The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/dsl_scan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
   24  * Copyright 2016 Gary Mills
   25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
   26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
   27  * Copyright 2019 Joyent, Inc.
   28  */
   29 
   30 #include <sys/dsl_scan.h>
   31 #include <sys/dsl_pool.h>
   32 #include <sys/dsl_dataset.h>
   33 #include <sys/dsl_prop.h>
   34 #include <sys/dsl_dir.h>
   35 #include <sys/dsl_synctask.h>
   36 #include <sys/dnode.h>
   37 #include <sys/dmu_tx.h>
   38 #include <sys/dmu_objset.h>
   39 #include <sys/arc.h>
   40 #include <sys/zap.h>
   41 #include <sys/zio.h>
   42 #include <sys/zfs_context.h>
   43 #include <sys/fs/zfs.h>
   44 #include <sys/zfs_znode.h>
   45 #include <sys/spa_impl.h>
   46 #include <sys/vdev_impl.h>
   47 #include <sys/zil_impl.h>
   48 #include <sys/zio_checksum.h>
   49 #include <sys/ddt.h>
   50 #include <sys/sa.h>
   51 #include <sys/sa_impl.h>
   52 #include <sys/zfeature.h>
   53 #include <sys/abd.h>
   54 #include <sys/range_tree.h>
   55 #ifdef _KERNEL
   56 #include <sys/zfs_vfsops.h>
   57 #endif
   58 
   59 /*
   60  * Grand theory statement on scan queue sorting
   61  *
   62  * Scanning is implemented by recursively traversing all indirection levels
   63  * in an object and reading all blocks referenced from said objects. This
   64  * results in us approximately traversing the object from lowest logical
   65  * offset to the highest. For best performance, we would want the logical
   66  * blocks to be physically contiguous. However, this is frequently not the
   67  * case with pools given the allocation patterns of copy-on-write filesystems.
   68  * So instead, we put the I/Os into a reordering queue and issue them in a
   69  * way that will most benefit physical disks (LBA-order).
   70  *
   71  * Queue management:
   72  *
   73  * Ideally, we would want to scan all metadata and queue up all block I/O
   74  * prior to starting to issue it, because that allows us to do an optimal
   75  * sorting job. This can however consume large amounts of memory. Therefore
   76  * we continuously monitor the size of the queues and constrain them to 5%
   77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
   78  * limit, we clear out a few of the largest extents at the head of the queues
   79  * to make room for more scanning. Hopefully, these extents will be fairly
   80  * large and contiguous, allowing us to approach sequential I/O throughput
   81  * even without a fully sorted tree.
   82  *
   83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
   84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
   85  * metadata on the pool, or we need to make room in memory because our
   86  * queues are too large, dsl_scan_visit() is postponed and
   87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
   88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
   89  * allows us to provide maximum sequential I/O throughput for the majority of
   90  * I/O's issued since sequential I/O performance is significantly negatively
   91  * impacted if it is interleaved with random I/O.
   92  *
   93  * Implementation Notes
   94  *
   95  * One side effect of the queued scanning algorithm is that the scanning code
   96  * needs to be notified whenever a block is freed. This is needed to allow
   97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
   98  * we do not attempt to queue gang blocks to be issued sequentially since this
   99  * is very hard to do and would have an extremely limited performance benefit.
  100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
  101  * algorithm.
  102  *
  103  * Backwards compatibility
  104  *
  105  * This new algorithm is backwards compatible with the legacy on-disk data
  106  * structures (and therefore does not require a new feature flag).
  107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
  108  * will stop scanning metadata (in logical order) and wait for all outstanding
  109  * sorted I/O to complete. Once this is done, we write out a checkpoint
  110  * bookmark, indicating that we have scanned everything logically before it.
  111  * If the pool is imported on a machine without the new sorting algorithm,
  112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
  113  */
  114 
  115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
  116     const zbookmark_phys_t *);
  117 
  118 static scan_cb_t dsl_scan_scrub_cb;
  119 
  120 static int scan_ds_queue_compare(const void *a, const void *b);
  121 static int scan_prefetch_queue_compare(const void *a, const void *b);
  122 static void scan_ds_queue_clear(dsl_scan_t *scn);
  123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
  124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
  125     uint64_t *txg);
  126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
  127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
  128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
  129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd);
  130 
  131 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
  132 static int zfs_scan_blkstats = 0;
  133 
  134 /*
  135  * By default zfs will check to ensure it is not over the hard memory
  136  * limit before each txg. If finer-grained control of this is needed
  137  * this value can be set to 1 to enable checking before scanning each
  138  * block.
  139  */
  140 static int zfs_scan_strict_mem_lim = B_FALSE;
  141 
  142 /*
  143  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
  144  * to strike a balance here between keeping the vdev queues full of I/Os
  145  * at all times and not overflowing the queues to cause long latency,
  146  * which would cause long txg sync times. No matter what, we will not
  147  * overload the drives with I/O, since that is protected by
  148  * zfs_vdev_scrub_max_active.
  149  */
  150 static uint64_t zfs_scan_vdev_limit = 4 << 20;
  151 
  152 static uint_t zfs_scan_issue_strategy = 0;
  153 
  154 /* don't queue & sort zios, go direct */
  155 static int zfs_scan_legacy = B_FALSE;
  156 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
  157 
  158 /*
  159  * fill_weight is non-tunable at runtime, so we copy it at module init from
  160  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
  161  * break queue sorting.
  162  */
  163 static uint_t zfs_scan_fill_weight = 3;
  164 static uint64_t fill_weight;
  165 
  166 /* See dsl_scan_should_clear() for details on the memory limit tunables */
  167 static const uint64_t zfs_scan_mem_lim_min = 16 << 20;  /* bytes */
  168 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;    /* bytes */
  169 
  170 
  171 /* fraction of physmem */
  172 static uint_t zfs_scan_mem_lim_fact = 20;
  173 
  174 /* fraction of mem lim above */
  175 static uint_t zfs_scan_mem_lim_soft_fact = 20;
  176 
  177 /* minimum milliseconds to scrub per txg */
  178 static uint_t zfs_scrub_min_time_ms = 1000;
  179 
  180 /* minimum milliseconds to obsolete per txg */
  181 static uint_t zfs_obsolete_min_time_ms = 500;
  182 
  183 /* minimum milliseconds to free per txg */
  184 static uint_t zfs_free_min_time_ms = 1000;
  185 
  186 /* minimum milliseconds to resilver per txg */
  187 static uint_t zfs_resilver_min_time_ms = 3000;
  188 
  189 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
  190 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
  191 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
  192 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
  193 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
  194 /* max number of blocks to free in a single TXG */
  195 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
  196 /* max number of dedup blocks to free in a single TXG */
  197 static uint64_t zfs_max_async_dedup_frees = 100000;
  198 
  199 /* set to disable resilver deferring */
  200 static int zfs_resilver_disable_defer = B_FALSE;
  201 
  202 /*
  203  * We wait a few txgs after importing a pool to begin scanning so that
  204  * the import / mounting code isn't held up by scrub / resilver IO.
  205  * Unfortunately, it is a bit difficult to determine exactly how long
  206  * this will take since userspace will trigger fs mounts asynchronously
  207  * and the kernel will create zvol minors asynchronously. As a result,
  208  * the value provided here is a bit arbitrary, but represents a
  209  * reasonable estimate of how many txgs it will take to finish fully
  210  * importing a pool
  211  */
  212 #define SCAN_IMPORT_WAIT_TXGS           5
  213 
  214 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
  215         ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
  216         (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
  217 
  218 /*
  219  * Enable/disable the processing of the free_bpobj object.
  220  */
  221 static int zfs_free_bpobj_enabled = 1;
  222 
  223 /* the order has to match pool_scan_type */
  224 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
  225         NULL,
  226         dsl_scan_scrub_cb,      /* POOL_SCAN_SCRUB */
  227         dsl_scan_scrub_cb,      /* POOL_SCAN_RESILVER */
  228 };
  229 
  230 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
  231 typedef struct {
  232         uint64_t        sds_dsobj;
  233         uint64_t        sds_txg;
  234         avl_node_t      sds_node;
  235 } scan_ds_t;
  236 
  237 /*
  238  * This controls what conditions are placed on dsl_scan_sync_state():
  239  * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
  240  * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
  241  * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
  242  *      write out the scn_phys_cached version.
  243  * See dsl_scan_sync_state for details.
  244  */
  245 typedef enum {
  246         SYNC_OPTIONAL,
  247         SYNC_MANDATORY,
  248         SYNC_CACHED
  249 } state_sync_type_t;
  250 
  251 /*
  252  * This struct represents the minimum information needed to reconstruct a
  253  * zio for sequential scanning. This is useful because many of these will
  254  * accumulate in the sequential IO queues before being issued, so saving
  255  * memory matters here.
  256  */
  257 typedef struct scan_io {
  258         /* fields from blkptr_t */
  259         uint64_t                sio_blk_prop;
  260         uint64_t                sio_phys_birth;
  261         uint64_t                sio_birth;
  262         zio_cksum_t             sio_cksum;
  263         uint32_t                sio_nr_dvas;
  264 
  265         /* fields from zio_t */
  266         uint32_t                sio_flags;
  267         zbookmark_phys_t        sio_zb;
  268 
  269         /* members for queue sorting */
  270         union {
  271                 avl_node_t      sio_addr_node; /* link into issuing queue */
  272                 list_node_t     sio_list_node; /* link for issuing to disk */
  273         } sio_nodes;
  274 
  275         /*
  276          * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
  277          * depending on how many were in the original bp. Only the
  278          * first DVA is really used for sorting and issuing purposes.
  279          * The other DVAs (if provided) simply exist so that the zio
  280          * layer can find additional copies to repair from in the
  281          * event of an error. This array must go at the end of the
  282          * struct to allow this for the variable number of elements.
  283          */
  284         dva_t                   sio_dva[];
  285 } scan_io_t;
  286 
  287 #define SIO_SET_OFFSET(sio, x)          DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
  288 #define SIO_SET_ASIZE(sio, x)           DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
  289 #define SIO_GET_OFFSET(sio)             DVA_GET_OFFSET(&(sio)->sio_dva[0])
  290 #define SIO_GET_ASIZE(sio)              DVA_GET_ASIZE(&(sio)->sio_dva[0])
  291 #define SIO_GET_END_OFFSET(sio)         \
  292         (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
  293 #define SIO_GET_MUSED(sio)              \
  294         (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
  295 
  296 struct dsl_scan_io_queue {
  297         dsl_scan_t      *q_scn; /* associated dsl_scan_t */
  298         vdev_t          *q_vd; /* top-level vdev that this queue represents */
  299         zio_t           *q_zio; /* scn_zio_root child for waiting on IO */
  300 
  301         /* trees used for sorting I/Os and extents of I/Os */
  302         range_tree_t    *q_exts_by_addr;
  303         zfs_btree_t     q_exts_by_size;
  304         avl_tree_t      q_sios_by_addr;
  305         uint64_t        q_sio_memused;
  306         uint64_t        q_last_ext_addr;
  307 
  308         /* members for zio rate limiting */
  309         uint64_t        q_maxinflight_bytes;
  310         uint64_t        q_inflight_bytes;
  311         kcondvar_t      q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
  312 
  313         /* per txg statistics */
  314         uint64_t        q_total_seg_size_this_txg;
  315         uint64_t        q_segs_this_txg;
  316         uint64_t        q_total_zio_size_this_txg;
  317         uint64_t        q_zios_this_txg;
  318 };
  319 
  320 /* private data for dsl_scan_prefetch_cb() */
  321 typedef struct scan_prefetch_ctx {
  322         zfs_refcount_t spc_refcnt;      /* refcount for memory management */
  323         dsl_scan_t *spc_scn;            /* dsl_scan_t for the pool */
  324         boolean_t spc_root;             /* is this prefetch for an objset? */
  325         uint8_t spc_indblkshift;        /* dn_indblkshift of current dnode */
  326         uint16_t spc_datablkszsec;      /* dn_idatablkszsec of current dnode */
  327 } scan_prefetch_ctx_t;
  328 
  329 /* private data for dsl_scan_prefetch() */
  330 typedef struct scan_prefetch_issue_ctx {
  331         avl_node_t spic_avl_node;       /* link into scn->scn_prefetch_queue */
  332         scan_prefetch_ctx_t *spic_spc;  /* spc for the callback */
  333         blkptr_t spic_bp;               /* bp to prefetch */
  334         zbookmark_phys_t spic_zb;       /* bookmark to prefetch */
  335 } scan_prefetch_issue_ctx_t;
  336 
  337 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
  338     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
  339 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
  340     scan_io_t *sio);
  341 
  342 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
  343 static void scan_io_queues_destroy(dsl_scan_t *scn);
  344 
  345 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
  346 
  347 /* sio->sio_nr_dvas must be set so we know which cache to free from */
  348 static void
  349 sio_free(scan_io_t *sio)
  350 {
  351         ASSERT3U(sio->sio_nr_dvas, >, 0);
  352         ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
  353 
  354         kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
  355 }
  356 
  357 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
  358 static scan_io_t *
  359 sio_alloc(unsigned short nr_dvas)
  360 {
  361         ASSERT3U(nr_dvas, >, 0);
  362         ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
  363 
  364         return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
  365 }
  366 
  367 void
  368 scan_init(void)
  369 {
  370         /*
  371          * This is used in ext_size_compare() to weight segments
  372          * based on how sparse they are. This cannot be changed
  373          * mid-scan and the tree comparison functions don't currently
  374          * have a mechanism for passing additional context to the
  375          * compare functions. Thus we store this value globally and
  376          * we only allow it to be set at module initialization time
  377          */
  378         fill_weight = zfs_scan_fill_weight;
  379 
  380         for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
  381                 char name[36];
  382 
  383                 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
  384                 sio_cache[i] = kmem_cache_create(name,
  385                     (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
  386                     0, NULL, NULL, NULL, NULL, NULL, 0);
  387         }
  388 }
  389 
  390 void
  391 scan_fini(void)
  392 {
  393         for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
  394                 kmem_cache_destroy(sio_cache[i]);
  395         }
  396 }
  397 
  398 static inline boolean_t
  399 dsl_scan_is_running(const dsl_scan_t *scn)
  400 {
  401         return (scn->scn_phys.scn_state == DSS_SCANNING);
  402 }
  403 
  404 boolean_t
  405 dsl_scan_resilvering(dsl_pool_t *dp)
  406 {
  407         return (dsl_scan_is_running(dp->dp_scan) &&
  408             dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
  409 }
  410 
  411 static inline void
  412 sio2bp(const scan_io_t *sio, blkptr_t *bp)
  413 {
  414         memset(bp, 0, sizeof (*bp));
  415         bp->blk_prop = sio->sio_blk_prop;
  416         bp->blk_phys_birth = sio->sio_phys_birth;
  417         bp->blk_birth = sio->sio_birth;
  418         bp->blk_fill = 1;       /* we always only work with data pointers */
  419         bp->blk_cksum = sio->sio_cksum;
  420 
  421         ASSERT3U(sio->sio_nr_dvas, >, 0);
  422         ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
  423 
  424         memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
  425 }
  426 
  427 static inline void
  428 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
  429 {
  430         sio->sio_blk_prop = bp->blk_prop;
  431         sio->sio_phys_birth = bp->blk_phys_birth;
  432         sio->sio_birth = bp->blk_birth;
  433         sio->sio_cksum = bp->blk_cksum;
  434         sio->sio_nr_dvas = BP_GET_NDVAS(bp);
  435 
  436         /*
  437          * Copy the DVAs to the sio. We need all copies of the block so
  438          * that the self healing code can use the alternate copies if the
  439          * first is corrupted. We want the DVA at index dva_i to be first
  440          * in the sio since this is the primary one that we want to issue.
  441          */
  442         for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
  443                 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
  444         }
  445 }
  446 
  447 int
  448 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
  449 {
  450         int err;
  451         dsl_scan_t *scn;
  452         spa_t *spa = dp->dp_spa;
  453         uint64_t f;
  454 
  455         scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
  456         scn->scn_dp = dp;
  457 
  458         /*
  459          * It's possible that we're resuming a scan after a reboot so
  460          * make sure that the scan_async_destroying flag is initialized
  461          * appropriately.
  462          */
  463         ASSERT(!scn->scn_async_destroying);
  464         scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
  465             SPA_FEATURE_ASYNC_DESTROY);
  466 
  467         /*
  468          * Calculate the max number of in-flight bytes for pool-wide
  469          * scanning operations (minimum 1MB). Limits for the issuing
  470          * phase are done per top-level vdev and are handled separately.
  471          */
  472         scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
  473             dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
  474 
  475         avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
  476             offsetof(scan_ds_t, sds_node));
  477         avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
  478             sizeof (scan_prefetch_issue_ctx_t),
  479             offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
  480 
  481         err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  482             "scrub_func", sizeof (uint64_t), 1, &f);
  483         if (err == 0) {
  484                 /*
  485                  * There was an old-style scrub in progress.  Restart a
  486                  * new-style scrub from the beginning.
  487                  */
  488                 scn->scn_restart_txg = txg;
  489                 zfs_dbgmsg("old-style scrub was in progress for %s; "
  490                     "restarting new-style scrub in txg %llu",
  491                     spa->spa_name,
  492                     (longlong_t)scn->scn_restart_txg);
  493 
  494                 /*
  495                  * Load the queue obj from the old location so that it
  496                  * can be freed by dsl_scan_done().
  497                  */
  498                 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  499                     "scrub_queue", sizeof (uint64_t), 1,
  500                     &scn->scn_phys.scn_queue_obj);
  501         } else {
  502                 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
  503                     DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
  504                     &scn->scn_phys);
  505                 /*
  506                  * Detect if the pool contains the signature of #2094.  If it
  507                  * does properly update the scn->scn_phys structure and notify
  508                  * the administrator by setting an errata for the pool.
  509                  */
  510                 if (err == EOVERFLOW) {
  511                         uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
  512                         VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
  513                         VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
  514                             (23 * sizeof (uint64_t)));
  515 
  516                         err = zap_lookup(dp->dp_meta_objset,
  517                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
  518                             sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
  519                         if (err == 0) {
  520                                 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
  521 
  522                                 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
  523                                     scn->scn_async_destroying) {
  524                                         spa->spa_errata =
  525                                             ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
  526                                         return (EOVERFLOW);
  527                                 }
  528 
  529                                 memcpy(&scn->scn_phys, zaptmp,
  530                                     SCAN_PHYS_NUMINTS * sizeof (uint64_t));
  531                                 scn->scn_phys.scn_flags = overflow;
  532 
  533                                 /* Required scrub already in progress. */
  534                                 if (scn->scn_phys.scn_state == DSS_FINISHED ||
  535                                     scn->scn_phys.scn_state == DSS_CANCELED)
  536                                         spa->spa_errata =
  537                                             ZPOOL_ERRATA_ZOL_2094_SCRUB;
  538                         }
  539                 }
  540 
  541                 if (err == ENOENT)
  542                         return (0);
  543                 else if (err)
  544                         return (err);
  545 
  546                 /*
  547                  * We might be restarting after a reboot, so jump the issued
  548                  * counter to how far we've scanned. We know we're consistent
  549                  * up to here.
  550                  */
  551                 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
  552 
  553                 if (dsl_scan_is_running(scn) &&
  554                     spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
  555                         /*
  556                          * A new-type scrub was in progress on an old
  557                          * pool, and the pool was accessed by old
  558                          * software.  Restart from the beginning, since
  559                          * the old software may have changed the pool in
  560                          * the meantime.
  561                          */
  562                         scn->scn_restart_txg = txg;
  563                         zfs_dbgmsg("new-style scrub for %s was modified "
  564                             "by old software; restarting in txg %llu",
  565                             spa->spa_name,
  566                             (longlong_t)scn->scn_restart_txg);
  567                 } else if (dsl_scan_resilvering(dp)) {
  568                         /*
  569                          * If a resilver is in progress and there are already
  570                          * errors, restart it instead of finishing this scan and
  571                          * then restarting it. If there haven't been any errors
  572                          * then remember that the incore DTL is valid.
  573                          */
  574                         if (scn->scn_phys.scn_errors > 0) {
  575                                 scn->scn_restart_txg = txg;
  576                                 zfs_dbgmsg("resilver can't excise DTL_MISSING "
  577                                     "when finished; restarting on %s in txg "
  578                                     "%llu",
  579                                     spa->spa_name,
  580                                     (u_longlong_t)scn->scn_restart_txg);
  581                         } else {
  582                                 /* it's safe to excise DTL when finished */
  583                                 spa->spa_scrub_started = B_TRUE;
  584                         }
  585                 }
  586         }
  587 
  588         memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
  589 
  590         /* reload the queue into the in-core state */
  591         if (scn->scn_phys.scn_queue_obj != 0) {
  592                 zap_cursor_t zc;
  593                 zap_attribute_t za;
  594 
  595                 for (zap_cursor_init(&zc, dp->dp_meta_objset,
  596                     scn->scn_phys.scn_queue_obj);
  597                     zap_cursor_retrieve(&zc, &za) == 0;
  598                     (void) zap_cursor_advance(&zc)) {
  599                         scan_ds_queue_insert(scn,
  600                             zfs_strtonum(za.za_name, NULL),
  601                             za.za_first_integer);
  602                 }
  603                 zap_cursor_fini(&zc);
  604         }
  605 
  606         spa_scan_stat_init(spa);
  607         return (0);
  608 }
  609 
  610 void
  611 dsl_scan_fini(dsl_pool_t *dp)
  612 {
  613         if (dp->dp_scan != NULL) {
  614                 dsl_scan_t *scn = dp->dp_scan;
  615 
  616                 if (scn->scn_taskq != NULL)
  617                         taskq_destroy(scn->scn_taskq);
  618 
  619                 scan_ds_queue_clear(scn);
  620                 avl_destroy(&scn->scn_queue);
  621                 scan_ds_prefetch_queue_clear(scn);
  622                 avl_destroy(&scn->scn_prefetch_queue);
  623 
  624                 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
  625                 dp->dp_scan = NULL;
  626         }
  627 }
  628 
  629 static boolean_t
  630 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
  631 {
  632         return (scn->scn_restart_txg != 0 &&
  633             scn->scn_restart_txg <= tx->tx_txg);
  634 }
  635 
  636 boolean_t
  637 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
  638 {
  639         return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
  640             (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
  641 }
  642 
  643 boolean_t
  644 dsl_scan_scrubbing(const dsl_pool_t *dp)
  645 {
  646         dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
  647 
  648         return (scn_phys->scn_state == DSS_SCANNING &&
  649             scn_phys->scn_func == POOL_SCAN_SCRUB);
  650 }
  651 
  652 boolean_t
  653 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
  654 {
  655         return (dsl_scan_scrubbing(scn->scn_dp) &&
  656             scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
  657 }
  658 
  659 /*
  660  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
  661  * Because we can be running in the block sorting algorithm, we do not always
  662  * want to write out the record, only when it is "safe" to do so. This safety
  663  * condition is achieved by making sure that the sorting queues are empty
  664  * (scn_queues_pending == 0). When this condition is not true, the sync'd state
  665  * is inconsistent with how much actual scanning progress has been made. The
  666  * kind of sync to be performed is specified by the sync_type argument. If the
  667  * sync is optional, we only sync if the queues are empty. If the sync is
  668  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
  669  * third possible state is a "cached" sync. This is done in response to:
  670  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
  671  *      destroyed, so we wouldn't be able to restart scanning from it.
  672  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
  673  *      superseded by a newer snapshot.
  674  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
  675  *      swapped with its clone.
  676  * In all cases, a cached sync simply rewrites the last record we've written,
  677  * just slightly modified. For the modifications that are performed to the
  678  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
  679  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
  680  */
  681 static void
  682 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
  683 {
  684         int i;
  685         spa_t *spa = scn->scn_dp->dp_spa;
  686 
  687         ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
  688         if (scn->scn_queues_pending == 0) {
  689                 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
  690                         vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
  691                         dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
  692 
  693                         if (q == NULL)
  694                                 continue;
  695 
  696                         mutex_enter(&vd->vdev_scan_io_queue_lock);
  697                         ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
  698                         ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
  699                             NULL);
  700                         ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
  701                         mutex_exit(&vd->vdev_scan_io_queue_lock);
  702                 }
  703 
  704                 if (scn->scn_phys.scn_queue_obj != 0)
  705                         scan_ds_queue_sync(scn, tx);
  706                 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
  707                     DMU_POOL_DIRECTORY_OBJECT,
  708                     DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
  709                     &scn->scn_phys, tx));
  710                 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
  711                     sizeof (scn->scn_phys));
  712 
  713                 if (scn->scn_checkpointing)
  714                         zfs_dbgmsg("finish scan checkpoint for %s",
  715                             spa->spa_name);
  716 
  717                 scn->scn_checkpointing = B_FALSE;
  718                 scn->scn_last_checkpoint = ddi_get_lbolt();
  719         } else if (sync_type == SYNC_CACHED) {
  720                 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
  721                     DMU_POOL_DIRECTORY_OBJECT,
  722                     DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
  723                     &scn->scn_phys_cached, tx));
  724         }
  725 }
  726 
  727 int
  728 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
  729 {
  730         (void) arg;
  731         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
  732         vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
  733 
  734         if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
  735                 return (SET_ERROR(EBUSY));
  736 
  737         return (0);
  738 }
  739 
  740 void
  741 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
  742 {
  743         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
  744         pool_scan_func_t *funcp = arg;
  745         dmu_object_type_t ot = 0;
  746         dsl_pool_t *dp = scn->scn_dp;
  747         spa_t *spa = dp->dp_spa;
  748 
  749         ASSERT(!dsl_scan_is_running(scn));
  750         ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
  751         memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
  752         scn->scn_phys.scn_func = *funcp;
  753         scn->scn_phys.scn_state = DSS_SCANNING;
  754         scn->scn_phys.scn_min_txg = 0;
  755         scn->scn_phys.scn_max_txg = tx->tx_txg;
  756         scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
  757         scn->scn_phys.scn_start_time = gethrestime_sec();
  758         scn->scn_phys.scn_errors = 0;
  759         scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
  760         scn->scn_issued_before_pass = 0;
  761         scn->scn_restart_txg = 0;
  762         scn->scn_done_txg = 0;
  763         scn->scn_last_checkpoint = 0;
  764         scn->scn_checkpointing = B_FALSE;
  765         spa_scan_stat_init(spa);
  766 
  767         if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
  768                 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
  769 
  770                 /* rewrite all disk labels */
  771                 vdev_config_dirty(spa->spa_root_vdev);
  772 
  773                 if (vdev_resilver_needed(spa->spa_root_vdev,
  774                     &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
  775                         nvlist_t *aux = fnvlist_alloc();
  776                         fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
  777                             "healing");
  778                         spa_event_notify(spa, NULL, aux,
  779                             ESC_ZFS_RESILVER_START);
  780                         nvlist_free(aux);
  781                 } else {
  782                         spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
  783                 }
  784 
  785                 spa->spa_scrub_started = B_TRUE;
  786                 /*
  787                  * If this is an incremental scrub, limit the DDT scrub phase
  788                  * to just the auto-ditto class (for correctness); the rest
  789                  * of the scrub should go faster using top-down pruning.
  790                  */
  791                 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
  792                         scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
  793 
  794                 /*
  795                  * When starting a resilver clear any existing rebuild state.
  796                  * This is required to prevent stale rebuild status from
  797                  * being reported when a rebuild is run, then a resilver and
  798                  * finally a scrub.  In which case only the scrub status
  799                  * should be reported by 'zpool status'.
  800                  */
  801                 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
  802                         vdev_t *rvd = spa->spa_root_vdev;
  803                         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
  804                                 vdev_t *vd = rvd->vdev_child[i];
  805                                 vdev_rebuild_clear_sync(
  806                                     (void *)(uintptr_t)vd->vdev_id, tx);
  807                         }
  808                 }
  809         }
  810 
  811         /* back to the generic stuff */
  812 
  813         if (zfs_scan_blkstats) {
  814                 if (dp->dp_blkstats == NULL) {
  815                         dp->dp_blkstats =
  816                             vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
  817                 }
  818                 memset(&dp->dp_blkstats->zab_type, 0,
  819                     sizeof (dp->dp_blkstats->zab_type));
  820         } else {
  821                 if (dp->dp_blkstats) {
  822                         vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
  823                         dp->dp_blkstats = NULL;
  824                 }
  825         }
  826 
  827         if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
  828                 ot = DMU_OT_ZAP_OTHER;
  829 
  830         scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
  831             ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
  832 
  833         memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
  834 
  835         dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
  836 
  837         spa_history_log_internal(spa, "scan setup", tx,
  838             "func=%u mintxg=%llu maxtxg=%llu",
  839             *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
  840             (u_longlong_t)scn->scn_phys.scn_max_txg);
  841 }
  842 
  843 /*
  844  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
  845  * Can also be called to resume a paused scrub.
  846  */
  847 int
  848 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
  849 {
  850         spa_t *spa = dp->dp_spa;
  851         dsl_scan_t *scn = dp->dp_scan;
  852 
  853         /*
  854          * Purge all vdev caches and probe all devices.  We do this here
  855          * rather than in sync context because this requires a writer lock
  856          * on the spa_config lock, which we can't do from sync context.  The
  857          * spa_scrub_reopen flag indicates that vdev_open() should not
  858          * attempt to start another scrub.
  859          */
  860         spa_vdev_state_enter(spa, SCL_NONE);
  861         spa->spa_scrub_reopen = B_TRUE;
  862         vdev_reopen(spa->spa_root_vdev);
  863         spa->spa_scrub_reopen = B_FALSE;
  864         (void) spa_vdev_state_exit(spa, NULL, 0);
  865 
  866         if (func == POOL_SCAN_RESILVER) {
  867                 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
  868                 return (0);
  869         }
  870 
  871         if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
  872                 /* got scrub start cmd, resume paused scrub */
  873                 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
  874                     POOL_SCRUB_NORMAL);
  875                 if (err == 0) {
  876                         spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
  877                         return (SET_ERROR(ECANCELED));
  878                 }
  879 
  880                 return (SET_ERROR(err));
  881         }
  882 
  883         return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
  884             dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
  885 }
  886 
  887 static void
  888 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
  889 {
  890         static const char *old_names[] = {
  891                 "scrub_bookmark",
  892                 "scrub_ddt_bookmark",
  893                 "scrub_ddt_class_max",
  894                 "scrub_queue",
  895                 "scrub_min_txg",
  896                 "scrub_max_txg",
  897                 "scrub_func",
  898                 "scrub_errors",
  899                 NULL
  900         };
  901 
  902         dsl_pool_t *dp = scn->scn_dp;
  903         spa_t *spa = dp->dp_spa;
  904         int i;
  905 
  906         /* Remove any remnants of an old-style scrub. */
  907         for (i = 0; old_names[i]; i++) {
  908                 (void) zap_remove(dp->dp_meta_objset,
  909                     DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
  910         }
  911 
  912         if (scn->scn_phys.scn_queue_obj != 0) {
  913                 VERIFY0(dmu_object_free(dp->dp_meta_objset,
  914                     scn->scn_phys.scn_queue_obj, tx));
  915                 scn->scn_phys.scn_queue_obj = 0;
  916         }
  917         scan_ds_queue_clear(scn);
  918         scan_ds_prefetch_queue_clear(scn);
  919 
  920         scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
  921 
  922         /*
  923          * If we were "restarted" from a stopped state, don't bother
  924          * with anything else.
  925          */
  926         if (!dsl_scan_is_running(scn)) {
  927                 ASSERT(!scn->scn_is_sorted);
  928                 return;
  929         }
  930 
  931         if (scn->scn_is_sorted) {
  932                 scan_io_queues_destroy(scn);
  933                 scn->scn_is_sorted = B_FALSE;
  934 
  935                 if (scn->scn_taskq != NULL) {
  936                         taskq_destroy(scn->scn_taskq);
  937                         scn->scn_taskq = NULL;
  938                 }
  939         }
  940 
  941         scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
  942 
  943         spa_notify_waiters(spa);
  944 
  945         if (dsl_scan_restarting(scn, tx))
  946                 spa_history_log_internal(spa, "scan aborted, restarting", tx,
  947                     "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
  948         else if (!complete)
  949                 spa_history_log_internal(spa, "scan cancelled", tx,
  950                     "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
  951         else
  952                 spa_history_log_internal(spa, "scan done", tx,
  953                     "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
  954 
  955         if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
  956                 spa->spa_scrub_active = B_FALSE;
  957 
  958                 /*
  959                  * If the scrub/resilver completed, update all DTLs to
  960                  * reflect this.  Whether it succeeded or not, vacate
  961                  * all temporary scrub DTLs.
  962                  *
  963                  * As the scrub does not currently support traversing
  964                  * data that have been freed but are part of a checkpoint,
  965                  * we don't mark the scrub as done in the DTLs as faults
  966                  * may still exist in those vdevs.
  967                  */
  968                 if (complete &&
  969                     !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
  970                         vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
  971                             scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
  972 
  973                         if (scn->scn_phys.scn_min_txg) {
  974                                 nvlist_t *aux = fnvlist_alloc();
  975                                 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
  976                                     "healing");
  977                                 spa_event_notify(spa, NULL, aux,
  978                                     ESC_ZFS_RESILVER_FINISH);
  979                                 nvlist_free(aux);
  980                         } else {
  981                                 spa_event_notify(spa, NULL, NULL,
  982                                     ESC_ZFS_SCRUB_FINISH);
  983                         }
  984                 } else {
  985                         vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
  986                             0, B_TRUE, B_FALSE);
  987                 }
  988                 spa_errlog_rotate(spa);
  989 
  990                 /*
  991                  * Don't clear flag until after vdev_dtl_reassess to ensure that
  992                  * DTL_MISSING will get updated when possible.
  993                  */
  994                 spa->spa_scrub_started = B_FALSE;
  995 
  996                 /*
  997                  * We may have finished replacing a device.
  998                  * Let the async thread assess this and handle the detach.
  999                  */
 1000                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
 1001 
 1002                 /*
 1003                  * Clear any resilver_deferred flags in the config.
 1004                  * If there are drives that need resilvering, kick
 1005                  * off an asynchronous request to start resilver.
 1006                  * vdev_clear_resilver_deferred() may update the config
 1007                  * before the resilver can restart. In the event of
 1008                  * a crash during this period, the spa loading code
 1009                  * will find the drives that need to be resilvered
 1010                  * and start the resilver then.
 1011                  */
 1012                 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
 1013                     vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
 1014                         spa_history_log_internal(spa,
 1015                             "starting deferred resilver", tx, "errors=%llu",
 1016                             (u_longlong_t)spa_approx_errlog_size(spa));
 1017                         spa_async_request(spa, SPA_ASYNC_RESILVER);
 1018                 }
 1019 
 1020                 /* Clear recent error events (i.e. duplicate events tracking) */
 1021                 if (complete)
 1022                         zfs_ereport_clear(spa, NULL);
 1023         }
 1024 
 1025         scn->scn_phys.scn_end_time = gethrestime_sec();
 1026 
 1027         if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
 1028                 spa->spa_errata = 0;
 1029 
 1030         ASSERT(!dsl_scan_is_running(scn));
 1031 }
 1032 
 1033 static int
 1034 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
 1035 {
 1036         (void) arg;
 1037         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
 1038 
 1039         if (!dsl_scan_is_running(scn))
 1040                 return (SET_ERROR(ENOENT));
 1041         return (0);
 1042 }
 1043 
 1044 static void
 1045 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
 1046 {
 1047         (void) arg;
 1048         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
 1049 
 1050         dsl_scan_done(scn, B_FALSE, tx);
 1051         dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
 1052         spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
 1053 }
 1054 
 1055 int
 1056 dsl_scan_cancel(dsl_pool_t *dp)
 1057 {
 1058         return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
 1059             dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
 1060 }
 1061 
 1062 static int
 1063 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
 1064 {
 1065         pool_scrub_cmd_t *cmd = arg;
 1066         dsl_pool_t *dp = dmu_tx_pool(tx);
 1067         dsl_scan_t *scn = dp->dp_scan;
 1068 
 1069         if (*cmd == POOL_SCRUB_PAUSE) {
 1070                 /* can't pause a scrub when there is no in-progress scrub */
 1071                 if (!dsl_scan_scrubbing(dp))
 1072                         return (SET_ERROR(ENOENT));
 1073 
 1074                 /* can't pause a paused scrub */
 1075                 if (dsl_scan_is_paused_scrub(scn))
 1076                         return (SET_ERROR(EBUSY));
 1077         } else if (*cmd != POOL_SCRUB_NORMAL) {
 1078                 return (SET_ERROR(ENOTSUP));
 1079         }
 1080 
 1081         return (0);
 1082 }
 1083 
 1084 static void
 1085 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
 1086 {
 1087         pool_scrub_cmd_t *cmd = arg;
 1088         dsl_pool_t *dp = dmu_tx_pool(tx);
 1089         spa_t *spa = dp->dp_spa;
 1090         dsl_scan_t *scn = dp->dp_scan;
 1091 
 1092         if (*cmd == POOL_SCRUB_PAUSE) {
 1093                 /* can't pause a scrub when there is no in-progress scrub */
 1094                 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
 1095                 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
 1096                 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
 1097                 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
 1098                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
 1099                 spa_notify_waiters(spa);
 1100         } else {
 1101                 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
 1102                 if (dsl_scan_is_paused_scrub(scn)) {
 1103                         /*
 1104                          * We need to keep track of how much time we spend
 1105                          * paused per pass so that we can adjust the scrub rate
 1106                          * shown in the output of 'zpool status'
 1107                          */
 1108                         spa->spa_scan_pass_scrub_spent_paused +=
 1109                             gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
 1110                         spa->spa_scan_pass_scrub_pause = 0;
 1111                         scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
 1112                         scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
 1113                         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
 1114                 }
 1115         }
 1116 }
 1117 
 1118 /*
 1119  * Set scrub pause/resume state if it makes sense to do so
 1120  */
 1121 int
 1122 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
 1123 {
 1124         return (dsl_sync_task(spa_name(dp->dp_spa),
 1125             dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
 1126             ZFS_SPACE_CHECK_RESERVED));
 1127 }
 1128 
 1129 
 1130 /* start a new scan, or restart an existing one. */
 1131 void
 1132 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
 1133 {
 1134         if (txg == 0) {
 1135                 dmu_tx_t *tx;
 1136                 tx = dmu_tx_create_dd(dp->dp_mos_dir);
 1137                 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
 1138 
 1139                 txg = dmu_tx_get_txg(tx);
 1140                 dp->dp_scan->scn_restart_txg = txg;
 1141                 dmu_tx_commit(tx);
 1142         } else {
 1143                 dp->dp_scan->scn_restart_txg = txg;
 1144         }
 1145         zfs_dbgmsg("restarting resilver for %s at txg=%llu",
 1146             dp->dp_spa->spa_name, (longlong_t)txg);
 1147 }
 1148 
 1149 void
 1150 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
 1151 {
 1152         zio_free(dp->dp_spa, txg, bp);
 1153 }
 1154 
 1155 void
 1156 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
 1157 {
 1158         ASSERT(dsl_pool_sync_context(dp));
 1159         zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
 1160 }
 1161 
 1162 static int
 1163 scan_ds_queue_compare(const void *a, const void *b)
 1164 {
 1165         const scan_ds_t *sds_a = a, *sds_b = b;
 1166 
 1167         if (sds_a->sds_dsobj < sds_b->sds_dsobj)
 1168                 return (-1);
 1169         if (sds_a->sds_dsobj == sds_b->sds_dsobj)
 1170                 return (0);
 1171         return (1);
 1172 }
 1173 
 1174 static void
 1175 scan_ds_queue_clear(dsl_scan_t *scn)
 1176 {
 1177         void *cookie = NULL;
 1178         scan_ds_t *sds;
 1179         while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
 1180                 kmem_free(sds, sizeof (*sds));
 1181         }
 1182 }
 1183 
 1184 static boolean_t
 1185 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
 1186 {
 1187         scan_ds_t srch, *sds;
 1188 
 1189         srch.sds_dsobj = dsobj;
 1190         sds = avl_find(&scn->scn_queue, &srch, NULL);
 1191         if (sds != NULL && txg != NULL)
 1192                 *txg = sds->sds_txg;
 1193         return (sds != NULL);
 1194 }
 1195 
 1196 static void
 1197 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
 1198 {
 1199         scan_ds_t *sds;
 1200         avl_index_t where;
 1201 
 1202         sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
 1203         sds->sds_dsobj = dsobj;
 1204         sds->sds_txg = txg;
 1205 
 1206         VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
 1207         avl_insert(&scn->scn_queue, sds, where);
 1208 }
 1209 
 1210 static void
 1211 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
 1212 {
 1213         scan_ds_t srch, *sds;
 1214 
 1215         srch.sds_dsobj = dsobj;
 1216 
 1217         sds = avl_find(&scn->scn_queue, &srch, NULL);
 1218         VERIFY(sds != NULL);
 1219         avl_remove(&scn->scn_queue, sds);
 1220         kmem_free(sds, sizeof (*sds));
 1221 }
 1222 
 1223 static void
 1224 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
 1225 {
 1226         dsl_pool_t *dp = scn->scn_dp;
 1227         spa_t *spa = dp->dp_spa;
 1228         dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
 1229             DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
 1230 
 1231         ASSERT0(scn->scn_queues_pending);
 1232         ASSERT(scn->scn_phys.scn_queue_obj != 0);
 1233 
 1234         VERIFY0(dmu_object_free(dp->dp_meta_objset,
 1235             scn->scn_phys.scn_queue_obj, tx));
 1236         scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
 1237             DMU_OT_NONE, 0, tx);
 1238         for (scan_ds_t *sds = avl_first(&scn->scn_queue);
 1239             sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
 1240                 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
 1241                     scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
 1242                     sds->sds_txg, tx));
 1243         }
 1244 }
 1245 
 1246 /*
 1247  * Computes the memory limit state that we're currently in. A sorted scan
 1248  * needs quite a bit of memory to hold the sorting queue, so we need to
 1249  * reasonably constrain the size so it doesn't impact overall system
 1250  * performance. We compute two limits:
 1251  * 1) Hard memory limit: if the amount of memory used by the sorting
 1252  *      queues on a pool gets above this value, we stop the metadata
 1253  *      scanning portion and start issuing the queued up and sorted
 1254  *      I/Os to reduce memory usage.
 1255  *      This limit is calculated as a fraction of physmem (by default 5%).
 1256  *      We constrain the lower bound of the hard limit to an absolute
 1257  *      minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
 1258  *      the upper bound to 5% of the total pool size - no chance we'll
 1259  *      ever need that much memory, but just to keep the value in check.
 1260  * 2) Soft memory limit: once we hit the hard memory limit, we start
 1261  *      issuing I/O to reduce queue memory usage, but we don't want to
 1262  *      completely empty out the queues, since we might be able to find I/Os
 1263  *      that will fill in the gaps of our non-sequential IOs at some point
 1264  *      in the future. So we stop the issuing of I/Os once the amount of
 1265  *      memory used drops below the soft limit (at which point we stop issuing
 1266  *      I/O and start scanning metadata again).
 1267  *
 1268  *      This limit is calculated by subtracting a fraction of the hard
 1269  *      limit from the hard limit. By default this fraction is 5%, so
 1270  *      the soft limit is 95% of the hard limit. We cap the size of the
 1271  *      difference between the hard and soft limits at an absolute
 1272  *      maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
 1273  *      sufficient to not cause too frequent switching between the
 1274  *      metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
 1275  *      worth of queues is about 1.2 GiB of on-pool data, so scanning
 1276  *      that should take at least a decent fraction of a second).
 1277  */
 1278 static boolean_t
 1279 dsl_scan_should_clear(dsl_scan_t *scn)
 1280 {
 1281         spa_t *spa = scn->scn_dp->dp_spa;
 1282         vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
 1283         uint64_t alloc, mlim_hard, mlim_soft, mused;
 1284 
 1285         alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 1286         alloc += metaslab_class_get_alloc(spa_special_class(spa));
 1287         alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
 1288 
 1289         mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
 1290             zfs_scan_mem_lim_min);
 1291         mlim_hard = MIN(mlim_hard, alloc / 20);
 1292         mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
 1293             zfs_scan_mem_lim_soft_max);
 1294         mused = 0;
 1295         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
 1296                 vdev_t *tvd = rvd->vdev_child[i];
 1297                 dsl_scan_io_queue_t *queue;
 1298 
 1299                 mutex_enter(&tvd->vdev_scan_io_queue_lock);
 1300                 queue = tvd->vdev_scan_io_queue;
 1301                 if (queue != NULL) {
 1302                         /*
 1303                          * # of extents in exts_by_addr = # in exts_by_size.
 1304                          * B-tree efficiency is ~75%, but can be as low as 50%.
 1305                          */
 1306                         mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
 1307                             ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
 1308                             3 / 2) + queue->q_sio_memused;
 1309                 }
 1310                 mutex_exit(&tvd->vdev_scan_io_queue_lock);
 1311         }
 1312 
 1313         dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
 1314 
 1315         if (mused == 0)
 1316                 ASSERT0(scn->scn_queues_pending);
 1317 
 1318         /*
 1319          * If we are above our hard limit, we need to clear out memory.
 1320          * If we are below our soft limit, we need to accumulate sequential IOs.
 1321          * Otherwise, we should keep doing whatever we are currently doing.
 1322          */
 1323         if (mused >= mlim_hard)
 1324                 return (B_TRUE);
 1325         else if (mused < mlim_soft)
 1326                 return (B_FALSE);
 1327         else
 1328                 return (scn->scn_clearing);
 1329 }
 1330 
 1331 static boolean_t
 1332 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
 1333 {
 1334         /* we never skip user/group accounting objects */
 1335         if (zb && (int64_t)zb->zb_object < 0)
 1336                 return (B_FALSE);
 1337 
 1338         if (scn->scn_suspending)
 1339                 return (B_TRUE); /* we're already suspending */
 1340 
 1341         if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
 1342                 return (B_FALSE); /* we're resuming */
 1343 
 1344         /* We only know how to resume from level-0 and objset blocks. */
 1345         if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
 1346                 return (B_FALSE);
 1347 
 1348         /*
 1349          * We suspend if:
 1350          *  - we have scanned for at least the minimum time (default 1 sec
 1351          *    for scrub, 3 sec for resilver), and either we have sufficient
 1352          *    dirty data that we are starting to write more quickly
 1353          *    (default 30%), someone is explicitly waiting for this txg
 1354          *    to complete, or we have used up all of the time in the txg
 1355          *    timeout (default 5 sec).
 1356          *  or
 1357          *  - the spa is shutting down because this pool is being exported
 1358          *    or the machine is rebooting.
 1359          *  or
 1360          *  - the scan queue has reached its memory use limit
 1361          */
 1362         uint64_t curr_time_ns = gethrtime();
 1363         uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
 1364         uint64_t sync_time_ns = curr_time_ns -
 1365             scn->scn_dp->dp_spa->spa_sync_starttime;
 1366         uint64_t dirty_min_bytes = zfs_dirty_data_max *
 1367             zfs_vdev_async_write_active_min_dirty_percent / 100;
 1368         uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
 1369             zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
 1370 
 1371         if ((NSEC2MSEC(scan_time_ns) > mintime &&
 1372             (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
 1373             txg_sync_waiting(scn->scn_dp) ||
 1374             NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
 1375             spa_shutting_down(scn->scn_dp->dp_spa) ||
 1376             (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
 1377                 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
 1378                         dprintf("suspending at first available bookmark "
 1379                             "%llx/%llx/%llx/%llx\n",
 1380                             (longlong_t)zb->zb_objset,
 1381                             (longlong_t)zb->zb_object,
 1382                             (longlong_t)zb->zb_level,
 1383                             (longlong_t)zb->zb_blkid);
 1384                         SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
 1385                             zb->zb_objset, 0, 0, 0);
 1386                 } else if (zb != NULL) {
 1387                         dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
 1388                             (longlong_t)zb->zb_objset,
 1389                             (longlong_t)zb->zb_object,
 1390                             (longlong_t)zb->zb_level,
 1391                             (longlong_t)zb->zb_blkid);
 1392                         scn->scn_phys.scn_bookmark = *zb;
 1393                 } else {
 1394 #ifdef ZFS_DEBUG
 1395                         dsl_scan_phys_t *scnp = &scn->scn_phys;
 1396                         dprintf("suspending at at DDT bookmark "
 1397                             "%llx/%llx/%llx/%llx\n",
 1398                             (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
 1399                             (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
 1400                             (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
 1401                             (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
 1402 #endif
 1403                 }
 1404                 scn->scn_suspending = B_TRUE;
 1405                 return (B_TRUE);
 1406         }
 1407         return (B_FALSE);
 1408 }
 1409 
 1410 typedef struct zil_scan_arg {
 1411         dsl_pool_t      *zsa_dp;
 1412         zil_header_t    *zsa_zh;
 1413 } zil_scan_arg_t;
 1414 
 1415 static int
 1416 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
 1417     uint64_t claim_txg)
 1418 {
 1419         (void) zilog;
 1420         zil_scan_arg_t *zsa = arg;
 1421         dsl_pool_t *dp = zsa->zsa_dp;
 1422         dsl_scan_t *scn = dp->dp_scan;
 1423         zil_header_t *zh = zsa->zsa_zh;
 1424         zbookmark_phys_t zb;
 1425 
 1426         ASSERT(!BP_IS_REDACTED(bp));
 1427         if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
 1428                 return (0);
 1429 
 1430         /*
 1431          * One block ("stubby") can be allocated a long time ago; we
 1432          * want to visit that one because it has been allocated
 1433          * (on-disk) even if it hasn't been claimed (even though for
 1434          * scrub there's nothing to do to it).
 1435          */
 1436         if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
 1437                 return (0);
 1438 
 1439         SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
 1440             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
 1441 
 1442         VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
 1443         return (0);
 1444 }
 1445 
 1446 static int
 1447 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
 1448     uint64_t claim_txg)
 1449 {
 1450         (void) zilog;
 1451         if (lrc->lrc_txtype == TX_WRITE) {
 1452                 zil_scan_arg_t *zsa = arg;
 1453                 dsl_pool_t *dp = zsa->zsa_dp;
 1454                 dsl_scan_t *scn = dp->dp_scan;
 1455                 zil_header_t *zh = zsa->zsa_zh;
 1456                 const lr_write_t *lr = (const lr_write_t *)lrc;
 1457                 const blkptr_t *bp = &lr->lr_blkptr;
 1458                 zbookmark_phys_t zb;
 1459 
 1460                 ASSERT(!BP_IS_REDACTED(bp));
 1461                 if (BP_IS_HOLE(bp) ||
 1462                     bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
 1463                         return (0);
 1464 
 1465                 /*
 1466                  * birth can be < claim_txg if this record's txg is
 1467                  * already txg sync'ed (but this log block contains
 1468                  * other records that are not synced)
 1469                  */
 1470                 if (claim_txg == 0 || bp->blk_birth < claim_txg)
 1471                         return (0);
 1472 
 1473                 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
 1474                 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
 1475                     lr->lr_foid, ZB_ZIL_LEVEL,
 1476                     lr->lr_offset / BP_GET_LSIZE(bp));
 1477 
 1478                 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
 1479         }
 1480         return (0);
 1481 }
 1482 
 1483 static void
 1484 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
 1485 {
 1486         uint64_t claim_txg = zh->zh_claim_txg;
 1487         zil_scan_arg_t zsa = { dp, zh };
 1488         zilog_t *zilog;
 1489 
 1490         ASSERT(spa_writeable(dp->dp_spa));
 1491 
 1492         /*
 1493          * We only want to visit blocks that have been claimed but not yet
 1494          * replayed (or, in read-only mode, blocks that *would* be claimed).
 1495          */
 1496         if (claim_txg == 0)
 1497                 return;
 1498 
 1499         zilog = zil_alloc(dp->dp_meta_objset, zh);
 1500 
 1501         (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
 1502             claim_txg, B_FALSE);
 1503 
 1504         zil_free(zilog);
 1505 }
 1506 
 1507 /*
 1508  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
 1509  * here is to sort the AVL tree by the order each block will be needed.
 1510  */
 1511 static int
 1512 scan_prefetch_queue_compare(const void *a, const void *b)
 1513 {
 1514         const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
 1515         const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
 1516         const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
 1517 
 1518         return (zbookmark_compare(spc_a->spc_datablkszsec,
 1519             spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
 1520             spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
 1521 }
 1522 
 1523 static void
 1524 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
 1525 {
 1526         if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
 1527                 zfs_refcount_destroy(&spc->spc_refcnt);
 1528                 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
 1529         }
 1530 }
 1531 
 1532 static scan_prefetch_ctx_t *
 1533 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
 1534 {
 1535         scan_prefetch_ctx_t *spc;
 1536 
 1537         spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
 1538         zfs_refcount_create(&spc->spc_refcnt);
 1539         zfs_refcount_add(&spc->spc_refcnt, tag);
 1540         spc->spc_scn = scn;
 1541         if (dnp != NULL) {
 1542                 spc->spc_datablkszsec = dnp->dn_datablkszsec;
 1543                 spc->spc_indblkshift = dnp->dn_indblkshift;
 1544                 spc->spc_root = B_FALSE;
 1545         } else {
 1546                 spc->spc_datablkszsec = 0;
 1547                 spc->spc_indblkshift = 0;
 1548                 spc->spc_root = B_TRUE;
 1549         }
 1550 
 1551         return (spc);
 1552 }
 1553 
 1554 static void
 1555 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
 1556 {
 1557         zfs_refcount_add(&spc->spc_refcnt, tag);
 1558 }
 1559 
 1560 static void
 1561 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
 1562 {
 1563         spa_t *spa = scn->scn_dp->dp_spa;
 1564         void *cookie = NULL;
 1565         scan_prefetch_issue_ctx_t *spic = NULL;
 1566 
 1567         mutex_enter(&spa->spa_scrub_lock);
 1568         while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
 1569             &cookie)) != NULL) {
 1570                 scan_prefetch_ctx_rele(spic->spic_spc, scn);
 1571                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
 1572         }
 1573         mutex_exit(&spa->spa_scrub_lock);
 1574 }
 1575 
 1576 static boolean_t
 1577 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
 1578     const zbookmark_phys_t *zb)
 1579 {
 1580         zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
 1581         dnode_phys_t tmp_dnp;
 1582         dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
 1583 
 1584         if (zb->zb_objset != last_zb->zb_objset)
 1585                 return (B_TRUE);
 1586         if ((int64_t)zb->zb_object < 0)
 1587                 return (B_FALSE);
 1588 
 1589         tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
 1590         tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
 1591 
 1592         if (zbookmark_subtree_completed(dnp, zb, last_zb))
 1593                 return (B_TRUE);
 1594 
 1595         return (B_FALSE);
 1596 }
 1597 
 1598 static void
 1599 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
 1600 {
 1601         avl_index_t idx;
 1602         dsl_scan_t *scn = spc->spc_scn;
 1603         spa_t *spa = scn->scn_dp->dp_spa;
 1604         scan_prefetch_issue_ctx_t *spic;
 1605 
 1606         if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
 1607                 return;
 1608 
 1609         if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
 1610             (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
 1611             BP_GET_TYPE(bp) != DMU_OT_OBJSET))
 1612                 return;
 1613 
 1614         if (dsl_scan_check_prefetch_resume(spc, zb))
 1615                 return;
 1616 
 1617         scan_prefetch_ctx_add_ref(spc, scn);
 1618         spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
 1619         spic->spic_spc = spc;
 1620         spic->spic_bp = *bp;
 1621         spic->spic_zb = *zb;
 1622 
 1623         /*
 1624          * Add the IO to the queue of blocks to prefetch. This allows us to
 1625          * prioritize blocks that we will need first for the main traversal
 1626          * thread.
 1627          */
 1628         mutex_enter(&spa->spa_scrub_lock);
 1629         if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
 1630                 /* this block is already queued for prefetch */
 1631                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
 1632                 scan_prefetch_ctx_rele(spc, scn);
 1633                 mutex_exit(&spa->spa_scrub_lock);
 1634                 return;
 1635         }
 1636 
 1637         avl_insert(&scn->scn_prefetch_queue, spic, idx);
 1638         cv_broadcast(&spa->spa_scrub_io_cv);
 1639         mutex_exit(&spa->spa_scrub_lock);
 1640 }
 1641 
 1642 static void
 1643 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
 1644     uint64_t objset, uint64_t object)
 1645 {
 1646         int i;
 1647         zbookmark_phys_t zb;
 1648         scan_prefetch_ctx_t *spc;
 1649 
 1650         if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
 1651                 return;
 1652 
 1653         SET_BOOKMARK(&zb, objset, object, 0, 0);
 1654 
 1655         spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
 1656 
 1657         for (i = 0; i < dnp->dn_nblkptr; i++) {
 1658                 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
 1659                 zb.zb_blkid = i;
 1660                 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
 1661         }
 1662 
 1663         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 1664                 zb.zb_level = 0;
 1665                 zb.zb_blkid = DMU_SPILL_BLKID;
 1666                 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
 1667         }
 1668 
 1669         scan_prefetch_ctx_rele(spc, FTAG);
 1670 }
 1671 
 1672 static void
 1673 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
 1674     arc_buf_t *buf, void *private)
 1675 {
 1676         (void) zio;
 1677         scan_prefetch_ctx_t *spc = private;
 1678         dsl_scan_t *scn = spc->spc_scn;
 1679         spa_t *spa = scn->scn_dp->dp_spa;
 1680 
 1681         /* broadcast that the IO has completed for rate limiting purposes */
 1682         mutex_enter(&spa->spa_scrub_lock);
 1683         ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
 1684         spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
 1685         cv_broadcast(&spa->spa_scrub_io_cv);
 1686         mutex_exit(&spa->spa_scrub_lock);
 1687 
 1688         /* if there was an error or we are done prefetching, just cleanup */
 1689         if (buf == NULL || scn->scn_prefetch_stop)
 1690                 goto out;
 1691 
 1692         if (BP_GET_LEVEL(bp) > 0) {
 1693                 int i;
 1694                 blkptr_t *cbp;
 1695                 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
 1696                 zbookmark_phys_t czb;
 1697 
 1698                 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
 1699                         SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
 1700                             zb->zb_level - 1, zb->zb_blkid * epb + i);
 1701                         dsl_scan_prefetch(spc, cbp, &czb);
 1702                 }
 1703         } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
 1704                 dnode_phys_t *cdnp;
 1705                 int i;
 1706                 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
 1707 
 1708                 for (i = 0, cdnp = buf->b_data; i < epb;
 1709                     i += cdnp->dn_extra_slots + 1,
 1710                     cdnp += cdnp->dn_extra_slots + 1) {
 1711                         dsl_scan_prefetch_dnode(scn, cdnp,
 1712                             zb->zb_objset, zb->zb_blkid * epb + i);
 1713                 }
 1714         } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
 1715                 objset_phys_t *osp = buf->b_data;
 1716 
 1717                 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
 1718                     zb->zb_objset, DMU_META_DNODE_OBJECT);
 1719 
 1720                 if (OBJSET_BUF_HAS_USERUSED(buf)) {
 1721                         dsl_scan_prefetch_dnode(scn,
 1722                             &osp->os_groupused_dnode, zb->zb_objset,
 1723                             DMU_GROUPUSED_OBJECT);
 1724                         dsl_scan_prefetch_dnode(scn,
 1725                             &osp->os_userused_dnode, zb->zb_objset,
 1726                             DMU_USERUSED_OBJECT);
 1727                 }
 1728         }
 1729 
 1730 out:
 1731         if (buf != NULL)
 1732                 arc_buf_destroy(buf, private);
 1733         scan_prefetch_ctx_rele(spc, scn);
 1734 }
 1735 
 1736 static void
 1737 dsl_scan_prefetch_thread(void *arg)
 1738 {
 1739         dsl_scan_t *scn = arg;
 1740         spa_t *spa = scn->scn_dp->dp_spa;
 1741         scan_prefetch_issue_ctx_t *spic;
 1742 
 1743         /* loop until we are told to stop */
 1744         while (!scn->scn_prefetch_stop) {
 1745                 arc_flags_t flags = ARC_FLAG_NOWAIT |
 1746                     ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
 1747                 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
 1748 
 1749                 mutex_enter(&spa->spa_scrub_lock);
 1750 
 1751                 /*
 1752                  * Wait until we have an IO to issue and are not above our
 1753                  * maximum in flight limit.
 1754                  */
 1755                 while (!scn->scn_prefetch_stop &&
 1756                     (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
 1757                     spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
 1758                         cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
 1759                 }
 1760 
 1761                 /* recheck if we should stop since we waited for the cv */
 1762                 if (scn->scn_prefetch_stop) {
 1763                         mutex_exit(&spa->spa_scrub_lock);
 1764                         break;
 1765                 }
 1766 
 1767                 /* remove the prefetch IO from the tree */
 1768                 spic = avl_first(&scn->scn_prefetch_queue);
 1769                 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
 1770                 avl_remove(&scn->scn_prefetch_queue, spic);
 1771 
 1772                 mutex_exit(&spa->spa_scrub_lock);
 1773 
 1774                 if (BP_IS_PROTECTED(&spic->spic_bp)) {
 1775                         ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
 1776                             BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
 1777                         ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
 1778                         zio_flags |= ZIO_FLAG_RAW;
 1779                 }
 1780 
 1781                 /* issue the prefetch asynchronously */
 1782                 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
 1783                     &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
 1784                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
 1785 
 1786                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
 1787         }
 1788 
 1789         ASSERT(scn->scn_prefetch_stop);
 1790 
 1791         /* free any prefetches we didn't get to complete */
 1792         mutex_enter(&spa->spa_scrub_lock);
 1793         while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
 1794                 avl_remove(&scn->scn_prefetch_queue, spic);
 1795                 scan_prefetch_ctx_rele(spic->spic_spc, scn);
 1796                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
 1797         }
 1798         ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
 1799         mutex_exit(&spa->spa_scrub_lock);
 1800 }
 1801 
 1802 static boolean_t
 1803 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
 1804     const zbookmark_phys_t *zb)
 1805 {
 1806         /*
 1807          * We never skip over user/group accounting objects (obj<0)
 1808          */
 1809         if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
 1810             (int64_t)zb->zb_object >= 0) {
 1811                 /*
 1812                  * If we already visited this bp & everything below (in
 1813                  * a prior txg sync), don't bother doing it again.
 1814                  */
 1815                 if (zbookmark_subtree_completed(dnp, zb,
 1816                     &scn->scn_phys.scn_bookmark))
 1817                         return (B_TRUE);
 1818 
 1819                 /*
 1820                  * If we found the block we're trying to resume from, or
 1821                  * we went past it, zero it out to indicate that it's OK
 1822                  * to start checking for suspending again.
 1823                  */
 1824                 if (zbookmark_subtree_tbd(dnp, zb,
 1825                     &scn->scn_phys.scn_bookmark)) {
 1826                         dprintf("resuming at %llx/%llx/%llx/%llx\n",
 1827                             (longlong_t)zb->zb_objset,
 1828                             (longlong_t)zb->zb_object,
 1829                             (longlong_t)zb->zb_level,
 1830                             (longlong_t)zb->zb_blkid);
 1831                         memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
 1832                 }
 1833         }
 1834         return (B_FALSE);
 1835 }
 1836 
 1837 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
 1838     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
 1839     dmu_objset_type_t ostype, dmu_tx_t *tx);
 1840 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
 1841     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
 1842     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
 1843 
 1844 /*
 1845  * Return nonzero on i/o error.
 1846  * Return new buf to write out in *bufp.
 1847  */
 1848 inline __attribute__((always_inline)) static int
 1849 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
 1850     dnode_phys_t *dnp, const blkptr_t *bp,
 1851     const zbookmark_phys_t *zb, dmu_tx_t *tx)
 1852 {
 1853         dsl_pool_t *dp = scn->scn_dp;
 1854         spa_t *spa = dp->dp_spa;
 1855         int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
 1856         int err;
 1857 
 1858         ASSERT(!BP_IS_REDACTED(bp));
 1859 
 1860         /*
 1861          * There is an unlikely case of encountering dnodes with contradicting
 1862          * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
 1863          * or modified before commit 4254acb was merged. As it is not possible
 1864          * to know which of the two is correct, report an error.
 1865          */
 1866         if (dnp != NULL &&
 1867             dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
 1868                 scn->scn_phys.scn_errors++;
 1869                 spa_log_error(spa, zb);
 1870                 return (SET_ERROR(EINVAL));
 1871         }
 1872 
 1873         if (BP_GET_LEVEL(bp) > 0) {
 1874                 arc_flags_t flags = ARC_FLAG_WAIT;
 1875                 int i;
 1876                 blkptr_t *cbp;
 1877                 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
 1878                 arc_buf_t *buf;
 1879 
 1880                 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
 1881                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
 1882                 if (err) {
 1883                         scn->scn_phys.scn_errors++;
 1884                         return (err);
 1885                 }
 1886                 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
 1887                         zbookmark_phys_t czb;
 1888 
 1889                         SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
 1890                             zb->zb_level - 1,
 1891                             zb->zb_blkid * epb + i);
 1892                         dsl_scan_visitbp(cbp, &czb, dnp,
 1893                             ds, scn, ostype, tx);
 1894                 }
 1895                 arc_buf_destroy(buf, &buf);
 1896         } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
 1897                 arc_flags_t flags = ARC_FLAG_WAIT;
 1898                 dnode_phys_t *cdnp;
 1899                 int i;
 1900                 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
 1901                 arc_buf_t *buf;
 1902 
 1903                 if (BP_IS_PROTECTED(bp)) {
 1904                         ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
 1905                         zio_flags |= ZIO_FLAG_RAW;
 1906                 }
 1907 
 1908                 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
 1909                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
 1910                 if (err) {
 1911                         scn->scn_phys.scn_errors++;
 1912                         return (err);
 1913                 }
 1914                 for (i = 0, cdnp = buf->b_data; i < epb;
 1915                     i += cdnp->dn_extra_slots + 1,
 1916                     cdnp += cdnp->dn_extra_slots + 1) {
 1917                         dsl_scan_visitdnode(scn, ds, ostype,
 1918                             cdnp, zb->zb_blkid * epb + i, tx);
 1919                 }
 1920 
 1921                 arc_buf_destroy(buf, &buf);
 1922         } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
 1923                 arc_flags_t flags = ARC_FLAG_WAIT;
 1924                 objset_phys_t *osp;
 1925                 arc_buf_t *buf;
 1926 
 1927                 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
 1928                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
 1929                 if (err) {
 1930                         scn->scn_phys.scn_errors++;
 1931                         return (err);
 1932                 }
 1933 
 1934                 osp = buf->b_data;
 1935 
 1936                 dsl_scan_visitdnode(scn, ds, osp->os_type,
 1937                     &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
 1938 
 1939                 if (OBJSET_BUF_HAS_USERUSED(buf)) {
 1940                         /*
 1941                          * We also always visit user/group/project accounting
 1942                          * objects, and never skip them, even if we are
 1943                          * suspending. This is necessary so that the
 1944                          * space deltas from this txg get integrated.
 1945                          */
 1946                         if (OBJSET_BUF_HAS_PROJECTUSED(buf))
 1947                                 dsl_scan_visitdnode(scn, ds, osp->os_type,
 1948                                     &osp->os_projectused_dnode,
 1949                                     DMU_PROJECTUSED_OBJECT, tx);
 1950                         dsl_scan_visitdnode(scn, ds, osp->os_type,
 1951                             &osp->os_groupused_dnode,
 1952                             DMU_GROUPUSED_OBJECT, tx);
 1953                         dsl_scan_visitdnode(scn, ds, osp->os_type,
 1954                             &osp->os_userused_dnode,
 1955                             DMU_USERUSED_OBJECT, tx);
 1956                 }
 1957                 arc_buf_destroy(buf, &buf);
 1958         } else if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
 1959                 /*
 1960                  * Sanity check the block pointer contents, this is handled
 1961                  * by arc_read() for the cases above.
 1962                  */
 1963                 scn->scn_phys.scn_errors++;
 1964                 spa_log_error(spa, zb);
 1965                 return (SET_ERROR(EINVAL));
 1966         }
 1967 
 1968         return (0);
 1969 }
 1970 
 1971 inline __attribute__((always_inline)) static void
 1972 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
 1973     dmu_objset_type_t ostype, dnode_phys_t *dnp,
 1974     uint64_t object, dmu_tx_t *tx)
 1975 {
 1976         int j;
 1977 
 1978         for (j = 0; j < dnp->dn_nblkptr; j++) {
 1979                 zbookmark_phys_t czb;
 1980 
 1981                 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
 1982                     dnp->dn_nlevels - 1, j);
 1983                 dsl_scan_visitbp(&dnp->dn_blkptr[j],
 1984                     &czb, dnp, ds, scn, ostype, tx);
 1985         }
 1986 
 1987         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 1988                 zbookmark_phys_t czb;
 1989                 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
 1990                     0, DMU_SPILL_BLKID);
 1991                 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
 1992                     &czb, dnp, ds, scn, ostype, tx);
 1993         }
 1994 }
 1995 
 1996 /*
 1997  * The arguments are in this order because mdb can only print the
 1998  * first 5; we want them to be useful.
 1999  */
 2000 static void
 2001 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
 2002     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
 2003     dmu_objset_type_t ostype, dmu_tx_t *tx)
 2004 {
 2005         dsl_pool_t *dp = scn->scn_dp;
 2006         blkptr_t *bp_toread = NULL;
 2007 
 2008         if (dsl_scan_check_suspend(scn, zb))
 2009                 return;
 2010 
 2011         if (dsl_scan_check_resume(scn, dnp, zb))
 2012                 return;
 2013 
 2014         scn->scn_visited_this_txg++;
 2015 
 2016         if (BP_IS_HOLE(bp)) {
 2017                 scn->scn_holes_this_txg++;
 2018                 return;
 2019         }
 2020 
 2021         if (BP_IS_REDACTED(bp)) {
 2022                 ASSERT(dsl_dataset_feature_is_active(ds,
 2023                     SPA_FEATURE_REDACTED_DATASETS));
 2024                 return;
 2025         }
 2026 
 2027         if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
 2028                 scn->scn_lt_min_this_txg++;
 2029                 return;
 2030         }
 2031 
 2032         bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
 2033         *bp_toread = *bp;
 2034 
 2035         if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
 2036                 goto out;
 2037 
 2038         /*
 2039          * If dsl_scan_ddt() has already visited this block, it will have
 2040          * already done any translations or scrubbing, so don't call the
 2041          * callback again.
 2042          */
 2043         if (ddt_class_contains(dp->dp_spa,
 2044             scn->scn_phys.scn_ddt_class_max, bp)) {
 2045                 scn->scn_ddt_contained_this_txg++;
 2046                 goto out;
 2047         }
 2048 
 2049         /*
 2050          * If this block is from the future (after cur_max_txg), then we
 2051          * are doing this on behalf of a deleted snapshot, and we will
 2052          * revisit the future block on the next pass of this dataset.
 2053          * Don't scan it now unless we need to because something
 2054          * under it was modified.
 2055          */
 2056         if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
 2057                 scn->scn_gt_max_this_txg++;
 2058                 goto out;
 2059         }
 2060 
 2061         scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
 2062 
 2063 out:
 2064         kmem_free(bp_toread, sizeof (blkptr_t));
 2065 }
 2066 
 2067 static void
 2068 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
 2069     dmu_tx_t *tx)
 2070 {
 2071         zbookmark_phys_t zb;
 2072         scan_prefetch_ctx_t *spc;
 2073 
 2074         SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
 2075             ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
 2076 
 2077         if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
 2078                 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
 2079                     zb.zb_objset, 0, 0, 0);
 2080         } else {
 2081                 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
 2082         }
 2083 
 2084         scn->scn_objsets_visited_this_txg++;
 2085 
 2086         spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
 2087         dsl_scan_prefetch(spc, bp, &zb);
 2088         scan_prefetch_ctx_rele(spc, FTAG);
 2089 
 2090         dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
 2091 
 2092         dprintf_ds(ds, "finished scan%s", "");
 2093 }
 2094 
 2095 static void
 2096 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
 2097 {
 2098         if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
 2099                 if (ds->ds_is_snapshot) {
 2100                         /*
 2101                          * Note:
 2102                          *  - scn_cur_{min,max}_txg stays the same.
 2103                          *  - Setting the flag is not really necessary if
 2104                          *    scn_cur_max_txg == scn_max_txg, because there
 2105                          *    is nothing after this snapshot that we care
 2106                          *    about.  However, we set it anyway and then
 2107                          *    ignore it when we retraverse it in
 2108                          *    dsl_scan_visitds().
 2109                          */
 2110                         scn_phys->scn_bookmark.zb_objset =
 2111                             dsl_dataset_phys(ds)->ds_next_snap_obj;
 2112                         zfs_dbgmsg("destroying ds %llu on %s; currently "
 2113                             "traversing; reset zb_objset to %llu",
 2114                             (u_longlong_t)ds->ds_object,
 2115                             ds->ds_dir->dd_pool->dp_spa->spa_name,
 2116                             (u_longlong_t)dsl_dataset_phys(ds)->
 2117                             ds_next_snap_obj);
 2118                         scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
 2119                 } else {
 2120                         SET_BOOKMARK(&scn_phys->scn_bookmark,
 2121                             ZB_DESTROYED_OBJSET, 0, 0, 0);
 2122                         zfs_dbgmsg("destroying ds %llu on %s; currently "
 2123                             "traversing; reset bookmark to -1,0,0,0",
 2124                             (u_longlong_t)ds->ds_object,
 2125                             ds->ds_dir->dd_pool->dp_spa->spa_name);
 2126                 }
 2127         }
 2128 }
 2129 
 2130 /*
 2131  * Invoked when a dataset is destroyed. We need to make sure that:
 2132  *
 2133  * 1) If it is the dataset that was currently being scanned, we write
 2134  *      a new dsl_scan_phys_t and marking the objset reference in it
 2135  *      as destroyed.
 2136  * 2) Remove it from the work queue, if it was present.
 2137  *
 2138  * If the dataset was actually a snapshot, instead of marking the dataset
 2139  * as destroyed, we instead substitute the next snapshot in line.
 2140  */
 2141 void
 2142 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
 2143 {
 2144         dsl_pool_t *dp = ds->ds_dir->dd_pool;
 2145         dsl_scan_t *scn = dp->dp_scan;
 2146         uint64_t mintxg;
 2147 
 2148         if (!dsl_scan_is_running(scn))
 2149                 return;
 2150 
 2151         ds_destroyed_scn_phys(ds, &scn->scn_phys);
 2152         ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
 2153 
 2154         if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
 2155                 scan_ds_queue_remove(scn, ds->ds_object);
 2156                 if (ds->ds_is_snapshot)
 2157                         scan_ds_queue_insert(scn,
 2158                             dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
 2159         }
 2160 
 2161         if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
 2162             ds->ds_object, &mintxg) == 0) {
 2163                 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
 2164                 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
 2165                     scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
 2166                 if (ds->ds_is_snapshot) {
 2167                         /*
 2168                          * We keep the same mintxg; it could be >
 2169                          * ds_creation_txg if the previous snapshot was
 2170                          * deleted too.
 2171                          */
 2172                         VERIFY(zap_add_int_key(dp->dp_meta_objset,
 2173                             scn->scn_phys.scn_queue_obj,
 2174                             dsl_dataset_phys(ds)->ds_next_snap_obj,
 2175                             mintxg, tx) == 0);
 2176                         zfs_dbgmsg("destroying ds %llu on %s; in queue; "
 2177                             "replacing with %llu",
 2178                             (u_longlong_t)ds->ds_object,
 2179                             dp->dp_spa->spa_name,
 2180                             (u_longlong_t)dsl_dataset_phys(ds)->
 2181                             ds_next_snap_obj);
 2182                 } else {
 2183                         zfs_dbgmsg("destroying ds %llu on %s; in queue; "
 2184                             "removing",
 2185                             (u_longlong_t)ds->ds_object,
 2186                             dp->dp_spa->spa_name);
 2187                 }
 2188         }
 2189 
 2190         /*
 2191          * dsl_scan_sync() should be called after this, and should sync
 2192          * out our changed state, but just to be safe, do it here.
 2193          */
 2194         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
 2195 }
 2196 
 2197 static void
 2198 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
 2199 {
 2200         if (scn_bookmark->zb_objset == ds->ds_object) {
 2201                 scn_bookmark->zb_objset =
 2202                     dsl_dataset_phys(ds)->ds_prev_snap_obj;
 2203                 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
 2204                     "reset zb_objset to %llu",
 2205                     (u_longlong_t)ds->ds_object,
 2206                     ds->ds_dir->dd_pool->dp_spa->spa_name,
 2207                     (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
 2208         }
 2209 }
 2210 
 2211 /*
 2212  * Called when a dataset is snapshotted. If we were currently traversing
 2213  * this snapshot, we reset our bookmark to point at the newly created
 2214  * snapshot. We also modify our work queue to remove the old snapshot and
 2215  * replace with the new one.
 2216  */
 2217 void
 2218 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
 2219 {
 2220         dsl_pool_t *dp = ds->ds_dir->dd_pool;
 2221         dsl_scan_t *scn = dp->dp_scan;
 2222         uint64_t mintxg;
 2223 
 2224         if (!dsl_scan_is_running(scn))
 2225                 return;
 2226 
 2227         ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
 2228 
 2229         ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
 2230         ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
 2231 
 2232         if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
 2233                 scan_ds_queue_remove(scn, ds->ds_object);
 2234                 scan_ds_queue_insert(scn,
 2235                     dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
 2236         }
 2237 
 2238         if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
 2239             ds->ds_object, &mintxg) == 0) {
 2240                 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
 2241                     scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
 2242                 VERIFY(zap_add_int_key(dp->dp_meta_objset,
 2243                     scn->scn_phys.scn_queue_obj,
 2244                     dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
 2245                 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
 2246                     "replacing with %llu",
 2247                     (u_longlong_t)ds->ds_object,
 2248                     dp->dp_spa->spa_name,
 2249                     (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
 2250         }
 2251 
 2252         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
 2253 }
 2254 
 2255 static void
 2256 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
 2257     zbookmark_phys_t *scn_bookmark)
 2258 {
 2259         if (scn_bookmark->zb_objset == ds1->ds_object) {
 2260                 scn_bookmark->zb_objset = ds2->ds_object;
 2261                 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
 2262                     "reset zb_objset to %llu",
 2263                     (u_longlong_t)ds1->ds_object,
 2264                     ds1->ds_dir->dd_pool->dp_spa->spa_name,
 2265                     (u_longlong_t)ds2->ds_object);
 2266         } else if (scn_bookmark->zb_objset == ds2->ds_object) {
 2267                 scn_bookmark->zb_objset = ds1->ds_object;
 2268                 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
 2269                     "reset zb_objset to %llu",
 2270                     (u_longlong_t)ds2->ds_object,
 2271                     ds2->ds_dir->dd_pool->dp_spa->spa_name,
 2272                     (u_longlong_t)ds1->ds_object);
 2273         }
 2274 }
 2275 
 2276 /*
 2277  * Called when an origin dataset and its clone are swapped.  If we were
 2278  * currently traversing the dataset, we need to switch to traversing the
 2279  * newly promoted clone.
 2280  */
 2281 void
 2282 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
 2283 {
 2284         dsl_pool_t *dp = ds1->ds_dir->dd_pool;
 2285         dsl_scan_t *scn = dp->dp_scan;
 2286         uint64_t mintxg1, mintxg2;
 2287         boolean_t ds1_queued, ds2_queued;
 2288 
 2289         if (!dsl_scan_is_running(scn))
 2290                 return;
 2291 
 2292         ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
 2293         ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
 2294 
 2295         /*
 2296          * Handle the in-memory scan queue.
 2297          */
 2298         ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
 2299         ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
 2300 
 2301         /* Sanity checking. */
 2302         if (ds1_queued) {
 2303                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
 2304                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
 2305         }
 2306         if (ds2_queued) {
 2307                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
 2308                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
 2309         }
 2310 
 2311         if (ds1_queued && ds2_queued) {
 2312                 /*
 2313                  * If both are queued, we don't need to do anything.
 2314                  * The swapping code below would not handle this case correctly,
 2315                  * since we can't insert ds2 if it is already there. That's
 2316                  * because scan_ds_queue_insert() prohibits a duplicate insert
 2317                  * and panics.
 2318                  */
 2319         } else if (ds1_queued) {
 2320                 scan_ds_queue_remove(scn, ds1->ds_object);
 2321                 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
 2322         } else if (ds2_queued) {
 2323                 scan_ds_queue_remove(scn, ds2->ds_object);
 2324                 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
 2325         }
 2326 
 2327         /*
 2328          * Handle the on-disk scan queue.
 2329          * The on-disk state is an out-of-date version of the in-memory state,
 2330          * so the in-memory and on-disk values for ds1_queued and ds2_queued may
 2331          * be different. Therefore we need to apply the swap logic to the
 2332          * on-disk state independently of the in-memory state.
 2333          */
 2334         ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
 2335             scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
 2336         ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
 2337             scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
 2338 
 2339         /* Sanity checking. */
 2340         if (ds1_queued) {
 2341                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
 2342                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
 2343         }
 2344         if (ds2_queued) {
 2345                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
 2346                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
 2347         }
 2348 
 2349         if (ds1_queued && ds2_queued) {
 2350                 /*
 2351                  * If both are queued, we don't need to do anything.
 2352                  * Alternatively, we could check for EEXIST from
 2353                  * zap_add_int_key() and back out to the original state, but
 2354                  * that would be more work than checking for this case upfront.
 2355                  */
 2356         } else if (ds1_queued) {
 2357                 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
 2358                     scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
 2359                 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
 2360                     scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
 2361                 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
 2362                     "replacing with %llu",
 2363                     (u_longlong_t)ds1->ds_object,
 2364                     dp->dp_spa->spa_name,
 2365                     (u_longlong_t)ds2->ds_object);
 2366         } else if (ds2_queued) {
 2367                 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
 2368                     scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
 2369                 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
 2370                     scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
 2371                 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
 2372                     "replacing with %llu",
 2373                     (u_longlong_t)ds2->ds_object,
 2374                     dp->dp_spa->spa_name,
 2375                     (u_longlong_t)ds1->ds_object);
 2376         }
 2377 
 2378         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
 2379 }
 2380 
 2381 static int
 2382 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
 2383 {
 2384         uint64_t originobj = *(uint64_t *)arg;
 2385         dsl_dataset_t *ds;
 2386         int err;
 2387         dsl_scan_t *scn = dp->dp_scan;
 2388 
 2389         if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
 2390                 return (0);
 2391 
 2392         err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
 2393         if (err)
 2394                 return (err);
 2395 
 2396         while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
 2397                 dsl_dataset_t *prev;
 2398                 err = dsl_dataset_hold_obj(dp,
 2399                     dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
 2400 
 2401                 dsl_dataset_rele(ds, FTAG);
 2402                 if (err)
 2403                         return (err);
 2404                 ds = prev;
 2405         }
 2406         scan_ds_queue_insert(scn, ds->ds_object,
 2407             dsl_dataset_phys(ds)->ds_prev_snap_txg);
 2408         dsl_dataset_rele(ds, FTAG);
 2409         return (0);
 2410 }
 2411 
 2412 static void
 2413 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
 2414 {
 2415         dsl_pool_t *dp = scn->scn_dp;
 2416         dsl_dataset_t *ds;
 2417 
 2418         VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
 2419 
 2420         if (scn->scn_phys.scn_cur_min_txg >=
 2421             scn->scn_phys.scn_max_txg) {
 2422                 /*
 2423                  * This can happen if this snapshot was created after the
 2424                  * scan started, and we already completed a previous snapshot
 2425                  * that was created after the scan started.  This snapshot
 2426                  * only references blocks with:
 2427                  *
 2428                  *      birth < our ds_creation_txg
 2429                  *      cur_min_txg is no less than ds_creation_txg.
 2430                  *      We have already visited these blocks.
 2431                  * or
 2432                  *      birth > scn_max_txg
 2433                  *      The scan requested not to visit these blocks.
 2434                  *
 2435                  * Subsequent snapshots (and clones) can reference our
 2436                  * blocks, or blocks with even higher birth times.
 2437                  * Therefore we do not need to visit them either,
 2438                  * so we do not add them to the work queue.
 2439                  *
 2440                  * Note that checking for cur_min_txg >= cur_max_txg
 2441                  * is not sufficient, because in that case we may need to
 2442                  * visit subsequent snapshots.  This happens when min_txg > 0,
 2443                  * which raises cur_min_txg.  In this case we will visit
 2444                  * this dataset but skip all of its blocks, because the
 2445                  * rootbp's birth time is < cur_min_txg.  Then we will
 2446                  * add the next snapshots/clones to the work queue.
 2447                  */
 2448                 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 2449                 dsl_dataset_name(ds, dsname);
 2450                 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
 2451                     "cur_min_txg (%llu) >= max_txg (%llu)",
 2452                     (longlong_t)dsobj, dsname,
 2453                     (longlong_t)scn->scn_phys.scn_cur_min_txg,
 2454                     (longlong_t)scn->scn_phys.scn_max_txg);
 2455                 kmem_free(dsname, MAXNAMELEN);
 2456 
 2457                 goto out;
 2458         }
 2459 
 2460         /*
 2461          * Only the ZIL in the head (non-snapshot) is valid. Even though
 2462          * snapshots can have ZIL block pointers (which may be the same
 2463          * BP as in the head), they must be ignored. In addition, $ORIGIN
 2464          * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
 2465          * need to look for a ZIL in it either. So we traverse the ZIL here,
 2466          * rather than in scan_recurse(), because the regular snapshot
 2467          * block-sharing rules don't apply to it.
 2468          */
 2469         if (!dsl_dataset_is_snapshot(ds) &&
 2470             (dp->dp_origin_snap == NULL ||
 2471             ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
 2472                 objset_t *os;
 2473                 if (dmu_objset_from_ds(ds, &os) != 0) {
 2474                         goto out;
 2475                 }
 2476                 dsl_scan_zil(dp, &os->os_zil_header);
 2477         }
 2478 
 2479         /*
 2480          * Iterate over the bps in this ds.
 2481          */
 2482         dmu_buf_will_dirty(ds->ds_dbuf, tx);
 2483         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
 2484         dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
 2485         rrw_exit(&ds->ds_bp_rwlock, FTAG);
 2486 
 2487         char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 2488         dsl_dataset_name(ds, dsname);
 2489         zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
 2490             "suspending=%u",
 2491             (longlong_t)dsobj, dsname,
 2492             (longlong_t)scn->scn_phys.scn_cur_min_txg,
 2493             (longlong_t)scn->scn_phys.scn_cur_max_txg,
 2494             (int)scn->scn_suspending);
 2495         kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
 2496 
 2497         if (scn->scn_suspending)
 2498                 goto out;
 2499 
 2500         /*
 2501          * We've finished this pass over this dataset.
 2502          */
 2503 
 2504         /*
 2505          * If we did not completely visit this dataset, do another pass.
 2506          */
 2507         if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
 2508                 zfs_dbgmsg("incomplete pass on %s; visiting again",
 2509                     dp->dp_spa->spa_name);
 2510                 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
 2511                 scan_ds_queue_insert(scn, ds->ds_object,
 2512                     scn->scn_phys.scn_cur_max_txg);
 2513                 goto out;
 2514         }
 2515 
 2516         /*
 2517          * Add descendant datasets to work queue.
 2518          */
 2519         if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
 2520                 scan_ds_queue_insert(scn,
 2521                     dsl_dataset_phys(ds)->ds_next_snap_obj,
 2522                     dsl_dataset_phys(ds)->ds_creation_txg);
 2523         }
 2524         if (dsl_dataset_phys(ds)->ds_num_children > 1) {
 2525                 boolean_t usenext = B_FALSE;
 2526                 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
 2527                         uint64_t count;
 2528                         /*
 2529                          * A bug in a previous version of the code could
 2530                          * cause upgrade_clones_cb() to not set
 2531                          * ds_next_snap_obj when it should, leading to a
 2532                          * missing entry.  Therefore we can only use the
 2533                          * next_clones_obj when its count is correct.
 2534                          */
 2535                         int err = zap_count(dp->dp_meta_objset,
 2536                             dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
 2537                         if (err == 0 &&
 2538                             count == dsl_dataset_phys(ds)->ds_num_children - 1)
 2539                                 usenext = B_TRUE;
 2540                 }
 2541 
 2542                 if (usenext) {
 2543                         zap_cursor_t zc;
 2544                         zap_attribute_t za;
 2545                         for (zap_cursor_init(&zc, dp->dp_meta_objset,
 2546                             dsl_dataset_phys(ds)->ds_next_clones_obj);
 2547                             zap_cursor_retrieve(&zc, &za) == 0;
 2548                             (void) zap_cursor_advance(&zc)) {
 2549                                 scan_ds_queue_insert(scn,
 2550                                     zfs_strtonum(za.za_name, NULL),
 2551                                     dsl_dataset_phys(ds)->ds_creation_txg);
 2552                         }
 2553                         zap_cursor_fini(&zc);
 2554                 } else {
 2555                         VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
 2556                             enqueue_clones_cb, &ds->ds_object,
 2557                             DS_FIND_CHILDREN));
 2558                 }
 2559         }
 2560 
 2561 out:
 2562         dsl_dataset_rele(ds, FTAG);
 2563 }
 2564 
 2565 static int
 2566 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
 2567 {
 2568         (void) arg;
 2569         dsl_dataset_t *ds;
 2570         int err;
 2571         dsl_scan_t *scn = dp->dp_scan;
 2572 
 2573         err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
 2574         if (err)
 2575                 return (err);
 2576 
 2577         while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
 2578                 dsl_dataset_t *prev;
 2579                 err = dsl_dataset_hold_obj(dp,
 2580                     dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
 2581                 if (err) {
 2582                         dsl_dataset_rele(ds, FTAG);
 2583                         return (err);
 2584                 }
 2585 
 2586                 /*
 2587                  * If this is a clone, we don't need to worry about it for now.
 2588                  */
 2589                 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
 2590                         dsl_dataset_rele(ds, FTAG);
 2591                         dsl_dataset_rele(prev, FTAG);
 2592                         return (0);
 2593                 }
 2594                 dsl_dataset_rele(ds, FTAG);
 2595                 ds = prev;
 2596         }
 2597 
 2598         scan_ds_queue_insert(scn, ds->ds_object,
 2599             dsl_dataset_phys(ds)->ds_prev_snap_txg);
 2600         dsl_dataset_rele(ds, FTAG);
 2601         return (0);
 2602 }
 2603 
 2604 void
 2605 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
 2606     ddt_entry_t *dde, dmu_tx_t *tx)
 2607 {
 2608         (void) tx;
 2609         const ddt_key_t *ddk = &dde->dde_key;
 2610         ddt_phys_t *ddp = dde->dde_phys;
 2611         blkptr_t bp;
 2612         zbookmark_phys_t zb = { 0 };
 2613 
 2614         if (!dsl_scan_is_running(scn))
 2615                 return;
 2616 
 2617         /*
 2618          * This function is special because it is the only thing
 2619          * that can add scan_io_t's to the vdev scan queues from
 2620          * outside dsl_scan_sync(). For the most part this is ok
 2621          * as long as it is called from within syncing context.
 2622          * However, dsl_scan_sync() expects that no new sio's will
 2623          * be added between when all the work for a scan is done
 2624          * and the next txg when the scan is actually marked as
 2625          * completed. This check ensures we do not issue new sio's
 2626          * during this period.
 2627          */
 2628         if (scn->scn_done_txg != 0)
 2629                 return;
 2630 
 2631         for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
 2632                 if (ddp->ddp_phys_birth == 0 ||
 2633                     ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
 2634                         continue;
 2635                 ddt_bp_create(checksum, ddk, ddp, &bp);
 2636 
 2637                 scn->scn_visited_this_txg++;
 2638                 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
 2639         }
 2640 }
 2641 
 2642 /*
 2643  * Scrub/dedup interaction.
 2644  *
 2645  * If there are N references to a deduped block, we don't want to scrub it
 2646  * N times -- ideally, we should scrub it exactly once.
 2647  *
 2648  * We leverage the fact that the dde's replication class (enum ddt_class)
 2649  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
 2650  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
 2651  *
 2652  * To prevent excess scrubbing, the scrub begins by walking the DDT
 2653  * to find all blocks with refcnt > 1, and scrubs each of these once.
 2654  * Since there are two replication classes which contain blocks with
 2655  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
 2656  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
 2657  *
 2658  * There would be nothing more to say if a block's refcnt couldn't change
 2659  * during a scrub, but of course it can so we must account for changes
 2660  * in a block's replication class.
 2661  *
 2662  * Here's an example of what can occur:
 2663  *
 2664  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
 2665  * when visited during the top-down scrub phase, it will be scrubbed twice.
 2666  * This negates our scrub optimization, but is otherwise harmless.
 2667  *
 2668  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
 2669  * on each visit during the top-down scrub phase, it will never be scrubbed.
 2670  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
 2671  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
 2672  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
 2673  * while a scrub is in progress, it scrubs the block right then.
 2674  */
 2675 static void
 2676 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
 2677 {
 2678         ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
 2679         ddt_entry_t dde = {{{{0}}}};
 2680         int error;
 2681         uint64_t n = 0;
 2682 
 2683         while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
 2684                 ddt_t *ddt;
 2685 
 2686                 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
 2687                         break;
 2688                 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
 2689                     (longlong_t)ddb->ddb_class,
 2690                     (longlong_t)ddb->ddb_type,
 2691                     (longlong_t)ddb->ddb_checksum,
 2692                     (longlong_t)ddb->ddb_cursor);
 2693 
 2694                 /* There should be no pending changes to the dedup table */
 2695                 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
 2696                 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
 2697 
 2698                 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
 2699                 n++;
 2700 
 2701                 if (dsl_scan_check_suspend(scn, NULL))
 2702                         break;
 2703         }
 2704 
 2705         zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
 2706             "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
 2707             (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
 2708 
 2709         ASSERT(error == 0 || error == ENOENT);
 2710         ASSERT(error != ENOENT ||
 2711             ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
 2712 }
 2713 
 2714 static uint64_t
 2715 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
 2716 {
 2717         uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
 2718         if (ds->ds_is_snapshot)
 2719                 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
 2720         return (smt);
 2721 }
 2722 
 2723 static void
 2724 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
 2725 {
 2726         scan_ds_t *sds;
 2727         dsl_pool_t *dp = scn->scn_dp;
 2728 
 2729         if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
 2730             scn->scn_phys.scn_ddt_class_max) {
 2731                 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
 2732                 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
 2733                 dsl_scan_ddt(scn, tx);
 2734                 if (scn->scn_suspending)
 2735                         return;
 2736         }
 2737 
 2738         if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
 2739                 /* First do the MOS & ORIGIN */
 2740 
 2741                 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
 2742                 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
 2743                 dsl_scan_visit_rootbp(scn, NULL,
 2744                     &dp->dp_meta_rootbp, tx);
 2745                 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
 2746                 if (scn->scn_suspending)
 2747                         return;
 2748 
 2749                 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
 2750                         VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
 2751                             enqueue_cb, NULL, DS_FIND_CHILDREN));
 2752                 } else {
 2753                         dsl_scan_visitds(scn,
 2754                             dp->dp_origin_snap->ds_object, tx);
 2755                 }
 2756                 ASSERT(!scn->scn_suspending);
 2757         } else if (scn->scn_phys.scn_bookmark.zb_objset !=
 2758             ZB_DESTROYED_OBJSET) {
 2759                 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
 2760                 /*
 2761                  * If we were suspended, continue from here. Note if the
 2762                  * ds we were suspended on was deleted, the zb_objset may
 2763                  * be -1, so we will skip this and find a new objset
 2764                  * below.
 2765                  */
 2766                 dsl_scan_visitds(scn, dsobj, tx);
 2767                 if (scn->scn_suspending)
 2768                         return;
 2769         }
 2770 
 2771         /*
 2772          * In case we suspended right at the end of the ds, zero the
 2773          * bookmark so we don't think that we're still trying to resume.
 2774          */
 2775         memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
 2776 
 2777         /*
 2778          * Keep pulling things out of the dataset avl queue. Updates to the
 2779          * persistent zap-object-as-queue happen only at checkpoints.
 2780          */
 2781         while ((sds = avl_first(&scn->scn_queue)) != NULL) {
 2782                 dsl_dataset_t *ds;
 2783                 uint64_t dsobj = sds->sds_dsobj;
 2784                 uint64_t txg = sds->sds_txg;
 2785 
 2786                 /* dequeue and free the ds from the queue */
 2787                 scan_ds_queue_remove(scn, dsobj);
 2788                 sds = NULL;
 2789 
 2790                 /* set up min / max txg */
 2791                 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
 2792                 if (txg != 0) {
 2793                         scn->scn_phys.scn_cur_min_txg =
 2794                             MAX(scn->scn_phys.scn_min_txg, txg);
 2795                 } else {
 2796                         scn->scn_phys.scn_cur_min_txg =
 2797                             MAX(scn->scn_phys.scn_min_txg,
 2798                             dsl_dataset_phys(ds)->ds_prev_snap_txg);
 2799                 }
 2800                 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
 2801                 dsl_dataset_rele(ds, FTAG);
 2802 
 2803                 dsl_scan_visitds(scn, dsobj, tx);
 2804                 if (scn->scn_suspending)
 2805                         return;
 2806         }
 2807 
 2808         /* No more objsets to fetch, we're done */
 2809         scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
 2810         ASSERT0(scn->scn_suspending);
 2811 }
 2812 
 2813 static uint64_t
 2814 dsl_scan_count_data_disks(vdev_t *rvd)
 2815 {
 2816         uint64_t i, leaves = 0;
 2817 
 2818         for (i = 0; i < rvd->vdev_children; i++) {
 2819                 vdev_t *vd = rvd->vdev_child[i];
 2820                 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
 2821                         continue;
 2822                 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
 2823         }
 2824         return (leaves);
 2825 }
 2826 
 2827 static void
 2828 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
 2829 {
 2830         int i;
 2831         uint64_t cur_size = 0;
 2832 
 2833         for (i = 0; i < BP_GET_NDVAS(bp); i++) {
 2834                 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
 2835         }
 2836 
 2837         q->q_total_zio_size_this_txg += cur_size;
 2838         q->q_zios_this_txg++;
 2839 }
 2840 
 2841 static void
 2842 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
 2843     uint64_t end)
 2844 {
 2845         q->q_total_seg_size_this_txg += end - start;
 2846         q->q_segs_this_txg++;
 2847 }
 2848 
 2849 static boolean_t
 2850 scan_io_queue_check_suspend(dsl_scan_t *scn)
 2851 {
 2852         /* See comment in dsl_scan_check_suspend() */
 2853         uint64_t curr_time_ns = gethrtime();
 2854         uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
 2855         uint64_t sync_time_ns = curr_time_ns -
 2856             scn->scn_dp->dp_spa->spa_sync_starttime;
 2857         uint64_t dirty_min_bytes = zfs_dirty_data_max *
 2858             zfs_vdev_async_write_active_min_dirty_percent / 100;
 2859         uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
 2860             zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
 2861 
 2862         return ((NSEC2MSEC(scan_time_ns) > mintime &&
 2863             (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
 2864             txg_sync_waiting(scn->scn_dp) ||
 2865             NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
 2866             spa_shutting_down(scn->scn_dp->dp_spa));
 2867 }
 2868 
 2869 /*
 2870  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
 2871  * disk. This consumes the io_list and frees the scan_io_t's. This is
 2872  * called when emptying queues, either when we're up against the memory
 2873  * limit or when we have finished scanning. Returns B_TRUE if we stopped
 2874  * processing the list before we finished. Any sios that were not issued
 2875  * will remain in the io_list.
 2876  */
 2877 static boolean_t
 2878 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
 2879 {
 2880         dsl_scan_t *scn = queue->q_scn;
 2881         scan_io_t *sio;
 2882         boolean_t suspended = B_FALSE;
 2883 
 2884         while ((sio = list_head(io_list)) != NULL) {
 2885                 blkptr_t bp;
 2886 
 2887                 if (scan_io_queue_check_suspend(scn)) {
 2888                         suspended = B_TRUE;
 2889                         break;
 2890                 }
 2891 
 2892                 sio2bp(sio, &bp);
 2893                 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
 2894                     &sio->sio_zb, queue);
 2895                 (void) list_remove_head(io_list);
 2896                 scan_io_queues_update_zio_stats(queue, &bp);
 2897                 sio_free(sio);
 2898         }
 2899         return (suspended);
 2900 }
 2901 
 2902 /*
 2903  * This function removes sios from an IO queue which reside within a given
 2904  * range_seg_t and inserts them (in offset order) into a list. Note that
 2905  * we only ever return a maximum of 32 sios at once. If there are more sios
 2906  * to process within this segment that did not make it onto the list we
 2907  * return B_TRUE and otherwise B_FALSE.
 2908  */
 2909 static boolean_t
 2910 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
 2911 {
 2912         scan_io_t *srch_sio, *sio, *next_sio;
 2913         avl_index_t idx;
 2914         uint_t num_sios = 0;
 2915         int64_t bytes_issued = 0;
 2916 
 2917         ASSERT(rs != NULL);
 2918         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
 2919 
 2920         srch_sio = sio_alloc(1);
 2921         srch_sio->sio_nr_dvas = 1;
 2922         SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
 2923 
 2924         /*
 2925          * The exact start of the extent might not contain any matching zios,
 2926          * so if that's the case, examine the next one in the tree.
 2927          */
 2928         sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
 2929         sio_free(srch_sio);
 2930 
 2931         if (sio == NULL)
 2932                 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
 2933 
 2934         while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
 2935             queue->q_exts_by_addr) && num_sios <= 32) {
 2936                 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
 2937                     queue->q_exts_by_addr));
 2938                 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
 2939                     queue->q_exts_by_addr));
 2940 
 2941                 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
 2942                 avl_remove(&queue->q_sios_by_addr, sio);
 2943                 if (avl_is_empty(&queue->q_sios_by_addr))
 2944                         atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
 2945                 queue->q_sio_memused -= SIO_GET_MUSED(sio);
 2946 
 2947                 bytes_issued += SIO_GET_ASIZE(sio);
 2948                 num_sios++;
 2949                 list_insert_tail(list, sio);
 2950                 sio = next_sio;
 2951         }
 2952 
 2953         /*
 2954          * We limit the number of sios we process at once to 32 to avoid
 2955          * biting off more than we can chew. If we didn't take everything
 2956          * in the segment we update it to reflect the work we were able to
 2957          * complete. Otherwise, we remove it from the range tree entirely.
 2958          */
 2959         if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
 2960             queue->q_exts_by_addr)) {
 2961                 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
 2962                     -bytes_issued);
 2963                 range_tree_resize_segment(queue->q_exts_by_addr, rs,
 2964                     SIO_GET_OFFSET(sio), rs_get_end(rs,
 2965                     queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
 2966                 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
 2967                 return (B_TRUE);
 2968         } else {
 2969                 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
 2970                 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
 2971                 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
 2972                 queue->q_last_ext_addr = -1;
 2973                 return (B_FALSE);
 2974         }
 2975 }
 2976 
 2977 /*
 2978  * This is called from the queue emptying thread and selects the next
 2979  * extent from which we are to issue I/Os. The behavior of this function
 2980  * depends on the state of the scan, the current memory consumption and
 2981  * whether or not we are performing a scan shutdown.
 2982  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
 2983  *      needs to perform a checkpoint
 2984  * 2) We select the largest available extent if we are up against the
 2985  *      memory limit.
 2986  * 3) Otherwise we don't select any extents.
 2987  */
 2988 static range_seg_t *
 2989 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
 2990 {
 2991         dsl_scan_t *scn = queue->q_scn;
 2992         range_tree_t *rt = queue->q_exts_by_addr;
 2993 
 2994         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
 2995         ASSERT(scn->scn_is_sorted);
 2996 
 2997         if (!scn->scn_checkpointing && !scn->scn_clearing)
 2998                 return (NULL);
 2999 
 3000         /*
 3001          * During normal clearing, we want to issue our largest segments
 3002          * first, keeping IO as sequential as possible, and leaving the
 3003          * smaller extents for later with the hope that they might eventually
 3004          * grow to larger sequential segments. However, when the scan is
 3005          * checkpointing, no new extents will be added to the sorting queue,
 3006          * so the way we are sorted now is as good as it will ever get.
 3007          * In this case, we instead switch to issuing extents in LBA order.
 3008          */
 3009         if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
 3010             zfs_scan_issue_strategy == 1)
 3011                 return (range_tree_first(rt));
 3012 
 3013         /*
 3014          * Try to continue previous extent if it is not completed yet.  After
 3015          * shrink in scan_io_queue_gather() it may no longer be the best, but
 3016          * otherwise we leave shorter remnant every txg.
 3017          */
 3018         uint64_t start;
 3019         uint64_t size = 1ULL << rt->rt_shift;
 3020         range_seg_t *addr_rs;
 3021         if (queue->q_last_ext_addr != -1) {
 3022                 start = queue->q_last_ext_addr;
 3023                 addr_rs = range_tree_find(rt, start, size);
 3024                 if (addr_rs != NULL)
 3025                         return (addr_rs);
 3026         }
 3027 
 3028         /*
 3029          * Nothing to continue, so find new best extent.
 3030          */
 3031         uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
 3032         if (v == NULL)
 3033                 return (NULL);
 3034         queue->q_last_ext_addr = start = *v << rt->rt_shift;
 3035 
 3036         /*
 3037          * We need to get the original entry in the by_addr tree so we can
 3038          * modify it.
 3039          */
 3040         addr_rs = range_tree_find(rt, start, size);
 3041         ASSERT3P(addr_rs, !=, NULL);
 3042         ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
 3043         ASSERT3U(rs_get_end(addr_rs, rt), >, start);
 3044         return (addr_rs);
 3045 }
 3046 
 3047 static void
 3048 scan_io_queues_run_one(void *arg)
 3049 {
 3050         dsl_scan_io_queue_t *queue = arg;
 3051         kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
 3052         boolean_t suspended = B_FALSE;
 3053         range_seg_t *rs;
 3054         scan_io_t *sio;
 3055         zio_t *zio;
 3056         list_t sio_list;
 3057 
 3058         ASSERT(queue->q_scn->scn_is_sorted);
 3059 
 3060         list_create(&sio_list, sizeof (scan_io_t),
 3061             offsetof(scan_io_t, sio_nodes.sio_list_node));
 3062         zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
 3063             NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
 3064         mutex_enter(q_lock);
 3065         queue->q_zio = zio;
 3066 
 3067         /* Calculate maximum in-flight bytes for this vdev. */
 3068         queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
 3069             (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
 3070 
 3071         /* reset per-queue scan statistics for this txg */
 3072         queue->q_total_seg_size_this_txg = 0;
 3073         queue->q_segs_this_txg = 0;
 3074         queue->q_total_zio_size_this_txg = 0;
 3075         queue->q_zios_this_txg = 0;
 3076 
 3077         /* loop until we run out of time or sios */
 3078         while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
 3079                 uint64_t seg_start = 0, seg_end = 0;
 3080                 boolean_t more_left;
 3081 
 3082                 ASSERT(list_is_empty(&sio_list));
 3083 
 3084                 /* loop while we still have sios left to process in this rs */
 3085                 do {
 3086                         scan_io_t *first_sio, *last_sio;
 3087 
 3088                         /*
 3089                          * We have selected which extent needs to be
 3090                          * processed next. Gather up the corresponding sios.
 3091                          */
 3092                         more_left = scan_io_queue_gather(queue, rs, &sio_list);
 3093                         ASSERT(!list_is_empty(&sio_list));
 3094                         first_sio = list_head(&sio_list);
 3095                         last_sio = list_tail(&sio_list);
 3096 
 3097                         seg_end = SIO_GET_END_OFFSET(last_sio);
 3098                         if (seg_start == 0)
 3099                                 seg_start = SIO_GET_OFFSET(first_sio);
 3100 
 3101                         /*
 3102                          * Issuing sios can take a long time so drop the
 3103                          * queue lock. The sio queue won't be updated by
 3104                          * other threads since we're in syncing context so
 3105                          * we can be sure that our trees will remain exactly
 3106                          * as we left them.
 3107                          */
 3108                         mutex_exit(q_lock);
 3109                         suspended = scan_io_queue_issue(queue, &sio_list);
 3110                         mutex_enter(q_lock);
 3111 
 3112                         if (suspended)
 3113                                 break;
 3114                 } while (more_left);
 3115 
 3116                 /* update statistics for debugging purposes */
 3117                 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
 3118 
 3119                 if (suspended)
 3120                         break;
 3121         }
 3122 
 3123         /*
 3124          * If we were suspended in the middle of processing,
 3125          * requeue any unfinished sios and exit.
 3126          */
 3127         while ((sio = list_head(&sio_list)) != NULL) {
 3128                 list_remove(&sio_list, sio);
 3129                 scan_io_queue_insert_impl(queue, sio);
 3130         }
 3131 
 3132         queue->q_zio = NULL;
 3133         mutex_exit(q_lock);
 3134         zio_nowait(zio);
 3135         list_destroy(&sio_list);
 3136 }
 3137 
 3138 /*
 3139  * Performs an emptying run on all scan queues in the pool. This just
 3140  * punches out one thread per top-level vdev, each of which processes
 3141  * only that vdev's scan queue. We can parallelize the I/O here because
 3142  * we know that each queue's I/Os only affect its own top-level vdev.
 3143  *
 3144  * This function waits for the queue runs to complete, and must be
 3145  * called from dsl_scan_sync (or in general, syncing context).
 3146  */
 3147 static void
 3148 scan_io_queues_run(dsl_scan_t *scn)
 3149 {
 3150         spa_t *spa = scn->scn_dp->dp_spa;
 3151 
 3152         ASSERT(scn->scn_is_sorted);
 3153         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
 3154 
 3155         if (scn->scn_queues_pending == 0)
 3156                 return;
 3157 
 3158         if (scn->scn_taskq == NULL) {
 3159                 int nthreads = spa->spa_root_vdev->vdev_children;
 3160 
 3161                 /*
 3162                  * We need to make this taskq *always* execute as many
 3163                  * threads in parallel as we have top-level vdevs and no
 3164                  * less, otherwise strange serialization of the calls to
 3165                  * scan_io_queues_run_one can occur during spa_sync runs
 3166                  * and that significantly impacts performance.
 3167                  */
 3168                 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
 3169                     minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
 3170         }
 3171 
 3172         for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
 3173                 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
 3174 
 3175                 mutex_enter(&vd->vdev_scan_io_queue_lock);
 3176                 if (vd->vdev_scan_io_queue != NULL) {
 3177                         VERIFY(taskq_dispatch(scn->scn_taskq,
 3178                             scan_io_queues_run_one, vd->vdev_scan_io_queue,
 3179                             TQ_SLEEP) != TASKQID_INVALID);
 3180                 }
 3181                 mutex_exit(&vd->vdev_scan_io_queue_lock);
 3182         }
 3183 
 3184         /*
 3185          * Wait for the queues to finish issuing their IOs for this run
 3186          * before we return. There may still be IOs in flight at this
 3187          * point.
 3188          */
 3189         taskq_wait(scn->scn_taskq);
 3190 }
 3191 
 3192 static boolean_t
 3193 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
 3194 {
 3195         uint64_t elapsed_nanosecs;
 3196 
 3197         if (zfs_recover)
 3198                 return (B_FALSE);
 3199 
 3200         if (zfs_async_block_max_blocks != 0 &&
 3201             scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
 3202                 return (B_TRUE);
 3203         }
 3204 
 3205         if (zfs_max_async_dedup_frees != 0 &&
 3206             scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
 3207                 return (B_TRUE);
 3208         }
 3209 
 3210         elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
 3211         return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
 3212             (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
 3213             txg_sync_waiting(scn->scn_dp)) ||
 3214             spa_shutting_down(scn->scn_dp->dp_spa));
 3215 }
 3216 
 3217 static int
 3218 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 3219 {
 3220         dsl_scan_t *scn = arg;
 3221 
 3222         if (!scn->scn_is_bptree ||
 3223             (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
 3224                 if (dsl_scan_async_block_should_pause(scn))
 3225                         return (SET_ERROR(ERESTART));
 3226         }
 3227 
 3228         zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
 3229             dmu_tx_get_txg(tx), bp, 0));
 3230         dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
 3231             -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
 3232             -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
 3233         scn->scn_visited_this_txg++;
 3234         if (BP_GET_DEDUP(bp))
 3235                 scn->scn_dedup_frees_this_txg++;
 3236         return (0);
 3237 }
 3238 
 3239 static void
 3240 dsl_scan_update_stats(dsl_scan_t *scn)
 3241 {
 3242         spa_t *spa = scn->scn_dp->dp_spa;
 3243         uint64_t i;
 3244         uint64_t seg_size_total = 0, zio_size_total = 0;
 3245         uint64_t seg_count_total = 0, zio_count_total = 0;
 3246 
 3247         for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
 3248                 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
 3249                 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
 3250 
 3251                 if (queue == NULL)
 3252                         continue;
 3253 
 3254                 seg_size_total += queue->q_total_seg_size_this_txg;
 3255                 zio_size_total += queue->q_total_zio_size_this_txg;
 3256                 seg_count_total += queue->q_segs_this_txg;
 3257                 zio_count_total += queue->q_zios_this_txg;
 3258         }
 3259 
 3260         if (seg_count_total == 0 || zio_count_total == 0) {
 3261                 scn->scn_avg_seg_size_this_txg = 0;
 3262                 scn->scn_avg_zio_size_this_txg = 0;
 3263                 scn->scn_segs_this_txg = 0;
 3264                 scn->scn_zios_this_txg = 0;
 3265                 return;
 3266         }
 3267 
 3268         scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
 3269         scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
 3270         scn->scn_segs_this_txg = seg_count_total;
 3271         scn->scn_zios_this_txg = zio_count_total;
 3272 }
 3273 
 3274 static int
 3275 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
 3276     dmu_tx_t *tx)
 3277 {
 3278         ASSERT(!bp_freed);
 3279         return (dsl_scan_free_block_cb(arg, bp, tx));
 3280 }
 3281 
 3282 static int
 3283 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
 3284     dmu_tx_t *tx)
 3285 {
 3286         ASSERT(!bp_freed);
 3287         dsl_scan_t *scn = arg;
 3288         const dva_t *dva = &bp->blk_dva[0];
 3289 
 3290         if (dsl_scan_async_block_should_pause(scn))
 3291                 return (SET_ERROR(ERESTART));
 3292 
 3293         spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
 3294             DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
 3295             DVA_GET_ASIZE(dva), tx);
 3296         scn->scn_visited_this_txg++;
 3297         return (0);
 3298 }
 3299 
 3300 boolean_t
 3301 dsl_scan_active(dsl_scan_t *scn)
 3302 {
 3303         spa_t *spa = scn->scn_dp->dp_spa;
 3304         uint64_t used = 0, comp, uncomp;
 3305         boolean_t clones_left;
 3306 
 3307         if (spa->spa_load_state != SPA_LOAD_NONE)
 3308                 return (B_FALSE);
 3309         if (spa_shutting_down(spa))
 3310                 return (B_FALSE);
 3311         if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
 3312             (scn->scn_async_destroying && !scn->scn_async_stalled))
 3313                 return (B_TRUE);
 3314 
 3315         if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
 3316                 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
 3317                     &used, &comp, &uncomp);
 3318         }
 3319         clones_left = spa_livelist_delete_check(spa);
 3320         return ((used != 0) || (clones_left));
 3321 }
 3322 
 3323 static boolean_t
 3324 dsl_scan_check_deferred(vdev_t *vd)
 3325 {
 3326         boolean_t need_resilver = B_FALSE;
 3327 
 3328         for (int c = 0; c < vd->vdev_children; c++) {
 3329                 need_resilver |=
 3330                     dsl_scan_check_deferred(vd->vdev_child[c]);
 3331         }
 3332 
 3333         if (!vdev_is_concrete(vd) || vd->vdev_aux ||
 3334             !vd->vdev_ops->vdev_op_leaf)
 3335                 return (need_resilver);
 3336 
 3337         if (!vd->vdev_resilver_deferred)
 3338                 need_resilver = B_TRUE;
 3339 
 3340         return (need_resilver);
 3341 }
 3342 
 3343 static boolean_t
 3344 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
 3345     uint64_t phys_birth)
 3346 {
 3347         vdev_t *vd;
 3348 
 3349         vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
 3350 
 3351         if (vd->vdev_ops == &vdev_indirect_ops) {
 3352                 /*
 3353                  * The indirect vdev can point to multiple
 3354                  * vdevs.  For simplicity, always create
 3355                  * the resilver zio_t. zio_vdev_io_start()
 3356                  * will bypass the child resilver i/o's if
 3357                  * they are on vdevs that don't have DTL's.
 3358                  */
 3359                 return (B_TRUE);
 3360         }
 3361 
 3362         if (DVA_GET_GANG(dva)) {
 3363                 /*
 3364                  * Gang members may be spread across multiple
 3365                  * vdevs, so the best estimate we have is the
 3366                  * scrub range, which has already been checked.
 3367                  * XXX -- it would be better to change our
 3368                  * allocation policy to ensure that all
 3369                  * gang members reside on the same vdev.
 3370                  */
 3371                 return (B_TRUE);
 3372         }
 3373 
 3374         /*
 3375          * Check if the top-level vdev must resilver this offset.
 3376          * When the offset does not intersect with a dirty leaf DTL
 3377          * then it may be possible to skip the resilver IO.  The psize
 3378          * is provided instead of asize to simplify the check for RAIDZ.
 3379          */
 3380         if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
 3381                 return (B_FALSE);
 3382 
 3383         /*
 3384          * Check that this top-level vdev has a device under it which
 3385          * is resilvering and is not deferred.
 3386          */
 3387         if (!dsl_scan_check_deferred(vd))
 3388                 return (B_FALSE);
 3389 
 3390         return (B_TRUE);
 3391 }
 3392 
 3393 static int
 3394 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
 3395 {
 3396         dsl_scan_t *scn = dp->dp_scan;
 3397         spa_t *spa = dp->dp_spa;
 3398         int err = 0;
 3399 
 3400         if (spa_suspend_async_destroy(spa))
 3401                 return (0);
 3402 
 3403         if (zfs_free_bpobj_enabled &&
 3404             spa_version(spa) >= SPA_VERSION_DEADLISTS) {
 3405                 scn->scn_is_bptree = B_FALSE;
 3406                 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
 3407                 scn->scn_zio_root = zio_root(spa, NULL,
 3408                     NULL, ZIO_FLAG_MUSTSUCCEED);
 3409                 err = bpobj_iterate(&dp->dp_free_bpobj,
 3410                     bpobj_dsl_scan_free_block_cb, scn, tx);
 3411                 VERIFY0(zio_wait(scn->scn_zio_root));
 3412                 scn->scn_zio_root = NULL;
 3413 
 3414                 if (err != 0 && err != ERESTART)
 3415                         zfs_panic_recover("error %u from bpobj_iterate()", err);
 3416         }
 3417 
 3418         if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
 3419                 ASSERT(scn->scn_async_destroying);
 3420                 scn->scn_is_bptree = B_TRUE;
 3421                 scn->scn_zio_root = zio_root(spa, NULL,
 3422                     NULL, ZIO_FLAG_MUSTSUCCEED);
 3423                 err = bptree_iterate(dp->dp_meta_objset,
 3424                     dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
 3425                 VERIFY0(zio_wait(scn->scn_zio_root));
 3426                 scn->scn_zio_root = NULL;
 3427 
 3428                 if (err == EIO || err == ECKSUM) {
 3429                         err = 0;
 3430                 } else if (err != 0 && err != ERESTART) {
 3431                         zfs_panic_recover("error %u from "
 3432                             "traverse_dataset_destroyed()", err);
 3433                 }
 3434 
 3435                 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
 3436                         /* finished; deactivate async destroy feature */
 3437                         spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
 3438                         ASSERT(!spa_feature_is_active(spa,
 3439                             SPA_FEATURE_ASYNC_DESTROY));
 3440                         VERIFY0(zap_remove(dp->dp_meta_objset,
 3441                             DMU_POOL_DIRECTORY_OBJECT,
 3442                             DMU_POOL_BPTREE_OBJ, tx));
 3443                         VERIFY0(bptree_free(dp->dp_meta_objset,
 3444                             dp->dp_bptree_obj, tx));
 3445                         dp->dp_bptree_obj = 0;
 3446                         scn->scn_async_destroying = B_FALSE;
 3447                         scn->scn_async_stalled = B_FALSE;
 3448                 } else {
 3449                         /*
 3450                          * If we didn't make progress, mark the async
 3451                          * destroy as stalled, so that we will not initiate
 3452                          * a spa_sync() on its behalf.  Note that we only
 3453                          * check this if we are not finished, because if the
 3454                          * bptree had no blocks for us to visit, we can
 3455                          * finish without "making progress".
 3456                          */
 3457                         scn->scn_async_stalled =
 3458                             (scn->scn_visited_this_txg == 0);
 3459                 }
 3460         }
 3461         if (scn->scn_visited_this_txg) {
 3462                 zfs_dbgmsg("freed %llu blocks in %llums from "
 3463                     "free_bpobj/bptree on %s in txg %llu; err=%u",
 3464                     (longlong_t)scn->scn_visited_this_txg,
 3465                     (longlong_t)
 3466                     NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
 3467                     spa->spa_name, (longlong_t)tx->tx_txg, err);
 3468                 scn->scn_visited_this_txg = 0;
 3469                 scn->scn_dedup_frees_this_txg = 0;
 3470 
 3471                 /*
 3472                  * Write out changes to the DDT that may be required as a
 3473                  * result of the blocks freed.  This ensures that the DDT
 3474                  * is clean when a scrub/resilver runs.
 3475                  */
 3476                 ddt_sync(spa, tx->tx_txg);
 3477         }
 3478         if (err != 0)
 3479                 return (err);
 3480         if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
 3481             zfs_free_leak_on_eio &&
 3482             (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
 3483             dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
 3484             dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
 3485                 /*
 3486                  * We have finished background destroying, but there is still
 3487                  * some space left in the dp_free_dir. Transfer this leaked
 3488                  * space to the dp_leak_dir.
 3489                  */
 3490                 if (dp->dp_leak_dir == NULL) {
 3491                         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
 3492                         (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
 3493                             LEAK_DIR_NAME, tx);
 3494                         VERIFY0(dsl_pool_open_special_dir(dp,
 3495                             LEAK_DIR_NAME, &dp->dp_leak_dir));
 3496                         rrw_exit(&dp->dp_config_rwlock, FTAG);
 3497                 }
 3498                 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
 3499                     dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
 3500                     dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
 3501                     dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
 3502                 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
 3503                     -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
 3504                     -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
 3505                     -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
 3506         }
 3507 
 3508         if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
 3509             !spa_livelist_delete_check(spa)) {
 3510                 /* finished; verify that space accounting went to zero */
 3511                 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
 3512                 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
 3513                 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
 3514         }
 3515 
 3516         spa_notify_waiters(spa);
 3517 
 3518         EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
 3519             0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 3520             DMU_POOL_OBSOLETE_BPOBJ));
 3521         if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
 3522                 ASSERT(spa_feature_is_active(dp->dp_spa,
 3523                     SPA_FEATURE_OBSOLETE_COUNTS));
 3524 
 3525                 scn->scn_is_bptree = B_FALSE;
 3526                 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
 3527                 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
 3528                     dsl_scan_obsolete_block_cb, scn, tx);
 3529                 if (err != 0 && err != ERESTART)
 3530                         zfs_panic_recover("error %u from bpobj_iterate()", err);
 3531 
 3532                 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
 3533                         dsl_pool_destroy_obsolete_bpobj(dp, tx);
 3534         }
 3535         return (0);
 3536 }
 3537 
 3538 /*
 3539  * This is the primary entry point for scans that is called from syncing
 3540  * context. Scans must happen entirely during syncing context so that we
 3541  * can guarantee that blocks we are currently scanning will not change out
 3542  * from under us. While a scan is active, this function controls how quickly
 3543  * transaction groups proceed, instead of the normal handling provided by
 3544  * txg_sync_thread().
 3545  */
 3546 void
 3547 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
 3548 {
 3549         int err = 0;
 3550         dsl_scan_t *scn = dp->dp_scan;
 3551         spa_t *spa = dp->dp_spa;
 3552         state_sync_type_t sync_type = SYNC_OPTIONAL;
 3553 
 3554         if (spa->spa_resilver_deferred &&
 3555             !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
 3556                 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
 3557 
 3558         /*
 3559          * Check for scn_restart_txg before checking spa_load_state, so
 3560          * that we can restart an old-style scan while the pool is being
 3561          * imported (see dsl_scan_init). We also restart scans if there
 3562          * is a deferred resilver and the user has manually disabled
 3563          * deferred resilvers via the tunable.
 3564          */
 3565         if (dsl_scan_restarting(scn, tx) ||
 3566             (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
 3567                 pool_scan_func_t func = POOL_SCAN_SCRUB;
 3568                 dsl_scan_done(scn, B_FALSE, tx);
 3569                 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
 3570                         func = POOL_SCAN_RESILVER;
 3571                 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
 3572                     func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
 3573                 dsl_scan_setup_sync(&func, tx);
 3574         }
 3575 
 3576         /*
 3577          * Only process scans in sync pass 1.
 3578          */
 3579         if (spa_sync_pass(spa) > 1)
 3580                 return;
 3581 
 3582         /*
 3583          * If the spa is shutting down, then stop scanning. This will
 3584          * ensure that the scan does not dirty any new data during the
 3585          * shutdown phase.
 3586          */
 3587         if (spa_shutting_down(spa))
 3588                 return;
 3589 
 3590         /*
 3591          * If the scan is inactive due to a stalled async destroy, try again.
 3592          */
 3593         if (!scn->scn_async_stalled && !dsl_scan_active(scn))
 3594                 return;
 3595 
 3596         /* reset scan statistics */
 3597         scn->scn_visited_this_txg = 0;
 3598         scn->scn_dedup_frees_this_txg = 0;
 3599         scn->scn_holes_this_txg = 0;
 3600         scn->scn_lt_min_this_txg = 0;
 3601         scn->scn_gt_max_this_txg = 0;
 3602         scn->scn_ddt_contained_this_txg = 0;
 3603         scn->scn_objsets_visited_this_txg = 0;
 3604         scn->scn_avg_seg_size_this_txg = 0;
 3605         scn->scn_segs_this_txg = 0;
 3606         scn->scn_avg_zio_size_this_txg = 0;
 3607         scn->scn_zios_this_txg = 0;
 3608         scn->scn_suspending = B_FALSE;
 3609         scn->scn_sync_start_time = gethrtime();
 3610         spa->spa_scrub_active = B_TRUE;
 3611 
 3612         /*
 3613          * First process the async destroys.  If we suspend, don't do
 3614          * any scrubbing or resilvering.  This ensures that there are no
 3615          * async destroys while we are scanning, so the scan code doesn't
 3616          * have to worry about traversing it.  It is also faster to free the
 3617          * blocks than to scrub them.
 3618          */
 3619         err = dsl_process_async_destroys(dp, tx);
 3620         if (err != 0)
 3621                 return;
 3622 
 3623         if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
 3624                 return;
 3625 
 3626         /*
 3627          * Wait a few txgs after importing to begin scanning so that
 3628          * we can get the pool imported quickly.
 3629          */
 3630         if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
 3631                 return;
 3632 
 3633         /*
 3634          * zfs_scan_suspend_progress can be set to disable scan progress.
 3635          * We don't want to spin the txg_sync thread, so we add a delay
 3636          * here to simulate the time spent doing a scan. This is mostly
 3637          * useful for testing and debugging.
 3638          */
 3639         if (zfs_scan_suspend_progress) {
 3640                 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
 3641                 uint_t mintime = (scn->scn_phys.scn_func ==
 3642                     POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
 3643                     zfs_scrub_min_time_ms;
 3644 
 3645                 while (zfs_scan_suspend_progress &&
 3646                     !txg_sync_waiting(scn->scn_dp) &&
 3647                     !spa_shutting_down(scn->scn_dp->dp_spa) &&
 3648                     NSEC2MSEC(scan_time_ns) < mintime) {
 3649                         delay(hz);
 3650                         scan_time_ns = gethrtime() - scn->scn_sync_start_time;
 3651                 }
 3652                 return;
 3653         }
 3654 
 3655         /*
 3656          * It is possible to switch from unsorted to sorted at any time,
 3657          * but afterwards the scan will remain sorted unless reloaded from
 3658          * a checkpoint after a reboot.
 3659          */
 3660         if (!zfs_scan_legacy) {
 3661                 scn->scn_is_sorted = B_TRUE;
 3662                 if (scn->scn_last_checkpoint == 0)
 3663                         scn->scn_last_checkpoint = ddi_get_lbolt();
 3664         }
 3665 
 3666         /*
 3667          * For sorted scans, determine what kind of work we will be doing
 3668          * this txg based on our memory limitations and whether or not we
 3669          * need to perform a checkpoint.
 3670          */
 3671         if (scn->scn_is_sorted) {
 3672                 /*
 3673                  * If we are over our checkpoint interval, set scn_clearing
 3674                  * so that we can begin checkpointing immediately. The
 3675                  * checkpoint allows us to save a consistent bookmark
 3676                  * representing how much data we have scrubbed so far.
 3677                  * Otherwise, use the memory limit to determine if we should
 3678                  * scan for metadata or start issue scrub IOs. We accumulate
 3679                  * metadata until we hit our hard memory limit at which point
 3680                  * we issue scrub IOs until we are at our soft memory limit.
 3681                  */
 3682                 if (scn->scn_checkpointing ||
 3683                     ddi_get_lbolt() - scn->scn_last_checkpoint >
 3684                     SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
 3685                         if (!scn->scn_checkpointing)
 3686                                 zfs_dbgmsg("begin scan checkpoint for %s",
 3687                                     spa->spa_name);
 3688 
 3689                         scn->scn_checkpointing = B_TRUE;
 3690                         scn->scn_clearing = B_TRUE;
 3691                 } else {
 3692                         boolean_t should_clear = dsl_scan_should_clear(scn);
 3693                         if (should_clear && !scn->scn_clearing) {
 3694                                 zfs_dbgmsg("begin scan clearing for %s",
 3695                                     spa->spa_name);
 3696                                 scn->scn_clearing = B_TRUE;
 3697                         } else if (!should_clear && scn->scn_clearing) {
 3698                                 zfs_dbgmsg("finish scan clearing for %s",
 3699                                     spa->spa_name);
 3700                                 scn->scn_clearing = B_FALSE;
 3701                         }
 3702                 }
 3703         } else {
 3704                 ASSERT0(scn->scn_checkpointing);
 3705                 ASSERT0(scn->scn_clearing);
 3706         }
 3707 
 3708         if (!scn->scn_clearing && scn->scn_done_txg == 0) {
 3709                 /* Need to scan metadata for more blocks to scrub */
 3710                 dsl_scan_phys_t *scnp = &scn->scn_phys;
 3711                 taskqid_t prefetch_tqid;
 3712 
 3713                 /*
 3714                  * Recalculate the max number of in-flight bytes for pool-wide
 3715                  * scanning operations (minimum 1MB). Limits for the issuing
 3716                  * phase are done per top-level vdev and are handled separately.
 3717                  */
 3718                 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
 3719                     dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
 3720 
 3721                 if (scnp->scn_ddt_bookmark.ddb_class <=
 3722                     scnp->scn_ddt_class_max) {
 3723                         ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
 3724                         zfs_dbgmsg("doing scan sync for %s txg %llu; "
 3725                             "ddt bm=%llu/%llu/%llu/%llx",
 3726                             spa->spa_name,
 3727                             (longlong_t)tx->tx_txg,
 3728                             (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
 3729                             (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
 3730                             (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
 3731                             (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
 3732                 } else {
 3733                         zfs_dbgmsg("doing scan sync for %s txg %llu; "
 3734                             "bm=%llu/%llu/%llu/%llu",
 3735                             spa->spa_name,
 3736                             (longlong_t)tx->tx_txg,
 3737                             (longlong_t)scnp->scn_bookmark.zb_objset,
 3738                             (longlong_t)scnp->scn_bookmark.zb_object,
 3739                             (longlong_t)scnp->scn_bookmark.zb_level,
 3740                             (longlong_t)scnp->scn_bookmark.zb_blkid);
 3741                 }
 3742 
 3743                 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
 3744                     NULL, ZIO_FLAG_CANFAIL);
 3745 
 3746                 scn->scn_prefetch_stop = B_FALSE;
 3747                 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
 3748                     dsl_scan_prefetch_thread, scn, TQ_SLEEP);
 3749                 ASSERT(prefetch_tqid != TASKQID_INVALID);
 3750 
 3751                 dsl_pool_config_enter(dp, FTAG);
 3752                 dsl_scan_visit(scn, tx);
 3753                 dsl_pool_config_exit(dp, FTAG);
 3754 
 3755                 mutex_enter(&dp->dp_spa->spa_scrub_lock);
 3756                 scn->scn_prefetch_stop = B_TRUE;
 3757                 cv_broadcast(&spa->spa_scrub_io_cv);
 3758                 mutex_exit(&dp->dp_spa->spa_scrub_lock);
 3759 
 3760                 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
 3761                 (void) zio_wait(scn->scn_zio_root);
 3762                 scn->scn_zio_root = NULL;
 3763 
 3764                 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
 3765                     "(%llu os's, %llu holes, %llu < mintxg, "
 3766                     "%llu in ddt, %llu > maxtxg)",
 3767                     (longlong_t)scn->scn_visited_this_txg,
 3768                     spa->spa_name,
 3769                     (longlong_t)NSEC2MSEC(gethrtime() -
 3770                     scn->scn_sync_start_time),
 3771                     (longlong_t)scn->scn_objsets_visited_this_txg,
 3772                     (longlong_t)scn->scn_holes_this_txg,
 3773                     (longlong_t)scn->scn_lt_min_this_txg,
 3774                     (longlong_t)scn->scn_ddt_contained_this_txg,
 3775                     (longlong_t)scn->scn_gt_max_this_txg);
 3776 
 3777                 if (!scn->scn_suspending) {
 3778                         ASSERT0(avl_numnodes(&scn->scn_queue));
 3779                         scn->scn_done_txg = tx->tx_txg + 1;
 3780                         if (scn->scn_is_sorted) {
 3781                                 scn->scn_checkpointing = B_TRUE;
 3782                                 scn->scn_clearing = B_TRUE;
 3783                         }
 3784                         zfs_dbgmsg("scan complete for %s txg %llu",
 3785                             spa->spa_name,
 3786                             (longlong_t)tx->tx_txg);
 3787                 }
 3788         } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
 3789                 ASSERT(scn->scn_clearing);
 3790 
 3791                 /* need to issue scrubbing IOs from per-vdev queues */
 3792                 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
 3793                     NULL, ZIO_FLAG_CANFAIL);
 3794                 scan_io_queues_run(scn);
 3795                 (void) zio_wait(scn->scn_zio_root);
 3796                 scn->scn_zio_root = NULL;
 3797 
 3798                 /* calculate and dprintf the current memory usage */
 3799                 (void) dsl_scan_should_clear(scn);
 3800                 dsl_scan_update_stats(scn);
 3801 
 3802                 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
 3803                     "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
 3804                     (longlong_t)scn->scn_zios_this_txg,
 3805                     spa->spa_name,
 3806                     (longlong_t)scn->scn_segs_this_txg,
 3807                     (longlong_t)NSEC2MSEC(gethrtime() -
 3808                     scn->scn_sync_start_time),
 3809                     (longlong_t)scn->scn_avg_zio_size_this_txg,
 3810                     (longlong_t)scn->scn_avg_seg_size_this_txg);
 3811         } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
 3812                 /* Finished with everything. Mark the scrub as complete */
 3813                 zfs_dbgmsg("scan issuing complete txg %llu for %s",
 3814                     (longlong_t)tx->tx_txg,
 3815                     spa->spa_name);
 3816                 ASSERT3U(scn->scn_done_txg, !=, 0);
 3817                 ASSERT0(spa->spa_scrub_inflight);
 3818                 ASSERT0(scn->scn_queues_pending);
 3819                 dsl_scan_done(scn, B_TRUE, tx);
 3820                 sync_type = SYNC_MANDATORY;
 3821         }
 3822 
 3823         dsl_scan_sync_state(scn, tx, sync_type);
 3824 }
 3825 
 3826 static void
 3827 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
 3828 {
 3829         /*
 3830          * Don't count embedded bp's, since we already did the work of
 3831          * scanning these when we scanned the containing block.
 3832          */
 3833         if (BP_IS_EMBEDDED(bp))
 3834                 return;
 3835 
 3836         /*
 3837          * Update the spa's stats on how many bytes we have issued.
 3838          * Sequential scrubs create a zio for each DVA of the bp. Each
 3839          * of these will include all DVAs for repair purposes, but the
 3840          * zio code will only try the first one unless there is an issue.
 3841          * Therefore, we should only count the first DVA for these IOs.
 3842          */
 3843         atomic_add_64(&spa->spa_scan_pass_issued,
 3844             all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
 3845 }
 3846 
 3847 static void
 3848 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
 3849 {
 3850         /*
 3851          * If we resume after a reboot, zab will be NULL; don't record
 3852          * incomplete stats in that case.
 3853          */
 3854         if (zab == NULL)
 3855                 return;
 3856 
 3857         for (int i = 0; i < 4; i++) {
 3858                 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
 3859                 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
 3860 
 3861                 if (t & DMU_OT_NEWTYPE)
 3862                         t = DMU_OT_OTHER;
 3863                 zfs_blkstat_t *zb = &zab->zab_type[l][t];
 3864                 int equal;
 3865 
 3866                 zb->zb_count++;
 3867                 zb->zb_asize += BP_GET_ASIZE(bp);
 3868                 zb->zb_lsize += BP_GET_LSIZE(bp);
 3869                 zb->zb_psize += BP_GET_PSIZE(bp);
 3870                 zb->zb_gangs += BP_COUNT_GANG(bp);
 3871 
 3872                 switch (BP_GET_NDVAS(bp)) {
 3873                 case 2:
 3874                         if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 3875                             DVA_GET_VDEV(&bp->blk_dva[1]))
 3876                                 zb->zb_ditto_2_of_2_samevdev++;
 3877                         break;
 3878                 case 3:
 3879                         equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 3880                             DVA_GET_VDEV(&bp->blk_dva[1])) +
 3881                             (DVA_GET_VDEV(&bp->blk_dva[0]) ==
 3882                             DVA_GET_VDEV(&bp->blk_dva[2])) +
 3883                             (DVA_GET_VDEV(&bp->blk_dva[1]) ==
 3884                             DVA_GET_VDEV(&bp->blk_dva[2]));
 3885                         if (equal == 1)
 3886                                 zb->zb_ditto_2_of_3_samevdev++;
 3887                         else if (equal == 3)
 3888                                 zb->zb_ditto_3_of_3_samevdev++;
 3889                         break;
 3890                 }
 3891         }
 3892 }
 3893 
 3894 static void
 3895 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
 3896 {
 3897         avl_index_t idx;
 3898         dsl_scan_t *scn = queue->q_scn;
 3899 
 3900         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
 3901 
 3902         if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
 3903                 atomic_add_64(&scn->scn_queues_pending, 1);
 3904         if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
 3905                 /* block is already scheduled for reading */
 3906                 sio_free(sio);
 3907                 return;
 3908         }
 3909         avl_insert(&queue->q_sios_by_addr, sio, idx);
 3910         queue->q_sio_memused += SIO_GET_MUSED(sio);
 3911         range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
 3912             SIO_GET_ASIZE(sio));
 3913 }
 3914 
 3915 /*
 3916  * Given all the info we got from our metadata scanning process, we
 3917  * construct a scan_io_t and insert it into the scan sorting queue. The
 3918  * I/O must already be suitable for us to process. This is controlled
 3919  * by dsl_scan_enqueue().
 3920  */
 3921 static void
 3922 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
 3923     int zio_flags, const zbookmark_phys_t *zb)
 3924 {
 3925         scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
 3926 
 3927         ASSERT0(BP_IS_GANG(bp));
 3928         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
 3929 
 3930         bp2sio(bp, sio, dva_i);
 3931         sio->sio_flags = zio_flags;
 3932         sio->sio_zb = *zb;
 3933 
 3934         queue->q_last_ext_addr = -1;
 3935         scan_io_queue_insert_impl(queue, sio);
 3936 }
 3937 
 3938 /*
 3939  * Given a set of I/O parameters as discovered by the metadata traversal
 3940  * process, attempts to place the I/O into the sorted queues (if allowed),
 3941  * or immediately executes the I/O.
 3942  */
 3943 static void
 3944 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
 3945     const zbookmark_phys_t *zb)
 3946 {
 3947         spa_t *spa = dp->dp_spa;
 3948 
 3949         ASSERT(!BP_IS_EMBEDDED(bp));
 3950 
 3951         /*
 3952          * Gang blocks are hard to issue sequentially, so we just issue them
 3953          * here immediately instead of queuing them.
 3954          */
 3955         if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
 3956                 scan_exec_io(dp, bp, zio_flags, zb, NULL);
 3957                 return;
 3958         }
 3959 
 3960         for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
 3961                 dva_t dva;
 3962                 vdev_t *vdev;
 3963 
 3964                 dva = bp->blk_dva[i];
 3965                 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
 3966                 ASSERT(vdev != NULL);
 3967 
 3968                 mutex_enter(&vdev->vdev_scan_io_queue_lock);
 3969                 if (vdev->vdev_scan_io_queue == NULL)
 3970                         vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
 3971                 ASSERT(dp->dp_scan != NULL);
 3972                 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
 3973                     i, zio_flags, zb);
 3974                 mutex_exit(&vdev->vdev_scan_io_queue_lock);
 3975         }
 3976 }
 3977 
 3978 static int
 3979 dsl_scan_scrub_cb(dsl_pool_t *dp,
 3980     const blkptr_t *bp, const zbookmark_phys_t *zb)
 3981 {
 3982         dsl_scan_t *scn = dp->dp_scan;
 3983         spa_t *spa = dp->dp_spa;
 3984         uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
 3985         size_t psize = BP_GET_PSIZE(bp);
 3986         boolean_t needs_io = B_FALSE;
 3987         int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
 3988 
 3989         count_block(dp->dp_blkstats, bp);
 3990         if (phys_birth <= scn->scn_phys.scn_min_txg ||
 3991             phys_birth >= scn->scn_phys.scn_max_txg) {
 3992                 count_block_issued(spa, bp, B_TRUE);
 3993                 return (0);
 3994         }
 3995 
 3996         /* Embedded BP's have phys_birth==0, so we reject them above. */
 3997         ASSERT(!BP_IS_EMBEDDED(bp));
 3998 
 3999         ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
 4000         if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
 4001                 zio_flags |= ZIO_FLAG_SCRUB;
 4002                 needs_io = B_TRUE;
 4003         } else {
 4004                 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
 4005                 zio_flags |= ZIO_FLAG_RESILVER;
 4006                 needs_io = B_FALSE;
 4007         }
 4008 
 4009         /* If it's an intent log block, failure is expected. */
 4010         if (zb->zb_level == ZB_ZIL_LEVEL)
 4011                 zio_flags |= ZIO_FLAG_SPECULATIVE;
 4012 
 4013         for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
 4014                 const dva_t *dva = &bp->blk_dva[d];
 4015 
 4016                 /*
 4017                  * Keep track of how much data we've examined so that
 4018                  * zpool(8) status can make useful progress reports.
 4019                  */
 4020                 uint64_t asize = DVA_GET_ASIZE(dva);
 4021                 scn->scn_phys.scn_examined += asize;
 4022                 spa->spa_scan_pass_exam += asize;
 4023 
 4024                 /* if it's a resilver, this may not be in the target range */
 4025                 if (!needs_io)
 4026                         needs_io = dsl_scan_need_resilver(spa, dva, psize,
 4027                             phys_birth);
 4028         }
 4029 
 4030         if (needs_io && !zfs_no_scrub_io) {
 4031                 dsl_scan_enqueue(dp, bp, zio_flags, zb);
 4032         } else {
 4033                 count_block_issued(spa, bp, B_TRUE);
 4034         }
 4035 
 4036         /* do not relocate this block */
 4037         return (0);
 4038 }
 4039 
 4040 static void
 4041 dsl_scan_scrub_done(zio_t *zio)
 4042 {
 4043         spa_t *spa = zio->io_spa;
 4044         blkptr_t *bp = zio->io_bp;
 4045         dsl_scan_io_queue_t *queue = zio->io_private;
 4046 
 4047         abd_free(zio->io_abd);
 4048 
 4049         if (queue == NULL) {
 4050                 mutex_enter(&spa->spa_scrub_lock);
 4051                 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
 4052                 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
 4053                 cv_broadcast(&spa->spa_scrub_io_cv);
 4054                 mutex_exit(&spa->spa_scrub_lock);
 4055         } else {
 4056                 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
 4057                 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
 4058                 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
 4059                 cv_broadcast(&queue->q_zio_cv);
 4060                 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
 4061         }
 4062 
 4063         if (zio->io_error && (zio->io_error != ECKSUM ||
 4064             !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
 4065                 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
 4066         }
 4067 }
 4068 
 4069 /*
 4070  * Given a scanning zio's information, executes the zio. The zio need
 4071  * not necessarily be only sortable, this function simply executes the
 4072  * zio, no matter what it is. The optional queue argument allows the
 4073  * caller to specify that they want per top level vdev IO rate limiting
 4074  * instead of the legacy global limiting.
 4075  */
 4076 static void
 4077 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
 4078     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
 4079 {
 4080         spa_t *spa = dp->dp_spa;
 4081         dsl_scan_t *scn = dp->dp_scan;
 4082         size_t size = BP_GET_PSIZE(bp);
 4083         abd_t *data = abd_alloc_for_io(size, B_FALSE);
 4084         zio_t *pio;
 4085 
 4086         if (queue == NULL) {
 4087                 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
 4088                 mutex_enter(&spa->spa_scrub_lock);
 4089                 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
 4090                         cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
 4091                 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
 4092                 mutex_exit(&spa->spa_scrub_lock);
 4093                 pio = scn->scn_zio_root;
 4094         } else {
 4095                 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
 4096 
 4097                 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
 4098                 mutex_enter(q_lock);
 4099                 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
 4100                         cv_wait(&queue->q_zio_cv, q_lock);
 4101                 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
 4102                 pio = queue->q_zio;
 4103                 mutex_exit(q_lock);
 4104         }
 4105 
 4106         ASSERT(pio != NULL);
 4107         count_block_issued(spa, bp, queue == NULL);
 4108         zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
 4109             queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
 4110 }
 4111 
 4112 /*
 4113  * This is the primary extent sorting algorithm. We balance two parameters:
 4114  * 1) how many bytes of I/O are in an extent
 4115  * 2) how well the extent is filled with I/O (as a fraction of its total size)
 4116  * Since we allow extents to have gaps between their constituent I/Os, it's
 4117  * possible to have a fairly large extent that contains the same amount of
 4118  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
 4119  * The algorithm sorts based on a score calculated from the extent's size,
 4120  * the relative fill volume (in %) and a "fill weight" parameter that controls
 4121  * the split between whether we prefer larger extents or more well populated
 4122  * extents:
 4123  *
 4124  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
 4125  *
 4126  * Example:
 4127  * 1) assume extsz = 64 MiB
 4128  * 2) assume fill = 32 MiB (extent is half full)
 4129  * 3) assume fill_weight = 3
 4130  * 4)   SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
 4131  *      SCORE = 32M + (50 * 3 * 32M) / 100
 4132  *      SCORE = 32M + (4800M / 100)
 4133  *      SCORE = 32M + 48M
 4134  *               ^     ^
 4135  *               |     +--- final total relative fill-based score
 4136  *               +--------- final total fill-based score
 4137  *      SCORE = 80M
 4138  *
 4139  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
 4140  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
 4141  * Note that as an optimization, we replace multiplication and division by
 4142  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
 4143  *
 4144  * Since we do not care if one extent is only few percent better than another,
 4145  * compress the score into 6 bits via binary logarithm AKA highbit64() and
 4146  * put into otherwise unused due to ashift high bits of offset.  This allows
 4147  * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
 4148  * with single operation.  Plus it makes scrubs more sequential and reduces
 4149  * chances that minor extent change move it within the B-tree.
 4150  */
 4151 static int
 4152 ext_size_compare(const void *x, const void *y)
 4153 {
 4154         const uint64_t *a = x, *b = y;
 4155 
 4156         return (TREE_CMP(*a, *b));
 4157 }
 4158 
 4159 static void
 4160 ext_size_create(range_tree_t *rt, void *arg)
 4161 {
 4162         (void) rt;
 4163         zfs_btree_t *size_tree = arg;
 4164 
 4165         zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t));
 4166 }
 4167 
 4168 static void
 4169 ext_size_destroy(range_tree_t *rt, void *arg)
 4170 {
 4171         (void) rt;
 4172         zfs_btree_t *size_tree = arg;
 4173         ASSERT0(zfs_btree_numnodes(size_tree));
 4174 
 4175         zfs_btree_destroy(size_tree);
 4176 }
 4177 
 4178 static uint64_t
 4179 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
 4180 {
 4181         (void) rt;
 4182         uint64_t size = rsg->rs_end - rsg->rs_start;
 4183         uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
 4184             fill_weight * rsg->rs_fill) >> 7);
 4185         ASSERT3U(rt->rt_shift, >=, 8);
 4186         return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
 4187 }
 4188 
 4189 static void
 4190 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
 4191 {
 4192         zfs_btree_t *size_tree = arg;
 4193         ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
 4194         uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
 4195         zfs_btree_add(size_tree, &v);
 4196 }
 4197 
 4198 static void
 4199 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
 4200 {
 4201         zfs_btree_t *size_tree = arg;
 4202         ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
 4203         uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
 4204         zfs_btree_remove(size_tree, &v);
 4205 }
 4206 
 4207 static void
 4208 ext_size_vacate(range_tree_t *rt, void *arg)
 4209 {
 4210         zfs_btree_t *size_tree = arg;
 4211         zfs_btree_clear(size_tree);
 4212         zfs_btree_destroy(size_tree);
 4213 
 4214         ext_size_create(rt, arg);
 4215 }
 4216 
 4217 static const range_tree_ops_t ext_size_ops = {
 4218         .rtop_create = ext_size_create,
 4219         .rtop_destroy = ext_size_destroy,
 4220         .rtop_add = ext_size_add,
 4221         .rtop_remove = ext_size_remove,
 4222         .rtop_vacate = ext_size_vacate
 4223 };
 4224 
 4225 /*
 4226  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
 4227  * based on LBA-order (from lowest to highest).
 4228  */
 4229 static int
 4230 sio_addr_compare(const void *x, const void *y)
 4231 {
 4232         const scan_io_t *a = x, *b = y;
 4233 
 4234         return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
 4235 }
 4236 
 4237 /* IO queues are created on demand when they are needed. */
 4238 static dsl_scan_io_queue_t *
 4239 scan_io_queue_create(vdev_t *vd)
 4240 {
 4241         dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
 4242         dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
 4243 
 4244         q->q_scn = scn;
 4245         q->q_vd = vd;
 4246         q->q_sio_memused = 0;
 4247         q->q_last_ext_addr = -1;
 4248         cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
 4249         q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
 4250             &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
 4251         avl_create(&q->q_sios_by_addr, sio_addr_compare,
 4252             sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
 4253 
 4254         return (q);
 4255 }
 4256 
 4257 /*
 4258  * Destroys a scan queue and all segments and scan_io_t's contained in it.
 4259  * No further execution of I/O occurs, anything pending in the queue is
 4260  * simply freed without being executed.
 4261  */
 4262 void
 4263 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
 4264 {
 4265         dsl_scan_t *scn = queue->q_scn;
 4266         scan_io_t *sio;
 4267         void *cookie = NULL;
 4268 
 4269         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
 4270 
 4271         if (!avl_is_empty(&queue->q_sios_by_addr))
 4272                 atomic_add_64(&scn->scn_queues_pending, -1);
 4273         while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
 4274             NULL) {
 4275                 ASSERT(range_tree_contains(queue->q_exts_by_addr,
 4276                     SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
 4277                 queue->q_sio_memused -= SIO_GET_MUSED(sio);
 4278                 sio_free(sio);
 4279         }
 4280 
 4281         ASSERT0(queue->q_sio_memused);
 4282         range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
 4283         range_tree_destroy(queue->q_exts_by_addr);
 4284         avl_destroy(&queue->q_sios_by_addr);
 4285         cv_destroy(&queue->q_zio_cv);
 4286 
 4287         kmem_free(queue, sizeof (*queue));
 4288 }
 4289 
 4290 /*
 4291  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
 4292  * called on behalf of vdev_top_transfer when creating or destroying
 4293  * a mirror vdev due to zpool attach/detach.
 4294  */
 4295 void
 4296 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
 4297 {
 4298         mutex_enter(&svd->vdev_scan_io_queue_lock);
 4299         mutex_enter(&tvd->vdev_scan_io_queue_lock);
 4300 
 4301         VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
 4302         tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
 4303         svd->vdev_scan_io_queue = NULL;
 4304         if (tvd->vdev_scan_io_queue != NULL)
 4305                 tvd->vdev_scan_io_queue->q_vd = tvd;
 4306 
 4307         mutex_exit(&tvd->vdev_scan_io_queue_lock);
 4308         mutex_exit(&svd->vdev_scan_io_queue_lock);
 4309 }
 4310 
 4311 static void
 4312 scan_io_queues_destroy(dsl_scan_t *scn)
 4313 {
 4314         vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
 4315 
 4316         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
 4317                 vdev_t *tvd = rvd->vdev_child[i];
 4318 
 4319                 mutex_enter(&tvd->vdev_scan_io_queue_lock);
 4320                 if (tvd->vdev_scan_io_queue != NULL)
 4321                         dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
 4322                 tvd->vdev_scan_io_queue = NULL;
 4323                 mutex_exit(&tvd->vdev_scan_io_queue_lock);
 4324         }
 4325 }
 4326 
 4327 static void
 4328 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
 4329 {
 4330         dsl_pool_t *dp = spa->spa_dsl_pool;
 4331         dsl_scan_t *scn = dp->dp_scan;
 4332         vdev_t *vdev;
 4333         kmutex_t *q_lock;
 4334         dsl_scan_io_queue_t *queue;
 4335         scan_io_t *srch_sio, *sio;
 4336         avl_index_t idx;
 4337         uint64_t start, size;
 4338 
 4339         vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
 4340         ASSERT(vdev != NULL);
 4341         q_lock = &vdev->vdev_scan_io_queue_lock;
 4342         queue = vdev->vdev_scan_io_queue;
 4343 
 4344         mutex_enter(q_lock);
 4345         if (queue == NULL) {
 4346                 mutex_exit(q_lock);
 4347                 return;
 4348         }
 4349 
 4350         srch_sio = sio_alloc(BP_GET_NDVAS(bp));
 4351         bp2sio(bp, srch_sio, dva_i);
 4352         start = SIO_GET_OFFSET(srch_sio);
 4353         size = SIO_GET_ASIZE(srch_sio);
 4354 
 4355         /*
 4356          * We can find the zio in two states:
 4357          * 1) Cold, just sitting in the queue of zio's to be issued at
 4358          *      some point in the future. In this case, all we do is
 4359          *      remove the zio from the q_sios_by_addr tree, decrement
 4360          *      its data volume from the containing range_seg_t and
 4361          *      resort the q_exts_by_size tree to reflect that the
 4362          *      range_seg_t has lost some of its 'fill'. We don't shorten
 4363          *      the range_seg_t - this is usually rare enough not to be
 4364          *      worth the extra hassle of trying keep track of precise
 4365          *      extent boundaries.
 4366          * 2) Hot, where the zio is currently in-flight in
 4367          *      dsl_scan_issue_ios. In this case, we can't simply
 4368          *      reach in and stop the in-flight zio's, so we instead
 4369          *      block the caller. Eventually, dsl_scan_issue_ios will
 4370          *      be done with issuing the zio's it gathered and will
 4371          *      signal us.
 4372          */
 4373         sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
 4374         sio_free(srch_sio);
 4375 
 4376         if (sio != NULL) {
 4377                 blkptr_t tmpbp;
 4378 
 4379                 /* Got it while it was cold in the queue */
 4380                 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
 4381                 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
 4382                 avl_remove(&queue->q_sios_by_addr, sio);
 4383                 if (avl_is_empty(&queue->q_sios_by_addr))
 4384                         atomic_add_64(&scn->scn_queues_pending, -1);
 4385                 queue->q_sio_memused -= SIO_GET_MUSED(sio);
 4386 
 4387                 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
 4388                 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
 4389 
 4390                 /* count the block as though we issued it */
 4391                 sio2bp(sio, &tmpbp);
 4392                 count_block_issued(spa, &tmpbp, B_FALSE);
 4393 
 4394                 sio_free(sio);
 4395         }
 4396         mutex_exit(q_lock);
 4397 }
 4398 
 4399 /*
 4400  * Callback invoked when a zio_free() zio is executing. This needs to be
 4401  * intercepted to prevent the zio from deallocating a particular portion
 4402  * of disk space and it then getting reallocated and written to, while we
 4403  * still have it queued up for processing.
 4404  */
 4405 void
 4406 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
 4407 {
 4408         dsl_pool_t *dp = spa->spa_dsl_pool;
 4409         dsl_scan_t *scn = dp->dp_scan;
 4410 
 4411         ASSERT(!BP_IS_EMBEDDED(bp));
 4412         ASSERT(scn != NULL);
 4413         if (!dsl_scan_is_running(scn))
 4414                 return;
 4415 
 4416         for (int i = 0; i < BP_GET_NDVAS(bp); i++)
 4417                 dsl_scan_freed_dva(spa, bp, i);
 4418 }
 4419 
 4420 /*
 4421  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
 4422  * not started, start it. Otherwise, only restart if max txg in DTL range is
 4423  * greater than the max txg in the current scan. If the DTL max is less than
 4424  * the scan max, then the vdev has not missed any new data since the resilver
 4425  * started, so a restart is not needed.
 4426  */
 4427 void
 4428 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
 4429 {
 4430         uint64_t min, max;
 4431 
 4432         if (!vdev_resilver_needed(vd, &min, &max))
 4433                 return;
 4434 
 4435         if (!dsl_scan_resilvering(dp)) {
 4436                 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
 4437                 return;
 4438         }
 4439 
 4440         if (max <= dp->dp_scan->scn_phys.scn_max_txg)
 4441                 return;
 4442 
 4443         /* restart is needed, check if it can be deferred */
 4444         if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
 4445                 vdev_defer_resilver(vd);
 4446         else
 4447                 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
 4448 }
 4449 
 4450 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
 4451         "Max bytes in flight per leaf vdev for scrubs and resilvers");
 4452 
 4453 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
 4454         "Min millisecs to scrub per txg");
 4455 
 4456 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
 4457         "Min millisecs to obsolete per txg");
 4458 
 4459 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
 4460         "Min millisecs to free per txg");
 4461 
 4462 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
 4463         "Min millisecs to resilver per txg");
 4464 
 4465 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
 4466         "Set to prevent scans from progressing");
 4467 
 4468 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
 4469         "Set to disable scrub I/O");
 4470 
 4471 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
 4472         "Set to disable scrub prefetching");
 4473 
 4474 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
 4475         "Max number of blocks freed in one txg");
 4476 
 4477 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
 4478         "Max number of dedup blocks freed in one txg");
 4479 
 4480 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
 4481         "Enable processing of the free_bpobj");
 4482 
 4483 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
 4484         "Enable block statistics calculation during scrub");
 4485 
 4486 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
 4487         "Fraction of RAM for scan hard limit");
 4488 
 4489 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
 4490         "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
 4491 
 4492 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
 4493         "Scrub using legacy non-sequential method");
 4494 
 4495 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
 4496         "Scan progress on-disk checkpointing interval");
 4497 
 4498 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
 4499         "Max gap in bytes between sequential scrub / resilver I/Os");
 4500 
 4501 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
 4502         "Fraction of hard limit used as soft limit");
 4503 
 4504 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
 4505         "Tunable to attempt to reduce lock contention");
 4506 
 4507 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
 4508         "Tunable to adjust bias towards more filled segments during scans");
 4509 
 4510 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
 4511         "Process all resilvers immediately");

Cache object: 256f8510048006503209e7cb3d49a91e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.