * multiply in dmu_tx_delay().
  140  */
  141 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
  142 
  143 /*
  144  * This determines the number of threads used by the dp_sync_taskq.
  145  */
  146 static int zfs_sync_taskq_batch_pct = 75;
  147 
  148 /*
  149  * These tunables determine the behavior of how zil_itxg_clean() is
  150  * called via zil_clean() in the context of spa_sync(). When an itxg
  151  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
  152  * If the dispatch fails, the call to zil_itxg_clean() will occur
  153  * synchronously in the context of spa_sync(), which can negatively
  154  * impact the performance of spa_sync() (e.g. in the case of the itxg
  155  * list having a large number of itxs that needs to be cleaned).
  156  *
  157  * Thus, these tunables can be used to manipulate the behavior of the
  158  * taskq used by zil_clean(); they determine the number of taskq entries
  159  * that are pre-populated when the taskq is first created (via the
  160  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
  161  * taskq entries that are cached after an on-demand allocation (via the
  162  * "zfs_zil_clean_taskq_maxalloc").
  163  *
  164  * The idea being, we want to try reasonably hard to ensure there will
  165  * already be a taskq entry pre-allocated by the time that it is needed
  166  * by zil_clean(). This way, we can avoid the possibility of an
  167  * on-demand allocation of a new taskq entry from failing, which would
  168  * result in zil_itxg_clean() being called synchronously from zil_clean()
  169  * (which can adversely affect performance of spa_sync()).
  170  *
  171  * Additionally, the number of threads used by the taskq can be
  172  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
  173  */
  174 static int zfs_zil_clean_taskq_nthr_pct = 100;
  175 static int zfs_zil_clean_taskq_minalloc = 1024;
  176 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
  177 
  178 int
  179 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
  180 {
  181         uint64_t obj;
  182         int err;
  183 
  184         err = zap_lookup(dp->dp_meta_objset,
  185             dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
  186             name, sizeof (obj), 1, &obj);
  187         if (err)
  188                 return (err);
  189 
  190         return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
  191 }
  192 
  193 static dsl_pool_t *
  194 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
  195 {
  196         dsl_pool_t *dp;
  197         blkptr_t *bp = spa_get_rootblkptr(spa);
  198 
  199         dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
  200         dp->dp_spa = spa;
  201         dp->dp_meta_rootbp = *bp;
  202         rrw_init(&dp->dp_config_rwlock, B_TRUE);
  203         txg_init(dp, txg);
  204         mmp_init(spa);
  205 
  206         txg_list_create(&dp->dp_dirty_datasets, spa,
  207             offsetof(dsl_dataset_t, ds_dirty_link));
  208         txg_list_create(&dp->dp_dirty_zilogs, spa,
  209             offsetof(zilog_t, zl_dirty_link));
  210         txg_list_create(&dp->dp_dirty_dirs, spa,
  211             offsetof(dsl_dir_t, dd_dirty_link));
  212         txg_list_create(&dp->dp_sync_tasks, spa,
  213             offsetof(dsl_sync_task_t, dst_node));
  214         txg_list_create(&dp->dp_early_sync_tasks, spa,
  215             offsetof(dsl_sync_task_t, dst_node));
  216 
  217         dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
  218             zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
  219             TASKQ_THREADS_CPU_PCT);
  220 
  221         dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
  222             zfs_zil_clean_taskq_nthr_pct, minclsyspri,
  223             zfs_zil_clean_taskq_minalloc,
  224             zfs_zil_clean_taskq_maxalloc,
  225             TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
  226 
  227         mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
  228         cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
  229 
  230         aggsum_init(&dp->dp_wrlog_total, 0);
  231         for (int i = 0; i < TXG_SIZE; i++) {
  232                 aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
  233         }
  234 
  235         dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
  236             boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
  237             TASKQ_THREADS_CPU_PCT);
  238         dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
  239             100, defclsyspri, boot_ncpus, INT_MAX,
  240             TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
  241 
  242         return (dp);
  243 }
  244 
  245 int
  246 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
  247 {
  248         int err;
  249         dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
  250 
  251         /*
  252          * Initialize the caller's dsl_pool_t structure before we actually open
  253          * the meta objset.  This is done because a self-healing write zio may
  254          * be issued as part of dmu_objset_open_impl() and the spa needs its
  255          * dsl_pool_t initialized in order to handle the write.
  256          */
  257         *dpp = dp;
  258 
  259         err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
  260             &dp->dp_meta_objset);
  261         if (err != 0) {
  262                 dsl_pool_close(dp);
  263                 *dpp = NULL;
  264         }
  265 
  266         return (err);
  267 }
  268 
  269 int
  270 dsl_pool_open(dsl_pool_t *dp)
  271 {
  272         int err;
  273         dsl_dir_t *dd;
  274         dsl_dataset_t *ds;
  275         uint64_t obj;
  276 
  277         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
  278         err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  279             DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
  280             &dp->dp_root_dir_obj);
  281         if (err)
  282                 goto out;
  283 
  284         err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
  285             NULL, dp, &dp->dp_root_dir);
  286         if (err)
  287                 goto out;
  288 
  289         err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
  290         if (err)
  291                 goto out;
  292 
  293         if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
  294                 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
  295                 if (err)
  296                         goto out;
  297                 err = dsl_dataset_hold_obj(dp,
  298                     dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
  299                 if (err == 0) {
  300                         err = dsl_dataset_hold_obj(dp,
  301                             dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
  302                             &dp->dp_origin_snap);
  303                         dsl_dataset_rele(ds, FTAG);
  304                 }
  305                 dsl_dir_rele(dd, dp);
  306                 if (err)
  307                         goto out;
  308         }
  309 
  310         if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
  311                 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
  312                     &dp->dp_free_dir);
  313                 if (err)
  314                         goto out;
  315 
  316                 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  317                     DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
  318                 if (err)
  319                         goto out;
  320                 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
  321                     dp->dp_meta_objset, obj));
  322         }
  323 
  324         if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
  325                 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  326                     DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
  327                 if (err == 0) {
  328                         VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
  329                             dp->dp_meta_objset, obj));
  330                 } else if (err == ENOENT) {
  331                         /*
  332                          * We might not have created the remap bpobj yet.
  333                          */
  334                 } else {
  335                         goto out;
  336                 }
  337         }
  338 
  339         /*
  340          * Note: errors ignored, because the these special dirs, used for
  341          * space accounting, are only created on demand.
  342          */
  343         (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
  344             &dp->dp_leak_dir);
  345 
  346         if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
  347                 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  348                     DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
  349                     &dp->dp_bptree_obj);
  350                 if (err != 0)
  351                         goto out;
  352         }
  353 
  354         if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
  355                 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  356                     DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
  357                     &dp->dp_empty_bpobj);
  358                 if (err != 0)
  359                         goto out;
  360         }
  361 
  362         err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  363             DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
  364             &dp->dp_tmp_userrefs_obj);
  365         if (err == ENOENT)
  366                 err = 0;
  367         if (err)
  368                 goto out;
  369 
  370         err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
  371 
  372 out:
  373         rrw_exit(&dp->dp_config_rwlock, FTAG);
  374         return (err);
  375 }
  376 
  377 void
  378 dsl_pool_close(dsl_pool_t *dp)
  379 {
  380         /*
  381          * Drop our references from dsl_pool_open().
  382          *
  383          * Since we held the origin_snap from "syncing" context (which
  384          * includes pool-opening context), it actually only got a "ref"
  385          * and not a hold, so just drop that here.
  386          */
  387         if (dp->dp_origin_snap != NULL)
  388                 dsl_dataset_rele(dp->dp_origin_snap, dp);
  389         if (dp->dp_mos_dir != NULL)
  390                 dsl_dir_rele(dp->dp_mos_dir, dp);
  391         if (dp->dp_free_dir != NULL)
  392                 dsl_dir_rele(dp->dp_free_dir, dp);
  393         if (dp->dp_leak_dir != NULL)
  394                 dsl_dir_rele(dp->dp_leak_dir, dp);
  395         if (dp->dp_root_dir != NULL)
  396                 dsl_dir_rele(dp->dp_root_dir, dp);
  397 
  398         bpobj_close(&dp->dp_free_bpobj);
  399         bpobj_close(&dp->dp_obsolete_bpobj);
  400 
  401         /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
  402         if (dp->dp_meta_objset != NULL)
  403                 dmu_objset_evict(dp->dp_meta_objset);
  404 
  405         txg_list_destroy(&dp->dp_dirty_datasets);
  406         txg_list_destroy(&dp->dp_dirty_zilogs);
  407         txg_list_destroy(&dp->dp_sync_tasks);
  408         txg_list_destroy(&dp->dp_early_sync_tasks);
  409         txg_list_destroy(&dp->dp_dirty_dirs);
  410 
  411         taskq_destroy(dp->dp_zil_clean_taskq);
  412         taskq_destroy(dp->dp_sync_taskq);
  413 
  414         /*
  415          * We can't set retry to TRUE since we're explicitly specifying
  416          * a spa to flush. This is good enough; any missed buffers for
  417          * this spa won't cause trouble, and they'll eventually fall
  418          * out of the ARC just like any other unused buffer.
  419          */
  420         arc_flush(dp->dp_spa, FALSE);
  421 
  422         mmp_fini(dp->dp_spa);
  423         txg_fini(dp);
  424         dsl_scan_fini(dp);
  425         dmu_buf_user_evict_wait();
  426 
  427         rrw_destroy(&dp->dp_config_rwlock);
  428         mutex_destroy(&dp->dp_lock);
  429         cv_destroy(&dp->dp_spaceavail_cv);
  430 
  431         ASSERT0(aggsum_value(&dp->dp_wrlog_total));
  432         aggsum_fini(&dp->dp_wrlog_total);
  433         for (int i = 0; i < TXG_SIZE; i++) {
  434                 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
  435                 aggsum_fini(&dp->dp_wrlog_pertxg[i]);
  436         }
  437 
  438         taskq_destroy(dp->dp_unlinked_drain_taskq);
  439         taskq_destroy(dp->dp_zrele_taskq);
  440         if (dp->dp_blkstats != NULL)
  441                 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
  442         kmem_free(dp, sizeof (dsl_pool_t));
  443 }
  444 
  445 void
  446 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
  447 {
  448         uint64_t obj;
  449         /*
  450          * Currently, we only create the obsolete_bpobj where there are
  451          * indirect vdevs with referenced mappings.
  452          */
  453         ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
  454         /* create and open the obsolete_bpobj */
  455         obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
  456         VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
  457         VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  458             DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
  459         spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
  460 }
  461 
  462 void
  463 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
  464 {
  465         spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
  466         VERIFY0(zap_remove(dp->dp_meta_objset,
  467             DMU_POOL_DIRECTORY_OBJECT,
  468             DMU_POOL_OBSOLETE_BPOBJ, tx));
  469         bpobj_free(dp->dp_meta_objset,
  470             dp->dp_obsolete_bpobj.bpo_object, tx);
  471         bpobj_close(&dp->dp_obsolete_bpobj);
  472 }
  473 
  474 dsl_pool_t *
  475 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
  476     dsl_crypto_params_t *dcp, uint64_t txg)
  477 {
  478         int err;
  479         dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
  480         dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
  481 #ifdef _KERNEL
  482         objset_t *os;
  483 #else
  484         objset_t *os __attribute__((unused));
  485 #endif
  486         dsl_dataset_t *ds;
  487         uint64_t obj;
  488 
  489         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
  490 
  491         /* create and open the MOS (meta-objset) */
  492         dp->dp_meta_objset = dmu_objset_create_impl(spa,
  493             NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
  494         spa->spa_meta_objset = dp->dp_meta_objset;
  495 
  496         /* create the pool directory */
  497         err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  498             DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
  499         ASSERT0(err);
  500 
  501         /* Initialize scan structures */
  502         VERIFY0(dsl_scan_init(dp, txg));
  503 
  504         /* create and open the root dir */
  505         dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
  506         VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
  507             NULL, dp, &dp->dp_root_dir));
  508 
  509         /* create and open the meta-objset dir */
  510         (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
  511         VERIFY0(dsl_pool_open_special_dir(dp,
  512             MOS_DIR_NAME, &dp->dp_mos_dir));
  513 
  514         if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
  515                 /* create and open the free dir */
  516                 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
  517                     FREE_DIR_NAME, tx);
  518                 VERIFY0(dsl_pool_open_special_dir(dp,
  519                     FREE_DIR_NAME, &dp->dp_free_dir));
  520 
  521                 /* create and open the free_bplist */
  522                 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
  523                 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  524                     DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
  525                 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
  526                     dp->dp_meta_objset, obj));
  527         }
  528 
  529         if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
  530                 dsl_pool_create_origin(dp, tx);
  531 
  532         /*
  533          * Some features may be needed when creating the root dataset, so we
  534          * create the feature objects here.
  535          */
  536         if (spa_version(spa) >= SPA_VERSION_FEATURES)
  537                 spa_feature_create_zap_objects(spa, tx);
  538 
  539         if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
  540             dcp->cp_crypt != ZIO_CRYPT_INHERIT)
  541                 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
  542 
  543         /* create the root dataset */
  544         obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
  545 
  546         /* create the root objset */
  547         VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
  548             DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
  549         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
  550         os = dmu_objset_create_impl(dp->dp_spa, ds,
  551             dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
  552         rrw_exit(&ds->ds_bp_rwlock, FTAG);
  553 #ifdef _KERNEL
  554         zfs_create_fs(os, kcred, zplprops, tx);
  555 #endif
  556         dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
  557 
  558         dmu_tx_commit(tx);
  559 
  560         rrw_exit(&dp->dp_config_rwlock, FTAG);
  561 
  562         return (dp);
  563 }
  564 
  565 /*
  566  * Account for the meta-objset space in its placeholder dsl_dir.
  567  */
  568 void
  569 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
  570     int64_t used, int64_t comp, int64_t uncomp)
  571 {
  572         ASSERT3U(comp, ==, uncomp); /* it's all metadata */
  573         mutex_enter(&dp->dp_lock);
  574         dp->dp_mos_used_delta += used;
  575         dp->dp_mos_compressed_delta += comp;
  576         dp->dp_mos_uncompressed_delta += uncomp;
  577         mutex_exit(&dp->dp_lock);
  578 }
  579 
  580 static void
  581 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
  582 {
  583         zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
  584         dmu_objset_sync(dp->dp_meta_objset, zio, tx);
  585         VERIFY0(zio_wait(zio));
  586         dmu_objset_sync_done(dp->dp_meta_objset, tx);
  587         taskq_wait(dp->dp_sync_taskq);
  588         multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
  589 
  590         dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
  591         spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
  592 }
  593 
  594 static void
  595 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
  596 {
  597         ASSERT(MUTEX_HELD(&dp->dp_lock));
  598 
  599         if (delta < 0)
  600                 ASSERT3U(-delta, <=, dp->dp_dirty_total);
  601 
  602         dp->dp_dirty_total += delta;
  603 
  604         /*
  605          * Note: we signal even when increasing dp_dirty_total.
  606          * This ensures forward progress -- each thread wakes the next waiter.
  607          */
  608         if (dp->dp_dirty_total < zfs_dirty_data_max)
  609                 cv_signal(&dp->dp_spaceavail_cv);
  610 }
  611 
  612 void
  613 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
  614 {
  615         ASSERT3S(size, >=, 0);
  616 
  617         aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
  618         aggsum_add(&dp->dp_wrlog_total, size);
  619 
  620         /* Choose a value slightly bigger than min dirty sync bytes */
  621         uint64_t sync_min =
  622             zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
  623         if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
  624                 txg_kick(dp, txg);
  625 }
  626 
  627 boolean_t
  628 dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
  629 {
  630         uint64_t delay_min_bytes =
  631             zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
  632 
  633         return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
  634 }
  635 
  636 static void
  637 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
  638 {
  639         int64_t delta;
  640         delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
  641         aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
  642         aggsum_add(&dp->dp_wrlog_total, delta);
  643         /* Compact per-CPU sums after the big change. */
  644         (void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
  645         (void) aggsum_value(&dp->dp_wrlog_total);
  646 }
  647 
  648 #ifdef ZFS_DEBUG
  649 static boolean_t
  650 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
  651 {
  652         spa_t *spa = dp->dp_spa;
  653         vdev_t *rvd = spa->spa_root_vdev;
  654 
  655         for (uint64_t c = 0; c < rvd->vdev_children; c++) {
  656                 vdev_t *vd = rvd->vdev_child[c];
  657                 txg_list_t *tl = &vd->vdev_ms_list;
  658                 metaslab_t *ms;
  659 
  660                 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
  661                     ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
  662                         VERIFY(range_tree_is_empty(ms->ms_freeing));
  663                         VERIFY(range_tree_is_empty(ms->ms_checkpointing));
  664                 }
  665         }
  666 
  667         return (B_TRUE);
  668 }
  669 #else
  670 #define dsl_early_sync_task_verify(dp, txg) \
  671         ((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
  672 #endif
  673 
  674 void
  675 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
  676 {
  677         zio_t *zio;
  678         dmu_tx_t *tx;
  679         dsl_dir_t *dd;
  680         dsl_dataset_t *ds;
  681         objset_t *mos = dp->dp_meta_objset;
  682         list_t synced_datasets;
  683 
  684         list_create(&synced_datasets, sizeof (dsl_dataset_t),
  685             offsetof(dsl_dataset_t, ds_synced_link));
  686 
  687         tx = dmu_tx_create_assigned(dp, txg);
  688 
  689         /*
  690          * Run all early sync tasks before writing out any dirty blocks.
  691          * For more info on early sync tasks see block comment in
  692          * dsl_early_sync_task().
  693          */
  694         if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
  695                 dsl_sync_task_t *dst;
  696 
  697                 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
  698                 while ((dst =
  699                     txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
  700                         ASSERT(dsl_early_sync_task_verify(dp, txg));
  701                         dsl_sync_task_sync(dst, tx);
  702                 }
  703                 ASSERT(dsl_early_sync_task_verify(dp, txg));
  704         }
  705 
  706         /*
  707          * Write out all dirty blocks of dirty datasets.
  708          */
  709         zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
  710         while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
  711                 /*
  712                  * We must not sync any non-MOS datasets twice, because
  713                  * we may have taken a snapshot of them.  However, we
  714                  * may sync newly-created datasets on pass 2.
  715                  */
  716                 ASSERT(!list_link_active(&ds->ds_synced_link));
  717                 list_insert_tail(&synced_datasets, ds);
  718                 dsl_dataset_sync(ds, zio, tx);
  719         }
  720         VERIFY0(zio_wait(zio));
  721 
  722         /*
  723          * Update the long range free counter after
  724          * we're done syncing user data
  725          */
  726         mutex_enter(&dp->dp_lock);
  727         ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
  728             dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
  729         dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
  730         mutex_exit(&dp->dp_lock);
  731 
  732         /*
  733          * After the data blocks have been written (ensured by the zio_wait()
  734          * above), update the user/group/project space accounting.  This happens
  735          * in tasks dispatched to dp_sync_taskq, so wait for them before
  736          * continuing.
  737          */
  738         for (ds = list_head(&synced_datasets); ds != NULL;
  739             ds = list_next(&synced_datasets, ds)) {
  740                 dmu_objset_sync_done(ds->ds_objset, tx);
  741         }
  742         taskq_wait(dp->dp_sync_taskq);
  743 
  744         /*
  745          * Sync the datasets again to push out the changes due to
  746          * userspace updates.  This must be done before we process the
  747          * sync tasks, so that any snapshots will have the correct
  748          * user accounting information (and we won't get confused
  749          * about which blocks are part of the snapshot).
  750          */
  751         zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
  752         while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
  753                 objset_t *os = ds->ds_objset;
  754 
  755                 ASSERT(list_link_active(&ds->ds_synced_link));
  756                 dmu_buf_rele(ds->ds_dbuf, ds);
  757                 dsl_dataset_sync(ds, zio, tx);
  758 
  759                 /*
  760                  * Release any key mappings created by calls to
  761                  * dsl_dataset_dirty() from the userquota accounting
  762                  * code paths.
  763                  */
  764                 if (os->os_encrypted && !os->os_raw_receive &&
  765                     !os->os_next_write_raw[txg & TXG_MASK]) {
  766                         ASSERT3P(ds->ds_key_mapping, !=, NULL);
  767                         key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
  768                 }
  769         }
  770         VERIFY0(zio_wait(zio));
  771 
  772         /*
  773          * Now that the datasets have been completely synced, we can
  774          * clean up our in-memory structures accumulated while syncing:
  775          *
  776          *  - move dead blocks from the pending deadlist and livelists
  777          *    to the on-disk versions
  778          *  - release hold from dsl_dataset_dirty()
  779          *  - release key mapping hold from dsl_dataset_dirty()
  780          */
  781         while ((ds = list_remove_head(&synced_datasets)) != NULL) {
  782                 objset_t *os = ds->ds_objset;
  783 
  784                 if (os->os_encrypted && !os->os_raw_receive &&
  785                     !os->os_next_write_raw[txg & TXG_MASK]) {
  786                         ASSERT3P(ds->ds_key_mapping, !=, NULL);
  787                         key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
  788                 }
  789 
  790                 dsl_dataset_sync_done(ds, tx);
  791         }
  792 
  793         while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
  794                 dsl_dir_sync(dd, tx);
  795         }
  796 
  797         /*
  798          * The MOS's space is accounted for in the pool/$MOS
  799          * (dp_mos_dir).  We can't modify the mos while we're syncing
  800          * it, so we remember the deltas and apply them here.
  801          */
  802         if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
  803             dp->dp_mos_uncompressed_delta != 0) {
  804                 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
  805                     dp->dp_mos_used_delta,
  806                     dp->dp_mos_compressed_delta,
  807                     dp->dp_mos_uncompressed_delta, tx);
  808                 dp->dp_mos_used_delta = 0;
  809                 dp->dp_mos_compressed_delta = 0;
  810                 dp->dp_mos_uncompressed_delta = 0;
  811         }
  812 
  813         if (dmu_objset_is_dirty(mos, txg)) {
  814                 dsl_pool_sync_mos(dp, tx);
  815         }
  816 
  817         /*
  818          * We have written all of the accounted dirty data, so our
  819          * dp_space_towrite should now be zero. However, some seldom-used
  820          * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
  821          * the accounting of any dirtied space now.
  822          *
  823          * Note that, besides any dirty data from datasets, the amount of
  824          * dirty data in the MOS is also accounted by the pool. Therefore,
  825          * we want to do this cleanup after dsl_pool_sync_mos() so we don't
  826          * attempt to update the accounting for the same dirty data twice.
  827          * (i.e. at this point we only update the accounting for the space
  828          * that we know that we "leaked").
  829          */
  830         dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
  831 
  832         /*
  833          * If we modify a dataset in the same txg that we want to destroy it,
  834          * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
  835          * dsl_dir_destroy_check() will fail if there are unexpected holds.
  836          * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
  837          * and clearing the hold on it) before we process the sync_tasks.
  838          * The MOS data dirtied by the sync_tasks will be synced on the next
  839          * pass.
  840          */
  841         if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
  842                 dsl_sync_task_t *dst;
  843                 /*
  844                  * No more sync tasks should have been added while we
  845                  * were syncing.
  846                  */
  847                 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
  848                 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
  849                         dsl_sync_task_sync(dst, tx);
  850         }
  851 
  852         dmu_tx_commit(tx);
  853 
  854         DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
  855 }
  856 
  857 void
  858 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
  859 {
  860         zilog_t *zilog;
  861 
  862         while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
  863                 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
  864                 /*
  865                  * We don't remove the zilog from the dp_dirty_zilogs
  866                  * list until after we've cleaned it. This ensures that
  867                  * callers of zilog_is_dirty() receive an accurate
  868                  * answer when they are racing with the spa sync thread.
  869                  */
  870                 zil_clean(zilog, txg);
  871                 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
  872                 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
  873                 dmu_buf_rele(ds->ds_dbuf, zilog);
  874         }
  875 
  876         dsl_pool_wrlog_clear(dp, txg);
  877 
  878         ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
  879 }
  880 
  881 /*
  882  * TRUE if the current thread is the tx_sync_thread or if we
  883  * are being called from SPA context during pool initialization.
  884  */
  885 int
  886 dsl_pool_sync_context(dsl_pool_t *dp)
  887 {
  888         return (curthread == dp->dp_tx.tx_sync_thread ||
  889             spa_is_initializing(dp->dp_spa) ||
  890             taskq_member(dp->dp_sync_taskq, curthread));
  891 }
  892 
  893 /*
  894  * This function returns the amount of allocatable space in the pool
  895  * minus whatever space is currently reserved by ZFS for specific
  896  * purposes. Specifically:
  897  *
  898  * 1] Any reserved SLOP space
  899  * 2] Any space used by the checkpoint
  900  * 3] Any space used for deferred frees
  901  *
  902  * The latter 2 are especially important because they are needed to
  903  * rectify the SPA's and DMU's different understanding of how much space
  904  * is used. Now the DMU is aware of that extra space tracked by the SPA
  905  * without having to maintain a separate special dir (e.g similar to
  906  * $MOS, $FREEING, and $LEAKED).
  907  *
  908  * Note: By deferred frees here, we mean the frees that were deferred
  909  * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
  910  * segments placed in ms_defer trees during metaslab_sync_done().
  911  */
  912 uint64_t
  913 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
  914 {
  915         spa_t *spa = dp->dp_spa;
  916         uint64_t space, resv, adjustedsize;
  917         uint64_t spa_deferred_frees =
  918             spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
  919 
  920         space = spa_get_dspace(spa)
  921             - spa_get_checkpoint_space(spa) - spa_deferred_frees;
  922         resv = spa_get_slop_space(spa);
  923 
  924         switch (slop_policy) {
  925         case ZFS_SPACE_CHECK_NORMAL:
  926                 break;
  927         case ZFS_SPACE_CHECK_RESERVED:
  928                 resv >>= 1;
  929                 break;
  930         case ZFS_SPACE_CHECK_EXTRA_RESERVED:
  931                 resv >>= 2;
  932                 break;
  933         case ZFS_SPACE_CHECK_NONE:
  934                 resv = 0;
  935                 break;
  936         default:
  937                 panic("invalid slop policy value: %d", slop_policy);
  938                 break;
  939         }
  940         adjustedsize = (space >= resv) ? (space - resv) : 0;
  941 
  942         return (adjustedsize);
  943 }
  944 
  945 uint64_t
  946 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
  947 {
  948         uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
  949         uint64_t deferred =
  950             metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
  951         uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
  952         return (quota);
  953 }
  954 
  955 uint64_t
  956 dsl_pool_deferred_space(dsl_pool_t *dp)
  957 {
  958         return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
  959 }
  960 
  961 boolean_t
  962 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
  963 {
  964         uint64_t delay_min_bytes =
  965             zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
  966 
  967         mutex_enter(&dp->dp_lock);
  968         uint64_t dirty = dp->dp_dirty_total;
  969         mutex_exit(&dp->dp_lock);
  970 
  971         return (dirty > delay_min_bytes);
  972 }
  973 
  974 static boolean_t
  975 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
  976 {
  977         ASSERT(MUTEX_HELD(&dp->dp_lock));
  978 
  979         uint64_t dirty_min_bytes =
  980             zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
  981         uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
  982 
  983         return (dirty > dirty_min_bytes);
  984 }
  985 
  986 void
  987 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
  988 {
  989         if (space > 0) {
  990                 mutex_enter(&dp->dp_lock);
  991                 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
  992                 dsl_pool_dirty_delta(dp, space);
  993                 boolean_t needsync = !dmu_tx_is_syncing(tx) &&
  994                     dsl_pool_need_dirty_sync(dp, tx->tx_txg);
  995                 mutex_exit(&dp->dp_lock);
  996 
  997                 if (needsync)
  998                         txg_kick(dp, tx->tx_txg);
  999         }
 1000 }
 1001 
 1002 void
 1003 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
 1004 {
 1005         ASSERT3S(space, >=, 0);
 1006         if (space == 0)
 1007                 return;
 1008 
 1009         mutex_enter(&dp->dp_lock);
 1010         if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
 1011                 /* XXX writing something we didn't dirty? */
 1012                 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
 1013         }
 1014         ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
 1015         dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
 1016         ASSERT3U(dp->dp_dirty_total, >=, space);
 1017         dsl_pool_dirty_delta(dp, -space);
 1018         mutex_exit(&dp->dp_lock);
 1019 }
 1020 
 1021 static int
 1022 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
 1023 {
 1024         dmu_tx_t *tx = arg;
 1025         dsl_dataset_t *ds, *prev = NULL;
 1026         int err;
 1027 
 1028         err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
 1029         if (err)
 1030                 return (err);
 1031 
 1032         while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
 1033                 err = dsl_dataset_hold_obj(dp,
 1034                     dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
 1035                 if (err) {
 1036                         dsl_dataset_rele(ds, FTAG);
 1037                         return (err);
 1038                 }
 1039 
 1040                 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
 1041                         break;
 1042                 dsl_dataset_rele(ds, FTAG);
 1043                 ds = prev;
 1044                 prev = NULL;
 1045         }
 1046 
 1047         if (prev == NULL) {
 1048                 prev = dp->dp_origin_snap;
 1049 
 1050                 /*
 1051                  * The $ORIGIN can't have any data, or the accounting
 1052                  * will be wrong.
 1053                  */
 1054                 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
 1055                 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
 1056                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
 1057 
 1058                 /* The origin doesn't get attached to itself */
 1059                 if (ds->ds_object == prev->ds_object) {
 1060                         dsl_dataset_rele(ds, FTAG);
 1061                         return (0);
 1062                 }
 1063 
 1064                 dmu_buf_will_dirty(ds->ds_dbuf, tx);
 1065                 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
 1066                 dsl_dataset_phys(ds)->ds_prev_snap_txg =
 1067                     dsl_dataset_phys(prev)->ds_creation_txg;
 1068 
 1069                 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
 1070                 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
 1071 
 1072                 dmu_buf_will_dirty(prev->ds_dbuf, tx);
 1073                 dsl_dataset_phys(prev)->ds_num_children++;
 1074 
 1075                 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
 1076                         ASSERT(ds->ds_prev == NULL);
 1077                         VERIFY0(dsl_dataset_hold_obj(dp,
 1078                             dsl_dataset_phys(ds)->ds_prev_snap_obj,
 1079                             ds, &ds->ds_prev));
 1080                 }
 1081         }
 1082 
 1083         ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
 1084         ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
 1085 
 1086         if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
 1087                 dmu_buf_will_dirty(prev->ds_dbuf, tx);
 1088                 dsl_dataset_phys(prev)->ds_next_clones_obj =
 1089                     zap_create(dp->dp_meta_objset,
 1090                     DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
 1091         }
 1092         VERIFY0(zap_add_int(dp->dp_meta_objset,
 1093             dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
 1094 
 1095         dsl_dataset_rele(ds, FTAG);
 1096         if (prev != dp->dp_origin_snap)
 1097                 dsl_dataset_rele(prev, FTAG);
 1098         return (0);
 1099 }
 1100 
 1101 void
 1102 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
 1103 {
 1104         ASSERT(dmu_tx_is_syncing(tx));
 1105         ASSERT(dp->dp_origin_snap != NULL);
 1106 
 1107         VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
 1108             tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
 1109 }
 1110 
 1111 static int
 1112 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
 1113 {
 1114         dmu_tx_t *tx = arg;
 1115         objset_t *mos = dp->dp_meta_objset;
 1116 
 1117         if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
 1118                 dsl_dataset_t *origin;
 1119 
 1120                 VERIFY0(dsl_dataset_hold_obj(dp,
 1121                     dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
 1122 
 1123                 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
 1124                         dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
 1125                         dsl_dir_phys(origin->ds_dir)->dd_clones =
 1126                             zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
 1127                             0, tx);
 1128                 }
 1129 
 1130                 VERIFY0(zap_add_int(dp->dp_meta_objset,
 1131                     dsl_dir_phys(origin->ds_dir)->dd_clones,
 1132                     ds->ds_object, tx));
 1133 
 1134                 dsl_dataset_rele(origin, FTAG);
 1135         }
 1136         return (0);
 1137 }
 1138 
 1139 void
 1140 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
 1141 {
 1142         uint64_t obj;
 1143 
 1144         ASSERT(dmu_tx_is_syncing(tx));
 1145 
 1146         (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
 1147         VERIFY0(dsl_pool_open_special_dir(dp,
 1148             FREE_DIR_NAME, &dp->dp_free_dir));
 1149 
 1150         /*
 1151          * We can't use bpobj_alloc(), because spa_version() still
 1152          * returns the old version, and we need a new-version bpobj with
 1153          * subobj support.  So call dmu_object_alloc() directly.
 1154          */
 1155         obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
 1156             SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
 1157         VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 1158             DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
 1159         VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
 1160 
 1161         VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
 1162             upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
 1163 }
 1164 
 1165 void
 1166 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
 1167 {
 1168         uint64_t dsobj;
 1169         dsl_dataset_t *ds;
 1170 
 1171         ASSERT(dmu_tx_is_syncing(tx));
 1172         ASSERT(dp->dp_origin_snap == NULL);
 1173         ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
 1174 
 1175         /* create the origin dir, ds, & snap-ds */
 1176         dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
 1177             NULL, 0, kcred, NULL, tx);
 1178         VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
 1179         dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
 1180         VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
 1181             dp, &dp->dp_origin_snap));
 1182         dsl_dataset_rele(ds, FTAG);
 1183 }
 1184 
 1185 taskq_t *
 1186 dsl_pool_zrele_taskq(dsl_pool_t *dp)
 1187 {
 1188         return (dp->dp_zrele_taskq);
 1189 }
 1190 
 1191 taskq_t *
 1192 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
 1193 {
 1194         return (dp->dp_unlinked_drain_taskq);
 1195 }
 1196 
 1197 /*
 1198  * Walk through the pool-wide zap object of temporary snapshot user holds
 1199  * and release them.
 1200  */
 1201 void
 1202 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
 1203 {
 1204         zap_attribute_t za;
 1205         zap_cursor_t zc;
 1206         objset_t *mos = dp->dp_meta_objset;
 1207         uint64_t zapobj = dp->dp_tmp_userrefs_obj;
 1208         nvlist_t *holds;
 1209 
 1210         if (zapobj == 0)
 1211                 return;
 1212         ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
 1213 
 1214         holds = fnvlist_alloc();
 1215 
 1216         for (zap_cursor_init(&zc, mos, zapobj);
 1217             zap_cursor_retrieve(&zc, &za) == 0;
 1218             zap_cursor_advance(&zc)) {
 1219                 char *htag;
 1220                 nvlist_t *tags;
 1221 
 1222                 htag = strchr(za.za_name, '-');
 1223                 *htag = '\0';
 1224                 ++htag;
 1225                 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
 1226                         tags = fnvlist_alloc();
 1227                         fnvlist_add_boolean(tags, htag);
 1228                         fnvlist_add_nvlist(holds, za.za_name, tags);
 1229                         fnvlist_free(tags);
 1230                 } else {
 1231                         fnvlist_add_boolean(tags, htag);
 1232                 }
 1233         }
 1234         dsl_dataset_user_release_tmp(dp, holds);
 1235         fnvlist_free(holds);
 1236         zap_cursor_fini(&zc);
 1237 }
 1238 
 1239 /*
 1240  * Create the pool-wide zap object for storing temporary snapshot holds.
 1241  */
 1242 static void
 1243 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
 1244 {
 1245         objset_t *mos = dp->dp_meta_objset;
 1246 
 1247         ASSERT(dp->dp_tmp_userrefs_obj == 0);
 1248         ASSERT(dmu_tx_is_syncing(tx));
 1249 
 1250         dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
 1251             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
 1252 }
 1253 
 1254 static int
 1255 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
 1256     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
 1257 {
 1258         objset_t *mos = dp->dp_meta_objset;
 1259         uint64_t zapobj = dp->dp_tmp_userrefs_obj;
 1260         char *name;
 1261         int error;
 1262 
 1263         ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
 1264         ASSERT(dmu_tx_is_syncing(tx));
 1265 
 1266         /*
 1267          * If the pool was created prior to SPA_VERSION_USERREFS, the
 1268          * zap object for temporary holds might not exist yet.
 1269          */
 1270         if (zapobj == 0) {
 1271                 if (holding) {
 1272                         dsl_pool_user_hold_create_obj(dp, tx);
 1273                         zapobj = dp->dp_tmp_userrefs_obj;
 1274                 } else {
 1275                         return (SET_ERROR(ENOENT));
 1276                 }
 1277         }
 1278 
 1279         name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
 1280         if (holding)
 1281                 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
 1282         else
 1283                 error = zap_remove(mos, zapobj, name, tx);
 1284         kmem_strfree(name);
 1285 
 1286         return (error);
 1287 }
 1288 
 1289 /*
 1290  * Add a temporary hold for the given dataset object and tag.
 1291  */
 1292 int
 1293 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
 1294     uint64_t now, dmu_tx_t *tx)
 1295 {
 1296         return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
 1297 }
 1298 
 1299 /*
 1300  * Release a temporary hold for the given dataset object and tag.
 1301  */
 1302 int
 1303 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
 1304     dmu_tx_t *tx)
 1305 {
 1306         return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
 1307             tx, B_FALSE));
 1308 }
 1309 
 1310 /*
 1311  * DSL Pool Configuration Lock
 1312  *
 1313  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
 1314  * creation / destruction / rename / property setting).  It must be held for
 1315  * read to hold a dataset or dsl_dir.  I.e. you must call
 1316  * dsl_pool_config_enter() or dsl_pool_hold() before calling
 1317  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
 1318  * must be held continuously until all datasets and dsl_dirs are released.
 1319  *
 1320  * The only exception to this rule is that if a "long hold" is placed on
 1321  * a dataset, then the dp_config_rwlock may be dropped while the dataset
 1322  * is still held.  The long hold will prevent the dataset from being
 1323  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
 1324  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
 1325  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
 1326  *
 1327  * Legitimate long-holders (including owners) should be long-running, cancelable
 1328  * tasks that should cause "zfs destroy" to fail.  This includes DMU
 1329  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
 1330  * "zfs send", and "zfs diff".  There are several other long-holders whose
 1331  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
 1332  *
 1333  * The usual formula for long-holding would be:
 1334  * dsl_pool_hold()
 1335  * dsl_dataset_hold()
 1336  * ... perform checks ...
 1337  * dsl_dataset_long_hold()
 1338  * dsl_pool_rele()
 1339  * ... perform long-running task ...
 1340  * dsl_dataset_long_rele()
 1341  * dsl_dataset_rele()
 1342  *
 1343  * Note that when the long hold is released, the dataset is still held but
 1344  * the pool is not held.  The dataset may change arbitrarily during this time
 1345  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
 1346  * dataset except release it.
 1347  *
 1348  * Operations generally fall somewhere into the following taxonomy:
 1349  *
 1350  *                              Read-Only             Modifying
 1351  *
 1352  *    Dataset Layer / MOS        zfs get             zfs destroy
 1353  *
 1354  *     Individual Dataset         read()                write()
 1355  *
 1356  *
 1357  * Dataset Layer Operations
 1358  *
 1359  * Modifying operations should generally use dsl_sync_task().  The synctask
 1360  * infrastructure enforces proper locking strategy with respect to the
 1361  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
 1362  *
 1363  * Read-only operations will manually hold the pool, then the dataset, obtain
 1364  * information from the dataset, then release the pool and dataset.
 1365  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
 1366  * hold/rele.
 1367  *
 1368  *
 1369  * Operations On Individual Datasets
 1370  *
 1371  * Objects _within_ an objset should only be modified by the current 'owner'
 1372  * of the objset to prevent incorrect concurrent modification. Thus, use
 1373  * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
 1374  * and fail with EBUSY if there is already an owner. The owner can then
 1375  * implement its own locking strategy, independent of the dataset layer's
 1376  * locking infrastructure.
 1377  * (E.g., the ZPL has its own set of locks to control concurrency. A regular
 1378  *  vnop will not reach into the dataset layer).
 1379  *
 1380  * Ideally, objects would also only be read by the objset’s owner, so that we
 1381  * don’t observe state mid-modification.
 1382  * (E.g. the ZPL is creating a new object and linking it into a directory; if
 1383  * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
 1384  * intermediate state.  The ioctl level violates this but in pretty benign
 1385  * ways, e.g. reading the zpl props object.)
 1386  */
 1387 
 1388 int
 1389 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
 1390 {
 1391         spa_t *spa;
 1392         int error;
 1393 
 1394         error = spa_open(name, &spa, tag);
 1395         if (error == 0) {
 1396                 *dp = spa_get_dsl(spa);
 1397                 dsl_pool_config_enter(*dp, tag);
 1398         }
 1399         return (error);
 1400 }
 1401 
 1402 void
 1403 dsl_pool_rele(dsl_pool_t *dp, const void *tag)
 1404 {
 1405         dsl_pool_config_exit(dp, tag);
 1406         spa_close(dp->dp_spa, tag);
 1407 }
 1408 
 1409 void
 1410 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
 1411 {
 1412         /*
 1413          * We use a "reentrant" reader-writer lock, but not reentrantly.
 1414          *
 1415          * The rrwlock can (with the track_all flag) track all reading threads,
 1416          * which is very useful for debugging which code path failed to release
 1417          * the lock, and for verifying that the *current* thread does hold
 1418          * the lock.
 1419          *
 1420          * (Unlike a rwlock, which knows that N threads hold it for
 1421          * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
 1422          * if any thread holds it for read, even if this thread doesn't).
 1423          */
 1424         ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
 1425         rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
 1426 }
 1427 
 1428 void
 1429 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
 1430 {
 1431         ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
 1432         rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
 1433 }
 1434 
 1435 void
 1436 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
 1437 {
 1438         rrw_exit(&dp->dp_config_rwlock, tag);
 1439 }
 1440 
 1441 boolean_t
 1442 dsl_pool_config_held(dsl_pool_t *dp)
 1443 {
 1444         return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
 1445 }
 1446 
 1447 boolean_t
 1448 dsl_pool_config_held_writer(dsl_pool_t *dp)
 1449 {
 1450         return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
 1451 }
 1452 
 1453 EXPORT_SYMBOL(dsl_pool_config_enter);
 1454 EXPORT_SYMBOL(dsl_pool_config_exit);
 1455 
 1456 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
 1457 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
 1458         "Max percent of RAM allowed to be dirty");
 1459 
 1460 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
 1461 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
 1462         "zfs_dirty_data_max upper bound as % of RAM");
 1463 
 1464 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
 1465         "Transaction delay threshold");
 1466 
 1467 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
 1468         "Determines the dirty space limit");
 1469 
 1470 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
 1471         "The size limit of write-transaction zil log data");
 1472 
 1473 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
 1474 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
 1475         "zfs_dirty_data_max upper bound in bytes");
 1476 
 1477 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
 1478         "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
 1479 
 1480 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
 1481         "How quickly delay approaches infinity");
 1482 
 1483 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
 1484         "Max percent of CPUs that are used to sync dirty data");
 1485 
 1486 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
 1487         "Max percent of CPUs that are used per dp_sync_taskq");
 1488 
 1489 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
 1490         "Number of taskq entries that are pre-populated");
 1491 
 1492 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
 1493         "Max number of taskq entries that are cached");

Cache object: af0c308b07f959275ef1a7cc1da9180c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.